TWI754297B - Ultrasound system for improving needle visualization - Google Patents

Ultrasound system for improving needle visualization Download PDF

Info

Publication number
TWI754297B
TWI754297B TW109119555A TW109119555A TWI754297B TW I754297 B TWI754297 B TW I754297B TW 109119555 A TW109119555 A TW 109119555A TW 109119555 A TW109119555 A TW 109119555A TW I754297 B TWI754297 B TW I754297B
Authority
TW
Taiwan
Prior art keywords
transducer element
transducer
acoustic lens
ultrasonic
array
Prior art date
Application number
TW109119555A
Other languages
Chinese (zh)
Other versions
TW202112311A (en
Inventor
謝承原
Original Assignee
謝承原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 謝承原 filed Critical 謝承原
Priority to US17/024,742 priority Critical patent/US20210093289A1/en
Publication of TW202112311A publication Critical patent/TW202112311A/en
Application granted granted Critical
Publication of TWI754297B publication Critical patent/TWI754297B/en

Links

Images

Abstract

This invention provides an ultrasound system for improving needle visualization, including: an ultrasound probe, which has a tail and a head. A plurality of transducing elements (or more specifically, piezoelectric elements) are embedded in a surface of the head. The transducing elements are arranged in an array of M times N (M × N), wherein M is a positive even number, N is a positive integer, and N is greater than M.

Description

改善針顯像的超音波系統 Ultrasound system to improve needle visualization

本發明是關於改善針顯像的超音波系統,特別是供針導航的智慧立體定向超音波系統。 The present invention relates to an ultrasound system for improving needle visualization, especially a smart stereotaxic ultrasound system for needle navigation.

在進行醫療手術或身體檢查時,可能將針或針狀器械插入患者的身體部位,此時,必須確保針處於正確走向(行進方向),為此,可使用超音波探頭來偵測針的位置與走向。 During medical procedures or physical examinations, where a needle or needle-like instrument may be inserted into a patient's body part, it is necessary to ensure that the needle is in the correct orientation (direction of travel). For this purpose, an ultrasonic probe can be used to detect the position of the needle with the direction.

圖1A及圖1B顯示一種習知的針導航問題,通常稱為「針不在平面中」(needle not in-plane)問題。單一縱面(one longitudinal plane,簡稱「1L」)線性探頭90可偵測一影像平面92的範圍。可是,如圖1A所示,往往,針94只有部分相交於影像平面92,並未整個顯現於影像平面92,故難以確認針94的位置與走向。 1A and 1B illustrate a conventional needle navigation problem, commonly referred to as the "needle not in-plane" problem. A single longitudinal plane (“1L”) linear probe 90 can detect the extent of an image plane 92 . However, as shown in FIG. 1A , often the needle 94 only partially intersects the image plane 92 , and the entire needle 94 does not appear on the image plane 92 , so it is difficult to confirm the position and orientation of the needle 94 .

從而,為了將針94調整成「在平面中」,使用者須嘗試旋轉探頭或重新插針。可是,若只觀察在圖1A中的針94與影像平面92的交點,則如圖1B所示,針的走向存在多種可能,且包括鏡像走向。因此,使用者只是盲目地順 時針方向或逆時針方向來旋轉探頭或重新插針,試圖觀察出針94的走向,但有50%的機率旋轉至錯誤方向,這將不利於使用針94的手術或身體檢查。 Thus, in order to adjust the needle 94 to be "in-plane", the user must attempt to rotate the probe or reinsert the needle. However, if only the intersection of the needle 94 and the image plane 92 in FIG. 1A is observed, as shown in FIG. 1B , there are many possibilities for the orientation of the needle, including a mirror orientation. Therefore, the user just blindly Rotate the probe clockwise or counterclockwise or reinsert the needle, trying to observe the direction of the needle 94, but there is a 50% chance of rotating the probe to the wrong direction, which will be unfavorable for surgery or physical examination using the needle 94.

圖1C顯示針對上述針導航問題的一種習知的解決方案。有經驗的使用者習慣搖晃探頭90,使影像平面92傾斜,而蒐集多個傾斜的影像平面92即有助於判別針94的走向。不過,這種解決方案仰賴於使用者的經驗累積,且關於針的走向亦只可獲得極其有限的資訊,旋轉至錯誤方向的機率仍然甚高。 Figure 1C shows a conventional solution to the needle navigation problem described above. Experienced users are accustomed to shaking the probe 90 to tilt the image plane 92 , and collecting a plurality of tilted image planes 92 is helpful for judging the direction of the needle 94 . However, this solution relies on the accumulated experience of the user, and only extremely limited information can be obtained about the direction of the needle, and the probability of rotating in the wrong direction is still very high.

因此,亟須提出一種改良的超音波系統,以消除或緩和上述問題。 Therefore, there is an urgent need to propose an improved ultrasonic system to eliminate or alleviate the above-mentioned problems.

有鑑於此,本發明提出一種雙縱面(two longitudinal planes,簡稱「2L」)線性超音波探頭(linear ultrasound transducer),可用於定位針(或更廣義而言,各種器械)的走向(行進方向)。本發明的雙縱面線性探頭可進一步推廣成「偶數」縱面線性探頭。 In view of this, the present invention proposes a linear ultrasound transducer with two longitudinal planes ("2L" for short), which can be used to locate the orientation (travel direction) of a needle (or in a broader sense, various instruments). ). The dual longitudinal linear probe of the present invention can be further extended to an "even" longitudinal linear probe.

值得注意的是,其他探頭,例如,三縱面(three longitudinal planes,簡稱「3L」)線性超音波探頭,會形成「奇數」縱面,如此,才具有「中央平面」(central plane)。中央平面因位於正中央,而有益於以探頭外觀的正中央為心像(mental imagery),協助針的定向。本發明的2L線性(或更廣義而言,偶數縱面)探頭缺乏固有的中央平面,故透過多種技術重建中央平面,或者,補償中央平面的空缺,以獲得相當於來自中央平面的訊號。 It is worth noting that other probes, such as three longitudinal planes ("3L") linear ultrasound probes, will form "odd" longitudinal planes, and thus have a "central plane". Because the central plane is located in the center, it is beneficial to use the center of the probe appearance as a mental imagery to assist in needle orientation. The 2L linear (or more broadly, even longitudinal) probes of the present invention lack an inherent center plane, so various techniques are used to reconstruct the center plane, or to compensate for the absence of the center plane, to obtain a signal equivalent to that from the center plane.

為此,本發明開創「雙側聲波不完全混和法」,以2L線性探頭來達成3L線性探頭的三縱面顯像效果,亦即可獲得相當於來自中央平面的影像。特別是,雙側聲波的「不完全混和」,是指左右雙側的聲波彼此既須達到一定 程度的混和度,同時,各自亦須保有一定程度的獨立性。其中,雙側聲波的混和性是為了消除兩行換能元件之間的間隙(參考圖5D)所導致的「盲區」(blind zone),足以偵測到相當於來自中央平面的影像。至於雙側聲波的獨立性則是為了使探頭產生單一縱面之外的立體感知(stereotactic perception),以確認針的走向,避免誤判成鏡像走向。 To this end, the present invention creates the "Bilateral Incomplete Mixing Method of Acoustic Waves", and uses the 2L linear probe to achieve the three-longitudinal imaging effect of the 3L linear probe, that is, the image equivalent to the central plane can be obtained. In particular, the "incomplete mixing" of bilateral sound waves means that the sound waves on the left and right sides must reach a certain level with each other. degree of mixing, and at the same time, each must maintain a certain degree of independence. Among them, the mixing of the two-sided acoustic waves is to eliminate the "blind zone" caused by the gap between the two rows of transducer elements (refer to Figure 5D), which is sufficient to detect images equivalent to the central plane. As for the independence of the bilateral sound waves, the purpose is to enable the probe to generate stereotactic perception beyond a single longitudinal plane, so as to confirm the direction of the needle and avoid misjudging the direction of a mirror image.

就優勢而言,相較於典型的1L線性探頭,本發明的2L線性探頭可提供單一縱面之外的立體感知,更精準地確認針的走向,避免誤判成鏡像走向。而相較於3L線性探頭,本發明的2L線性探頭省略一整行換能元件,除了可減少換能元件的材料及其成本之外,亦可在軟體層面大幅降低影像資料的運算複雜度。 In terms of advantages, compared with the typical 1L linear probe, the 2L linear probe of the present invention can provide stereoscopic perception beyond a single longitudinal plane, more accurately confirm the needle orientation, and avoid misjudging the mirror orientation. Compared with the 3L linear probe, the 2L linear probe of the present invention omits an entire row of transducer elements, which not only reduces the material and cost of transducer elements, but also greatly reduces the computational complexity of image data at the software level.

根據本發明的一種觀點,提供一種改善針顯像的超音波系統,包括:一超音波探頭,其具有一尾部及一頭部。頭部的一表面嵌設有多個換能元件。該些換能元件是排列成M乘以N(M×N)的一陣列;其中,M為正偶數,N為正整數,且N大於M。 According to one aspect of the present invention, an ultrasound system for improving needle visualization is provided, including: an ultrasound probe having a tail and a head. A surface of the head is embedded with a plurality of transducer elements. The transducer elements are arranged in an array of M times N (M×N); wherein, M is a positive even number, N is a positive integer, and N is greater than M.

可選地,或較佳地,陣列為2行N列的陣列,而將該些換能元件區分成第1行換能元件組及第2行換能元件組,分別組態成形成一第1超音波縱向偵測面及一第2超音波縱向偵測面。 Optionally, or preferably, the array is an array with 2 rows and N columns, and the transducer elements are divided into a first row transducer element group and a second row transducer element group, which are respectively configured to form a first row. 1 ultrasonic longitudinal detection surface and a second ultrasonic longitudinal detection surface.

可選地,或較佳地,第1超音波縱向偵測面與第2超音波縱向偵測面之間存在待建立的一雙側等時距中央超音波縱向偵測面或待消除或最小化的一盲區。 Optionally, or preferably, between the 1st ultrasonic longitudinal detection surface and the 2nd ultrasonic longitudinal detection surface, there is a bilateral isochronous central ultrasonic longitudinal detection surface to be established or to be eliminated or minimized. a blind spot.

可選地,或較佳地,在該些換能元件前方附設一聲透鏡(acoustic lens),聲透鏡是組態成使第1超音波縱向偵測面相交(intersected)或部分重疊(partially overlapped)於第2超音波縱向偵測面。 Optionally, or preferably, an acoustic lens (acoustic lens) is attached in front of the transducer elements, and the acoustic lens is configured to make the first ultrasonic longitudinal detection surface intersected or partially overlapped (partially overlapped). ) on the second ultrasonic longitudinal detection surface.

可選地,或較佳地,聲透鏡為一單焦點透鏡,或一多焦距透鏡而具有多個焦點。 Optionally, or preferably, the acoustic lens is a monofocal lens, or a multifocal lens with multiple focal points.

可選地,或較佳地,第1行換能元件組與第2行換能元件組之間存在一間隙;聲透鏡的該些焦點位在間隙前方,或位在雙側等時距中央超音波縱向偵測面或盲區;或者,聲透鏡是以間隙為幾何對稱中心。 Optionally, or preferably, there is a gap between the first row of transducer element groups and the second row of transducer element groups; the focal points of the acoustic lens are located in front of the gap, or are located in the center at equal time intervals on both sides. Ultrasonic longitudinal detection surface or blind area; or, the acoustic lens is based on the gap as the geometric center of symmetry.

可選地,或較佳地,在該些換能元件與聲透鏡之間、或在聲透鏡內、或在聲透鏡前方夾設一分散器(splitter),分散器對準盲區;或者,在聲透鏡中形成一分散結構,分散結構對準盲區。 Optionally, or preferably, a splitter is sandwiched between the transducer elements and the acoustic lens, or in the acoustic lens, or in front of the acoustic lens, and the splitter is aimed at the blind area; A dispersion structure is formed in the acoustic lens, and the dispersion structure is aimed at the blind area.

可選地,或較佳地,聲透鏡具有一或多個波導(wave guide)構造,對準盲區。 Optionally, or preferably, the acoustic lens has one or more wave guide configurations aimed at the dead zone.

可選地,或較佳地,陣列為一交錯(staggered)陣列,使第1行換能元件組錯位於第2行換能元件組。 Optionally, or preferably, the array is a staggered array, so that the transducing element group in the first row is staggered to the transducing element group in the second row.

可選地,或較佳地,陣列為一拉鍊式(zipped)陣列。 Alternatively, or preferably, the array is a zipped array.

可選地,或較佳地,各換能元件組本身構造是彎曲成一凸面或一凹面,對準一盲區或一待測物。 Optionally, or preferably, each transducing element group itself is configured to be curved into a convex surface or a concave surface, aiming at a blind area or an object to be measured.

可選地,或較佳地,第1超音波縱向偵測面與第2超音波縱向偵測面是基於雙側聲波不完全混和法來混合,使兩者的聲波彼此達到一混和度,同時,各自保有一獨立性。 Optionally, or preferably, the 1st ultrasonic longitudinal detection surface and the 2nd ultrasonic longitudinal detection surface are mixed based on the incomplete mixing method of bilateral sound waves, so that the sound waves of the two reach a degree of mixing with each other, and simultaneously. , each retains its independence.

可選地,或較佳地,偵測面曲折成一第1子表面及一第2子表面,第1子表面不平行於第2子表面。 Optionally, or preferably, the detection surface is bent into a first sub-surface and a second sub-surface, and the first sub-surface is not parallel to the second sub-surface.

根據本發明的另一種觀點,提供一種改善針顯像的超音波系統,包括:一超音波探頭,其具有一尾部及一頭部。頭部的一表面嵌設有一第1群二維陣列式換能元件套組及一第2群二維陣列式換能元件套組,各二維陣列式換能元件套組是由多個微型換能元件所組成,且該些二維陣列式換能元件套組設置成夾有一夾角,可彼此平行或不平行。 According to another aspect of the present invention, an ultrasound system for improving needle visualization is provided, comprising: an ultrasound probe having a tail and a head. A surface of the head is embedded with a first group of two-dimensional array type transducer element sets and a second group of two-dimensional array type transducer element sets, each two-dimensional array type transducer element set is composed of a plurality of micro It consists of transducing elements, and these two-dimensional array transducing element sets are arranged to form an included angle, which can be parallel or non-parallel to each other.

可選地,或較佳地,該些微型換能元件是錯位成使各二維陣列式換能元件套組構造彎曲成一凸面或一凹面,對準一盲區或一待測物。 Optionally, or preferably, the micro transducer elements are dislocated so that each two-dimensional array transducer element set structure is curved into a convex surface or a concave surface, and is aligned with a blind area or an object to be measured.

接著,本發明亦針對3L線性探頭作出創新改良。 Next, the present invention also makes innovative improvements to the 3L linear probe.

根據本發明的再一種觀點,提供一種改善針顯像的超音波系統,包括:一超音波探頭,其具有一尾部及一頭部。頭部的一表面嵌設有多個換能元件。該些換能元件是排列成L乘以N(L×N)的一陣列;其中,L為正奇數,N為正整數,且N大於L;陣列將該些換能元件區分成左側區換能元件組、中央區換能元件組、及右側區換能元件組,分別組態成形成一左側超音波縱向偵測面、一中央超音波縱向偵測面、及一右側超音波縱向偵測面。中央區換能元件組換能元件在配置上相異於左側區換能元件組換能元件及/或右側區換能元件組換能元件。 According to yet another aspect of the present invention, an ultrasound system for improving needle visualization is provided, comprising: an ultrasound probe having a tail and a head. A surface of the head is embedded with a plurality of transducer elements. The transducer elements are arranged in an array of L times N (L×N); wherein, L is a positive odd number, N is a positive integer, and N is greater than L; The energy element group, the central area transducer element group, and the right side area transducer element group are respectively configured to form a left ultrasonic longitudinal detection surface, a central ultrasonic longitudinal detection surface, and a right ultrasonic longitudinal detection surface. noodle. The central region transducer element group transducer elements are configured differently from the left side region transducer element group transducer elements and/or the right side region transducer element group transducer elements.

可選地,或較佳地,中央區換能元件組換能元件尺寸小於左側區換能元件組換能元件尺寸,及/或小於右側區換能元件組換能元件尺寸。 Optionally, or preferably, the transducer element size of the central region transducer element group is smaller than the left region transducer element group transducer element size, and/or smaller than the right region transducer element group transducer element size.

可選地,或較佳地,中央區換能元件組換能元件尺寸比左側區換能元件組換能元件尺寸等於1倍或小於1倍,及/或比右側區換能元件組換能元件尺寸等於1倍或小於1倍,而形成一種「中央為輔」型態。 Optionally, or preferably, the size of the transducer elements of the transducer element group in the central region is equal to or less than 1 times the size of the transducer element of the transducer element group in the left region, and/or the transduction element size of the transducer element group in the right region is greater than that in the right region. The component size is equal to or less than 1 times, forming a "center-assisted" type.

可選地,或較佳地,中央區換能元件組換能元件尺寸比左側區換能元件組換能元件尺寸等於1倍或大於1倍,及/或比右側區換能元件組換能元件尺寸等於1倍或大於1倍,而形成一種「中央為主」型態。 Optionally, or preferably, the size of the transducer elements of the transducer element group in the central region is equal to or greater than 1 times the size of the transducer element of the transducer element group in the left region, and/or the transduction element size of the transducer element group in the right region is greater than that in the right region. The component size is equal to or greater than 1, resulting in a "center-dominant" pattern.

可選地,或較佳地,中央區換能元件組不平行於左側區換能元件組,及/或不平行於右側區換能元件組。 Optionally, or preferably, the central group of transducer elements is not parallel to the left group of transducer elements, and/or is not parallel to the right group of transducer elements.

可選地,或較佳地,中央區換能元件組比起左側區換能元件組及/或右側區換能元件組更靠近一待測物,而形成一種「中央在前」型態。 Optionally, or preferably, the central area transducer element group is closer to a test object than the left side area transducer element group and/or the right side area transducer element group to form a "center first" type.

可選地,或較佳地,中央區換能元件組比起左側區換能元件組及/或右側區換能元件組更遠離一待測物,而形成一種「中央在後」型態。 Optionally, or preferably, the central area transducer element group is farther from a DUT than the left side area transducer element group and/or the right side area transducer element group to form a "center behind" type.

可選地,或較佳地,陣列為一交錯陣列,使左側區換能元件組錯位於右側區換能元件組。 Optionally, or preferably, the array is a staggered array, so that the transducing element groups in the left region are staggered to the transducing element groups in the right region.

可選地,或較佳地,該些換能元件構造彎曲成一凸面或一凹面,對準一盲區或一待測物。 Optionally, or preferably, the transducer elements are configured to be curved into a convex surface or a concave surface, aiming at a blind area or an object to be measured.

可選地,或較佳地,某幾區換能元件組訊號混合。 Optionally, or preferably, the signals of the transducing element groups in certain regions are mixed.

可選地,或較佳地,左側區換能元件組訊號與中央區換能元件組訊號混合,而由一第1側電路來處理;中央區換能元件組訊號與右側區換能元件組訊號混合,而由一第2側電路來處理。 Optionally, or preferably, the signal of the transducer element group in the left area is mixed with the signal of the transducer element group in the center area, and processed by a first side circuit; the signal of the transducer element group in the center area and the transducer element group in the right area are mixed. The signals are mixed and processed by a second side circuit.

根據本發明的又再一種觀點,提供一種改善針顯像的超音波系統,包括:一超音波探頭,具有一尾部及一頭部。頭部的一表面嵌設有一左側 群二維陣列式換能元件套組、一中央群二維陣列式換能元件套組、及一右側群二維陣列式換能元件套組,各二維陣列式換能元件套組是由多個微型換能元件所組成。 According to yet another aspect of the present invention, an ultrasound system for improving needle visualization is provided, comprising: an ultrasound probe having a tail and a head. A surface of the head is embedded with a left side A group two-dimensional array type transducer element set, a central group two-dimensional array type transducer element set, and a right side group two-dimensional array type transducer element set, each two-dimensional array type transducer element set is composed of It is composed of multiple micro transducer elements.

可選地,或較佳地,本發明的系統更包括:一輔助訊號源,附設於超音波探頭上或嵌設於超音波探頭內。輔助訊號源包括一慣性測量單元(inertial measurement unit)、一金屬探測器(metal detector)、或一感測器。 Optionally, or preferably, the system of the present invention further comprises: an auxiliary signal source attached to the ultrasonic probe or embedded in the ultrasonic probe. The auxiliary signal source includes an inertial measurement unit, a metal detector, or a sensor.

可選地,或較佳地,某幾群二維陣列式換能元件套組訊號混合。 Optionally, or preferably, the signals of certain groups of two-dimensional array transducer element sets are mixed.

下文將配合圖式並詳細說明,使本發明的其他目的、優點、及新穎特徵更明顯。 The accompanying drawings and detailed descriptions will hereinafter make other objects, advantages, and novel features of the present invention more apparent.

[本發明] [this invention]

1:改善針顯像的超音波系統 1: Ultrasound system to improve needle visualization

10:超音波探頭 10: Ultrasonic probe

12:尾部 12: tail

14:頭部 14: Head

140:表面 140: Surface

140-1:第1子表面 140-1: 1st subsurface

140-2:第2子表面 140-2: Subsurface 2

140-1’:第1子弧面 140-1': 1st sub-camber

140-2’:第2子弧面 140-2': 2nd sub-camber

140-C’:中央區子弧面 140-C’: Central sub-camber

140-L’:左側區子弧面 140-L’: Left sub-camber

140-R’:右側區子弧面 140-R’: Right sub-camber

142:換能元件 142: Transducer element

142-1:第1行換能元件組 142-1: Transducer element group in row 1

142-2:第2行換能元件組 142-2: Line 2 Transducer Element Group

142-C:中央區換能元件組 142-C: Central area transducer element group

142-C1:第1列中央區換能元件 142-C1: Column 1 Central Region Transducer Element

142-L:左側區換能元件組 142-L: Transducer element group in the left area

142-L1:第1列左側區換能元件 142-L1: Transducer element in the left area of column 1

142-LL1:第1列最左側區換能元件 142-LL1: Transducer element in the leftmost area of column 1

142-R:右側區換能元件組 142-R: Transducer element group in the right area

142-R1:第1列右側區換能元件 142-R1: Transducer element on the right side of column 1

142-RR1:第1列最右側區換能元件 142-RR1: Transducing element in the rightmost area of the first column

144:聲透鏡 144: Acoustic Lens

144A:中央鈍化部 144A: Central passivation

144B:凹透鏡構造 144B: Concave Lens Construction

144C:反曲點 144C: Inflection point

144E:波導構造 144E: Waveguide Construction

144D:凸透鏡構造 144D: Convex Lens Construction

145:分散結構 145: Dispersed Structure

146:分散器 146: Diffuser

15:二維陣列式換能元件套組 15: Two-dimensional array transducer element set

15-1:第1群二維陣列式換能元件套組 15-1: The first group of two-dimensional array transducer elements

15-2:第2群二維陣列式換能元件套組 15-2: The second group of two-dimensional array transducer element set

15-L:左側區二維陣列式換能元件套組 15-L: Two-dimensional array transducer element set in the left area

15-R:右側區二維陣列式換能元件套組 15-R: Right side two-dimensional array transducer element set

150:微型換能元件 150: Miniature transducer element

20:超音波探頭 20: Ultrasonic probe

70:處理設備 70: Processing equipment

80:超音波探頭 80: Ultrasonic probe

82-C:中央區換能元件 82-C: Central Region Transducer Element

82-L:左側區換能元件 82-L: Transducer element in the left area

82-R:右側區換能元件 82-R: Transducer element on the right side

a:長 a: long

b:寬 b: wide

P1:第1超音波縱向偵測面 P1: The first ultrasonic longitudinal detection surface

P2:第2超音波縱向偵測面 P2: The second ultrasonic longitudinal detection surface

PC:中央超音波縱向偵測面(中央平面) PC: Central ultrasonic longitudinal detection surface (central plane)

SIDE1:第1側電路 SIDE1: side 1 circuit

SIDE2:第2側電路 SIDE2: side 2 circuit

SIDEC:左側電路 SIDEC: Left circuit

SIDEL:中央電路 SIDEL: Central Circuit

SIDER:右側電路 SIDER: Right circuit

SW:切換器 SW: switch

Z:盲區 Z: blind spot

θ:夾角 θ: included angle

[先前技術] [prior art]

90:單一縱面線性探頭 90: Single longitudinal linear probe

92:影像平面 92: Image plane

94:針 94: Needle

圖1A及圖1B顯示一種習知的針導航問題。 1A and 1B illustrate a conventional needle navigation problem.

圖1C顯示針對上述針導航問題的一種習知的解決方案。 Figure 1C shows a conventional solution to the needle navigation problem described above.

圖2顯示本發明的一實施例的雙縱面線性(2L linear)超音波探頭的立體圖。 FIG. 2 shows a perspective view of a dual longitudinal linear (2L linear) ultrasonic probe according to an embodiment of the present invention.

圖3A、圖3B、及圖3C顯示用於闡釋圖2的超音波探頭的運作方式的示意圖。 3A , 3B, and 3C show schematic diagrams for explaining the operation of the ultrasonic probe of FIG. 2 .

圖4A、圖4B、及圖4C顯示本發明的多個實施例的雙縱面線性(2L linear)超音波探頭的「雙側聲波不完全混和法」的實現方式。 FIGS. 4A , 4B, and 4C show implementations of the “Bilateral Incomplete Mixing Method” of a dual longitudinal linear (2L linear) ultrasonic probe according to various embodiments of the present invention.

圖5A顯示聲透鏡的運作原理的示意圖。 FIG. 5A is a schematic diagram showing the operation principle of the acoustic lens.

圖5B顯示本發明的多個實施例的聲透鏡組合。 Figure 5B shows an acoustic lens combination of various embodiments of the present invention.

圖5C顯示本發明的一實施例的具有一或多個波導構造的聲透鏡。 5C shows an acoustic lens having one or more waveguide configurations according to an embodiment of the present invention.

圖5D顯示聲透鏡的運作示意圖。 FIG. 5D shows a schematic diagram of the operation of the acoustic lens.

圖6A顯示本發明的一實施例的具有曲折構造的雙縱面線性(2L linear、folded)超音波探頭的示意圖。 FIG. 6A shows a schematic diagram of a double longitudinal linear (2L linear, folded) ultrasonic probe having a zigzag structure according to an embodiment of the present invention.

圖6B顯示本發明的一實施例的具有曲折構造的雙縱面線性(2L linear、folded)超音波探頭搭配聲透鏡的示意圖。 FIG. 6B shows a schematic diagram of a double longitudinal linear (2L linear, folded) ultrasonic probe with a zigzag structure and an acoustic lens according to an embodiment of the present invention.

圖6C、圖6D、及圖6E顯示本發明的多個實施例的超音波探頭的配置方式。 FIGS. 6C , 6D, and 6E illustrate configurations of ultrasonic probes according to various embodiments of the present invention.

圖6F、圖6G、及圖6H顯示本發明的多個實施例的凸面朝下的換能元件搭配聲透鏡的超音波探頭的配置方式。 6F , FIG. 6G , and FIG. 6H show the configuration of the ultrasonic probe in which the transducer element with the convex surface facing down is matched with the acoustic lens according to various embodiments of the present invention.

圖7A顯示本發明的一實施例的具有交錯陣列的超音波探頭。 FIG. 7A shows an ultrasound probe having a staggered array according to an embodiment of the present invention.

圖7B顯示換能元件的尺寸。 Figure 7B shows the dimensions of the transducing element.

圖7C顯示本發明的一實施例的具有曲折構造又具有交錯陣列的雙縱面線性(2L linear、staggered、folded)超音波探頭。 FIG. 7C shows a dual longitudinal linear (2L linear, staggered, folded) ultrasonic probe with a zigzag structure and a staggered array according to an embodiment of the present invention.

圖7D顯示本發明的一實施例的可偵測橫面影像又具有交錯陣列的超音波探頭。 FIG. 7D shows an ultrasound probe capable of detecting lateral images and having a staggered array according to an embodiment of the present invention.

圖7E、圖7F、及圖7G顯示本發明的多個實施例的拉鍊式陣列的超音波探頭。 Figures 7E, 7F, and 7G illustrate zippered array ultrasound probes of various embodiments of the present invention.

圖8顯示本發明的一實施例的改善針顯像的超音波系統的方塊圖。 8 shows a block diagram of an ultrasound system for improved needle visualization according to an embodiment of the present invention.

圖9顯示本發明的一比較例的中央為主的三縱面線性(3L linear、main central)超音波探頭的立體圖。 FIG. 9 shows a perspective view of a three-longitudinal linear (3L linear, main central) ultrasonic probe according to a comparative example of the present invention.

圖10顯示本發明的一實施例的中央為輔的三縱面線性(3L linear、ancillary central)超音波探頭的立體圖。 FIG. 10 shows a perspective view of a center-assisted three-longitudinal linear (3L linear, ancillary central) ultrasonic probe according to an embodiment of the present invention.

圖11A顯示本發明的一實施例的三縱面(3L)超音波探頭的電路功能方塊圖。 FIG. 11A shows a functional block diagram of a circuit of a three-longitudinal (3L) ultrasonic probe according to an embodiment of the present invention.

圖11B顯示本發明的另一實施例的五縱面(5L)超音波探頭的電路功能方塊圖。 FIG. 11B shows a circuit functional block diagram of a five longitudinal plane (5L) ultrasonic probe according to another embodiment of the present invention.

圖12顯示本發明的一實施例的採用二維陣列式(2D array)換能元件套組的超音波探頭的電路功能方塊圖。 FIG. 12 shows a circuit functional block diagram of an ultrasonic probe using a two-dimensional array (2D array) transducer element set according to an embodiment of the present invention.

圖13A及圖13B顯示本發明的多個實施例的三縱面(3L)超音波探頭的配置方式。 13A and 13B show the arrangement of three longitudinal plane (3L) ultrasonic probes according to various embodiments of the present invention.

圖14A、圖14B、圖14C、及圖14D顯示本發明的多個實施例的採用二維陣列式換能元件套組的超音波探頭的配置方式。 14A , 14B, 14C, and 14D show the configuration of ultrasonic probes using two-dimensional array transducer element sets according to various embodiments of the present invention.

圖15A及圖15B分別顯示具有弧面的2L探頭及3L探頭的側視圖、第一立體圖、及第二立體圖。 15A and 15B respectively show a side view, a first perspective view, and a second perspective view of a 2L probe and a 3L probe with a curved surface.

以下提供本發明的不同實施例。這些實施例是用於說明本發明的技術內容,而非用於限制本發明的權利範圍。一實施例的一特徵可透過合適的修飾、置換、組合、分離以應用於其他實施例。 Various embodiments of the present invention are provided below. These embodiments are used to illustrate the technical content of the present invention, but not to limit the scope of the right of the present invention. A feature of one embodiment can be applied to other embodiments by suitable modification, substitution, combination, isolation.

應注意的是,在本文中,除了特別指明者之外,具備「一」元件不限於具備單一的該元件,而可具備一或更多的該元件。 It should be noted that, in this document, unless otherwise specified, having "a" element is not limited to having a single such element, but may include one or more such elements.

此外,在本文中,除了特別指明者之外,「第一」、「第二」等序數,只是用於區別具有相同名稱的多個元件,並不表示它們之間存在位階、層級、執行順序、或製程順序。一「第一」元件與一「第二」元件可能一起出現在同一構件中,或分別出現在不同構件中。序數較大的一元件的存在不必然表示序數較小的另一元件的存在。 In addition, in this document, unless otherwise specified, ordinal numbers such as "first" and "second" are only used to distinguish multiple elements with the same name, and do not mean that there is a rank, hierarchy, or execution order among them , or process sequence. A "first" element and a "second" element may appear together in the same component or separately in different components. The presence of an element with a higher ordinal number does not necessarily imply the presence of another element with a lower ordinal number.

在本文中,除了特別指明者之外,所謂的特徵甲「或」(or)或「及/或」(and/or)特徵乙,是指甲單獨存在、乙單獨存在、或甲與乙同時存在; 所謂的特徵甲「及」(and)或「與」(and)或「且」(and)特徵乙,是指甲與乙同時存在;所謂的「包括」、「包含」、「具有」、「含有」,是指包括但不限於此。 In this article, unless otherwise specified, the so-called feature A "or" (or) or "and/or" (and/or) feature B, refers to the existence of nail alone, the existence of B alone, or the coexistence of A and B ; The so-called feature A "and" (and) or "and" (and) or "and" (and) feature B, is that nail and B coexist; the so-called "include", "include", "have", "include" ", means including but not limited to.

此外,在本文中,所謂的「上」、「下」、「左」、「右」、「前」、「後」、或「之間」等用語,只是用於描述多個元件之間的相對位置,並在解釋上可推廣成包括平移、旋轉、或鏡射的情形。 In addition, in this document, the so-called "upper", "lower", "left", "right", "front", "rear", or "between" and other terms are only used to describe the relationship between multiple elements. Relative position, and can be generalized to include translation, rotation, or mirroring.

此外,在本文中,除了特別指明者之外,「一元件在另一元件上」或類似敘述不必然表示該元件接觸該另一元件。 Furthermore, herein, unless specifically stated otherwise, "an element is on another element" or the like does not necessarily mean that the element is in contact with the other element.

此外,在本文中,「較佳」或「更佳」是用於描述可選的或附加的元件或特徵,亦即,這些元件或特徵並不是必要的,而可能加以省略。 Furthermore, herein, "preferred" or "better" is used to describe optional or additional elements or features, ie, those elements or features are not required and may be omitted.

此外,在本文中,所謂的一元件「適合於」另一元件,是指該另一元件不屬於申請標的的一部分,而是示例性地或參考性地有助於設想該元件的性質或應用。 In addition, in this document, an element "suitable for" another element means that the other element is not part of the subject matter of the application, but exemplarily or by reference helps to conceive the nature or application of the element .

此外,在本文中,「約」一數值是指包括該數值的±10%的範圍,特別是該數值±5%的範圍。 Furthermore, as used herein, "about" a numerical value means a range including ±10% of the numerical value, particularly a range of ±5% of the numerical value.

此外,在本文中,「系統」、「設備」、「裝置」、「模組」、或「單元」等用語,是指一電子元件或由多個電子元件所組成的一數位電路、一類比電路、或其他更廣義電路,且除了特別指明者之外,它們不必然有位階或層級關係。 In addition, in this document, terms such as "system", "equipment", "device", "module", or "unit" refer to an electronic component or a digital circuit composed of a plurality of electronic components, an analog circuits, or other broader circuits, and they do not necessarily have a hierarchical or hierarchical relationship unless otherwise specified.

此外,在本文中,除了特別指明者之外,二元件的電性連接可包括直接連接或間接連接。在間接連接中,該二元件之間可能存在一或多個其他 元件,例如,電阻、電容、或電感。電性連接是用於傳遞一或多個訊號,例如,直流或交流的電流或電壓,依照實際應用而定。 In addition, in this document, unless otherwise specified, the electrical connection of the two elements may include direct connection or indirect connection. In an indirect connection, there may be one or more other components, such as resistors, capacitors, or inductors. Electrical connections are used to transmit one or more signals, such as DC or AC current or voltage, depending on the application.

[雙縱面線性(2L linear)超音波探頭實施例] [Example of double longitudinal linear (2L linear) ultrasonic probe]

圖2顯示本發明的一實施例的雙縱面線性(2L linear)超音波探頭10的立體圖。圖3A、圖3B、及圖3C顯示用於闡釋圖2的超音波探頭10的運作方式的示意圖。 FIG. 2 shows a perspective view of a dual longitudinal linear (2L linear) ultrasonic probe 10 according to an embodiment of the present invention. 3A , 3B, and 3C show schematic diagrams for explaining the operation of the ultrasonic probe 10 of FIG. 2 .

本發明的超音波探頭10具有一尾部12及一頭部14。尾部12是供使用者握持之用(亦可由機械手臂等來握持)。頭部14的一表面140嵌設有多個(聲電)換能元件142。換言之,換能元件142通常不會凸出表面140。在操作時,表面140可貼緊待偵測部位,例如,患者的手術部位。在其他實施例中,在表面140上可進一步設置其他元件,例如,聲透鏡、減震層、或包覆層,此時,則以該些元件來貼緊待偵測部位。換能元件142可為壓電元件。換能元件142可將超音波轉換成電子訊號,或將電子訊號轉換成超音波,而收發超音波。根據本發明,超音波探頭10的該些換能元件142是排列成M乘以N(M×N)的一陣列;其中,M為正偶數,N為正整數,且N大於M。(行為row,列為column。) The ultrasonic probe 10 of the present invention has a tail portion 12 and a head portion 14 . The tail 12 is for the user to hold (it can also be held by a mechanical arm or the like). A surface 140 of the head 14 is embedded with a plurality of (acoustic and electrical) transducer elements 142 . In other words, the transducing element 142 generally does not protrude from the surface 140 . In operation, the surface 140 may be pressed against the site to be detected, eg, the surgical site of the patient. In other embodiments, other elements may be further disposed on the surface 140 , for example, an acoustic lens, a shock absorption layer, or a coating layer, and in this case, these elements are used to stick to the site to be detected. The transducer element 142 may be a piezoelectric element. The transducer element 142 can convert ultrasonic waves into electronic signals, or convert electronic signals into ultrasonic waves, and transmit and receive ultrasonic waves. According to the present invention, the transducer elements 142 of the ultrasonic probe 10 are arranged in an array of M times N (M×N); wherein M is a positive even number, N is a positive integer, and N is greater than M. (Row row, column column.)

在本例中,M=2,故上述陣列為2行N列的陣列,而將該些換能元件142區分成第1行換能元件組142-1及第2行換能元件組142-2,分別組態成形成一第1超音波縱向偵測面P1及一第2超音波縱向偵測面P2。縱向偵測面簡稱「縱面」。 In this example, M=2, so the above array is an array with 2 rows and N columns, and the transducer elements 142 are divided into a first row transducer element group 142-1 and a second row transducer element group 142- 2. It is configured to form a first ultrasonic longitudinal detection surface P1 and a second ultrasonic longitudinal detection surface P2 respectively. The vertical detection plane is referred to as "vertical plane" for short.

如圖3A所示,SL、SC、及SR是分別位在第1超音波縱向偵測面P1、中央超音波縱向偵測面(簡稱「中央平面」)、及第2超音波縱向偵測面P2的三個點,本發明的超音波探頭10可透過針對回音(echo)訊號作時域(time domain) 分析來建構出額外影像平面,因為中央平面PC的訊號前往(左側的)第1行換能元件組142-1的傳遞時間相等於前往(右側的)第2行換能元件組142-2的傳遞時間。 As shown in FIG. 3A , SL, SC, and SR are located on the first ultrasonic longitudinal detection plane P1, the central ultrasonic longitudinal detection plane (referred to as the “central plane”), and the second ultrasonic longitudinal detection plane, respectively. For the three points of P2, the ultrasonic probe 10 of the present invention can perform time domain analysis on the echo signal by Analysis to construct additional image planes, since the transit time of the signal from the center plane PC to the (left) row 1 transducer element group 142-1 is equal to the transit time to the (right side) second row transducer element group 142-2 delivery time.

如圖3B所示,由於M為正偶數,第1超音波縱向偵測面P1與第2超音波縱向偵測面P2之間存在待建立的一雙側等時距中央超音波縱向偵測面(簡稱「雙側等時距中央平面」)PC2L或待消除或最小化的一盲區Z。本發明即是透過多種技術重建中央平面PC2L,或者,補償中央平面PC2L的空缺,以獲得相當於來自中央平面PC2L的訊號,如圖3C所示。 As shown in FIG. 3B , since M is a positive even number, there is a bilateral equidistant central ultrasonic longitudinal detection surface to be established between the first ultrasonic longitudinal detection surface P1 and the second ultrasonic longitudinal detection surface P2 (referred to as "bilateral equidistant central plane") PC2L or a blind zone Z to be eliminated or minimized. The present invention reconstructs the central plane PC2L through various techniques, or compensates for the vacancy of the central plane PC2L to obtain a signal equivalent to the central plane PC2L, as shown in FIG. 3C .

圖4A、圖4B、及圖4C顯示本發明的多個實施例的雙縱面線性(2L linear)超音波探頭的「雙側聲波不完全混和法」的實現方式。 FIGS. 4A , 4B, and 4C show implementations of the “Bilateral Incomplete Mixing Method” of a dual longitudinal linear (2L linear) ultrasonic probe according to various embodiments of the present invention.

如圖4A、圖4B、及圖4C所示,可在該些換能元件142前方附設一聲透鏡(acoustic lens)144。聲透鏡144是組態成使第1超音波縱向偵測面P1相交(intersected)或部分重疊(partially overlapped)於第2超音波縱向偵測面P2。 As shown in FIG. 4A , FIG. 4B , and FIG. 4C , an acoustic lens 144 may be attached in front of the transducer elements 142 . The acoustic lens 144 is configured such that the first ultrasonic longitudinal detection surface P1 is intersected or partially overlapped with the second ultrasonic longitudinal detection surface P2.

此外,可在該些換能元件142與聲透鏡144之間(如圖4A所示)、或在聲透鏡144內(如圖4B所示)、或在聲透鏡144前方(如圖4C所示)設置一分散器(splitter)146,且使分散器146對準盲區Z或雙側等時距中央超音波縱向偵測面PC2L,藉此,將聲波導入盲區Z,或將盲區Z的回聲導入換能元件142,而使盲區Z最小化。 In addition, the transducer elements 142 may be between the transducer elements 142 and the acoustic lens 144 (as shown in FIG. 4A ), within the acoustic lens 144 (as shown in FIG. 4B ), or in front of the acoustic lens 144 (as shown in FIG. 4C ) ) A splitter (splitter) 146 is set up, and the splitter 146 is aimed at the blind zone Z or the central ultrasonic longitudinal detection surface PC2L at equal time intervals on both sides, whereby the sound waves are introduced into the blind zone Z, or the echoes of the blind zone Z are introduced into transducer element 142, while minimizing the dead zone Z.

如此,左右雙側聲波,亦即第1超音波縱向偵測面P1與第2超音波縱向偵測面P2的聲波可發生「不完全混和」,而達成3L線性探頭的三縱面顯像效果,亦即可獲得相當於來自中央平面PC的影像。雙側聲波的混和性可消除兩行換能元件142之間的間隙G(如圖5D所示)所導致的盲區,足以偵測到相當於來自中央平面PC的影像。至於雙側聲波的獨立性則可使探頭產生單一縱面之外 的立體感知,以確認針的走向,避免誤判成鏡像走向。習知的多平面探頭的運作方式為各平面獨立聚焦並顯像,為空間中不相交、不重疊的多平面,其企圖增加可定向的空間範圍。而在本發明中,顯像平面之間的部分聲波可混合,又可以混合訊號來重建等時距中央平面,乃創新之所在。此外,顯像平面之間未混合的另一部分聲波所帶來的訊號,則得以重建平面外空間資訊,以消除鏡像。承上,顯像平面之間的混合與聚焦方式包括:聲透鏡、聲透鏡波導、聲透鏡分散器、將換能元件設置於具有曲折結構的探頭、或將換能元件排列成拉鍊式陣列等,可見諸本發明的實施例,且可互相結合。 In this way, the sound waves on the left and right sides, that is, the sound waves of the first ultrasonic longitudinal detection surface P1 and the second ultrasonic longitudinal detection surface P2 can be "incompletely mixed", and the three-longitudinal imaging effect of the 3L linear probe can be achieved. , that is, the image equivalent to the PC from the central plane can be obtained. The mixing of the two-sided acoustic waves can eliminate the dead zone caused by the gap G (as shown in FIG. 5D ) between the two rows of transducer elements 142 , and is sufficient to detect images corresponding to the central plane PC. As for the independence of the bilateral sound waves, the probe can generate a single longitudinal three-dimensional perception to confirm the direction of the needle and avoid misjudging the direction of the mirror image. The operation mode of the conventional multi-plane probe is that each plane is focused and imaged independently, which is a multi-plane that does not intersect or overlap in space, which attempts to increase the spatial extent of orientation. In the present invention, part of the sound waves between the imaging planes can be mixed, and the signals can be mixed to reconstruct the equidistant central plane, which is the innovation. In addition, the signal from another part of the sound wave that is not mixed between the imaging planes can reconstruct out-of-plane spatial information to eliminate mirror images. On the other hand, the mixing and focusing methods between the imaging planes include: acoustic lenses, acoustic lens waveguides, acoustic lens diffusers, placing transducer elements on probes with a meandering structure, or arranging transducer elements in a zipper array, etc. , the embodiments of the present invention can be seen, and can be combined with each other.

就優勢而言,相較於典型的1L線性探頭,本發明的(2L)超音波探頭10可提供單一縱面之外的立體感知,更精準地判斷針的走向,避免誤判成鏡像走向。而相較於3L線性探頭,本發明的超音波探頭10省略一整行(中央)換能元件,除了可減少換能元件的材料及其成本之外,亦可在軟體層面大幅降低影像資料的運算複雜度。 In terms of advantages, compared to a typical 1L linear probe, the (2L) ultrasonic probe 10 of the present invention can provide stereoscopic perception beyond a single longitudinal plane, more accurately determine the needle orientation, and avoid misjudgment as a mirror image orientation. Compared with the 3L linear probe, the ultrasonic probe 10 of the present invention omits an entire row (center) of transducer elements, which not only reduces the material and cost of transducer elements, but also greatly reduces the amount of image data at the software level. Operational complexity.

圖5A顯示聲透鏡144的構造示意圖。圖5B顯示本發明的多個實施例的聲透鏡組合。圖5C顯示本發明的一實施例的具有一或多個波導(wave guide)構造144E的聲透鏡,而圖5D顯示聲透鏡的運作示意圖。其中,只示例性地標示出第1行換能元件組142-1的其中一列換能元件及第2行換能元件組142-2的其中一列換能元件。 FIG. 5A shows a schematic diagram of the construction of the acoustic lens 144 . Figure 5B shows an acoustic lens combination of various embodiments of the present invention. FIG. 5C shows an acoustic lens having one or more wave guide structures 144E according to an embodiment of the present invention, and FIG. 5D shows a schematic diagram of the operation of the acoustic lens. Among them, only one column of the transducer elements in the first row of the transducer element group 142-1 and one of the transducer elements in the second row of the transducer element group 142-2 are exemplarily marked.

聲透鏡144是用於使聲波發生偏折的元件。在設計本發明的聲透鏡144時,如圖5A所示,自中間至左側依序存在下列成分:(i)中央鈍化部144A,以減少聲透鏡144的中央部分的磨損;(ii)分散結構145,對準盲區Z;分散結構145可掏空(填充有空氣),或如圖5B所示,可填充有分散器146;其中,分散器 146材質不同於聲透鏡144材質,以提供相異的聲折射率;(iii)凹透鏡構造144B;(iv)反曲點144C;及(v)凸透鏡構造144D。上述(i)至(v)的成分可整合成一多焦距透鏡,有一或多個焦點在雙側等時距中央平面PC2L中或間隙G下方的盲區Z所在的平面。如此,使有效鏡體區域是以雙側等時距中央平面PC2L為幾何對稱中心,故聲透鏡144自中間至右側的構造可參考自中間至左側的構造。 The acoustic lens 144 is an element for deflecting sound waves. When designing the acoustic lens 144 of the present invention, as shown in FIG. 5A , the following components exist in sequence from the middle to the left: (i) the central passivation portion 144A to reduce the wear of the central portion of the acoustic lens 144 ; (ii) the dispersion structure 145, aiming at the dead zone Z; the dispersion structure 145 can be hollowed out (filled with air), or as shown in FIG. 5B, can be filled with a diffuser 146; wherein the diffuser 146 material is different from acoustic lens 144 material to provide different acoustic indices of refraction; (iii) concave lens configuration 144B; (iv) inflection point 144C; and (v) convex lens configuration 144D. The components (i) to (v) above can be integrated into a multifocal lens with one or more focal points in the plane where the blind zone Z is located in the bilateral equidistant central plane PC2L or below the gap G. In this way, the effective mirror body area is set to the center of geometric symmetry with the center plane PC2L equidistant from both sides, so the structure of the acoustic lens 144 from the center to the right side can refer to the structure from the center to the left side.

在實施例中,所謂的凹透鏡、反曲點、或凸透鏡,是以單側換能元件中心或其偵測面PL與PR的觀點來定義,且局部特徵將隨著聲介質的折射率不同而改變。 In the embodiment, the so-called concave lens, inflection point, or convex lens is defined in terms of the center of the single-sided transducer element or its detection surfaces PL and PR, and the local features will vary with the refractive index of the acoustic medium. Change.

在圖5B中,上方三種實施例是將聲透鏡144與分散器146分開形成,而下方三種實施例純粹使用聲透鏡144,而不使用分散器146。 In FIG. 5B , the upper three embodiments form the acoustic lens 144 separately from the diffuser 146 , while the lower three embodiments use the acoustic lens 144 purely without the use of the diffuser 146 .

此外,如圖5C所示,聲透鏡144亦可具有一或多個波導構造(wave guide)144E,通過具有波導144E的聲透鏡144的聲波方向如圖5D所示,使圖3B的盲區Z最小化甚至不復存在。 In addition, as shown in FIG. 5C , the acoustic lens 144 may also have one or more wave guides 144E, and the direction of the acoustic waves passing through the acoustic lens 144 with the wave guides 144E is shown in FIG. 5D , so that the dead zone Z in FIG. 3B is minimized It doesn't even exist anymore.

圖6A顯示本發明的一實施例的具有曲折構造的雙縱面線性(2L linear、folded)超音波探頭的示意圖。圖6B顯示本發明的一實施例的具有曲折構造的雙縱面線性(2L linear、folded)超音波探頭搭配聲透鏡144的示意圖。 FIG. 6A shows a schematic diagram of a double longitudinal linear (2L linear, folded) ultrasonic probe having a zigzag structure according to an embodiment of the present invention. FIG. 6B shows a schematic diagram of a double longitudinal linear (2L linear, folded) ultrasonic probe with a zigzag structure and an acoustic lens 144 according to an embodiment of the present invention.

如圖6A所示,這種曲折構造是將表面140曲折成一第1子表面140-1及一第2子表面140-2。第1子表面140-1不平行於第2子表面140-2,特別是,兩者的夾角必須使第1超音波縱向偵測面P1與第2超音波縱向偵測面P2(在特定深度內)相交或部分重疊。 As shown in FIG. 6A , in this zigzag structure, the surface 140 is folded into a first sub-surface 140-1 and a second sub-surface 140-2. The first sub-surface 140-1 is not parallel to the second sub-surface 140-2. In particular, the angle between the two must make the first ultrasonic longitudinal detection surface P1 and the second ultrasonic longitudinal detection surface P2 (at a specific depth) within) intersect or partially overlap.

儘管圖6A的例子已可使第1超音波縱向偵測面P1相交或部分重疊於第2超音波縱向偵測面P2,但仍然可搭配聲透鏡144來強化左右雙側聲波的混 合,如圖6B所示。而在圖6B的例子中,聲透鏡144為一多焦距透鏡,且形成有一分散結構145,且分散結構145對準盲區Z。 Although the example of FIG. 6A can make the first ultrasonic longitudinal detection surface P1 intersect or partially overlap with the second ultrasonic longitudinal detection surface P2, the acoustic lens 144 can still be used to enhance the mixing of left and right bilateral acoustic waves combined, as shown in Figure 6B. In the example of FIG. 6B , the acoustic lens 144 is a multi-focal length lens, and a dispersion structure 145 is formed, and the dispersion structure 145 is aligned with the blind zone Z. As shown in FIG.

圖6C、圖6D、及圖6E顯示本發明的多個實施例的超音波探頭的配置方式,其中,只示例性地標示出第1行換能元件組142-1的其中一列換能元件及第2行換能元件組142-2的其中一列換能元件。 FIGS. 6C , 6D, and 6E show the configuration of ultrasonic probes according to various embodiments of the present invention, wherein only one column of transducer elements in the first row of transducer element group 142-1 and the One column of transducer elements in the second row of transducer element group 142-2.

在圖6C中,左上者即為圖2的實施例的簡化示意圖,左中者即為圖6A的實施例的簡化示意圖。 In FIG. 6C , the upper left is a simplified schematic diagram of the embodiment of FIG. 2 , and the middle left is a simplified schematic diagram of the embodiment of FIG. 6A .

此外,如圖6C的右上者所示,換能元件142可全部由二維陣列式換能元件套組15所取代。這種二維陣列式換能元件套組15與前述換能元件142略有不同。二維陣列式換能元件套組15是本來即存在多個微型換能元件150,其等區分成多個群。一群微型換能元件150可作為單一換能元件142。 In addition, as shown in the upper right of FIG. 6C , the transducer elements 142 can be completely replaced by the two-dimensional array type transducer element set 15 . This two-dimensional array type transducer element set 15 is slightly different from the aforementioned transducer element 142 . The two-dimensional array type transducer element set 15 originally has a plurality of micro transducer elements 150 , which are equally divided into a plurality of groups. A group of micro-transducing elements 150 may act as a single transducing element 142 .

如圖6C的右中者所示,二維陣列式換能元件套組15的多個微型換能元件150分成一第1群15-1(可取代第1區換能元件組142-1)及一第2群15-2(可取代第2區換能元件組142-2),且兩者可曲折成夾有夾角θ,夾角θ可介於90度至180度,故可彼此平行或不平行。 As shown in the middle right of FIG. 6C , the plurality of miniature transducer elements 150 of the two-dimensional array transducer element set 15 are divided into a first group 15 - 1 (which can replace the first area transducer element group 142 - 1 ) and a second group 15-2 (which can replace the second area transducer element group 142-2), and the two can be bent to form an included angle θ, and the included angle θ can be between 90 degrees and 180 degrees, so they can be parallel to each other or Not parallel.

如圖6C的右下者所示,可利用微機電系統(microelectromechanical system,縮寫為MEMS)來形成二維陣列式換能元件套組15的該些微型換能元件150。在此,該些微型換能元件雖然排列成一直線,但對準中央平面PC2L(參考圖3C)。 As shown in the lower right of FIG. 6C , the micro transducer elements 150 of the two-dimensional array transducer element set 15 can be formed by using a microelectromechanical system (abbreviated as MEMS). Here, although the micro transducer elements are arranged in a straight line, they are aligned with the central plane PC2L (refer to FIG. 3C ).

圖6D顯示二種二維陣列式換能元件套組15的示意圖。左下者與右下者是面對表面140觀察而得;左上者與右上者是沿著探頭的橫向軸面觀察而 得。二種二維陣列式換能元件套組15的差異在於微型換能元件150的長寬方向對調。 FIG. 6D shows a schematic diagram of two two-dimensional array transducer element sets 15 . The lower left and the lower right are observed facing the surface 140; the upper left and the upper right are observed along the transverse axis of the probe. have to. The difference between the two two-dimensional array transducer element sets 15 is that the length and width directions of the micro transducer elements 150 are reversed.

接著,在圖6E中,各換能元件組142-1、142-2本身構造是彎曲成一凸面或一凹面,對準盲區Z或待測物。在二維陣列式換能元件套組15的情形下,該些微型換能元件150亦可設計成彼此發生錯位,使各二維陣列式換能元件套組15-1、15-2構造彎曲成一凸面或一凹面,對準盲區Z或待測物。 Next, in FIG. 6E , each transducer element group 142-1, 142-2 itself is structured to be curved into a convex surface or a concave surface, which is aligned with the blind zone Z or the object to be tested. In the case of the two-dimensional array transducer element set 15, the micro transducer elements 150 can also be designed to be displaced from each other, so that the two-dimensional array transducer element sets 15-1 and 15-2 are structurally curved Make a convex surface or a concave surface, aiming at the blind zone Z or the object to be tested.

圖6F、圖6G、及圖6H顯示本發明的多個實施例的凸面朝下的換能元件142-1、142-2搭配聲透鏡144的超音波探頭的配置方式,其中,聲透鏡144可具有分散結構145或波導構造144E,具體構造可參考圖5A及其相關說明,故不再贅述。 FIGS. 6F , 6G, and 6H illustrate configurations of ultrasonic probes in which the transducer elements 142-1 and 142-2 with the convex surface facing down are matched with the acoustic lens 144 according to various embodiments of the present invention, wherein the acoustic lens 144 It may have a dispersion structure 145 or a waveguide structure 144E. For the specific structure, reference may be made to FIG. 5A and its related description, so it is not repeated here.

圖7A顯示本發明的一實施例的具有交錯陣列的超音波探頭,其中,第1行換能元件組142-1錯位於第2行換能元件組142-2。圖7B顯示換能元件142的尺寸,其中,換能元件142尺寸為長a單位、寬b單位。在圖7A的交錯陣列中,由於兩行換能元件142發生錯位,可使中央平面PC獲得更高的解析度,具體而言,若無錯位的超音波探頭的解析度為R個ppi(pixels per inch),則錯位0.5b單位的超音波探頭的解析度可提高成介於R個ppi~2R個ppi。 FIG. 7A shows an ultrasonic probe with a staggered array according to an embodiment of the present invention, wherein the first row of the transducer element group 142-1 is staggered to the second row of the transducer element group 142-2. FIG. 7B shows the size of the transducer element 142 , wherein the size of the transducer element 142 is a unit of length a and a unit of width b. In the staggered array of FIG. 7A, due to the dislocation of the two rows of transducer elements 142, the central plane PC can obtain a higher resolution. Specifically, if the resolution of the ultrasonic probe without dislocation is R ppi (pixels per inch), the resolution of the ultrasonic probe with a dislocation of 0.5b units can be improved to be between Rppi~2Rppi.

圖7C顯示本發明的一實施例的具有曲折構造又具有交錯陣列的雙縱面線性(2L linear、staggered、folded)超音波探頭,其效果已如前述,故不再贅述。 FIG. 7C shows a dual longitudinal linear (2L linear, staggered, folded) ultrasonic probe with a zigzag structure and a staggered array according to an embodiment of the present invention, the effect of which has been described above, and will not be repeated here.

圖7D顯示本發明的一實施例的可偵測橫面影像又具有交錯陣列的超音波探頭,其中,用於偵測橫面影像的換能元件142排列方向實質上垂直於 用於偵測縱面影像的換能元件142排列方向。橫面與二縱面可輔助彼此,避免誤判成鏡像走向,因而可更精確偵測針的走向。 7D shows an ultrasonic probe capable of detecting lateral images and having a staggered array according to an embodiment of the present invention, wherein the arrangement direction of the transducer elements 142 for detecting lateral images is substantially perpendicular to The arrangement direction of the transducer elements 142 for detecting the longitudinal image. The horizontal plane and the two vertical planes can assist each other and avoid misjudging the direction of a mirror image, so that the direction of the needle can be detected more accurately.

圖7E、圖7F、及圖7G顯示本發明的多個實施例的拉鍊式陣列的超音波探頭;其中,只示例性地標示出第1行換能元件組142-1的其中一列換能元件及第2行換能元件組142-2的其中一列換能元件。此外,由實線所表示的第1行換能元件組142-1與由虛線所表示的第2行換能元件組142-2示例性地表示一上一下的疊置狀態。圖7E或圖7F的左邊者為無曲折的拉鍊式陣列,而右邊者為有曲折的拉鍊式陣列。面對表面140(參考圖7A的標示)觀察,圖7E的換能元件為矩形,而圖7F的換能元件則為L形,而可緊密排列。圖7E與圖7F呈現的都是2L線性探頭,而圖7G呈現的是3L線性探頭。 FIGS. 7E , 7F, and 7G show ultrasonic probes of zipper arrays according to various embodiments of the present invention; wherein, only one column of transducer elements in the first row of transducer element group 142-1 is exemplarily marked and one column of transducer elements in the second row of transducer element groups 142-2. In addition, the first row of the transducer element group 142-1 represented by the solid line and the second row of the transducer element group 142-2 represented by the dashed line exemplarily represent a superimposed state one above the other. The left of FIG. 7E or FIG. 7F is a zippered array without zigzag, while the right is a zippered array with zigzag. When viewed facing the surface 140 (refer to the label in FIG. 7A ), the transducer elements of FIG. 7E are rectangular, while the transducer elements of FIG. 7F are L-shaped and can be closely arranged. Figures 7E and 7F both present a 2L linear probe, while Figure 7G presents a 3L linear probe.

圖8顯示本發明的一實施例的改善針顯像的超音波系統1的方塊圖。本發明的超音波探頭10可連接至一處理設備70。處理設備70可處理超音波探頭10傳送而來的超音波影像原始資料,特別是關於第1超音波縱向偵測面P1及第2超音波縱向偵測面P2所獲得的針的影像原始資料。處理設備70可具有諸如神經網路的人工智慧程式,加以電腦視覺模組,來處理所獲得的針的影像原始資料,以顯示針的走向,並建議使用者如何旋轉探頭找到針,或在重新插針時如何調整針的方向,較佳是在螢幕上呈現三維(3D)或二維(2D)實時影像模型,將針的軌跡回饋給使用者,輔助使用者確認針的走向。 FIG. 8 shows a block diagram of an ultrasound system 1 for improving needle visualization according to an embodiment of the present invention. The ultrasonic probe 10 of the present invention can be connected to a processing device 70 . The processing device 70 can process the raw ultrasonic image data transmitted from the ultrasonic probe 10, especially the raw image data of the needles obtained from the first ultrasonic longitudinal detection surface P1 and the second ultrasonic longitudinal detection surface P2. The processing device 70 may have an artificial intelligence program such as a neural network, and a computer vision module to process the obtained raw image data of the needle to show the direction of the needle, and advise the user how to rotate the probe to find the needle, or to recreate the needle. How to adjust the direction of the needle when inserting the needle, preferably a three-dimensional (3D) or two-dimensional (2D) real-time image model is displayed on the screen, and the trajectory of the needle is fed back to the user to assist the user to confirm the direction of the needle.

[三縱面線性(3L linear)超音波探頭實施例] [Three longitudinal linear (3L linear) ultrasonic probe embodiment]

圖9顯示本發明的一比較例的中央為主的三縱面線性(3L linear、main central)超音波探頭80的立體圖。 FIG. 9 shows a perspective view of a three-L linear (main central) ultrasonic probe 80 according to a comparative example of the present invention.

圖10顯示本發明的一實施例的中央為輔的三縱面線性(3L linear、ancillary central)超音波探頭20的立體圖。 FIG. 10 shows a perspective view of a center-assisted three-longitudinal linear (3L linear, ancillary central) ultrasonic probe 20 according to an embodiment of the present invention.

本發明的超音波探頭20具有一尾部12及一頭部14。頭部14的一表面140嵌設有多個換能元件142。該些換能元件142是排列成L乘以N(L×N)的一陣列;其中,L為正奇數,N為正整數,且N大於L。 The ultrasonic probe 20 of the present invention has a tail portion 12 and a head portion 14 . A surface 140 of the head 14 is embedded with a plurality of transducer elements 142 . The transducer elements 142 are arranged in an array of L times N (L×N); wherein, L is a positive odd number, N is a positive integer, and N is greater than L.

在本例中,L=3,故上述陣列為3行N列的陣列,而將該些換能元件142區分成左側區換能元件組142-L(一整行,但圖10只標示一個142-L為例)、中央區換能元件組142-C(一整行,但圖10只標示一個142-C為例)、及右側區換能元件組142-R(一整行,但圖10只標示一個142-R為例),分別組態成形成一左側超音波縱向偵測面PL、一中央超音波縱向偵測面PC、及一右側超音波縱向偵測面PR。 In this example, L=3, so the above-mentioned array is an array of 3 rows and N columns, and the transducer elements 142 are divided into a left-side transducer element group 142-L (an entire row, but only one is shown in FIG. 10 ). 142-L as an example), a central area transducer element group 142-C (an entire row, but only one 142-C is indicated in FIG. 10 as an example), and a right area transducer element group 142-R (an entire row, but Figure 10 shows only one 142-R as an example), which are respectively configured to form a left ultrasonic longitudinal detection surface PL, a central ultrasonic longitudinal detection surface PC, and a right ultrasonic longitudinal detection surface PR.

圖9的超音波探頭80為3L探頭;其中,值得注意的是,中央區換能元件82-C的長度大於左側區換能元件82-L的長度及/或右側區換能元件82-R的長度,因為其強調的是中央區換能元件82-C所獲得的中央平面的影像。 The ultrasonic probe 80 of FIG. 9 is a 3L probe; it is worth noting that the length of the transducer element 82-C in the central region is greater than the length of the transducer element 82-L in the left region and/or the transducer element 82-R in the right region , because it emphasizes the image of the central plane obtained by the central region transducer element 82-C.

然而,在圖10的本發明的超音波探頭20中,中央區換能元件組142-C換能元件尺寸小於左側區換能元件組142-L換能元件尺寸,及/或小於右側區換能元件組142-R換能元件尺寸。特別是,中央區換能元件組142-C換能元件尺寸(長度)為左側區換能元件組142-L換能元件尺寸(長度)的1倍或以下,及/或為右側區換能元件組142-R換能元件尺寸(長度)的1倍或以下。本發明為了改善2L探頭的盲區,而在2L探頭中新增中央區換能元件組142-C換能元件,但其尺寸相反於圖9的比較例中央區換能元件82-C尺寸,形成一種「中央為輔」型態。 However, in the ultrasonic probe 20 of the present invention of FIG. 10, the transducer element size of the central region transducer element group 142-C is smaller than the transducer element size of the left region transducer element group 142-L, and/or smaller than the right region transducer element size. Energy Element Group 142-R Transducer Element Dimensions. In particular, the transducer element size (length) of the central region transducer element group 142-C is 1 times or less the size (length) of the transducer element size (length) of the left region transducer element group 142-L, and/or the right region transduction element Element group 142-R is 1 times or less the size (length) of the transducing elements. In the present invention, in order to improve the blind area of the 2L probe, a new central area transducer element group 142-C transducer element is added to the 2L probe, but its size is opposite to that of the central area transducer element 82-C of the comparative example in FIG. A kind of "central auxiliary" type.

圖11A顯示本發明的一實施例的三縱面(3L)超音波探頭的電路功能方塊圖。 FIG. 11A shows a functional block diagram of a circuit of a three-longitudinal (3L) ultrasonic probe according to an embodiment of the present invention.

以第1列換能元件組142為例,其已區分成一第1列左側區換能元件142-L1、一第1列中央區換能元件142-C1、及一第1列右側區換能元件142-R1,而屬於3L系統(直到第N列142亦以此類推)。然而,設計給圖2的超音波探頭10之用的圖8的改善針顯像的超音波系統1是屬於2L系統,而具有二側電路。為了使圖10與圖11A的超音波探頭20可配合圖8的系統1(系統1可採用圖2的超音波探頭10),須將來自左側區、中央區、及右側區這3行換能元件142訊號,轉換成由二側電路來處理。具體而言,將第1列左側區換能元件142-L1訊號與第1列中央區換能元件142-C1訊號混合,而由一第1側電路SIDE1來處理;類似地,將中央區換能元件142-C1訊號與第1列右側區換能元件142-R1訊號混合,而由一第2側電路SIDE2來處理。中央區換能元件142-C1訊號可透過切換器SW來選擇傳輸至哪側電路(例如,左側、右側、或雙側同時)。如此,可實現2L系統的「雙側聲波不完全混和法」,並使位於中央的盲區Z最小化。 Taking the transducer element group 142 of the first row as an example, it has been divided into a first row of left-side transducer elements 142-L1, a first-row central transducer element 142-C1, and a first-row right-side transducer element 142-C1. Element 142-R1, but belongs to the 3L system (and so on up to the Nth column 142). However, the ultrasound system 1 for improving needle visualization of FIG. 8 , which is designed for the ultrasound probe 10 of FIG. 2 , belongs to the 2L system and has two-sided circuits. In order to make the ultrasonic probe 20 of FIG. 10 and FIG. 11A work with the system 1 of FIG. 8 (the system 1 can use the ultrasonic probe 10 of FIG. 2 ), it is necessary to transduce the three lines from the left area, the central area, and the right area. The signal of element 142 is converted and processed by the two-side circuit. Specifically, the signal of the transducer element 142-L1 in the left area of the first row is mixed with the signal of the transducer element 142-C1 in the center area of the first row, and processed by a first side circuit SIDE1; The signal of the transducer element 142-C1 is mixed with the signal of the transducer element 142-R1 in the right area of the first row, and processed by a second side circuit SIDE2. The signal of the central region transducer element 142-C1 can be selected through the switch SW to select which side of the circuit (eg, the left side, the right side, or both sides simultaneously) to transmit. In this way, the "double-side acoustic incomplete mixing method" of the 2L system can be realized, and the blind zone Z located in the center can be minimized.

圖11B顯示本發明的另一實施例的五縱面(5L)超音波探頭的電路功能方塊圖。 FIG. 11B shows a circuit functional block diagram of a five longitudinal plane (5L) ultrasonic probe according to another embodiment of the present invention.

延伸圖11A的實施例的原理,較多行換能元件142訊號可轉換成由較少側電路來處理,如圖11B所示,第1列最左側區換能元件142-LL1訊號可與第1列左側區142-L1訊號混合,而由左側電路SIDEL來處理;第1列中央區換能元件142-C1訊號直接由中央電路SIDEC來處理;第1列右側區換能元件142-R1訊號可與第1列最右側區換能元件142-RR1訊號混合,而由右側電路SIDER來處理。特定行數的其他列的情形亦以此類推。而其他行數的情形亦以此類推。由此可見,多 行換能元件可轉換至單行電路;或單一換能元件可切割成多個,再以電路來將切割結果加以還原。 Extending the principle of the embodiment of FIG. 11A , the signals of more rows of transducer elements 142 can be converted to be processed by fewer side circuits. As shown in FIG. 11B , the signals of transducer elements 142-LL1 in the leftmost area of the first row can be combined with the signals of the transducer elements 142-LL1 of the first row. The signals of the left area 142-L1 in the first row are mixed and processed by the left circuit SIDEL; the signal of the transducer element 142-C1 in the center area of the first row is directly processed by the central circuit SIDEC; the signal of the transducer element 142-R1 in the right area of the first row It can be mixed with the signal of the rightmost transducer element 142-RR1 in the first row and processed by the right circuit SIDER. The same is true for other columns of a certain number of rows. The same is true for other numbers of lines. It can be seen from this that many The row transducer elements can be converted to a single row of circuits; or a single transducer element can be cut into multiple pieces, and the cut result can be restored by the circuit.

圖12顯示本發明的一實施例的採用二維陣列式(2D array)換能元件套組15的超音波探頭的電路功能方塊圖。 FIG. 12 shows a functional block diagram of a circuit of an ultrasonic probe using a two-dimensional array (2D array) transducer element set 15 according to an embodiment of the present invention.

這種二維陣列式換能元件套組15與前述換能元件142略有不同。二維陣列式換能元件套組15是本來即存在多個微型換能元件150,其等區分成多個群。一群微型換能元件150可作為單一換能元件142。在圖12中,二維陣列式換能元件套組15的多個微型換能元件150分成一左側群(可作為圖11A的換能元件142-L1)、一中央群(可作為圖11A的換能元件142-C1)、及一右側群(可作為圖11A的換能元件142-R1)。 This two-dimensional array type transducer element set 15 is slightly different from the aforementioned transducer element 142 . The two-dimensional array type transducer element set 15 originally has a plurality of micro transducer elements 150 , which are equally divided into a plurality of groups. A group of micro-transducing elements 150 may act as a single transducing element 142 . In FIG. 12 , the plurality of miniature transducer elements 150 of the two-dimensional array type transducer element set 15 are divided into a left group (which can be used as the transducer element 142-L1 of FIG. transducer element 142-C1), and a right group (which can be used as transducer element 142-R1 in FIG. 11A).

圖13A及圖13B顯示本發明的多個實施例的三縱面(3L)超音波探頭的配置方式,其為3L探頭,其中,只示例性地標示出其中一列的左側區、中央區、右側區三個換能元件。 13A and 13B show the configuration of three longitudinal plane (3L) ultrasonic probes according to various embodiments of the present invention, which are 3L probes, in which only the left area, the central area and the right side of one column are exemplarily marked three transducer elements in the area.

首先,就換能元件位置而言,左側區、中央區、右側區三個換能元件可配置成無重疊、重疊且中央在前(靠近待測物)、或重疊且中央在後(遠離待測物)。 First, in terms of the position of the transducer elements, the three transducer elements in the left area, the central area, and the right area can be configured to be non-overlapping, overlapping and the center is in the front (close to the object to be tested), or overlapping and the center is behind (far away from the object to be tested). measurement).

其次,就換能元件方向而言,換能元件可配置成無曲折或曲折(可一併參考圖6A的2L探頭的曲折構造)。 Second, in terms of transducer element orientation, the transducer elements can be configured without zigzags or zigzags (see also the zigzag configuration of the 2L probe of FIG. 6A ).

最後,就換能元件尺寸(長度)而言,「中央為主」型態是指中央區換能元件尺寸大(長)於左右兩側區換能元件尺寸,而「中央為輔」型態是指中央區換能元件尺寸小(短)於左右兩側區換能元件尺寸。 Finally, in terms of the size (length) of the transducer element, the "center-based" type means that the size of the transducer element in the central region is larger (longer) than the size of the transducer elements in the left and right regions, and the "center-secondary" type It means that the size of the transducer elements in the central area is smaller (shorter) than that of the transducer elements in the left and right sides.

據此,上述不同配置可形成不同聲波疊加效果,而注重不同超音波縱向偵測面所獲得的影像。此外,超音波探頭可設計成允許使用者調整(移動、轉動、或伸縮)換能元件的位置、方向、或尺寸。 Accordingly, the above-mentioned different configurations can form different superposition effects of sound waves, and focus on images obtained by different ultrasonic longitudinal detection surfaces. Additionally, the ultrasound probe can be designed to allow the user to adjust (move, rotate, or telescopic) the position, orientation, or size of the transducing element.

換能元件形狀除了如圖13A所示為長方體之外,亦可如圖13B所示彎曲成一凸面或一凹面,提供聲波的聚集效果或發散效果,而注重不同橫向位置與深度的影像,產生單一縱面之外的立體感知,更精準地判斷針的走向。在圖13B中,「向前」意指面向待測物。 In addition to being a rectangular parallelepiped as shown in Fig. 13A, the shape of the transducer element can also be curved into a convex surface or a concave surface as shown in Fig. 13B to provide a converging or diffusing effect of sound waves, and focus on images with different lateral positions and depths to generate a single The three-dimensional perception beyond the vertical plane can more accurately judge the direction of the needle. In FIG. 13B, "forward" means facing the test object.

圖14A、圖14B、圖14C、及圖14D顯示本發明的多個實施例的採用二維陣列式換能元件套組15的超音波探頭的配置方式,作為示例,其等共同特徵在於中央區換能元件142-C比起左右兩側區二維陣列式換能元件套組15-L、15-R更遠離待測物,且中央區換能元件142-C尺寸小於左右兩側區二維陣列式換能元件套組15-L、15-R整體尺寸(稱為「中央為輔」)。如圖14B所示,可利用微機電系統(MEMS)來形成二維陣列式換能元件套組15的該些微型換能元件150。至於左右兩側區二維陣列式換能元件套組15-L、15-R整體形狀可透過將該些微型換能元件設計成彼此發生錯位,而彎曲成一凸面或一凹面,以對準盲區或待測物,分別如圖14C及圖14D所示。其原理可參考圖6E及其相關說明,故不再贅述。在圖14C及圖14D中,「向前」意指面向待測物。 FIGS. 14A , 14B, 14C, and 14D show configurations of ultrasonic probes using a two-dimensional array transducer element set 15 according to various embodiments of the present invention. As an example, the common feature is the central region. The transducer element 142-C is farther away from the object to be tested than the two-dimensional array transducer element sets 15-L and 15-R in the left and right regions, and the size of the transducer element 142-C in the central region is smaller than that of the two left and right regions The overall dimensions of the dimensional array transducer sets 15-L and 15-R (referred to as "the center supplemented"). As shown in FIG. 14B , the micro transducer elements 150 of the two-dimensional array type transducer element set 15 may be formed by using a micro-electromechanical system (MEMS). As for the overall shape of the two-dimensional array type transducer element sets 15-L and 15-R on the left and right sides, the micro transducer elements can be designed to be misaligned with each other, and then curved into a convex surface or a concave surface to align with the blind area. or the analyte, as shown in Figure 14C and Figure 14D, respectively. For the principle, reference may be made to FIG. 6E and related descriptions thereof, and thus will not be repeated here. In FIGS. 14C and 14D, "forward" means facing the object to be tested.

圖15A及圖15B分別顯示具有弧面的2L探頭及3L探頭的側視圖、第一立體圖、及第二立體圖。 15A and 15B respectively show a side view, a first perspective view, and a second perspective view of a 2L probe and a 3L probe with a curved surface.

可對照圖2、圖6A、或圖10,表面140及構成它的第1子表面140-1及第2子表面140-2皆呈現為平面;相對地,在圖15A及圖15B中,子表面140-1'、140-2'、140-R'、140-C'、140-L'在探頭的縱向軸方向則呈現為弧面。惟,除了子表 面變成弧面之外,圖15A及圖15B的探頭的其餘元件可參考圖2、圖6A、或圖10及其等相關說明。 2, FIG. 6A, or FIG. 10, the surface 140 and the first subsurface 140-1 and the second subsurface 140-2 constituting it are all presented as planes; on the contrary, in FIGS. 15A and 15B, the subsurfaces The surfaces 140-1', 140-2', 140-R', 140-C', 140-L' appear as arcs in the direction of the longitudinal axis of the probe. However, except for subtables In addition to the curved surface, the remaining elements of the probe in FIGS. 15A and 15B may refer to FIG. 2 , FIG. 6A , or FIG. 10 and related descriptions thereof.

(特別注意,換能元件140或二維陣列式換能元件套組15所形成的凸面(convex shape)或凹面(concave shape)是描述於探頭的橫向軸方向,而圖15A及圖15B的弧面(curved surface)是描述於探頭的縱向軸方向,兩者有別。) (Specially note that the convex shape or concave shape formed by the transducer element 140 or the two-dimensional array transducer element set 15 is described in the transverse axis direction of the probe, while the arc in FIGS. 15A and 15B The curved surface is described in the direction of the longitudinal axis of the probe, and the two are different.)

本實施例是將弧面特徵套用於具有曲折構造的雙縱弧面(2L curved、folded)探頭及具有曲折構造的三縱弧面(3L curved、folded)探頭,只是舉例,而不限於此。可理解的是,本實施例的弧面特徵亦可套用於本發明的其他實施例的探頭。 In this embodiment, the curved surface feature is applied to the double longitudinal curved surface (2L curved, folded) probe with a zigzag structure and the three longitudinal curved surface (3L curved, folded) probe with a zigzag structure, which is only an example and not limited thereto. It is understandable that the arc features of this embodiment can also be applied to probes of other embodiments of the present invention.

儘管本發明已透過多個實施例來說明,應理解的是,只要不背離本發明的精神及申請專利範圍所主張者,可作出許多其他可能的修飾及變化。 Although this invention has been described in terms of several embodiments, it should be understood that many other possible modifications and changes can be made without departing from the spirit of the invention and the claimed scope of the invention.

10:超音波探頭 10: Ultrasonic probe

12:尾部 12: tail

14:頭部 14: Head

140:表面 140: Surface

142:換能元件 142: Transducer element

Claims (16)

一種改善針顯像的超音波系統(1),包括:一超音波探頭(10),具有一尾部(12)及一頭部(14);該頭部(14)的一表面(140)嵌設有多個換能元件(142);該超音波探頭(10)的特徵在於:該些換能元件(142)是排列成M乘以N(亦即M×N)的一陣列;其中,M為正偶數,N為正整數,且N大於M;其中,該陣列包括2行N列的陣列,而將該些換能元件(142)區分成第1行換能元件組(142-1)及第2行換能元件組(142-2),分別組態成形成一第1超音波縱向偵測面(P1)及一第2超音波縱向偵測面(P2);其中,該第1超音波縱向偵測面(P1)與該第2超音波縱向偵測面(P2)之間存在待建立的一雙側等時距中央超音波縱向偵測面(PC2L)或待消除或最小化的一盲區(Z)。 An ultrasound system (1) for improving needle imaging, comprising: an ultrasound probe (10) having a tail (12) and a head (14); a surface (140) of the head (14) embedded in a surface (140) A plurality of transducer elements (142) are provided; the ultrasonic probe (10) is characterized in that: the transducer elements (142) are arranged in an array of M times N (that is, M×N); wherein, M is a positive even number, N is a positive integer, and N is greater than M; wherein, the array includes an array of 2 rows and N columns, and the transducer elements (142) are divided into a first row transducer element group (142-1 ) and the second row of transducer element groups (142-2), respectively configured to form a first ultrasonic longitudinal detection surface (P1) and a second ultrasonic longitudinal detection surface (P2); 1. Between the ultrasonic longitudinal detection surface (P1) and the second ultrasonic longitudinal detection surface (P2), there is a bilateral equidistant central ultrasonic longitudinal detection surface (PC2L) to be established or to be eliminated or minimized. A blind zone (Z) of the change. 如請求項1所述的系統,其中,在該些換能元件(142)前方附設一聲透鏡(acoustic lens)(144),該聲透鏡(144)是組態成使該第1超音波縱向偵測面(P1)相交(intersected)或部分重疊(partially overlapped)於該第2超音波縱向偵測面(P2)。 The system of claim 1, wherein an acoustic lens (144) is attached in front of the transducer elements (142), the acoustic lens (144) being configured to make the first ultrasonic longitudinal The detection plane (P1) is intersected or partially overlapped with the second ultrasonic longitudinal detection plane (P2). 如請求項2所述的系統,其中,該聲透鏡(144)為一單焦點透鏡,或一多焦距透鏡而具有多個焦點。 The system of claim 2, wherein the acoustic lens (144) is a single focal lens, or a multifocal lens having multiple focal points. 如請求項3所述的系統,其中,該第1行換能元件組(142-1)與第2行換能元件組(142-2)之間存在一間隙(G);該聲透鏡(144)的該些焦點位在該間隙(G)前方,或位在該雙側等時距中央超音波縱向偵測面(PC2L)或該盲區(Z);或者,該聲透鏡(144)是以該間隙(G)為幾何對稱中心。 The system of claim 3, wherein a gap (G) exists between the first row of transducer element groups (142-1) and the second row of transducer element groups (142-2); the acoustic lens ( The focal points of 144) are located in front of the gap (G), or located in the bilateral equidistant central ultrasonic longitudinal detection surface (PC2L) or the blind zone (Z); or, the acoustic lens (144) is Take this gap (G) as the center of geometric symmetry. 如請求項2所述的系統,其中,在該些換能元件(142)與該聲透鏡(144)之間、或在該聲透鏡(144)內、或在該聲透鏡(144)前方設置一分散器(splitter)(146),該分散器(146)對準該盲區(Z);或者,在該聲透鏡(144)中形成一分散結構(145),該分散結構(145)對準該盲區(Z)。 The system of claim 2, wherein between the transducer elements (142) and the acoustic lens (144), or within the acoustic lens (144), or in front of the acoustic lens (144) a splitter (146) aligned with the dead zone (Z); or a splitter (145) formed in the acoustic lens (144) aligned with the splitter (145) The dead zone (Z). 如請求項2所述的系統,其中,該聲透鏡(144)具有一或多個波導(wave guide)構造(144E),對準該盲區(Z)。 The system of claim 2, wherein the acoustic lens (144) has one or more wave guide configurations (144E) aligned with the dead zone (Z). 如請求項2所述的系統,其中,該聲透鏡(144)適用於(M+1)乘以N(亦即(M+1)×N)的另一陣列,而使兩個非中央縱面相交或部分重疊於一中央縱面。 The system of claim 2, wherein the acoustic lens (144) is adapted to another array of (M+1) times N (ie (M+1)×N) such that the two non-central vertical Faces intersect or partially overlap a central longitudinal plane. 如請求項1所述的系統,其中,該陣列為一交錯(staggered)陣列,使該第1行換能元件組(142-1)錯位於該第2行換能元件組(142-2)。 The system of claim 1, wherein the array is a staggered array, such that the first row of transducer element groups (142-1) are staggered to the second row of transducer element groups (142-2) . 如請求項1所述的系統,其中,該陣列為一拉鍊式(zipped)陣列。 The system of claim 1, wherein the array is a zipped array. 如請求項1所述的系統,其中,各換能元件組(142-1、142-2)本身構造是彎曲成一凸面或一凹面,對準一盲區(Z)或一待測物。 The system according to claim 1, wherein each transducer element group (142-1, 142-2) itself is configured to be curved into a convex surface or a concave surface, aiming at a blind zone (Z) or an object to be measured. 如請求項1所述的系統,其中,該第1超音波縱向偵測面(P1)與該第2超音波縱向偵測面(P2)是基於雙側聲波不完全混和法來混合,使兩者的聲波彼此達到一混和度,同時,各自保有一獨立性。 The system of claim 1, wherein the first ultrasonic longitudinal detection surface (P1) and the second ultrasonic longitudinal detection surface (P2) are mixed based on a bilateral incomplete mixing method, so that the two The sound waves of each other reach a degree of mixing with each other, and at the same time, each maintains an independence. 如請求項1、8、9、或10所述的系統,其中,該表面(140)曲折成一第1子表面(140-1)及一第2子表面(140-2),該第1子表面(140-1)不平行於該第2子表面(140-2)。 The system of claim 1, 8, 9, or 10, wherein the surface (140) is bent into a first subsurface (140-1) and a second subsurface (140-2), the first subsurface The surface (140-1) is not parallel to the second subsurface (140-2). 如請求項1所述的系統(1),更包括:一輔助訊號源,附設於該超音波探頭(10)上或嵌設於該超音波探頭(10)內;該輔助訊號源包括一或多個慣性測量單元、金屬探測器、或感測器。 The system (1) according to claim 1, further comprising: an auxiliary signal source attached to the ultrasonic probe (10) or embedded in the ultrasonic probe (10); the auxiliary signal source comprising an or Multiple inertial measurement units, metal detectors, or sensors. 如請求項1所述的系統(1),該頭部(14)的該表面(140)的一部分為一弧面(140-1'、140-2')。 The system (1) according to claim 1, wherein a part of the surface (140) of the head (14) is an arc surface (140-1', 140-2'). 一種改善針顯像的超音波系統(1),包括:一超音波探頭(10),具有一尾部(12)及一頭部(14);該超音波探頭(10)的特徵在於:該頭部(14)的一表面(140)嵌設有一第1群二維陣列式換能元件套組(15-1)及一第2群二維陣列式換能元件套組(15-2),各二維陣列式換能元件套組(15-1、15-2)是由多個微型換能元件(150)所組成,且該些二維陣列式換能元件套組(15-1、15-2)設置成彼此平行或不平行。 An ultrasound system (1) for improving needle imaging, comprising: an ultrasound probe (10) having a tail (12) and a head (14); the ultrasound probe (10) is characterized in that the head A surface (140) of the part (14) is embedded with a first group of two-dimensional array type transducer element sets (15-1) and a second group of two-dimensional array type transducer element sets (15-2), Each two-dimensional array transducer element set (15-1, 15-2) is composed of a plurality of miniature transducer elements (150), and the two-dimensional array transducer element sets (15-1, 150) 15-2) are arranged to be parallel or non-parallel to each other. 如請求項15所述的系統,其中,該些微型換能元件(150)是錯位成使各二維陣列式換能元件套組(15-1、15-2)構造彎曲成一凸面或一凹面,對準一盲區(Z)或一待測物。 The system of claim 15, wherein the miniature transducer elements (150) are misaligned such that each two-dimensional array transducer element set (15-1, 15-2) is configured to be curved into a convex surface or a concave surface , aiming at a blind zone (Z) or an object to be tested.
TW109119555A 2019-09-26 2020-06-10 Ultrasound system for improving needle visualization TWI754297B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/024,742 US20210093289A1 (en) 2019-09-26 2020-09-18 Ultrasound system for improving needle visualization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962906159P 2019-09-26 2019-09-26
US62/906,159 2019-09-26

Publications (2)

Publication Number Publication Date
TW202112311A TW202112311A (en) 2021-04-01
TWI754297B true TWI754297B (en) 2022-02-01

Family

ID=76604102

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109119555A TWI754297B (en) 2019-09-26 2020-06-10 Ultrasound system for improving needle visualization
TW109119554A TWI756712B (en) 2019-09-26 2020-06-10 Ultrasound system for improving needle visualization

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109119554A TWI756712B (en) 2019-09-26 2020-06-10 Ultrasound system for improving needle visualization

Country Status (1)

Country Link
TW (2) TWI754297B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106425B (en) * 2022-12-30 2023-11-10 天津市滨海新区检验检测中心 Magnetic nondestructive testing system based on ultrasonic phased array technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201902426A (en) * 2017-06-09 2019-01-16 國立高雄應用科技大學 Ultrasound imaging device, method, computer program product with stored programs, computer readable medium with stored programs
US10314562B2 (en) * 2013-12-20 2019-06-11 Samsung Medison Co., Ltd. Ultrasonic probe and method of manufacturing the same
US10368844B2 (en) * 2012-09-27 2019-08-06 Koninklijke Philips N.V. Automated biplane-PW workflow for ultrasonic stenosis assessment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368844B2 (en) * 2012-09-27 2019-08-06 Koninklijke Philips N.V. Automated biplane-PW workflow for ultrasonic stenosis assessment
US10314562B2 (en) * 2013-12-20 2019-06-11 Samsung Medison Co., Ltd. Ultrasonic probe and method of manufacturing the same
TW201902426A (en) * 2017-06-09 2019-01-16 國立高雄應用科技大學 Ultrasound imaging device, method, computer program product with stored programs, computer readable medium with stored programs

Also Published As

Publication number Publication date
TW202112311A (en) 2021-04-01
TW202112310A (en) 2021-04-01
TWI756712B (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US5503152A (en) Ultrasonic transducer assembly and method for three-dimensional imaging
Gibbs et al. Ultrasound physics and technology: how, why and when
TWI520716B (en) Ultrasound imaging system, device and method
JP5688197B2 (en) 3D display of 2D ultrasound images
CN102686165B (en) Ultrasonic testing device and ultrasonic testing method
EP2756330B1 (en) Ultrasound imaging console
CN101744639A (en) Ultrasonic imaging method and device
CN101589301A (en) Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
JP2012523920A (en) Universal multi-aperture medical ultrasound probe
WO2012017827A1 (en) Ultrasonic imaging apparatus and three-dimensional image display method using ultrasonic image
JP5960970B2 (en) Ultrasound imaging system
JP2010516372A (en) Ultrasonic detection method and apparatus for motion using an adjustable fluid lens
TWI754297B (en) Ultrasound system for improving needle visualization
CN103327905A (en) Three dimensional ultrasonic guidance of surgical instruments
US10390793B2 (en) Backing element of ultrasonic probe, backing layer of ultrasonic probe, and manufacturing method thereof
JP5876196B1 (en) Ultrasound endoscope
JP5826478B2 (en) Tissue insertion type ultrasonic probe
JP2012029718A (en) Ultrasonic probe adapter, ultrasonic diagnostic system, and ultrasonograph
JPH09154843A (en) Ultrasonic diagnostic device
KR20150051293A (en) Optical probe and Medical imaging apparatus comprising the same
US20210093289A1 (en) Ultrasound system for improving needle visualization
JPH07222744A (en) Ultrasonic diagnostic system
BE1019976A3 (en) TRANSDUCER COMPOSITION FOR AN ECHOSCOPE.
JP6858768B2 (en) 3D ultrasound imaging system for use in nerve blocks
JP2009291269A (en) Ultrasonic probe and ultrasonic diagnostic apparatus