TWI753721B - Photosensitive resin composition and method for producing hardened relief pattern - Google Patents

Photosensitive resin composition and method for producing hardened relief pattern Download PDF

Info

Publication number
TWI753721B
TWI753721B TW109146146A TW109146146A TWI753721B TW I753721 B TWI753721 B TW I753721B TW 109146146 A TW109146146 A TW 109146146A TW 109146146 A TW109146146 A TW 109146146A TW I753721 B TWI753721 B TW I753721B
Authority
TW
Taiwan
Prior art keywords
group
bis
acid
compound
general formula
Prior art date
Application number
TW109146146A
Other languages
Chinese (zh)
Other versions
TW202125103A (en
Inventor
頼末友裕
中村光孝
井上泰平
佐佐木隆弘
Original Assignee
日商旭化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商旭化成股份有限公司 filed Critical 日商旭化成股份有限公司
Publication of TW202125103A publication Critical patent/TW202125103A/en
Application granted granted Critical
Publication of TWI753721B publication Critical patent/TWI753721B/en

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyamides (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本發明提供一種能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與硬化後之感光性樹脂層接觸之界面處不會產生空隙而密接性較高之樹脂層的感光性樹脂組合物、及使用該感光性樹脂組合物之硬化浮凸圖案之形成方法。 本發明係一種感光性樹脂組合物及使用該感光性樹脂組合物之硬化浮凸圖案,該感光性樹脂組合物藉由將感光性樹脂與特定之塑化劑加以組合,能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與樹脂層之界面處不會產生空隙而密接性較高之感光性樹脂。The present invention provides a photosensitive resin composition capable of obtaining a resin layer with high adhesion without voids at the interface between the Cu layer and the cured photosensitive resin layer after a high temperature storage test, And the formation method of the hardening relief pattern using this photosensitive resin composition. The present invention relates to a photosensitive resin composition and a hardened relief pattern using the photosensitive resin composition. The photosensitive resin composition can be obtained in high temperature storage ( After the high temperature storage) test, there is no void at the interface between the Cu layer and the resin layer, and the photosensitive resin has high adhesion.

Description

感光性樹脂組合物及硬化浮凸圖案之製造方法Photosensitive resin composition and method for producing hardened relief pattern

本發明係關於一種用於形成例如電子零件之絕緣材料、及半導體裝置中之鈍化膜、緩衝塗膜、層間絕緣膜等之浮凸圖案的感光性樹脂組合物、及使用其之硬化浮凸圖案之形成方法。The present invention relates to a photosensitive resin composition for forming relief patterns of insulating materials such as electronic parts, passivation films, buffer coatings, interlayer insulating films, etc. in semiconductor devices, and hardened relief patterns using the same method of formation.

先前,電子零件之絕緣材料、及半導體裝置之鈍化膜、表面保護膜、層間絕緣膜等係使用兼具優異之耐熱性、電氣特性及機械特性之聚醯亞胺樹脂、聚苯并㗁唑樹脂、酚樹脂等。該等樹脂之中,以感光性樹脂組合物之形式提供者藉由該組合物之塗佈、曝光、顯影、及利用固化而進行之熱醯亞胺化處理,可容易地形成耐熱性之浮凸圖案皮膜。此種感光性樹脂組合物與先前之非感光型材料相比具有能夠大幅縮減步驟之特徵。 另外,半導體裝置(以下亦稱為「元件」)根據目的而藉由各種方法安裝於印刷基板。先前之元件一般而言係藉由利用細導線自元件之外部端子(焊墊)連接至引線框架之打線接合法製作。然而,於元件之高速化發展而動作頻率已達到GHz之今日,安裝中之各端子之配線長度之差異甚至會影響到元件之動作。因此,於高端用途之元件之安裝中,必須精確控制安裝配線之長度,若利用打線接合則難以滿足該要求。 因此,提出有倒裝晶片安裝,即,於半導體晶片之表面形成再配線層,並於其上形成凸塊(電極)後,將該晶片翻面(倒裝)而直接安裝於印刷基板(例如參照專利文獻1)。該倒裝晶片安裝由於可精確控制配線距離,故而用於處理高速信號之高端用途之元件,或由於安裝尺寸較小,故而用於行動電話等,其需求急遽擴大。於倒裝晶片安裝中使用聚醯亞胺、聚苯并㗁唑、酚樹脂等材料之情形時,待形成該樹脂層之圖案後,經過金屬配線層形成步驟。金屬配線層通常係對樹脂層表面進行電漿蝕刻而使表面粗化後,藉由濺鍍以1 μm以下之厚度形成成為鍍覆之籽晶層之金屬層後,以該金屬層為電極,藉由電解鍍覆而形成。此時,一般使用Ti作為成為籽晶層之金屬,使用Cu作為藉由電解鍍覆而形成之再配線層之金屬。 針對此種金屬再配線層,要求再配線之金屬層與樹脂層之密接性於可靠性試驗後較高。作為此處進行之可靠性試驗,例如可列舉:於空氣中、125℃以上之高溫下保存100小時以上之高溫保存試驗;組裝配線並一面施加電壓,一面確認於空氣中、125℃左右之溫度下保存100小時以上之狀態下之動作的高溫動作試驗;於空氣中將-65~-40℃左右之低溫狀態與125~150℃左右之高溫狀態以週期加以反覆之溫度週期試驗;於溫度85℃以上且濕度85%以上之水蒸氣環境下保存之高溫高濕保存試驗;組裝配線並一面施加電壓一面進行相同之試驗的高溫高濕偏壓試驗;於空氣中或氮氣下複數次通過260℃之回流焊爐之回流焊試驗等。 然而,先前於上述可靠性試驗中之高溫保存試驗之情形時,存在試驗後於再配線之Cu層與樹脂層接觸之界面處產生空隙之問題。若於Cu層與樹脂層之界面處產生空隙,則兩者之密接性降低。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2001-338947號公報In the past, polyimide resins and polybenzoxazole resins, which have excellent heat resistance, electrical properties, and mechanical properties, have been used as insulating materials for electronic parts, passivation films, surface protection films, and interlayer insulating films for semiconductor devices. , phenol resin, etc. Among these resins, those provided in the form of photosensitive resin compositions can easily form heat-resistant floats through coating, exposure, development, and thermal imidization of the composition by curing. Convex pattern film. This photosensitive resin composition has the feature that the steps can be greatly reduced compared with the conventional non-photosensitive material. In addition, semiconductor devices (hereinafter also referred to as "elements") are mounted on a printed circuit board by various methods depending on the purpose. Previous devices were generally fabricated by wire bonding using thin wires connected from the external terminals (bonds) of the device to the lead frame. However, with the high-speed development of components and the operating frequency reaching GHz today, the difference in wiring length of each terminal during installation may even affect the operation of the component. Therefore, in the installation of high-end components, the length of the installation wiring must be precisely controlled, and it is difficult to meet this requirement if wire bonding is used. Therefore, flip-chip mounting has been proposed, that is, a rewiring layer is formed on the surface of a semiconductor chip, and bumps (electrodes) are formed thereon, and the chip is flipped (flip-chipped) and directly mounted on a printed circuit board (for example, a printed circuit board). Refer to Patent Document 1). The flip-chip mounting can precisely control the wiring distance, so it is used for high-end components for processing high-speed signals, or because of its small mounting size, it is used for mobile phones, etc., and its demand is rapidly expanding. In the case of using materials such as polyimide, polybenzoxazole, and phenol resin in flip-chip mounting, after the pattern of the resin layer is formed, the metal wiring layer is formed. The metal wiring layer is usually formed by plasma etching the surface of the resin layer to roughen the surface, and then forming a metal layer with a thickness of 1 μm or less as a plated seed layer by sputtering, and using the metal layer as an electrode, It is formed by electrolytic plating. At this time, Ti is generally used as a metal for a seed layer, and Cu is used as a metal for a rewiring layer formed by electrolytic plating. For such a metal rewiring layer, it is required that the adhesion between the rewiring metal layer and the resin layer be high after the reliability test. Examples of the reliability test to be performed here include: a high-temperature storage test of storing at a high temperature of 125°C or more in the air for 100 hours or more; assembling an assembly line and applying a voltage to confirm the temperature in the air at a temperature of about 125°C High-temperature operation test of operation under the state of storage for more than 100 hours; temperature cycle test in which the low temperature state of about -65 ~ -40 °C and the high temperature state of about 125 ~ 150 °C are repeated periodically in the air; at a temperature of 85 High-temperature and high-humidity storage test for storage in a water vapor environment with a humidity above 85%; high-temperature and high-humidity bias voltage test for assembling an assembly line and applying voltage while performing the same test; passing 260°C for several times in air or nitrogen The reflow soldering test of the reflow soldering furnace, etc. However, in the case of the high-temperature storage test in the above-mentioned reliability test, there was a problem that voids were generated at the interface between the Cu layer of the rewiring and the resin layer after the test. When voids are formed at the interface between the Cu layer and the resin layer, the adhesiveness between the two is lowered. [Prior Art Literature] [Patent Literature] [Patent Document 1] Japanese Patent Laid-Open No. 2001-338947

[發明所欲解決之問題] 本發明係鑒於此種先前實際情況研究所得者,其目的在於提供一種能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與樹脂層接觸之界面處不會產生空隙而密接性較高之樹脂層的感光性樹脂組合物、使用該感光性樹脂組合物之硬化浮凸圖案之形成方法、及具有該硬化浮凸圖案而成之半導體裝置。 [解決問題之技術手段] 本發明者等人發現,藉由將特定之感光性樹脂與特定之塑化劑加以組合,而獲得一種能夠形成硬化膜之感光性樹脂組合物,由該硬化膜可獲得於高溫保存(high temperature storage)試驗後,於Cu層與樹脂層接觸之界面處不會產生空隙而密接性較高的樹脂層,從而完成本發明。即,本發明如下所述。 [1]一種感光性樹脂組合物,其包含: (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份, (B)塑化劑:以上述(A)樹脂100質量份為基準計0.1~50質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 [2]如[1]記載之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺、包含下述通式(5)之聚㗁唑前驅物、包含下述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含下述通式(7)之酚樹脂所組成之群中之至少一種。 下述通式(1)為 [化1]

Figure 02_image001
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,並且R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2): [化2]
Figure 02_image003
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3): [化3]
Figure 02_image005
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽, 下述通式(4)為具有 [化4]
Figure 02_image007
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺, 下述通式(5)為具有 [化5]
Figure 02_image009
{式中,Y3 為具有碳原子之4價之有機基,Y4 、X3 及X4 分別獨立為具有2個以上之碳原子之2價之有機基,n3 為1~1000之整數,n4 為0~500之整數,n3 /(n3 +n4 )>0.5,並且包含X3 及Y3 之n3 個二羥基二醯胺單元以及包含X4 及Y4 之n4 個二醯胺單元之排列順序為任意} 所表示之結構之作為聚㗁唑前驅物之聚羥基醯胺,並且 下述通式(6)為具有 [化6]
Figure 02_image011
{式中,X5 為4~14價之有機基,Y5 為2~12價之有機基,R10 及R11 分別獨立地表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,n5 為3~200之整數,並且m3 及m4 表示0~10之整數} 所表示之結構之聚醯亞胺,並且 下述通式(7)為 [化7]
Figure 02_image013
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R1 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化8]
Figure 02_image015
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之酚樹脂。 [3]如[1]或[2]記載之感光性樹脂組合物,其中上述通式(7)中之X為選自由下述通式(9): [化9]
Figure 02_image017
{式中,R13 、R14 、R15 及R16 分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6 為0~4之整數,且n6 為1~4之整數之情形時之R17 為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R6 為羥基,n6 為2~4之整數之情形時之複數個R17 相互可相同或亦可不同}所表示之2價之基、及下述通式(10): [化10]
Figure 02_image019
{式中,R18 、R19 、R20 及R21 分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8): [化11]
Figure 02_image021
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11): [化12]
Figure 02_image023
所表示之2價之基所組成之群中之2價之基}所表示之2價之基所組成之群中之2價之有機基。 [4]如[1]記載之感光性樹脂組合物,其中上述(B)塑化劑為選自由下述通式(7): [化13]
Figure 02_image025
{式中,X為包含碳數為1以上且15以下之飽和烴或不飽和烴或芳香族烴之結構,n為1~4之整數,於n為2以上之情形時,R分別可相同亦可不同,為碳數為2以上且15以下之飽和烴或不飽和烴或芳香族烴}所表示、 下述通式(8): [化14]
Figure 02_image027
{式中,m為1~4之整數,於m為2以上之情形時,R分別可相同亦可不同,表示碳數為2以上且15以下之飽和烴或不飽和烴或芳香族烴}所表示、及 下述通式(9): [化15]
Figure 02_image029
{式中,Y為包含碳數為1以上且10以下之飽和烴或不飽和烴或芳香族烴之結構,R分別可相同亦可不同,表示碳數為2以上且15以下之飽和烴或不飽和烴或芳香族烴}所組成之群中之至少一種。 [5]一種硬化浮凸圖案之製造方法,其包括: 步驟(1),其係藉由於基板上塗佈如[1]至[4]中任一項記載之感光性樹脂組合物而於上述基板上形成感光性樹脂層; 步驟(2),其係對上述感光性樹脂層進行曝光; 步驟(3),其係將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案;及 步驟(4),其係藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案。 [6]如[5]記載之方法,其中上述基板係由銅或銅合金形成。 又,本發明者等人發現,藉由於感光性樹脂組合物中調配奈米粒子,可獲得能夠形成於高溫保存試驗後與Cu層接觸之界面處之空隙產生被抑制之硬化膜的感光性樹脂組合物。本發明亦可應用於以下之態樣。 [1]一種感光性樹脂組合物,其包含 (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份, (B-1)奈米粒子:以上述(A)樹脂100質量份為基準計0.01~10質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 [2]如[1]記載之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺、包含下述通式(5)之聚㗁唑前驅物、包含下述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含下述通式(7)之酚樹脂所組成之群中之至少一種。 下述通式(1)為 [化16]
Figure 02_image031
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,並且R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2): [化17]
Figure 02_image033
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3): [化18]
Figure 02_image035
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽, 下述通式(4)為具有 [化19]
Figure 02_image037
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺, 下述通式(5)為具有 [化20]
Figure 02_image039
{式中,Y3 為具有碳原子之4價之有機基,Y4 、X3 及X4 分別獨立為具有2個以上之碳原子之2價之有機基,n3 為1~1000之整數,n4 為0~500之整數,n3 /(n3 +n4 )>0.5,並且包含X3 及Y3 之n3 個二羥基二醯胺單元以及包含X4 及Y4 之n4 個二醯胺單元之排列順序為任意} 所表示之結構之作為聚㗁唑前驅物之聚羥基醯胺, 下述通式(6)為具有 [化21]
Figure 02_image041
{式中,X5 為4~14價之有機基,Y5 為2~12價之有機基,R10 及R11 分別獨立地表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,n5 為3~200之整數,並且m3 及m4 表示0~10之整數} 所表示之結構之聚醯亞胺,並且 下述通式(7)為 [化22]
Figure 02_image043
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R1 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化23]
Figure 02_image045
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之酚樹脂。 [3]如[1]或[2]記載之感光性樹脂組合物,其中上述感光性樹脂組合物包含具有上述通式(7)所表示之重複單元之酚樹脂,上述通式(7)中之X為選自由下述通式(9): [化24]
Figure 02_image047
{式中,R13 、R14 、R15 及R16 分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6 為0~4之整數,且n6 為1~4之整數之情形時之R17 為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R17 為羥基,n6 為2~4之整數之情形時之複數個R17 相互可相同或亦可不同}所表示之2價之基、及下述通式(10): [化25]
Figure 02_image049
{式中,R18 、R19 、R20 及R21 分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8): [化26]
Figure 02_image051
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11): [化27]
Figure 02_image053
所表示之2價之基所組成之群中之2價之基}所表示之2價之基所組成之群中之2價之有機基。 [4]一種硬化浮凸圖案之製造方法,其包括: 步驟(1),其係藉由於基板上塗佈如[1]至[3]中任一項記載之感光性樹脂組合物而於上述基板上形成感光性樹脂層; 步驟(2),其係對上述感光性樹脂層進行曝光; 步驟(3),其係將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案;及 步驟(4),其係藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案。 [5]如[4]記載之方法,其中上述基板係由銅或銅合金形成。 [6]一種半導體裝置,其包含藉由如[4]或[5]記載之製造方法所獲得之硬化浮凸圖案。 又,本發明者等人發現,藉由將感光性樹脂與特定之熱交聯劑加以組合,可獲得能夠形成於高溫保存試驗後與Cu層接觸之界面處之空隙產生被抑制之硬化膜的負型感光性樹脂組合物。本發明亦可應用於以下之態樣。 [1]一種負型感光性樹脂組合物,其包含 (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽所組成之群中之至少一種樹脂:100質量份, (B-2)熱交聯劑:以上述(A)樹脂100質量份為基準計0.01~50質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 [2]如[1]記載之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺所組成之群中之至少一種。 下述通式(1)為 [化28]
Figure 02_image055
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,並且R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2): [化29]
Figure 02_image057
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3): [化30]
Figure 02_image059
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽, 下述通式(4)為具有 [化31]
Figure 02_image061
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺。 [3]如[1]記載之感光性樹脂組合物,其中上述(B-2)熱交聯劑為選自由(B-2-1)含有羥甲基或烷氧基烷基之至少一者之化合物、(B-2-2)含環氧乙烷環之化合物、(B-2-3)含異氰酸酯基之化合物、(B-2-4)含雙順丁烯二醯亞胺基之化合物、(B-2-5)含醛基之化合物、(B-2-6)含氧雜環丁烷環之化合物、(B-2-7)含苯并㗁𠯤環之化合物、(B-2-8)含㗁唑啉環之化合物、(B-2-9)含碳二醯亞胺基之化合物、(B-2-10)烯丙基化合物、(B-2-11)三𠯤硫醇化合物、及(B-2-12)金屬螯合化合物所組成之群中之至少一種。 [4]如[1]或[3]記載之感光性樹脂組合物,其中上述(B-2)熱交聯劑為(B-2-1)含有羥甲基或烷氧基烷基之至少一者之化合物。 [5]如[1]或[3]記載之感光性樹脂組合物,其中上述(B-2)熱交聯劑具有下述通式(TS1): [化32]
Figure 02_image063
{式中,Rs1為氫原子、選自由甲基、乙基、正丙基及異丙基所組成之群中之一價之基,Rs2為選自由羥基、碳原子數1~10之烷基、碳原子數1~10之烷氧基、碳原子數1~10之酯基、及胺基甲酸酯基所組成之群中之基,mm1為1~5之整數,mm2為0~4之整數。此處,1≦(mm1+mm2)≦5,nn1為1~4之整數,V1 於nn1=1時為CH2 ORs1,於nn1=2~4時為單鍵或2~4價之有機基。於CH2 ORs1及R10 存在複數個之情形時,該等相互可相同亦可不同} 所表示之結構。 [6]一種硬化浮凸圖案之製造方法,其包括: 步驟(1),其係藉由於基板上塗佈如[1]至[5]中任一項記載之感光性樹脂組合物而於上述基板上形成感光性樹脂層; 步驟(2),其係對上述感光性樹脂層進行曝光; 步驟(3),其係將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案;及 步驟(4),其係藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案。 [7]如[6]記載之方法,其中上述基板係由銅或銅合金形成。 又,本發明者等人發現,藉由將特定之感光性樹脂與特定之含氟疏水性化合物加以組合,而獲得一種能夠形成硬化膜之感光性樹脂組合物,由該硬化膜可獲得於高溫保存(high temperature storage)試驗後,於Cu層之與樹脂層接觸之界面處不會產生空隙而密接性較高的樹脂層。本發明亦可應用於以下之態樣。 [1]一種感光性樹脂組合物,其包含 (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份, (B-3)含氟疏水性化合物:以上述(A)樹脂100質量份為基準計0.01~50質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 [2]如[1]記載之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺、包含下述通式(5)之聚㗁唑前驅物、包含下述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含下述通式(7)之酚樹脂所組成之群中之至少一種。 下述通式(1)為 [化33]
Figure 02_image065
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,並且R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2): [化34]
Figure 02_image067
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3): [化35]
Figure 02_image069
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽, 下述通式(4)為具有 [化36]
Figure 02_image071
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺, 下述通式(5)為具有 [化37]
Figure 02_image073
{式中,Y3 為具有碳原子之4價之有機基,Y4 、X3 及X4 分別獨立為具有2個以上之碳原子之2價之有機基,n3 為1~1000之整數,n4 為0~500之整數,n3 /(n3 +n4 )>0.5,並且包含X3 及Y3 之n3 個二羥基二醯胺單元以及包含X4 及Y4 之n4 個二醯胺單元之排列順序為任意} 所表示之結構之作為聚㗁唑前驅物之聚羥基醯胺, 下述通式(6)為具有 [化38]
Figure 02_image075
{式中,X5 為4~14價之有機基,Y5 為2~12價之有機基,R10 及R11 分別獨立地表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,n5 為3~200之整數,並且m3 及m4 表示0~10之整數} 所表示之結構之聚醯亞胺,並且 下述通式(7)為 [化39]
Figure 02_image077
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R1 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化40]
Figure 02_image079
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之酚樹脂。 [3]如[1]或[2]記載之感光性樹脂組合物,其中上述通式(7)中之X為選自由下述通式(9): [化41]
Figure 02_image081
{式中,R13 、R14 、R15 及R16 分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6 為0~4之整數,且n6 為1~4之整數之情形時之R17 為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R6 為羥基,n6 為2~4之整數之情形時之複數個R17 相互可相同或亦可不同}所表示之2價之基、及下述通式(10): [化42]
Figure 02_image083
{式中,R18 、R19 、R20 及R21 分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8): [化43]
Figure 02_image085
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11): [化44]
Figure 02_image087
所表示之2價之基所組成之群中之2價之基}所表示之2價之基所組成之群中之2價之有機基。 [4]如[1]至[3]中任一項記載之感光性樹脂組合物,其中上述(B-3)含氟疏水性化合物之分子中之氟原子之重量比率為30質量%以上且80質量%以下。 [5]如[1]至[4]中任一項記載之感光性樹脂組合物,其中上述(B-3)含氟疏水性化合物於分子內具有至少1個不飽和雙鍵。 [6]如[1]至[5]中任一項記載之感光性樹脂組合物,其中上述(B-3)含氟疏水性化合物為具有全氟基之丙烯酸酯或甲基丙烯酸酯化合物。 [7]一種硬化浮凸圖案之製造方法,其包括 步驟(1),其係藉由於基板上塗佈如[1]至[6]中任一項記載之感光性樹脂組合物而於上述基板上形成感光性樹脂層; 步驟(2),其係對上述感光性樹脂層進行曝光; 步驟(3),其係將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案;及 步驟(4),其係藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案。 [8]如[7]記載之方法,其中上述基板係由銅或銅合金形成。 [發明之效果] 根據本發明,可提供一種能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與樹脂層之界面處不會產生空隙而密接性較高之感光性樹脂的感光性樹脂組合物、使用該感光性樹脂組合物之硬化浮凸圖案之形成方法、及具有該硬化浮凸圖案而成之半導體裝置。[Problems to be Solved by the Invention] The present invention is based on the research results of the previous actual situation, and its object is to provide a method that can obtain no problem at the interface between the Cu layer and the resin layer after a high temperature storage test. A photosensitive resin composition of a resin layer with high adhesiveness which generates voids, a method for forming a cured relief pattern using the photosensitive resin composition, and a semiconductor device having the cured relief pattern. [Technical Means for Solving the Problem] The inventors of the present invention have found that a photosensitive resin composition capable of forming a cured film can be obtained by combining a specific photosensitive resin and a specific plasticizer. After a high temperature storage test, a resin layer with high adhesiveness is obtained without generating voids at the interface between the Cu layer and the resin layer, thereby completing the present invention. That is, the present invention is as follows. [1] A photosensitive resin composition comprising: (A) selected from the group consisting of polyamide, polyamide, polyamide, polyhydroxyamide, polyaminoamide, polyamide, At least one resin selected from the group consisting of polyimide imide, polyimide, polybenzoxazole, novolac, polyhydroxystyrene and phenol resin: 100 parts by mass, (B) Plasticizer: with 0.1-50 mass parts based on 100 mass parts of said (A) resin, and (C) sensitizer: 1-50 mass parts based on said (A) resin 100 mass parts. [2] The photosensitive resin composition according to [1], wherein the resin (A) is selected from the group consisting of a polyimide precursor containing the following general formula (1), a polymer containing the following general formula (4) amides, polyoxazole precursors comprising the following general formula (5), polyimides comprising the following general formula (6), and novolaks, polyhydroxystyrenes and compounds comprising the following general formula (7) At least one of the group consisting of phenolic resins. The following general formula (1) is [Formula 1]
Figure 02_image001
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are independently a hydrogen atom and a saturated carbon number of 1 to 30. Aliphatic group, aromatic group, or the following general formula (2): [Chemical 2]
Figure 02_image003
(in the formula, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10) a monovalent organic group represented by, or an organic group having a carbon number of 1 A saturated aliphatic group of to 4, or the following general formula (3): [Chem. 3]
Figure 02_image005
(wherein R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 2 is an integer of 2 to 10) a monovalent ammonium ion represented by} Polyamic acid, polyamic acid ester or polyamic acid salt of polyimide precursor, the following general formula (4) has [Chem. 4]
Figure 02_image007
{In the formula, X 2 is a trivalent organic group with 6 to 15 carbon atoms, Y 2 is a bivalent organic group with 6 to 35 carbon atoms, and may have the same structure or a plurality of structures, and R 9 is a group having at least A polyamide of a structure represented by a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms, and n 2 is an integer of 1 to 1000}, the following general formula (5) is a polyamide having [ 5]
Figure 02_image009
{In the formula, Y 3 is a tetravalent organic group having carbon atoms, Y 4 , X 3 and X 4 are each independently a divalent organic group having 2 or more carbon atoms, and n 3 is an integer of 1 to 1000 , n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and includes n 3 dihydroxydiamide units of X 3 and Y 3 and n 4 units including X 4 and Y 4 The arrangement order of the diamide units is arbitrary} The structure represented by the polyhydroxyamide as a polyoxazole precursor, and the following general formula (6) has [Chem. 6]
Figure 02_image011
{In the formula, X 5 is an organic group of 4-14 valence, Y 5 is an organic group of 2-12 valence, R 10 and R 11 each independently represent at least one selected from phenolic hydroxyl group, sulfonic acid group or thiol The organic group of the group in the group, n 5 is an integer of 3 to 200, and m 3 and m 4 represent an integer of 0 to 10} Polyimide of the structure represented, and the following general formula (7) is [ 7]
Figure 02_image013
{In the formula, a is an integer of 1 to 3, b is an integer of 0 to 3, 1≦(a+b)≦4, R 12 represents a monovalent organic group selected from the group consisting of 1 to 20 carbon atoms, a halogen atom, and a nitro group and the monovalent substituent in the group composed of cyano groups, when b is 2 or 3, a plurality of R 1 may be the same or different from each other, and X represents a carbon number 2 selected from the group that may have an unsaturated bond A divalent aliphatic group of to 10, a divalent alicyclic group of carbon number 3 to 20, the following general formula (8):
Figure 02_image015
(in the formula, p is an integer of 1 to 10) a divalent alkaneoxy group represented by a divalent organic group in the group consisting of a divalent organic group having an aromatic ring having 6 to 12 carbon atoms Phenolic resin represented by base}. [3] The photosensitive resin composition according to [1] or [2], wherein X in the general formula (7) is selected from the following general formula (9):
Figure 02_image017
{In the formula, R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, a monovalent aliphatic group having 1 to 10 carbon atoms, or a carbon obtained by substituting a part or all of a hydrogen atom with a fluorine atom. A monovalent aliphatic group of 1 to 10, n 6 is an integer of 0 to 4, and R 17 when n 6 is an integer of 1 to 4 is a halogen atom, a hydroxyl group, or 1 of carbon atoms of 1 to 12 A valent organic group, at least one R 6 is a hydroxyl group, and when n 6 is an integer of 2 to 4, a plurality of R 17 may be the same or different from each other} A divalent group represented by the following general formula (10): [hua 10]
Figure 02_image019
{In the formula, R 18 , R 19 , R 20 and R 21 each independently represent a hydrogen atom, a monovalent aliphatic group having 1 to 10 carbon atoms, or a carbon obtained by substituting a part or all of a hydrogen atom with a fluorine atom. A monovalent aliphatic group of 1 to 10, W is a single bond, selected from aliphatic groups of 1 to 10 carbon atoms that can be substituted by fluorine atoms, and alicyclic groups of 3 to 20 carbon atoms that can be substituted by fluorine atoms base, the following general formula (8): [Chem. 11]
Figure 02_image021
(wherein p is an integer of 1 to 10) a divalent alkaneoxy group represented by the following formula (11):
Figure 02_image023
The bivalent organic group in the group consisting of the indicated bivalent basis} The bivalent organic group in the group composed of the indicated bivalent basis. [4] The photosensitive resin composition according to [1], wherein the (B) plasticizer is selected from the following general formula (7):
Figure 02_image025
{In the formula, X is a structure including a saturated hydrocarbon or an unsaturated hydrocarbon or an aromatic hydrocarbon with a carbon number of 1 or more and 15 or less, n is an integer of 1 to 4, and when n is 2 or more, R may be the same, respectively. Alternatively, it may be represented by a saturated hydrocarbon, an unsaturated hydrocarbon, or an aromatic hydrocarbon having a carbon number of 2 or more and 15 or less, and the following general formula (8):
Figure 02_image027
{In the formula, m is an integer of 1 to 4, and when m is 2 or more, R may be the same or different, respectively, and represents a saturated hydrocarbon or an unsaturated hydrocarbon or an aromatic hydrocarbon with a carbon number of 2 or more and 15 or less} represented, and the following general formula (9): [Chem. 15]
Figure 02_image029
{In the formula, Y is a structure including a saturated hydrocarbon or an unsaturated hydrocarbon or an aromatic hydrocarbon with a carbon number of 1 or more and 10 or less, R may be the same or different, and represents a saturated hydrocarbon with a carbon number of 2 or more and 15 or less, or At least one of the group consisting of unsaturated hydrocarbons or aromatic hydrocarbons}. [5] A method for producing a hardened relief pattern, comprising: step (1), by coating a substrate with the photosensitive resin composition according to any one of [1] to [4] on the above-mentioned forming a photosensitive resin layer on the substrate; step (2), exposing the photosensitive resin layer; step (3), developing the exposed photosensitive resin layer to form a relief pattern; and (4), which forms a hardened relief pattern by subjecting the relief pattern to a heat treatment. [6] The method according to [5], wherein the substrate is formed of copper or a copper alloy. Furthermore, the inventors of the present invention found that, by blending nanoparticles in a photosensitive resin composition, a photosensitive resin capable of forming a cured film in which generation of voids at the interface in contact with the Cu layer after a high-temperature storage test can be obtained can be obtained combination. The present invention can also be applied to the following aspects. [1] A photosensitive resin composition comprising (A) selected from the group consisting of polyamides, polyamides, polyamides, polyhydroxyamides, polyaminoamides, polyamides, polyamides At least one resin selected from the group consisting of amide imide, polyimide, polybenzoxazole, and novolak, polyhydroxystyrene and phenol resin: 100 parts by mass, (B-1) Nanoparticles : 0.01-10 mass parts based on 100 mass parts of said (A) resin, and (C) sensitizer: 1-50 mass parts based on said (A) resin 100 mass parts. [2] The photosensitive resin composition according to [1], wherein the resin (A) is selected from the group consisting of a polyimide precursor containing the following general formula (1), a polymer containing the following general formula (4) amides, polyoxazole precursors comprising the following general formula (5), polyimides comprising the following general formula (6), and novolaks, polyhydroxystyrenes and compounds comprising the following general formula (7) At least one of the group consisting of phenolic resins. The following general formula (1) is [Chemical 16]
Figure 02_image031
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are independently a hydrogen atom and a saturated carbon number of 1 to 30. Aliphatic group, aromatic group, or the following general formula (2): [Chem. 17]
Figure 02_image033
(in the formula, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10) a monovalent organic group represented by, or an organic group having a carbon number of 1 A saturated aliphatic group of to 4, or the following general formula (3): [Chem. 18]
Figure 02_image035
(wherein R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 2 is an integer of 2 to 10) a monovalent ammonium ion represented by} A polyamide acid, a polyamide ester or a polyamide acid salt of a polyimide precursor, the following general formula (4) has [Chem. 19]
Figure 02_image037
{In the formula, X 2 is a trivalent organic group with 6 to 15 carbon atoms, Y 2 is a bivalent organic group with 6 to 35 carbon atoms, and may have the same structure or a plurality of structures, and R 9 is a group having at least A polyamide of a structure represented by a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms, and n 2 is an integer of 1 to 1000}, the following general formula (5) is a polyamide having [ 20]
Figure 02_image039
{In the formula, Y 3 is a tetravalent organic group having carbon atoms, Y 4 , X 3 and X 4 are each independently a divalent organic group having 2 or more carbon atoms, and n 3 is an integer of 1 to 1000 , n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and includes n 3 dihydroxydiamide units of X 3 and Y 3 and n 4 units including X 4 and Y 4 The arrangement order of the diamide units is arbitrary} The structure represented by the polyhydroxyamide as a polyoxazole precursor, the following general formula (6) has [Chemical 21]
Figure 02_image041
{In the formula, X 5 is an organic group of 4-14 valence, Y 5 is an organic group of 2-12 valence, R 10 and R 11 each independently represent at least one selected from phenolic hydroxyl group, sulfonic acid group or thiol The organic group of the group in the group, n 5 is an integer of 3 to 200, and m 3 and m 4 represent an integer of 0 to 10} Polyimide of the structure represented, and the following general formula (7) is [ 22]
Figure 02_image043
{In the formula, a is an integer of 1 to 3, b is an integer of 0 to 3, 1≦(a+b)≦4, R 12 represents a monovalent organic group selected from the group consisting of 1 to 20 carbon atoms, a halogen atom, and a nitro group and the monovalent substituent in the group composed of cyano groups, when b is 2 or 3, a plurality of R 1 may be the same or different from each other, and X represents a carbon number 2 selected from the group that may have an unsaturated bond Divalent aliphatic group of to 10, divalent alicyclic group of carbon number of 3 to 20, the following general formula (8):
Figure 02_image045
(in the formula, p is an integer of 1 to 10) a divalent alkaneoxy group represented by a divalent organic group in the group consisting of a divalent organic group having an aromatic ring having 6 to 12 carbon atoms Phenolic resin represented by base}. [3] The photosensitive resin composition according to [1] or [2], wherein the photosensitive resin composition comprises a phenol resin having a repeating unit represented by the above general formula (7), in the above general formula (7) X is selected from the following general formula (9): [Chem. 24]
Figure 02_image047
{In the formula, R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, a monovalent aliphatic group having 1 to 10 carbon atoms, or a carbon obtained by substituting a part or all of a hydrogen atom with a fluorine atom. A monovalent aliphatic group of 1 to 10, n 6 is an integer of 0 to 4, and R 17 when n 6 is an integer of 1 to 4 is a halogen atom, a hydroxyl group, or 1 of carbon atoms of 1 to 12 A valent organic group, at least one R 17 is a hydroxyl group, and when n 6 is an integer of 2 to 4, a plurality of R 17 may be the same or different from each other} A divalent group represented by the following general formula (10): [Chemical 25]
Figure 02_image049
{In the formula, R 18 , R 19 , R 20 and R 21 each independently represent a hydrogen atom, a monovalent aliphatic group having 1 to 10 carbon atoms, or a carbon obtained by substituting a part or all of a hydrogen atom with a fluorine atom. A monovalent aliphatic group of 1 to 10, W is a single bond, selected from aliphatic groups of 1 to 10 carbon atoms that can be substituted by fluorine atoms, and alicyclic groups of 3 to 20 carbon atoms that can be substituted by fluorine atoms base, the following general formula (8): [Chem. 26]
Figure 02_image051
(wherein p is an integer of 1 to 10) a divalent alkaneoxy group represented by the following formula (11):
Figure 02_image053
The bivalent organic group in the group consisting of the indicated bivalent basis} The bivalent organic group in the group composed of the indicated bivalent basis. [4] A method for producing a hardened relief pattern, comprising: step (1), which is formed by coating the photosensitive resin composition according to any one of [1] to [3] on a substrate on the above-mentioned forming a photosensitive resin layer on the substrate; step (2), exposing the photosensitive resin layer; step (3), developing the exposed photosensitive resin layer to form a relief pattern; and (4), which forms a hardened relief pattern by subjecting the relief pattern to a heat treatment. [5] The method according to [4], wherein the substrate is formed of copper or a copper alloy. [6] A semiconductor device comprising the hardened relief pattern obtained by the manufacturing method as described in [4] or [5]. Furthermore, the inventors of the present invention found that by combining a photosensitive resin and a specific thermal crosslinking agent, a cured film capable of being formed at the interface in contact with the Cu layer after a high-temperature storage test can be formed with suppressed generation of voids. Negative photosensitive resin composition. The present invention can also be applied to the following aspects. [1] A negative photosensitive resin composition comprising (A) at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, and polyamic acid salt: 100 parts by mass, ( B-2) Thermal crosslinking agent: 0.01 to 50 parts by mass based on 100 parts by mass of the above (A) resin, and (C) Sensitizer: 1 to 50 parts by mass based on 100 parts by mass of the above (A) resin share. [2] The photosensitive resin composition according to [1], wherein the resin (A) is selected from the group consisting of a polyimide precursor containing the following general formula (1), a polymer containing the following general formula (4) At least one of the group consisting of amides. The following general formula (1) is [Chemical 28]
Figure 02_image055
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are independently a hydrogen atom and a saturated carbon number of 1 to 30. Aliphatic group, aromatic group, or the following general formula (2): [Chem. 29]
Figure 02_image057
(in the formula, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10) a monovalent organic group represented by, or an organic group having a carbon number of 1 A saturated aliphatic group of to 4, or the following general formula (3): [Chem. 30]
Figure 02_image059
(wherein R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 2 is an integer of 2 to 10) a monovalent ammonium ion represented by} Polyamic acid, polyamic acid ester or polyamic acid salt of polyimide precursor, the following general formula (4) has [Chemical 31]
Figure 02_image061
{In the formula, X 2 is a trivalent organic group with 6 to 15 carbon atoms, Y 2 is a bivalent organic group with 6 to 35 carbon atoms, and may have the same structure or a plurality of structures, and R 9 is a group having at least An organic group of a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms, and n 2 is an integer of 1 to 1000} The polyamide of the structure represented. [3] The photosensitive resin composition according to [1], wherein the (B-2) thermal crosslinking agent is at least one selected from the group consisting of (B-2-1) containing a methylol group or an alkoxyalkyl group (B-2-2) Compounds containing ethylene oxide ring, (B-2-3) Compounds containing isocyanate groups, (B-2-4) Compounds containing bismaleimide groups Compound, (B-2-5) Compound containing aldehyde group, (B-2-6) Compound containing oxetane ring, (B-2-7) Compound containing benzoyl ring, (B-2-7) Compound containing benzoyl ring -2-8) Compounds containing oxazoline rings, (B-2-9) Compounds containing carbodiimide groups, (B-2-10) Allyl compounds, (B-2-11) Three At least one of the group consisting of 𠯤thiol compound and (B-2-12) metal chelate compound. [4] The photosensitive resin composition according to [1] or [3], wherein the (B-2) thermal crosslinking agent is (B-2-1) at least one containing a methylol group or an alkoxyalkyl group a compound. [5] The photosensitive resin composition according to [1] or [3], wherein the (B-2) thermal crosslinking agent has the following general formula (TS1):
Figure 02_image063
{In the formula, Rs1 is a hydrogen atom, a valent group selected from the group consisting of methyl, ethyl, n-propyl and isopropyl, and Rs2 is selected from a hydroxyl group and an alkyl group with 1 to 10 carbon atoms , a group consisting of alkoxy groups with 1 to 10 carbon atoms, ester groups with 1 to 10 carbon atoms, and urethane groups, mm1 is an integer of 1 to 5, and mm2 is 0 to 4 the integer. Here, 1≦(mm1+mm2)≦5, nn1 is an integer of 1 to 4, V 1 is CH 2 ORs1 when nn1=1, and a single bond or a 2-tetravalent organic group when nn1=2-4. When there are plural CH 2 ORs1 and R 10 , these may be the same or different from each other} The structure represented. [6] A method for producing a hardened relief pattern, comprising: step (1), by coating a substrate with the photosensitive resin composition according to any one of [1] to [5] on the above-mentioned forming a photosensitive resin layer on the substrate; step (2), exposing the photosensitive resin layer; step (3), developing the exposed photosensitive resin layer to form a relief pattern; and (4), which forms a hardened relief pattern by subjecting the relief pattern to a heat treatment. [7] The method according to [6], wherein the substrate is formed of copper or a copper alloy. Moreover, the inventors of the present invention found that by combining a specific photosensitive resin and a specific fluorine-containing hydrophobic compound, a photosensitive resin composition capable of forming a cured film can be obtained from which the cured film can be used at high temperature. After the storage (high temperature storage) test, the resin layer with high adhesiveness does not generate voids at the interface between the Cu layer and the resin layer. The present invention can also be applied to the following aspects. [1] A photosensitive resin composition comprising (A) selected from the group consisting of polyamides, polyamides, polyamides, polyhydroxyamides, polyaminoamides, polyamides, polyamides At least one resin selected from the group consisting of amide imide, polyimide, polybenzoxazole, novolac, polyhydroxystyrene and phenol resin: 100 parts by mass, (B-3) Fluorine-containing hydrophobicity Compound: 0.01 to 50 parts by mass based on 100 parts by mass of the above (A) resin, and (C) sensitizer: 1 to 50 parts by mass based on 100 parts by mass of the above (A) resin. [2] The photosensitive resin composition according to [1], wherein the resin (A) is selected from the group consisting of a polyimide precursor containing the following general formula (1), a polymer containing the following general formula (4) amides, polyoxazole precursors comprising the following general formula (5), polyimides comprising the following general formula (6), and novolaks, polyhydroxystyrenes and compounds comprising the following general formula (7) At least one of the group consisting of phenolic resins. The following general formula (1) is [Chemical 33]
Figure 02_image065
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are independently a hydrogen atom and a saturated carbon number of 1 to 30. Aliphatic group, aromatic group, or the following general formula (2): [Chem. 34]
Figure 02_image067
(in the formula, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10) a monovalent organic group represented by, or an organic group having a carbon number of 1 A saturated aliphatic group of to 4, or the following general formula (3):
Figure 02_image069
(wherein R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 2 is an integer of 2 to 10) a monovalent ammonium ion represented by} A polyamide acid, a polyamide ester or a polyamide acid salt of a polyimide precursor, the following general formula (4) has [Chem. 36]
Figure 02_image071
{In the formula, X 2 is a trivalent organic group with 6 to 15 carbon atoms, Y 2 is a bivalent organic group with 6 to 35 carbon atoms, and may have the same structure or a plurality of structures, and R 9 is a group having at least A polyamide of a structure represented by a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms, and n 2 is an integer of 1 to 1000}, the following general formula (5) is a polyamide having [ 37]
Figure 02_image073
{In the formula, Y 3 is a tetravalent organic group having carbon atoms, Y 4 , X 3 and X 4 are each independently a divalent organic group having 2 or more carbon atoms, and n 3 is an integer of 1 to 1000 , n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and includes n 3 dihydroxydiamide units of X 3 and Y 3 and n 4 units including X 4 and Y 4 The arrangement order of the diamide units is arbitrary} The structure represented by the polyhydroxyamide as a precursor of polyoxazole, the following general formula (6) has [Chemical 38]
Figure 02_image075
{In the formula, X 5 is an organic group of 4-14 valence, Y 5 is an organic group of 2-12 valence, R 10 and R 11 each independently represent at least one selected from phenolic hydroxyl group, sulfonic acid group or thiol The organic group of the group in the group, n 5 is an integer of 3 to 200, and m 3 and m 4 represent an integer of 0 to 10} Polyimide of the structure represented, and the following general formula (7) is [ 39]
Figure 02_image077
{In the formula, a is an integer of 1 to 3, b is an integer of 0 to 3, 1≦(a+b)≦4, R 12 represents a monovalent organic group selected from the group consisting of 1 to 20 carbon atoms, a halogen atom, and a nitro group and the monovalent substituent in the group composed of cyano groups, when b is 2 or 3, a plurality of R 1 may be the same or different from each other, and X represents a carbon number 2 selected from the group that may have an unsaturated bond A divalent aliphatic group of to 10, a divalent alicyclic group of a carbon number of 3 to 20, the following general formula (8): [Chemical 40]
Figure 02_image079
(in the formula, p is an integer of 1 to 10) a divalent alkaneoxy group represented by a divalent organic group in the group consisting of a divalent organic group having an aromatic ring having 6 to 12 carbon atoms Phenolic resin represented by base}. [3] The photosensitive resin composition according to [1] or [2], wherein X in the general formula (7) is selected from the following general formula (9):
Figure 02_image081
{In the formula, R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, a monovalent aliphatic group having 1 to 10 carbon atoms, or a carbon obtained by substituting a part or all of a hydrogen atom with a fluorine atom. A monovalent aliphatic group of 1 to 10, n 6 is an integer of 0 to 4, and R 17 when n 6 is an integer of 1 to 4 is a halogen atom, a hydroxyl group, or 1 of carbon atoms of 1 to 12 A valent organic group, at least one R 6 is a hydroxyl group, and when n 6 is an integer of 2 to 4, a plurality of R 17 may be the same or different from each other} A divalent group represented by the following general formula (10): [Chemical 42]
Figure 02_image083
{In the formula, R 18 , R 19 , R 20 and R 21 each independently represent a hydrogen atom, a monovalent aliphatic group having 1 to 10 carbon atoms, or a carbon obtained by substituting a part or all of a hydrogen atom with a fluorine atom. A monovalent aliphatic group of 1 to 10, W is a single bond, selected from aliphatic groups of 1 to 10 carbon atoms that can be substituted by fluorine atoms, and alicyclic groups of 3 to 20 carbon atoms that can be substituted by fluorine atoms base, the following general formula (8): [Chem. 43]
Figure 02_image085
(wherein p is an integer of 1 to 10) a divalent alkaneoxy group represented by the following formula (11):
Figure 02_image087
The bivalent organic group in the group consisting of the indicated bivalent basis} The bivalent organic group in the group composed of the indicated bivalent basis. [4] The photosensitive resin composition according to any one of [1] to [3], wherein the weight ratio of fluorine atoms in the molecule of the (B-3) fluorine-containing hydrophobic compound is 30% by mass or more and 80% by mass or less. [5] The photosensitive resin composition according to any one of [1] to [4], wherein the (B-3) fluorine-containing hydrophobic compound has at least one unsaturated double bond in the molecule. [6] The photosensitive resin composition according to any one of [1] to [5], wherein the (B-3) fluorine-containing hydrophobic compound is an acrylate or methacrylate compound having a perfluoro group. [7] A method for producing a hardened relief pattern, comprising step (1) of coating the substrate with the photosensitive resin composition according to any one of [1] to [6] on the substrate forming a photosensitive resin layer thereon; step (2), exposing the photosensitive resin layer; step (3), developing the exposed photosensitive resin layer to form a relief pattern; and step ( 4), which forms a hardened relief pattern by subjecting the relief pattern to a heat treatment. [8] The method according to [7], wherein the substrate is formed of copper or a copper alloy. ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a photosensitive resin capable of obtaining a photosensitive resin having high adhesiveness without voids at the interface between the Cu layer and the resin layer after a high temperature storage test. A composition, a method for forming a cured relief pattern using the photosensitive resin composition, and a semiconductor device having the cured relief pattern.

以下對用以實施本發明之形態(以下簡稱為「本實施形態」)進行詳細說明。再者,本實施形態為用以說明本發明之例示,而非意欲限定本發明。本發明可於其主旨之範圍內適當變化而實施。 再者,本說明書中,於於通式中以同一符號表示之結構在分子中存在複數個之情形時,相互可相同或亦可不同。 <感光性樹脂組合物> 本實施形態係以如下成分作為必須成分,即,(A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份、(B)塑化劑:以(A)樹脂100質量份為基準計0.1~50質量份、(C)感光劑:以(A)樹脂100質量份為基準計1~50質量份。 <感光性樹脂組合物> 又,另一實施形態係以如下成分作為必須成分,即,(A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份、(B-1)奈米粒子:以(A)樹脂100質量份為基準計0.01~10質量份、(C)感光劑:以(A)樹脂100質量份為基準計1~50質量份。 <感光性樹脂組合物> 又,另一實施形態係負型感光性樹脂組合物,其以如下成分作為必須成分,即,(A)選自由聚醯胺酸、聚醯胺酸酯及聚醯胺酸鹽所組成之群中之至少一種樹脂:100質量份、(B-2)熱交聯劑:以(A)樹脂100質量份為基準計0.01~10質量份、(C)感光劑:以(A)樹脂100質量份為基準計1~50質量份。 <感光性樹脂組合物> 又,另一實施形態係以如下成分作為必須成分,即,(A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份、(B-3)含氟疏水性化合物:以上述(A)樹脂100質量份為基準計0.01~50質量份、(C)感光劑:以(A)樹脂100質量份為基準計1~50質量份。 (A)樹脂 對本發明中所使用之(A)樹脂進行說明。本發明之(A)樹脂係以選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂作為主成分。此處,所謂主成分意指含有占樹脂整體60質量%以上之該等樹脂,較佳為含有80質量%以上。又,視需要亦可含有其他樹脂。 該等樹脂之重量平均分子量就熱處理後之耐熱性、機械特性之觀點而言,以基於凝膠滲透層析法之聚苯乙烯換算計,較佳為200以上,更佳為5,00以上。較佳為1,000以上,更佳為1,000以上。上限較佳為500,000以下,於製成感光性樹脂組合物之情形時,就於顯影液中之溶解性之觀點而言,更佳為20,000以下。 本發明中,為了形成浮凸圖案,(A)樹脂較理想為感光性樹脂。感光性樹脂係與下述(C)感光劑一併使用而成為感光性樹脂組合物,於其後之顯影步驟中引起溶解或未溶解之現象的樹脂。 作為感光性樹脂,於聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及包含酚醛清漆、聚羥基苯乙烯之酚樹脂之中,就熱處理後之樹脂之耐熱性、機械特性優異之方面而言,可較佳地使用聚醯亞胺前驅物(聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽)、聚醯胺、聚羥基醯胺、聚醯亞胺及酚樹脂。 又,該等感光性樹脂可根據所需用途而選擇與下述(C)感光劑一起製備負型或正型之任意感光性樹脂組合物等。 [(A)聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽] 本發明之感光性樹脂組合物中,就耐熱性及感光特性之觀點而言最佳之(A)樹脂之一例為上述通式(1): [化45]

Figure 02_image089
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、或上述通式(2): [化46]
Figure 02_image091
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基}所表示之1價之有機基、或下述通式(3): [化47]
Figure 02_image093
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽。 聚醯亞胺前驅物藉由實施加熱(例如200℃以上)環化處理而轉化為聚醯亞胺。聚醯亞胺前驅物適用於負型感光性樹脂組合物用。 上述通式(1)中,X1 所表示之4價之有機基就兼具耐熱性與感光特性之方面而言,較佳為碳數6~40之有機基,更佳為-COOR1 基及-COOR2 基與-CONH-基相互位於鄰位之芳香族基、或脂環式脂肪族基。作為X1 所表示之4價之有機基,較佳為含有芳香族環之碳原子數6~40之有機基,更佳為列舉下述式(30): [化48]
Figure 02_image095
{式中,R25為選自氫原子、氟原子、C1~C10之烴基、C1~C10之含氟烴基之1價之基,l為選自0~2之整數,m為選自0~3之整數,n為選自0~4之整數} 所表示之結構,但並不限定於該等。又,X1 之結構可為1種,亦可為2種以上之組合。具有上述式所表示之結構之X1 基就兼具耐熱性與感光特性之方面而言尤佳。 上述通式(1)中,Y1 所表示之2價之有機基就兼具耐熱性與感光特性之方面而言,較佳為碳數6~40之芳香族基,例如可列舉下述式(31): [化49]
Figure 02_image097
{式中,R25為選自氫原子、氟原子、C1~C10之烴基、C1~C10之含氟烴基之1價之基,n為選自0~4之整數} 所表示之結構,但並不限定於該等。又,Y1 之結構可為1種,亦可為2種以上之組合。具有上述式(31)所表示之結構之Y1 基就兼具耐熱性與感光特性之方面而言尤佳。 上述通式(2)中之R3 較佳為氫原子或甲基,R4 及R5 就感光特性之觀點而言,較佳為氫原子。又,m1 就感光特性之觀點而言,為2以上且10以下之整數,較佳為2以上且4以下之整數。 於使用聚醯亞胺前驅物作為(A)樹脂之情形時,作為對感光性樹脂組合物賦予感光性之方式,可列舉酯鍵型與離子鍵型。前者係於聚醯亞胺前驅物之側鏈藉由酯鍵而導入具有光聚合性基、即烯烴性雙鍵之化合物的方法,後者係使聚醯亞胺前驅物之羧基與具有胺基之(甲基)丙烯酸系化合物之胺基經由離子鍵而鍵結從而賦予光聚合性基的方法。 上述酯鍵型之聚醯亞胺前驅物係藉由如下方式獲得,即,首先,使包含上述4價之有機基X1 之四羧酸二酐與具有光聚合性之不飽和雙鍵之醇類及任意之碳數1~4之飽和脂肪族醇類進行反應,而製備部分酯化之四羧酸(以下亦稱為酸/酯體)後,使其與包含上述2價之有機基Y1 之二胺類進行醯胺縮聚合。 (酸/酯體之製備) 本發明中,作為適於製備酯鍵型之聚醯亞胺前驅物之包含4價之有機基X1 之四羧酸二酐,可列舉以具有上述通式(30)所表示之結構之四羧酸二酐為代表的例如均苯四甲酸二酐、二苯醚-3,3',4,4'-四羧酸二酐、二苯甲酮-3,3',4,4'-四羧酸二酐、聯苯基-3,3',4,4'-四羧酸二酐、二苯基碸-3,3',4,4'-四羧酸二酐、二苯基甲烷-3,3',4,4'-四羧酸二酐、2,2-雙(3,4-苯二甲酸酐)丙烷、2,2-雙(3,4-苯二甲酸酐)-1,1,1,3,3,3-六氟丙烷等,較佳為列舉:均苯四甲酸二酐、二苯醚-3,3',4,4'-四羧酸二酐、二苯甲酮-3,3',4,4'-四羧酸二酐、聯苯基-3,3',4,4'-四羧酸二酐,但並不限定於該等。又,該等當然可單獨使用,但亦可將2種以上混合使用。 本發明中,作為適於製備酯鍵型之聚醯亞胺前驅物之具有光聚合性之不飽和雙鍵之醇類,例如可列舉:2-丙烯醯氧基乙醇、1-丙烯醯氧基-3-丙醇、2-丙烯醯胺基乙醇、羥甲基乙烯基酮、2-羥基乙基乙烯基酮、丙烯酸2-羥基-3-甲氧基丙酯、丙烯酸2-羥基-3-丁氧基丙酯、丙烯酸2-羥基-3-苯氧基丙酯、丙烯酸2-羥基-3-丁氧基丙酯、丙烯酸2-羥基-3-第三丁氧基丙酯、丙烯酸2-羥基-3-環己氧基丙酯、2-甲基丙烯醯氧基乙醇、1-甲基丙烯醯氧基-3-丙醇、2-甲基丙烯醯胺基乙醇、羥甲基乙烯基酮、2-羥基乙基乙烯基酮、甲基丙烯酸2-羥基-3-甲氧基丙酯、甲基丙烯酸2-羥基-3-丁氧基丙酯、甲基丙烯酸2-羥基-3-苯氧基丙酯、甲基丙烯酸2-羥基-3-丁氧基丙酯、甲基丙烯酸2-羥基-3-第三丁氧基丙酯、甲基丙烯酸2-羥基-3-環己氧基丙酯等。 亦可於上述醇類中混合一部分作為碳數1~4之飽和脂肪族醇之例如甲醇、乙醇、正丙醇、異丙醇、正丁醇、第三丁醇等使用。 使上述本發明中適宜之四羧酸二酐與上述醇類於吡啶等鹼性觸媒之存在下,於如下所述之溶劑中,以溫度20~50℃攪拌4~10小時使之溶解、混合,藉此進行酸酐之酯化反應,而可獲得所需之酸/酯體。 (聚醯亞胺前驅物之製備) 對上述酸/酯體(典型而言為下述溶劑中之溶液),於冰浴冷卻下投入適宜之脫水縮合劑、例如二環碳二醯亞胺、二環己基碳二醯亞胺、1-乙氧基羰基-2-乙氧基-1,2-二氫喹啉、1,1-羰基二氧基-二-1,2,3-苯并三唑、N,N'-二丁二醯亞胺基碳酸酯等加以混合而將酸/酯體製成聚酸酐後,於其中滴加投入另外使本發明中適宜使用之包含2價之有機基Y1 之二胺類溶解或分散於溶劑所得者,進行醯胺縮聚合,藉此可獲得目標聚醯亞胺前驅物。或者使用亞硫醯氯等而使上述酸/酯體中之酸部分進行醯氯化後,於吡啶等鹼存在下與二胺化合物反應,藉此可獲得目標聚醯亞胺前驅物。 作為本發明中適宜使用之包含2價之有機基Y1 之二胺類,可列舉以具有上述通式(31)所表示之結構之二胺為代表的例如對苯二胺、間苯二胺、4,4'-二胺基二苯醚、3,4'-二胺基二苯醚、3,3'-二胺基二苯醚、4,4'-二胺基二苯硫醚、3,4'-二胺基二苯硫醚、3,3'-二胺基二苯硫醚、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基碸、4,4'-二胺基聯苯、3,4'-二胺基聯苯、3,3'-二胺基聯苯、4,4'-二胺基二苯甲酮、3,4'-二胺基二苯甲酮、3,3'-二胺基二苯甲酮、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基甲烷、3,3'-二胺基二苯基甲烷、1,4-雙(4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、 1,3-雙(3-胺基苯氧基)苯、雙[4-(4-胺基苯氧基)苯基]碸、雙[4-(3-胺基苯氧基)苯基]碸、4,4-雙(4-胺基苯氧基)聯苯、4,4-雙(3-胺基苯氧基)聯苯、雙[4-(4-胺基苯氧基)苯基]醚、雙[4-(3-胺基苯氧基)苯基]醚、1,4-雙(4-胺基苯基)苯、1,3-雙(4-胺基苯基)苯、9,10-雙(4-胺基苯基)蒽、2,2-雙(4-胺基苯基)丙烷、2,2-雙(4-胺基苯基)六氟丙烷、2,2-雙[4-(4-胺基苯氧基)苯基)丙烷、2,2-雙[4-(4-胺基苯氧基)苯基)六氟丙烷、1,4-雙(3-胺基丙基二甲基矽烷基)苯、鄰聯甲苯胺碸、9,9-雙(4-胺基苯基)茀,及該等之苯環上之氫原子之一部分被甲基、乙基、羥基甲基、羥基乙基、鹵素等取代者,例如3,3'-二甲基-4,4'-二胺基聯苯、2,2'-二甲基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基二苯基甲烷、2,2'-二甲基-4,4'-二胺基二苯基甲烷、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二氯-4,4'-二胺基聯苯、2,2'-二甲基聯苯胺、2,2'-雙(三氟甲基)-4,4'-二胺基聯苯、2,2'-雙(氟)-4,4'-二胺基聯苯、4,4'-二胺基八氟聯苯等;較佳為列舉:對苯二胺、間苯二胺、4,4'-二胺基二苯醚、2,2'-二甲基聯苯胺、2,2'-雙(三氟甲基)-4,4'-二胺基聯苯、2,2'-雙(氟)-4,4'-二胺基聯苯、4,4'-二胺基八氟聯苯等、以及該等之混合物等,但並不限定於此。 又,為了提高藉由於基板上塗佈本發明之感光性樹脂組合物而於基板上形成之樹脂層與各種基板的密接性,於製備聚醯亞胺前驅物時,亦可與1,3-雙(3-胺基丙基)四甲基二矽氧烷、1,3-雙(3-胺基丙基)四苯基二矽氧烷等二胺基矽氧烷類進行共聚。 醯胺縮聚合反應結束後,視需要將共存於該反應液中之脫水縮合劑之吸水副產物過濾分離後,於所獲得之聚合物成分中投入水、脂肪族低級醇、或其混合液等不良溶劑而使聚合物成分析出,進而反覆進行再溶解、再沈澱析出操作等,藉此精製聚合物,並進行真空乾燥而單離目標聚醯亞胺前驅物。為了提高精製度,亦可使該聚合物之溶液通過填充有利用適宜之有機溶劑而膨潤之陰離子及/或陽離子交換樹脂的管柱而去除離子性雜質。 另一方面,上述離子鍵型之聚醯亞胺前驅物典型而言係使四羧酸二酐與二胺反應而獲得。於該情形時,上述通式(1)中之R1 及R2 中之至少一者為羥基。 作為四羧酸二酐,較佳為包含上述式(30)之結構之四羧酸之酸酐,作為二胺,較佳為包含上述式(31)之結構之二胺。藉由對所獲得之聚醯胺前驅物添加下述具有胺基之(甲基)丙烯酸系化合物,而利用羧基與胺基之離子鍵結而賦予光聚合性基。 作為具有胺基之(甲基)丙烯酸系化合物,例如較佳為丙烯酸二甲胺基乙酯、甲基丙烯酸二甲胺基乙酯、丙烯酸二乙胺基乙酯、甲基丙烯酸二乙胺基乙酯、丙烯酸二甲胺基丙酯、甲基丙烯酸二甲胺基丙酯、丙烯酸二乙胺基丙酯、甲基丙烯酸二乙胺基丙酯、丙烯酸二甲胺基丁酯、甲基丙烯酸二甲胺基丁酯、丙烯酸二乙胺基丁酯、甲基丙烯酸二乙胺基丁酯、等丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯,其中,就感光特性之觀點而言,較佳為胺基上之烷基之碳數為1~10、烷基鏈之碳數為1~10的丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯。 關於該等具有胺基之(甲基)丙烯酸系化合物之調配量,相對於(A)樹脂100質量份而為1~20質量份,就光感度特性之觀點而言,較佳為2~15質量份。相對於(A)樹脂100質量份,藉由調配作為(C)感光劑之具有胺基之(甲基)丙烯酸系化合物1質量份以上而光感度優異,藉由調配20質量份以下而厚膜硬化性優異。 關於上述酯鍵型及上述離子鍵型之聚醯亞胺前驅物之分子量,於以基於凝膠滲透層析法之聚苯乙烯換算重量平均分子量之形式測定之情形時,較佳為8,000~150,000,更佳為9,000~50,000。於重量平均分子量為8,000以上之情形時機械物性良好,於為150,000以下之情形時於顯影液中之分散性良好,且浮凸圖案之解像性能良好。作為凝膠滲透層析法之展開溶劑,推薦使用四氫呋喃及N-甲基-2-吡咯啶酮。又,重量平均分子量係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工公司製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 [(A)聚醯胺] 本發明之感光性樹脂組合物中之較佳之(A)樹脂之另一例為具有下述通式(4): [化50]
Figure 02_image099
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺。該聚醯胺適用於負型感光性樹脂組合物用。 上述通式(4)中,作為R9 所表示之基,就兼具感光特性與耐化學品性之方面而言,較佳為下述通式(32) [化51]
Figure 02_image101
{式中,R32 為具有至少一個碳數2~19之自由基聚合性之不飽和鍵結基的有機基} 所表示之基。 上述通式(4)中,作為X2 所表示之3價之有機基,較佳為碳數6~15之3價之有機基,例如較佳為選自下述式(33): [化52]
Figure 02_image103
所表示之基中之芳香族基,進而更佳為自胺基取代間苯二甲酸結構中去除羧基及胺基所得之芳香族基。 上述通式(4)中,作為Y2 所表示之2價之有機基,較佳為碳數6~35之有機基,進而更佳為具有1~4個可經取代之芳香族環或脂肪族環之環狀有機基、或者不具有環狀結構之脂肪族基或矽氧烷基。作為Y2 所表示之2價之有機基,可列舉下述通式(I)及下述通式(34)、(35): [化53]
Figure 02_image105
[化54]
Figure 02_image107
{式中,R33 及R34 分別獨立為選自由羥基、甲基(-CH3 )、乙基(-C2 H5 )、丙基(-C3 H7 )或丁基(-C4 H9 )所組成之群中之一種基,並且該丙基及丁基包括各種異構物} [化55]
Figure 02_image109
{式中,m7 為0~8之整數,m8 及m9 分別獨立為0~3之整數,m10 及m11 分別獨立為0~10之整數,並且R35 及R36 為甲基(-CH3 )、乙基(-C2 H5 )、丙基(-C3 H7 )、丁基(-C4 H9 )或該等之異構物}。 關於不具有環狀結構之脂肪族基或矽氧烷基,作為其較佳者,可列舉下述通式(36): [化56]
Figure 02_image111
{式中,m12 為2~12之整數,m13 為1~3之整數,m14 為1~20之整數,並且R37 、R38 、R39 及R40 分別獨立為碳數1~3之烷基或可經取代之苯基}。 本發明之聚醯胺樹脂例如可藉由如下方式合成。 (苯二甲酸化合物封端體之合成) 第一步,使具有3價之芳香族基X2 之化合物、例如選自由經胺基取代之鄰苯二甲酸、經胺基取代之間苯二甲酸及經胺基取代之對苯二甲酸所組成之群中之至少1種以上之化合物(以下稱為「苯二甲酸化合物」)1莫耳、和會與胺基反應之化合物1莫耳進行反應,而合成該苯二甲酸化合物之胺基經下述包含自由基聚合性之不飽和鍵之基修飾、封端的化合物(以下稱為「苯二甲酸化合物封端體」)。該等可單獨使用,亦可混合使用。 若成為苯二甲酸化合物經上述包含自由基聚合性之不飽和鍵之基封端的結構,則可對聚醯胺樹脂賦予負型之感光性(光硬化性)。 作為包含自由基聚合性之不飽和鍵之基,較佳為具有碳數3~20之自由基聚合性之不飽和鍵結基的有機基,尤佳為包含甲基丙烯醯基或丙烯醯基之基。 上述苯二甲酸化合物封端體可藉由使苯二甲酸化合物之胺基、與具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的醯氯、異氰酸酯或環氧化合物等進行反應而獲得。 作為適宜之醯氯,可列舉:(甲基)丙烯醯氯、2-[(甲基)丙烯醯氧基]乙醯氯、3-[(甲基)丙烯醯氧基]丙醯氯、氯甲酸2-[(甲基)丙烯醯氧基]乙酯、氯甲酸3-[(甲基)丙烯醯氧基丙基]酯等。作為適宜之異氰酸酯,可列舉:異氰酸2-(甲基)丙烯醯氧基乙酯、異氰酸1,1-雙[(甲基)丙烯醯氧基甲基]乙酯、異氰酸2-[2-(甲基)丙烯醯氧基乙氧基]乙酯等。作為適宜之環氧化合物,可列舉(甲基)丙烯酸縮水甘油酯等。該等可單獨使用,亦可混合使用,但尤佳為使用甲基丙烯醯氯及/或異氰酸2-(甲基丙烯醯氧基)乙酯。 進而,作為該等苯二甲酸化合物封端體,苯二甲酸化合物為5-胺基間苯二甲酸者可獲得不僅感光特性優異且加熱硬化後之膜特性亦優異之聚醯胺,因此較佳。 上述封端反應可藉由於吡啶等鹼性觸媒或二月桂酸二正丁基錫等錫系觸媒之存在下,將苯二甲酸化合物與封端劑視需要於如下所述之溶劑中攪拌溶解、混合而進行。 醯氯等根據封端劑之種類而會於封端反應之過程中生成副產物氯化氫。於該情形時,為了防止對以後之步驟造成污染,較佳為適當進行精製,即,暫且使之於水中再沈澱並水洗乾燥、或使之通過填充有離子交換樹脂之管柱而去除減少離子成分等。 (聚醯胺之合成) 使上述苯二甲酸化合物封端體與具有2價之有機基Y2 之二胺化合物於吡啶或三乙胺等鹼性觸媒之存在下,於如下所述之溶劑中混合而使之進行醯胺縮聚合,藉此可獲得本發明之聚醯胺。 作為醯胺縮聚合方法,可列舉:使用脫水縮合劑而使苯二甲酸化合物封端體成為對稱聚酸酐後與二胺化合物混合之方法、或藉由已知方法使苯二甲酸化合物封端體實現醯氯化後與二胺化合物混合之方法、使二羧酸成分與活性酯化劑於脫水縮合劑之存在下反應而實現活性酯化後與二胺化合物混合之方法等。 作為脫水縮合劑,例如作為較佳者,可列舉:二環己基碳二醯亞胺、1-乙氧基羰基-2-乙氧基-1,2-二氫喹啉、1,1'-羰基二氧基-二-1,2,3-苯并三唑、N,N'-二丁二醯亞胺基碳酸酯等。 作為氯化劑,可列舉亞硫醯氯等。 作為活性酯化劑,可列舉:N-羥基丁二醯亞胺或1-羥基苯并三唑、N-羥基-5-降𦯉烯-2,3-二羧醯亞胺、2-羥基亞胺基-2-氰基乙酸乙酯、2-羥基亞胺基-2-氰基乙醯胺等。 作為具有有機基Y2 之二胺化合物,較佳為選自由芳香族二胺化合物、芳香族雙胺基苯酚化合物、脂環式二胺化合物、直鏈脂肪族二胺化合物、矽氧烷二胺化合物所組成之群中之至少一種二胺化合物,視需要亦可併用複數種。 作為芳香族二胺化合物,可列舉:對苯二胺、間苯二胺、4,4'-二胺基二苯醚、3,4'-二胺基二苯醚、3,3'-二胺基二苯醚、4,4'-二胺基二苯硫醚、3,4'-二胺基二苯硫醚、3,3'-二胺基二苯硫醚、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基碸、4,4'-二胺基聯苯、3,4'-二胺基聯苯、3,3'-二胺基聯苯、4,4'-二胺基二苯甲酮、3,4'-二胺基二苯甲酮、3,3'-二胺基二苯甲酮、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基甲烷、 3,3'-二胺基二苯基甲烷、1,4-雙(4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,3-雙(3-胺基苯氧基)苯、雙[4-(4-胺基苯氧基)苯基]碸、雙[4-(3-胺基苯氧基)苯基]碸、4,4'-雙(4-胺基苯氧基)聯苯、4,4'-雙(3-胺基苯氧基)聯苯、雙[4-(4-胺基苯氧基)苯基]醚、雙[4-(3-胺基苯氧基)苯基]醚、1,4-雙(4-胺基苯基)苯、1,3-雙(4-胺基苯基)苯、9,10-雙(4-胺基苯基)蒽、2,2-雙(4-胺基苯基)丙烷、2,2-雙(4-胺基苯基)六氟丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]六氟丙烷、1,4-雙(3-胺基丙基二甲基矽烷基)苯、鄰聯甲苯胺碸、9,9-雙(4-胺基苯基)茀、以及該等之苯環上之氫原子之一部被選自由甲基、乙基、羥基甲基、羥基乙基及鹵素原子所組成之群中之1種以上之基取代的二胺化合物。 作為該苯環上之氫原子被取代的二胺化合物之例,可列舉:3,3'-二甲基-4,4'-二胺基聯苯、2,2'-二甲基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基二苯基甲烷、2,2'-二甲基-4,4'-二胺基二苯基甲烷、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二氯-4,4'-二胺基聯苯基等。 作為芳香族雙胺基苯酚化合物,可列舉:3,3'-二羥基聯苯胺、3,3'-二胺基-4,4'-二羥基聯苯、3,3'-二羥基-4,4'-二胺基二苯基碸、雙-(3-胺基-4-羥基苯基)甲烷、2,2-雙-(3-胺基-4-羥基苯基)丙烷、2,2-雙-(3-胺基-4-羥基苯基)六氟丙烷、2,2-雙-(3-羥基-4-胺基苯基)六氟丙烷、雙-(3-羥基-4-胺基苯基)甲烷、2,2-雙-(3-羥基-4-胺基苯基)丙烷、3,3'-二羥基-4,4'-二胺基二苯甲酮、3,3'-二羥基-4,4'-二胺基二苯醚、4,4'-二羥基-3,3'-二胺基二苯醚、2,5-二羥基-1,4-二胺基苯、4,6-二胺基間苯二酚、1,1-雙(3-胺基-4-羥基苯基)環己烷、4,4-(α-甲基亞苄基)-雙(2-胺基苯酚)等。 作為脂環式二胺化合物,可列舉:1,3-二胺基環戊烷、1,3-二胺基環己烷、1,3-二胺基-1-甲基環己烷、3,5-二胺基-1,1-二甲基環己烷、1,5-二胺基-1,3-二甲基環己烷、1,3-二胺基-1-甲基-4-異丙基環己烷、1,2-二胺基-4-甲基環己烷、1,4-二胺基環己烷、1,4-二胺基-2,5-二乙基環己烷、1,3-雙(胺基甲基)環己烷、1,4-雙(胺基甲基)環己烷、2-(3-胺基環戊基)-2-丙基胺、薄荷烷二胺、異佛爾酮二胺、降𦯉烷二胺、1-環庚烯-3,7-二胺、4,4'-亞甲基雙(環己基胺)、4,4'-亞甲基雙(2-甲基環己基胺)、1,4-雙(3-胺基丙基)哌𠯤、3,9-雙(3-胺基丙基)-2,4,8,10-四氧雜螺-[5,5]-十一烷等。 作為直鏈脂肪族二胺化合物,可列舉:1,2-二胺基乙烷、1,4-二胺基丁烷、1,6-二胺基己烷、1,8-二胺基辛烷、1,10-二胺基癸烷、1,12-二胺基十二烷等烴型二胺、或2-(2-胺基乙氧基)乙基胺、2,2'-(乙二氧基)二乙基胺、雙[2-(2-胺基乙氧基)乙基]醚等伸烷氧型二胺等。 作為矽氧烷二胺化合物,可列舉二甲基(聚)矽氧烷二胺,例如信越化學工業製造之商標名PAM-E、KF-8010、X-22-161A等。 醯胺縮聚合反應結束後,視需要將反應液中所析出之源自脫水縮合劑之析出物等過濾分離。繼而,於反應液中投入水或脂肪族低級醇或其混合液等聚醯胺之不良溶劑而使聚醯胺析出。進而,使所析出之聚醯胺再次溶解於溶劑,反覆實施再沈澱析出操作,藉此進行精製,並進行真空乾燥,而單離目標聚醯胺。再者,為了進一步提高精製度,可使該聚醯胺之溶液通過填充有離子交換樹脂之管柱而去除離子性雜質。 聚醯胺之基於凝膠滲透層析法(以下稱為「GPC」)之聚苯乙烯換算重量平均分子量較佳為7,000~70,000,進而更佳為10,000~50,000。若聚苯乙烯換算重量平均分子量為7,000以上,則確保硬化浮凸圖案之基本物性。又,若聚苯乙烯換算重量平均分子量為70,000以下,則確保形成浮凸圖案時之顯影溶解性。 作為GPC之溶離液,推薦使用四氫呋喃或N-甲基-2-吡咯啶酮。又,重量平均分子量值係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 [(A)聚羥基醯胺] 本發明之感光性樹脂組合物中之較佳之(A)樹脂之另一例為具有下述通式(5): [化57]
Figure 02_image113
{式中,Y3 為具有碳原子之4價之有機基,較佳為具有2個以上之碳原子之4價之有機基,Y4 、X3 及X4 分別獨立為具有2個以上之碳原子之2價之有機基,n3 為1~1000之整數,n4 為0~500之整數,n3 /(n3 +n4 )>0.5,並且包含X3 及Y3 之n3 個二羥基二醯胺單元以及包含X4 及Y4 之n4 個二醯胺單元之排列順序為任意}所表示之結構之聚羥基醯胺(聚㗁唑前驅物(以下有時將上述通式(5)所表示之聚羥基醯胺簡稱為「聚㗁唑前驅物」))。 聚㗁唑前驅物為具有上述通式(5)中之n3 個二羥基二醯胺單元(以下有時簡稱為二羥基二醯胺單元)之聚合物,亦可具有上述通式(5)中之n4 個二醯胺單元(以下有時簡稱為二醯胺單元)。 X3 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下,X4 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下,Y3 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下,並且Y4 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下。 該二羥基二醯胺單元可藉由使具有Y3 (NH2 )2 (OH)2 之結構之二胺基二羥基化合物(較佳為雙胺基苯酚)與具有X3 (COOH)2 之結構之二羧酸進行合成而形成。以下,以上述二胺基二羥基化合物為雙胺基苯酚之情形為例而說明典型態樣。該雙胺基苯酚之2組胺基與羥基分別相互位於鄰位,該二羥基二醯胺單元於約250~400℃之加熱下閉環而轉化為耐熱性之聚㗁唑結構。通式(5)中之n3 基於獲得感光特性之目的而為1以上,且基於獲得感光特性之目的而為1000以下。n3 較佳為2~1000之範圍,更佳為3~50之範圍,最佳為3~20之範圍。 視需要亦可於聚㗁唑前驅物上縮合n4 個上述二醯胺單元。該二醯胺單元可藉由使具有Y4 (NH2 )2 之結構之二胺與具有X4 (COOH)2 之結構之二羧酸進行合成而形成。通式(5)中之n4 為0~500之範圍,藉由n4 為500以下而獲得良好之感光特性。n4 更佳為0~10之範圍。若二醯胺單元相對於二羥基二醯胺單元之比率過高,則於用作顯影液之鹼性水溶液中之溶解性降低,因此通式(5)中之n3 /(n3 +n4 )之值超過0.5,更佳為0.7以上,最佳為0.8以上。 關於作為具有Y3 (NH2 )2 (OH)2 之結構之二胺基二羥基化合物的雙胺基苯酚,例如可列舉:3,3'-二羥基聯苯胺、3,3'-二胺基-4,4'-二羥基聯苯、4,4'-二胺基-3,3'-二羥基聯苯、3,3'-二胺基-4,4'-二羥基二苯基碸、4,4'-二胺基-3,3'-二羥基二苯基碸、雙-(3-胺基-4-羥基苯基)甲烷、2,2-雙-(3-胺基-4-羥基苯基)丙烷、2,2-雙-(3-胺基-4-羥基苯基)六氟丙烷、2,2-雙-(4-胺基-3-羥基苯基)六氟丙烷、雙-(4-胺基-3-羥基苯基)甲烷、2,2-雙-(4-胺基-3-羥基苯基)丙烷、4,4'-二胺基-3,3'-二羥基二苯甲酮、3,3'-二胺基-4,4'-二羥基二苯甲酮、4,4'-二胺基-3,3'-二羥基二苯醚、3,3'-二胺基-4,4'-二羥基二苯醚、1,4-二胺基-2,5-二羥基苯、1,3-二胺基-2,4-二羥基苯、1,3-二胺基-4,6-二羥基苯等。該等雙胺基苯酚可單獨使用或將2種以上組合使用。作為該雙胺基苯酚中之Y3 基,就感光特性之方面而言,較佳為下述式(37): [化58]
Figure 02_image115
{式中,Rs1與Rs2分別獨立地表示氫原子、甲基、乙基、丙基、環戊基、環己基、苯基、三氟甲基}所表示者。 又,作為具有Y4 (NH2 )2 之結構之二胺,可列舉芳香族二胺、矽二胺等。其中,作為芳香族二胺,例如可列舉:間苯二胺、對苯二胺、2,4-甲苯二胺、3,3'-二胺基二苯醚、3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,3'-二胺基二苯基碸、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯硫醚、3,3'-二胺基二苯基酮、4,4'-二胺基二苯基酮、3,4'-二胺基二苯基酮、2,2'-雙(4-胺基苯基)丙烷、2,2'-雙(4-胺基苯基)六氟丙烷、1,3-雙(3-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,4-雙(4-胺基苯氧基)苯、4-甲基-2,4-雙(4-胺基苯基)-1-戊烯、 4-甲基-2,4-雙(4-胺基苯基)-2-戊烯、1,4-雙(α,α-二甲基-4-胺基苄基)苯、亞胺基二對苯二胺、1,5-二胺基萘、2,6-二胺基萘、4-甲基-2,4-雙(4-胺基苯基)戊烷、5(或6)-胺基-1-(4-胺基苯基)-1,3,3-三甲基茚滿、雙(對胺基苯基)氧化膦、4,4'-二胺基偶氮苯、4,4'-二胺基二苯基脲、4,4'-雙(4-胺基苯氧基)聯苯、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]六氟丙烷、2,2-雙[4-(3-胺基苯氧基)苯基]二苯甲酮、4,4'-雙(4-胺基苯氧基)二苯基碸、4,4'-雙[4-(α,α-二甲基-4-胺基苄基)苯氧基]二苯甲酮、4,4'-雙[4-(α,α-二甲基-4-胺基苄基)苯氧基]二苯基碸、4,4'-二胺基聯苯、 4,4'-二胺基二苯甲酮、苯基茚滿二胺、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基聯苯、鄰甲苯胺碸、2,2-雙(4-胺基苯氧基苯基)丙烷、雙(4-胺基苯氧基苯基)碸、雙(4-胺基苯氧基苯基)硫醚、1,4-(4-胺基苯氧基苯基)苯、1,3-(4-胺基苯氧基苯基)苯、9,9-雙(4-胺基苯基)茀、4,4'-二-(3-胺基苯氧基)二苯基碸、4,4'-二胺基苯甲醯苯胺等、以及該等芳香族二胺之芳香核之氫原子被選自由氯原子、氟原子、溴原子、甲基、甲氧基、氰基及苯基所組成之群中之至少一種基或原子取代的化合物。 又,作為上述二胺,為了提高與基材之接著性而可選擇矽二胺。作為矽二胺之例,可列舉:雙(4-胺基苯基)二甲基矽烷、雙(4-胺基苯基)四甲基矽氧烷、雙(4-胺基苯基)四甲基二矽氧烷、雙(γ-胺基丙基)四甲基二矽氧烷、1,4-雙(γ-胺基丙基二甲基矽烷基)苯、雙(4-胺基丁基)四甲基二矽氧烷、雙(γ-胺基丙基)四苯基二矽氧烷等。 又,作為具有X3 (COOH)2 或X4 (COOH)2 之結構之較佳之二羧酸,可列舉X3 及X4 分別為具有直鏈、支鏈或環狀結構之脂肪族基或芳香族基者。其中,較佳為可含有芳香族環或脂肪族環之碳原子數2個以上且40個以下之有機基,X3 及X4 分別可較佳地自下述式(38): [化59]
Figure 02_image117
{式中,R41 表示選自由-CH2 -、-O-、-S-、-SO2 -、-CO-、-NHCO-及-C(CF3 )2 -所組成之群中之2價之基} 所表示之芳香族基中進行選擇,該等於感光特性之方面較佳。 聚㗁唑前驅物亦可為末端基經特定之有機基封端者。於使用經封端基封端之聚㗁唑前驅物之情形時,有望使本發明之感光性樹脂組合物之加熱硬化後之塗膜之機械物性(尤其伸長率)及硬化浮凸圖案形狀變得良好。作為此種封端基之較佳例,可列舉下述式(39): [化60]
Figure 02_image119
所表示者。 聚㗁唑前驅物之基於凝膠滲透層析法之聚苯乙烯換算重量平均分子量較佳為3,000~70,000,更佳為6,000~50,000。該重量平均分子量就硬化浮凸圖案之物性之觀點而言,較佳為3,000以上。又,就解像性之觀點而言,較佳為70,000以下。作為凝膠滲透層析法之展開溶劑,推薦使用四氫呋喃、N-甲基-2-吡咯啶酮。又,分子量係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工公司製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 [(A)聚醯亞胺] 本發明之感光性樹脂組合物中之較佳之(A)樹脂之另一例為具有上述通式(6): [化61]
Figure 02_image121
{式中,X5 表示4~14價之有機基,Y5 表示2~12價之有機基,R10 及R11 表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,且可相同或亦可不同,n5 為3~200之整數,並且m3 及m4 為0~10之整數} 所表示之結構之聚醯亞胺。此處,通式(6)所表示之樹脂於表現充分之膜特性時無需藉由熱處理步驟而產生化學變化,因此適合於更低溫下進行處理,就該方面而言尤佳。 上述通式(6)所表示之結構單元中之X5 較佳為碳數4~40之4價~14價之有機基,就兼具耐熱性與感光特性之方面而言,進而較佳為含有芳香族環或脂肪族環之碳原子數5~40之有機基。 上述通式(6)所表示之聚醯亞胺可使四羧酸、對應之四羧酸二酐、四羧酸二酯二氯化物等與二胺、對應之二異氰酸酯化合物、三甲基矽烷基化二胺進行反應而獲得。聚醯亞胺一般而言可藉由使作為由四羧酸二酐與二胺反應獲得之聚醯亞胺前驅物之一者的聚醯胺酸經過利用加熱或酸或鹼等進行之化學處理而發生脫水閉環而獲得。 作為適宜之四羧酸二酐,可列舉:均苯四甲酸二酐、3,3',4,4'-聯苯基四羧酸二酐、2,3,3',4'-聯苯基四羧酸二酐、2,2',3,3'-聯苯基四羧酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷二無水物、2,2-雙(2,3-二羧基苯基)丙烷二無水物、1,1-雙(3,4-二羧基苯基)乙烷二無水物、1,1-雙(2,3-二羧基苯基)乙烷二無水物、雙(3,4-二羧基苯基)甲烷二無水物、雙(2,3-二羧基苯基)甲烷二無水物、雙(3,4-二羧基苯基)碸二無水物、雙(3,4-二羧基苯基)醚二無水物、1,2,5,6-萘四羧酸二酐、9,9-雙(3,4-二羧基苯基)茀酸二酐、 9,9-雙{4-(3,4-二羧基苯氧基)苯基}茀酸二酐、2,3,6,7-萘四羧酸二酐、2,3,5,6-吡啶四羧酸二酐、3,4,9,10-苝四羧酸二酐、2,2-雙(3,4-二羧基苯基)六氟丙烷二無水物等芳香族四羧酸二酐、或丁烷四羧酸二酐、1,2,3,4-環戊烷四羧酸二酐等脂肪族四羧酸二酐、3,3',4,4'-二苯基碸四羧酸二酐及下述通式(40): [化62]
Figure 02_image123
{式中,R42 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R43 及R44 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基}所表示之化合物。 該等之中,較佳為3,3',4,4'-聯苯基四羧酸二酐、2,3,3',4'-聯苯基四羧酸二酐、2,2',3,3'-聯苯基四羧酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷二無水物、2,2-雙(2,3-二羧基苯基)丙烷二無水物、1,1-雙(3,4-二羧基苯基)乙烷二無水物、1,1-雙(2,3-二羧基苯基)乙烷二無水物、雙(3,4-二羧基苯基)甲烷二無水物、雙(2,3-二羧基苯基)甲烷二無水物、雙(3,4-二羧基苯基)碸二無水物、 雙(3,4-二羧基苯基)醚二無水物、2,2-雙(3,4-二羧基苯基)六氟丙烷二無水物、3,3',4,4'-二苯基碸四羧酸二酐、9,9-雙(3,4-二羧基苯基)茀酸二酐、9,9-雙{4-(3,4-二羧基苯氧基)苯基}茀酸二酐及下述通式(41) [化63]
Figure 02_image125
{式中,R45 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R46 及R47 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基}所表示之結構之酸二酐。該等可單獨使用或2種以上組合使用。 上述通式(6)之Y5 表示二胺之結構成分,作為該二胺,表示含有芳香族環或脂肪族環之2~12價之有機基,其中較佳為碳原子數5~40之有機基。 作為二胺之具體例,可列舉:3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、3,4'-二胺基二苯硫醚、4,4'-二胺基二苯硫醚、1,4-雙(4-胺基苯氧基)苯、苯炔、間苯二胺、對苯二胺、1,5-萘二胺、2,6-萘二胺、雙(4-胺基苯氧基苯基)碸、雙(3-胺基苯氧基苯基)碸、雙(4-胺基苯氧基)聯苯、雙{4-(4-胺基苯氧基)苯基}醚、1,4-雙(4-胺基苯氧基)苯、2,2'-二甲基-4,4'-二胺基聯苯、2,2'-二乙基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基聯苯、 3,3'-二乙基-4,4'-二胺基聯苯、2,2',3,3'-四甲基-4,4'-二胺基聯苯、3,3',4,4'-四甲基-4,4'-二胺基聯苯、2,2'-二(三氟甲基)-4,4'-二胺基聯苯、9,9-雙(4-胺基苯基)茀或該等之芳香族環經烷基或鹵素原子取代的化合物、或者脂肪族之環己基二胺、亞甲基雙環己基胺、及下述通式(42): [化64]
Figure 02_image127
{式中,R48 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R49 ~R52 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基}所表示之結構之二胺等。 該等之中,較佳為3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、3,4'-二胺基二苯硫醚、4,4'-二胺基二苯硫醚、間苯二胺、P-苯二胺、1,4-雙(4-胺基苯氧基)苯、9,9-雙(4-胺基苯基)茀、及下述通式(43): [化65]
Figure 02_image129
{式中,R53 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R54 ~R57 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基} 所表示之結構之二胺。 該等之中,尤佳為3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、1,4-雙(4-胺基苯氧基)苯、及下述通式(44): [化66]
Figure 02_image131
{式中,R58 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R59 及R60 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基} 所表示之結構之二胺。該等可單獨使用或2種以上組合使用。 通式(6)之R10 及R11 表示酚性羥基、磺酸基、或硫醇基。本發明中,作為R10 及R11 ,可使酚性羥基、磺酸基及/或硫醇基混合存在。 藉由控制R10 及R11 之鹼可溶性基之量,於鹼性水溶液中之溶解速度發生變化,因此可藉由該調整而獲得具有適度之溶解速度之感光性樹脂組合物。 進而,為了提高與基板之接著性,亦可於不會降低耐熱性之範圍內與作為X5 、Y5 之具有矽氧烷結構之脂肪族基進行共聚。具體而言,可列舉與1~10莫耳%之作為二胺成分之雙(3-胺基丙基)四甲基二矽氧烷、雙(對胺基苯基)八甲基五矽氧烷等進行共聚者等。 上述聚醯亞胺可利用如下等方法獲得聚醯亞胺前驅物後,利用採用已知之醯亞胺化反應法使該聚醯亞胺前驅物完全醯亞胺化之方法、或中途停止醯亞胺化反應而導入一部分醯亞胺結構(於該情形時為聚醯胺醯亞胺)之方法、或藉由將完全醯亞胺化之聚合物與該聚醯亞胺前驅物進行摻合而導入一部分醯亞胺結構之方法進行合成,上述獲得聚醯亞胺前驅物之方法如下:例如使四羧酸二酐與二胺化合物(一部分經作為單胺之末端封端劑取代)於低溫下反應;使四羧酸二酐(一部分經作為酸酐或單醯氯化合物或單活性酯化合物之末端封端劑取代)與二胺化合物於低溫下反應;由四羧酸二酐與醇而獲得二酯,其後與二胺(一部分經作為單胺之末端封端劑取代)於縮合劑之存在下反應;由四羧酸二酐與醇而獲得二酯,其後將剩餘之二羧酸進行醯氯化,使之與二胺(一部分經作為單胺之末端封端劑取代)反應。 上述聚醯亞胺較佳為以相對於構成感光性樹脂組合物之樹脂整體而醯亞胺化率為15%以上之方式具有聚醯亞胺。進而較佳為20%以上。此處所謂醯亞胺化率係指構成感光性樹脂組合物之樹脂整體中所存在之醯亞胺化之比率。若醯亞胺化率低於15%,則熱硬化時之收縮量變大,不適於厚膜製作。 醯亞胺化率可藉由以下方法而容易地算出。首先,測定聚合物之紅外線吸收光譜,確認存在源自聚醯亞胺之醯亞胺結構之吸收波峰(1780 cm-1附近、1377 cm-1附近)。繼而,於350℃下對該聚合物進行1小時之熱處理,測定熱處理後之紅外線吸收光譜,將1377 cm-1附近之波峰強度與熱處理前之強度進行比較,藉此算出熱處理前聚合物中之醯亞胺化率。 關於上述聚醯亞胺之分子量,於以基於凝膠滲透層析法之聚苯乙烯換算重量平均分子量測定之情形時,較佳為3,000~200,000,更佳為5,000~50,000。於重量平均分子量為3,000以上之情形時機械物性良好,於50,000以下之情形時於顯影液中之分散性良好,且浮凸圖案之解像性能良好。 作為凝膠滲透層析法之展開溶劑,推薦使用四氫呋喃及N-甲基-2-吡咯啶酮。又,分子量係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工公司製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 進而,於本發明中,亦可較佳地使用酚樹脂。 [(A)酚樹脂] 本實施形態中之所謂酚樹脂意指具有包含酚性羥基之重複單元之樹脂。(A)酚樹脂於熱硬化時不發生如聚醯亞胺前驅物進行環化(醯亞胺化)之結構變化,因此具有能夠於低溫(例如250℃以下)下硬化之優點。 本實施形態中,(A)酚樹脂之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 本文中之重量平均分子量之測定可藉由凝膠滲透層析法(GPC)進行,根據使用標準聚苯乙烯所製作之校準曲線而算出。 (A)酚樹脂就於鹼性水溶液中之溶解性、形成抗蝕圖案時之感度與解像性、及硬化膜之殘留應力之觀點而言,較佳為選自酚醛清漆、聚羥基苯乙烯、具有下述通式(7): [化67]
Figure 02_image133
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R26 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R12 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化68]
Figure 02_image135
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基} 所表示之重複單元之酚樹脂、及經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂中之至少一種酚樹脂。 (酚醛清漆) 本文中,所謂酚醛清漆意指藉由使酚類與甲醛於觸媒存在下進行縮合而獲得之聚合物全體。一般而言,酚醛清漆可使1莫耳之酚類與相對於該酚類而未達1莫耳之甲醛進行縮合而獲得。作為上述酚類,例如可列舉:苯酚、鄰甲酚、間甲酚、對甲酚、鄰乙基苯酚、間乙基苯酚、對乙基苯酚、鄰丁基苯酚、間丁基苯酚、對丁基苯酚、2,3-二甲苯酚、2,4-二甲苯酚、2,5-二甲苯酚、2,6-二甲苯酚、3,4-二甲苯酚、3,5-二甲苯酚、2,3,5-三甲基苯酚、3,4,5-三甲基苯酚、兒茶酚、間苯二酚、連苯三酚、α-萘酚、β-萘酚等。作為具體之酚醛清漆,例如可列舉:苯酚/甲醛縮合酚醛清漆樹脂、甲酚/甲醛縮合酚醛清漆樹脂、苯酚-萘酚/甲醛縮合酚醛清漆樹脂等。 酚醛清漆之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 (聚羥基苯乙烯) 本文中,所謂聚羥基苯乙烯意指含有羥基苯乙烯作為聚合單元之聚合物全體。作為聚羥基苯乙烯之較佳例,可列舉聚對乙烯基苯酚。聚對乙烯基苯酚意指含有對乙烯基苯酚作為聚合單元之聚合物全體。因此,只要不違反本發明之目的,則可使用羥基苯乙烯(例如對乙烯基苯酚)以外之聚合單元來構成聚羥基苯乙烯(例如聚對乙烯基苯酚)。聚羥基苯乙烯中,以全部聚合單元之莫耳數基準計之羥基苯乙烯單元之莫耳數之比率較佳為10莫耳%~99莫耳%,更佳為20~97莫耳%,進而較佳為30~95莫耳%。於上述比率為10莫耳%以上之情形時,於感光性樹脂組合物之鹼溶解性之觀點而言有利,於99莫耳%以下之情形時,於使含有下述共聚成分之組合物硬化而成之硬化膜之回流焊適用性之觀點而言有利。羥基苯乙烯(例如對乙烯基苯酚)以外之聚合單元可為能夠與羥基苯乙烯(例如對乙烯基苯酚)進行共聚之任意之聚合單元。作為形成羥基苯乙烯(例如對乙烯基苯酚)以外之聚合單元的共聚成分,並無限定,可列舉:例如丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸羥基乙酯、甲基丙烯酸丁酯、丙烯酸辛酯、甲基丙烯酸2-乙氧基乙酯、丙烯酸第三丁酯、1,5-戊二醇二丙烯酸酯、丙烯酸N,N-二乙基胺基乙酯、乙二醇二丙烯酸酯、1,3-丙二醇二丙烯酸酯、癸二醇二丙烯酸酯、癸二醇二甲基丙烯酸酯、1,4-環己二醇二丙烯酸酯、2,2-二羥甲基丙烷二丙烯酸酯、甘油二丙烯酸酯、三丙二醇二丙烯酸酯、甘油三丙烯酸酯、2,2-二(對羥基苯基)丙烷二甲基丙烯酸酯、三乙二醇二丙烯酸酯、聚氧乙基-2-2-二(對羥基苯基)丙烷二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚氧丙基三羥甲基丙烷三丙烯酸酯、乙二醇二甲基丙烯酸酯、丁二醇二甲基丙烯酸酯、1,3-丙二醇二甲基丙烯酸酯、丁二醇二甲基丙烯酸酯、1,3-丙二醇二甲基丙烯酸酯、1,2,4-丁三醇三甲基丙烯酸酯、2,2,4-三甲基-1,3-戊二醇二甲基丙烯酸酯、季戊四醇三甲基丙烯酸酯、1,2-二甲基丙烯酸1-苯基乙二酯、季戊四醇四甲基丙烯酸酯、三羥甲基丙烷三甲基丙烯酸酯、1,5-戊二醇二甲基丙烯酸酯及1,4-苯二醇二甲基丙烯酸酯之類的丙烯酸之酯;苯乙烯以及例如2-甲基苯乙烯及乙烯基甲苯之類的經取代之苯乙烯;例如丙烯酸乙烯酯及甲基丙烯酸乙烯酯之類的乙烯酯單體;以及鄰乙烯基苯酚、間乙烯基苯酚等。 又,作為上述說明之酚醛清漆及聚羥基苯乙烯,分別可單獨使用1種或將2種以上組合使用。 聚羥基苯乙烯之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 (通式(7)所表示之酚樹脂) 本實施形態中,(A)酚樹脂亦較佳為包含具有下述通式(7): [化69]
Figure 02_image137
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R12 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化70]
Figure 02_image139
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之重複單元之酚樹脂。具有上述重複單元之酚樹脂與例如先前使用之聚醯亞胺樹脂及聚苯并㗁唑樹脂相比能夠於低溫下硬化,且能夠形成具有良好之伸長率之硬化膜,於該方面而言特別有利。酚樹脂分子中所存在之上述重複單元可為1種或2種以上之組合。 上述通式(7)中,R12 就合成通式(7)之樹脂時之反應性之觀點而言為選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基。R12 就鹼溶解性之觀點而言,較佳為選自由鹵素原子、硝基、氰基、可具有不飽和鍵之碳數1~10之脂肪族基、碳數6~20之芳香族基、及下述通式(45): [化71]
Figure 02_image141
{式中,R61 、R62 及R63 分別獨立表示氫原子、可具有不飽和鍵之碳數1~10之脂肪族基、碳數3~20之脂環式基、或碳數6~20之芳香族基,並且R64 表示可具有不飽和鍵之碳數1~10之2價之脂肪族基、碳數3~20之2價之脂環式基、或碳數6~20之2價之芳香族基}所表示之四種基所組成之群中之1價之取代基。 本實施形態中,上述通式(7)中,a為1~3之整數,但就鹼溶解性及伸長率之觀點而言,較佳為2。又,於a為2之情形時,羥基彼此之取代位置可為鄰位、間位及對位之任意位置。並且,於a為3之情形時,羥基彼此之取代位置可為1,2,3-位、1,2,4-位及1,3,5-位等任意位置。 本實施形態中,上述通式(7)中,於a為1之情形時,為了提高鹼溶解性,可對具有通式(7)所表示之重複單元之酚樹脂(以下亦稱為(a1)樹脂)進而混合選自酚醛清漆及聚羥基苯乙烯中之酚樹脂(以下亦稱為(a2)樹脂)。 (a1)樹脂與(a2)樹脂之混合比以質量比計較佳為(a1)/(a2)=10/90~90/10之範圍。該混合比就於鹼性水溶液中之溶解性、及硬化膜之伸長率之觀點而言,較佳為(a1)/(a2)=10/90~90/10,更佳為(a1)/(a2)=20/80~80/20,進而較佳為(a1)/(a2)=30/70~70/30。 關於作為上述(a2)樹脂之酚醛清漆及聚羥基苯乙烯,可使用與上述(酚醛清漆)及(聚羥基苯乙烯)項中所示者相同之樹脂。 本實施形態中,上述通式(7)中,b為0~3之整數,但就鹼溶解性及伸長率之觀點而言,較佳為0或1。又,於b為2或3之情形時,複數個R12 相互可相同或亦可不同。 進而,本實施形態中,上述通式(7)中,a及b滿足1≦(a+b)≦4之關係。 本實施形態中,上述通式(7)中,X就硬化浮凸圖案形狀、及硬化膜之伸長率之觀點而言為選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、上述通式(8)所表示之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基。該等2價之有機基之中,就硬化後之膜之強韌性之觀點而言,X較佳為選自由下述通式(9): [化72]
Figure 02_image143
{式中,R13 、R14 、R15 及R16 分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6 為0~4之整數,且n6 為1~4之整數之情形時之R17 為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R17 為羥基,n6 為2~4之整數之情形時之複數個R17 相互可相同或亦可不同}所表示之2價之基、及下述通式(10): [化73]
Figure 02_image145
{式中,R18 、R19 、R20 及R21 分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8): [化74]
Figure 02_image147
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11): [化75]
Figure 02_image149
所表示之2價之基所組成之群中之2價之有機基}所表示之2價之基所組成之群中之2價之有機基。上述具有碳數6~12之芳香族環之2價之有機基X之碳數較佳為8~75,更佳為8~40。再者,上述具有碳數6~12之芳香族環之2價之有機基X之結構一般而言不同於上述通式(7)中之芳香環上鍵結有OH基及任意之R12 基之結構。 進而,上述通式(10)所表示之2價之有機基就樹脂組合物之圖案形成性、及硬化後之硬化膜之伸長率良好之觀點而言,更佳為下述式(12): [化76]
Figure 02_image151
所表示之2價之有機基,進而尤佳為下述式(13): [化77]
Figure 02_image153
所表示之2價之有機基。 通式(7)所表示之結構中,X尤佳為上述式(12)或(13)所表示之結構,X之以式(12)或(13)表示之結構所代表之部位之比率就伸長率之觀點而言,較佳為20質量%以上,更佳為30質量%以上。上述比率就組合物之鹼溶解性之觀點而言,較佳為80質量%以下,更佳為70質量%以下。 又,具有上述通式(7)所表示之結構之酚樹脂之中,就組合物之鹼溶解性、及硬化膜之伸長率之觀點而言,尤佳為於同一樹脂骨架內具有下述通式(14)所表示之結構及下述通式(15)所表示之結構該兩者的結構。 [化78]
Figure 02_image155
{式中,R21 為選自由烴基及烷氧基所組成之群中之碳數1~10之1價之基,n7 為2或3,n8 為0~2之整數,m5 為1~500之整數,2≦(n7 +n8 )≦4,於n8 為2之情形時,複數個R21 相互可相同或亦可不同} [化79]
Figure 02_image157
{式中,R22 及R23 分別獨立為選自由烴基及烷氧基所組成之群中之碳數1~10之1價之基,n9 為1~3之整數,n10 為0~2之整數,n11 為0~3之整數,m6 為1~500之整數,2≦(n9 +n10 )≦4,於n10 為2之情形時,複數個R22 相互可相同或亦可不同,於n11 為2或3之情形時,複數個R23 相互可相同或亦可不同} 上述通式(14)之m5 及上述通式(15)之m6 表示酚樹脂之主鏈中之各自之重複單元之總數。即,(A)酚樹脂中,例如上述通式(14)所表示之結構中之括弧內之重複單元與上述通式(15)所表示之結構中之括弧內之重複單元可以無規、嵌段或該等之組合之形式排列。m5 及m6 分別獨立為1~500之整數,下限值較佳為2,更佳為3,上限值較佳為450,更佳為400,進而較佳為350。m5 及m6 就硬化後之膜之強韌性之觀點而言,較佳為分別獨立為2以上,就於鹼性水溶液中之溶解性之觀點而言,較佳為450以下。m5 與m6 之合計就硬化後之膜之強韌性之觀點而言,較佳為2以上,更佳為4以上,進而較佳為6以上,就於鹼性水溶液中之溶解性之觀點而言,較佳為200以下,更佳為175以下,進而較佳為150以下。 於同一樹脂骨架內具有上述通式(14)所表示之結構及上述通式(15)所表示之結構該兩者的(A)酚樹脂中,上述通式(14)所表示之結構之莫耳比率越高,則硬化後之膜物性越良好,耐熱性亦越優異,另一方面,上述通式(15)所表示之結構之莫耳比率越高,則鹼溶解性越良好,硬化後之圖案形狀越優異。因此,上述通式(14)所表示之結構相對於上述通式(15)所表示之結構的比率m5 /m6 就硬化後之膜物性之觀點而言,較佳為20/80以上,更佳為40/60以上,尤佳為50/50以上,就鹼溶解性及硬化浮凸圖案形狀之觀點而言,較佳為90/10以下,更佳為80/20以下,進而較佳為70/30以下。 具有通式(7)所表示之重複單元之酚樹脂典型而言包含酚化合物與共聚成分(具體而言為選自由具有醛基之化合物(亦包括如三㗁烷般分解生成醛化合物之化合物)、具有酮基之化合物、分子內具有2個羥甲基之化合物、分子內具有2個烷氧基甲基之化合物、及分子內具有2個鹵烷基之化合物所組成之群中之1種以上之化合物),更典型而言可藉由使包含該等之單體成分進行聚合反應而合成。例如可使如下所述之苯酚及/或苯酚衍生物(以下亦統稱為「酚化合物」)與醛化合物、酮化合物、羥甲基化合物、烷氧基甲基化合物、二烯化合物或鹵烷基化合物等共聚成分進行聚合而獲得(A)酚樹脂。於該情形時,上述通式(7)中,芳香環上鍵結有OH基及任意之R12 基之結構所表示之部分源自上述酚化合物,X所表示之部分源自上述共聚成分。就反應控制、以及所獲得之(A)酚樹脂及感光性樹脂組合物之穩定性之觀點而言,酚化合物與上述共聚成分之添加莫耳比(酚化合物):(共聚成分)較佳為5:1~1.01:1,更佳為2.5:1~1.1:1。 具有通式(7)所表示之重複單元之酚樹脂之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 作為可用於獲得具有通式(7)所表示之重複單元之酚樹脂的酚化合物,例如可列舉:甲酚、乙基苯酚、丙基苯酚、丁基苯酚、戊基苯酚、環己基苯酚、羥基聯苯、苄基苯酚、硝基苄基苯酚、氰基苄基苯酚、金剛烷苯酚、硝基苯酚、氟苯酚、氯苯酚、溴苯酚、三氟甲基苯酚、N-(羥基苯基)-5-降𦯉烯-2,3-二羧基醯亞胺、N-(羥基苯基)-5-甲基-5-降𦯉烯-2,3-二羧基醯亞胺、三氟甲基苯酚、羥基苯甲酸、羥基苯甲酸甲酯、羥基苯甲酸乙酯、羥基苯甲酸苄酯、羥基苯甲醯胺、羥基苯甲醛、羥基苯乙酮、羥基二苯甲酮、羥基苯甲腈、間苯二酚、二甲苯酚、兒茶酚、甲基兒茶酚、乙基兒茶酚、己基兒茶酚、苄基兒茶酚、硝基苄基兒茶酚、甲基間苯二酚、乙基間苯二酚、己基間苯二酚、苄基間苯二酚、硝基苄基間苯二酚、氫醌、咖啡酸、二羥基苯甲酸、二羥基苯甲酸甲酯、二羥基苯甲酸乙酯、二羥基苯甲酸丁酯、二羥基苯甲酸丙酯、二羥基苯甲酸苄酯、二羥基苯甲醯胺、二羥基苯甲醛、二羥基苯乙酮、二羥基二苯甲酮、二羥基苯甲腈、N-(二羥基苯基)-5-降𦯉烯-2,3-二羧基醯亞胺、N-(二羥基苯基)-5-甲基-5-降𦯉烯-2,3-二羧基醯亞胺、硝基兒茶酚、氟兒茶酚、氯兒茶酚、溴兒茶酚、三氟甲基兒茶酚、硝基間苯二酚、氟間苯二酚、氯間苯二酚、溴間苯二酚、三氟甲基間苯二酚、連苯三酚、間苯三酚、1,2,4-三羥基苯、三羥基苯甲酸、三羥基苯甲酸甲酯、三羥基苯甲酸乙酯、三羥基苯甲酸丁酯、三羥基苯甲酸丙酯、三羥基苯甲酸苄酯、三羥基苯甲醯胺、三羥基苯甲醛、三羥基苯乙酮、三羥基二苯甲酮、三羥基苯甲腈等。 作為上述醛化合物,例如可列舉:乙醛、丙醛、三甲基乙醛、丁醛、戊醛、己醛、三㗁烷、乙二醛、環己醛、二苯基乙醛、乙基丁醛、苯甲醛、乙醛酸、5-降𦯉烯-2-羧基醛、丙二醛、丁二醛、戊二醛、柳醛、萘甲醛、對苯二甲醛等。 作為上述酮化合物,例如可列舉:丙酮、甲基乙基酮、二乙基酮、二丙基酮、二環己基酮、二苄基酮、環戊酮、環己酮、雙環己酮、環己烷二酮、3-丁炔-2-酮、2-降𦯉酮、金剛酮、2,2-雙(4-氧雜環己基)丙烷等。 作為上述羥甲基化合物,例如可列舉:2,6-雙(羥基甲基)對甲酚、2,6-雙(羥基甲基)-4-乙基苯酚、2,6-雙(羥基甲基)-4-丙基苯酚、2,6-雙(羥基甲基)-4-正丁基苯酚、2,6-雙(羥基甲基)-4-第三丁基苯酚、2,6-雙(羥基甲基)-4-甲氧基苯酚、2,6-雙(羥基甲基)-4-乙氧基苯酚、2,6-雙(羥基甲基)-4-丙氧基苯酚、2,6-雙(羥基甲基)-4-正丁氧基苯酚、2,6-雙(羥基甲基)-4-第三丁氧基苯酚、1,3-雙(羥基甲基)脲、核糖醇、阿拉伯糖醇、阿洛醇、2,2-雙(羥基甲基)丁酸、2-苄氧基-1,3-丙二醇、2,2-二甲基-1,3-丙二醇、2,2-二乙基-1,3-丙二醇、單乙酸甘油酯、2-甲基-2-硝基-1,3-丙二醇、5-降𦯉烯-2,2-二甲醇、5-降𦯉烯-2,3-二甲醇、季戊四醇、2-苯基-1,3-丙二醇、三羥甲基乙烷、三羥甲基丙烷、3,6-雙(羥基甲基)均四甲苯、2-硝基對苯二甲醇、1,10-二羥基癸烷、1,12-二羥基十二烷、1,4-雙(羥基甲基)環己烷、1,4-雙(羥基甲基)環己烯、1,6-雙(羥基甲基)金剛烷、1,4-苯二甲醇、1,3-苯二甲醇、2,6-雙(羥基甲基)-1,4-二甲氧基苯、2,3-雙(羥基甲基)萘、2,6-雙(羥基甲基)萘、1,8-雙(羥基甲基)蒽、2,2'-雙(羥基甲基)二苯醚、4,4'-雙(羥基甲基)二苯醚、4,4'-雙(羥基甲基)二苯硫醚、4,4'-雙(羥基甲基)二苯甲酮、4-羥基甲基苯甲酸-4'-羥基甲基苯酯、4-羥基甲基苯甲酸-4'-羥基甲基苯胺、4,4'-雙(羥基甲基)苯基脲、4,4'-雙(羥基甲基)苯基胺基甲酸酯、1,8-雙(羥基甲基)蒽、4,4'-雙(羥基甲基)聯苯、2,2'-二甲基-4,4'-雙(羥基甲基)聯苯、2,2-雙(4-羥基甲基苯基)丙烷、乙二醇、二乙二醇、三乙二醇、四乙二醇、丙二醇、二丙二醇、三丙二醇、四丙二醇等。 作為上述烷氧基甲基化合物,例如可列舉:2,6-雙(甲氧基甲基)對甲酚、2,6-雙(甲氧基甲基)-4-乙基苯酚、2,6-雙(甲氧基甲基)-4-丙基苯酚、2,6-雙(甲氧基甲基)-4-正丁基苯酚、2,6-雙(甲氧基甲基)-4-第三丁基苯酚、2,6-雙(甲氧基甲基)-4-甲氧基苯酚、2,6-雙(甲氧基甲基)-4-乙氧基苯酚、2,6-雙(甲氧基甲基)-4-丙氧基苯酚、2,6-雙(甲氧基甲基)-4-正丁氧基苯酚、2,6-雙(甲氧基甲基)-4-第三丁氧基苯酚、1,3-雙(甲氧基甲基)脲、2,2-雙(甲氧基甲基)丁酸、2,2-雙(甲氧基甲基)-5-降𦯉烯、2,3-雙(甲氧基甲基)-5-降𦯉烯、1,4-雙(甲氧基甲基)環己烷、1,4-雙(甲氧基甲基)環己烯、1,6-雙(甲氧基甲基)金剛烷、1,4-雙(甲氧基甲基)苯、1,3-雙(甲氧基甲基)苯、2,6-雙(甲氧基甲基)-1,4-二甲氧基苯、2,3-雙(甲氧基甲基)萘、2,6-雙(甲氧基甲基)萘、1,8-雙(甲氧基甲基)蒽、2,2'-雙(甲氧基甲基)二苯醚、4,4'-雙(甲氧基甲基)二苯醚、4,4'-雙(甲氧基甲基)二苯硫醚、4,4'-雙(甲氧基甲基)二苯甲酮、4-甲氧基甲基苯甲酸-4'-甲氧基甲基苯基、4-甲氧基甲基苯甲酸-4'-甲氧基甲基苯胺、4,4'-雙(甲氧基甲基)苯基脲、4,4'-雙(甲氧基甲基)苯基胺基甲酸酯、1,8-雙(甲氧基甲基)蒽、4,4'-雙(甲氧基甲基)聯苯、2,2'-二甲基-4,4'-雙(甲氧基甲基)聯苯、2,2-雙(4-甲氧基甲基苯基)丙烷、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、丙二醇二甲醚、二丙二醇二甲醚、三丙二醇二甲醚、四丙二醇二甲醚等。 作為上述二烯化合物,例如可列舉:丁二烯、戊二烯、己二烯、庚二烯、辛二烯、3-甲基-1,3-丁二烯、1,3-丁二醇-二甲基丙烯酸酯、2,4-己二烯-1-醇、甲基環己二烯、環戊二烯、環己二烯、環庚二烯、環辛二烯、二環戊二烯、1-羥基二環戊二烯、1-甲基環戊二烯、甲基二環戊二烯、二烯丙醚、二烯丙基硫醚、己二酸二烯丙酯、2,5-降𦯉二烯、四氫茚、5-亞乙基-2-降𦯉烯、5-乙烯基-2-降𦯉烯、三聚氰酸三烯丙酯、異三聚氰酸二烯丙酯、異三聚氰酸三烯丙酯、異三聚氰酸二烯丙基丙酯等。 作為上述鹵烷基化合物,例如可列舉:二氯二甲苯、雙氯甲基二甲氧基苯、雙氯甲基均四甲苯、雙氯甲基聯苯、雙氯甲基-聯苯基羧酸、雙氯甲基-聯苯基二羧酸、雙氯甲基-甲基聯苯、雙氯甲基-二甲基聯苯、雙氯甲基蒽、乙二醇雙(氯乙基)醚、二乙二醇雙(氯乙基)醚、三乙二醇雙(氯乙基)醚、四乙二醇雙(氯乙基)醚等。 使上述酚化合物與共聚成分藉由脫水、脫鹵化氫、或脫醇而縮合,或一面使不飽和鍵斷鍵一面進行聚合,藉此可獲得(A)酚樹脂,聚合時亦可使用觸媒。作為酸性之觸媒,例如可列舉:鹽酸、硫酸、硝酸、磷酸、亞磷酸、甲磺酸、對甲苯磺酸、二甲基硫酸、二乙基硫酸、乙酸、草酸、1-羥基亞乙基-1,1'-二膦酸、乙酸鋅、三氟化硼、三氟化硼-苯酚錯合物、三氟化硼-醚錯合物等。另一方面,作為鹼性之觸媒,例如可列舉:氫氧化鋰、氫氧化鈉、氫氧化鉀、氫氧化鈣、氫氧化鋇、碳酸鈉、三乙胺、吡啶、4-N,N-二甲基胺基吡啶、哌啶、哌𠯤、1,4-二氮雜雙環[2.2.2]辛烷、1,8-二氮雜雙環[5.4.0]-7-十一烯、1,5-二氮雜雙環[4.3.0]-5-壬烯、氨、六亞甲基四胺等。 關於用以獲得具有通式(7)所表示之重複結構之酚樹脂的觸媒之量,相對於共聚成分(即酚化合物以外之成分)之合計莫耳數、較佳為醛化合物、酮化合物、羥甲基化合物、烷氧基甲基化合物、二烯化合物及鹵烷基化合物之合計莫耳數100莫耳%,較佳為0.01莫耳%~100莫耳%之範圍。 (A)酚樹脂之合成反應中,反應溫度通常較佳為40℃~250℃,更佳為100℃~200℃之範圍,並且反應時間較佳為約1小時~10小時。 視需要可使用能夠使該樹脂充分溶解之溶劑。 再者,具有通式(7)所表示之重複結構之酚樹脂亦可為於無損本發明之效果之範圍內進而聚合有不成為上述通式(7)之結構之原料的酚化合物者。所謂無損本發明之效果之範圍係例如成為(A)酚樹脂之原料的酚化合物總莫耳數之30%以下。 (經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂) 經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂為苯酚或其衍生物與具有碳數4~100之不飽和烴基之化合物(以下有時簡稱為「含不飽和烴基之化合物」)之反應產物(以下亦稱為「不飽和烴基改性苯酚衍生物」)和醛類的縮聚合產物,或為酚樹脂和含不飽和烴基之化合物的反應產物。 苯酚衍生物可使用與上述作為具有通式(7)所表示之重複單元之酚樹脂之原料所記述之苯酚衍生物相同者。 關於含不飽和烴基之化合物之不飽和烴基,就硬化膜之殘留應力及回流焊處理適用性之觀點而言,較佳為包含2個以上之不飽和基。又,就製成樹脂組合物時之相溶性及硬化膜之殘留應力之觀點而言,不飽和烴基較佳為碳數4~100,更佳為碳數8~80,進而較佳為碳數10~60。 作為含不飽和烴基之化合物,例如可列舉:碳數4~100之不飽和烴、具有羧基之聚丁二烯、環氧化聚丁二烯、亞麻醇、油醇、不飽和脂肪酸及不飽和脂肪酸酯。作為適宜之不飽和脂肪酸,可列舉:丁烯酸、肉豆蔻油酸、棕櫚油酸、油酸、反油酸、異油酸、鱈油酸、芥子酸、二十四烯酸、亞麻油酸、α-次亞麻油酸、桐酸、十八碳四烯酸、花生四烯酸、二十碳五烯酸、鯡魚酸及二十二碳六烯酸。該等之中,尤其就硬化膜之伸長率、及硬化膜之可撓性之觀點而言,尤佳為作為不飽和脂肪酸酯之植物油。 植物油通常包含甘油與不飽和脂肪酸之酯,存在碘值為100以下之不乾性油、超過100且未達130之半乾性油或130以上之乾性油。作為不乾性油,例如可列舉:橄欖油、牽牛花籽油、何首烏油、茶梅油、山茶油、蓖麻油及花生油。作為半乾性油,例如可列舉:玉米油、棉籽油及芝麻油。作為乾性油,例如可列舉:桐油、亞麻仁油、大豆油、胡桃油、紅花油、葵花籽油、荏子油及芥子油。又,亦可使用由該等植物油加工而成之加工植物油。 上述植物油之中,就於苯酚或其衍生物或者酚樹脂與植物油之反應中防止隨反應過度進行而產生之凝膠化、提高良率之觀點而言,較佳為使用不乾性油。另一方面,就抗蝕圖案之密接性、機械特性及耐熱衝擊性提高之觀點而言,較佳為使用乾性油。乾性油之中,就可更有效且確實地發揮本發明之效果之方面而言,較佳為桐油、亞麻仁油、大豆油、胡桃油及紅花油,更佳為桐油及亞麻仁油。該等植物油可單獨使用1種或將2種以上組合使用。 苯酚或其衍生物與含不飽和烴基之化合物的反應較佳為於50~130℃下進行。關於苯酚或其衍生物與含不飽和烴基之化合物的反應比率,就降低硬化膜之殘留應力之觀點而言,相對於苯酚或其衍生物100質量份,含不飽和烴基之化合物較佳為1~100質量份,更佳為5~50質量份。若含不飽和烴基之化合物未達1質量份,則存在硬化膜之可撓性降低之傾向,若超過100質量份,則存在硬化膜之耐熱性降低之傾向。於上述反應中,視需要亦可使用對甲苯磺酸、三氟甲磺酸等作為觸媒。 使利用上述反應而生成之不飽和烴基改性苯酚衍生物與醛類進行縮聚合,藉此生成經含不飽和烴基之化合物改性的酚樹脂。醛類例如自甲醛、乙醛、糠醛、苯甲醛、羥基苯甲醛、甲氧基苯甲醛、羥基苯基乙醛、甲氧基苯基乙醛、巴豆醛、氯乙醛、氯苯基乙醛、丙酮、甘油醛、乙醛酸、乙醛酸甲酯、乙醛酸苯酯、乙醛酸羥基苯酯、甲醯基乙酸、甲醯基乙酸甲酯、2-甲醯基丙酸、2-甲醯基丙酸甲酯、丙酮酸、乙醯丙酸、4-乙醯丁酸、丙酮二羧酸及3,3'-4,4'-二苯甲酮四羧酸中選擇。又,亦可使用多聚甲醛、三㗁烷等甲醛前驅物。該等醛類可單獨使用1種或將2種以上組合使用。 上述醛類與上述不飽和烴基改性苯酚衍生物之反應為縮聚合反應,可採用先前公知之酚樹脂之合成條件。反應較佳為於酸或鹼等觸媒之存在下進行,就樹脂之聚合度(分子量)之觀點而言,更佳為使用酸觸媒。作為酸觸媒,例如可列舉:鹽酸、硫酸、甲酸、乙酸、對甲苯磺酸及草酸。該等酸觸媒可單獨使用1種或將2種以上組合使用。 上述反應通常較佳為於反應溫度100~120℃下進行。又,反應時間根據所使用之觸媒之種類或量而不同,通常為1~50小時。反應結束後,藉由將反應產物於200℃以下之溫度下減壓脫水而獲得經含不飽和烴基之化合物改性的酚樹脂。再者,反應時可使用甲苯、二甲苯、甲醇等溶劑。 經含不飽和烴基之化合物改性的酚樹脂亦可藉由使間二甲苯之類的苯酚以外之化合物及醛類一起與上述不飽和烴基改性苯酚衍生物進行縮聚合而獲得。於該情形時,苯酚以外之化合物相對於由苯酚衍生物與含不飽和烴基之化合物反應而獲得之化合物的添加莫耳比較佳為未達0.5。 經含不飽和烴基之化合物改性的酚樹脂亦可藉由使酚樹脂與含不飽和烴基之化合物進行反應而獲得。該情形時所使用之酚樹脂為酚化合物(即苯酚及/或苯酚衍生物)與醛類之縮聚合產物。於該情形時,作為苯酚衍生物及醛類,可使用與上述苯酚衍生物及醛類相同者,可於如上所述之先前公知之條件下合成酚樹脂。 作為由適宜用於形成經含不飽和烴基之化合物改性的酚樹脂之酚化合物與醛類所獲得之酚樹脂之具體例,可列舉:苯酚/甲醛酚醛清漆樹脂、甲酚/甲醛酚醛清漆樹脂、苯二甲酚/甲醛酚醛清漆樹脂、間苯二酚/甲醛酚醛清漆樹脂及苯酚-萘酚/甲醛酚醛清漆樹脂。 與酚樹脂反應之含不飽和烴基之化合物可使用和上述參與製造與醛類反應之不飽和烴基改性苯酚衍生物的含不飽和烴基之化合物相同者。 酚樹脂與含不飽和烴基之化合物的反應通常較佳為於50~130℃下進行。又,關於酚樹脂與含不飽和烴基之化合物的反應比率,就提高硬化膜(抗蝕圖案)之可撓性之觀點而言,相對於酚樹脂100質量份,含不飽和烴基之化合物較佳為1~100質量份,更佳為2~70質量份,進而較佳為5~50質量份。若含不飽和烴基之化合物未達1質量份,則存在硬化膜之可撓性降低之傾向,若超過100質量份,則存在反應中產生凝膠化之可能性變高之傾向、及硬化膜之耐熱性降低之傾向。於酚樹脂與含不飽和烴基之化合物反應時視需要亦可使用對甲苯磺酸、三氟甲磺酸等作為觸媒。再者,反應時可使用例如甲苯、二甲苯、甲醇、四氫呋喃等溶劑,於下文進行詳細說明。 亦可使用藉由使利用如上方法所生成之經含不飽和烴基之化合物改性的酚樹脂中所殘留之酚性羥基進而與多元酸酐進行反應而實現酸改性的酚樹脂。藉由利用多元酸酐進行酸改性而導入羧基,於鹼性水溶液(用作顯影液者)中之溶解性進一步提高。 多元酸酐只要具有含複數個羧基之多元酸之羧基經脫水縮合而形成之酸酐基,則並無特別限定。作為多元酸酐,例如可列舉:鄰苯二甲酸酐、琥珀酸酐、辛烯基琥珀酸酐、十五烯基琥珀酸酐、順丁烯二酸酐、伊康酸酐、四氫鄰苯二甲酸酐、六氫鄰苯二甲酸酐、甲基四氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐、耐地酸酐、3,6-內亞甲基四氫鄰苯二甲酸酐、甲基內亞甲基四氫鄰苯二甲酸酐、四溴鄰苯二甲酸酐及偏苯三甲酸酐等二元酸酐,聯苯基四羧酸二酐、萘四羧酸二酐、二苯醚四羧酸二酐、丁烷四羧酸二酐、環戊烷四羧酸二酐、均苯四甲酸二酐及二苯甲酮四羧酸二酐等芳香族四元酸二酐。該等可單獨使用1種或將2種以上組合使用。該等之中,多元酸酐較佳為二元酸酐,更佳為選自由四氫鄰苯二甲酸酐、琥珀酸酐及六氫鄰苯二甲酸酐所組成之群中之1種以上。於該情形時,具有可形成形狀更良好之抗蝕圖案之優點。 酚性羥基與多元酸酐之反應可於50~130℃下進行。於該反應中,相對於酚性羥基1莫耳,較佳為使0.10~0.80莫耳之多元酸酐進行反應,更佳為使0.15~0.60莫耳進行反應,進而較佳為使0.20~0.40莫耳進行反應。若多元酸酐未達0.10莫耳,則存在顯影性降低之傾向,若超過0.80莫耳,則存在未曝光部之耐鹼性降低之傾向。 再者,就使反應快速進行之觀點而言,上述反應時視需要可含有觸媒。作為觸媒,可列舉:三乙胺等三級胺、三乙基苄基氯化銨等四級銨鹽、2-乙基-4-甲基咪唑等咪唑化合物、三苯基膦等磷化合物。 進而經多元酸酐改性之酚樹脂之酸值較佳為30~200 mgKOH/g,更佳為40~170 mgKOH/g,進而較佳為50~150 mgKOH/g。若酸值未達30 mgKOH/g,則與酸值處於上述範圍之情形相比存在鹼性顯影所需時間較長之傾向,若超過200 mgKOH/g,則與酸值處於上述範圍之情形相比存在未曝光部之耐顯影液性降低之傾向。 關於經含不飽和烴基之化合物改性的酚樹脂之分子量,考慮到於鹼性水溶液中之溶解性、或感光特性與硬化膜物性之均衡性,以重量平均分子量計較佳為1000~100000,更佳為2000~100000。 作為本實施形態之(A)酚樹脂,亦較佳為選自具有上述通式(7)所表示之重複單元之酚樹脂及上述經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂中之至少一種酚樹脂(以下亦稱為(a3)樹脂)、與選自酚醛清漆及聚羥基苯乙烯中之酚樹脂(以下亦稱為(a4)樹脂)的混合物。(a3)樹脂與(a4)樹脂之混合比以質量比計為(a3)/(a4)=5/95~95/5之範圍。該混合比就於鹼性水溶液中之溶解性、形成抗蝕圖案時之感度與解像性、及硬化膜之殘留應力、回流焊處理適用性之觀點而言,較佳為(a3)/(a4)=5/95~95/5,更佳為(a3)/(a4)=10/90~90/10,進而較佳為(a3)/(a4)=15/85~85/15。關於作為上述(a4)樹脂之酚醛清漆及聚羥基苯乙烯,可使用與上述(酚醛清漆)及(聚羥基苯乙烯)項中所示者相同之樹脂。 (B)塑化劑 以下對本實施形態中之(B)塑化劑進行詳細說明。(B)塑化劑係於對使用本實施形態之感光性樹脂組合物所形成之浮凸圖案進行加熱硬化時提高(A)樹脂之流動性、提高(A)樹脂之聚合物之堆積性的化合物。藉由堆積性提高,而可抑制於高溫保存試驗中產生空隙,可抑制於Cu層與樹脂層之界面處密接性降低。(B)塑化劑只要為符合上述條件者,則並無特別限定。 關於作為(B)塑化劑發揮功能之化合物,可尤佳地使用下述通式(7): [化80]
Figure 02_image159
{式中,X為包含碳數為1以上且15以下之飽和烴或不飽和烴或芳香族烴之結構,n為1~4之整數,於n為2以上之情形時,R分別可相同亦可不同,為碳數為2以上且15以下之飽和烴或不飽和烴或芳香族烴)所表示之化合物。 其中,作為本發明之塑化劑,較佳為選自由下述通式(8): [化81]
Figure 02_image161
{式中,m為1~4之整數,於m為2以上之情形時,R分別可相同亦可不同,表示碳數為2以上且15以下之飽和烴或不飽和烴或芳香族烴}所表示、或 下述通式(9): [化82]
Figure 02_image163
{式中,Y為包含碳數為1以上且10以下之飽和烴或不飽和烴或芳香族烴之結構,R分別可相同亦可不同,表示碳數為2以上且15以下之飽和烴或不飽和烴或芳香族烴}所組成之群中之至少一種。 作為上述通式(7)所表示之塑化劑,可列舉:苯甲酸酯、鄰苯二甲酸酯、間苯二甲酸酯、對苯二甲酸酯、偏苯三甲酸酯、均苯四甲酸酯及脂肪族酸四氫糠酯等。作為苯甲酸酯之具體之化合物例,可列舉:苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯、苯甲酸戊酯、苯甲酸庚酯、苯甲酸正辛酯、苯甲酸壬酯、苯甲酸異壬酯、苯甲酸異癸酯、苯甲酸2-乙基己酯、苯甲酸異癸酯、苯甲酸丁基苄酯、苯甲酸環丙酯、苯甲酸環丁酯、苯甲酸環戊酯、苯甲酸環己酯、苯甲酸環庚酯、苯甲酸烯丙酯、苯甲酸丁基苄酯、苯甲酸苯酯。其中,尤其適宜使用苯甲酸2-乙基己酯、苯甲酸環己酯、苯甲酸苯酯。 作為鄰苯二甲酸酯之具體之化合物例,可列舉:鄰苯二甲酸二甲酯、鄰苯二甲酸二乙酯、鄰苯二甲酸二丙酯、鄰苯二甲酸二丁酯、鄰苯二甲酸二戊酯、鄰苯二甲酸二庚酯、鄰苯二甲酸二正辛酯、鄰苯二甲酸二壬酯、鄰苯二甲酸二異壬酯、鄰苯二甲酸二異癸酯、鄰苯二甲酸雙(2-乙基己基)酯、鄰苯二甲酸二異癸酯、鄰苯二甲酸丁基苄酯、鄰苯二甲酸二環丙酯、鄰苯二甲酸二環丁酯、鄰苯二甲酸二環戊酯、鄰苯二甲酸二環己酯、鄰苯二甲酸二環庚酯、鄰苯二甲酸二烯丙酯、鄰苯二甲酸雙丁基苄酯、鄰苯二甲酸二苯酯。其中,尤其適宜使用鄰苯二甲酸雙(2-乙基己基)酯、鄰苯二甲酸二環己酯、鄰苯二甲酸二苯酯。 作為間苯二甲酸酯之具體之化合物例,可列舉:間苯二甲酸二甲酯、間苯二甲酸二乙酯、間苯二甲酸二丙酯、間苯二甲酸二丁酯、間苯二甲酸二戊酯、間苯二甲酸二庚酯、間苯二甲酸二正辛酯、間苯二甲酸二壬酯、間苯二甲酸二異壬酯、間苯二甲酸二異癸酯、間苯二甲酸雙(2-乙基己基)酯、間苯二甲酸二異癸酯、間苯二甲酸丁基苄酯、間苯二甲酸二環丙酯、間苯二甲酸二環丁酯、間苯二甲酸二環戊酯、間苯二甲酸二環己酯、間苯二甲酸二環庚酯、間苯二甲酸二烯丙酯、間苯二甲酸雙丁基苄酯、間苯二甲酸二苯酯。其中,尤其適宜使用間苯二甲酸雙(2-乙基己基)酯、間苯二甲酸二環己酯、間苯二甲酸二苯酯。 作為對苯二甲酸酯之具體之化合物例,可列舉:對苯二甲酸二甲酯、對苯二甲酸二乙酯、對苯二甲酸二丙酯、對苯二甲酸二丁酯、對苯二甲酸二戊酯、對苯二甲酸二庚酯、對苯二甲酸二正辛酯、對苯二甲酸二壬酯、對苯二甲酸二異壬酯、對苯二甲酸二異癸酯、對苯二甲酸雙(2-乙基己基)酯、對苯二甲酸二異癸酯、對苯二甲酸丁基苄酯、對苯二甲酸二環丙酯、對苯二甲酸二環丁酯、對苯二甲酸二環戊酯、對苯二甲酸二環己酯、對苯二甲酸二環庚酯、對苯二甲酸二烯丙酯、對苯二甲酸雙丁基苄酯、對苯二甲酸二苯酯。其中,尤其適宜使用對苯二甲酸雙(2-乙基己基)酯、對苯二甲酸二環己酯、對苯二甲酸二苯酯。 作為偏苯三甲酸酯之具體之化合物例,可列舉:偏苯三甲酸三甲酯、偏苯三甲酸三乙酯、偏苯三甲酸三丙酯、偏苯三甲酸三丁酯、偏苯三甲酸三戊酯、偏苯三甲酸三庚酯、偏苯三甲酸三正辛酯、偏苯三甲酸三壬酯、偏苯三甲酸三異壬酯、偏苯三甲酸三異癸酯、偏苯三甲酸三(2-乙基己基)酯、偏苯三甲酸三異癸酯、偏苯三甲酸三丁基苄酯、偏苯三甲酸三環丙酯、偏苯三甲酸三環丁酯、偏苯三甲酸三環戊酯、偏苯三甲酸三環己酯、偏苯三甲酸三環庚酯、偏苯三甲酸三烯丙酯、偏苯三甲酸三丁基苄酯、偏苯三甲酸三苯酯。其中,尤其適宜使用偏苯三甲酸三(2-乙基己基)酯、偏苯三甲酸三環己酯、偏苯三甲酸三苯酯。 作為均苯四甲酸酯之具體之化合物例,可列舉:均苯四甲酸四甲酯、均苯四甲酸四乙酯、均苯四甲酸四丙酯、均苯四甲酸四丁酯、均苯四甲酸四戊酯、均苯四甲酸四庚酯、均苯四甲酸四正辛酯、均苯四甲酸四壬酯、均苯四甲酸四異壬酯、均苯四甲酸四異癸酯、均苯四甲酸四(2-乙基己基)酯、均苯四甲酸四異癸酯、均苯四甲酸四丁基苄酯、均苯四甲酸四環丙酯、均苯四甲酸四環丁酯、均苯四甲酸四環戊酯、均苯四甲酸四環己酯、均苯四甲酸四環庚酯、均苯四甲酸四烯丙酯、均苯四甲酸四丁基苄酯、均苯四甲酸四苯酯。其中,尤其適宜使用均苯四甲酸四(2-乙基己基)酯、均苯四甲酸四環己酯、均苯四甲酸四苯酯。 作為上述通式(8)所表示之塑化劑,適宜使用丙二酸酯、琥珀酸酯、戊二酸酯、己二酸酯、庚二酸酯、辛二酸酯、壬二酸酯、癸二酸酯等。作為丙二酸酯之具體之化合物例,可列舉:丙二酸二甲酯、丙二酸二乙酯、丙二酸二丙酯、丙二酸二丁酯、丙二酸二戊酯、丙二酸二庚酯、丙二酸二正辛酯、丙二酸二壬酯、丙二酸二異壬酯、丙二酸二異癸酯、丙二酸雙(2-乙基己基)酯、丙二酸二異癸酯、丙二酸丁基苄酯、丙二酸二環丙酯、丙二酸二環丁酯、丙二酸二環戊酯、丙二酸二環己酯、丙二酸二環庚酯、丙二酸二烯丙酯、丙二酸雙丁基苄酯、丙二酸二苯酯。其中,尤其適宜使用丙二酸雙(2-乙基己基)酯、丙二酸二環己酯、丙二酸二苯酯。 作為琥珀酸酯之具體之化合物例,可列舉:琥珀酸二甲酯、琥珀酸二乙酯、琥珀酸二丙酯、琥珀酸二丁酯、琥珀酸二戊酯、琥珀酸二庚酯、琥珀酸二正辛酯、琥珀酸二壬酯、琥珀酸二異壬酯、琥珀酸二異癸酯、琥珀酸雙(2-乙基己基)酯、琥珀酸二異癸酯、琥珀酸丁基苄酯、琥珀酸二環丙酯、琥珀酸二環丁酯、琥珀酸二環戊酯、琥珀酸二環己酯、琥珀酸二環庚酯、琥珀酸二烯丙酯、琥珀酸雙丁基苄酯、琥珀酸二苯酯。其中,尤其適宜使用琥珀酸雙(2-乙基己基)酯、琥珀酸二環己酯、琥珀酸二苯酯。 作為戊二酸酯之具體之化合物例,可列舉:戊二酸二甲酯、戊二酸二乙酯、戊二酸二丙酯、戊二酸二丁酯、戊二酸二戊酯、戊二酸二庚酯、戊二酸二正辛酯、戊二酸二壬酯、戊二酸二異壬酯、戊二酸二異癸酯、戊二酸雙(2-乙基己基)酯、戊二酸二異癸酯、戊二酸丁基苄酯、戊二酸二環丙酯、戊二酸二環丁酯、戊二酸二環戊酯、戊二酸二環己酯、戊二酸二環庚酯、戊二酸二烯丙酯、戊二酸雙丁基苄酯、戊二酸二苯酯。其中,尤其適宜使用戊二酸雙(2-乙基己基)酯、戊二酸二環己酯、戊二酸二苯酯。 作為己二酸酯之具體之化合物例,可列舉:己二酸二甲酯、己二酸二乙酯、己二酸二丙酯、己二酸二丁酯、己二酸二戊酯、己二酸二庚酯、己二酸二正辛酯、己二酸二壬酯、己二酸二異壬酯、己二酸二異癸酯、己二酸雙(2-乙基己基)酯、己二酸二異癸酯、己二酸丁基苄酯、己二酸二環丙酯、己二酸二環丁酯、己二酸二環戊酯、己二酸二環己酯、己二酸二環庚酯、己二酸二烯丙酯、己二酸雙丁基苄酯、己二酸二苯酯。其中,尤其適宜使用己二酸雙(2-乙基己基)酯、己二酸二環己酯、己二酸二苯酯。 作為庚二酸酯之具體之化合物例,可列舉:庚二酸二甲酯、庚二酸二乙酯、庚二酸二丙酯、庚二酸二丁酯、庚二酸二戊酯、庚二酸二庚酯、庚二酸二正辛酯、庚二酸二壬酯、庚二酸二異壬酯、庚二酸二異癸酯、庚二酸雙(2-乙基己基)酯、庚二酸二異癸酯、庚二酸丁基苄酯、庚二酸二環丙酯、庚二酸二環丁酯、庚二酸二環戊酯、庚二酸二環己酯、庚二酸二環庚酯、庚二酸二烯丙酯、庚二酸雙丁基苄酯、庚二酸二苯酯。其中,尤其適宜使用庚二酸雙(2-乙基己基)酯、庚二酸二環己酯、庚二酸二苯酯。 作為辛二酸酯之具體之化合物例,可列舉:辛二酸二甲酯、辛二酸二乙酯、辛二酸二丙酯、辛二酸二丁酯、辛二酸二戊酯、辛二酸二庚酯、辛二酸二正辛酯、辛二酸二壬酯、辛二酸二異壬酯、辛二酸二異癸酯、辛二酸雙(2-乙基己基)酯、辛二酸二異癸酯、辛二酸丁基苄酯、辛二酸二環丙酯、辛二酸二環丁酯、辛二酸二環戊酯、辛二酸二環己酯、辛二酸二環庚酯、辛二酸二烯丙酯、辛二酸雙丁基苄酯、辛二酸二苯酯。其中,尤其適宜使用辛二酸雙(2-乙基己基)酯、辛二酸二環己酯、辛二酸二苯酯。 作為壬二酸酯之具體之化合物例,可列舉:壬二酸二甲酯、壬二酸二乙酯、壬二酸二丙酯、壬二酸二丁酯、壬二酸二戊酯、壬二酸二庚酯、壬二酸二正辛酯、壬二酸二壬酯、壬二酸二異壬酯、壬二酸二異癸酯、壬二酸雙(2-乙基己基)酯、壬二酸二異癸酯、壬二酸丁基苄酯、壬二酸二環丙酯、壬二酸二環丁酯、壬二酸二環戊酯、壬二酸二環己酯、壬二酸二環庚酯、壬二酸二烯丙酯、壬二酸雙丁基苄酯、壬二酸二苯酯。其中,尤其適宜使用壬二酸雙(2-乙基己基)酯、壬二酸二環己酯、壬二酸二苯酯。 作為癸二酸酯之具體之化合物例,可列舉:癸二酸二甲酯、癸二酸二乙酯、癸二酸二丙酯、癸二酸二丁酯、癸二酸二戊酯、癸二酸二庚酯、癸二酸二正辛酯、癸二酸二壬酯、癸二酸二異壬酯、癸二酸二異癸酯、癸二酸雙(2-乙基己基)酯、癸二酸二異癸酯、癸二酸丁基苄酯、癸二酸二環丙酯、癸二酸二環丁酯、癸二酸二環戊酯、癸二酸二環己酯、癸二酸二環庚酯、癸二酸二烯丙酯、癸二酸雙丁基苄酯、癸二酸二苯酯。其中,尤其適宜使用癸二酸雙(2-乙基己基)酯、癸二酸二環己酯、癸二酸二苯酯。 作為脂肪族酸四氫糠酯之具體之化合物例,可列舉:甲酸四氫糠酯、乙酸四氫糠酯、丙酸四氫糠酯、丁酸四氫糠酯、異丁酸四氫糠酯、戊酸四氫糠酯、異戊酸四氫糠酯、己酸四氫糠酯等。其中,尤其適宜使用丙酸四氫糠酯、丁酸四氫糠酯、異丁酸四氫糠酯。 關於塑化劑(B)之含量,相對於樹脂(A)100質量份,較佳為0.1~50質量份,更佳為1~40質量份,進而較佳為1~30質量份。若含量多於該範圍,則玻璃轉移溫度降低,因此欠佳,若含量少於該範圍,則無法獲得充分之塑化性,與銅表面之間容易產生空隙。 本實施形態中之塑化劑(B)之作用在於:於對使用本實施形態之感光性樹脂組合物所形成之浮凸圖案進行加熱硬化時,提高(A)樹脂之流動性,提高(A)樹脂之聚合物之堆積性。藉此獲得強固之硬化膜,可抑制於高溫保存試驗中產生空隙,可抑制於Cu層與樹脂層之界面處密接性降低。 本實施形態之感光性樹脂組合物可含有(B-1)奈米粒子、(B-2)熱交聯劑及(B-3)含氟疏水性化合物中之任一者代替上述(B)塑化劑或與之併用。 藉由將感光性樹脂、與特定之(B-1)奈米粒子、(B-2)熱交聯劑、或(B-3)含氟疏水性化合物加以組合,可提供一種感光性樹脂組合物、及使用該感光性樹脂組合物之硬化浮凸圖案之形成方法,由上述感光性樹脂組合物能夠獲得於高溫保存(high temperature storage)試驗後,於Cu層與樹脂層之界面處不會產生空隙而密接性較高的感光性樹脂。 (B-1)奈米粒子 (B-1)奈米粒子於室溫下呈固體狀,就透光性之觀點而言為平均一次粒徑1 μm以下、較佳為300 nm以下之粒子。一次粒徑可藉由SEM觀察或雷射繞射而求出。又,就HTS時之Cu耐遷移性之觀點而言,較佳為縱橫比5以上之板狀、鱗片狀、針狀或纖維狀之粒子,就與(A)樹脂之相溶性之觀點而言,較佳為利用矽烷偶合劑等進行有表面處理。進而,就耐水性之觀點而言,該等奈米粒子較佳為包含氧化物、複合氧化物、摻雜型氧化物、含氧酸、含氧酸鹽、氮化物、碳化物或硫化物。 作為本發明中可使用之(B-1)奈米粒子,例如可列舉:SiO2 、Al2 O3 、TiO2 、ZrO2 、HfO2 、V2 O5 、WO3 、In2 O3 、SnO2 、Sb2 O3 、Nb2 O5 、MoO3 、Fe2 O3 、CuO、ZnO、CaO、MgO、艾羅技(Aerosil)、矽鋁、雲母、蒙脫石、滑石、黏土、水鋁礦、高嶺土、(聚)磷酸鋯、鈦酸鋇、碳酸鈣、(聚)鎢酸鋯、PZT(Lead Zirconium Titanate,鋯鈦酸鉛)、玻璃、硼酸鋁、氮化鋁、氮化鈦、氮化矽、氮化硼、或該等之混合物等。 藉由添加奈米粒子,可降低感光性樹脂之熱膨脹係數。藉由熱膨脹係數降低而抑制於高溫保存試驗時樹脂產生熱膨脹,抑制發生銅遷移。此時,作為奈米粒子,縱橫比較高之形狀者可憑藉更少量之添加而降低熱膨脹係數,因此較佳。又,縱橫比較高之形狀者存在銅表面上之空隙數變少、顯影性或耐化學品性變得良好之傾向,從而更佳。 就銅表面上之空隙數、顯影性或耐化學品性之觀點而言,奈米粒子之縱橫比較佳為大於1,縱橫比較佳為2以上,更佳為3以上,更佳為4以上。又,縱橫比更佳為5以上,更佳為8以上,更佳為10以上,更佳為12以上,更佳為15以上,尤佳為20以上。 縱橫比係表示奈米粒子之長軸之長度/短軸之長度的值。於奈米粒子為標準球體之情形時,縱橫比成為1。於奈米粒子並非標準球體或標準橢圓體之情形時,以能夠將奈米粒子完全包於內部之大小之球體中之最小之球體之直徑作為奈米粒子之長軸,以能夠完全含於奈米粒子內部之大小之球體中之最大之球體之直徑作為奈米粒子之短軸。 關於(B-1)奈米粒子之調配量,相對於(A)樹脂100質量份為0.1~50質量份,較佳為0.05~10質量份。就耐遷移性之觀點而言,較理想為0.1質量份以上,就溶解性之觀點而言,較理想為未達50質量份。 (B-2)熱交聯劑 對本發明中使用之(B-2)熱交聯劑進行說明。(B-2)熱交聯劑係指於對使用本實施形態之感光性樹脂組合物所形成之浮凸圖案進行加熱硬化時,能夠與(A)樹脂交聯、或交聯劑本身形成交聯網狀結構的化合物。(B)熱交聯劑只要為符合上述條件者,則並無特別限定,較佳為下述(B-2-1)~(B-2-12)所示之任一者。 (B-2-1)含羥甲基及/或烷氧基甲基之化合物 所謂含羥甲基及/或烷氧基甲基之化合物係分子內含有下述通式(TS2): [化83]
Figure 02_image165
{式中,Rs3為1價之有機基或氫原子}所表示之有機基之化合物。 具體而言,可列舉具有下述通式(TS1): [化84]
Figure 02_image167
{式中,Rs1為氫原子、選自由甲基、乙基、正丙基及異丙基所組成之群中之一價之基,Rs2為選自由羥基、碳原子數1~10之烷基、碳原子數1~10之烷氧基、碳原子數1~10之酯基、及胺基甲酸酯基所組成之群中之基,mm1為1~5之整數,mm2為0~4之整數。此處,1≦(mm1+mm2)≦5,nn1為1~4之整數,V1 於nn1=1時為CH2 ORs1,於nn1=2~4時為單鍵或2~4價之有機基。於CH2 ORs1及R10 存在複數個之情形時,該等相互可相同亦可不同}、以及 通式(TS3)及(TS4): [化85]
Figure 02_image169
{式中,Rs3及Rs4分別獨立為氫原子、及選自由碳原子數1~10之烴基所組成之群中之1價之有機基} [化86]
Figure 02_image171
{式中,Rs5分別獨立為氫原子、及選自由碳原子數1~10之烴基所組成之群中之1價之有機基}所表示之結構之N-羥甲基化合物及N-烷氧基甲基化合物等,但並不限定於該等。 作為較佳之具體例,可列舉:Cymel(註冊商標)300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR 65、300、Micoat 102、105(以上為Mitsui Cytec公司製造)、NIKALAC(註冊商標)MX-270、-280、-290、NIKALAC MS-11、NIKALAC MW-30、-100、-300、-390、-750(以上為SANWA CHEMICAL公司製造)、DML-OCHP、DML-MBPC、DML-BPC、DML-PEP、DML-34X、DML-PSBP、DML-PTBP、DML-PCHP、DML-POP、DML-PFP、DML-MBOC、BisCMP-F、DML-BisOC-Z、DML-BisOCHP-Z、DML-BisOC-P、DMOM-PTBT、TMOM-BP、TMOM-BPA、TML-BPAFMF、TM-BIP-A、HMOM-TP-HAP(以上為本州化學工業公司製造)、苯二甲醇、雙(羥基甲基)甲酚、雙(羥基甲基)二甲氧基苯、雙(羥基甲基)二苯醚、雙(羥基甲基)二苯甲酮、羥基甲基苯甲酸羥基甲基苯酯、雙(羥基甲基)聯苯、二甲基雙(羥基甲基)聯苯、雙(甲氧基甲基)苯、雙(甲氧基甲基)甲酚、雙(甲氧基甲基)二甲氧基苯、雙(甲氧基甲基)二苯醚、雙(甲氧基甲基)二苯甲酮、甲氧基甲基苯甲酸甲氧基甲基苯酯、雙(甲氧基甲基)聯苯、二甲基雙(甲氧基甲基)聯苯、酚醛清漆之羥甲基化體等。 其中,更佳為具有上述通式(12)所表示之結構者,具體而言,可列舉:DML-OCHP、DML-MBPC、DML-BPC、DML-PEP、DML-34X、DML-PSBP、DML-PTBP、DML-PCHP、DML-POP、DML-PFP、DML-MBOC、BisCMP-F、DML-BisOC-Z、DML-BisOCHP-Z、DML-BisOC-P、DMOM-PTBT、TMOM-BP、TMOM-BPA、TML-BPAFMF、TM-BIP-A、HMOM-TP-HAP(以上為本州化學工業公司製造)、苯二甲醇、雙(羥基甲基)甲酚、雙(羥基甲基)二甲氧基苯、雙(羥基甲基)二苯醚、雙(羥基甲基)二苯甲酮、羥基甲基苯甲酸羥基甲基苯酯、雙(羥基甲基)聯苯、二甲基雙(羥基甲基)聯苯、雙(甲氧基甲基)苯、雙(甲氧基甲基)甲酚、雙(甲氧基甲基)二甲氧基苯、雙(甲氧基甲基)二苯醚、雙(甲氧基甲基)二苯甲酮、甲氧基甲基苯甲酸甲氧基甲基苯酯、雙(甲氧基甲基)聯苯、二甲基雙(甲氧基甲基)聯苯基及酚醛清漆之羥甲基化體。 該等之中,尤佳為TMOM-BP、TMOM-BPA、TML-BPAFMF、TM-BIP-A、HMOM-TP-HAP。 (B-2-2)環氧乙烷化合物 作為環氧乙烷(環氧)化合物,只要為分子內含有環氧基之化合物,則並無特別限制,具體而言,可列舉:苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、雙酚型環氧樹脂、三苯酚型環氧樹脂、四苯酚型環氧樹脂、苯酚-苯二甲基型環氧樹脂、萘酚-苯二甲基型環氧樹脂、苯酚-萘酚型環氧樹脂、苯酚-二環戊二烯型環氧樹脂、脂環式環氧樹脂、鏈狀脂肪族環氧樹脂、二乙二醇二縮水甘油醚、山梨醇聚縮水甘油醚、丙二醇二縮水甘油醚、三羥甲基丙烷聚縮水甘油醚、1,1,2,2-四(對羥基苯基)乙烷四縮水甘油醚、甘油三縮水甘油醚、鄰第二丁基苯基縮水甘油醚、1,6-雙(2,3-環氧丙氧基)萘、二甘油聚縮水甘油醚、聚乙二醇縮水甘油醚、YDB-340、YDB-412、YDF-2001、YDF-2004(商品名,新日鐵化學股份有限公司製造)、GAN、GOT、NC-3000-H、EPPN-501H、EPPN-502H、EOCN-1020、NC-6000、NC-7000L、EPPN-201L、XD-1000、EOCN-4600(商品名,日本化藥股份有限公司製造)、Epikote(註冊商標)1001、Epikote 1007、Epikote 1009、Epikote 5050、Epikote 5051、Epikote 1031S、Epikote 180S65、Epikote 157H70、YX-315-75(商品名,Japan Epoxy Resins股份有限公司製造)、EHPE3150、PLACCEL G402、PUE101、PUE105(商品名,Diacel Chemical Industries股份有限公司製造)、EPICLON(註冊商標)830、850、1050、N-680、N-690、N-695、N-770、HP-7200、HP-820、EXA-850CRP、860、EXA-4701、EXA-4850-1000(商品名,DIC公司製造)、DENACOL(註冊商標)EX-201、EX-212L、EX-214L、EX-216L、EX-251、EX-203、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-711、EX-731、EX-810、EX-850L、EX-911、EM-150(商品名,Nagase chemteX公司製造)、Epolight(註冊商標)70P、40E、100E、100MF、200E、400E、200P、400P、1500NP、80MF、4000、3002(商品名,共榮社化學製造)、jER(註冊商標)828、834、1001、1002、1003、1004、1005、1007、1010、1100L、630、ESCN-220L、220F、220H、220HH、180H65、1032H60、YX4000H、152、157S70、1031(三菱化學製造)、Adeka Resin(註冊商標)EP-4000s、EP-4003s(Adeka製造)等。 該等之中,就HTS試驗後之可靠性之觀點而言,尤佳為異三聚氰酸三縮水甘油酯、EPICLON 830、850、1050、N-680、N-690、N-695、N-770、HP-7200、HP-820、EXA-4850-1000、DENACOL EX-201、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-731、EX-810、EX-911、及EM-150之環氧化合物。 (B-2-3)含異氰酸酯基之化合物 作為含異氰酸酯基之化合物,只要為分子內含有異氰酸酯基之化合物,則並無特別限制,就HTS試驗後之可靠性之觀點而言,較佳為4,4'-二苯基甲烷二異氰酸酯、甲苯二異氰酸酯、1,3-苯二亞甲基二異氰酸酯、二環己基甲烷-4,4'-二異氰酸酯、異佛爾酮二異氰酸酯、六亞甲基二異氰酸酯、Takenate(註冊商標)500、600、Cosmonate(註冊商標)NBDI、ND(商品名,三井化學公司製造)Duranate(註冊商標)17B-60PX、TPA-B80E、MF-B60X、MF-K60X、E402-B80T(商品名,Asahi Kasei Chemicals公司製造)等。 (B-2-4)雙順丁烯二醯亞胺化合物 作為雙順丁烯二醯亞胺化合物,只要為分子內含有順丁烯二醯亞胺基之化合物,則並無特別限制,就HTS試驗後之可靠性之觀點而言,較佳為4,4'-二苯基甲烷雙順丁烯二醯亞胺、苯基甲烷順丁烯二醯亞胺、間伸苯基雙順丁烯二醯亞胺、雙酚A二苯醚雙順丁烯二醯亞胺、3,3'-二甲基-5,5'-二乙基-4,4'-二苯基甲烷雙順丁烯二醯亞胺、4-甲基-1,3-伸苯基雙順丁烯二醯亞胺、1,6'-雙順丁烯二醯亞胺-(2,2,4-三甲基)己烷、4,4'-二苯醚雙順丁烯二醯亞胺、4,4'-二苯基碸雙順丁烯二醯亞胺、1,3-雙(3-順丁烯二醯亞胺苯氧基)苯、1,3-雙(4-順丁烯二醯亞胺苯氧基)苯、BMI-1000、BMI-1100、BMI-2000、BMI-2300、BMI-3000、BMI-4000、BMI-5100、BMI-7000、BMI-TMH、BMI-6000、BMI-8000(商品名,大和化成工業股份有限公司製造)等。 (B-2-5)含醛基之化合物 作為含醛基之化合物,只要為分子內含有醛基之化合物,則並無特別限制,就HTS試驗後之可靠性之觀點而言,較佳為甲醛、苯甲醛、乙醛、丙醛、苯基乙醛、α-苯基丙醛、β-苯基丙醛、鄰羥基苯甲醛、間羥基苯甲醛、對羥基苯甲醛、鄰甲基苯甲醛、間甲基苯甲醛、對甲基苯甲醛、糠醛、乙二醛、戊二醛、對苯二甲醛、間苯二甲醛、六亞甲基四胺、三㗁烷、丙二醛、丁二醛等。 (B-2-6)含氧雜環丁烷環之化合物 所謂含氧雜環丁烷環之化合物係含有下述式: [化87]
Figure 02_image173
所表示之2價之基之化合物。 作為含氧雜環丁烷環之化合物,只要分子內含有氧雜環丁基,則並無特別限制,可列舉:1,4-雙{[(3-乙基-3-氧雜環丁基)甲氧基]甲基}苯、雙[1-乙基(3-氧雜環丁基)]甲醚、4,4'-雙[(3-乙基-3-氧雜環丁基)甲氧基甲基]聯苯、4,4'-雙(3-乙基-3-氧雜環丁基甲氧基)聯苯、乙二醇雙(3-乙基-3-氧雜環丁基甲基)醚、二乙二醇雙(3-乙基-3-氧雜環丁基甲基)醚、雙(3-乙基-3-氧雜環丁基甲基)二酚酸酯、三羥甲基丙烷三(3-乙基-3-氧雜環丁基甲基)醚、季戊四醇四(3-乙基-3-氧雜環丁基甲基)醚、3-乙基-3{[(3-乙基氧雜環丁烷-基)甲氧基]甲基}氧雜環丁烷、東亞合成股份有限公司製造之3-乙基-3-羥基甲基氧雜環丁烷(OXT-101)、2-乙基己基氧雜環丁烷(OXT-212)、苯二甲基雙氧雜環丁烷(OXT-121)、3-乙基-3-{[(3-乙基氧雜環丁烷-3-基)甲氧基]甲基}氧雜環丁烷(OXT-221)、OX-SQ-H、OXT-191、PNOX-1009、RSOX、 以下之: [化88]
Figure 02_image175
、 宇部興產股份有限公司之Etanacol EHO、OXBP、OXMA、OXIPA、HBOX、OXTP等。 其中,就於顯影液中之溶解性及所獲得之硬化膜之伸長率之觀點而言,較佳為OXBP、OXIPA、OXT-121及OXT-221。 (B-2-7)含苯并㗁𠯤環之化合物 作為含苯并㗁𠯤環之化合物,只要為分子內含有苯并㗁𠯤環之化合物,則並無特別限制,就HTS試驗後之可靠性之觀點而言,較佳為日本專利特開2006-335671號公報所揭示之化合物、以及雙酚F型苯并㗁𠯤BF-BXZ、雙酚A型苯并㗁𠯤BA-BXZ、雙酚S型苯并㗁𠯤BS-BXZ(商品名,小西化學工業製造)等。 (B-2-8)含㗁唑啉環之化合物 作為含㗁唑啉環之化合物,只要為分子內含有㗁唑啉環之化合物,則並無特別限制,可列舉:2-㗁唑啉、2-胺基-2-㗁唑啉、2,2'-雙(2-㗁唑啉)、1,3-雙(4,5-二氫-2-㗁唑基)苯、1,4-雙(4,5-二氫-2-㗁唑基)苯、1,3,5-三(4,5-二氫-2-㗁唑基)苯、2,2'-(2,6-吡啶二基)雙(4-異丙基-2-㗁唑啉)、2,2'-(2,6-吡啶二基)雙(4-苯基-2-㗁唑啉)、2-苯基(2-㗁唑啉)、4,4-二甲基-2-㗁唑啉、2,2'-亞異丙基雙(4-苯基-2-㗁唑啉)、2-乙基-2-㗁唑啉、2,2'-亞異丙基雙(4-第三丁基-2-㗁唑啉)、2-異丙基-2-㗁唑啉、4-甲氧基甲基-2-甲基-5-苯基-2-㗁唑啉、2-甲基-2-㗁唑啉、2,4,4-三甲基-2-㗁唑啉、日本觸媒公司製造之Epocros系列K-1010E、K-2010E、K-1020E、K-2020E、K-1030E、K-2030E、WS-500、WS-700、RPS-1005、RAS-1005等。 就HTS試驗後之可靠性之觀點而言,較佳為例如2,2'-雙(2-㗁唑啉)、1,3-雙(4,5-二氫-2-㗁唑基)苯、1,4-雙(4,5-二氫-2-㗁唑基)苯、1,3,5-三(4,5-二氫-2-㗁唑基)苯、2-苯基(2-㗁唑啉)、Epocros WS-500等。 又,含㗁唑啉環之化合物更佳為下述通式(TS5): [化89]
Figure 02_image177
{式中,Rs6為碳數1~10之有機基,nn2為0~4之整數} 所表示之化合物,最佳為1,3-雙(4,5-二氫-2-㗁唑基)苯及1,3,5-三(4,5-二氫-2-㗁唑基)苯。 (B-2-9)含碳二醯亞胺基之化合物 作為含碳二醯亞胺基之化合物,只要為分子內含有碳二醯亞胺基之化合物,則並無特別限定,就HTS試驗後之可靠性之觀點而言,較佳為雙(2,6-二異丙基苯基)碳二醯亞胺、Carbodilite SV-02、V-01、V-02、V-03、V-04、V-05、V-07、V-09、E-01、E-02、LA-1(商品名,Nisshinbo Chemical公司製造)等。 (B-2-10)烯丙基化合物 作為烯丙基化合物,只要分子內含有烯丙基,則並無特別限制,可列舉:三羥甲基丙烷三甲基丙烯酸酯、1,3,5-苯三羧酸三烯丙酯、偏苯三甲酸三烯丙酯、均苯四甲酸四烯丙酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二季戊四醇五丙烯酸酯、二季戊四醇六丙烯酸酯、三羥甲基丙烷三丙烯酸酯、二三羥甲基丙烷四丙烯酸酯、NK Ester 1G、2G、3G、4G、9G、14G、NPG、BPE-100、BPE-200、BPE-500、BPE-1400、A-200、A-400、A-600、TMPT、A-TMM-3(商品名,新中村化學工業公司製造)、BANI-M、BANI-X(商品名,丸善石油化學股份有限公司製造)等。 該等之中,就HTS試驗後之可靠性之觀點而言,尤佳為乙酸乙烯酯、三羥甲基丙烷三甲基丙烯酸酯、1,3,5-苯三羧酸三烯丙酯、偏苯三甲酸三烯丙酯、均苯四甲酸四烯丙酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二季戊四醇五丙烯酸酯、二季戊四醇六丙烯酸酯、三羥甲基丙烷三丙烯酸酯、二三羥甲基丙烷四丙烯酸酯、BANIM及BANI-X。 (B-2-11)三𠯤硫醇化合物 作為三𠯤硫醇化合物,只要分子內含有三聚硫氰酸基,則並無特別限制,就HTS試驗後之可靠性之觀點而言,較佳為2,4,6-三硫醇-1,3,5-三𠯤、2-二甲基胺基-4,6-二硫醇-1,3,5-三𠯤、2-二丁基胺基-4,6-二硫醇-1,3,5-三𠯤、2-苯基胺基-4,6-二硫醇-1,3,5-三𠯤等。 (B-2-12)金屬螯合化合物 作為金屬螯合化合物,可列舉:鋁螯合化合物、鈦螯合化合物、鋯螯合化合物、鉻螯合化合物、鎂螯合化合物、鎳螯合化合物等,就HTS試驗後之可靠性之觀點而言,較佳為乙醯丙酮鋁(III)鹽、乙醯丙酮鈦(IV)鹽、乙醯丙酮鉻(III)鹽、乙醯丙酮鎂(II)鹽、乙醯丙酮鎳(II)鹽、乙醯丙酮鋯(IV)鹽、三氟乙醯丙酮鋁(III)鹽、三氟乙醯丙酮鈦(IV)鹽、三氟乙醯丙酮鉻(III)鹽、三氟乙醯丙酮鎂(II)鹽、三氟乙醯丙酮鎳(II)鹽、三氟乙醯丙酮鋯(IV)鹽、二異丙氧基雙(乙醯丙酮酸)鈦、四乙醯丙酮酸鈦、二-2-乙基己氧基雙(2-乙基-3-羥基己醇)鈦、二異丙氧基雙(乙基乙醯乙酸)鈦等。 該等化合物之中,就HTS試驗後之可靠性之觀點而言,較佳為乙醯丙酮鋁(III)鹽、乙醯丙酮鈦(IV)鹽、乙醯丙酮鋯(IV)鹽、乙醯丙酮鎳(II)鹽、三氟乙醯丙酮鋁(III)鹽、三氟乙醯丙酮鈦(IV)鹽、三氟乙醯丙酮鎳(II)鹽、三氟乙醯丙酮鋯(IV)鹽、二異丙氧基雙(乙醯丙酮酸)鈦、四乙醯丙酮酸鈦、二-2-乙基己氧基雙(2-乙基-3-羥基己醇)鈦、及二異丙氧基雙(乙基乙醯乙酸)鈦,就於矽晶圓上之密接性之觀點而言,較佳為乙醯丙酮鋁(III)鹽、乙醯丙酮鈦(IV)鹽、乙醯丙酮鋯(IV)鹽、三氟乙醯丙酮鋁(III)鹽、三氟乙醯丙酮鈦(IV)鹽、三氟乙醯丙酮鋯(IV)鹽、及二異丙氧基雙(乙醯丙酮酸)鈦。 該等(B-2-1)~(B-2-12)記載之交聯劑之中,就HTS試驗後之可靠性之觀點而言,較佳為(B-2-1)含羥甲基及/或烷氧基甲基之化合物、(B-2-2)環氧乙烷化合物、(B-2-3)含異氰酸酯基之化合物、(B-2-4)含雙順丁烯二醯亞胺基之化合物、(B-2-5)含醛基之化合物、(B-2-6)含氧雜環丁烷環之化合物、(B-2-7)含苯并㗁𠯤環之化合物、(B-2-8)含㗁唑啉環之化合物、(B-2-10)烯丙基化合物,更佳為(B-2-1)含羥甲基及/或烷氧基甲基之化合物、(B-2-3)含異氰酸酯基之化合物、(B-2-4)含雙順丁烯二醯亞胺基之化合物、(B-2-6)含氧雜環丁烷環之化合物、(B-2-7)含苯并㗁𠯤環之化合物、(B-2-10)烯丙基化合物,最佳為(B-2-1)含羥甲基及/或烷氧基甲基之化合物。 該等交聯劑(B-2)可單獨使用1種或將2種以上組合使用。 以上之(B-2)交聯劑之中,本發明較佳為使用(B-2-1)含羥甲基及/或烷氧基甲基之化合物,更佳為使用下述通式(12): [化90]
Figure 02_image179
{式中,Rs1為氫原子、選自由甲基、乙基、正丙基及異丙基所組成之群中之一價之基,Rs2為選自由羥基、碳原子數1~10之烷基、碳原子數1~10之烷氧基、碳原子數1~10之酯基、及胺基甲酸酯基所組成之群中之基,mm1為1~5之整數,mm2為0~4之整數。此處,1≦(mm1+mm2)≦5,nn1為1~4之整數,V1 於nn1=1時為CH2 ORs1,於nn1=2~4時為單鍵或2~4價之有機基。於CH2 ORs1及R10 存在複數個之情形時,該等相互可相同亦可不同}所表示之羥甲基化合物及烷氧基甲基化合物。 藉由添加交聯劑,可提高相同固化溫度下之樹脂之玻璃轉移溫度。藉由樹脂之玻璃轉移溫度提高而抑制銅向樹脂中遷移。 關於交聯劑(B-2)之調配量,相對於樹脂(A)100質量份,較佳為0.1~50質量份,更佳為1~30質量份,進而較佳為5~20質量份。 (B-3)含氟疏水性化合物 以下對本實施形態中之(B-3)含氟疏水性化合物進行詳細說明。(B)含氟疏水性化合物只要為分子中含有氟原子且具有疏水性之化合物,則並無特別限定。 可較佳地用作本實施形態之(B-3)含氟疏水性化合物的化合物為醯基氟(acid fluoride)、氟化丙烯酸酯、氟化甲基丙烯酸酯、氟化醇、氟化烷烴、氟化酯及氟化醚等。 <醯基氟> 關於作為(B-3)含氟疏水性化合物之醯基氟之具體之化合物例,可較佳地使用全氟戊醯氟、全氟己醯氟、全氟庚醯氟、全氟辛醯氟、全氟琥珀醯氟、六氟戊二醯氟、八氟己二醯氟、全氟甲氧基丙醯氟、全氟丁氧基乙氧基乙醯氟、全氟聚醚二丙烯醯氟(n=1)、全氟聚醚二丙烯醯氟(n=2)、全氟己酸、全氟庚酸、全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸、全氟十四酸、全氟十六酸、全氟-3,5,5-三甲基己酸、全氟-3,7-二甲基辛酸、全氟琥珀酸、全氟戊二酸、全氟己二酸、全氟辛二酸、全氟壬二酸、全氟癸二酸、全氟十二烷二酸、全氟-3,6-二氧雜庚酸、全氟-3,6,9-三氧雜癸酸、全氟-3,6-二氧雜癸酸、全氟-3,6,9-三氧雜十三酸、全氟-3,6-二氧雜辛烷-1,8-二酸、全氟-3,6,9-三氧雜十一烷-1,11-二酸等。 <氟化丙烯酸酯> 關於作為(B-3)含氟疏水性化合物之氟化丙烯酸酯之具體之化合物例,可較佳地使用丙烯酸1H,1H-全氟正丁酯、丙烯酸1H,1H-全氟正辛酯、丙烯酸1H,1H-全氟正癸酯、1H,1H,6H,6H-全氟-1,6-己二醇二丙烯酸酯、1H,1H,8H,8H-全氟四乙二醇二丙烯酸酯、1H,1H,6H,6H-全氟三乙二醇二丙烯酸酯、1H,1H,4H,4H-全氟二乙二醇二丙烯酸酯、1H,1H,10H,10H-五乙二醇二丙烯酸酯、1H,1H,18H,18H-九乙二醇二丙烯酸酯、全氟-1,6-己二醇二丙烯酸酯、全氟四乙二醇二丙烯酸酯、全氟三乙二醇二丙烯酸酯、全氟二乙二醇二丙烯酸酯、五乙二醇二丙烯酸酯、九乙二醇二丙烯酸酯等。其中,可尤佳地使用1H,1H,6H,6H-全氟-1,6-己二醇二丙烯酸酯及1H,1H,8H,8H-全氟四乙二醇二丙烯酸酯,可分別作為Exfluor公司製造之製品名C6DIACRY及製品名DA-F4EO而獲得。 <氟化甲基丙烯酸酯> 關於作為(B-3)含氟疏水性化合物之氟化甲基丙烯酸酯之具體之化合物例,可較佳地使用甲基丙烯酸1H,1H-全氟正丁酯、甲基丙烯酸1H,1H-全氟正辛酯、甲基丙烯酸1H,1H-全氟正癸酯、1H,1H,6H,6H-全氟-1,6-己二醇二甲基丙烯酸酯、1H,1H,8H,8H-全氟四乙二醇二甲基丙烯酸酯、1H,1H,6H,6H-全氟三乙二醇二甲基丙烯酸酯、1H,1H,4H,4H-全氟二乙二醇二甲基丙烯酸酯、1H,1H,10H,10H-五乙二醇二甲基丙烯酸酯、1H,1H,18H,18H-九乙二醇二甲基丙烯酸酯、全氟-1,6-己二醇二甲基丙烯酸酯、全氟四乙二醇二甲基丙烯酸酯、全氟三乙二醇二甲基丙烯酸酯、全氟二乙二醇二甲基丙烯酸酯、五乙二醇二甲基丙烯酸酯、九乙二醇二甲基丙烯酸酯等。 <氟化醇> 關於作為(B-3)含氟疏水性化合物之氟化醇之具體之化合物例,可較佳地使用1H,1H-全氟-1-己醇、1H,1H-全氟-1-庚醇、1H,1H-全氟-1-辛醇、1H,1H-全氟-1-壬醇、1H,1H-全氟-1-癸醇、1H,1H-全氟-1-十一醇、1H,1H-全氟-1-十二醇、1H,1H-全氟-1-十四醇、1H,1H-全氟-1-十六醇、全氟-3,5,5-三甲基己烷-1-醇、全氟-3,7-二甲基辛烷-1-醇、1H,1H,4H,4H-全氟-1,4-丁二醇、1H,1H,5H,5H-全氟-1,5-戊二醇、1H,1H,5H,5H-全氟-1,5-戊二醇、1H,1H,6H,6H-全氟-1,6-己二醇、1H,1H,8H,8H-全氟-1,8-辛二醇、1H,1H,9H,9H-全氟-1,9-壬二醇、1H,1H,10H,10H-全氟-1,10-癸二醇、1H,1H,12H,12H-全氟-1,12-十二烷二醇、全氟-第三丁醇、氟化二乙二醇單甲醚、氟化三乙二醇單甲醚、氟化二乙二醇單丁醚、氟化三乙二醇單丁醚、氟化三乙二醇、氟化四乙二醇等。 <氟化烷烴> 關於作為(B-3)含氟疏水性化合物之氟化烷烴之具體之化合物例,可較佳地使用全氟庚烷、全氟辛烷、全氟壬烷、全氟十三烷、全氟十五烷、1H-全氟戊烷、1H-全氟己烷、1H-全氟庚烷、1H-全氟辛烷、1H-全氟壬烷、1H-全氟癸烷、1H-全氟十一烷、1H-全氟十三烷、1H-全氟十五烷、1H-全氟-2,4,4-三甲基戊烷、1H-全氟-2,6-二甲基庚烷、1H,4H-全氟丁烷、1H,6H-全氟己烷、1H,7H-全氟庚烷、1H,8H-全氟辛烷、1H,10H-全氟癸烷等。 <氟化酯> 關於作為(B-3)含氟疏水性化合物之氟化酯之具體之化合物例,可較佳地使用全氟戊酸甲酯、全氟己酸甲酯、全氟庚酸甲酯、全氟辛酸甲酯、全氟壬酸甲酯、全氟癸酸甲酯、全氟十一酸甲酯、全氟十二酸甲酯、全氟十四酸甲酯、全氟十六酸甲酯、全氟琥珀酸二甲酯、全氟戊二酸二甲酯、全氟己二酸二甲酯、全氟辛二酸二甲酯、全氟壬二酸二甲酯、全氟癸二酸二甲酯、全氟-1,12-癸二酸二甲酯、全氟-3,6-二氧雜庚酸甲酯、全氟-3,6,9-三氧雜癸酸甲酯、全氟-3,6-二氧雜癸酸甲酯、全氟-3,6,9-三氧雜十三酸甲酯、全氟-3,6-二氧雜辛烷-1,8-二酸二甲酯、全氟-3,6,9-三氧雜十一烷-1,11-二酸二甲酯等。 <氟化醚> 關於作為(B-3)含氟疏水性化合物之氟化醚之具體之化合物例,可較佳地使用全氟(二乙二醇二甲醚)、全氟(三乙二醇二甲醚)、全氟(三乙二醇二甲醚)等。 (B-3)含氟疏水性化合物之分子中之氟原子之重量比率較佳為30質量%以上且80質量%以下。若氟之重量比率少於該範圍,則無法獲得充分之疏水性。又,若氟多於該範圍,則與溶劑之相溶性降低,不易獲得表面平坦性均勻之塗佈膜,因此欠佳。氟重量含有比率之範圍更佳為35質量%以上且75質量%以內。 本實施形態中之(B-3)含氟疏水性化合物較佳為於分子內具有至少1個以上之不飽和雙鍵。若具有不飽和雙鍵,則於曝光步驟中,於(B-3)含氟疏水性化合物彼此之分子間、及與(A)樹脂之分子間進行交聯反應。藉此,於加熱處理時(B-3)含氟疏水性化合物不易揮發,可表現出充分之疏水性效果。不飽和雙鍵之較佳例為丙烯酸酯及甲基丙烯酸酯等。 關於(B-3)含氟疏水性化合物之含量,相對於樹脂(A)100質量份,較佳為0.01~50質量份,更佳為0.02~30質量份,進而較佳為0.05~20質量份。若含量多於該範圍,則與溶劑之相溶性降低,難以獲得表面平坦性均勻之塗佈膜,因此欠佳,若含量少於該範圍,則無法獲得充分之疏水性效果,與銅表面之間容易產生空隙。 (C)感光劑 對本發明所使用之(C)感光劑進行說明。(C)感光劑根據本發明之感光性樹脂組合物為例如主要使用聚醯亞胺前驅物及/或聚醯胺作為(A)樹脂之負型,或為例如主要使用聚㗁唑前驅物、可溶性聚醯亞胺、酚醛清漆、聚羥基苯乙烯及酚樹脂之至少一種作為(A)樹脂之正型等而不同。 關於(C)感光劑於感光性樹脂組合物中之調配量,相對於(A)感光性樹脂100質量份為1~50質量份。上述調配量就光感度或圖案化性之觀點而言為1質量份以上,就感光性樹脂組合物之硬化性或硬化後之感光性樹脂層之物性之觀點而言為50質量份以下。 [(C)負型感光劑:聚合起始劑、光酸產生劑] 首先,對期望為負型之情形進行說明。於該情形時,使用光聚合起始劑及/或光酸產生劑作為(C)感光劑,作為光聚合起始劑,較佳為光自由基聚合起始劑,較佳為列舉:二苯甲酮、鄰苯甲醯苯甲酸甲酯、4-苯甲醯基-4'-甲基二苯基酮、二苄基酮、茀酮等二苯甲酮衍生物,2,2'-二乙氧基苯乙酮、2-羥基-2-甲基苯丙酮、1-羥基環己基苯基酮等苯乙酮衍生物,9-氧硫𠮿
Figure 109146146-0000-3
、2-甲基9-氧硫𠮿
Figure 109146146-0000-3
、2-異丙基9-氧硫𠮿
Figure 109146146-0000-3
、二乙基9-氧硫𠮿
Figure 109146146-0000-3
等9-氧硫𠮿
Figure 109146146-0000-3
衍生物,苯偶醯、苯偶醯二甲基縮酮、苯偶醯-β-甲氧基乙基縮醛等苯偶醯衍生物, 安息香、安息香甲醚等安息香衍生物,1-苯基-1,2-丁烷二酮-2-(鄰甲氧基羰基)肟、1-苯基-1,2-丙烷二酮-2-(鄰甲氧基羰基)肟、1-苯基-1,2-丙烷二酮-2-(鄰乙氧基羰基)肟、1-苯基-1,2-丙烷二酮-2-(鄰苯甲醯基)肟、1,3-二苯基丙烷三酮-2-(鄰乙氧基羰基)肟、1-苯基-3-乙氧基丙烷三酮-2-(鄰苯甲醯基)肟等肟類,N-苯基甘胺酸等N-芳基甘胺酸類,苯甲醯基過氯化物等過氧化物類,芳香族聯咪唑類,二茂鈦類,α-(正辛磺醯氧基亞胺基)-4-甲氧基苄基氰化物等光酸產生劑類等,但並不限定於該等。上述光聚合起始劑之中,尤其就光感度之方面而言,更佳為肟類。 於在負型之感光性樹脂組合物中使用光酸產生劑作為(C)感光劑之情形時,於紫外線之類之活性光線之照射下呈現酸性,且具有藉由該作用而使下述交聯劑與作為(A)成分之樹脂進行交聯、或使交聯劑彼此進行聚合之作用。作為該光酸產生劑之例,可使用二芳基鋶鹽、三芳基鋶鹽、二烷基苯甲醯甲基鋶鹽、二芳基錪鹽、芳基重氮鎓鹽、芳香族四羧酸酯、芳香族磺酸酯、硝基苄基酯、肟磺酸酯、芳香族N-氧基醯亞胺磺酸酯、芳香族磺醯胺、含鹵烷基之烴系化合物、含鹵烷基之雜環狀化合物、萘醌二疊氮-4-磺酸酯等。此種化合物視需要可併用2種以上、或與其他增感劑組合使用。上述光酸產生劑之中,尤其就光感度之方面而言,更佳為芳香族肟磺酸酯、芳香族N-氧基醯亞胺磺酸酯。 關於負型之情形時之該等感光劑之調配量,相對於(A)樹脂100質量份為1~50質量份,就光感度特性之觀點而言,較佳為2~15質量份。藉由調配相對於(A)樹脂100質量份為1質量份以上之(C)感光劑,光感度優異,藉由調配50質量份以下,厚膜硬化性優異。 進而,如上所述,於通式(1)所表示之(A)樹脂為離子鍵型之情形時,為了經由離子鍵對(A)樹脂之側鏈賦予光聚合性基而使用具有胺基之(甲基)丙烯酸系化合物。於該情形時,具有胺基之(甲基)丙烯酸系化合物係用作(C)感光劑,如上所述,例如較佳為丙烯酸二甲胺基乙酯、甲基丙烯酸二甲胺基乙酯、丙烯酸二乙胺基乙酯、甲基丙烯酸二乙胺基乙酯、丙烯酸二甲胺基丙酯、甲基丙烯酸二甲胺基丙酯、丙烯酸二乙胺基丙酯、甲基丙烯酸二乙胺基丙酯、丙烯酸二甲胺基丁酯、甲基丙烯酸二甲胺基丁酯、丙烯酸二乙胺基丁酯、甲基丙烯酸二乙胺基丁酯等丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯,其中,就感光特性之觀點而言,較佳為胺基上之烷基之碳數為1~10、烷基鏈之碳數為1~10之丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯。 關於該等具有胺基之(甲基)丙烯酸系化合物之調配量,相對於(A)樹脂100質量份為1~20質量份,就光感度特性之觀點而言,較佳為2~15質量份。藉由調配相對於(A)樹脂100質量份為1質量份以上之具有胺基之(甲基)丙烯酸系化合物作為(C)感光劑,光感度優異,藉由調配20質量份以下,厚膜硬化性優異。 其次,對期望為正型之情形進行說明。於該情形時,使用光酸產生劑作為(C)感光劑,具體而言,可使用重氮醌化合物、鎓鹽、含鹵素之化合物等,就溶劑溶解性及保存穩定性之觀點而言,較佳為具有重氮醌結構之化合物。 [(C)正型感光劑:具有醌二疊氮基之化合物] 作為(C)具有醌二疊氮基之化合物(以下亦稱為「(C)醌二疊氮化合物」),可例示具有1,2-苯醌二疊氮結構之化合物、及具有1,2-萘醌二疊氮結構之化合物,乃美國專利第2,772,972號說明書、美國專利第2,797,213號說明書、及美國專利第3,669,658號說明書等中之公知物質。該(C)醌二疊氮化合物較佳為選自由以下詳細說明之具有特定結構之聚羥基化合物之1,2-萘醌二疊氮-4-磺酸酯、及該聚羥基化合物之1,2-萘醌二疊氮-5-磺酸酯所組成之群中之至少一種化合物(以下亦稱為「NQD化合物」)。 該NQD化合物係藉由如下方式獲得:依據常規方法,利用氯磺酸或亞硫醯氯將萘醌二疊氮磺酸化合物進行磺醯氯化,使所獲得之萘醌二疊氮磺醯氯與聚羥基化合物進行縮合反應。例如可藉由如下方式獲得:使聚羥基化合物與特定量之1,2-萘醌二疊氮-5-磺醯氯或1,2-萘醌二疊氮-4-磺醯氯於二㗁烷、丙酮或四氫呋喃等溶劑中,於三乙胺等鹼性觸媒之存在下反應而進行酯化,將所獲得之產物水洗並加以乾燥。 本實施形態中,就形成抗蝕圖案時之感度與解像性之觀點而言,(C)具有醌二疊氮基之化合物較佳為下述通式(70)~(74)所表示之羥基化合物之1,2-萘醌二疊氮-4-磺酸酯及/或1,2-萘醌二疊氮-5-磺酸酯。 通式(70)由 [化91]
Figure 02_image181
{式中,X11 及X12 分別獨立表示氫原子或碳數1~60(較佳為碳數1~30)之1價之有機基,X13 及X14 分別獨立表示氫原子或碳數1~60(較佳為碳數1~30)之1價之有機基,r1、r2、r3及r4分別獨立為0~5之整數,r3及r4之至少一者為1~5之整數,(r1+r3)≦5,並且(r2+r4)≦5}所表示。 通式(71)由 [化92]
Figure 02_image183
{式中,Z表示碳數1~20之4價之有機基,X15 、X16 、X17 及X18 分別獨立表示碳數1~30之1價之有機基,r6為0或1之整數,r5、r7、r8及r9分別獨立為0~3之整數,r10、r11、r12及r13分別獨立為0~2之整數,並且r10、r11、r12及r13不會均為0}所表示。 且通式(72)由 [化93]
Figure 02_image185
{式中,r14表示1~5之整數,r15表示3~8之整數,(r14×r15)個之L分別獨立表示碳數1~20之1價之有機基,(r15)個之T1 及(r15)個之T2 分別獨立表示氫原子或碳數1~20之1價之有機基}所表示。 且通式(73)由 [化94]
Figure 02_image187
{式中,A表示脂肪族之包含三級或四級碳之2價之有機基,並且M表示2價之有機基,較佳為表示選自下述化學式: [化95]
Figure 02_image189
所表示之3種基中之2價之基}所表示。 進而,通式(74)由 [化96]
Figure 02_image191
{式中,r17、r18、r19及r20分別獨立為0~2之整數,r17、r18、r19及r20之至少一者為1或2,X20 ~X29 分別獨立表示氫原子、鹵素原子、選自由烷基、烯基、烷氧基、烯丙基及醯基所組成之群中之1價之基,並且Y10 、Y11 及Y12 分別獨立表示單鍵、選自由-O-、-S-、-SO-、-SO2 -、-CO-、-CO2 -、亞環戊基、亞環己基、伸苯基、及碳數1~20之2價之有機基所組成之群中之2價之基}所表示。 於另一實施形態中,上述通式(74)中,Y10 ~Y12 較佳為分別獨立地自下述通式: [化97]
Figure 02_image193
[化98]
Figure 02_image195
[化99]
Figure 02_image197
{式中,X30 及X31 分別獨立表示氫原子、選自由烷基、烯基、芳基、及取代芳基所組成之群中之至少一種1價之基,X32 、X33 、X34 及X35 分別獨立表示氫原子或烷基,r21為1~5之整數,並且X36 、X37 、X38 及X39 分別獨立表示氫原子或烷基} 所表示之三種2價之有機基中選擇。 作為上述通式(70)所表示之化合物,可列舉下述式(75)~(79)所表示之羥基化合物。 此處,通式(75)為 [化100]
Figure 02_image199
{式中,r16分別獨立為0~2之整數,並且X40 分別獨立表示氫原子或碳數1~20之1價之有機基,於X40 存在複數個之情形時,複數個X40 相互可相同或亦可不同,並且X40 較佳為下述通式: [化101]
Figure 02_image201
(式中,r18為0~2之整數,X41 表示氫原子、選自由烷基及環烷基所組成之群中之1價之有機基,並且於r18為2之情形時,2個X41 相互可相同亦可不同) 所表示之1價之有機基}, 通式(76)由 [化102]
Figure 02_image203
{式中,X42 表示氫原子、選自由碳數1~20之烷基、碳數1~20之烷氧基及碳數1~20之環烷基所組成之群中之1價之有機基}所表示。 又,通式(77)為 [化103]
Figure 02_image205
{式中,r19分別獨立為0~2之整數,X43 分別獨立表示氫原子或下述通式: [化104]
Figure 02_image207
(式中,r20為0~2之整數,X45 選自由氫原子、烷基及環烷基所組成之群中,並且於r20為2之情形時,2個X45 相互可相同亦可不同)所表示之1價之有機基,並且X44 選自由氫原子、碳數1~20之烷基、及碳數1~20之環烷基所組成之群中},式(78)及(79)為如下結構。 [化105]
Figure 02_image209
[化106]
Figure 02_image211
作為上述通式(70)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(80)~(82)所表示之羥基化合物。 式(80)~(82)之結構如下所示。 [化107]
Figure 02_image213
[化108]
Figure 02_image215
[化109]
Figure 02_image217
作為上述通式(76)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(83): [化110]
Figure 02_image219
所表示之羥基化合物。 作為上述通式(77)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(84)~(86)所表示之羥基化合物。 式(84)~(86)之結構如下所示。 [化111]
Figure 02_image221
[化112]
Figure 02_image223
[化113]
Figure 02_image225
上述通式(71)中,Z只要為碳數1~20之4價之有機基即可,並無特別限定,就感度之觀點而言,較佳為具有下述式: [化114]
Figure 02_image227
所表示之結構之4價之基。 上述通式(71)所表示之化合物之中,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(87)~(90)所表示之羥基化合物。 式(87)~(90)之結構如下所示。 [化115]
Figure 02_image229
[化116]
Figure 02_image231
[化117]
Figure 02_image233
[化118]
Figure 02_image235
作為上述通式(72)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(91): [化119]
Figure 02_image237
{式中,r40分別獨立為0~9之整數}所表示之羥基化合物。 作為上述通式(73)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(92)及(93)所表示之羥基化合物。 式(92)及(93)之結構如下所示。 [化120]
Figure 02_image239
[化121]
Figure 02_image241
作為上述通式(74)所表示之化合物,就感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,具體而言較佳為下述式(94): [化122]
Figure 02_image243
所表示之聚羥基化合物之NQD化物。 於(C)具有醌二疊氮基之化合物具有1,2-萘醌二疊氮磺醯基之情形時,該基可為1,2-萘醌二疊氮-5-磺醯基或1,2-萘醌二疊氮-4-磺醯基之任意者。1,2-萘醌二疊氮-4-磺醯基能夠吸收水銀燈之i射線區域,因此適於利用i射線進行曝光。另一方面,1,2-萘醌二疊氮-5-磺醯基甚至能夠吸收水銀燈之g射線區域,因此適於利用g射線進行曝光。 本實施形態中,較佳為根據進行曝光之波長而選擇1,2-萘醌二疊氮-4-磺酸酯化合物及1,2-萘醌二疊氮-5-磺酸酯化合物之一者或兩者。又,亦可使用於同一分子中具有1,2-萘醌二疊氮-4-磺醯基及1,2-萘醌二疊氮-5-磺醯基之1,2-萘醌二疊氮磺酸酯化合物,亦可將1,2-萘醌二疊氮-4-磺酸酯化合物與1,2-萘醌二疊氮-5-磺酸酯化合物混合使用。 (C)具有醌二疊氮基之化合物中,就顯影對比度之觀點而言,羥基化合物之萘醌二疊氮磺醯基酯之平均酯化率較佳為10%~100%,進而較佳為20%~100%。 就感度及伸長率等硬化膜物性之觀點而言,作為NQD化合物之較佳例,例如可列舉下述通式群所表示者。 [化123]
Figure 02_image245
可列舉{式中,Q為氫原子、或下述式群: [化124]
Figure 02_image247
中之任一者所表示之萘醌二疊氮磺酸酯基,但Q不會全體同時為氫原子}所表示者。 於該情形時,作為NQD化合物,可使用於同一分子中具有4-萘醌二疊氮磺醯基及5-萘醌二疊氮磺醯基之萘醌二疊氮磺醯基酯化合物,亦可將4-萘醌二疊氮磺醯基酯化合物與5-萘醌二疊氮磺醯基酯化合物混合使用。 上述段落[0243]所記載之萘醌二疊氮磺酸酯基之中,尤佳為下述通式(95): [化125]
Figure 02_image249
所表示者。 作為上述鎓鹽,可列舉:錪鹽、鋶鹽、鏻鹽、銨鹽及重氮鎓鹽等,較佳為選自由二芳基錪鹽、三芳基鋶鹽及三烷基鋶鹽所組成之群中之鎓鹽。 作為上述含鹵素之化合物,可列舉含鹵烷基之烴化合物等,較佳為三氯甲基三𠯤。 關於正型之情形時之該等光酸產生劑之調配量,相對於(A)樹脂100質量份而為1~50質量份,較佳為5~30質量份。若作為(C)感光劑之光酸產生劑之調配量為1質量份以上,則感光性樹脂組合物之圖案化性良好,若為50質量份以下,則感光性樹脂組合物之硬化後之膜之拉伸伸長率良好,且曝光部之顯影殘留物(浮渣)較少。 上述NQD化合物可單獨使用,亦可將2種以上混合使用。 本實施形態中,關於感光性樹脂組合物中之(C)具有醌二疊氮基之化合物之調配量,相對於(A)樹脂100質量份而為0.1質量份~70質量份,較佳為1質量份~40質量份,更佳為3質量份~30質量份,進而較佳為5質量份~30質量份。若該調配量為0.1質量份以上,則獲得良好之感度,另一方面,若為70質量份以下,則硬化膜之機械物性良好。 本發明之感光性樹脂組合物亦可進而含有上述(A)~(C)成分以外之成分。該成分之較佳者根據作為(A)樹脂例如使用聚醯亞胺前驅物及聚醯胺等之負型、或使用聚㗁唑前驅物、可溶性聚醯亞胺及酚樹脂等之正型等而不同。 本實施形態中之作為負型樹脂組合物之上述聚醯亞胺前驅物樹脂組合物及聚醯胺樹脂組合物、或者作為正型感光性樹脂組合物之聚㗁唑樹脂組合物、可溶性聚醯亞胺樹脂組合物及酚樹脂組合物中可包含用以使該等樹脂溶解之溶劑。 <溶劑> 作為溶劑,可列舉:醯胺類、亞碸類、脲類、酮類、酯類、內酯類、醚類、鹵化烴類、烴類、醇類等,例如可使用N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、N,N-二甲基甲醯胺、二甲基亞碸、四甲基脲、丙酮、甲基乙基酮、甲基異丁基酮、環戊酮、環己酮、乙酸甲酯、乙酸乙酯、乙酸丁酯、草酸二乙酯、乳酸乙酯、乳酸甲酯、乳酸丁酯、γ-丁內酯、丙二醇單甲醚乙酸酯、丙二醇單甲醚、苄醇、苯乙二醇、四氫呋喃甲醇、乙二醇二甲醚、二乙二醇二甲醚、四氫呋喃、𠰌啉、二氯甲烷、1,2-二氯乙烷、1,4-二氯丁烷、氯苯、鄰二氯苯、苯甲醚、己烷、庚烷、苯、甲苯、二甲苯、均三甲苯等。其中,就樹脂之溶解性、樹脂組合物之穩定性、及對基板之接著性之觀點而言,較佳為N-甲基-2-吡咯啶酮、二甲基亞碸、四甲基脲、乙酸丁酯、乳酸乙酯、γ-丁內酯、丙二醇單甲醚乙酸酯、丙二醇單甲醚、二乙二醇二甲醚、苄醇、苯乙二醇及四氫呋喃甲醇。 此種溶劑之中,尤佳為可使生成聚合物完全溶解者,例如可列舉:N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、N,N-二甲基甲醯胺、二甲基亞碸、四甲基脲、γ-丁內酯等。 作為適用於上述酚樹脂之溶劑,可列舉:雙(2-甲氧基乙基)醚、甲基溶纖劑、乙基溶纖劑、丙二醇單甲醚、丙二醇單甲醚乙酸酯、二乙二醇二甲醚、二丙二醇二甲醚、環己酮、環戊酮、甲苯、二甲苯、γ-丁內酯、N-甲基-2-吡咯啶酮等,但並不限定於該等。 本發明之感光性樹脂組合物中,關於溶劑之使用量,相對於(A)樹脂100質量份,較佳為100~1000質量份,更佳為120~700質量份,進而較佳為125~500質量份之範圍。 本發明之感光性樹脂組合物亦可進而含有上述(A)~(C)成分以外之成分。 例如於使用本發明之感光性樹脂組合物於包含銅或銅合金之基板上形成硬化膜之情形時,為了抑制銅上產生變色,可任意地調配唑類化合物及嘌呤衍生物等含氮雜環化合物。 作為唑類化合物,可列舉:1H-三唑、5-甲基-1H-三唑、5-乙基-1H-三唑、4,5-二甲基-1H-三唑、5-苯基-1H-三唑、4-第三丁基-5-苯基-1H-三唑、5-羥基苯基-1H-三唑、苯基三唑、對乙氧基苯基三唑、5-苯基-1-(2-二甲基胺基乙基)三唑、5-苄基-1H-三唑、羥基苯基三唑、1,5-二甲基三唑、4,5-二乙基-1H-三唑、1H-苯并三唑、2-(5-甲基-2-羥基苯基)苯并三唑、2-[2-羥基-3,5-雙(α,α-二甲基苄基)苯基]-苯并三唑、2-(3,5-二第三丁基-2-羥基苯基)苯并三唑、2-(3-第三丁基-5-甲基-2-羥基苯基)-苯并三唑、2-(3,5-二第三戊基-2-羥基苯基)苯并三唑、2-(2'-羥基-5'-第三辛基苯基)苯并三唑、羥基苯基苯并三唑、甲苯并三唑、5-甲基-1H-苯并三唑、4-甲基-1H-苯并三唑、4-羧基-1H-苯并三唑、5-羧基-1H-苯并三唑、1H-四唑、5-甲基-1H-四唑、5-苯基-1H-四唑、5-胺基-1H-四唑、1-甲基-1H-四唑等。 尤佳為列舉:甲苯并三唑、5-甲基-1H-苯并三唑及4-甲基-1H-苯并三唑。又,該等唑類化合物可使用1種或以2種以上之混合物之形式使用。 作為嘌呤衍生物之具體例,可列舉:嘌呤、腺嘌呤、鳥嘌呤、次黃嘌呤、黃嘌呤、可可鹼、咖啡因、尿酸、異鳥嘌呤、2,6-二胺基嘌呤、9-甲基腺嘌呤、2-羥基腺嘌呤、2-甲基腺嘌呤、1-甲基腺嘌呤、N-甲基腺嘌呤、N,N-二甲基腺嘌呤、2-氟腺嘌呤、9-(2-羥基乙基)腺嘌呤、鳥嘌呤肟、N-(2-羥基乙基)腺嘌呤、8-胺基腺嘌呤、6-胺基-8-苯基-9H-嘌呤、1-乙基腺嘌呤、6-乙基胺基嘌呤、1-苄基腺嘌呤、N-甲基鳥嘌呤、7-(2-羥基乙基)鳥嘌呤、N-(3-氯苯基)鳥嘌呤、N-(3-乙基苯基)鳥嘌呤、2-氮雜腺嘌呤、5-氮雜腺嘌呤、8-氮雜腺嘌呤、8-氮雜鳥嘌呤、8-氮雜嘌呤、8-氮雜黃嘌呤、8-氮雜次黃嘌呤等及其衍生物。 關於感光性樹脂組合物含有上述唑類化合物或嘌呤衍生物之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~20質量份,就光感度特性之觀點而言,更佳為0.5~5質量份。若唑類化合物相對於(A)樹脂100質量份之調配量為0.1質量份以上,則於銅或銅合金之上形成本發明之感光性樹脂組合物之情形時,抑制銅或銅合金表面產生變色,另一方面,若為20質量份以下,則光感度優異。 又,為了抑制銅表面上產生變色而可任意地調配受阻酚化合物。作為受阻酚化合物,可列舉:2,6-二第三丁基-4-甲基苯酚、2,5-二第三丁基-氫醌、3-(3,5-二第三丁基-4-羥基苯基)丙酸十八烷基酯、3-(3,5-二第三丁基-4-羥基苯基)丙酸異辛酯、4,4'-亞甲基雙(2,6-二第三丁基苯酚)、4,4'-硫代-雙(3-甲基-6-第三丁基苯酚)、4,4'-亞丁基-雙(3-甲基-6-第三丁基苯酚)、三乙二醇-雙[3-(3-第三丁基-5-甲基-4-羥基苯基)丙酸酯]、1,6-己二醇-雙[3-(3,5-二第三丁基-4-羥基苯基)丙酸酯]、2,2-硫代-二伸乙基雙[3-(3,5-二第三丁基-4-羥基苯基)丙酸酯]、N,N'-六亞甲基雙(3,5-二第三丁基-4-羥基-苯丙醯胺)、2,2'-亞甲基-雙(4-甲基-6-第三丁基苯酚)、2,2'-亞甲基-雙(4-乙基-6-第三丁基苯酚)、 四[3-(3,5-二第三丁基-4-羥基苯基)丙酸]季戊四醇酯、異氰尿酸三-(3,5-二第三丁基-4-羥基苄基)酯、1,3,5-三甲基-2,4,6-三(3,5-二第三丁基-4-羥基苄基)苯、1,3,5-三(3-羥基-2,6-二甲基-4-異丙基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第二丁基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三[4-(1-乙基丙基)-3-羥基-2,6-二甲基苄基]-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、 1,3,5-三[4-三乙基甲基-3-羥基-2,6-二甲基苄基]-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(3-羥基-2,6-二甲基-4-苯基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-3-羥基-2,5,6-三甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-5-乙基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-6-乙基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-6-乙基-3-羥基-2,5-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-5,6-二乙基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、 1,3,5-三(4-第三丁基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-3-羥基-2,5-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-5-乙基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮等,但並不限定於此。該等之中,尤佳為1,3,5-三(4-第三丁基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮等。 關於受阻酚化合物之調配量,相對於(A)樹脂100質量份,較佳為0.1~20質量份,就光感度特性之觀點而言,更佳為0.5~10質量份。若受阻酚化合物相對於(A)樹脂100質量份之調配量為0.1質量份以上,則例如於銅或銅合金之上形成本發明之感光性樹脂組合物之情形時,防止銅或銅合金產生變色或受到腐蝕,另一方面,若為20質量份以下,則光感度優異。 本發明之感光性樹脂組合物亦可含有交聯劑。交聯劑可為於對使用本發明之感光性樹脂組合物所形成之浮凸圖案進行加熱硬化時,能夠使(A)樹脂交聯、或交聯劑本身能夠形成交聯網狀結構的交聯劑。交聯劑可進一步強化由感光性樹脂組合物所形成之硬化膜之耐熱性及耐化學品性。 作為交聯劑,例如可列舉:作為含有羥甲基及/或烷氧基甲基之化合物的Cymel(註冊商標)300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174,UFR 65、300,Micoat 102、105(以上為Mitsui Cytec公司製造);NIKALAC(註冊商標)MX-270、-280、-290,NIKALAC MS-11,NIKALAC MW-30、-100、-300、-390、-750(以上為SANWA CHEMICAL公司製造);DML-OCHP、DML-MBPC、DML-BPC、DML-PEP、DML-34X、DML-PSBP、DML-PTBP、DML-PCHP、DML-POP、DML-PFP、DML-MBOC、BisCMP-F、DML-BisOC-Z、DML-BisOCHP-Z、DML-BisOC-P、DMOM-PTBT、TMOM-BP、TMOM-BPA、TML-BPAF-MF(以上為本州化學工業公司製造);苯二甲醇、雙(羥基甲基)甲酚、雙(羥基甲基)二甲氧基苯、雙(羥基甲基)二苯醚、雙(羥基甲基)二苯甲酮、羥基甲基苯甲酸羥基甲基苯酯、雙(羥基甲基)聯苯、二甲基雙(羥基甲基)聯苯、雙(甲氧基甲基)苯、雙(甲氧基甲基)甲酚、雙(甲氧基甲基)二甲氧基苯、雙(甲氧基甲基)二苯醚、雙(甲氧基甲基)二苯甲酮、甲氧基甲基苯甲酸甲氧基甲基苯酯、雙(甲氧基甲基)聯苯、二甲基雙(甲氧基甲基)聯苯等。 又,可列舉:作為環氧乙烷化合物之苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、雙酚型環氧樹脂、三苯酚型環氧樹脂、四苯酚型環氧樹脂、苯酚-苯二甲基型環氧樹脂、萘酚-苯二甲基型環氧樹脂、苯酚-萘酚型環氧樹脂、苯酚-二環戊二烯型環氧樹脂、脂環式環氧樹脂、脂肪族環氧樹脂、二乙二醇二縮水甘油醚、山梨醇聚縮水甘油醚、丙二醇二縮水甘油醚、三羥甲基丙烷聚縮水甘油醚、1,1,2,2-四(對羥基苯基)乙烷四縮水甘油醚、甘油三縮水甘油醚、鄰第二丁基苯基縮水甘油醚、1,6-雙(2,3-環氧丙氧基)萘、二甘油聚縮水甘油醚、聚乙二醇縮水甘油醚、YDB-340、YDB-412、YDF-2001、YDF-2004(以上為商品名,新日鐵化學股份有限公司製造)、NC-3000-H、EPPN-501H、EOCN-1020、NC-7000L、EPPN-201L、XD-1000、EOCN-4600(以上為商品名,日本化藥股份有限公司製造)、Epikote(註冊商標)1001、Epikote 1007、Epikote 1009、Epikote 5050、Epikote 5051、Epikote 1031S、Epikote 180S65、Epikote 157H70、YX-315-75(以上為商品名,Japan Epoxy Resins股份有限公司製造)、EHPE3150、PLACCEL G402、PUE101、PUE105(以上為商品名,Diacel Chemical Industries股份有限公司製造)、EPICLON(註冊商標)830、850、1050、N-680、N-690、N-695、N-770、HP-7200、HP-820、EXA-4850-1000(以上為商品名,DIC公司製造)、DENACOL(註冊商標)EX-201、EX-251、EX-203、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-711、EX-731、EX-810、EX-911、EM-150(以上為商品名,Nagase chemteX公司製造)、Epolight(註冊商標)70P、Epolight 100MF(以上為商品名,共榮社化學製造)等。 又,可列舉:作為含異氰酸酯基之化合物之4,4'-二苯基甲烷二異氰酸酯、甲苯二異氰酸酯、1,3-苯二亞甲基二異氰酸酯、二環己基甲烷-4,4'-二異氰酸酯、異佛爾酮二異氰酸酯、六亞甲基二異氰酸酯、Takenate(註冊商標)500、600、Cosmonate(註冊商標)NBDI、ND(以上為商品名,三井化學公司製造)、Duranate(註冊商標)17B-60PX、TPA-B80E、MF-B60X、MF-K60X、E402-B80T(以上為商品名,Asahi Kasei Chemicals公司製造)等。 又,可列舉:作為雙順丁烯二醯亞胺化合物之4,4'-二苯基甲烷雙順丁烯二醯亞胺、苯基甲烷順丁烯二醯亞胺、間伸苯基雙順丁烯二醯亞胺、雙酚A二苯醚雙順丁烯二醯亞胺、3,3'-二甲基-5,5'-二乙基-4,4'-二苯基甲烷雙順丁烯二醯亞胺、4-甲基-1,3-伸苯基雙順丁烯二醯亞胺、1,6'-雙順丁烯二醯亞胺-(2,2,4-三甲基)己烷、4,4'-二苯醚雙順丁烯二醯亞胺、4,4'-二苯基碸雙順丁烯二醯亞胺、1,3-雙(3-順丁烯二醯亞胺苯氧基)苯、1,3-雙(4-順丁烯二醯亞胺苯氧基)苯、BMI-1000、BMI-1100、BMI-2000、BMI-2300、BMI-3000、BMI-4000、BMI-5100、BMI-7000、BMI-TMH、BMI-6000、BMI-8000(以上為商品名,大和化成工業股份有限公司製造)等,但只要為如上所述般進行熱交聯之化合物,則並不限定於該等。 關於使用交聯劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.5~20質量份,更佳為2~10質量份。於該調配量為0.5質量份以上之情形時,表現出良好之耐熱性及耐化學品性,另一方面,於為20質量份以下之情形時,保存穩定性優異。 本發明之感光性樹脂組合物亦可包含有機鈦化合物。藉由包含有機鈦化合物,而即便於約250℃之低溫下硬化之情形時亦可形成耐化學品性優異之感光性樹脂層。又,尤其藉由使感光性樹脂組合物中含有(B)化合物與有機鈦化合物該兩者,而具有固化後之樹脂層不僅基板接著性優異且耐化學品性亦優異之效果。 又,尤其藉由使感光性樹脂組合物中含有(B-1)奈米粒子與有機鈦化合物該兩者,而具有固化後之樹脂層不僅基板接著性優異且耐化學品性亦優異之效果。 又,尤其藉由使感光性樹脂組合物中含有(B-2)熱交聯劑與有機鈦化合物該兩者,而具有固化後之樹脂層不僅基板接著性優異且耐化學品性亦優異之效果。 又,尤其藉由使感光性樹脂組合物中含有(B-3)化合物與有機鈦化合物該兩者,而具有固化後之樹脂層不僅基板接著性優異且耐化學品性亦優異之效果。 作為可使用之有機鈦化合物,可列舉鈦原子上經由共價鍵或離子鍵而鍵結了有機化學物質者。 將有機鈦化合物之具體例示於以下之I)~VII): I)鈦螯合物化合物:其中,就負型感光性樹脂組合物之保存穩定性及獲得良好圖案之方面而言,更佳為具有2個以上之烷氧基之鈦螯合物,具體例如下:雙(三乙醇胺)二異丙醇鈦、雙(2,4-戊二酸)二正丁醇鈦、雙(2,4-戊二酸)二異丙醇鈦、雙(四甲基庚二酸)二異丙醇鈦、雙(乙基乙醯乙酸)二異丙醇鈦等。 II)四烷氧基鈦化合物:例如四(正丁醇)鈦、四乙醇鈦、四(2-乙基己醇)鈦、四異丁醇鈦、四異丙醇鈦、四甲醇鈦、四甲氧基丙醇鈦、四甲基苯酚鈦、四(正壬醇)鈦、四(正丙醇)鈦、四硬脂醇鈦、四[雙{2,2-(烯丙氧基甲基)丁醇}]鈦等。 III)二茂鈦化合物:例如(五甲基環戊二烯基)三甲醇鈦、雙(η5 -2,4-環戊二烯-1-基)雙(2,6-二氟苯基)鈦、雙(η5 -2,4-環戊二烯-1-基)雙(2,6-二氟-3-(1H-吡咯-1-基)苯基)鈦等。 IV)單烷氧基鈦化合物:例如三(二辛基磷酸)異丙醇鈦、三(十二烷基苯磺酸)異丙醇鈦等。 V)氧鈦化合物:例如雙(戊二酸)氧鈦、雙(四甲基庚二酸)氧鈦、酞菁氧鈦等。 VI)四乙醯丙酮酸鈦化合物:例如四乙醯丙酮酸鈦等。 VII)鈦酸酯偶合劑:例如三(十二烷基苯磺醯基)鈦酸異丙酯等。 其中,就表現出更良好之耐化學品性之觀點而言,有機鈦化合物較佳為選自由上述I)鈦螯合物化合物、II)四烷氧基鈦化合物及III)二茂鈦化合物所組成之群中之至少一種化合物。尤佳為雙(乙基乙醯乙酸)二異丙醇鈦、四(正丁醇)鈦、及雙(η5 -2,4-環戊二烯-1-基)雙(2,6-二氟-3-(1H-吡咯-1-基)苯基)鈦。 關於調配有機鈦化合物之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.05~10質量份,更佳為0.1~2質量份。於該調配量為0.05質量份以上之情形時,表現出良好之耐熱性及耐化學品性,另一方面,於為10質量份以下之情形時,保存穩定性優異。 進而,為了提高使用本發明之感光性樹脂組合物所形成之膜與基材之接著性,可任意地調配接著助劑。作為接著助劑,可列舉:γ-胺基丙基二甲氧基矽烷、N-(β-胺基乙基)-γ-胺基丙基甲基二甲氧基矽烷、γ-縮水甘油氧基丙基甲基二甲氧基矽烷、γ-巰基丙基甲基二甲氧基矽烷、3-甲基丙烯醯氧基丙基二甲氧基甲基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、二甲氧基甲基-3-哌啶基丙基矽烷、二乙氧基-3-縮水甘油氧基丙基甲基矽烷、N-(3-二乙氧基甲基矽烷基丙基)丁二醯亞胺、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸、二苯甲酮-3,3'-雙(N-[3-三乙氧基矽烷基]丙基醯胺)-4,4'-二羧酸、苯-1,4-雙(N-[3-三乙氧基矽烷基]丙基醯胺)-2,5-二羧酸、3-(三乙氧基矽烷基)丙基丁二酸酐、N-苯基胺基丙基三甲氧基矽烷、3-脲基丙基三甲氧基矽烷、3-脲基丙基三乙氧基矽烷、3-(三烷氧基矽烷基)丙基琥珀酸酐等矽烷偶合劑,及三(乙基乙醯乙酸)鋁、三(乙醯丙酮酸)鋁、乙醯乙酸乙基鋁二異丙酯等鋁系接著助劑等。 該等接著助劑之中,就接著力之方面而言,更佳為使用矽烷偶合劑。於感光性樹脂組合物含有接著助劑之情形時,關於接著助劑之調配量,相對於(A)樹脂100質量份,較佳為0.5~25質量份之範圍。 作為矽烷偶合劑,可列舉:3-巰基丙基三甲氧基矽烷(信越化學工業股份有限公司製造:商品名KBM803、Chisso股份有限公司製造:商品名Sila-Ace S810)、3-巰基丙基三乙氧基矽烷(Azmax股份有限公司製造:商品名SIM6475.0)、3-巰基丙基甲基二甲氧基矽烷(信越化學工業股份有限公司製造:商品名LS1375、Azmax股份有限公司製造:商品名SIM6474.0)、巰基甲基三甲氧基矽烷(Azmax股份有限公司製造:商品名SIM6473.5C)、巰基甲基甲基二甲氧基矽烷(Azmax股份有限公司製造:商品名SIM6473.0)、3-巰基丙基二乙氧基甲氧基矽烷、3-巰基丙基乙氧基二甲氧基矽烷、3-巰基丙基三丙氧基矽烷、3-巰基丙基二乙氧基丙氧基矽烷、3-巰基丙基乙氧基二丙氧基矽烷、3-巰基丙基二甲氧基丙氧基矽烷、3-巰基丙基甲氧基二丙氧基矽烷、2-巰基乙基三甲氧基矽烷、2-巰基乙基二乙氧基甲氧基矽烷、2-巰基乙基乙氧基二甲氧基矽烷、2-巰基乙基三丙氧基矽烷、2-巰基乙基三丙氧基矽烷、2-巰基乙基乙氧基二丙氧基矽烷、2-巰基乙基二甲氧基丙氧基矽烷、2-巰基乙基甲氧基二丙氧基矽烷、4-巰基丁基三甲氧基矽烷、4-巰基丁基三乙氧基矽烷、4-巰基丁基三丙氧基矽烷、N-(3-三乙氧基矽烷基丙基)脲(信越化學工業股份有限公司製造:商品名LS3610、Azmax股份有限公司製造:商品名SIU9055.0)、N-(3-三甲氧基矽烷基丙基)脲(Azmax股份有限公司製造:商品名SIU9058.0)、N-(3-二乙氧基甲氧基矽烷基丙基)脲、N-(3-乙氧基二甲氧基矽烷基丙基)脲、N-(3-三丙氧基矽烷基丙基)脲、N-(3-二乙氧基丙氧基矽烷基丙基)脲、N-(3-乙氧基二丙氧基矽烷基丙基)脲、N-(3-二甲氧基丙氧基矽烷基丙基)脲、N-(3-甲氧基二丙氧基矽烷基丙基)脲、N-(3-三甲氧基矽烷基乙基)脲、N-(3-乙氧基二甲氧基矽烷基乙基)脲、N-(3-三丙氧基矽烷基乙基)脲、N-(3-三丙氧基矽烷基乙基)脲、N-(3-乙氧基二丙氧基矽烷基乙基)脲、N-(3-二甲氧基丙氧基矽烷基乙基)脲、N-(3-甲氧基二丙氧基矽烷基乙基)脲、N-(3-三甲氧基矽烷基丁基)脲、N-(3-三乙氧基矽烷基丁基)脲、N-(3-三丙氧基矽烷基丁基)脲、3-(m-胺基苯氧基)丙基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0598.0)、間胺基苯基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0599.0)、對胺基苯基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0599.1)、胺基苯基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0599.2)、2-(三甲氧基矽烷基乙基)吡啶(Azmax股份有限公司製造:商品名SIT8396.0)、2-(三乙氧基矽烷基乙基)吡啶、2-(二甲氧基矽烷基甲基乙基)吡啶、2-(二乙氧基矽烷基甲基乙基)吡啶、胺基甲酸(3-三乙氧基矽烷基丙基)第三丁酯、(3-縮水甘油氧基丙基)三乙氧基矽烷、四甲氧基矽烷、四乙氧基矽烷、四正丙氧基矽烷、四異丙氧基矽烷、四正丁氧基矽烷、四異丁氧基矽烷、四第三丁氧基矽烷、四(甲氧基乙氧基矽烷)、四(甲氧基正丙氧基矽烷)、四(乙氧基乙氧基矽烷)、四(甲氧基乙氧基乙氧基矽烷)、雙(三甲氧基矽烷基)乙烷、雙(三甲氧基矽烷基)己烷、雙(三乙氧基矽烷基)甲烷、雙(三乙氧基矽烷基)乙烷、雙(三乙氧基矽烷基)乙烯、雙(三乙氧基矽烷基)辛烷、雙(三乙氧基矽烷基)辛二烯、雙[3-(三乙氧基矽烷基)丙基]二硫醚、雙[3-(三乙氧基矽烷基)丙基]四硫醚、二第三丁氧基二乙醯氧基矽烷、二異丁氧基鋁氧基三乙氧基矽烷、雙(戊二酸)鈦-O,O'-雙(氧基乙基)-胺基丙基三乙氧基矽烷、苯基矽烷三醇、甲基苯基矽烷二醇、乙基苯基矽烷二醇、正丙基苯基矽烷二醇、異丙基苯基矽烷二醇、正丁基苯基矽烷二醇、異丁基苯基矽烷二醇、第三丁基苯基矽烷二醇、二苯基矽烷二醇、二甲氧基二苯基矽烷、二乙氧基二苯基矽烷、二甲氧基二對甲苯基矽烷、乙基甲基苯基矽烷醇、正丙基甲基苯基矽烷醇、異丙基甲基苯基矽烷醇、正丁基甲基苯基矽烷醇、異丁基甲基苯基矽烷醇、第三丁基甲基苯基矽烷醇、乙基正丙基苯基矽烷醇、乙基異丙基苯基矽烷醇、正丁基乙基苯基矽烷醇、異丁基乙基苯基矽烷醇、第三丁基乙基苯基矽烷醇、甲基二苯基矽烷醇、乙基二苯基矽烷醇、正丙基二苯基矽烷醇、異丙基二苯基矽烷醇、正丁基二苯基矽烷醇、異丁基二苯基矽烷醇、第三丁基二苯基矽烷醇、三苯基矽烷醇等,但並不限定於該等。該等可單獨使用,亦可將複數種組合使用。 作為矽烷偶合劑,上述矽烷偶合劑之中,就保存穩定性之觀點而言,較佳為苯基矽烷三醇、三甲氧基苯基矽烷、三甲氧基(對甲苯基)矽烷、二苯基矽烷二醇、二甲氧基二苯基矽烷、二乙氧基二苯基矽烷、二甲氧基二對甲苯基矽烷、三苯基矽烷醇、及下述結構所表示之矽烷偶合劑。 [化126]
Figure 02_image251
關於使用矽烷偶合劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.01~20質量份。 本發明之感光性樹脂組合物亦可進而含有上述成分以外之成分。該成分之較佳者根據作為(A)樹脂例如使用聚醯亞胺前驅物及聚醯胺等之負型或使用聚㗁唑前驅物、可溶性聚醯亞胺及酚樹脂等之正型等而不同。 於使用聚醯亞胺前驅物或聚醯胺等作為(A)樹脂之負型之情形時,為了提高光感度而可任意地調配增感劑。作為該增感劑,例如可列舉:米其勒酮、4,4'-雙(二乙基胺基)二苯甲酮、2,5-雙(4'-二乙基胺基亞苄基)環戊烷、2,6-雙(4'-二乙基胺基亞苄基)環己酮、2,6-雙(4'-二乙基胺基亞苄基)-4-甲基環己酮、4,4'-雙(二甲基胺基)查爾酮、4,4'-雙(二乙基胺基)查爾酮、對二甲基胺基亞桂皮基茚滿酮、對二甲基胺基亞苄基茚滿酮、2-(對二甲基胺基苯基伸聯苯基)苯并噻唑、2-(對二甲基胺基苯基伸乙烯基)苯并噻唑、2-(對二甲基胺基苯基伸乙烯基)異萘并噻唑、1,3-雙(4'-二甲基胺基亞苄基)丙酮、1,3-雙(4'-二乙基胺基亞苄基)丙酮、3,3'-羰基-雙(7-二乙基胺基香豆素)、3-乙醯基-7-二甲基胺基香豆素、3-乙氧基羰基-7-二甲基胺基香豆素、3-苄氧基羰基-7-二甲基胺基香豆素、3-甲氧基羰基-7-二乙基胺基香豆素、3-乙氧基羰基-7-二乙基胺基香豆素、N-苯基-N'-乙基乙醇胺、N-苯基二乙醇胺、N-對甲苯基二乙醇胺、N-苯基乙醇胺、4-𠰌啉基二苯甲酮、二甲基胺基苯甲酸異戊酯、二乙基胺基苯甲酸異戊酯、2-巰基苯并咪唑、1-苯基-5-巰基四唑、2-巰基苯并噻唑、2-(對二甲基胺基苯乙烯基)苯并㗁唑、2-(對二甲基胺基苯乙烯基)苯并噻唑、2-(對二甲基胺基苯乙烯基)萘并(1,2-d)噻唑、2-(對二甲基胺基苯甲醯基)苯乙烯等。該等可單獨使用或以例如2~5者之組合之形式使用。 關於感光性樹脂組合物含有用以提高光感度之增感劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~25質量份。 又,為了提高浮凸圖案之解像性,可任意地調配具有光聚合性之不飽和鍵之單體。作為此種單體,較佳為藉由光聚合起始劑而進行自由基聚合反應之(甲基)丙烯酸系化合物,並不特別限定於以下所列者,可列舉:二乙二醇二甲基丙烯酸酯、四乙二醇二甲基丙烯酸酯等乙二醇或聚乙二醇之單或二丙烯酸酯及甲基丙烯酸酯、丙二醇或聚丙二醇之單或二丙烯酸酯及甲基丙烯酸酯、甘油之單、二或三丙烯酸酯及甲基丙烯酸酯、環己烷二丙烯酸酯及二甲基丙烯酸酯、1,4-丁二醇之二丙烯酸酯及二甲基丙烯酸酯、1,6-己二醇之二丙烯酸酯及二甲基丙烯酸酯、新戊二醇之二丙烯酸酯及二甲基丙烯酸酯、雙酚A之單或二丙烯酸酯及甲基丙烯酸酯、苯三甲基丙烯酸酯、丙烯酸異𦯉酯及甲基丙烯酸異𦯉酯、丙烯醯胺及其衍生物、甲基丙烯醯胺及其衍生物、三羥甲基丙烷三丙烯酸酯及甲基丙烯酸酯、甘油之二或三丙烯酸酯及甲基丙烯酸酯、季戊四醇之二、三或四丙烯酸酯及甲基丙烯酸酯、以及該等化合物之環氧乙烷或環氧丙烷加成物等化合物。 於感光性樹脂組合物含有用以提高浮凸圖案之解像性的上述具有光聚合性之不飽和鍵之單體之情形時,關於具有光聚合性之不飽和鍵之單體之調配量,相對於(A)樹脂100質量份,較佳為1~50質量份。 又,於使用聚醯亞胺前驅物或聚醯胺等作為(A)樹脂之負型之情形時,尤其是為了提高以包含溶劑之溶液之狀態保存時之感光性樹脂組合物之黏度及光感度之穩定性,可任意地調配熱聚合抑制劑。作為熱聚合抑制劑,可使用氫醌、N-亞硝基二苯基胺、對第三丁基兒茶酚、啡噻𠯤、N-苯基萘基胺、乙二胺四乙酸、1,2-環己二胺四乙酸、二醇醚二胺四乙酸、2,6-二第三丁基對甲基苯酚、5-亞硝基-8-羥基喹啉、1-亞硝基-2-萘酚、2-亞硝基-1-萘酚、2-亞硝基-5-(N-乙基-N-磺丙基胺基)苯酚、N-亞硝基-N-苯基羥基胺銨鹽、N-亞硝基-N(1-萘基)羥基胺銨鹽等。 關於感光性樹脂組合物中調配熱聚合抑制劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.005~12質量份之範圍。 另一方面,本發明之感光樹脂組合物中,於使用聚㗁唑前驅物、可溶性聚醯亞胺或酚樹脂等作為(A)樹脂之正型之情形時,視需要可適當添加先前作為感光性樹脂組合物之添加劑而使用之染料、界面活性劑、以及熱酸產生劑、溶解促進劑、用以提高與基材之密接性之接著助劑等。 若更具體地說明上述添加劑,則作為染料,例如可列舉:甲基紫、結晶紫、孔雀綠等。又,作為界面活性劑,例如可列舉包含聚丙二醇或聚氧乙烯月桂醚等聚二醇類或其衍生物之非離子系界面活性劑,例如Fluorad(商品名,住友3M公司製造)、MEGAFAC(商品名,Dainippon Ink & Chemical Industry公司製造)或Lumiflon(商品名,旭硝子公司製造)等氟系界面活性劑,例如KP341(商品名,信越化學工業公司製造)、DBE(商品名,Chisso公司製造)、Glanol(商品名,共榮社化學公司製造)等有機矽氧烷界面活性劑。作為接著助劑,例如可列舉:烷基咪唑啉、丁酸、烷基酸、聚羥基苯乙烯、聚乙烯基甲醚、第三丁基酚醛清漆、環氧矽烷、環氧聚合物等、及各種矽烷偶合劑。 關於上述染料及界面活性劑之調配量,相對於(A)樹脂100質量份,較佳為0.1~30質量份。 又,就即便於降低硬化溫度之情形時亦表現出良好之硬化物之熱物性及機械物性之觀點而言,可任意地調配熱酸產生劑。 就即便於降低硬化溫度之情形時亦表現出良好之硬化物之熱物性及機械物性之觀點而言,較佳為調配熱酸產生劑。 作為熱酸產生劑,可列舉:具有利用熱而產生酸之功能之鎓鹽等由強酸與鹼所形成之鹽、或醯亞胺磺酸酯。 作為鎓鹽,例如可列舉:芳基重氮鎓鹽、二苯基錪鹽等二芳基錪鹽;二(第三丁基苯基)錪鹽等二(烷基芳基)錪鹽;三甲基鋶鹽之類的三烷基鋶鹽;二甲基苯基鋶鹽等二烷基單芳基鋶鹽;二苯基甲基鋶鹽等二芳基單烷基錪鹽;三芳基鋶鹽等。 該等之中,較佳為對甲苯磺酸之二(第三丁基苯基)錪鹽、三氟甲磺酸之二(第三丁基苯基)錪鹽、三氟甲磺酸之三甲基鋶鹽、三氟甲磺酸之二甲基苯基鋶鹽、三氟甲磺酸之二苯基甲基鋶鹽、九氟丁磺酸之二(第三丁基苯基)錪鹽、樟腦磺酸之二苯基錪鹽、乙磺酸之二苯基錪鹽、苯磺酸之二甲基苯基鋶鹽、甲苯磺酸之二苯基甲基鋶鹽等。 又,作為由強酸與鹼所形成之鹽,除上述鎓鹽以外,亦可使用由如下強酸與鹼所形成之鹽,例如吡啶鎓鹽。作為強酸,可列舉:對甲苯磺酸、苯磺酸之類的芳基磺酸,樟腦磺酸、三氟甲磺酸、九氟丁磺酸之類的全氟烷基磺酸,甲磺酸、乙磺酸、丁磺酸之類的烷基磺酸等。作為鹼,可列舉:吡啶、2,4,6-三甲基吡啶之類的烷基吡啶、2-氯-N-甲基吡啶之類的N-烷基吡啶、鹵化-N-烷基吡啶等。 作為醯亞胺磺酸酯,例如可使用萘甲醯亞胺磺酸酯、鄰苯二甲醯亞胺磺酸酯等,只要為於熱作用下產生酸之化合物,則並無限定。 關於使用熱酸產生劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~30質量份,更佳為0.5~10質量份,進而較佳為1~5質量份。 於正型之感光性樹脂組合物之情形時,為了促進於感光後無用之樹脂之去除,可使用溶解促進劑。較佳為例如具有羥基或羧基之化合物。作為具有羥基之化合物之例,可列舉:用於上述萘醌二疊氮化合物之壓載劑、以及對異丙苯基苯酚、雙酚類、間苯二酚類、及MtrisPC、MtetraPC等直鏈狀酚化合物、TrisP-HAP、TrisP-PHBA、TrisP-PA等非直鏈狀酚化合物(均為本州化學工業公司製造)、二苯基甲烷之2~5個苯酚取代體、3,3-二苯基丙烷之1~5個苯酚取代體、使2,2-雙-(3-胺基-4-羥基苯基)六氟丙烷與5-降𦯉烯-2,3-二羧酸酐以莫耳比1:2進行反應而獲得之化合物、使雙-(3-胺基-4-羥基苯基)碸與1,2-環己基二羧酸酐以莫耳比1:2進行反應而獲得之化合物、N-羥基琥珀醯亞胺、N-羥基苯二甲醯亞胺、N-羥基5-降𦯉烯-2,3-二羧醯亞胺等。作為具有羧基之化合物之例,可列舉:3-苯基乳酸、4-羥基苯基乳酸、4-羥基苦杏仁酸、3,4-二羥基苦杏仁酸、4-羥基-3-甲氧基苦杏仁酸、2-甲氧基-2-(1-萘基)丙酸、苦杏仁酸、2-苯乳酸、α-甲氧基苯基乙酸、O-乙醯基苦杏仁酸、伊康酸等。 關於使用溶解促進劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~30質量份。 <硬化浮凸圖案之製造方法及半導體裝置> 又,本發明提供一種硬化浮凸圖案之製造方法,其包括:步驟(1),其係藉由於基板上塗佈上述本發明之感光性樹脂組合物而於該基板上形成樹脂層;步驟(2),其係對該樹脂層進行曝光;步驟(3),其係將該曝光後之樹脂層進行顯影而形成浮凸圖案;及步驟(4),其係藉由對該浮凸圖案進行加熱處理而形成硬化浮凸圖案。以下說明各步驟之典型態樣。 (1)藉由於基板上塗佈感光性樹脂組合物而於該基板上形成樹脂層之步驟 於本步驟中,於基材上塗佈本發明之感光性樹脂組合物,視需要其後加以乾燥而形成樹脂層。作為塗佈方法,可採用先前用於感光性樹脂組合物塗佈之方法,例如利用旋轉塗佈機、棒式塗佈機、刮刀塗佈機、簾幕式塗佈機、網版印刷機等進行塗佈之方法、利用噴霧塗佈機進行噴霧塗佈之方法等。 作為使用本發明之感光性樹脂組合物形成浮凸圖案之方法,不僅可藉由於基板上塗佈該感光性樹脂組合物而於該基板上形成樹脂層,亦可藉由將該感光性樹脂組合物製成膜之形態後於基板上積層感光性樹脂組合物之層而形成樹脂層。又,於支持基材上形成本發明之感光性樹脂組合物之膜,於使用該膜時,可於積層後去除支持基材,亦可於積層前去除支持基材。 視需要可使包含感光性樹脂組合物之塗膜乾燥。作為乾燥方法,可採用風乾、利用烘箱或加熱板進行之加熱乾燥、真空乾燥等方法。具體而言,於進行風乾或加熱乾燥之情形時,可於20℃~140℃下、1分鐘~1小時之條件下進行乾燥。藉由如上方式而可於基板上形成樹脂層。 (2)對樹脂層進行曝光之步驟 於本步驟中,使用接觸式曝光機、鏡面投影曝光機、步進機等曝光裝置,隔著具有圖案之光罩(photomask)或掩膜(reticle)、或者直接地藉由紫外線光源等對上述所形成之樹脂層進行曝光。 其後,為了提高光感度等,視需要亦可實施任意之溫度及時間之組合之條件下之曝光後烘烤(PEB)及/或顯影前烘烤。烘烤條件之範圍較佳為溫度:40~120℃、時間:10秒~240秒,但只要無損本發明之感光性樹脂組合物之各特性,則不限於該範圍。 (3)將曝光後之樹脂層進行顯影而形成浮凸圖案之步驟 於本步驟中,將曝光後之感光性樹脂層之曝光部或未曝光部顯影去除。於使用負型之感光性樹脂組合物之情形(例如使用聚醯亞胺前驅物或聚醯胺作為(A)樹脂之情形)時,將未曝光部顯影去除,於使用正型之感光性樹脂組合物之情形(例如使用聚㗁唑前驅物或可溶性聚醯亞胺作為(A)樹脂之情形)時,將曝光部顯影去除。作為顯影方法,可自先前已知之光阻之顯影方法、例如旋轉噴霧法、覆液法、伴有超音波處理之浸漬法等中選擇任意方法而使用。又,於顯影後,為了調整浮凸圖案之形狀等,視需要亦可實施任意之溫度及時間之組合之條件下之顯影後烘烤。 作為顯影時使用之顯影液,較佳為針對感光性樹脂組合物之良溶劑、或該良溶劑與不良溶劑之組合。例如於不溶於鹼性水溶液之感光性樹脂組合物之情形時,作為良溶劑,較佳為N-甲基吡咯啶酮、N-環己基-2-吡咯啶酮、N,N-二甲基乙醯胺、環戊酮、環己酮、γ-丁內酯、α-乙醯基-γ-丁內酯等,作為不良溶劑,較佳為甲苯、二甲苯、甲醇、乙醇、異丙醇、乳酸乙酯、丙二醇甲醚乙酸酯及水等。於將良溶劑與不良溶劑混合使用之情形時,較佳為根據感光性樹脂組合物中之聚合物之溶解性而調整不良溶劑相對於良溶劑之比率。又,亦可將2種以上之各溶劑、例如複數種溶劑組合使用。 另一方面,於溶於鹼性水溶液之感光性樹脂組合物之情形時,顯影時使用之顯影液係將鹼性水溶液可溶性聚合物溶解去除者,典型而言為溶解有鹼性化合物之鹼性水溶液。顯影液中所溶解之鹼性化合物可為無機鹼性化合物或有機鹼性化合物中之任意者。 作為該無機鹼性化合物,例如可列舉:氫氧化鋰、氫氧化鈉、氫氧化鉀、磷酸氫二銨、磷酸氫二鉀、磷酸氫二鈉、矽酸鋰、矽酸鈉、矽酸鉀、碳酸鋰、碳酸鈉、碳酸鉀、硼酸鋰、硼酸鈉、硼酸鉀、及氨等。 又,作為該有機鹼性化合物,例如可列舉:氫氧化四甲基銨、氫氧化四乙基銨、氫氧化三甲基羥基乙基銨、甲胺、二甲胺、三甲胺、單乙胺、二乙胺、三乙胺、正丙胺、二正丙胺、異丙胺、二異丙胺、甲基二乙基胺、二甲基乙醇胺、乙醇胺、及三乙醇胺等。 進而,視需要可於上述鹼性水溶液中適量添加甲醇、乙醇、丙醇或乙二醇等水溶性有機溶劑、界面活性劑、保存穩定劑、及樹脂之溶解抑止劑等。藉由如上方式可形成浮凸圖案。 (4)藉由對浮凸圖案進行加熱處理而形成硬化浮凸圖案之步驟 於本步驟中,藉由對經上述顯影而獲得之浮凸圖案進行加熱而轉變為硬化浮凸圖案。作為加熱硬化之方法,可選擇使用加熱板者、使用烘箱者、使用可設定溫控程式之升溫式烘箱者等各種方法。加熱可於例如180℃~400℃下、30分鐘~5小時之條件下進行。作為加熱硬化時之環境氣體,可使用空氣,亦可使用氮氣、氬氣等惰性氣體。 <半導體裝置> 本發明亦提供一種包含藉由上述本發明之硬化浮凸圖案之製造方法所獲得之硬化浮凸圖案的半導體裝置。本發明亦提供一種包含作為半導體元件之基材、與於上述基材上藉由上述硬化浮凸圖案製造方法所形成之樹脂之硬化浮凸圖案的半導體裝置。又,本發明亦適用於使用半導體元件作為基材,包括上述硬化浮凸圖案之製造方法作為步驟之一部分的半導體裝置之製造方法。本發明之半導體裝置可藉由將利用上述硬化浮凸圖案製造方法所形成之硬化浮凸圖案形成為表面保護膜、層間絕緣膜、再配線用絕緣膜、倒裝晶片裝置用保護膜、或具有凸塊結構之半導體裝置之保護膜等,並與已知之半導體裝置之製造方法進行組合而製造。 本發明之感光性樹脂組合物除如上所述般適用於半導體裝置以外,亦可用於多層電路之層間絕緣、撓性貼銅板之保護塗層、阻焊膜、及液晶配向膜等用途。 [實施例] 以下,藉由實施例而具體地說明本發明,但本發明並不限定於此。於實施例、比較例及製造例中,依據以下方法測定及評價感光性樹脂組合物之物性。 (1)重量平均分子量 藉由凝膠滲透層析法(標準聚苯乙烯換算)測定各樹脂之重量平均分子量(Mw)。測定所使用之管柱為昭和電工股份有限公司製造之商標名「Shodex 805M/806M串聯」,標準單分散聚苯乙烯選擇昭和電工股份有限公司製造之商標名「Shodex STANDARD SM-105」,展開溶劑為N-甲基-2-吡咯啶酮,檢測器使用昭和電工股份有限公司製造之商標名「Shodex RI-930」。 (2)Cu上之硬化浮凸圖案之製作 使用濺鍍裝置(L-440S-FHL型,Canon Anelva公司製造),於6英吋矽晶圓(Fujimi Electronic Industry股份有限公司製造,厚度625±25 μm)上依序濺鍍厚200 nm之Ti、厚400 nm之Cu。繼而,使用塗佈顯影儀(Coater Developer)(D-Spin60A型,SOKUDO公司製造),於該晶圓上旋轉塗佈藉由下述方法所製備之感光性樹脂組合物,加以乾燥,藉此形成厚10 μm之塗膜(於第2實施例中形成厚6~10 μm之塗膜)。使用附測試圖案之光罩,利用平行光光罩對準曝光機(PLA-501FA型,Canon公司製造),對該塗膜照射300 mJ/cm2 之能量。繼而,於負型之情形時使用環戊酮作為顯影液,於正型之情形時使用2.38%TMAH(tetramethylammonium hydroxide,四甲基氫氧化銨)作為顯影液,利用塗佈顯影儀(D-Spin60A型,SOKUDO公司製造)對該塗膜進行噴霧顯影,於負型之情形時使用丙二醇甲醚乙酸酯進行沖洗,於正型之情形時使用純水進行沖洗,藉此獲得Cu上之浮凸圖案。 使用升溫程式型固化爐(VF-2000型,Koyo Lindberg公司製造),於氮氣環境下,於各實施例所記載之溫度下對Cu上形成有該浮凸圖案之晶圓進行2小時之加熱處理,藉此於Cu上獲得包含厚約6~7 μm之樹脂之硬化浮凸圖案。 (3)Cu上之硬化浮凸圖案之高溫保存(high temperature storage)試驗與其後之評價 使用升溫程式型固化爐(VF-2000型,Koyo Lindberg公司製造),於空氣中,於150℃下對Cu上形成有該硬化浮凸圖案之晶圓加熱168小時。繼而,使用電漿表面處理裝置(EXAM型,神港精機公司製造),藉由電漿蝕刻而去除Cu上全部之樹脂層。電漿蝕刻條件如下所述。 輸出:133 W 氣體種類、流量:O2 :40 ml/min+CF4 :1 ml/min 氣體壓力:50 Pa 模式:強力模式(hard mode) 蝕刻時間:1800秒 利用FE-SEM(field emission-scanning electron microscope,場發射掃描式電子顯微鏡)(S-4800型,Hitachi High-Technologies公司製造)觀察樹脂層全部經去除之Cu表面,使用圖像解析軟體(A像君,旭化成公司製造),算出空隙於Cu層之表面所占之面積比率。 <第1實施例> 作為第1實施例,進行以下之實驗。 <製造例1>((A)作為聚醯亞胺前驅物之聚合物(A)-1之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物(A)-1)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-1之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP(N-methylpyrrolidone,N-甲基吡咯啶酮) 流速:1 ml/min. <製造例2>((A)作為聚醯亞胺前驅物之聚合物(A)-2之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物(A)-2。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-2之分子量,結果重量平均分子量(Mw)為22,000。 <製造例3>((A)作為聚醯亞胺前驅物之聚合物(A)-3之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物(A)-3。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-3之分子量,結果重量平均分子量(Mw)為21,000。 <製造例4>((A)作為聚醯胺之聚合物(A)-4之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物(A)-4之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL(丁內酯,γ-butyrolactone)400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物(A)-4)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-4之分子量,結果重量平均分子量(Mw)為34,700。 <製造例5>((A)作為聚㗁唑前驅物之聚合物(A)-5之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗聚苯并㗁唑前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物(A)-5)。 <製造例6>((A)作為聚醯亞胺之聚合物(A)-6之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物(A)-6)。 <製造例7>((A)作為酚樹脂之聚合物(A)-8之合成) 對容積1.0 L之附迪安-斯塔克裝置之可分離式燒瓶進行氮氣置換,其後,於該可分離式燒瓶中將間苯二酚81.3 g(0.738 mol)、BMMB 84.8 g(0.35 mol)、對甲苯磺酸3.81 g(0.02 mol)、丙二醇單甲醚(以下亦稱為PGME)116 g於50℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至120℃,確認自反應液生成了甲醇。直接於120℃下將反應液攪拌3小時。 繼而,於另一容器中將2,6-雙(羥基甲基)對甲酚24.9 g(0.150 mol)、PGME 249 g進行混合攪拌,使之均勻溶解,將所獲得之溶液使用滴液漏斗歷時1小時滴加至該可分離式燒瓶內,滴液後進而攪拌2小時。 反應結束後,進行與製造例7相同之處理,而以產率77%獲得包含間苯二酚/BMMB/2,6-雙(羥基甲基)對甲酚之共聚物(聚合物H)。該聚合物H之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為9,900。 <實施例1> 使用聚合物(A)-1、(A)-2,藉由以下之方法製備負型感光性樹脂組合物,並進行感光性樹脂組合物之評價。將作為聚醯亞胺前驅物之聚合物(A)-1 50 g與(A)-2 50 g(相當於(A)樹脂)與鄰苯二甲酸二環己酯(東京化成工業股份有限公司製造,相當於(B)-1)4 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表1中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.1%之結果。 <實施例2> 上述實施例1中,將(B)成分變為鄰苯二甲酸二苯酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。 <實施例3> 上述實施例1中,將(B)成分變為鄰苯二甲酸二-2-乙基己酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <實施例4> 上述實施例1中,將(B)成分變為偏苯三甲酸二環己酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.3%之結果。 <實施例5> 上述實施例1中,將(B)成分變為均苯四甲酸二環己酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.2%之結果。 <實施例6> 上述實施例1中,將(B)成分變為己二酸二環己酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.9%之結果。 <實施例7> 上述實施例1中,將(B)成分變為癸二酸二環己酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。 <實施例8> 上述實施例1中,將(B)成分變為丁酸四氫糠酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例9> 上述實施例1中,將(B)-1成分之添加量變為2 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.6%之結果。 <實施例10> 上述實施例1中,將(B)-1成分之添加量變為8 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例11> 上述實施例1中,將(B)-1成分之添加量變為16 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得10.5%之結果。 <實施例12> 上述實施例1中,將固化溫度自230℃變為350℃,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.5%之結果。 <實施例13> 上述實施例1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-1 100 g,將(C)成分自PDO變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.3%之結果。 <實施例14> 上述實施例12中,將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例12相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.5%之結果。 <實施例15> 上述實施例1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-3 100 g,並將固化溫度自230℃變為350℃,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例16> 上述實施例1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-4 100 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。 <實施例17> 使用聚合物(A)-5,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物(A)-5 100 g(相當於(A)樹脂)與下述式(96): [化127]
Figure 02_image253
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)成分)(C1)15 g溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.1%之結果。 <實施例18> 上述實施例17中,作為(A)樹脂,將聚合物(A)-5 100 g變為聚合物(A)-6 100 g,除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.2%之結果。 <實施例19> 上述實施例17中,作為(A)樹脂,將聚合物(A)-6 100 g變為聚合物(A)-7(酚醛清漆樹脂,聚苯乙烯換算重量平均分子量(Mw)=10,600(旭有機材公司製造,製品名EP-4080G)100 g,除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <實施例20> 上述實施例17中,作為(A)樹脂,將聚合物(A)-6 100 g變為聚合物(A)-7(酚醛清漆樹脂,聚苯乙烯換算重量平均分子量(Mw)=10,600(旭有機材公司製造,製品名EP-4080G)100 g,將(B)成分變為丁酸四氫糠酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.6%之結果。 <實施例21> 上述實施例17中,作為(A)樹脂,將聚合物(A)-6 100 g變為聚合物(A)-8 100 g,除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.6%之結果。 <實施例22> 上述實施例17中,作為(A)樹脂,將聚合物(A)-6 100 g變為聚合物(A)-8 100 g,將(B)成分變為丁酸四氫糠酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.3%之結果。 <比較例1> 於實施例1之組成中,不添加(B)-1成分,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。由於不含本發明之(B)塑化劑,故評價結果為15.2%。 <比較例2> 於實施例16之組成中,不添加(B)-1成分,除此以外,藉由與實施例15相同之方式製備負型感光性樹脂組合物,並進行與實施例15相同之評價。由於不含本發明之(B)塑化劑,故評價結果為14.3%。 <比較例3> 於實施例14之組成中,不添加(B)-1成分,除此以外,藉由與實施例13相同之方式製備負型感光性樹脂組合物,並進行與實施例13相同之評價。由於不含本發明之(B)塑化劑,故評價結果為15.7%。 <比較例4> 於實施例18之組成中,不添加(B)-1成分,除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物,並進行與實施例17相同之評價。由於不含本發明之(B)塑化劑,故評價結果為16.3%。 <比較例5> 於實施例1之組成中,將(B)-1成分之添加量變為0.05 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。評價結果為13.1%。 <比較例6> 於實施例1之組成中,將(B)-1成分之添加量變為60 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。評價結果為15.2%。 將該等實施例1~22、比較例1~6之結果彙總示於表1。 [表1] (表1)    實施例 1 實施例 2 實施例 3 實施例 4 實施例 5 實施例 6 實施例 7 實施例 8 實施例 9 實施例 10 實施例 11 實施例 12 實施例 13 實施例 14 (A) 成分 (A)-1 50 50 50 50 50 50 50 50 50 50 50 50 100 100 (A)-2 50 50 50 50 50 50 50 50 50 50 50 50       (A)-3                                           (A)-4                                           (A)-5                                           (A)-6                                           (A)-7                                           (A)-8                                           (B) 成分 (B)-1 4                      2       4 4 4 (B)-2    4                      8 16          (B)-3       4                                  (B)-4          4                               (B)-5             4                            (B)-6                4                         (B)-7                   4                      (B)-8                      4                   C 成分 PDO 4 4 4 4 4 4 4 4 4 4 4 4       OXE01                                     2.5 2.5 C1                                           溶劑 M-甲基吡咯啶酮 80 80 80 80 80 80 80 80 80 80 80 80 80    乳酸乙酯 20 20 20 20 20 20 20 20 20 20 20 20 20    γ-丁內酯                                        85 二甲基亞碸                                        15 固化溫度℃ 230 230 230 230 230 230 230 230 230 230 230 350 230 230 Cu表面之空隙面積比率% 4.1 4.9 5.2 4.3 4.2 5.9 5.8 4.8 7.6 4.8 10.5 4.5 4.3 4.5       實施例 15 實施例 16 實施例 17 實施例 18 實施例 19 實施例 20 實施例 21 實施例 22 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 (A) 成分 (A)-1                         50    100    50 50 (A)-2                         50          50 50 (A)-3 100                                        (A)-4    100                      100             (A)-5       100                                  (A)-6          100                      100       (A)-7             100 100                         (A)-8                   100 100                   (B) 成分 (B)-1 4 4 4 4 4    4                0.05 60 (B)-2                                           (B)-3                                           (B)-4                                           (B)-5                                           (B)-6                                           (B)-7                                           (B)-8                4    4                   C 成分 PDO 4 4                   4 4       4 4 OXE01                               2.5          C1       20 20 20 20 20 20          20       溶劑 N-甲基吡咯啶酮 80 80                   80 80       80 80 乳酸乙酯 20 20                   20 20       20 20 γ-丁內酯       100 100 100 100 100 100       85 100       二甲基亞碸                               15          固化溫度℃ 350 250 350 250 250 250 250 250 230 250 230 250 230 230 Cu表面之空隙面積比率% 4.8 4.9 5.1 6.2 5.2 5.6 4.6 4.3 15.2 14.3 15.7 16.3 13.1 15.2 <第2實施例> 作為第2實施例,進行以下之實驗。 <製造例1>((A)作為聚醯亞胺前驅物之聚合物A之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物A)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物A之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP 流速:1 ml/min. <製造例2>((A)作為聚醯亞胺前驅物之聚合物B之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物B。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物B之分子量,結果重量平均分子量(Mw)為22,000。 <製造例3>((A)作為聚醯亞胺前驅物之聚合物C之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物C。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物C之分子量,結果重量平均分子量(Mw)為21,000。 <製造例4>((A)作為聚醯胺之聚合物D之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物D之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL 400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物E)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物D之分子量,結果重量平均分子量(Mw)為34,700。 <製造例5>((A)作為聚㗁唑前驅物之聚合物E之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗聚苯并㗁唑前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物E)。 <製造例6>((A)作為聚醯亞胺之聚合物F之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物F)。 <製造例7>((A)作為酚樹脂之聚合物G之合成) 於容積0.5 L之附迪安-斯塔克裝置之可分離式燒瓶中將3,5-二羥基苯甲酸甲酯128.3 g(0.76 mol)、4,4'-雙(甲氧基甲基)聯苯(以下亦稱為「BMMB」)121.2 g(0.5 mol)、二乙基硫酸3.9 g(0.025 mol)、二乙二醇二甲醚140 g於70℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至140℃,確認自反應液生成了甲醇。直接於140℃下攪拌反應液2小時。 繼而,將反應容器於大氣中冷卻,向其中另外添加100 g之四氫呋喃并攪拌。將上述反應稀釋液於高速攪拌下滴加至4 L之水中而使樹脂分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而以產率70%獲得包含3,5-二羥基苯甲酸甲酯/BMMB之共聚物(聚合物G)。該聚合物G之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為21,000。 <製造例8>((A)作為酚樹脂之聚合物H之合成) 對容積1.0 L之附迪安-斯塔克裝置之可分離式燒瓶進行氮氣置換,其後,於該可分離式燒瓶中將間苯二酚81.3 g(0.738 mol)、BMMB 84.8 g(0.35 mol)、對甲苯磺酸3.81 g(0.02 mol)、丙二醇單甲醚(以下亦稱為PGME)116 g於50℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至120℃,確認自反應液生成了甲醇。直接於120℃下將反應液攪拌3小時。 繼而,於另一容器中將2,6-雙(羥基甲基)對甲酚24.9 g(0.150 mol)、PGME 249 g進行混合攪拌,使之均勻溶解,將所獲得之溶液使用滴液漏斗歷時1小時滴加至該可分離式燒瓶內,滴液後進而攪拌2小時。 反應結束後,進行與製造例7相同之處理,而以產率77%獲得包含間苯二酚/BMMB/2,6-雙(羥基甲基)對甲酚之共聚物(聚合物H)。該聚合物H之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為9,900。 <實施例1> 使用聚合物A、B,藉由以下之方法製備負型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚醯亞胺前驅物之聚合物A 50 g與B 50 g(相當於(A)樹脂)與磷酸鋯(長軸100 nm、短軸5 nm之板狀粒子,相當於縱橫比20之(B-1)奈米粒子)5 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表1中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例2> 上述實施例1中,作為(B-1)成分,將磷酸鋯之添加量變為1 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.6%之結果。 <實施例3> 上述實施例1中,作為(B-1)成分,使用蒙脫石(長軸100 nm、短軸10 nm,縱橫比10之板狀粒子)代替磷酸鋯,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。 <實施例4> 上述實施例1中,作為(B-1)成分,使用艾羅技(粒徑12 nm之球狀粒子,縱橫比1)1 g代替磷酸鋯5 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。 <實施例5> 藉由與上述實施例1相同之方式製備負型感光性樹脂組合物溶液,針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.5%之結果。 <實施例6> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.3%之結果。 <實施例7> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,進而將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.3%之結果。 <實施例8> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物C 100 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例9> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物D 100 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.6%之結果。 <實施例10> 使用聚合物E,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物E 100 g(相當於(A)樹脂)與下述式(96): [化128]
Figure 02_image255
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)感光劑)(C1)15 g、磷酸鋯(長徑100 nm、厚度5 nm之板狀粒子,相當於(B)奈米粒子)5 g、3-第三丁氧基羰基胺基丙基三乙氧基矽烷6 g一併溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.7%之結果。 <實施例11> 上述實施例10中,作為(A)樹脂,將聚合物E 100 g變為聚合物F 100 g,除此以外,藉由與實施例10相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.7%之結果。 <實施例12> 上述實施例10中,作為(A)樹脂,將聚合物E 100 g變為聚合物G 100 g,除此以外,藉由與實施例10相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。 <實施例13> 上述實施例10中,作為(A)樹脂,將聚合物E 100 g變為聚合物H 100 g,除此以外,藉由與實施例10相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <比較例1> 於實施例1之組成中,不添加磷酸鋯,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。由於不含本發明之(B)化合物,故評價結果為14.3%。 <比較例2> 於實施例8之組成中,不添加磷酸鋯,除此以外,藉由與實施例8相同之方式製備負型感光性樹脂組合物,並進行與實施例10相同之評價。由於不含本發明之(B)化合物,故評價結果為14.9%。 <比較例3> 於實施例10之組成中,不添加磷酸鋯,除此以外,藉由與實施例10相同之方式製備正型感光性樹脂組合物,並進行與實施例10相同之評價。由於不含本發明之(B)化合物,故評價結果為14.6%。 將該等結果彙總示於表2。 [表2]    實施例 1 實施例 2 實施例 3 實施例 4 實施例 5 實施例 6 實施例 7 實施例 8 實施例 9 實施例 10 實施例 11 實施例 12 實施例 13 比較例 1 比較例 2 比較例 3 聚合物A 50 50 50 50 50 100 100                   50       聚合物B 50 50 50 50 50                         50       聚合物C                      100                   100    聚合物D                         100                      聚合物E                            100                100 聚合物F                               100                聚合物G                                  100             聚合物H                                     100          PDO 4 4 4 4 4       4 4             4 4    OXE01                2.5 2.5                            C1                            15 15 15 15       15 磷酸鋯 5 1       5 5 5 5 5 5 5 5 5          蒙脫石       5                                        艾羅技(二氧化矽)          1                                     N-甲基吡咯啶酮 80 80 80 80 80 80    80 80             80 80    乳酸乙酯 20 20 20 20 20 20    20 20             20 20    γ-丁內酯                   85       100 100 100 100       100 二甲基亞碸                   15                            固化溫度℃ 230 230 230 230 350 230 230 350 250 350 250 220 220 230 350 350 Cu表面之空隙面積比率% 5.5 6.6 5.8 5.4 4.5 5.3 5.3 4.8 5.6 5.7 5.7 5.4 5.5 14.3 14.9 14.6 <第3實施例> 作為第3實施例,進行以下之實驗。 <製造例1>((A)作為聚醯亞胺前驅物之聚合物A之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物A)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物A之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP 流速:1 ml/min. <製造例2>((A)作為聚醯亞胺前驅物之聚合物B之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物B。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物B之分子量,結果重量平均分子量(Mw)為22,000。 <製造例3>((A)作為聚醯亞胺前驅物之聚合物C之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物C。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物C之分子量,結果重量平均分子量(Mw)為21,000。 <製造例4>((A)作為聚醯胺之聚合物D之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物D之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL 400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物E)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物D之分子量,結果重量平均分子量(Mw)為34,700。 <實施例1> 使用聚合物A、B,藉由以下之方法製備負型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚醯亞胺前驅物之聚合物A 50 g與B 50 g(相當於(A)樹脂)與TMOM-BP(商品名,本州化學,相當於(B-2)熱交聯劑)10 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表1中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.7%之結果。 <實施例2> 上述實施例1中,作為(B-2)成分,將TMOM-BP之添加量變為20 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得3.8%之結果。 <實施例3> 上述實施例1中,作為(B-2)成分,將TMOM-BP之添加量變為5 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得9.3%之結果。 <實施例4> 上述實施例1中,作為(B-2)成分,使用TM-BIP-A(商品名,本州化學)代替TMOM-BP,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <實施例5> 上述實施例1中,作為(B-2)成分,使用HMOM-TP-HAP(商品名,本州化學)代替TMOM-BP,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。 <實施例6> 上述實施例1中,作為(B-2)成分,使用NIKALAC MW-390(商品名,SANWA CHEMICAL)代替TMOM-BP,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得10.3%之結果。 <實施例7> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.3%之結果。 <實施例8> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.0 g,進而將溶劑變為γ-丁內酯80 g與二甲基亞碸20 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。 <實施例9> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物C 100 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.0%之結果。 <實施例10> 上述實施例1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物D 100 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.9%之結果。 <比較例1> 於實施例1之組成中,不添加TMOM-BP,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。由於不含本發明之(B)化合物,故評價結果為14.3%。 <比較例2> 於實施例10之組成中,不添加TMOM-BP,除此以外,藉由與實施例10相同之方式製備負型感光性樹脂組合物,並進行與實施例11相同之評價。由於不含本發明之(B)化合物,故評價結果為15.5%。 將該等實施例1~10、比較例1~2之結果彙總示於表3。 [表3]    實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 (A)樹脂 聚合物A(g) 50 50 50 50 50 50 100 100 聚合物B(g) 50 50 50 50 50 50       聚合物C(g)                         聚合物D(g)                         聚合物E(g)                         聚合物F(g)                         (B-2)熱交聯劑 TMOM-BP(g) 10 20 5          10 10 TM-BIP-A(g)          10             HMOM-TP-HAP(g)             10          NIKALAC MW-390(g)                10       (C)感光劑 PDO(g) 4 4 4 4 4 4 4    OXE-01(g)                      2 C1(g)                         溶劑 N-甲基吡咯啶酮(g) 80 80 80 80 80 80 80    乳酸乙酯(g) 20 20 20 20 20 20 20    γ-丁內酯(g)                      80 二甲基亞碸(g)                      20 固化溫度(℃) 230 230 230 230 230 230 230 230 空隙面積(%) 5.7 3.8 9.3 7.1 6.6 10.1 5.3 5.8    實施例 9 實施例 10 比較例1 比較例2 (A)樹脂 聚合物A(g)       50    聚合物B(g)       50    聚合物C(g) 100          聚合物D(g)    100    100 聚合物E(g)             聚合物F(g)             (B-2)熱交聯劑 TMOM-BP(g) 10 10       TM-BIP-A(g)             HMOM-TP-HAP(g)             NIKALAC MW-390(g)             (C)感光劑 PDO(g) 4 4 4 4 OXE-01(g)             C1(g)             溶劑 N-甲基吡咯啶酮(g) 80 80 80 80 乳酸乙酯(g) 20 20 20 20 γ-丁內酯(g)             二甲基亞碸(g)             固化溫度(℃) 350 250 230 250 空隙面積(%) 6.2 5.0 14.3 15.5 <第4實施例> 作為第4實施例,進行以下之實驗。 <製造例1>((A)作為聚醯亞胺前驅物之聚合物(A)-1之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物(A)-1)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-1之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP 流速:1 ml/min. <製造例2>((A)作為聚醯亞胺前驅物之聚合物(A)-2之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物(A)-2。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-2之分子量,結果重量平均分子量(Mw)為22,000。 <製造例3>((A)作為聚醯亞胺前驅物之聚合物(A)-3之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例1所記載之方法相同之方式進行反應,而獲得聚合物(A)-3。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-3之分子量,結果重量平均分子量(Mw)為21,000。 <製造例4>((A)作為聚醯胺之聚合物(A)-4之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物(A)-4之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL 400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物(A)-4)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-4之分子量,結果重量平均分子量(Mw)為34,700。 <製造例5>((A)作為聚㗁唑前驅物之聚合物(A)-5之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗製前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物(A)-5)。 <製造例6>((A)作為聚醯亞胺之聚合物(A)-6之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物(A)-6)。 <製造例7>((A)作為酚樹脂之聚合物(A)-8之合成) 對容積1.0 L之附迪安-斯塔克裝置之可分離式燒瓶進行氮氣置換,其後,於該可分離式燒瓶中將間苯二酚81.3 g(0.738 mol)、BMMB 84.8 g(0.35 mol)、對甲苯磺酸3.81 g(0.02 mol)、丙二醇單甲醚(以下亦稱為PGME)116 g於50℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至120℃,確認自反應液生成了甲醇。直接於120℃下將反應液攪拌3小時。 繼而,於另一容器中將2,6-雙(羥基甲基)對甲酚24.9 g(0.150 mol)、PGME 249 g進行混合攪拌,使之均勻溶解,將所獲得之溶液使用滴液漏斗歷時1小時滴加至該可分離式燒瓶內,滴液後進而攪拌2小時。 反應結束後,進行與製造例7相同之處理,而以產率77%獲得包含間苯二酚/BMMB/2,6-雙(羥基甲基)對甲酚之共聚物(聚合物H)。該聚合物H之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為9,900。 <實施例1> 使用聚合物(A)-1、(A)-2,藉由以下之方法製備負型感光性樹脂組合物,並進行感光性樹脂組合物之評價。將作為聚醯亞胺前驅物之聚合物(A)-1 50 g與(A)-2 50 g(相當於(A)樹脂)與1H,1H,8H,8H-全氟四乙二醇二丙烯酸酯(以下述式(B-3-1)表示,Exfluor公司製造)8 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表1中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得3.1%之結果。再者,(B-3)-1化合物(表示下述式(B-3-1)之化合物。以下將下述式(B-3-X)(X為1~9)所表示之化合物記為(B-3)-X)之分子中之氟原子之重量比率為44質量%。 <實施例2> 上述實施例1中,將(B-3)成分變為1H,1H,6H,6H-全氟-1,6-己二醇二丙烯酸酯(以(下述式(B-2)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得3.3%之結果。再者,(B-3)-2化合物之分子中之氟原子之重量比率為41質量%。 <實施例3> 上述實施例1中,將(B-3)成分變為甲基丙烯酸1H,1H-全氟正癸酯(以下述式(B-3-3)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得3.4%之結果。再者,(B-3)-3化合物之分子中之氟原子之重量比率為64質量%。 <實施例4> 上述實施例1中,將(B-3)成分變為全氟癸酸(以下述式(B-3-4)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.2%之結果。再者,(B-3)-4化合物之分子中之氟原子之重量比率為70質量%。 <實施例5> 上述實施例1中,將(B-3)成分變為1H,1H-全氟-1-癸醇(以下述式(B-3-5)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.9%之結果。再者,(B-3)-5化合物之分子中之氟原子之重量比率為72質量%。 <實施例6> 上述實施例1中,將(B-3)成分變為全氟十三烷(以下述式(B-3-6)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.7%之結果。再者,(B-3)-6化合物之分子中之氟原子之重量比率為77質量%。 <實施例7> 上述實施例1中,將(B-3)成分變為全氟癸酸甲酯(以下述式(B-7)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.9%之結果。再者,(B-3)-7化合物之分子中之氟原子之重量比率為68質量%。 <實施例8> 上述實施例1中,將(B-3)成分變為全氟四乙二醇二甲醚(以下述式(B-3-8)表示,Exfluor公司製造),除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.8%之結果。再者,(B-3)-8化合物之分子中之氟原子之重量比率為68質量%。 <實施例9> 上述實施例1中,將(B-3)-1成分之添加量變為2 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.5%之結果。 <實施例10> 上述實施例1中,將(B-3)-1成分之添加量變為20 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得3.8%之結果。 <實施例11> 上述實施例1中,將固化溫度自230℃變為350℃,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.2%之結果。 <實施例12> 上述實施例1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-1 100 g,將(C)成分自PDO變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.6%之結果。 <實施例13> 上述實施例12中,將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例12相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例14> 上述實施例1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-3 100 g,並將固化溫度自230℃變為350℃,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.7%之結果。 <實施例15> 上述實施例1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-4 100 g,並將固化溫度自230℃變為250℃,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.4%之結果。 <實施例16> 使用聚合物(A)-5,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物(A)-5 100 g(相當於(A)樹脂)與下述式(96): [化129]
Figure 02_image257
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)成分)(C1)15 g溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <實施例17> 上述實施例16中,作為(A)樹脂,將聚合物(A)-5 100 g變為聚合物(A)-6 100 g,除此以外,藉由與實施例11相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例18> 上述實施例16中,作為(A)樹脂,將聚合物(A)-5 100 g變為聚合物(A)-7(酚醛清漆樹脂,聚苯乙烯換算重量平均分子量(Mw)=10,600(旭有機材公司製造,製品名EP-4080G)100 g,除此以外,藉由與實施例11相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例19> 上述實施例16中,作為(A)樹脂,將聚合物(A)-5 100 g變為聚合物(A)-8 100 g,除此以外,藉由與實施例11相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.1%之結果。 <比較例1> 於實施例1之組成中,不添加(B)-1成分,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。由於不含本發明之(B)含氟疏水性化合物,故評價結果為15.2%。 <比較例2> 使用四乙二醇二甲基丙烯酸酯(以下述式(B-9)表示,東京化成工業股份有限公司製造)代替實施例1之(B)-1成分,除此以外,藉由與實施例1相同之方式製備負型感光性樹脂組合物,並進行與實施例1相同之評價。由於不含本發明之(B)含氟疏水性化合物,故評價結果為15.5%。再者,(B)-9化合物之分子中之氟原子之重量比率為0質量%。 <比較例3> 使用四乙二醇二甲基丙烯酸酯((B)-9,東京化成工業股份有限公司製造)代替實施例15之(B)-1成分,除此以外,藉由與實施例15相同之方式製備負型感光性樹脂組合物,並進行與實施例15相同之評價。由於不含本發明之(B)含氟疏水性化合物,故評價結果為14.3%。 <比較例4> 使用四乙二醇二甲基丙烯酸酯((B)-9,東京化成工業股份有限公司製造)代替實施例12之(B)-1成分,除此以外,藉由與實施例12相同之方式製備負型感光性樹脂組合物,並進行與實施例12相同之評價。由於不含本發明之(B)含氟疏水性化合物,故評價結果為15.7%。 <比較例5> 使用四乙二醇二甲基丙烯酸酯((B)-9,東京化成工業股份有限公司製造)代替實施例17之(B)-1成分,除此以外,藉由與實施例17相同之方式製備正型感光性樹脂組合物,並進行與實施例17相同之評價。由於不含本發明之(B)含氟疏水性化合物,故評價結果為16.3%。 以下,將(B-3)-1~(B-3)-9化合物之分子中之氟原子之重量比率彙總示於表4。 [表4] (B-3)化合物 分子中之氟原子之 重量比率(質量%) (B-3)-1 44% (B-3)-2 41% (B-3)-3 64% (B-3)-4 70% (B-3)-5 72% (B-3)-6 77% (B-3)-7 68% (B-3)-8 68% (B-3)-9 0 [化130]
Figure 02_image259
[化131]
Figure 02_image261
[化132]
Figure 02_image263
[化133]
Figure 02_image265
[化134]
Figure 02_image267
[化135]
Figure 02_image269
[化136]
Figure 02_image271
[化137]
Figure 02_image273
[化138]
Figure 02_image275
將實施例1~19、比較例1~5之結果彙總示於表5。 [表5]    實施例 1 實施例 2 實施例 3 實施例 4 實施例 5 實施例 6 實施例 7 實施例 8 實施例 9 實施例 10 實施例 11 實施例 12 實施例 13 實施例 14 實施例 15 實施例 16 實施例 17 實施例 18 實施例 19 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 (A) 成分 (A)-1 50 50 50 50 50 50 50 50 50 50 50 100 100                   50 50    100    (A)-2 50 50 50 50 50 50 50 50 50 50 50                         50 50          (A)-3                                        100                               (A)-4                                           100                   100       (A)-5                                              100                         (A)-6                                                 100                   100 (A)-7                                                    100                   (A)-8                                                       100                (B-3) 成分 (B-3)-1 8                      2    8 8 8 8 8 8 8                      (B-3)-2    8                      20                                           (B-3)-3       8                                                                (B-3)-4          8                                                             (B-3)-5             8                                                          (B-3)-6                8                                                       (B-3)-7                   8                                                    (B-3)-8                      8                                                 (B-3)-9                                                             8 8 8    (C) 成分 PDO 4 4 4 4 4 4 4 4 4 4 4       4 4             4 4 4       OXE01                                  2.5 2.5                            2.5    C1                                              20 20 20 20             20 溶劑 N-甲基吡咯啶酮 80 80 80 80 80 80 80 80 80 80 80 80    80 80             80 80 80       乳酸乙酯 20 20 20 20 20 20 20 20 20 20 20 20    20 20             20 20 20       γ-丁內酯                                     85       100 100 100 100          85 100 二甲基亞碸                                     15                            15    固化溫度℃ 230 230 230 230 230 230 230 230 230 230 350 230 230 350 250 350 250 250 250 230 230 250 230 250 Cu表面之空隙面積 比率% 3.1 3.3 3.4 6.2 6.9 7.7 6.9 6.8 4.5 3.8 4.2 4.6 4.8 4.7 4.4 5.2 5.5 4.8 5.1 15.2 15.5 14.3 15.7 16.3 [產業上之可利用性] 本發明之感光性樹脂組合物可較佳地用於例如對半導體裝置、多層配線基板等電氣・電子材料之製造有用之感光性材料領域。Hereinafter, an embodiment for implementing the present invention (hereinafter simply referred to as "the present embodiment") will be described in detail. In addition, this embodiment is an illustration for demonstrating this invention, and it does not intend to limit this invention. The present invention can be implemented with appropriate changes within the scope of its gist. In addition, in this specification, when there exists a plurality of structures represented by the same symbol in a general formula in a molecule|numerator, they may be the same as or different from each other. <Photosensitive resin composition> In this embodiment, as an essential component, (A) is selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, polyhydroxyamide, and polyamine At least one resin selected from the group consisting of amide, polyamide, polyamide imide, polyimide, polybenzoxazole, and novolak, polyhydroxystyrene and phenol resin: 100 parts by mass, (B) Plasticizer: 0.1 to 50 parts by mass based on 100 parts by mass of (A) resin, (C) Sensitizer: 1 to 50 parts by mass based on 100 parts by mass of (A) resin. <Photosensitive resin composition> Moreover, in another embodiment, as an essential component, (A) is selected from the group consisting of polyamides, polyamides, polyamides, polyhydroxyamides, At least one resin from the group consisting of polyamidoamine, polyamide, polyamideimide, polyimide, polybenzoxazole, and novolak, polyhydroxystyrene and phenolic resin: 100 Parts by mass, (B-1) Nanoparticles: 0.01 to 10 parts by mass based on 100 parts by mass of (A) resin, (C) Sensitizer: 1 to 50 parts by mass based on 100 parts by mass of (A) resin share. <Photosensitive resin composition> Moreover, another embodiment is a negative photosensitive resin composition which has the following components as essential components: At least one resin in the group consisting of amine acid salts: 100 parts by mass, (B-2) Thermal crosslinking agent: 0.01 to 10 parts by mass based on 100 parts by mass of (A) resin, (C) Sensitizer: 1-50 mass parts based on 100 mass parts of (A) resins. <Photosensitive resin composition> Moreover, in another embodiment, as an essential component, (A) is selected from the group consisting of polyamides, polyamides, polyamides, polyhydroxyamides, At least one resin from the group consisting of polyamidoamine, polyamide, polyamideimide, polyimide, polybenzoxazole, and novolak, polyhydroxystyrene and phenolic resin: 100 Parts by mass, (B-3) Fluorine-containing hydrophobic compound: 0.01 to 50 parts by mass based on 100 parts by mass of the above (A) resin, (C) Sensitizer: 1 based on 100 parts by mass of (A) resin ~50 parts by mass. (A) Resin The (A) resin used by this invention is demonstrated. The resin (A) of the present invention is selected from the group consisting of polyamides, polyamides, polyamides, polyhydroxyamides, polyamides, polyamides, polyamides, At least one resin selected from the group consisting of polyimide, polybenzoxazole, and novolac, polyhydroxystyrene and phenol resin is used as the main component. Here, the main component means that these resins are contained in 60 mass % or more of the entire resin, and preferably 80 mass % or more. Moreover, other resin may be contained as needed. The weight average molecular weight of these resins is preferably 200 or more, more preferably 5,00 or more in terms of polystyrene by gel permeation chromatography from the viewpoint of heat resistance and mechanical properties after heat treatment. Preferably it is 1,000 or more, More preferably, it is 1,000 or more. The upper limit is preferably 500,000 or less, and when used as a photosensitive resin composition, it is more preferably 20,000 or less from the viewpoint of solubility in a developing solution. In this invention, in order to form a relief pattern, (A) resin is preferably a photosensitive resin. The photosensitive resin is used together with the following (C) photosensitizer to form a photosensitive resin composition, and is a resin which causes a phenomenon of dissolution or insolubility in the subsequent development step. As the photosensitive resin, among polyamides, polyamides, polyamides, polyhydroxyamides, polyamides, polyamides, polyamides, polyamides, Among polybenzoxazoles and phenol resins containing novolak and polyhydroxystyrene, polyimide precursors ( polyamides, polyamides, polyamides), polyamides, polyhydroxyamides, polyimides and phenolic resins. In addition, these photosensitive resins can be selected according to the desired use, together with the following (C) photosensitizer, to prepare a negative-type or positive-type arbitrary photosensitive resin composition and the like. [(A) Polyamic acid, polyamic acid ester, polyamic acid salt] In the photosensitive resin composition of the present invention, an example of the (A) resin that is optimal in terms of heat resistance and photosensitivity characteristics is the above general formula (1): [Chem. 45]
Figure 02_image089
{where, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer from 2 to 150, R 1 and R 2 each independently a hydrogen atom, a saturated aliphatic group having 1 to 30 carbon atoms, or the general formula (2):
Figure 02_image091
(where, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 A monovalent organic group represented by an integer of 2 to 10), or a monovalent organic group represented by a saturated aliphatic group having 1 to 4 carbon atoms}, or the following general formula (3):
Figure 02_image093
(where, R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 2 An integer of 2 to 10) represented by a monovalent ammonium ion} as a polyimide precursor represented by a polyamic acid, a polyamic acid ester or a polyamic acid salt. The polyimide precursor is converted into polyimide by performing cyclization treatment with heating (eg, above 200° C.). The polyimide precursor is suitable for use in negative photosensitive resin compositions. In the above general formula (1), X 1 The tetravalent organic group represented is preferably an organic group having 6 to 40 carbon atoms, more preferably -COOR, in terms of having both heat resistance and photosensitivity. 1 base & -COOR 2 An aromatic group or an alicyclic aliphatic group in which the group and the -CONH- group are located in ortho positions to each other. as X 1 The tetravalent organic group represented is preferably an organic group having 6 to 40 carbon atoms in an aromatic ring, more preferably the following formula (30):
Figure 02_image095
{In the formula, R25 is a monovalent group selected from hydrogen atom, fluorine atom, hydrocarbon group of C1-C10, and fluorine-containing hydrocarbon group of C1-C10, l is an integer selected from 0-2, m is selected from 0-3 Integer, n is the structure represented by the integer selected from 0-4}, but it is not limited to these. Again, X 1 The structure may be one type or a combination of two or more types. X having the structure represented by the above formula 1 The base is particularly preferable in terms of having both heat resistance and photosensitivity properties. In the above general formula (1), Y 1 The divalent organic group represented is preferably an aromatic group having 6 to 40 carbon atoms in terms of both heat resistance and photosensitivity, and examples thereof include the following formula (31):
Figure 02_image097
{wherein R25 is a monovalent group selected from hydrogen atom, fluorine atom, hydrocarbon group of C1-C10, fluorine-containing hydrocarbon group of C1-C10, n is an integer selected from 0-4}, but not Not limited to these. Again, Y 1 The structure may be one type or a combination of two or more types. Y having the structure represented by the above formula (31) 1 The base is particularly preferable in terms of having both heat resistance and photosensitivity properties. R in the above general formula (2) 3 Preferably a hydrogen atom or a methyl group, R 4 and R 5 From the viewpoint of photosensitive properties, hydrogen atoms are preferred. again, m 1 From the viewpoint of photosensitivity characteristics, it is an integer of 2 or more and 10 or less, and preferably an integer of 2 or more and 4 or less. When using a polyimide precursor as (A) resin, an ester bond type and an ion bond type are mentioned as a form which provides photosensitivity to the photosensitive resin composition. The former is a method in which a compound having a photopolymerizable group, that is, an olefinic double bond, is introduced into the side chain of the polyimide precursor through an ester bond, and the latter is a method of making the carboxyl group of the polyimide precursor and the compound having an amine group. A method of imparting a photopolymerizable group by bonding an amine group of a (meth)acrylic compound via an ionic bond. The above-mentioned ester bond-type polyimide precursor is obtained by first, containing the above-mentioned tetravalent organic group X 1 The tetracarboxylic dianhydride is reacted with alcohols with photopolymerizable unsaturated double bonds and any saturated aliphatic alcohols with 1 to 4 carbon atoms to prepare partially esterified tetracarboxylic acids (hereinafter also referred to as acid/ester body), make it with the organic group Y containing the above divalent 1 The diamines are amide polycondensation. (Preparation of Acid/Ester Form) In the present invention, the organic group X containing tetravalent as a precursor suitable for the preparation of ester-bonded polyimide 1 The tetracarboxylic dianhydrides include, for example, pyromellitic dianhydride, diphenyl ether-3,3',4,4 represented by tetracarboxylic dianhydrides having the structure represented by the general formula (30). '-Tetracarboxylic dianhydride, Benzophenone-3,3',4,4'-Tetracarboxylic dianhydride, Biphenyl-3,3',4,4'-Tetracarboxylic dianhydride, Di Phenyl-3,3',4,4'-tetracarboxylic dianhydride, Diphenylmethane-3,3',4,4'-tetracarboxylic dianhydride, 2,2-bis(3,4 -phthalic anhydride) propane, 2,2-bis(3,4-phthalic anhydride)-1,1,1,3,3,3-hexafluoropropane, etc., preferably, pyromellitic acid Dianhydride, diphenyl ether-3,3',4,4'-tetracarboxylic dianhydride, benzophenone-3,3',4,4'-tetracarboxylic dianhydride, biphenyl-3, 3',4,4'-tetracarboxylic dianhydride, but it is not limited to these. In addition, these can be used alone, of course, but two or more of them may be used in combination. In the present invention, examples of alcohols having photopolymerizable unsaturated double bonds suitable for the preparation of ester-bonded polyimide precursors include: 2-acryloyloxyethanol, 1-acryloyloxyethanol -3-Propanol, 2-acrylamidoethanol, hydroxymethyl vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3-acrylate Butoxypropyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-tert-butoxypropyl acrylate, 2-hydroxy-3-tert-butoxypropyl acrylate Hydroxy-3-cyclohexyloxypropyl ester, 2-methacryloyloxyethanol, 1-methacryloyloxy-3-propanol, 2-methacrylamidoethanol, methylolvinyl Ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl methacrylate, 2-hydroxy-3-butoxypropyl methacrylate, 2-hydroxy-3-methacrylate Phenoxypropyl, 2-hydroxy-3-butoxypropyl methacrylate, 2-hydroxy-3-tert-butoxypropyl methacrylate, 2-hydroxy-3-cyclohexyloxy methacrylate Propyl ester, etc. It is also possible to mix a part of the above-mentioned alcohols with saturated aliphatic alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and the like. The above-mentioned suitable tetracarboxylic dianhydride and the above-mentioned alcohols in the present invention are dissolved in the solvent described below in the presence of a basic catalyst such as pyridine at a temperature of 20-50° C. for 4-10 hours to dissolve, By mixing, the esterification reaction of acid anhydride can be carried out, and the desired acid/ester body can be obtained. (Preparation of Polyimide Precursor) To the above acid/ester body (typically a solution in the following solvent), add a suitable dehydration condensing agent, such as bicyclic carbodiimide, Dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzo Triazole, N,N'-disuccinimidyl carbonate, etc. are mixed to form an acid/ester body into a polyacid anhydride, and then dropwise added an organic compound containing divalent which is suitable for use in the present invention. base Y 1 The diamines obtained by dissolving or dispersing them in a solvent are subjected to polyimide polycondensation, thereby obtaining the target polyimide precursor. Alternatively, the acid moiety in the above acid/ester body can be chlorinated using thionite chloride or the like, and then reacted with a diamine compound in the presence of a base such as pyridine, thereby obtaining the target polyimide precursor. As the organic group Y containing a divalent used suitably in the present invention 1 The diamines include, for example, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3, 3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-Diaminobiphenyl, 3,4'-Diaminobiphenyl, 3,3'-Diaminobiphenyl, 4,4'-Diaminobenzophenone, 3,4' -Diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3, 3'-Diaminodiphenylmethane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3 -Aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sine, bis[4-(3-aminophenoxy)phenyl]sine, 4,4-bis (4-aminophenoxy)biphenyl, 4,4-bis(3-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, bis[4 -(3-Aminophenoxy)phenyl]ether, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 9,10-bis (4-Aminophenyl)anthracene, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis[4- (4-Aminophenoxy)phenyl)propane, 2,2-bis[4-(4-aminophenoxy)phenyl)hexafluoropropane, 1,4-bis(3-aminopropyl) Dimethylsilyl) benzene, o-tolidine, 9,9-bis(4-aminophenyl) benzene, and a part of the hydrogen atoms on the benzene ring of these are replaced by methyl, ethyl, hydroxymethyl group, hydroxyethyl, halogen and other substituents, such as 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl Benzene, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 2,2'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-Dimethoxy-4,4'-diaminobiphenyl,3,3'-dichloro-4,4'-diaminobiphenyl,2,2'-dimethylbenzidine, 2,2 '-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminobiphenyl Octafluorobiphenyl, etc.; preferably include: p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 2,2'-dimethylbenzidine, 2,2'-bis (Trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl Benzene, etc., and mixtures thereof, etc., are not limited thereto. In addition, in order to improve the adhesion between the resin layer formed on the substrate and various substrates by coating the photosensitive resin composition of the present invention on the substrate, in the preparation of the polyimide precursor, 1,3- Diaminosiloxanes such as bis(3-aminopropyl)tetramethyldisiloxane and 1,3-bis(3-aminopropyl)tetraphenyldisiloxane are copolymerized. After the amide polycondensation reaction is completed, if necessary, the water-absorbing by-product of the dehydration condensing agent coexisting in the reaction solution is filtered and separated, and water, aliphatic lower alcohol, or a mixed solution thereof, etc. are added to the obtained polymer component. A poor solvent is used to separate out the polymer composition, and further redissolving, reprecipitation and precipitation operations are repeated, whereby the polymer is purified, and the target polyimide precursor is isolated by vacuum drying. In order to improve the degree of refinement, the solution of the polymer can also be passed through a column filled with an anion and/or cation exchange resin swelled with a suitable organic solvent to remove ionic impurities. On the other hand, the ion-bonded polyimide precursor is typically obtained by reacting tetracarboxylic dianhydride and diamine. In this case, R in the above general formula (1) 1 and R 2 At least one of them is a hydroxyl group. As a tetracarboxylic dianhydride, the acid anhydride of the tetracarboxylic acid containing the structure of the said formula (30) is preferable, and as a diamine, the diamine containing the structure of the said formula (31) is preferable. By adding the following (meth)acrylic compound having an amine group to the obtained polyamide precursor, a photopolymerizable group is imparted by ionic bonding between a carboxyl group and an amine group. As the (meth)acrylic compound having an amino group, for example, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, and diethylamino methacrylate are preferred. ethyl ester, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, diethylaminopropyl methacrylate, dimethylaminobutyl acrylate, methacrylic acid Dimethylaminobutyl acrylate, diethylaminobutyl acrylate, diethylaminobutyl methacrylate, such as dialkylaminoalkyl acrylate or dialkylaminoalkyl methacrylate, wherein, From the viewpoint of photosensitive properties, it is preferably a dialkylaminoalkyl acrylate or a dialkyl methacrylate having 1 to 10 carbon atoms in the alkyl group on the amine group and 1 to 10 carbon atoms in the alkyl chain. Alkylaminoalkylesters. About the compounding quantity of the (meth)acrylic-type compound which has these amine groups, it is 1-20 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 2-15 from the viewpoint of photosensitivity characteristic parts by mass. With respect to 100 parts by mass of resin (A), by mixing 1 part by mass or more of a (meth)acrylic compound having an amine group as a photosensitive agent (C), the photosensitivity is excellent, and by mixing 20 parts by mass or less, a thick film can be obtained. Excellent hardenability. The molecular weights of the ester-bonded and ion-bonded polyimide precursors are preferably 8,000 to 150,000 when measured as a polystyrene-equivalent weight average molecular weight by gel permeation chromatography , more preferably 9,000 to 50,000. When the weight average molecular weight is 8,000 or more, the mechanical properties are good, and when the weight average molecular weight is 150,000 or less, the dispersibility in the developing solution is good, and the resolution of the relief pattern is good. As developing solvents for gel permeation chromatography, tetrahydrofuran and N-methyl-2-pyrrolidone are recommended. In addition, the weight average molecular weight was calculated|required based on the calibration curve produced using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko Corporation. [(A) Polyamide] Another example of preferable resin (A) in the photosensitive resin composition of the present invention has the following general formula (4):
Figure 02_image099
{where, X 2 It is a trivalent organic group with 6 to 15 carbon atoms, Y 2 It is a divalent organic group with 6 to 35 carbon atoms, and may have the same structure or multiple structures, R 9 is an organic group having at least one radically polymerizable unsaturated bond group with 3 to 20 carbon atoms, and n 2 It is the polyamide of the structure represented by the integer of 1-1000}. This polyamide is suitable for use in negative photosensitive resin compositions. In the above general formula (4), as R 9 The base represented is preferably the following general formula (32) [Chemical 51] in terms of having both photosensitivity characteristics and chemical resistance.
Figure 02_image101
{where, R 32 A group represented by an organic group} having at least one radically polymerizable unsaturated bond group having 2 to 19 carbon atoms. In the above general formula (4), as X 2 The trivalent organic group represented is preferably a trivalent organic group having 6 to 15 carbon atoms, for example, it is preferably selected from the following formula (33):
Figure 02_image103
The aromatic group in the represented group is more preferably an aromatic group obtained by removing a carboxyl group and an amino group from the structure of the amino group-substituted isophthalic acid. In the above general formula (4), as Y 2 The divalent organic group represented is preferably an organic group having 6 to 35 carbon atoms, more preferably a cyclic organic group having 1 to 4 substituted aromatic rings or aliphatic rings, or not having Aliphatic or siloxane of cyclic structure. as Y 2 The divalent organic group represented includes the following general formula (I) and the following general formulas (34) and (35):
Figure 02_image105
[Chemical 54]
Figure 02_image107
{where, R 33 and R 34 are independently selected from hydroxyl, methyl (-CH 3 ), ethyl (-C 2 H 5 ), propyl (-C 3 H 7 ) or butyl (-C 4 H 9 ) in a group consisting of a group, and the propyl and butyl groups include various isomers} [Chem. 55]
Figure 02_image109
{where, m 7 is an integer from 0 to 8, m 8 and m 9 Each independently is an integer from 0 to 3, m 10 and m 11 are independently integers from 0 to 10, and R 35 and R 36 is methyl (-CH 3 ), ethyl (-C 2 H 5 ), propyl (-C 3 H 7 ), butyl (-C 4 H 9 ) or such isomers}. As for the aliphatic group or siloxane group which does not have a cyclic structure, the following general formula (36) can be mentioned as a preferable one:
Figure 02_image111
{where, m 12 is an integer from 2 to 12, m 13 is an integer from 1 to 3, m 14 is an integer from 1 to 20, and R 37 , R 38 , R 39 and R 40 Each independently is an alkyl group having 1 to 3 carbon atoms or a phenyl group which may be substituted}. The polyamide resin of the present invention can be synthesized, for example, in the following manner. (Synthesis of phthalic acid compound end-capped product) The first step is to make an aromatic group X having a trivalent 2 compounds, such as at least one compound selected from the group consisting of amino-substituted phthalic acid, amino-substituted isophthalic acid, and amino-substituted terephthalic acid (hereinafter referred to as It is a "phthalic acid compound") 1 mol and reacts with 1 mol of a compound that reacts with an amine group, and the amine group for synthesizing the phthalic acid compound is subjected to the following group containing a radically polymerizable unsaturated bond Modified and capped compound (hereinafter referred to as "phthalic acid compound capped product"). These may be used alone or in combination. When the phthalic acid compound has a structure in which the radically polymerizable unsaturated bond-containing group is terminated, negative-type photosensitivity (photocurability) can be imparted to the polyamide resin. As a group containing a radically polymerizable unsaturated bond, an organic group having a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms is preferable, and a methacryloyl group or an acrylyl group is particularly preferable. foundation. The above-mentioned phthalic acid compound-terminated product can be obtained by combining the amine group of the phthalic acid compound with at least one radical polymerizable unsaturated bond group having 3 to 20 carbon atoms. obtained by the reaction. Examples of suitable acyl chlorides include (meth)acryloyl chloride, 2-[(meth)acryloyloxy]acetyl chloride, 3-[(meth)acryloyloxy]propionyl chloride, chlorine 2-[(meth)acryloyloxy]ethyl formate, 3-[(meth)acrylooxypropyl]chloroformate, etc. Examples of suitable isocyanates include: 2-(meth)acryloyloxyethyl isocyanate, 1,1-bis[(meth)acrylooxymethyl]ethyl isocyanate, isocyanate 2-[2-(meth)acryloyloxyethoxy]ethyl ester, etc. As a suitable epoxy compound, glycidyl (meth)acrylate etc. are mentioned. These may be used alone or in combination, but methacryloyl chloride and/or 2-(methacryloyloxy)ethyl isocyanate are particularly preferably used. Furthermore, as these phthalic acid compound-terminated products, those in which the phthalic acid compound is 5-aminoisophthalic acid can obtain a polyamide that is excellent not only in photosensitive properties but also in film properties after heat curing, so it is preferable . The above-mentioned end-capping reaction can be carried out by stirring and dissolving the phthalic acid compound and the end-capping agent in the following solvent as necessary in the presence of a basic catalyst such as pyridine or a tin-based catalyst such as di-n-butyltin dilaurate, etc. mixed. Depending on the type of end-capping agent, acyl chloride and the like may generate hydrogen chloride as a by-product during the end-capping reaction. In this case, in order to prevent contamination of the subsequent steps, it is preferable to perform appropriate purification, that is, to temporarily reprecipitate in water, wash and dry it, or pass it through a column filled with an ion exchange resin to remove the reduced ions. ingredients etc. (Synthesis of polyamide) The above-mentioned phthalic acid compound end-capped body and the organic group Y having a divalent 2 The above-mentioned diamine compound is mixed in the solvent described below in the presence of a basic catalyst such as pyridine or triethylamine to carry out amide polycondensation, thereby obtaining the polyamide of the present invention. Examples of the polycondensation method of amide include: a method of using a dehydration condensing agent to make a phthalic acid compound end-capped product into a symmetrical polyacid anhydride, and then mixing with a diamine compound; or a known method of making a phthalic acid compound end-capped product The method of mixing with diamine compound after chlorination of ammonium is realized, the method of mixing with diamine compound after realizing active esterification by reacting dicarboxylic acid component and active esterification agent in the presence of dehydration condensing agent, etc. As the dehydration condensing agent, for example, preferable ones include dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1'- Carbonyldioxy-bis-1,2,3-benzotriazole, N,N'-dibutanediamide imino carbonate, etc. As a chlorinating agent, thionite chloride etc. are mentioned. Examples of the active esterification agent include N-hydroxybutanediimide, 1-hydroxybenzotriazole, N-hydroxy-5-noraxene-2,3-dicarboxyimide, 2-hydroxysulfinide Amino-2-cyanoacetate, 2-hydroxyimino-2-cyanoacetamide, etc. as the organic group Y 2 The diamine compound is preferably selected from the group consisting of aromatic diamine compounds, aromatic bisaminophenol compounds, alicyclic diamine compounds, linear aliphatic diamine compounds, and siloxane diamine compounds Of the at least one diamine compound, if necessary, a plurality of them may be used in combination. Examples of the aromatic diamine compound include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diphenyl ether Amino diphenyl ether, 4,4'-diamino diphenyl sulfide, 3,4'-diamino diphenyl sulfide, 3,3'-diamino diphenyl sulfide, 4,4'- Diaminodiphenyl bismuth, 3,4'-diaminodiphenyl bismuth, 3,3'-diaminodiphenyl bismuth, 4,4'-diaminobiphenyl, 3,4'- Diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diamine benzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, bis[4-(4- Aminophenoxy) phenyl] bis[4-(3-aminophenoxy)phenyl] bis[4-(3-aminophenoxy)phenyl] bis(4,4'-bis(4-aminophenoxy)biphenyl, 4,4 '-Bis(3-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]ether , 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 9,10-bis(4-aminophenyl)anthracene, 2,2- Bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 1,4-bis(3-aminopropyldimethylsilyl)benzene, o-tolidine, 9,9-bis(4-aminophenyl) benzene, and a part of the hydrogen atoms on the benzene ring of these are selected from the group consisting of methyl, ethyl, hydroxymethyl, hydroxyethyl and halogen atoms A diamine compound substituted with one or more groups in the group. Examples of the diamine compound in which the hydrogen atom on the benzene ring is substituted include 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4 ,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 2,2'-dimethyl-4,4'-diaminodiphenyl Phenylmethane, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminobiphenyl, etc. As the aromatic bisaminophenol compound, 3,3'-dihydroxybenzidine, 3,3'-diamino-4,4'-dihydroxybiphenyl, 3,3'-dihydroxy-4 , 4'-Diaminodiphenyl, bis-(3-amino-4-hydroxyphenyl)methane, 2,2-bis-(3-amino-4-hydroxyphenyl)propane, 2, 2-bis-(3-amino-4-hydroxyphenyl)hexafluoropropane, 2,2-bis-(3-hydroxy-4-aminophenyl)hexafluoropropane, bis-(3-hydroxy-4 -aminophenyl)methane, 2,2-bis-(3-hydroxy-4-aminophenyl)propane, 3,3'-dihydroxy-4,4'-diaminobenzophenone, 3 ,3'-dihydroxy-4,4'-diaminodiphenyl ether, 4,4'-dihydroxy-3,3'-diaminodiphenyl ether, 2,5-dihydroxy-1,4- Diaminobenzene, 4,6-diaminoresorcinol, 1,1-bis(3-amino-4-hydroxyphenyl)cyclohexane, 4,4-(α-methylbenzylidene) )-bis(2-aminophenol) and the like. As the alicyclic diamine compound, 1,3-diaminocyclopentane, 1,3-diaminocyclohexane, 1,3-diamino-1-methylcyclohexane, 3 ,5-diamino-1,1-dimethylcyclohexane, 1,5-diamino-1,3-dimethylcyclohexane, 1,3-diamino-1-methyl- 4-Isopropylcyclohexane, 1,2-diamino-4-methylcyclohexane, 1,4-diaminocyclohexane, 1,4-diamino-2,5-diethyl cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 2-(3-aminocyclopentyl)-2-propane amine, menthanediamine, isophoronediamine, noralkanediamine, 1-cycloheptene-3,7-diamine, 4,4'-methylenebis(cyclohexylamine), 4 ,4'-Methylenebis(2-methylcyclohexylamine), 1,4-bis(3-aminopropyl)piperidine, 3,9-bis(3-aminopropyl)-2, 4,8,10-Tetraoxaspiro-[5,5]-undecane, etc. As the linear aliphatic diamine compound, 1,2-diaminoethane, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane can be mentioned. alkane, 1,10-diaminodecane, 1,12-diaminododecane and other hydrocarbon diamines, or 2-(2-aminoethoxy)ethylamine, 2,2'-( Ethylenedioxy)diethylamine, bis[2-(2-aminoethoxy)ethyl]ether and other alkylene oxide diamines, etc. As a siloxane diamine compound, dimethyl (poly) siloxane diamine, for example, PAM-E, KF-8010, X-22-161A, etc. of the brand name of Shin-Etsu Chemical Industry Co., Ltd. are mentioned. After completion of the amide polycondensation reaction, if necessary, the precipitate or the like derived from the dehydration condensing agent deposited in the reaction liquid is separated by filtration. Next, a poor solvent for polyamide such as water, aliphatic lower alcohol, or a mixed solution thereof is put into the reaction solution to precipitate polyamide. Furthermore, the precipitated polyamide is dissolved in the solvent again, and the reprecipitation and precipitation operation is repeatedly carried out for purification and vacuum drying to isolate the target polyamide. Furthermore, in order to further improve the degree of refinement, the solution of the polyamide can be passed through a column filled with an ion exchange resin to remove ionic impurities. The polyamide conversion weight average molecular weight of polyamide by gel permeation chromatography (hereinafter referred to as "GPC") is preferably 7,000 to 70,000, and more preferably 10,000 to 50,000. If the weight average molecular weight in terms of polystyrene is 7,000 or more, the basic physical properties of the hardened relief pattern are ensured. Moreover, when a polystyrene conversion weight average molecular weight is 70,000 or less, the developing solubility at the time of forming a relief pattern is ensured. As an eluent for GPC, tetrahydrofuran or N-methyl-2-pyrrolidone is recommended. In addition, the weight average molecular weight value was calculated|required based on the calibration curve produced using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko. [(A) Polyhydroxyamide] Another example of preferable resin (A) in the photosensitive resin composition of the present invention has the following general formula (5):
Figure 02_image113
{where, Y 3 is a tetravalent organic group having carbon atoms, preferably a tetravalent organic group having 2 or more carbon atoms, Y 4 , X 3 and X 4 Each independently is a divalent organic group having 2 or more carbon atoms, n 3 is an integer from 1 to 1000, n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and contains X 3 and Y 3 of n 3 dihydroxydiamide units and containing X 4 and Y 4 of n 4 The order of arrangement of the diamide units is arbitrary} The polyhydroxyamide (polyoxazole precursor (the polyhydroxyamide represented by the above general formula (5) may be abbreviated as “polyoxazole” in the following) Precursor")). The polyoxazole precursor is n in the above-mentioned general formula (5) 3 A polymer of 1 dihydroxydiamide unit (hereinafter sometimes abbreviated as dihydroxydiamide unit) may also have n in the above-mentioned general formula (5). 4 A diamide unit (hereinafter sometimes abbreviated as a diamide unit). X 3 The number of carbon atoms is preferably 2 or more and 40 or less for the purpose of obtaining photosensitive properties, X 4 The number of carbon atoms is preferably 2 or more and 40 or less for the purpose of obtaining photosensitive properties, and Y 3 The number of carbon atoms is preferably 2 or more and 40 or less for the purpose of obtaining photosensitive properties, and Y 4 The number of carbon atoms is preferably 2 or more and 40 or less for the purpose of obtaining photosensitive properties. The dihydroxydiamide unit can be obtained by having Y 3 (NH 2 ) 2 (OH) 2 The structure of diaminodihydroxy compound (preferably bisaminophenol) with X 3 (COOH) 2 The dicarboxylic acid of the structure is synthesized and formed. Hereinafter, a typical aspect will be described by taking the case where the above-mentioned diaminodihydroxy compound is bisaminophenol as an example. The two groups of amine groups and hydroxyl groups of the bisaminophenol are located in ortho positions to each other, and the dihydroxydiamidamide unit is ring-closed under heating at about 250-400° C. to transform into a heat-resistant polyoxazole structure. n in general formula (5) 3 It is 1 or more for the purpose of obtaining photosensitive properties, and it is 1000 or less for the purpose of obtaining photosensitive properties. n 3 The range of 2-1000 is preferable, the range of 3-50 is more preferable, and the range of 3-20 is the most preferable. If necessary, n can also be condensed on the polyoxazole precursor 4 the above-mentioned diamide units. The diamide unit can be obtained by having Y 4 (NH 2 ) 2 The structure of diamine with X 4 (COOH) 2 The dicarboxylic acid of the structure is synthesized and formed. n in general formula (5) 4 is in the range of 0 to 500, by n 4 It is 500 or less to obtain good photosensitivity characteristics. n 4 More preferably, it is the range of 0-10. If the ratio of the diamide unit to the dihydroxydiamide unit is too high, the solubility in the alkaline aqueous solution used as the developer decreases, so n in the general formula (5) 3 /(n 3 +n 4 ) exceeds 0.5, more preferably 0.7 or more, and most preferably 0.8 or more. About as having Y 3 (NH 2 ) 2 (OH) 2 The bisaminophenol of the diaminodihydroxy compound of the structure, for example, 3,3'-dihydroxybenzidine, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4, 4'-Diamino-3,3'-dihydroxybiphenyl, 3,3'-diamino-4,4'-dihydroxydiphenyl, 4,4'-diamino-3,3 '-Dihydroxydiphenylene, bis-(3-amino-4-hydroxyphenyl)methane, 2,2-bis-(3-amino-4-hydroxyphenyl)propane, 2,2-bis -(3-Amino-4-hydroxyphenyl)hexafluoropropane, 2,2-bis-(4-amino-3-hydroxyphenyl)hexafluoropropane, bis-(4-amino-3-hydroxyl) Phenyl)methane, 2,2-bis-(4-amino-3-hydroxyphenyl)propane, 4,4'-diamino-3,3'-dihydroxybenzophenone, 3,3'-Diamino-4,4'-dihydroxybenzophenone,4,4'-diamino-3,3'-dihydroxydiphenyl ether, 3,3'-diamino-4,4' -Dihydroxydiphenyl ether, 1,4-diamino-2,5-dihydroxybenzene, 1,3-diamino-2,4-dihydroxybenzene, 1,3-diamino-4,6 - Dihydroxybenzene, etc. These bisaminophenols can be used alone or in combination of two or more. as Y in the bisaminophenol 3 The base is preferably the following formula (37) in terms of photosensitive properties:
Figure 02_image115
{In the formula, Rs1 and Rs2 each independently represent those represented by a hydrogen atom, a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, and a trifluoromethyl group}. Also, as having Y 4 (NH 2 ) 2 As the diamine of the structure, aromatic diamine, silicon diamine, etc. can be mentioned. Among them, examples of aromatic diamines include m-phenylenediamine, p-phenylenediamine, 2,4-toluenediamine, 3,3'-diaminodiphenyl ether, and 3,4'-diamine Diphenyl ether, 4,4'-diamino diphenyl ether, 3,3'-diamino diphenyl ether, 4,4'-diamino diphenyl ether, 3,4'-diamino diphenyl ether Diphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diphenylmethane Amino diphenyl sulfide, 3,3'-diamino diphenyl ketone, 4,4'-diamino diphenyl ketone, 3,4'-diamino diphenyl ketone, 2,2' -Bis(4-aminophenyl)propane, 2,2'-bis(4-aminophenyl)hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, 1,3- Bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4-methyl-2,4-bis(4-aminophenyl)-1-pentane alkene, 4-methyl-2,4-bis(4-aminophenyl)-2-pentene, 1,4-bis(α,α-dimethyl-4-aminobenzyl)benzene, ethylene Aminodi-p-phenylenediamine, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 4-methyl-2,4-bis(4-aminophenyl)pentane, 5 (or 6)-Amino-1-(4-aminophenyl)-1,3,3-trimethylindan, bis(p-aminophenyl)phosphine oxide, 4,4'-diaminoazo Benzene, 4,4'-diaminodiphenylurea, 4,4'-bis(4-aminophenoxy)biphenyl, 2,2-bis[4-(4-aminophenoxy) Phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]di Benzophenone, 4,4'-bis(4-aminophenoxy)diphenylene, 4,4'-bis[4-(α,α-dimethyl-4-aminobenzyl)benzene Oxy]benzophenone, 4,4'-bis[4-(α,α-dimethyl-4-aminobenzyl)phenoxy]diphenylene, 4,4'-diamino Biphenyl, 4,4'-diaminobenzophenone, phenylindandiamine, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diamine Methyl-4,4'-diaminobiphenyl, o-toluidine, 2,2-bis(4-aminophenoxyphenyl)propane, bis(4-aminophenoxyphenyl)sulfan , bis(4-aminophenoxyphenyl) sulfide, 1,4-(4-aminophenoxyphenyl)benzene, 1,3-(4-aminophenoxyphenyl)benzene, 9,9-bis(4-aminophenyl) stilbene, 4,4'-bis-(3-aminophenoxy)diphenylene, 4,4'-diaminobenzylaniline, etc., And the hydrogen atom of the aromatic nucleus of these aromatic diamines is substituted by at least one group or atom selected from the group consisting of chlorine atom, fluorine atom, bromine atom, methyl group, methoxy group, cyano group and phenyl group compound. Moreover, as said diamine, in order to improve the adhesiveness with a base material, silicon diamine can be selected. Examples of silicon diamines include bis(4-aminophenyl)dimethylsilane, bis(4-aminophenyl)tetramethylsiloxane, bis(4-aminophenyl)tetrakis Methyldisiloxane, bis(γ-aminopropyl)tetramethyldisiloxane, 1,4-bis(γ-aminopropyldimethylsilyl)benzene, bis(4-aminopropyl) Butyl) tetramethyldisiloxane, bis (γ-aminopropyl) tetraphenyldisiloxane, etc. Again, as having X 3 (COOH) 2 or X 4 (COOH) 2 The preferred dicarboxylic acid of the structure can be listed as X 3 and X 4 It is an aliphatic group or an aromatic group having a linear, branched or cyclic structure, respectively. Among them, preferably an organic group having 2 or more and 40 or less carbon atoms which may contain an aromatic ring or an aliphatic ring, X 3 and X 4 respectively can be preferably from the following formula (38): [Chem. 59]
Figure 02_image117
{where, R 41 Indicates a choice from -CH 2 -, -O-, -S-, -SO 2 -, -CO-, -NHCO- and -C(CF 3 ) 2 It is preferable to select from the aromatic group represented by the divalent group in the group which is formed, and it is equal to the photosensitive characteristic. The polyoxazole precursor can also be one whose end groups are capped with specific organic groups. In the case of using a polyoxazole precursor terminated by an end-capping group, it is expected to change the mechanical properties (especially elongation) and the shape of the cured relief pattern of the coating film after heat curing of the photosensitive resin composition of the present invention. well. As a preferable example of such an end-capping group, the following formula (39) can be mentioned:
Figure 02_image119
represented. The polystyrene conversion weight average molecular weight of the polyoxazole precursor based on gel permeation chromatography is preferably 3,000 to 70,000, more preferably 6,000 to 50,000. The weight average molecular weight is preferably 3,000 or more from the viewpoint of the physical properties of the hardened relief pattern. Moreover, from the viewpoint of resolution, it is preferable that it is 70,000 or less. As a developing solvent for gel permeation chromatography, tetrahydrofuran and N-methyl-2-pyrrolidone are recommended. In addition, the molecular weight was calculated|required based on the calibration curve produced using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko Corporation. [(A) Polyimide] Another example of preferable resin (A) in the photosensitive resin composition of the present invention has the general formula (6):
Figure 02_image121
{where, X 5 Represents an organic group with a valence of 4 to 14, Y 5 Represents an organic group with a valence of 2 to 12, R 10 and R 11 Represents an organic group having at least one group selected from phenolic hydroxyl group, sulfonic acid group or thiol group, and may be the same or different, n 5 is an integer from 3 to 200, and m 3 and m 4 The polyimide of the structure represented by an integer of 0 to 10}. Here, the resin represented by the general formula (6) does not need to undergo chemical change in the heat treatment step when it exhibits sufficient film properties, and is therefore suitable for treatment at a lower temperature, and is particularly preferred in this respect. X in the structural unit represented by the above general formula (6) 5 Preferably, it is a tetravalent to 14-valent organic group having 4 to 40 carbon atoms, and from the viewpoint of having both heat resistance and photosensitivity, it is more preferably an aromatic ring or an aliphatic ring containing 5 to 40 carbon atoms. the organic base. The polyimide represented by the above general formula (6) can be combined with diamine, corresponding diisocyanate compound, trimethylsilane, etc. The alkylated diamine is obtained by the reaction. Generally, polyimide can be obtained by subjecting polyimide, which is one of the precursors of polyimide obtained by reacting tetracarboxylic dianhydride and diamine, to chemical treatment with heat or acid or alkali. Obtained by dehydration and ring closure. As suitable tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyl tetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,2',3,3'-benzophenone tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl) ) propane dihydrate, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydrate, 1,1-bis(2,3-dicarboxyphenyl)ethane dihydrate, bis( 3,4-Dicarboxyphenyl)methane dianhydrate, bis(2,3-dicarboxyphenyl)methane dianhydrate, bis(3,4-dicarboxyphenyl) methane dianhydrate, bis(3, 4-Dicarboxyphenyl) ether dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fornic acid dianhydride, 9,9 -Bis{4-(3,4-dicarboxyphenoxy)phenyl}pernic acid dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 2,3,5,6-pyridine tetracarboxylate Aromatic tetracarboxylic dianhydride such as acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, or Aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride and 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,3',4,4'-diphenyltetracarboxylic acid Dianhydride and the following general formula (40): [Chem. 62]
Figure 02_image123
{where, R 42 Represents selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 base in , and R 43 and R 44 It may be the same or different, and represents a compound represented by a group selected from a hydrogen atom, a hydroxyl group or a thiol group}. Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,2',3,3'-benzophenone tetra Carboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydrate, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis (3,4-Dicarboxyphenyl)ethane dianhydrate, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydrate, bis(3,4-dicarboxyphenyl)methanedi Anhydrate, bis(2,3-dicarboxyphenyl)methane dianhydrate, bis(3,4-dicarboxyphenyl) bismuth anhydrous, bis(3,4-dicarboxyphenyl)ether dihydrate , 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dihydrate, 3,3',4,4'-diphenyltetracarboxylic dianhydride, 9,9-bis(3 , 4-dicarboxyphenyl) fornic acid dianhydride, 9,9-bis{4-(3,4-dicarboxyphenoxy)phenyl}fornic acid dianhydride and the following general formula (41) [Chem. 63 ]
Figure 02_image125
{where, R 45 Represents selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 base in , and R 46 and R 47 It may be the same or different, and represents an acid dianhydride selected from a structure represented by a hydrogen atom, a hydroxyl group, or a thiol group. These can be used individually or in combination of 2 or more types. Y of the above general formula (6) 5 It represents a structural component of diamine, and the diamine represents a 2-12-valent organic group containing an aromatic ring or an aliphatic ring, and among them, an organic group having 5-40 carbon atoms is preferable. Specific examples of diamines include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4 ,4'-diaminodiphenyl sulfide, 1,4-bis(4-aminophenoxy)benzene, benzyne, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2 ,6-naphthalenediamine, bis(4-aminophenoxyphenyl) bis(3-aminophenoxyphenyl) bis(3-aminophenoxyphenyl) bis(4-aminophenoxy)biphenyl, bis{ 4-(4-Aminophenoxy)phenyl}ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobenzyl Benzene, 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl -4,4'-diaminobiphenyl, 2,2',3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3',4,4'-tetramethyl -4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 9,9-bis(4-aminophenyl) benzene Or the compounds in which these aromatic rings are substituted with alkyl or halogen atoms, or aliphatic cyclohexyldiamine, methylenebiscyclohexylamine, and the following general formula (42):
Figure 02_image127
{where, R 48 Represents selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 base in , and R 49 ~R 52 It may be the same or different, and represents a diamine and the like selected from the structure represented by a hydrogen atom, a hydroxyl group, or a thiol group. Among these, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'- Diaminodiphenylmethane, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4 '-Diaminodiphenyl sulfide, m-phenylenediamine, P-phenylenediamine, 1,4-bis(4-aminophenoxy)benzene, 9,9-bis(4-aminophenyl) , and the following general formula (43): [Chem. 65]
Figure 02_image129
{where, R 53 Represents selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 base in , and R 54 ~R 57 It may be the same or different, and represents a diamine selected from a structure represented by a hydrogen atom, a hydroxyl group or a thiol group}. Among these, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'- Diaminodiphenylmethane, 3,4'-diaminodiphenyl, 4,4'-diaminodiphenyl, 1,4-bis(4-aminophenoxy)benzene, and the following general formula (44): [Chem. 66]
Figure 02_image131
{where, R 58 Represents selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 base in , and R 59 and R 60 It may be the same or different, and represents a diamine selected from the structure represented by a hydrogen atom, a hydroxyl group or a thiol group}. These can be used individually or in combination of 2 or more types. R of general formula (6) 10 and R 11 Represents a phenolic hydroxyl group, a sulfonic acid group, or a thiol group. In the present invention, as R 10 and R 11 , phenolic hydroxyl groups, sulfonic acid groups and/or thiol groups can be mixed. by controlling R 10 and R 11 The amount of the alkali-soluble group changes the dissolution rate in the alkaline aqueous solution, and thus a photosensitive resin composition having an appropriate dissolution rate can be obtained by this adjustment. Furthermore, in order to improve the adhesion to the substrate, X may be used within a range that does not reduce heat resistance. 5 , Y 5 The aliphatic group with siloxane structure is copolymerized. Specifically, bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane and 1-10 mol% of diamine components can be mentioned. alkane, etc. for copolymerization, etc. The above-mentioned polyimide can obtain the polyimide precursor by the following methods, and then use the known imidization reaction method to completely imidize the polyimide precursor, or stop the imidization in the middle. Amination reaction to introduce a portion of the imide structure (polyimide imine in this case), or by blending a fully imidized polymer with the polyimide precursor Synthesis is carried out by introducing a part of the imide structure. The above-mentioned method for obtaining the precursor of polyimide is as follows: for example, tetracarboxylic dianhydride and diamine compound (a part of which is substituted by a terminal blocking agent as monoamine) at low temperature Reaction; Reaction of tetracarboxylic dianhydride (a part of which is substituted by end capping agent as acid anhydride or monochloride compound or monoactive ester compound) and diamine compound at low temperature; obtained from tetracarboxylic dianhydride and alcohol esters, which are subsequently reacted with diamines (partly substituted with end-capping agents as monoamines) in the presence of condensing agents; diesters are obtained from tetracarboxylic dianhydrides and alcohols, after which the remaining dicarboxylic acids are subjected to The amide is chlorinated and reacted with a diamine (a portion substituted with a terminal capping agent as a monoamine). It is preferable that the said polyimide has a polyimide so that an imidization rate may be 15% or more with respect to the whole resin which comprises the photosensitive resin composition. More preferably, it is 20% or more. The imidization rate here means the rate of imidization present in the entire resin constituting the photosensitive resin composition. If the imidization rate is less than 15%, the shrinkage during thermal curing becomes large, which is not suitable for thick film production. The imidization rate can be easily calculated by the following method. First, the infrared absorption spectrum of the polymer was measured, and it was confirmed that there were absorption peaks (around 1780 cm-1 and around 1377 cm-1) derived from the imide structure of polyimide. Then, the polymer was heat-treated at 350° C. for 1 hour, the infrared absorption spectrum after heat-treatment was measured, and the intensity of the peak near 1377 cm-1 was compared with the intensity before heat-treatment, thereby calculating the amount of energy in the polymer before heat-treatment. imidization rate. The molecular weight of the above-mentioned polyimide is preferably 3,000 to 200,000, more preferably 5,000 to 50,000, when measured in terms of weight average molecular weight in terms of polystyrene by gel permeation chromatography. When the weight average molecular weight is 3,000 or more, the mechanical properties are good, and when the weight average molecular weight is 50,000 or less, the dispersibility in the developing solution is good, and the resolution of the relief pattern is good. As developing solvents for gel permeation chromatography, tetrahydrofuran and N-methyl-2-pyrrolidone are recommended. In addition, the molecular weight was calculated|required based on the calibration curve produced using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko Corporation. Furthermore, in this invention, a phenol resin can also be used suitably. [(A) Phenol resin] The phenol resin in this embodiment means a resin having a repeating unit including a phenolic hydroxyl group. (A) The phenol resin does not undergo structural changes such as cyclization (imidation) of the polyimide precursor during thermal curing, so it has the advantage that it can be cured at low temperature (eg, below 250°C). In the present embodiment, the weight average molecular weight of the (A) phenol resin is preferably 700 to 100,000, more preferably 1,500 to 80,000, and still more preferably 2,000 to 50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of the reflow process suitability of the cured film, and on the other hand, from the viewpoint of the alkali solubility of the photosensitive resin composition, it is preferably 100,000 or less. Determination of the weight average molecular weight herein can be performed by gel permeation chromatography (GPC), calculated from a calibration curve prepared using standard polystyrene. (A) The phenolic resin is preferably selected from the group consisting of novolak, polyhydroxystyrene from the viewpoints of solubility in an alkaline aqueous solution, sensitivity and resolution when forming a resist pattern, and residual stress of a cured film , has the following general formula (7):
Figure 02_image133
{In the formula, a is an integer from 1 to 3, b is an integer from 0 to 3, 1≦(a+b)≦4, R 26 represents a monovalent substituent selected from the group consisting of a monovalent organic group having 1 to 20 carbon atoms, a halogen atom, a nitro group and a cyano group, and when b is 2 or 3, a plurality of R 12 They may be the same or different from each other, and X represents a group selected from the group consisting of a bivalent aliphatic group having 2 to 10 carbon atoms, which may have an unsaturated bond, a bivalent alicyclic group having 3 to 20 carbon atoms, and the following general formula ( 8): [Chemical 68]
Figure 02_image135
(in the formula, p is an integer of 1 to 10) a divalent alkaneoxy group represented by a divalent organic group in the group consisting of a divalent organic group having an aromatic ring having 6 to 12 carbon atoms At least one phenol resin among the phenol resin of the repeating unit represented by the group} and the phenol resin modified with a compound having an unsaturated hydrocarbon group having 4 to 100 carbon atoms. (Novolak) Here, the term "novolak" means the entire polymer obtained by condensing phenols and formaldehyde in the presence of a catalyst. In general, novolak can be obtained by condensing 1 mole of phenol with less than 1 mole of formaldehyde relative to the phenol. Examples of the above-mentioned phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol phenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol , 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol, etc. As a specific novolak, a phenol/formaldehyde condensed novolak resin, a cresol/formaldehyde condensed novolak resin, a phenol-naphthol/formaldehyde condensed novolak resin, etc. are mentioned, for example. The weight average molecular weight of the novolak is preferably 700 to 100,000, more preferably 1,500 to 80,000, and still more preferably 2,000 to 50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of the reflow process suitability of the cured film, and on the other hand, from the viewpoint of the alkali solubility of the photosensitive resin composition, it is preferably 100,000 or less. (Polyhydroxystyrene) Herein, the term "polyhydroxystyrene" means the whole of a polymer containing hydroxystyrene as a polymerized unit. As a preferable example of polyhydroxystyrene, poly-p-vinylphenol is mentioned. Poly-p-vinyl phenol means the entirety of polymers containing p-vinyl phenol as polymerized units. Therefore, as long as the object of the present invention is not violated, a polymerized unit other than hydroxystyrene (eg, p-vinyl phenol) can be used to constitute polyhydroxystyrene (eg, poly-p-vinyl phenol). In the polyhydroxystyrene, the molar ratio of the hydroxystyrene units based on the molar number of all polymerized units is preferably 10 mol% to 99 mol%, more preferably 20 to 97 mol%, More preferably, it is 30 to 95 mol %. When the above ratio is 10 mol % or more, it is advantageous from the viewpoint of the alkali solubility of the photosensitive resin composition, and when it is 99 mol % or less, the composition containing the following copolymerization components is cured. It is advantageous from the viewpoint of reflow solderability of the formed cured film. The polymerized unit other than hydroxystyrene (eg, p-vinylphenol) may be any polymerized unit that can be copolymerized with hydroxystyrene (eg, p-vinylphenol). The copolymerization component that forms polymerized units other than hydroxystyrene (for example, p-vinylphenol) is not limited, and examples thereof include methyl acrylate, methyl methacrylate, hydroxyethyl acrylate, butyl methacrylate, acrylic acid Octyl ester, 2-ethoxyethyl methacrylate, tert-butyl acrylate, 1,5-pentanediol diacrylate, N,N-diethylaminoethyl acrylate, ethylene glycol diacrylate , 1,3-propylene glycol diacrylate, decanediol diacrylate, decanediol dimethacrylate, 1,4-cyclohexanediol diacrylate, 2,2-dimethylolpropane diacrylate , glycerol diacrylate, tripropylene glycol diacrylate, glycerol triacrylate, 2,2-bis(p-hydroxyphenyl)propane dimethacrylate, triethylene glycol diacrylate, polyoxyethyl-2- 2-bis(p-hydroxyphenyl)propane dimethacrylate, triethylene glycol dimethacrylate, polyoxypropyl trimethylol propane triacrylate, ethylene glycol dimethacrylate, butanediol Alcohol Dimethacrylate, 1,3-Propanediol Dimethacrylate, Butylene Glycol Dimethacrylate, 1,3-Propanediol Dimethacrylate, 1,2,4-Butanetriol Trimethyl Acrylates, 2,2,4-trimethyl-1,3-pentanediol dimethacrylate, pentaerythritol trimethacrylate, 1-phenylethylene glycol 1,2-dimethacrylate, pentaerythritol Esters of acrylic acids such as tetramethacrylate, trimethylolpropane trimethacrylate, 1,5-pentanediol dimethacrylate, and 1,4-benzenediol dimethacrylate; benzene Ethylene and substituted styrenes such as 2-methylstyrene and vinyltoluene; vinyl ester monomers such as vinyl acrylate and vinyl methacrylate; and o-vinylphenol, m-vinylphenol Wait. Moreover, as the novolak and polyhydroxystyrene demonstrated above, each can be used individually by 1 type or in combination of 2 or more types. The weight average molecular weight of the polyhydroxystyrene is preferably 700 to 100,000, more preferably 1,500 to 80,000, and still more preferably 2,000 to 50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of the reflow process suitability of the cured film, and on the other hand, from the viewpoint of the alkali solubility of the photosensitive resin composition, it is preferably 100,000 or less. (Phenol resin represented by general formula (7)) In this embodiment, it is also preferable that (A) phenol resin contains the following general formula (7):
Figure 02_image137
{In the formula, a is an integer from 1 to 3, b is an integer from 0 to 3, 1≦(a+b)≦4, R 12 represents a monovalent substituent selected from the group consisting of a monovalent organic group having 1 to 20 carbon atoms, a halogen atom, a nitro group and a cyano group, and when b is 2 or 3, a plurality of R 12 They may be the same or different from each other, and X represents a group selected from the group consisting of a bivalent aliphatic group having 2 to 10 carbon atoms, which may have an unsaturated bond, a bivalent alicyclic group having 3 to 20 carbon atoms, and the following general formula ( 8): [Chemical 70]
Figure 02_image139
(in the formula, p is an integer of 1 to 10) a divalent alkaneoxy group represented by a divalent organic group in the group consisting of a divalent organic group having an aromatic ring having 6 to 12 carbon atoms The phenolic resin of the repeating unit represented by the radical }. The phenol resin having the above repeating unit can be cured at low temperature compared with, for example, polyimide resins and polybenzoxazole resins previously used, and can form a cured film having a good elongation, especially in this respect. favorable. The above-mentioned repeating units present in the phenol resin molecule may be one kind or a combination of two or more kinds. In the above general formula (7), R 12 From the viewpoint of reactivity when synthesizing the resin of the general formula (7), it is a monovalent substitution selected from the group consisting of a monovalent organic group having 1 to 20 carbon atoms, a halogen atom, a nitro group and a cyano group base. R 12 From the viewpoint of alkali solubility, it is preferably selected from a halogen atom, a nitro group, a cyano group, an aliphatic group having 1 to 10 carbon atoms which may have an unsaturated bond, an aromatic group having 6 to 20 carbon atoms, and The following general formula (45): [Chem. 71]
Figure 02_image141
{where, R 61 , R 62 and R 63 each independently represents a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, or an aromatic group having 6 to 20 carbon atoms that may have an unsaturated bond, and R 64 Represents a divalent aliphatic group having 1 to 10 carbon atoms, a divalent alicyclic group having 3 to 20 carbon atoms, or a divalent aromatic group having 6 to 20 carbon atoms that may have an unsaturated bond} A monovalent substituent in the group consisting of four groups. In the present embodiment, in the general formula (7), a is an integer of 1 to 3, but is preferably 2 from the viewpoint of alkali solubility and elongation. Moreover, when a is 2, the substitution position of a hydroxyl group may be any position of an ortho position, a meta position, and a para position. In addition, when a is 3, the substitution positions of hydroxyl groups may be any positions such as 1,2,3-position, 1,2,4-position, and 1,3,5-position. In the present embodiment, in the above general formula (7), when a is 1, in order to improve the alkali solubility, a phenol resin having a repeating unit represented by the general formula (7) (hereinafter also referred to as (a1) ) resin) and further mixed with a phenol resin (hereinafter also referred to as (a2) resin) selected from novolak and polyhydroxystyrene. The mixing ratio of the resin (a1) and the resin (a2) is preferably in the range of (a1)/(a2)=10/90 to 90/10 in terms of mass ratio. The mixing ratio is preferably (a1)/(a2)=10/90 to 90/10, more preferably (a1)/ (a2)=20/80-80/20, More preferably, (a1)/(a2)=30/70-70/30. Regarding the novolak and polyhydroxystyrene as the above-mentioned (a2) resin, the same resins as those shown in the above (novolak) and (polyhydroxystyrene) can be used. In the present embodiment, in the general formula (7), b is an integer of 0 to 3, but is preferably 0 or 1 from the viewpoints of alkali solubility and elongation. Also, when b is 2 or 3, a plurality of R 12 They may be the same or different from each other. Furthermore, in the present embodiment, in the above-mentioned general formula (7), a and b satisfy the relationship of 1≦(a+b)≦4. In the present embodiment, in the general formula (7), X is selected from the group consisting of divalent fats having 2 to 10 carbon atoms which may have an unsaturated bond from the viewpoint of the shape of the cured relief pattern and the elongation of the cured film. Composed of an aliphatic group, a divalent alicyclic group having 3 to 20 carbon atoms, an alkaneoxy group represented by the above general formula (8), and a divalent organic group having an aromatic ring having 6 to 12 carbon atoms The 2-valent organic group in the group. Among these divalent organic groups, X is preferably selected from the following general formula (9) from the viewpoint of the toughness of the film after curing:
Figure 02_image143
{where, R 13 , R 14 , R 15 and R 16 each independently a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbon atoms, or a monovalent aliphatic group with 1 to 10 carbon atoms in which a part or all of a hydrogen atom is substituted with a fluorine atom, n 6 is an integer from 0 to 4, and n 6 R when it is an integer from 1 to 4 17 It is a halogen atom, a hydroxyl group, or a monovalent organic group with 1 to 12 carbon atoms, and at least one R 17 is hydroxyl, n 6 Plural Rs in the case of an integer from 2 to 4 17 They may be the same or different from each other} the divalent group represented by, and the following general formula (10): [Chem. 73]
Figure 02_image145
{where, R 18 , R 19 , R 20 and R twenty one Each independently represents a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbon atoms, or a monovalent aliphatic group with 1 to 10 carbon atoms in which a part or all of a hydrogen atom is substituted with a fluorine atom, and W is a single bond, selected from aliphatic groups having 1 to 10 carbon atoms that may be substituted by fluorine atoms, alicyclic groups having 3 to 20 carbon atoms that may be substituted by fluorine atoms, and the following general formula (8):
Figure 02_image147
(wherein p is an integer of 1 to 10) a divalent alkaneoxy group represented by the following formula (11):
Figure 02_image149
The divalent organic group in the group consisting of the indicated divalent base} The divalent organic group in the group consisting of the indicated divalent base. The number of carbon atoms in the divalent organic group X having an aromatic ring having 6 to 12 carbon atoms is preferably 8 to 75, more preferably 8 to 40. Furthermore, the structure of the above-mentioned divalent organic group X having an aromatic ring having 6 to 12 carbon atoms is generally different from that in the general formula (7) in which an OH group and an arbitrary R are bonded to the aromatic ring. 12 base structure. Furthermore, the divalent organic group represented by the above-mentioned general formula (10) is more preferably the following formula (12) from the viewpoint of the good pattern formability of the resin composition and the elongation of the cured film after curing: [Chemical 76]
Figure 02_image151
The represented divalent organic group is more preferably the following formula (13):
Figure 02_image153
The indicated divalent organic group. In the structure represented by the general formula (7), X is particularly preferably a structure represented by the above-mentioned formula (12) or (13), and the ratio of the site represented by the structure represented by the formula (12) or (13) in X is as follows: From the viewpoint of elongation, 20 mass % or more is preferable, and 30 mass % or more is more preferable. From the viewpoint of the alkali solubility of the composition, the above ratio is preferably 80% by mass or less, more preferably 70% by mass or less. Moreover, among the phenol resins having the structure represented by the above-mentioned general formula (7), it is particularly preferable to have the following general formulas in the same resin skeleton from the viewpoint of the alkali solubility of the composition and the elongation of the cured film. The structure represented by the formula (14) and the structure represented by the following general formula (15) are both structures. [Chemical 78]
Figure 02_image155
{where, R twenty one is a monovalent group with 1 to 10 carbon atoms selected from the group consisting of a hydrocarbon group and an alkoxy group, n 7 is 2 or 3, n 8 is an integer from 0 to 2, m 5 is an integer from 1 to 500, 2≦(n 7 +n 8 )≦4, at n 8 In the case of 2, a plurality of R twenty one Can be the same or different from each other} [Chem. 79]
Figure 02_image157
{where, R twenty two and R twenty three Each independently is a monovalent group with 1 to 10 carbon atoms selected from the group consisting of a hydrocarbon group and an alkoxy group, n 9 is an integer from 1 to 3, n 10 is an integer from 0 to 2, n 11 is an integer from 0 to 3, m 6 is an integer from 1 to 500, 2≦(n 9 +n 10 )≦4, at n 10 In the case of 2, a plurality of R twenty two can be the same or different from each other, in n 11 In the case of 2 or 3, a plurality of R twenty three may be the same or different from each other} m of the above general formula (14) 5 and m of the above general formula (15) 6 Indicates the total number of the respective repeating units in the main chain of the phenol resin. That is, in the phenol resin (A), for example, the repeating units in the brackets in the structure represented by the above general formula (14) and the repeating units in the brackets in the structure represented by the above general formula (15) may be random, embedded Arrangements in the form of paragraphs or a combination of these. m 5 and m 6 Each independently is an integer of 1 to 500, the lower limit is preferably 2, more preferably 3, the upper limit is preferably 450, more preferably 400, and still more preferably 350. m 5 and m 6 From the viewpoint of the toughness of the film after curing, it is preferable that it is each independently 2 or more, and from the viewpoint of the solubility in an alkaline aqueous solution, it is preferable that it is 450 or less. m 5 with m 6 The total is preferably 2 or more, more preferably 4 or more, still more preferably 6 or more, from the viewpoint of the toughness of the film after curing, and is preferably from the viewpoint of solubility in an alkaline aqueous solution It is 200 or less, more preferably 175 or less, and still more preferably 150 or less. Among the (A) phenol resins having both the structure represented by the above general formula (14) and the structure represented by the above general formula (15) in the same resin skeleton, the structure represented by the above general formula (14) is not The higher the molar ratio, the better the physical properties of the cured film and the better the heat resistance. On the other hand, the higher the molar ratio of the structure represented by the general formula (15), the better the alkali solubility. The better the pattern shape. Therefore, the ratio m of the structure represented by the above general formula (14) to the structure represented by the above general formula (15) 5 /m 6 From the viewpoint of film properties after curing, it is preferably 20/80 or more, more preferably 40/60 or more, particularly preferably 50/50 or more, and from the viewpoints of alkali solubility and hardened relief pattern shape, It is preferably 90/10 or less, more preferably 80/20 or less, and still more preferably 70/30 or less. The phenolic resin having the repeating unit represented by the general formula (7) typically contains a phenolic compound and a copolymerization component (specifically, it is selected from a compound having an aldehyde group (including a compound that is decomposed like triacetate to form an aldehyde compound) , One of the group consisting of compounds with ketone groups, compounds with 2 hydroxymethyl groups in the molecule, compounds with 2 alkoxymethyl groups in the molecule, and compounds with 2 haloalkyl groups in the molecule The above compounds), more typically, can be synthesized by subjecting monomer components including these to a polymerization reaction. For example, phenol and/or phenol derivatives (hereinafter also collectively referred to as "phenol compounds") as described below can be combined with aldehyde compounds, ketone compounds, methylol compounds, alkoxymethyl compounds, diene compounds or haloalkyl compounds (A) Phenol resin is obtained by polymerizing copolymerization components, such as a compound. In this case, in the above general formula (7), an OH group and an arbitrary R are bonded to the aromatic ring. 12 The part represented by the structure of the group is derived from the above-mentioned phenol compound, and the part represented by X is derived from the above-mentioned copolymerization component. From the viewpoint of reaction control and stability of the obtained (A) phenol resin and photosensitive resin composition, the added molar ratio of the phenol compound and the above-mentioned copolymerization component (phenol compound): (copolymerization component) is preferably 5:1 to 1.01:1, more preferably 2.5:1 to 1.1:1. The weight average molecular weight of the phenol resin having the repeating unit represented by the general formula (7) is preferably 700 to 100,000, more preferably 1,500 to 80,000, and still more preferably 2,000 to 50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of the reflow process suitability of the cured film, and on the other hand, from the viewpoint of the alkali solubility of the photosensitive resin composition, it is preferably 100,000 or less. Examples of the phenol compound that can be used to obtain the phenol resin having the repeating unit represented by the general formula (7) include cresol, ethylphenol, propylphenol, butylphenol, amylphenol, cyclohexylphenol, hydroxyl Biphenyl, benzylphenol, nitrobenzylphenol, cyanobenzylphenol, adamantanephenol, nitrophenol, fluorophenol, chlorophenol, bromophenol, trifluoromethylphenol, N-(hydroxyphenyl)- 5-northiene-2,3-dicarboxyimide, N-(hydroxyphenyl)-5-methyl-5-northiene-2,3-dicarboxyimide, trifluoromethylphenol , hydroxybenzoic acid, methyl hydroxybenzoate, ethyl hydroxybenzoate, benzyl hydroxybenzoate, hydroxybenzamide, hydroxybenzaldehyde, hydroxyacetophenone, hydroxybenzophenone, hydroxybenzonitrile, m Hydroquinone, xylenol, catechol, methyl catechol, ethyl catechol, hexyl catechol, benzyl catechol, nitrobenzyl catechol, methyl resorcinol, Ethyl resorcinol, hexyl resorcinol, benzyl resorcinol, nitrobenzyl resorcinol, hydroquinone, caffeic acid, dihydroxybenzoic acid, methyl dihydroxybenzoate, dihydroxybenzene Ethyl formate, butyl dihydroxybenzoate, propyl dihydroxybenzoate, benzyl dihydroxybenzoate, dihydroxybenzamide, dihydroxybenzaldehyde, dihydroxyacetophenone, dihydroxybenzophenone, Dihydroxybenzonitrile, N-(dihydroxyphenyl)-5-nor𦯉ene-2,3-dicarboxyimide, N-(dihydroxyphenyl)-5-methyl-5-nor𦯉ene -2,3-Dicarboxyimide, nitrocatechol, fluorocatechol, chlorocatechol, bromocatechol, trifluoromethylcatechol, nitroresorcinol, fluoroisophenyl Diphenol, chlororesorcinol, bromoresorcinol, trifluoromethylresorcinol, pyrogallol, phloroglucinol, 1,2,4-trihydroxybenzene, trihydroxybenzoic acid, tris Methyl hydroxybenzoate, ethyl trihydroxybenzoate, butyl trihydroxybenzoate, propyl trihydroxybenzoate, benzyl trihydroxybenzoate, trihydroxybenzamide, trihydroxybenzaldehyde, trihydroxyphenylethyl Ketone, trihydroxybenzophenone, trihydroxybenzonitrile, etc. Examples of the aldehyde compound include acetaldehyde, propionaldehyde, trimethylacetaldehyde, butyraldehyde, valeraldehyde, hexanal, triacetane, glyoxal, cyclohexanal, diphenylacetaldehyde, and ethyl aldehyde. Butyraldehyde, benzaldehyde, glyoxylic acid, 5-norene-2-carboxyaldehyde, malondialdehyde, succinaldehyde, glutaraldehyde, salialdehyde, naphthalene formaldehyde, terephthalaldehyde, etc. Examples of the ketone compound include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dicyclohexyl ketone, dibenzyl ketone, cyclopentanone, cyclohexanone, bicyclohexanone, cyclohexanone Hexanedione, 3-butyn-2-one, 2-norrone, adamantone, 2,2-bis(4-oxane)propane, etc. As said methylol compound, 2, 6- bis(hydroxymethyl) p-cresol, 2, 6- bis(hydroxymethyl)-4-ethylphenol, 2, 6- bis(hydroxymethyl) is mentioned, for example. base)-4-propylphenol, 2,6-bis(hydroxymethyl)-4-n-butylphenol, 2,6-bis(hydroxymethyl)-4-tert-butylphenol, 2,6- Bis(hydroxymethyl)-4-methoxyphenol, 2,6-bis(hydroxymethyl)-4-ethoxyphenol, 2,6-bis(hydroxymethyl)-4-propoxyphenol, 2,6-bis(hydroxymethyl)-4-n-butoxyphenol, 2,6-bis(hydroxymethyl)-4-tert-butoxyphenol, 1,3-bis(hydroxymethyl)urea , ribitol, arabitol, allol, 2,2-bis(hydroxymethyl)butyric acid, 2-benzyloxy-1,3-propanediol, 2,2-dimethyl-1,3-propanediol , 2,2-diethyl-1,3-propanediol, glycerol monoacetate, 2-methyl-2-nitro-1,3-propanediol, 5-noralkene-2,2-dimethanol, 5 -Noralkene-2,3-dimethanol, pentaerythritol, 2-phenyl-1,3-propanediol, trimethylolethane, trimethylolpropane, 3,6-bis(hydroxymethyl)tetramethylene Toluene, 2-Nitro-terephthalic alcohol, 1,10-dihydroxydecane, 1,12-dihydroxydodecane, 1,4-bis(hydroxymethyl)cyclohexane, 1,4-bis( Hydroxymethyl)cyclohexene, 1,6-bis(hydroxymethyl)adamantane, 1,4-benzenedimethanol, 1,3-benzenedimethanol, 2,6-bis(hydroxymethyl)-1, 4-Dimethoxybenzene, 2,3-bis(hydroxymethyl)naphthalene, 2,6-bis(hydroxymethyl)naphthalene, 1,8-bis(hydroxymethyl)anthracene, 2,2'-bis (Hydroxymethyl)diphenyl ether, 4,4'-bis(hydroxymethyl)diphenyl ether, 4,4'-bis(hydroxymethyl)diphenyl sulfide, 4,4'-bis(hydroxymethyl)diphenyl ether ) benzophenone, 4-hydroxymethylbenzoic acid-4'-hydroxymethylphenyl ester, 4-hydroxymethylbenzoic acid-4'-hydroxymethylaniline, 4,4'-bis(hydroxymethyl) Phenylurea, 4,4'-bis(hydroxymethyl)phenylcarbamate, 1,8-bis(hydroxymethyl)anthracene, 4,4'-bis(hydroxymethyl)biphenyl, 2 ,2'-Dimethyl-4,4'-bis(hydroxymethyl)biphenyl, 2,2-bis(4-hydroxymethylphenyl)propane, ethylene glycol, diethylene glycol, triethylene glycol Alcohol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, etc. Examples of the alkoxymethyl compound include 2,6-bis(methoxymethyl)-p-cresol, 2,6-bis(methoxymethyl)-4-ethylphenol, 2,6-bis(methoxymethyl)-4-ethylphenol, 6-bis(methoxymethyl)-4-propylphenol, 2,6-bis(methoxymethyl)-4-n-butylphenol, 2,6-bis(methoxymethyl)- 4-tert-butylphenol, 2,6-bis(methoxymethyl)-4-methoxyphenol, 2,6-bis(methoxymethyl)-4-ethoxyphenol, 2, 6-bis(methoxymethyl)-4-propoxyphenol, 2,6-bis(methoxymethyl)-4-n-butoxyphenol, 2,6-bis(methoxymethyl) )-4-tert-butoxyphenol, 1,3-bis(methoxymethyl)urea, 2,2-bis(methoxymethyl)butyric acid, 2,2-bis(methoxymethyl) yl)-5-nor𦯉ene, 2,3-bis(methoxymethyl)-5-nor𦯉ene, 1,4-bis(methoxymethyl)cyclohexane, 1,4-bis( Methoxymethyl)cyclohexene, 1,6-bis(methoxymethyl)adamantane, 1,4-bis(methoxymethyl)benzene, 1,3-bis(methoxymethyl) ) benzene, 2,6-bis(methoxymethyl)-1,4-dimethoxybenzene, 2,3-bis(methoxymethyl)naphthalene, 2,6-bis(methoxymethyl) yl)naphthalene, 1,8-bis(methoxymethyl)anthracene, 2,2'-bis(methoxymethyl)diphenyl ether, 4,4'-bis(methoxymethyl)diphenyl Ether, 4,4'-bis(methoxymethyl)diphenyl sulfide, 4,4'-bis(methoxymethyl)benzophenone, 4-methoxymethylbenzoic acid-4' -Methoxymethylphenyl, 4-methoxymethylbenzoic acid-4'-methoxymethylaniline, 4,4'-bis(methoxymethyl)phenylurea, 4,4' -Bis(methoxymethyl)phenylcarbamate, 1,8-bis(methoxymethyl)anthracene, 4,4'-bis(methoxymethyl)biphenyl, 2,2 '-Dimethyl-4,4'-bis(methoxymethyl)biphenyl, 2,2-bis(4-methoxymethylphenyl)propane, ethylene glycol dimethyl ether, diethylene glycol Glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, tetrapropylene glycol dimethyl ether, etc. Examples of the diene compound include butadiene, pentadiene, hexadiene, heptadiene, octadiene, 3-methyl-1,3-butadiene, and 1,3-butanediol. - Dimethacrylate, 2,4-hexadien-1-ol, methylcyclohexadiene, cyclopentadiene, cyclohexadiene, cycloheptadiene, cyclooctadiene, dicyclopentadiene alkene, 1-hydroxydicyclopentadiene, 1-methylcyclopentadiene, methyldicyclopentadiene, diallyl ether, diallyl sulfide, diallyl adipate, 2, 5-Nordiene, Tetrahydroindene, 5-Ethylene-2-Nordiene, 5-Vinyl-2-Nordiene, Triallyl Cyanurate, Isocyanuric Diene Propyl ester, triallyl isocyanurate, diallyl propyl isocyanurate, etc. Examples of the above-mentioned haloalkyl compound include dichloroxylene, bischloromethyldimethoxybenzene, bischloromethyl mesitylene, bischloromethylbiphenyl, and bischloromethyl-biphenylcarboxylate acid, bischloromethyl-biphenyldicarboxylic acid, bischloromethyl-methylbiphenyl, bischloromethyl-dimethylbiphenyl, bischloromethylanthracene, ethylene glycol bis(chloroethyl) ether, diethylene glycol bis(chloroethyl) ether, triethylene glycol bis(chloroethyl) ether, tetraethylene glycol bis(chloroethyl) ether, etc. (A) Phenol resin can be obtained by condensing the above-mentioned phenol compound and the copolymerization component by dehydration, dehydrohalogenation, or dealcoholization, or by cleaving the unsaturated bond while polymerizing. . Examples of the acidic catalyst include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, methanesulfonic acid, p-toluenesulfonic acid, dimethylsulfuric acid, diethylsulfuric acid, acetic acid, oxalic acid, and 1-hydroxyethylene -1,1'-bisphosphonic acid, zinc acetate, boron trifluoride, boron trifluoride-phenol complex, boron trifluoride-ether complex, etc. On the other hand, as an alkaline catalyst, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, triethylamine, pyridine, 4-N,N- Dimethylaminopyridine, piperidine, piperidine, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]-7-undecene, 1 , 5-diazabicyclo[4.3.0]-5-nonene, ammonia, hexamethylenetetramine, etc. The amount of the catalyst for obtaining the phenol resin having the repeating structure represented by the general formula (7) is preferably an aldehyde compound or a ketone compound relative to the total number of moles of the copolymerization components (that is, components other than the phenol compound). , the total molar number of the methylol compound, the alkoxymethyl compound, the diene compound and the haloalkyl compound is 100 mol %, preferably in the range of 0.01 mol % to 100 mol %. (A) In the synthesis reaction of the phenol resin, the reaction temperature is usually preferably in the range of 40°C to 250°C, more preferably in the range of 100°C to 200°C, and the reaction time is preferably about 1 hour to 10 hours. If necessary, a solvent capable of sufficiently dissolving the resin can be used. In addition, the phenolic resin which has the repeating structure represented by general formula (7) may polymerize the phenolic compound which does not become the raw material of the structure of the said general formula (7) in the range which does not impair the effect of this invention. The range which does not impair the effect of this invention is, for example, 30% or less of the total molar number of the phenolic compounds used as the raw material of the phenolic resin (A). (Phenolic resin modified with a compound having an unsaturated hydrocarbon group having 4 to 100 carbon atoms) The phenol resin modified by a compound having an unsaturated hydrocarbon group having 4 to 100 carbon atoms is phenol or a derivative thereof and a 100% of the unsaturated hydrocarbon group compound (hereinafter sometimes referred to as "unsaturated hydrocarbon group-containing compound") reaction product (hereinafter also referred to as "unsaturated hydrocarbon group-modified phenol derivative") and the polycondensation product of aldehydes, or It is the reaction product of phenol resin and unsaturated hydrocarbon-containing compound. As the phenol derivative, the same phenol derivative described above as a raw material of the phenol resin having the repeating unit represented by the general formula (7) can be used. The unsaturated hydrocarbon group of the unsaturated hydrocarbon group-containing compound preferably contains two or more unsaturated groups from the viewpoint of the residual stress of the cured film and the suitability for reflow processing. Furthermore, the unsaturated hydrocarbon group is preferably a carbon number of 4 to 100, more preferably a carbon number of 8 to 80, and still more preferably a carbon number from the viewpoints of the compatibility when the resin composition is used and the residual stress of the cured film. 10 to 60. Examples of the unsaturated hydrocarbon group-containing compound include unsaturated hydrocarbons having 4 to 100 carbon atoms, polybutadiene having carboxyl groups, epoxidized polybutadiene, linolenic alcohol, oleyl alcohol, unsaturated fatty acids, and unsaturated fats. acid ester. Examples of suitable unsaturated fatty acids include crotonic acid, myristic acid, palmitoleic acid, oleic acid, elaidic acid, linoleic acid, codoleic acid, sinapic acid, arachidonic acid, and linoleic acid , alpha-linolenic acid, eleric acid, stearidonic acid, arachidonic acid, eicosapentaenoic acid, herring acid and docosahexaenoic acid. Among these, the vegetable oil which is an unsaturated fatty acid ester is especially preferable from the viewpoint of the elongation of a cured film and the flexibility of a cured film. Vegetable oils usually contain esters of glycerol and unsaturated fatty acids, and there are non-drying oils with an iodine value of less than 100, semi-drying oils with an iodine value of more than 100 and less than 130, or drying oils with an iodine value of more than 130. Examples of non-drying oils include olive oil, morning glory seed oil, Polygonum multiflorum oil, camellia oil, camellia oil, castor oil, and peanut oil. Examples of semi-drying oils include corn oil, cottonseed oil, and sesame oil. Examples of drying oils include tung oil, linseed oil, soybean oil, walnut oil, safflower oil, sunflower oil, jasmine oil, and mustard oil. Moreover, the processed vegetable oil processed from these vegetable oils can also be used. Among the above vegetable oils, non-drying oils are preferably used from the viewpoint of preventing gelation due to excessive progress of the reaction in the reaction between phenol or its derivatives or phenol resin and vegetable oil and improving yield. On the other hand, it is preferable to use a drying oil from a viewpoint of improving the adhesiveness of a resist pattern, a mechanical characteristic, and thermal shock resistance. Among the drying oils, tung oil, linseed oil, soybean oil, walnut oil, and safflower oil are preferable, and tung oil and linseed oil are more preferable in that the effect of the present invention can be more effectively and surely exhibited. These vegetable oils can be used individually by 1 type or in combination of 2 or more types. The reaction of the phenol or its derivative with the unsaturated hydrocarbon group-containing compound is preferably carried out at 50 to 130°C. Regarding the reaction ratio of phenol or its derivative and the unsaturated hydrocarbon group-containing compound, from the viewpoint of reducing the residual stress of the cured film, the unsaturated hydrocarbon group-containing compound is preferably 1 with respect to 100 parts by mass of phenol or its derivative to 100 parts by mass, more preferably 5 to 50 parts by mass. When the unsaturated hydrocarbon group-containing compound is less than 1 part by mass, the flexibility of the cured film tends to decrease, and when it exceeds 100 parts by mass, the heat resistance of the cured film tends to decrease. In the above reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, etc. may also be used as a catalyst if necessary. A phenol resin modified with an unsaturated hydrocarbon group-containing compound is produced by polycondensation of the unsaturated hydrocarbon group-modified phenol derivative and aldehydes produced by the above reaction. Aldehydes such as formaldehyde, acetaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, methoxybenzaldehyde, hydroxyphenylacetaldehyde, methoxyphenylacetaldehyde, crotonaldehyde, chloroacetaldehyde, chlorophenylacetaldehyde , Acetone, Glyceraldehyde, Glyoxylic Acid, Methyl Glyoxylate, Phenyl Glyoxylate, Hydroxyphenyl Glyoxylate, Methyl Methyl Methyl Glyoxylic Acid, 2-Methyl Methyl Glyoxylic Acid, 2 -Select from methyl carboxypropionate, pyruvic acid, acetylpropionic acid, 4-acetylbutyric acid, acetone dicarboxylic acid and 3,3'-4,4'-benzophenone tetracarboxylic acid. Moreover, formaldehyde precursors, such as paraformaldehyde and triacetane, can also be used. These aldehydes may be used alone or in combination of two or more. The reaction between the above-mentioned aldehydes and the above-mentioned unsaturated hydrocarbon group-modified phenol derivative is a polycondensation reaction, and the synthesis conditions of previously known phenol resins can be used. The reaction is preferably carried out in the presence of a catalyst such as an acid or a base, and an acid catalyst is more preferably used from the viewpoint of the polymerization degree (molecular weight) of the resin. Examples of the acid catalyst include hydrochloric acid, sulfuric acid, formic acid, acetic acid, p-toluenesulfonic acid, and oxalic acid. These acid catalysts may be used alone or in combination of two or more. The above-mentioned reaction is usually preferably carried out at a reaction temperature of 100 to 120°C. In addition, the reaction time varies depending on the type and amount of the catalyst used, but is usually 1 to 50 hours. After the reaction, the phenolic resin modified by the unsaturated hydrocarbon group-containing compound is obtained by dehydrating the reaction product under reduced pressure at a temperature below 200°C. In addition, solvents, such as toluene, xylene, and methanol, can be used for the reaction. A phenol resin modified with an unsaturated hydrocarbon group-containing compound can also be obtained by polycondensing a compound other than phenol such as m-xylene and aldehydes together with the above-mentioned unsaturated hydrocarbon group-modified phenol derivative. In this case, the added molar ratio of the compound other than phenol to the compound obtained by reacting the phenol derivative with the unsaturated hydrocarbon group-containing compound is preferably less than 0.5. A phenol resin modified with an unsaturated hydrocarbon group-containing compound can also be obtained by reacting a phenol resin with an unsaturated hydrocarbon group-containing compound. The phenol resin used in this case is a polycondensation product of a phenol compound (ie, phenol and/or a phenol derivative) and an aldehyde. In this case, as the phenol derivatives and aldehydes, the same ones as the above-mentioned phenol derivatives and aldehydes can be used, and the phenol resin can be synthesized under the previously known conditions as described above. Specific examples of phenolic resins obtained from phenolic compounds and aldehydes suitable for forming phenolic resins modified with unsaturated hydrocarbon group-containing compounds include phenol/formaldehyde novolac resins, cresol/formaldehyde novolac resins , phenolic/formaldehyde novolac resin, resorcinol/formaldehyde novolac resin and phenol-naphthol/formaldehyde novolac resin. As the unsaturated hydrocarbon group-containing compound to be reacted with the phenol resin, the same unsaturated hydrocarbon group-containing compound as the above-mentioned unsaturated hydrocarbon group-containing compound involved in the production of the unsaturated hydrocarbon group-modified phenol derivative reacted with aldehydes can be used. The reaction of the phenol resin with the unsaturated hydrocarbon group-containing compound is usually preferably carried out at 50 to 130°C. Moreover, regarding the reaction ratio of the phenol resin and the unsaturated hydrocarbon group-containing compound, from the viewpoint of improving the flexibility of the cured film (resist pattern), the unsaturated hydrocarbon group-containing compound is preferable with respect to 100 parts by mass of the phenol resin. It is 1-100 mass parts, More preferably, it is 2-70 mass parts, More preferably, it is 5-50 mass parts. When the amount of the unsaturated hydrocarbon group-containing compound is less than 1 part by mass, the flexibility of the cured film tends to decrease, and when it exceeds 100 parts by mass, the possibility of gelation during the reaction tends to increase, and the cured film The tendency of the heat resistance to decrease. When the phenol resin is reacted with the unsaturated hydrocarbon group-containing compound, p-toluenesulfonic acid, trifluoromethanesulfonic acid, etc. can also be used as a catalyst if necessary. In addition, solvents such as toluene, xylene, methanol, and tetrahydrofuran can be used for the reaction, which will be described in detail below. It is also possible to use an acid-modified phenolic resin by reacting the phenolic hydroxyl group remaining in the unsaturated hydrocarbon group-containing compound-modified phenolic resin produced by the above method with a polybasic acid anhydride. By carrying out acid modification with a polybasic acid anhydride and introducing a carboxyl group, the solubility in an alkaline aqueous solution (which is used as a developer) is further improved. The polybasic acid anhydride is not particularly limited as long as it has an acid anhydride group formed by dehydration condensation of the carboxyl groups of a polybasic acid containing a plurality of carboxyl groups. Examples of polybasic acid anhydrides include phthalic anhydride, succinic anhydride, octenylsuccinic anhydride, pentadecenylsuccinic anhydride, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and hexahydrophthalic anhydride. Phthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, terrestrial anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, methylintra Dibasic acid anhydrides such as methyltetrahydrophthalic anhydride, tetrabromophthalic anhydride and trimellitic anhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, diphenyl ether tetracarboxylic acid Aromatic tetrabasic acid dianhydrides such as anhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic dianhydride. These can be used individually by 1 type or in combination of 2 or more types. Among these, the polybasic acid anhydride is preferably a dibasic acid anhydride, and more preferably at least one selected from the group consisting of tetrahydrophthalic anhydride, succinic anhydride, and hexahydrophthalic anhydride. In this case, there is an advantage that a resist pattern with a better shape can be formed. The reaction of the phenolic hydroxyl group and the polybasic acid anhydride can be carried out at 50-130°C. In this reaction, 0.10-0.80 mol of polybasic acid anhydride is preferably reacted with respect to 1 mol of the phenolic hydroxyl group, 0.15-0.60 mol is more preferably 0.20-0.40 mol. The ear responds. When the polybasic acid anhydride is less than 0.10 mol, the developability tends to decrease, and when it exceeds 0.80 mol, the alkali resistance of the unexposed portion tends to decrease. In addition, from the viewpoint of making the reaction proceed rapidly, a catalyst may be contained in the above-mentioned reaction as needed. Examples of catalysts include tertiary amines such as triethylamine, quaternary ammonium salts such as triethylbenzylammonium chloride, imidazole compounds such as 2-ethyl-4-methylimidazole, and phosphorus compounds such as triphenylphosphine. . Furthermore, the acid value of the phenolic resin modified by the polybasic acid anhydride is preferably 30-200 mgKOH/g, more preferably 40-170 mgKOH/g, and still more preferably 50-150 mgKOH/g. If the acid value is less than 30 mgKOH/g, the time required for alkaline development tends to be longer than when the acid value is in the above range, and if it exceeds 200 mgKOH/g, the time required for the acid value is in the above range. There is a tendency that the developing solution resistance of the unexposed portion is lowered. Regarding the molecular weight of the phenolic resin modified with the unsaturated hydrocarbon group-containing compound, considering the solubility in an alkaline aqueous solution, or the balance between the photosensitive properties and the physical properties of the cured film, the weight average molecular weight is preferably 1,000 to 100,000, more Preferably, it is 2,000 to 100,000. The phenol resin (A) of the present embodiment is also preferably selected from the group consisting of a phenol resin having a repeating unit represented by the above-mentioned general formula (7) and the above-mentioned compound modified with an unsaturated hydrocarbon group having 4 to 100 carbon atoms. A mixture of at least one phenol resin (hereinafter also referred to as (a3) resin) among phenol resins and a phenol resin (hereinafter also referred to as (a4) resin) selected from novolak and polyhydroxystyrene. The mixing ratio of the resin (a3) and the resin (a4) is in the range of (a3)/(a4)=5/95 to 95/5 in terms of mass ratio. The mixing ratio is preferably (a3)/( from the viewpoints of solubility in an alkaline aqueous solution, sensitivity and resolution when forming a resist pattern, residual stress of a cured film, and suitability for reflow processing. a4)=5/95 to 95/5, more preferably (a3)/(a4)=10/90 to 90/10, still more preferably (a3)/(a4)=15/85 to 85/15. Regarding the novolak and polyhydroxystyrene as the resin (a4), the same resins as those shown in the above (novolak) and (polyhydroxystyrene) can be used. (B) Plasticizer Hereinafter, the (B) plasticizer in the present embodiment will be described in detail. (B) The plasticizer improves the fluidity of the resin (A) and the build-up property of the polymer of the resin (A) when the embossed pattern formed using the photosensitive resin composition of the present embodiment is heated and hardened. compound. By improving the stackability, generation of voids in a high-temperature storage test can be suppressed, and a decrease in adhesiveness at the interface between the Cu layer and the resin layer can be suppressed. The (B) plasticizer is not particularly limited as long as it satisfies the above conditions. Regarding the compound functioning as the (B) plasticizer, the following general formula (7) can be used particularly preferably:
Figure 02_image159
{In the formula, X is a structure including a saturated hydrocarbon or an unsaturated hydrocarbon or an aromatic hydrocarbon with a carbon number of 1 or more and 15 or less, n is an integer of 1 to 4, and when n is 2 or more, R may be the same, respectively. Differently, it may be a compound represented by a saturated hydrocarbon, an unsaturated hydrocarbon, or an aromatic hydrocarbon having a carbon number of 2 or more and 15 or less. Among them, as the plasticizer of the present invention, it is preferably selected from the following general formula (8):
Figure 02_image161
{In the formula, m is an integer of 1 to 4, and when m is 2 or more, R may be the same or different, respectively, and represents a saturated hydrocarbon or an unsaturated hydrocarbon or an aromatic hydrocarbon with a carbon number of 2 or more and 15 or less} Represented, or the following general formula (9): [Chem. 82]
Figure 02_image163
{In the formula, Y is a structure including a saturated hydrocarbon or an unsaturated hydrocarbon or an aromatic hydrocarbon with a carbon number of 1 or more and 10 or less, R may be the same or different, and represents a saturated hydrocarbon with a carbon number of 2 or more and 15 or less, or At least one of the group consisting of unsaturated hydrocarbons or aromatic hydrocarbons}. Examples of the plasticizer represented by the general formula (7) include benzoic acid esters, phthalic acid esters, isophthalic acid esters, terephthalic acid esters, trimellitic acid esters, homo pyromellitic acid ester and aliphatic acid tetrahydrofurfuryl ester, etc. Specific examples of compounds of the benzoate include methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, amyl benzoate, heptyl benzoate, n-octyl benzoate, Nonyl Benzoate, Isononyl Benzoate, Isodecyl Benzoate, 2-Ethyl Hexyl Benzoate, Isodecyl Benzoate, Butyl Benzyl Benzoate, Cyclopropyl Benzoate, Cyclobutyl Benzoate , cyclopentyl benzoate, cyclohexyl benzoate, cycloheptyl benzoate, allyl benzoate, butyl benzyl benzoate, phenyl benzoate. Among them, 2-ethylhexyl benzoate, cyclohexyl benzoate, and phenyl benzoate are particularly preferably used. Specific compound examples of the phthalate include: dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, phthalate Diamyl dicarboxylate, diheptyl phthalate, di-n-octyl phthalate, dinonyl phthalate, diisononyl phthalate, diisodecyl phthalate, ortho Bis(2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, dicyclopropyl phthalate, dicyclobutyl phthalate, ortho Dicyclopentyl phthalate, Dicyclohexyl phthalate, Dicycloheptyl phthalate, Diallyl phthalate, Dibutyl benzyl phthalate, Dicyclohexyl phthalate Phenyl ester. Among them, bis(2-ethylhexyl) phthalate, dicyclohexyl phthalate, and diphenyl phthalate are particularly preferably used. Specific compound examples of isophthalate include dimethyl isophthalate, diethyl isophthalate, dipropyl isophthalate, dibutyl isophthalate, isophthalic acid Diamyl dicarboxylate, Diheptyl isophthalate, Di-n-octyl isophthalate, Dinonyl isophthalate, Diisononyl isophthalate, Diisodecyl isophthalate, Meta Bis (2-ethylhexyl) phthalate, Diisodecyl isophthalate, Butyl benzyl isophthalate, Dicyclopropyl isophthalate, Dicyclobutyl isophthalate, Meta Dicyclopentyl isophthalate, Dicyclohexyl isophthalate, Dicycloheptyl isophthalate, Diallyl isophthalate, Dibutylbenzyl isophthalate, Dicyclohexyl isophthalate Phenyl ester. Among them, bis(2-ethylhexyl) isophthalate, dicyclohexyl isophthalate, and diphenyl isophthalate are particularly preferably used. Specific compound examples of terephthalate include dimethyl terephthalate, diethyl terephthalate, dipropyl terephthalate, dibutyl terephthalate, terephthalate Diamyl terephthalate, Diheptyl terephthalate, Di-n-octyl terephthalate, Dinonyl terephthalate, Diisononyl terephthalate, Diisodecyl terephthalate, p- Bis(2-ethylhexyl) terephthalate, diisodecyl terephthalate, butyl benzyl terephthalate, dicyclopropyl terephthalate, dicyclobutyl terephthalate, para Dicyclopentyl terephthalate, Dicyclohexyl terephthalate, Dicycloheptyl terephthalate, Diallyl terephthalate, Dibutylbenzyl terephthalate, Dicycloheptyl terephthalate Phenyl ester. Among them, bis(2-ethylhexyl) terephthalate, dicyclohexyl terephthalate, and diphenyl terephthalate are particularly preferably used. As a specific compound example of trimellitic acid ester, trimethyl trimellitic acid, triethyl trimellitic acid, tripropyl trimellitic acid, tributyl trimellitic acid, trimellitic acid Triamyl formate, Triheptyl trimellitate, Tri-n-octyl trimellitate, Trinonyl trimellitate, Triisononyl trimellitate, Triisodecyl trimellitate, Triphenylene Tris(2-ethylhexyl) trimellitate, triisodecyl trimellitate, tributylbenzyl trimellitate, tricyclopropyl trimellitate, tricyclobutyl trimellitate, partial Tricyclopentyl trimellitic acid, tricyclohexyl trimellitic acid, tricycloheptyl trimellitic acid, triallyl trimellitic acid, tributyl benzyl trimellitic acid, tributyl trimellitic acid Phenyl ester. Among them, tris(2-ethylhexyl) trimellitic acid, tricyclohexyl trimellitic acid, and triphenyl trimellitic acid are particularly preferably used. Specific examples of the compounds of the pyromellitic acid ester include tetramethyl pyromellitic acid, tetraethyl pyromellitic acid, tetrapropyl pyromellitic acid, tetrabutyl pyromellitic acid, and pyromellitic acid. Tetraamyl tetracarboxylate, Tetraheptyl pyromellitic acid, Tetra-n-octyl pyromellitic acid, Tetranonyl pyromellitic acid, Tetraisononyl pyromellitic acid, Tetraisodecyl pyromellitic acid, Tetra(2-ethylhexyl) pyromellitic acid, tetraisodecyl pyromellitic acid, tetrabutylbenzyl pyromellitic acid, tetracyclopropyl pyromellitic acid, tetracyclobutyl pyromellitic acid, Tetracyclopentyl pyromellitic acid, tetracyclohexyl pyromellitic acid, tetracycloheptyl pyromellitic acid, tetraallyl pyromellitic acid, tetrabutylbenzyl pyromellitic acid, pyromellitic acid Tetraphenyl ester. Among them, tetrakis (2-ethylhexyl) pyromellitic acid, tetracyclohexyl pyromellitic acid, and tetraphenyl pyromellitic acid are particularly preferably used. As the plasticizer represented by the general formula (8), malonate, succinate, glutarate, adipate, pimelic, suberate, azelaate, Sebacate etc. Specific compound examples of malonate include dimethyl malonate, diethyl malonate, dipropyl malonate, dibutyl malonate, dipentyl malonate, propylene Diheptyl malonate, di-n-octyl malonate, dinonyl malonate, diisonononyl malonate, diisodecyl malonate, bis(2-ethylhexyl) malonate, Diisodecyl malonate, butyl benzyl malonate, dicyclopropyl malonate, dicyclobutyl malonate, dicyclopentyl malonate, dicyclohexyl malonate, malonate Dicycloheptyl malonate, diallyl malonate, dibutyl benzyl malonate, diphenyl malonate. Among them, bis(2-ethylhexyl) malonate, dicyclohexyl malonate, and diphenyl malonate are particularly preferably used. Specific compound examples of succinate include dimethyl succinate, diethyl succinate, dipropyl succinate, dibutyl succinate, dipentyl succinate, diheptyl succinate, and succinate Di-n-octyl acid, dinonyl succinate, diisononyl succinate, diisodecyl succinate, bis(2-ethylhexyl) succinate, diisodecyl succinate, butylbenzyl succinate ester, dicyclopropyl succinate, dicyclobutyl succinate, dicyclopentyl succinate, dicyclohexyl succinate, dicycloheptyl succinate, diallyl succinate, dibutylbenzyl succinate ester, diphenyl succinate. Among them, bis(2-ethylhexyl) succinate, dicyclohexyl succinate, and diphenyl succinate are particularly suitable. Specific examples of compounds of the glutarate include dimethyl glutarate, diethyl glutarate, dipropyl glutarate, dibutyl glutarate, dipentyl glutarate, and glutaric acid. Diheptyl diacid, di-n-octyl glutarate, dinononyl glutarate, diisonononyl glutarate, diisodecyl glutarate, bis(2-ethylhexyl) glutarate, Diisodecyl glutarate, butyl benzyl glutarate, dicyclopropyl glutarate, dicyclobutyl glutarate, dicyclopentyl glutarate, dicyclohexyl glutarate, glutaric acid Dicycloheptyl glutarate, diallyl glutarate, dibutylbenzyl glutarate, diphenyl glutarate. Among them, bis(2-ethylhexyl) glutarate, dicyclohexyl glutarate, and diphenyl glutarate are particularly preferably used. Specific compound examples of adipate include dimethyl adipate, diethyl adipate, dipropyl adipate, dibutyl adipate, dipentyl adipate, hexamethylene adipate Diheptyl adipate, di-n-octyl adipate, dinonyl adipate, diisononyl adipate, diisodecyl adipate, bis(2-ethylhexyl) adipate, Diisodecyl adipate, butyl benzyl adipate, dicyclopropyl adipate, dicyclobutyl adipate, dicyclopentyl adipate, dicyclohexyl adipate, hexamethylene Dicycloheptyl adipate, diallyl adipate, dibutyl benzyl adipate, diphenyl adipate. Among them, bis(2-ethylhexyl) adipate, dicyclohexyl adipate, and diphenyl adipate are particularly suitably used. Specific examples of compounds of the pimelic acid ester include dimethyl pimelic acid, diethyl pimelic acid, dipropyl pimelic acid, dibutyl pimelic acid, dipentyl pimelic acid, heptanedioic acid Diheptyl pimelic acid, di-n-octyl pimelic acid, dinonyl pimelic acid, diisononyl pimelic acid, diisodecyl pimelic acid, bis(2-ethylhexyl) pimelic acid, Diisodecyl pimelic acid, butyl benzyl pimelic acid, dicyclopropyl pimelic acid, dicyclobutyl pimelic acid, dicyclopentyl pimelic acid, dicyclohexyl pimelic acid, heptanedioic acid Bicycloheptyl pimelic acid, diallyl pimelic acid, dibutyl benzyl pimelic acid, diphenyl pimelic acid. Among them, bis(2-ethylhexyl) pimelic acid, dicyclohexyl pimelic acid, and diphenyl pimelic acid are particularly preferably used. Specific examples of compounds of the suberate include dimethyl suberate, diethyl suberate, dipropyl suberate, dibutyl suberate, dipentyl suberate, capryl Diheptyl suberate, di-n-octyl suberate, dinonyl suberate, diisononyl suberate, diisodecyl suberate, bis(2-ethylhexyl) suberate, Diisodecyl suberate, butyl benzyl suberate, dicyclopropyl suberate, dicyclobutyl suberate, dicyclopentyl suberate, dicyclohexyl suberate, dicyclohexyl suberate Dicycloheptyl suberate, diallyl suberate, bisbutyl benzyl suberate, diphenyl suberate. Among them, bis(2-ethylhexyl) suberate, dicyclohexyl suberate, and diphenyl suberate are particularly preferably used. Specific compound examples of azelaic acid ester include dimethyl azelaic acid, diethyl azelaic acid, dipropyl azelaic acid, dibutyl azelaic acid, dipentyl azelaic acid, and azelaic acid. Diheptyl azelaic acid, di-n-octyl azelaic acid, dinonyl azelaic acid, diisononyl azelaic acid, diisodecyl azelaic acid, bis(2-ethylhexyl) azelaic acid, Diisodecyl azelaic acid, butyl benzyl azelaic acid, dicyclopropyl azelaic acid, dicyclobutyl azelaic acid, dicyclopentyl azelaic acid, dicyclohexyl azelaic acid, azelaic acid Dicycloheptyl azelaic acid, diallyl azelaic acid, bisbutyl benzyl azelaic acid, diphenyl azelaic acid. Among them, bis(2-ethylhexyl) azelaic acid, dicyclohexyl azelaic acid, and diphenyl azelaic acid are particularly preferably used. Specific compound examples of the sebacate ester include dimethyl sebacate, diethyl sebacate, dipropyl sebacate, dibutyl sebacate, dipentyl sebacate, decane Diheptyl sebacate, di-n-octyl sebacate, dinonyl sebacate, diisononyl sebacate, diisodecyl sebacate, bis(2-ethylhexyl) sebacate, Diisodecyl sebacate, butyl benzyl sebacate, dicyclopropyl sebacate, dicyclobutyl sebacate, dicyclopentyl sebacate, dicyclohexyl sebacate, sebacic acid Dicycloheptyl sebacate, diallyl sebacate, dibutyl benzyl sebacate, diphenyl sebacate. Among them, bis(2-ethylhexyl) sebacate, dicyclohexyl sebacate, and diphenyl sebacate are particularly suitable. Specific examples of compounds of tetrahydrofurfuryl aliphatic acid include tetrahydrofurfuryl formate, tetrahydrofurfuryl acetate, tetrahydrofurfuryl propionate, tetrahydrofurfuryl butyrate, and tetrahydrofurfuryl isobutyrate. , tetrahydrofurfuryl valerate, tetrahydrofurfuryl isovalerate, tetrahydrofurfuryl hexanoate, etc. Among them, tetrahydrofurfuryl propionate, tetrahydrofurfuryl butyrate, and tetrahydrofurfuryl isobutyrate are particularly preferably used. The content of the plasticizer (B) is preferably 0.1 to 50 parts by mass, more preferably 1 to 40 parts by mass, and still more preferably 1 to 30 parts by mass relative to 100 parts by mass of the resin (A). If the content is more than this range, the glass transition temperature will be lowered, which is not preferable. If the content is less than this range, sufficient plasticity cannot be obtained, and voids are likely to be formed between the copper surface and the copper surface. The function of the plasticizer (B) in the present embodiment is to improve the fluidity of the resin (A) and improve the (A) resin when the embossed pattern formed using the photosensitive resin composition of the present embodiment is heat-hardened. ) The packing property of the polymer of the resin. Thereby, a strong cured film can be obtained, generation of voids in a high-temperature storage test can be suppressed, and a decrease in adhesiveness at the interface between the Cu layer and the resin layer can be suppressed. The photosensitive resin composition of the present embodiment may contain any one of (B-1) nanoparticles, (B-2) thermal crosslinking agent, and (B-3) fluorine-containing hydrophobic compound in place of the above (B) plasticizer or in combination with it. A photosensitive resin combination can be provided by combining a photosensitive resin with specific (B-1) nanoparticles, (B-2) thermal crosslinking agent, or (B-3) fluorine-containing hydrophobic compound The object, and the method for forming a hardened relief pattern using the photosensitive resin composition, can be obtained from the above-mentioned photosensitive resin composition. After the high temperature storage test, the interface between the Cu layer and the resin layer does not A photosensitive resin with high adhesiveness due to voids. (B-1) Nanoparticles (B-1) Nanoparticles are solid at room temperature and have an average primary particle diameter of 1 μm or less, preferably 300 nm or less, from the viewpoint of light transmittance. The primary particle size can be determined by SEM observation or laser diffraction. In addition, from the viewpoint of Cu migration resistance during HTS, it is preferably a plate-like, scaly-like, needle-like or fibrous particle with an aspect ratio of 5 or more, from the viewpoint of compatibility with the resin (A) , it is preferable to carry out surface treatment with a silane coupling agent or the like. Furthermore, from the viewpoint of water resistance, these nanoparticles preferably contain oxides, composite oxides, doped oxides, oxoacids, oxoacid salts, nitrides, carbides or sulfides. As (B-1) nanoparticles that can be used in the present invention, for example, SiO may be mentioned. 2 , Al 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , V 2 O 5 , WO 3 , In 2 O 3 , SnO 2 , Sb 2 O 3 , Nb 2 O 5 , MoO 3 , Fe 2 O 3 , CuO, ZnO, CaO, MgO, Aerosil, silica-alumina, mica, montmorillonite, talc, clay, gibbsite, kaolin, (poly) zirconium phosphate, barium titanate, calcium carbonate, (poly) Zirconium tungstate, PZT (Lead Zirconium Titanate, lead zirconium titanate), glass, aluminum borate, aluminum nitride, titanium nitride, silicon nitride, boron nitride, or a mixture of these. By adding nanoparticles, the thermal expansion coefficient of the photosensitive resin can be reduced. The thermal expansion of the resin during the high-temperature storage test is suppressed due to the decrease in the thermal expansion coefficient, and the occurrence of copper migration is suppressed. In this case, as the nanoparticle, a shape with a high aspect ratio is preferable because the thermal expansion coefficient can be lowered by adding a smaller amount. In addition, a shape with a high aspect ratio is more preferable because the number of voids on the copper surface tends to decrease, and developability and chemical resistance tend to be favorable. From the viewpoint of the number of voids on the copper surface, developability or chemical resistance, the aspect ratio of the nanoparticles is preferably greater than 1, preferably greater than or equal to 2, more preferably greater than or equal to 3, more preferably greater than or equal to 4. Moreover, the aspect ratio is more preferably 5 or more, more preferably 8 or more, more preferably 10 or more, more preferably 12 or more, more preferably 15 or more, and still more preferably 20 or more. The aspect ratio is a value representing the length of the long axis/the length of the short axis of the nanoparticle. In the case where the nanoparticle is a standard sphere, the aspect ratio becomes 1. When the nanoparticle is not a standard sphere or a standard ellipsoid, the diameter of the smallest sphere among the spheres of size that can completely enclose the nanoparticle is taken as the long axis of the nanoparticle, so that the nanoparticle can be completely contained in the nanoparticle. The diameter of the largest sphere among the spheres of size inside the rice particle is taken as the short axis of the nanoparticle. The compounding quantity of (B-1) nanoparticle is 0.1-50 mass parts with respect to 100 mass parts of (A) resin, Preferably it is 0.05-10 mass parts. From the viewpoint of migration resistance, it is preferably 0.1 part by mass or more, and from the viewpoint of solubility, it is preferably less than 50 parts by mass. (B-2) Thermal crosslinking agent The (B-2) thermal crosslinking agent used in the present invention will be described. (B-2) Thermal crosslinking agent means a crosslinking agent capable of forming crosslinking with the resin (A) or the crosslinking agent itself when heat-hardening the relief pattern formed using the photosensitive resin composition of the present embodiment. Network-like structure of compounds. The (B) thermal crosslinking agent is not particularly limited as long as it satisfies the above conditions, but any one of the following (B-2-1) to (B-2-12) is preferred. (B-2-1) Compounds containing methylol and/or alkoxymethyl The so-called compounds containing methylol and/or alkoxymethyl contain the following general formula (TS2) in the molecule: 83]
Figure 02_image165
{wherein Rs3 is a compound of an organic group represented by a monovalent organic group or a hydrogen atom}. Specifically, the following general formula (TS1) can be mentioned:
Figure 02_image167
{In the formula, Rs1 is a hydrogen atom, a valent group selected from the group consisting of methyl, ethyl, n-propyl and isopropyl, and Rs2 is selected from a hydroxyl group and an alkyl group with 1 to 10 carbon atoms , a group consisting of alkoxy groups with 1 to 10 carbon atoms, ester groups with 1 to 10 carbon atoms, and urethane groups, mm1 is an integer of 1 to 5, and mm2 is 0 to 4 the integer. Here, 1≦(mm1+mm2)≦5, nn1 is an integer from 1 to 4, V 1 CH when nn1=1 2 ORs1 is a single bond or a 2- to 4-valent organic group when nn1=2-4. in CH 2 ORs1 and R 10 When there are plural cases, these may be the same or different}, and general formulas (TS3) and (TS4): [Chem. 85]
Figure 02_image169
{in the formula, Rs3 and Rs4 are each independently a hydrogen atom and a monovalent organic group selected from the group consisting of hydrocarbon groups having 1 to 10 carbon atoms} [Chem. 86]
Figure 02_image171
{wherein Rs5 is independently a hydrogen atom and a monovalent organic group selected from the group consisting of hydrocarbon groups having 1 to 10 carbon atoms} N-methylol compound and N-alkoxy having a structure represented by but not limited to these. Preferable specific examples include: Cymel (registered trademark) 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR 65, 300, Micoat 102, 105 (the above are manufactured by Mitsui Cytec), NIKALAC (registered trademark) MX-270, -280, -290, NIKALAC MS-11, NIKALAC MW-30, -100, -300, - 390, -750 (the above are manufactured by SANWA CHEMICAL), DML-OCHP, DML-MBPC, DML-BPC, DML-PEP, DML-34X, DML-PSBP, DML-PTBP, DML-PCHP, DML-POP, DML -PFP, DML-MBOC, BisCMP-F, DML-BisOC-Z, DML-BisOCHP-Z, DML-BisOC-P, DMOM-PTBT, TMOM-BP, TMOM-BPA, TML-BPAFMF, TM-BIP-A , HMOM-TP-HAP (manufactured by the state chemical industry company above), benzenedimethanol, bis(hydroxymethyl)cresol, bis(hydroxymethyl)dimethoxybenzene, bis(hydroxymethyl)diphenyl ether , Bis(hydroxymethyl)benzophenone, hydroxymethylphenyl hydroxymethylbenzoate, bis(hydroxymethyl)biphenyl, dimethylbis(hydroxymethyl)biphenyl, bis(methoxymethyl) yl)benzene, bis(methoxymethyl)cresol, bis(methoxymethyl)dimethoxybenzene, bis(methoxymethyl)diphenyl ether, bis(methoxymethyl)diphenyl ether Benzophenone, Methoxymethylphenyl Methoxymethylbenzoate, Bis(methoxymethyl)biphenyl, Dimethylbis(methoxymethyl)biphenyl, Methylol of Novolak body etc. Among them, those having the structure represented by the above-mentioned general formula (12) are more preferable, and specific examples include: DML-OCHP, DML-MBPC, DML-BPC, DML-PEP, DML-34X, DML-PSBP, DML -PTBP, DML-PCHP, DML-POP, DML-PFP, DML-MBOC, BisCMP-F, DML-BisOC-Z, DML-BisOCHP-Z, DML-BisOC-P, DMOM-PTBT, TMOM-BP, TMOM -BPA, TML-BPAFMF, TM-BIP-A, HMOM-TP-HAP (manufactured by Honshu Chemical Industry Co., Ltd. above), xylylene glycol, bis(hydroxymethyl)cresol, bis(hydroxymethyl)dimethoxy Benzene, bis(hydroxymethyl)diphenyl ether, bis(hydroxymethyl)benzophenone, hydroxymethylphenyl hydroxymethylbenzoate, bis(hydroxymethyl)biphenyl, dimethylbis(hydroxyl) Methyl)biphenyl, bis(methoxymethyl)benzene, bis(methoxymethyl)cresol, bis(methoxymethyl)dimethoxybenzene, bis(methoxymethyl)diphenyl Phenyl ether, bis(methoxymethyl)benzophenone, methoxymethylphenyl methoxymethylbenzoate, bis(methoxymethyl)biphenyl, dimethylbis(methoxymethyl) Methyl) biphenyl and novolac methylolated form. Among them, particularly preferred are TMOM-BP, TMOM-BPA, TML-BPAFMF, TM-BIP-A, HMOM-TP-HAP. (B-2-2) Ethylene oxide compound The ethylene oxide (epoxy) compound is not particularly limited as long as it is a compound containing an epoxy group in the molecule, and specific examples include: phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol type epoxy resin, triphenol type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene type epoxy resin, naphthol-benzene type epoxy resin Dimethyl type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, chain aliphatic epoxy resin, diethylene glycol diglycidate Glyceryl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, 1,1,2,2-tetrakis(p-hydroxyphenyl)ethane tetraglycidyl ether, triglyceride Glycidyl ether, o-2-butylphenyl glycidyl ether, 1,6-bis(2,3-glycidoxy)naphthalene, diglycerol polyglycidyl ether, polyethylene glycol glycidyl ether, YDB- 340, YDB-412, YDF-2001, YDF-2004 (trade name, manufactured by Nippon Steel Chemical Co., Ltd.), GAN, GOT, NC-3000-H, EPPN-501H, EPPN-502H, EOCN-1020, NC -6000, NC-7000L, EPPN-201L, XD-1000, EOCN-4600 (trade name, manufactured by Nippon Kayaku Co., Ltd.), Epikote (registered trademark) 1001, Epikote 1007, Epikote 1009, Epikote 5050, Epikote 5051, Epikote 1031S, Epikote 180S65, Epikote 157H70, YX-315-75 (trade name, manufactured by Japan Epoxy Resins Co., Ltd.), EHPE3150, PLACCEL G402, PUE101, PUE105 (trade name, manufactured by Diacel Chemical Industries Co., Ltd.), EPICLON ( Registered trademark) 830, 850, 1050, N-680, N-690, N-695, N-770, HP-7200, HP-820, EXA-850CRP, 860, EXA-4701, EXA-4850-1000 (Commodity name, manufactured by DIC Corporation), DENACOL (registered trademark) EX-201, EX-212L, EX-214L, EX-216L, EX-251, EX-203, EX-313, EX-314, EX-321, EX- 411, EX-511, EX-512, EX-612, EX-614, EX-614B, EX-711, EX-731, EX-810, EX-850L, EX-911, EM-150 (trade name, Nagase che mteX Corporation), Epolight (registered trademark) 70P, 40E, 100E, 100MF, 200E, 400E, 200P, 400P, 1500NP, 80MF, 4000, 3002 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), jER (registered trademark) 828 , 834, 1001, 1002, 1003, 1004, 1005, 1007, 1010, 1100L, 630, ESCN-220L, 220F, 220H, 220HH, 180H65, 1032H60, YX4000H, 152, 157S70, 1031 (Mitsubishi Chemical), Adeka Resin (registered trademark) EP-4000s, EP-4003s (manufactured by Adeka), and the like. Among them, from the viewpoint of reliability after the HTS test, triglycidyl isocyanurate, EPICLON 830, 850, 1050, N-680, N-690, N-695, N -770, HP-7200, HP-820, EXA-4850-1000, DENACOL EX-201, EX-313, EX-314, EX-321, EX-411, EX-511, EX-512, EX-612, Epoxy compounds of EX-614, EX-614B, EX-731, EX-810, EX-911, and EM-150. (B-2-3) Isocyanate group-containing compound The isocyanate group-containing compound is not particularly limited as long as it is a compound containing an isocyanate group in the molecule. From the viewpoint of reliability after the HTS test, it is preferably 4,4'-diphenylmethane diisocyanate, toluene diisocyanate, 1,3-xylylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, isophorone diisocyanate, hexamethylene Methyl diisocyanate, Takenate (registered trademark) 500, 600, Cosmonate (registered trademark) NBDI, ND (trade name, manufactured by Mitsui Chemicals), Duranate (registered trademark) 17B-60PX, TPA-B80E, MF-B60X, MF- K60X, E402-B80T (trade name, manufactured by Asahi Kasei Chemicals Co., Ltd.) and the like. (B-2-4) Bismaleimide compound As the bismaleimide compound, as long as it is a compound containing a maleimide group in the molecule, it is not particularly limited. From the viewpoint of reliability after the HTS test, 4,4'-diphenylmethanebismaleimide, phenylmethanemaleimide, and m-phenylenebiscis-butadiene are preferred. Alkenediimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane biscis Butenediimide, 4-methyl-1,3-phenylene bismaleimide, 1,6'-bismaleimide-(2,2,4-tris Methyl)hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenyl bismaleimide, 1,3-bis(3-cis Butenediimidephenoxy)benzene, 1,3-bis(4-maleimidephenoxy)benzene, BMI-1000, BMI-1100, BMI-2000, BMI-2300, BMI -3000, BMI-4000, BMI-5100, BMI-7000, BMI-TMH, BMI-6000, BMI-8000 (trade name, manufactured by Yamato Chemical Industry Co., Ltd.), etc. (B-2-5) Aldehyde group-containing compound The aldehyde group-containing compound is not particularly limited as long as it is a compound containing an aldehyde group in the molecule, but from the viewpoint of reliability after the HTS test, it is preferably Formaldehyde, Benzaldehyde, Acetaldehyde, Propionaldehyde, Phenylacetaldehyde, α-Phenylpropionaldehyde, β-Phenylpropionaldehyde, 2-Hydroxybenzaldehyde, 2-Hydroxybenzaldehyde, 4-Hydroxybenzaldehyde, 2-Tolualdehyde , m-methylbenzaldehyde, p-methylbenzaldehyde, furfural, glyoxal, glutaraldehyde, terephthalaldehyde, isophthalaldehyde, hexamethylenetetramine, triacetate, malondialdehyde, butanedialdehyde Aldehyde etc. (B-2-6) Oxetane ring-containing compound The so-called oxetane ring-containing compound has the following formula:
Figure 02_image173
The compound represented by the divalent group. The compound containing an oxetane ring is not particularly limited as long as it contains an oxetanyl group in the molecule, and examples thereof include: 1,4-bis{[(3-ethyl-3-oxetanyl group )methoxy]methyl}benzene, bis[1-ethyl(3-oxetanyl)]methyl ether, 4,4'-bis[(3-ethyl-3-oxetanyl) Methoxymethyl]biphenyl, 4,4'-bis(3-ethyl-3-oxetanylmethoxy)biphenyl, ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ) ether, diethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, bis(3-ethyl-3-oxetanylmethyl) diphenolate, trimethylolpropane (3-ethyl-3-oxetanyl methyl) ether, pentaerythritol tetrakis (3-ethyl-3-oxetanyl methyl) ether, 3-ethyl-3{[(3-ethyloxetane Butane-yl)methoxy]methyl}oxetane, 3-ethyl-3-hydroxymethyl oxetane (OXT-101) manufactured by Toagosei Co., Ltd., 2-ethyl Hexyloxetane (OXT-212), xylylenedioxetane (OXT-121), 3-ethyl-3-{[(3-ethyloxetane-3- group)methoxy]methyl}oxetane (OXT-221), OX-SQ-H, OXT-191, PNOX-1009, RSOX, the following: [Chem. 88]
Figure 02_image175
, Etanacol EHO, OXBP, OXMA, OXIPA, HBOX, OXTP, etc. of Ube Industries Co., Ltd. Among them, OXBP, OXIPA, OXT-121 and OXT-221 are preferable from the viewpoint of solubility in a developer and the elongation of the obtained cured film. (B-2-7) Compounds containing a benzoxyl ring As a compound containing a benzoxyl ring, as long as it is a compound containing a benzoxyl ring in the molecule, there is no particular limitation, as long as the reliability after the HTS test is From the viewpoint of properties, preferred are the compounds disclosed in Japanese Patent Laid-Open No. 2006-335671, and bisphenol F-type benzodiazepines BF-BXZ, bisphenol A-type benzodiazepines BA-BXZ, bisphenols S-type benzo㗁𠯤BS-BXZ (trade name, manufactured by Konishi Chemical Industry Co., Ltd.), etc. (B-2-8) Compound containing an oxazoline ring As the compound containing an oxazoline ring, as long as it is a compound containing an oxazoline ring in the molecule, there is no particular limitation, and examples include: 2-oxazoline, 2-Amino-2-oxazoline, 2,2'-bis(2-oxazoline), 1,3-bis(4,5-dihydro-2-oxazolyl)benzene, 1,4- Bis(4,5-dihydro-2-oxazolyl)benzene, 1,3,5-tris(4,5-dihydro-2-oxazolyl)benzene, 2,2'-(2,6- Pyridinediyl)bis(4-isopropyl-2-oxazoline), 2,2'-(2,6-pyridinediyl)bis(4-phenyl-2-oxazoline), 2-benzene (2-oxazoline), 4,4-dimethyl-2-oxazoline, 2,2'-isopropylidenebis(4-phenyl-2-oxazoline), 2-ethyl -2-oxazoline, 2,2'-isopropylidene bis(4-tert-butyl-2-oxazoline), 2-isopropyl-2-oxazoline, 4-methoxymethyl Alkyl-2-methyl-5-phenyl-2-oxazoline, 2-methyl-2-oxazoline, 2,4,4-trimethyl-2-oxazoline, manufactured by Nippon Shokubai Corporation The Epocros series K-1010E, K-2010E, K-1020E, K-2020E, K-1030E, K-2030E, WS-500, WS-700, RPS-1005, RAS-1005, etc. From the viewpoint of reliability after the HTS test, for example, 2,2'-bis(2-oxazoline) and 1,3-bis(4,5-dihydro-2-oxazolyl)benzene are preferred. , 1,4-bis(4,5-dihydro-2-oxazolyl)benzene, 1,3,5-tris(4,5-dihydro-2-oxazolyl)benzene, 2-phenyl( 2-oxazoline), Epocros WS-500, etc. Moreover, the compound containing an oxazoline ring is more preferably the following general formula (TS5):
Figure 02_image177
The compound represented by {wherein Rs6 is an organic group having 1 to 10 carbon atoms, and nn2 is an integer of 0 to 4}, preferably 1,3-bis(4,5-dihydro-2-oxazolyl) Benzene and 1,3,5-tris(4,5-dihydro-2-oxazolyl)benzene. (B-2-9) Compound containing carbodiimide group As the compound containing carbodiimide group, as long as it is a compound containing carbodiimide group in the molecule, it is not particularly limited. From the viewpoint of reliability later, bis(2,6-diisopropylphenyl)carbodiimide, Carbodilite SV-02, V-01, V-02, V-03, V- 04, V-05, V-07, V-09, E-01, E-02, LA-1 (trade name, manufactured by Nisshinbo Chemical Co., Ltd.) and the like. (B-2-10) Allyl compound The allyl compound is not particularly limited as long as it contains an allyl group in the molecule, and examples thereof include trimethylolpropane trimethacrylate, 1,3,5 -Triallyl benzenetricarboxylate, Triallyl trimellitate, Tetraallyl pyromellitic acid, Pentaerythritol triacrylate, Pentaerythritol tetraacrylate, Dipentaerythritol pentaacrylate, Dipentaerythritol hexaacrylate, Trimethylolpropane Triacrylate, Ditrimethylolpropane Tetraacrylate, NK Ester 1G, 2G, 3G, 4G, 9G, 14G, NPG, BPE-100, BPE-200, BPE-500, BPE-1400 , A-200, A-400, A-600, TMPT, A-TMM-3 (trade name, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), BANI-M, BANI-X (trade name, manufactured by Maruzen Petrochemical Co., Ltd. )Wait. Among these, from the viewpoint of reliability after the HTS test, vinyl acetate, trimethylolpropane trimethacrylate, triallyl 1,3,5-benzenetricarboxylate, Triallyl trimellitate, tetraallyl pyromellitic acid, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, di- Trimethylolpropane tetraacrylate, BANIM and BANI-X. (B-2-11) Tris-mercaptan compound As a tris-mercaptan compound, as long as it contains a thiocyanate group in the molecule, it is not particularly limited, but it is preferable from the viewpoint of reliability after the HTS test It is 2,4,6-trithiol-1,3,5-trithiol, 2-dimethylamino-4,6-dithiol-1,3,5-trithiol, 2-dibutyl Amino-4,6-dithiol-1,3,5-triscalyptus, 2-phenylamino-4,6-dithiol-1,3,5-triscalyle, etc. (B-2-12) Metal chelate compound Examples of the metal chelate compound include aluminum chelate compounds, titanium chelate compounds, zirconium chelate compounds, chromium chelate compounds, magnesium chelate compounds, nickel chelate compounds, and the like , from the viewpoint of reliability after the HTS test, preferably aluminum (III) acetylacetonate, titanium (IV) acetylacetonate, chromium (III) acetylacetonate, magnesium (II) acetylacetonate Salt, nickel (II) acetylacetonate, zirconium (IV) acetylacetonate, aluminum (III) trifluoroacetone acetonate, titanium (IV) trifluoroacetone acetonate, chromium (III) trifluoroacetone acetone ) salt, magnesium (II) trifluoroacetone acetonate, nickel (II) trifluoroacetone acetonate, zirconium (IV) trifluoroacetone acetonate, diisopropoxybis(acetoacetone) titanium, Titanium tetraacetylacetonate, titanium di-2-ethylhexyloxybis(2-ethyl-3-hydroxyhexanol), titanium diisopropoxybis(ethylacetate), and the like. Among these compounds, from the viewpoint of reliability after the HTS test, aluminum (III) acetylacetonate, titanium (IV) acetylacetonate, zirconium (IV) acetylacetonate, and acetylacetonate are preferred. Acetone nickel (II) salt, trifluoroacetone acetone aluminum (III) salt, trifluoroacetone acetone titanium (IV) salt, trifluoroacetone acetone nickel (II) salt, trifluoroacetone acetone zirconium (IV) salt , Titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, titanium di-2-ethylhexyloxybis(2-ethyl-3-hydroxyhexanol), and diisopropyl Oxybis(ethylacetate)titanium is preferably acetylacetonate aluminum(III) salt, acetylacetonate titanium(IV) salt, acetylacetone acetone from the viewpoint of the adhesion to the silicon wafer Zirconium (IV) salt, aluminum (III) trifluoroacetone acetone salt, titanium (IV) trifluoroacetone acetone salt, zirconium (IV) trifluoroacetone acetone salt, and diisopropoxybis(acetone acetone) acid) titanium. Among the crosslinking agents described in (B-2-1) to (B-2-12), from the viewpoint of reliability after the HTS test, (B-2-1) hydroxymethyl-containing (B-2-2) ethylene oxide compound, (B-2-3) isocyanate group-containing compound, (B-2-4) bis-butene-containing compound Compounds containing diimide groups, (B-2-5) Compounds containing aldehyde groups, (B-2-6) Compounds containing oxetane rings, (B-2-7) Compounds containing benzoyl groups Ring compound, (B-2-8) Oxazoline-containing compound, (B-2-10) Allyl compound, more preferably (B-2-1) Methylol and/or alkoxy-containing compound (B-2-3) Compounds containing isocyanate groups, (B-2-4) Compounds containing bismaleimide groups, (B-2-6) Oxygen-containing heterocycles Compounds containing butane ring, (B-2-7) compounds containing benzoyl rings, (B-2-10) allyl compounds, the most preferred are (B-2-1) containing hydroxymethyl and/ or alkoxymethyl compounds. These crosslinking agents (B-2) may be used alone or in combination of two or more. Among the above (B-2) crosslinking agents, the present invention preferably uses (B-2-1) a compound containing a hydroxymethyl group and/or an alkoxymethyl group, and more preferably uses the following general formula ( 12): [Chemical 90]
Figure 02_image179
{In the formula, Rs1 is a hydrogen atom, a valent group selected from the group consisting of methyl, ethyl, n-propyl and isopropyl, and Rs2 is selected from a hydroxyl group and an alkyl group with 1 to 10 carbon atoms , a group consisting of alkoxy groups with 1 to 10 carbon atoms, ester groups with 1 to 10 carbon atoms, and urethane groups, mm1 is an integer of 1 to 5, and mm2 is 0 to 4 the integer. Here, 1≦(mm1+mm2)≦5, nn1 is an integer from 1 to 4, V 1 CH when nn1=1 2 ORs1 is a single bond or a 2- to 4-valent organic group when nn1=2-4. in CH 2 ORs1 and R 10 When there are a plurality of them, these may be the same or different from each other} the methylol compound and the alkoxymethyl compound represented. By adding a cross-linking agent, the glass transition temperature of the resin at the same curing temperature can be increased. The migration of copper into the resin is inhibited by increasing the glass transition temperature of the resin. The compounding amount of the crosslinking agent (B-2) is preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, and still more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the resin (A). . (B-3) Fluorine-containing hydrophobic compound Hereinafter, (B-3) fluorine-containing hydrophobic compound in the present embodiment will be described in detail. The (B) fluorine-containing hydrophobic compound is not particularly limited as long as it contains a fluorine atom in the molecule and has hydrophobicity. Compounds that can be preferably used as the (B-3) fluorine-containing hydrophobic compound of this embodiment are acid fluoride, fluorinated acrylate, fluorinated methacrylate, fluorinated alcohol, and fluorinated alkane , fluorinated esters and fluorinated ethers, etc. <Acyl fluoride> As specific examples of the acyl fluoride as the fluorine-containing hydrophobic compound (B-3), perfluoropentyl fluoride, perfluorohexyl fluoride, perfluoroheptyl fluoride, perfluoroheptyl fluoride, PFOA Ether diacryloyl fluoride (n=1), perfluoropolyether diacryloyl fluoride (n=2), perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorodecanoic acid Monoacid, perfluorododecanoic acid, perfluorotetradecanoic acid, perfluorohexadecanoic acid, perfluoro-3,5,5-trimethylhexanoic acid, perfluoro-3,7-dimethyloctanoic acid, perfluoro Succinic acid, perfluoroglutaric acid, perfluoroadipic acid, perfluorooceric acid, perfluoroazelaic acid, perfluorosebacic acid, perfluorododecanedioic acid, perfluoro-3,6-dioxoic acid Heptanoic acid, perfluoro-3,6,9-trioxadecanoic acid, perfluoro-3,6-dioxadecanoic acid, perfluoro-3,6,9-trioxatridecanoic acid, perfluoro -3,6-dioxoctane-1,8-dioic acid, perfluoro-3,6,9-trioxaundecane-1,11-dioic acid, etc. <Fluorinated acrylate> As specific compound examples of the fluorinated acrylate as the (B-3) fluorine-containing hydrophobic compound, 1H,1H-perfluoro-n-butyl acrylate, 1H,1H- Perfluoro-n-octyl, 1H,1H-perfluoro-n-decyl acrylate, 1H,1H,6H,6H-perfluoro-1,6-hexanediol diacrylate, 1H,1H,8H,8H-perfluorotetra Ethylene glycol diacrylate, 1H,1H,6H,6H-perfluorotriethylene glycol diacrylate, 1H,1H,4H,4H-perfluorodiethylene glycol diacrylate, 1H,1H,10H,10H -Pentaethylene glycol diacrylate, 1H,1H,18H,18H-nonaethylene glycol diacrylate, perfluoro-1,6-hexanediol diacrylate, perfluorotetraethylene glycol diacrylate, perfluorotetraethylene glycol diacrylate Fluorotriethylene glycol diacrylate, perfluorodiethylene glycol diacrylate, pentaethylene glycol diacrylate, nonaethylene glycol diacrylate, etc. Among them, 1H, 1H, 6H, 6H-perfluoro-1,6-hexanediol diacrylate and 1H, 1H, 8H, 8H-perfluorotetraethylene glycol diacrylate can be preferably used, which can be used as It was obtained under the product name C6DIACRY and the product name DA-F4EO manufactured by Exfluor Corporation. <Fluorinated methacrylate> As a specific compound example of the fluorinated methacrylate as the (B-3) fluorine-containing hydrophobic compound, 1H,1H-perfluoron-butyl methacrylate can be preferably used , 1H,1H-perfluoro-n-octyl methacrylate, 1H,1H-perfluoro-n-decyl methacrylate, 1H,1H,6H,6H-perfluoro-1,6-hexanediol dimethacrylate , 1H, 1H, 8H, 8H-perfluorotetraethylene glycol dimethacrylate, 1H, 1H, 6H, 6H-perfluorotriethylene glycol dimethacrylate, 1H, 1H, 4H, 4H-all Fluorodiethylene glycol dimethacrylate, 1H, 1H, 10H, 10H-pentaethylene glycol dimethacrylate, 1H, 1H, 18H, 18H-nonaethylene glycol dimethacrylate, perfluoro- 1,6-Hexanediol dimethacrylate, Perfluorotetraethylene glycol dimethacrylate, Perfluorotriethylene glycol dimethacrylate, Perfluorodiethylene glycol dimethacrylate, Penta Ethylene glycol dimethacrylate, nonaethylene glycol dimethacrylate, etc. <Fluorinated alcohol> As specific compound examples of the fluorinated alcohol as the (B-3) fluorine-containing hydrophobic compound, 1H,1H-perfluoro-1-hexanol, 1H,1H-perfluoro -1-heptanol, 1H,1H-perfluoro-1-octanol, 1H,1H-perfluoro-1-nonanol, 1H,1H-perfluoro-1-decanol, 1H,1H-perfluoro-1 -Undecanol, 1H,1H-perfluoro-1-dodecanol, 1H,1H-perfluoro-1-tetradecanol, 1H,1H-perfluoro-1-hexadecanol, perfluoro-3,5 ,5-trimethylhexane-1-ol, perfluoro-3,7-dimethyloctane-1-ol, 1H,1H,4H,4H-perfluoro-1,4-butanediol, 1H ,1H,5H,5H-perfluoro-1,5-pentanediol, 1H,1H,5H,5H-perfluoro-1,5-pentanediol, 1H,1H,6H,6H-perfluoro-1, 6-Hexanediol, 1H,1H,8H,8H-perfluoro-1,8-octanediol, 1H,1H,9H,9H-perfluoro-1,9-nonanediol, 1H,1H,10H, 10H-perfluoro-1,10-decanediol, 1H,1H,12H,12H-perfluoro-1,12-dodecanediol, perfluoro-tertiary butanol, fluorinated diethylene glycol monomethyl ether, fluorinated triethylene glycol monomethyl ether, fluorinated diethylene glycol monobutyl ether, fluorinated triethylene glycol monobutyl ether, fluorinated triethylene glycol, fluorinated tetraethylene glycol, etc. <Fluorinated alkane> As specific compound examples of the fluorinated alkane as the fluorinated hydrophobic compound (B-3), perfluoroheptane, perfluorooctane, perfluorononane, perfluorodecane can be preferably used Trioxane, perfluoropentadecane, 1H-perfluoropentane, 1H-perfluorohexane, 1H-perfluoroheptane, 1H-perfluorooctane, 1H-perfluorononane, 1H-perfluorodecane , 1H-perfluoroundecane, 1H-perfluorotridecane, 1H-perfluoropentadecane, 1H-perfluoro-2,4,4-trimethylpentane, 1H-perfluoro-2,6 - Dimethylheptane, 1H,4H-perfluorobutane, 1H,6H-perfluorohexane, 1H,7H-perfluoroheptane, 1H,8H-perfluorooctane, 1H,10H-perfluorodecane alkane etc. <Fluorinated ester> As specific compound examples of the fluorinated ester as the (B-3) fluorine-containing hydrophobic compound, perfluoromethyl valerate, perfluorohexanoic acid methyl ester, and perfluoroheptanoic acid can be preferably used Methyl perfluorooctanoate, methyl perfluorooctanoate, methyl perfluorodecanoate, methyl perfluorodecanoate, methyl perfluorododecanoate, methyl perfluorotetradecanoate, perfluorohexadecanoic acid Methyl ester, dimethyl perfluorosuccinate, dimethyl perfluoroglutarate, dimethyl perfluoroadipate, dimethyl perfluorooctanedioate, dimethyl perfluoroazelaate, perfluorodecane Dimethyl diacid, dimethyl perfluoro-1,12-sebacic acid, methyl perfluoro-3,6-dioxaheptanoate, methyl perfluoro-3,6,9-trioxadecanoate Ester, methyl perfluoro-3,6-dioxadecanoate, methyl perfluoro-3,6,9-trioxatridecanoate, perfluoro-3,6-dioxaoctane-1, Dimethyl 8-diacid, dimethyl perfluoro-3,6,9-trioxaundecane-1,11-diacid, etc. <Fluorinated ether> As a specific compound example of the fluorinated ether as the fluorinated hydrophobic compound (B-3), perfluoro(diethylene glycol dimethyl ether), perfluoro(triethylene diethyl ether) can be preferably used. Glycol dimethyl ether), perfluoro(triethylene glycol dimethyl ether), etc. (B-3) It is preferable that the weight ratio of the fluorine atom in the molecule|numerator of a fluorine-containing hydrophobic compound is 30 mass % or more and 80 mass % or less. If the weight ratio of fluorine is less than this range, sufficient hydrophobicity cannot be obtained. Moreover, when fluorine exceeds this range, the compatibility with a solvent will fall, and since it becomes difficult to obtain the coating film with uniform surface flatness, it is unfavorable. The range of the fluorine weight content ratio is more preferably 35 mass % or more and 75 mass % or less. The (B-3) fluorine-containing hydrophobic compound in the present embodiment preferably has at least one unsaturated double bond in the molecule. If it has an unsaturated double bond, in an exposure process, a crosslinking reaction progresses between molecules of (B-3) fluorine-containing hydrophobic compounds and between molecules of (A) resin. Thereby, the (B-3) fluorine-containing hydrophobic compound is not easily volatilized during the heat treatment, and a sufficient hydrophobic effect can be exhibited. Preferred examples of the unsaturated double bond are acrylate, methacrylate, and the like. The content of the (B-3) fluorine-containing hydrophobic compound is preferably 0.01 to 50 parts by mass, more preferably 0.02 to 30 parts by mass, and still more preferably 0.05 to 20 parts by mass relative to 100 parts by mass of the resin (A). share. If the content is more than this range, the compatibility with the solvent will decrease, and it will be difficult to obtain a coating film with uniform surface flatness, so it is not good. gaps are likely to be created between them. (C) Sensitizer The (C) sensitizer used in this invention is demonstrated. (C) Sensitizer The photosensitive resin composition according to the present invention is, for example, a negative type that mainly uses polyimide precursor and/or polyamide as the resin (A), or is, for example, mainly uses polyoxazole precursor, At least one of soluble polyimide, novolak, polyhydroxystyrene, and phenol resin is different as the positive type or the like of the (A) resin. About the compounding quantity of the (C) photosensitive agent in the photosensitive resin composition, it is 1-50 mass parts with respect to 100 mass parts of (A) photosensitive resins. The said compounding quantity is 1 mass part or more from the viewpoint of photosensitivity or patterning property, and 50 mass parts or less from the viewpoint of curability of the photosensitive resin composition or the physical property of the photosensitive resin layer after hardening. [(C) Negative-type photosensitizer: polymerization initiator, photoacid generator] First, the case where the negative-type photosensitive agent is desired will be described. In this case, a photopolymerization initiator and/or a photoacid generator are used as the (C) sensitizer, and as the photopolymerization initiator, preferably a photoradical polymerization initiator, preferably, diphenyl Benzophenone derivatives such as methyl ketone, methyl o-benzoic acid benzoate, 4-benzyl-4'-methyl benzophenone, dibenzyl ketone, fentanone, 2,2'-diphenyl ketone Acetophenone derivatives such as ethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, 9-oxysulfur 𠮿
Figure 109146146-0000-3
, 2-methyl 9-oxothio
Figure 109146146-0000-3
, 2-isopropyl 9-oxothio
Figure 109146146-0000-3
, diethyl 9-oxothio
Figure 109146146-0000-3
Wait for 9-oxysulfur 𠮿
Figure 109146146-0000-3
Derivatives, benzil derivatives such as benzil, benzil dimethyl ketal, benzil-β-methoxyethyl acetal, etc., benzoin derivatives such as benzoin and benzoin methyl ether, 1-phenyl -1,2-Butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl- 1,2-Propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, 1,3-diphenyl Oximes such as propanetrione-2-(o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-benzyl) oxime, N-phenylglycine N-arylglycines, benzyl perchloride and other peroxides, aromatic biimidazoles, titanocenes, α-(n-octanesulfonyloxyimino)-4-methyl Photoacid generators, such as oxybenzyl cyanide, etc., are not limited to these. Among the above-mentioned photopolymerization initiators, oximes are more preferred in terms of photosensitivity. In the case where a photoacid generator is used as the (C) photosensitive agent in a negative-type photosensitive resin composition, it exhibits acidity under irradiation with active rays such as ultraviolet rays, and has the effect of making the following cross-linking The linking agent and the resin which is the component (A) are cross-linked, or the cross-linking agents are polymerized with each other. As examples of the photoacid generator, diaryl perionium salts, triaryl perionium salts, dialkylbenzyl methyl perionium salts, diaryl iodonium salts, aryldiazonium salts, aromatic tetracarboxylates can be used Acid esters, aromatic sulfonates, nitrobenzyl esters, oxime sulfonates, aromatic N-oxyimidate sulfonates, aromatic sulfonamides, halogenated alkyl-containing hydrocarbon compounds, halogen-containing Alkyl heterocyclic compounds, naphthoquinonediazide-4-sulfonate, etc. Such a compound may be used in combination of 2 or more types, or in combination with another sensitizer as needed. Among the above-mentioned photoacid generators, aromatic oxime sulfonates and aromatic N-oxyimidimine sulfonates are more preferable in particular from the viewpoint of photosensitivity. The compounding quantity of these photosensitizers in the case of a negative type is 1-50 mass parts with respect to 100 mass parts of (A) resin, Preferably it is 2-15 mass parts from a viewpoint of a photosensitivity characteristic. By blending the (C) sensitizer in an amount of 1 mass part or more with respect to 100 mass parts of the (A) resin, the photosensitivity is excellent, and by blending 50 mass parts or less, the thick film curability is excellent. Furthermore, as described above, when the resin (A) represented by the general formula (1) is of an ionomer type, a resin having an amine group is used in order to impart a photopolymerizable group to the side chain of the resin (A) via an ion bond. (meth)acrylic compound. In this case, the (meth)acrylic compound having an amine group is used as the (C) sensitizer, and as described above, for example, dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate are preferred. , diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, diethyl methacrylate Aminopropyl, dimethylaminobutyl acrylate, dimethylaminobutyl methacrylate, diethylaminobutyl acrylate, diethylaminobutyl methacrylate and other dialkylaminoalkyl acrylates Or dialkylaminoalkyl methacrylate, wherein, from the viewpoint of photosensitive properties, the alkyl group on the amine group preferably has 1 to 10 carbon atoms and the alkyl chain has 1 to 10 carbon atoms. Dialkylaminoalkyl acrylate or dialkylaminoalkyl methacrylate. About the compounding quantity of the (meth)acrylic-type compound which has these amine groups, it is 1-20 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 2-15 mass parts from the viewpoint of the photosensitivity characteristic share. By mixing 1 part by mass or more of (meth)acrylic compound having an amine group with respect to 100 parts by mass of resin (A) as (C) photosensitizer, the photosensitivity is excellent, and by mixing 20 parts by mass or less, a thick film can be obtained. Excellent hardenability. Next, the case where the expectation is positive will be described. In this case, a photoacid generator is used as the (C) sensitizer. Specifically, a diazoquinone compound, an onium salt, a halogen-containing compound, etc. can be used. From the viewpoints of solvent solubility and storage stability, Preferably, it is a compound having a diazoquinone structure. [(C) Positive-type sensitizer: compound having quinonediazide group] Examples of the compound having (C) quinonediazide group (hereinafter also referred to as "(C) quinonediazide compound") include those having Compounds with 1,2-benzoquinonediazide structure and compounds with 1,2-naphthoquinonediazide structure are US Pat. No. 2,772,972 specification, US Pat. No. 2,797,213 specification, and US Pat. No. 3,669,658 specification well-known substances among others. The (C) quinonediazide compound is preferably selected from 1,2-naphthoquinonediazide-4-sulfonate and 1,2-naphthoquinonediazide-4-sulfonate of a polyhydroxy compound having a specific structure described in detail below, and 1,1 of the polyhydroxy compound At least one compound in the group consisting of 2-naphthoquinonediazide-5-sulfonate (hereinafter also referred to as "NQD compound"). The NQD compound is obtained by sulfochlorinating the naphthoquinonediazide sulfonic acid compound with chlorosulfonic acid or thionite chloride according to a conventional method, and making the obtained naphthoquinonediazidesulfonic acid chloride Condensation reaction with polyhydroxy compounds. For example, it can be obtained by mixing a polyhydroxy compound with a specific amount of 1,2-naphthoquinonediazide-5-sulfonyl chloride or 1,2-naphthoquinonediazide-4-sulfonyl chloride in diethyl In a solvent such as alkane, acetone or tetrahydrofuran, the reaction is carried out in the presence of a basic catalyst such as triethylamine to carry out esterification, and the obtained product is washed with water and dried. In the present embodiment, the compound (C) having a quinonediazide group is preferably represented by the following general formulas (70) to (74) from the viewpoint of sensitivity and resolution when forming a resist pattern 1,2-naphthoquinonediazide-4-sulfonate and/or 1,2-naphthoquinonediazide-5-sulfonate of a hydroxy compound. The general formula (70) is represented by [chemical 91]
Figure 02_image181
{where, X 11 and X 12 Each independently represents a hydrogen atom or a monovalent organic group having 1 to 60 carbon atoms (preferably 1 to 30 carbon atoms), and X 13 and X 14 Each independently represents a hydrogen atom or a monovalent organic group having 1 to 60 carbon atoms (preferably, 1 to 30 carbon atoms), r1, r2, r3 and r4 are each independently an integer of 0 to 5, and at least one of r3 and r4 where is an integer of 1 to 5, (r1+r3)≦5, and (r2+r4)≦5}. The general formula (71) is represented by [chemical 92]
Figure 02_image183
{In the formula, Z represents a tetravalent organic group with 1 to 20 carbon atoms, X 15 , X 16 , X 17 and X 18 Each independently represents a monovalent organic group with a carbon number of 1 to 30, r6 is an integer of 0 or 1, r5, r7, r8 and r9 are each independently an integer of 0 to 3, and r10, r11, r12 and r13 are each independently 0 An integer of ~2, and r10, r11, r12, and r13 will not all be represented by 0}. And the general formula (72) is given by [Chem. 93]
Figure 02_image185
{In the formula, r14 represents an integer from 1 to 5, r15 represents an integer from 3 to 8, (r14×r15) L each independently represents a monovalent organic group having 1 to 20 carbon atoms, and (r15) T 1 and (r15) T 2 Each independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms}. And the general formula (73) is represented by [Chem. 94]
Figure 02_image187
{In the formula, A represents an aliphatic divalent organic group containing tertiary or quaternary carbon, and M represents a divalent organic group, and preferably represents a chemical formula selected from the following chemical formula:
Figure 02_image189
Indicated by the 2-valent base among the 3 kinds of bases shown. Furthermore, the general formula (74) is represented by [Chemical 96]
Figure 02_image191
{In the formula, r17, r18, r19 and r20 are each independently an integer from 0 to 2, at least one of r17, r18, r19 and r20 is 1 or 2, X 20 ~X 29 each independently represents a hydrogen atom, a halogen atom, a monovalent group selected from the group consisting of an alkyl group, an alkenyl group, an alkoxy group, an allyl group and an acyl group, and Y 10 , Y 11 and Y 12 Respectively represent a single bond independently, selected from -O-, -S-, -SO-, -SO 2 -, -CO-, -CO 2 -, a cyclopentylene group, a cyclohexylene group, a phenylene group, and a bivalent group in the group consisting of a bivalent organic group having 1 to 20 carbon atoms}. In another embodiment, in the above general formula (74), Y 10 ~Y 12 Preferably, they are each independently from the following general formula: [Chem. 97]
Figure 02_image193
[Chemical 98]
Figure 02_image195
[Chemical 99]
Figure 02_image197
{where, X 30 and X 31 Each independently represents a hydrogen atom, at least one monovalent group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, and a substituted aryl group, X 32 , X 33 , X 34 and X 35 each independently represents a hydrogen atom or an alkyl group, r21 is an integer from 1 to 5, and X 36 , X 37 , X 38 and X 39 Each independently represents a hydrogen atom or an alkyl group, and is selected from the three divalent organic groups represented by it. Examples of the compound represented by the general formula (70) include hydroxy compounds represented by the following formulae (75) to (79). Here, general formula (75) is [Formula 100]
Figure 02_image199
{In the formula, r16 is independently an integer from 0 to 2, and X 40 Respectively independently represent a hydrogen atom or a monovalent organic group with 1 to 20 carbon atoms, in X 40 When there are multiple Xs, there are multiple Xs 40 may be the same or different from each other, and X 40 Preferably it is the following general formula: [Chemical 101]
Figure 02_image201
(In the formula, r18 is an integer from 0 to 2, X 41 Represents a hydrogen atom, a monovalent organic group selected from the group consisting of an alkyl group and a cycloalkyl group, and when r18 is 2, 2 X 41 can be the same or different from each other) the monovalent organic group represented by}, the general formula (76) is represented by [Formula 102]
Figure 02_image203
{where, X 42 Represents a hydrogen atom, a monovalent organic group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a cycloalkyl group having 1 to 20 carbon atoms. In addition, the general formula (77) is [Formula 103]
Figure 02_image205
{In the formula, r19 is independently an integer from 0 to 2, X 43 Each independently represents a hydrogen atom or the following general formula: [Chem. 104]
Figure 02_image207
(In the formula, r20 is an integer from 0 to 2, X 45 is selected from the group consisting of hydrogen atoms, alkyl groups and cycloalkyl groups, and when r20 is 2, 2 X 45 may be the same or different from each other) the monovalent organic group represented by, and X 44 Selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and a cycloalkyl group having 1 to 20 carbon atoms}, formulae (78) and (79) have the following structures. [Chemical 105]
Figure 02_image209
[Chemical 106]
Figure 02_image211
The compound represented by the general formula (70) is preferably the following formula (80) in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition - The hydroxy compound represented by (82). The structures of formulae (80) to (82) are shown below. [Chemical 107]
Figure 02_image213
[Chemical 108]
Figure 02_image215
[Chemical 109]
Figure 02_image217
The compound represented by the general formula (76) is preferably the following formula (83) in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition : [Chemical 110]
Figure 02_image219
The hydroxy compound represented. The compound represented by the general formula (77) is preferably the following formula (84) in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition - The hydroxy compound represented by (86). The structures of formulae (84) to (86) are shown below. [Chemical 111]
Figure 02_image221
[Chemical 112]
Figure 02_image223
[Chemical 113]
Figure 02_image225
In the above general formula (71), Z is not particularly limited as long as it is a tetravalent organic group having 1 to 20 carbon atoms, but from the viewpoint of sensitivity, it preferably has the following formula:
Figure 02_image227
The 4-valence basis of the structure represented. Among the compounds represented by the above-mentioned general formula (71), the following formula (87) is preferred in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition. ) to hydroxy compounds represented by (90). The structures of formulae (87) to (90) are shown below. [Chemical 115]
Figure 02_image229
[Chemical 116]
Figure 02_image231
[Chemical 117]
Figure 02_image233
[Chemical 118]
Figure 02_image235
The compound represented by the general formula (72) is preferably the following formula (91) in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition : [Chemical 119]
Figure 02_image237
A hydroxy compound represented by {wherein r40 is each independently an integer of 0 to 9}. The compound represented by the above-mentioned general formula (73) is preferably the following formula (92) in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition and the hydroxy compound represented by (93). The structures of formulae (92) and (93) are shown below. [Chemical 120]
Figure 02_image239
[Chemical 121]
Figure 02_image241
As the compound represented by the above-mentioned general formula (74), the following formula (94) is specifically preferred in terms of high sensitivity and low precipitation in the photosensitive resin composition: 122]
Figure 02_image243
The NQD compound of the polyhydroxy compound represented. When (C) the compound having a quinonediazide group has a 1,2-naphthoquinonediazidesulfonyl group, the group may be 1,2-naphthoquinonediazide-5-sulfonyl group or 1,2-naphthoquinonediazide-5-sulfonyl group , Any of 2-naphthoquinonediazide-4-sulfonyl. The 1,2-naphthoquinonediazide-4-sulfonyl group can absorb the i-ray region of a mercury lamp, so it is suitable for exposure by i-ray. On the other hand, 1,2-naphthoquinonediazide-5-sulfonyl can absorb even the g-ray region of a mercury lamp, so it is suitable for exposure with g-rays. In this embodiment, it is preferable to select one of the 1,2-naphthoquinonediazide-4-sulfonate compound and the 1,2-naphthoquinonediazide-5-sulfonate compound according to the wavelength of exposure or both. In addition, 1,2-naphthoquinonediazide having a 1,2-naphthoquinonediazide-4-sulfonyl group and a 1,2-naphthoquinonediazide-5-sulfonyl group in the same molecule can also be used As the nitrogen sulfonate compound, a 1,2-naphthoquinonediazide-4-sulfonate compound and a 1,2-naphthoquinonediazide-5-sulfonate compound can also be used in combination. (C) Among the compounds having a quinonediazide group, from the viewpoint of developing contrast, the average esterification rate of naphthoquinonediazidesulfonyl ester of the hydroxy compound is preferably 10% to 100%, more preferably 20% to 100%. From a viewpoint of cured film physical properties, such as sensitivity and elongation, as a preferable example of an NQD compound, what is represented by the following general formula group is mentioned, for example. [Chemical 123]
Figure 02_image245
Examples include {wherein Q is a hydrogen atom, or the following formula group: [Chem. 124]
Figure 02_image247
The naphthoquinonediazide sulfonate group represented by any one of them, but not all of Q are represented by hydrogen atoms at the same time}. In this case, as the NQD compound, a naphthoquinonediazidesulfonyl ester compound having a 4-naphthoquinonediazidesulfonyl group and a 5-naphthoquinonediazidesulfonyl group in the same molecule can be used, and it can also be used as an NQD compound. The 4-naphthoquinonediazidesulfonyl ester compound and the 5-naphthoquinonediazidesulfonyl ester compound may be used in combination. Among the naphthoquinonediazide sulfonate groups described in the above paragraph [0243], the following general formula (95) is particularly preferred: [Chemical 125]
Figure 02_image249
represented. The above-mentioned onium salts include iodonium salts, peronium salts, phosphonium salts, ammonium salts, diazonium salts, etc., preferably selected from the group consisting of diaryl iodonium salts, triaryl perionium salts and trialkyl perionium salts The group of onium salts. Examples of the above-mentioned halogen-containing compound include a halogenated alkyl group-containing hydrocarbon compound and the like, and trichloromethyltris is preferred. The compounding quantity of these photoacid generators in the case of a positive type is 1-50 mass parts with respect to 100 mass parts of (A) resin, Preferably it is 5-30 mass parts. When the compounding amount of the photoacid generator as the (C) photosensitizer is 1 part by mass or more, the patterning property of the photosensitive resin composition will be good, and if it is 50 parts by mass or less, the photosensitive resin composition will not be cured after curing. The tensile elongation of the film was good, and the development residue (scum) in the exposed part was small. The above-mentioned NQD compounds may be used alone or in combination of two or more. In this embodiment, the compounding quantity of the compound which has a quinonediazide group (C) in the photosensitive resin composition is 0.1 to 70 parts by mass relative to 100 parts by mass of the resin (A), preferably 0.1 to 70 parts by mass. 1 mass part - 40 mass parts, More preferably, it is 3 mass parts - 30 mass parts, More preferably, it is 5 mass parts - 30 mass parts. When this compounding quantity is 0.1 mass part or more, favorable sensitivity will be acquired, and on the other hand, if it is 70 mass parts or less, the mechanical properties of a cured film will be favorable. The photosensitive resin composition of this invention may further contain components other than the said (A)-(C) component. The preferable ones of this component are based on, as the resin (A), for example, a negative type using a polyimide precursor, a polyimide, etc., or a positive type using a polyoxazole precursor, a soluble polyimide, a phenol resin, etc., etc. and different. In the present embodiment, the above-mentioned polyimide precursor resin composition and polyamide resin composition as the negative-type resin composition, or the polyoxazole resin composition and the soluble polyamide resin composition as the positive-type photosensitive resin composition The imine resin composition and the phenol resin composition may contain a solvent for dissolving these resins. <Solvent> Examples of the solvent include amides, sulfites, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, alcohols, etc. For example, N-methyl can be used. yl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, ethyl lactate, methyl lactate, butyl lactate, gamma-butyrolactone, propylene glycol Monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenylethylene glycol, tetrahydrofuran methanol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, quinoline, dichloromethane, 1,2 -Dichloroethane, 1,4-dichlorobutane, chlorobenzene, o-dichlorobenzene, anisole, hexane, heptane, benzene, toluene, xylene, mesitylene, etc. Among them, N-methyl-2-pyrrolidone, dimethylsulfoxide, and tetramethylurea are preferred from the viewpoint of the solubility of the resin, the stability of the resin composition, and the adhesiveness to the substrate. , butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenylethylene glycol and tetrahydrofuran methanol. Among such solvents, those that can completely dissolve the resulting polymer are particularly preferred, and examples thereof include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylacetamide Formaldehyde, dimethyl sulfoxide, tetramethyl urea, γ-butyrolactone, etc. As a solvent suitable for the above-mentioned phenol resin, bis(2-methoxyethyl) ether, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Ethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone, toluene, xylene, γ-butyrolactone, N-methyl-2-pyrrolidone, etc., but not limited to these Wait. In the photosensitive resin composition of the present invention, the amount of the solvent used is preferably 100 to 1000 parts by mass, more preferably 120 to 700 parts by mass, and still more preferably 125 to 100 parts by mass relative to 100 parts by mass of the resin (A). range of 500 parts by mass. The photosensitive resin composition of this invention may further contain components other than the said (A)-(C) component. For example, when a cured film is formed on a substrate containing copper or a copper alloy using the photosensitive resin composition of the present invention, in order to suppress discoloration on copper, nitrogen-containing heterocycles such as azole compounds and purine derivatives can be arbitrarily blended compound. As the azole compound, 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl -1H-triazole, 4-tert-butyl-5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5- Phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H-triazole, hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diazole Ethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α) -Dimethylbenzyl)phenyl]-benzotriazole, 2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-tert-butyl- 5-Methyl-2-hydroxyphenyl)-benzotriazole, 2-(3,5-di-tert-pentyl-2-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5 '-Third octylphenyl)benzotriazole, hydroxyphenylbenzotriazole, tolutriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole , 4-carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5- Amino-1H-tetrazole, 1-methyl-1H-tetrazole, etc. Particularly preferred are tolutriazole, 5-methyl-1H-benzotriazole, and 4-methyl-1H-benzotriazole. Moreover, these azole compounds can be used singly or as a mixture of 2 or more types. Specific examples of purine derivatives include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyl base adenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N,N-dimethyladenine, 2-fluoroadenine, 9-( 2-hydroxyethyl) adenine, guanine oxime, N-(2-hydroxyethyl) adenine, 8-aminoadenine, 6-amino-8-phenyl-9H-purine, 1-ethyl Adenine, 6-ethylaminopurine, 1-benzyl adenine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl)guanine, N -(3-Ethylphenyl)guanine, 2-azaadenine, 5-azaadenine, 8-azaadenine, 8-azaguanine, 8-azapurine, 8-azaadenine Xanthine, 8-azahypoxanthine, etc. and their derivatives. When the photosensitive resin composition contains the above-mentioned azole compound or purine derivative, the compounding amount is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin (A). From the viewpoint of the photosensitivity characteristics, More preferably, it is 0.5-5 mass parts. When the compounding amount of the azole compound with respect to 100 parts by mass of the resin (A) is 0.1 part by mass or more, when the photosensitive resin composition of the present invention is formed on copper or copper alloy, generation of the surface of copper or copper alloy is suppressed. On the other hand, if the discoloration is 20 parts by mass or less, the photosensitivity is excellent. In addition, a hindered phenol compound can be arbitrarily blended in order to suppress discoloration on the copper surface. Examples of hindered phenol compounds include 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-butyl-hydroquinone, 3-(3,5-di-tert-butyl- 4-Hydroxyphenyl) octadecyl propionate, isooctyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis(2 , 6-di-tert-butylphenol), 4,4'-thio-bis(3-methyl-6-tert-butylphenol), 4,4'-butylene-bis(3-methyl- 6-tert-butylphenol), triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol- Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 2,2-thio-dieneethylbis[3-(3,5-di-tert-butyl) [methyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-tert-butyl-4-hydroxy-phenylpropionamide), 2,2'-idene Methyl-bis(4-methyl-6-tert-butylphenol), 2,2'-methylene-bis(4-ethyl-6-tert-butylphenol), tetrakis[3-(3 ,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester, tri-(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(3-hydroxy-2,6-dimethyl) -4-Isopropylbenzyl)-1,3,5-tris𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl) -3-Hydroxy-2,6-dimethylbenzyl)-1,3,5-tris-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris( 4-Second-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-tris𠯤-2,4,6-(1H,3H,5H)-trione, 1, 3,5-Tris[4-(1-ethylpropyl)-3-hydroxy-2,6-dimethylbenzyl]-1,3,5-tris-2,4,6-(1H, 3H,5H)-trione, 1,3,5-tris[4-triethylmethyl-3-hydroxy-2,6-dimethylbenzyl]-1,3,5-tris-2, 4,6-(1H,3H,5H)-trione, 1,3,5-tris(3-hydroxy-2,6-dimethyl-4-phenylbenzyl)-1,3,5-tris 𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,5,6-trimethylbenzyl) -1,3,5-Tris𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-5-ethyl-3-hydroxyl) -2,6-Dimethylbenzyl)-1,3,5-tris𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tertiary Butyl-6-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-tris-2,4,6-(1H,3 H,5H)-trione, 1,3,5-tris(4-tert-butyl-6-ethyl-3-hydroxy-2,5-dimethylbenzyl)-1,3,5-tris 𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-5,6-diethyl-3-hydroxy-2-methyl) Benzyl)-1,3,5-tris(2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-3-hydroxy-2) -Methylbenzyl)-1,3,5-tris-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-3- Hydroxy-2,5-dimethylbenzyl)-1,3,5-tris-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-th Tributyl-5-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-tris-2,4,6-(1H,3H,5H)-trione, etc., but not It is not limited to this. Among these, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-tris-2,4 is particularly preferred , 6-(1H,3H,5H)-triketone, etc. About the compounding quantity of a hindered phenol compound, 0.1-20 mass parts is preferable with respect to 100 mass parts of (A) resins, and 0.5-10 mass parts is more preferable from a viewpoint of a photosensitivity characteristic. If the blending amount of the hindered phenol compound is 0.1 part by mass or more with respect to 100 parts by mass of the resin (A), for example, when the photosensitive resin composition of the present invention is formed on copper or copper alloy, generation of copper or copper alloy can be prevented. Discoloration or corrosion, but on the other hand, if it is 20 parts by mass or less, the photosensitivity is excellent. The photosensitive resin composition of this invention may contain a crosslinking agent. The crosslinking agent may be a crosslinking agent capable of crosslinking the (A) resin, or the crosslinking agent itself, forming a crosslinked network structure when heat-hardening the embossed pattern formed using the photosensitive resin composition of the present invention. agent. The crosslinking agent can further strengthen the heat resistance and chemical resistance of the cured film formed from the photosensitive resin composition. Examples of the crosslinking agent include Cymel (registered trademark) 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, which are compounds containing a methylol group and/or an alkoxymethyl group. 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR 65, 300, Micoat 102, 105 (the above are manufactured by Mitsui Cytec); NIKALAC (registered trademark) MX-270, -280, -290, NIKALAC MS-11, NIKALAC MW-30, -100, -300, -390, -750 (the above are manufactured by SANWA CHEMICAL); DML-OCHP, DML-MBPC, DML-BPC, DML-PEP, DML-34X, DML -PSBP, DML-PTBP, DML-PCHP, DML-POP, DML-PFP, DML-MBOC, BisCMP-F, DML-BisOC-Z, DML-BisOCHP-Z, DML-BisOC-P, DMOM-PTBT, TMOM - BP, TMOM-BPA, TML-BPAF-MF (the above are manufactured by Shu Chemical Industry Co., Ltd.); benzenedimethanol, bis(hydroxymethyl)cresol, bis(hydroxymethyl)dimethoxybenzene, bis(hydroxymethyl) Methyl)diphenyl ether, bis(hydroxymethyl)benzophenone, hydroxymethylphenyl hydroxymethylbenzoate, bis(hydroxymethyl)biphenyl, dimethylbis(hydroxymethyl)biphenyl, Bis(methoxymethyl)benzene, bis(methoxymethyl)cresol, bis(methoxymethyl)dimethoxybenzene, bis(methoxymethyl)diphenyl ether, bis(methyl) Oxymethyl)benzophenone, methoxymethylphenyl methoxymethylbenzoate, bis(methoxymethyl)biphenyl, dimethylbis(methoxymethyl)biphenyl, etc. . Further, as ethylene oxide compounds, phenol novolak epoxy resins, cresol novolac epoxy resins, bisphenol epoxy resins, trisphenol epoxy resins, tetraphenol epoxy resins, Phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin , Aliphatic epoxy resin, diethylene glycol diglycidyl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, 1,1,2,2-tetra (para Hydroxyphenyl)ethane tetraglycidyl ether, glycerol triglycidyl ether, o-2-butylphenyl glycidyl ether, 1,6-bis(2,3-glycidoxy)naphthalene, diglycerol polyglycidyl ether Glyceryl ether, polyethylene glycol glycidyl ether, YDB-340, YDB-412, YDF-2001, YDF-2004 (the above are trade names, manufactured by Nippon Steel Chemical Co., Ltd.), NC-3000-H, EPPN- 501H, EOCN-1020, NC-7000L, EPPN-201L, XD-1000, EOCN-4600 (the above are trade names, manufactured by Nippon Kayaku Co., Ltd.), Epikote (registered trademark) 1001, Epikote 1007, Epikote 1009, Epikote 5050, Epikote 5051, Epikote 1031S, Epikote 180S65, Epikote 157H70, YX-315-75 (the above are trade names, manufactured by Japan Epoxy Resins Co., Ltd.), EHPE3150, PLACCEL G402, PUE101, PUE105 (the above are trade names, Diacel Chemical Industries Co., Ltd.), EPICLON (registered trademark) 830, 850, 1050, N-680, N-690, N-695, N-770, HP-7200, HP-820, EXA-4850-1000 (the above are trade name, manufactured by DIC Corporation), DENACOL (registered trademark) EX-201, EX-251, EX-203, EX-313, EX-314, EX-321, EX-411, EX-511, EX-512, EX -612, EX-614, EX-614B, EX-711, EX-731, EX-810, EX-911, EM-150 (the above are trade names, manufactured by Nagase ChemteX), Epolight (registered trademark) 70P, Epolight 100MF (the above is the trade name, manufactured by Kyoeisha Chemical Co., Ltd.), etc. Moreover, 4,4'- diphenylmethane diisocyanate, toluene diisocyanate, 1, 3- xylylene diisocyanate, dicyclohexylmethane-4,4'- Diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, Takenate (registered trademark) 500, 600, Cosmonate (registered trademark) NBDI, ND (the above are trade names, manufactured by Mitsui Chemicals), Duranate (registered trademark) ) 17B-60PX, TPA-B80E, MF-B60X, MF-K60X, E402-B80T (the above are trade names, manufactured by Asahi Kasei Chemicals Co., Ltd.). Moreover, as a bismaleimide compound, 4,4'-diphenylmethanebismaleimide, phenylmethanemaleimide, m-phenylenediimide, and Maleimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane Bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 1,6'-bismaleimide-(2,2,4 -Trimethyl)hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenyl bismaleimide, 1,3-bis(3 -Maleimidephenoxy)benzene, 1,3-bis(4-maleimidephenoxy)benzene, BMI-1000, BMI-1100, BMI-2000, BMI-2300 , BMI-3000, BMI-4000, BMI-5100, BMI-7000, BMI-TMH, BMI-6000, BMI-8000 (the above are trade names, manufactured by Yamato Chemical Industry Co., Ltd.), etc., but only as above Compounds that are generally thermally cross-linked are not limited to these. About the compounding quantity in the case of using a crosslinking agent, 0.5-20 mass parts is preferable with respect to 100 mass parts of (A) resin, and 2-10 mass parts is more preferable. When this compounding amount is 0.5 mass part or more, favorable heat resistance and chemical resistance are exhibited, and on the other hand, when it is 20 mass parts or less, it is excellent in storage stability. The photosensitive resin composition of this invention may contain an organic titanium compound. By including an organic titanium compound, even when hardened at a low temperature of about 250° C., a photosensitive resin layer excellent in chemical resistance can be formed. Moreover, by containing both the (B) compound and the organic titanium compound in the photosensitive resin composition in particular, there is an effect that the resin layer after curing is excellent not only in substrate adhesiveness but also in chemical resistance. In addition, by including both (B-1) nanoparticles and an organic titanium compound in the photosensitive resin composition, the cured resin layer has the effect of being excellent not only in substrate adhesion but also in chemical resistance. . In addition, by including both (B-2) the thermal crosslinking agent and the organic titanium compound in the photosensitive resin composition, the cured resin layer is excellent not only in substrate adhesion but also in chemical resistance. Effect. Moreover, by containing both the (B-3) compound and the organic titanium compound in the photosensitive resin composition in particular, there is an effect that the resin layer after curing is excellent not only in substrate adhesiveness but also in chemical resistance. As an organotitanium compound that can be used, an organic chemical substance is bonded to a titanium atom via a covalent bond or an ionic bond. Specific examples of the organotitanium compounds are shown in the following I) to VII): I) Titanium chelate compounds: Among them, in terms of the storage stability of the negative photosensitive resin composition and obtaining a good pattern, more preferred are Titanium chelate compounds having two or more alkoxy groups, specific examples are as follows: bis(triethanolamine) diisopropoxide titanium, bis(2,4-glutaric acid) di-n-butoxide titanium, bis(2,4 - glutaric acid) titanium diisopropoxide, bis (tetramethyl pimelic acid) titanium diisopropoxide, bis (ethylacetate) titanium diisopropoxide, etc. II) Titanium tetraalkoxide compounds: e.g. titanium tetrakis(n-butoxide), titanium tetraethoxide, titanium tetrakis(2-ethylhexanoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide, titanium tetramethoxide Titanium Methoxypropoxide, Titanium Tetramethylphenolate, Titanium Tetra(n-nonanol), Titanium Tetra(n-propoxide), Titanium Tetrastearyloxide, Tetrakis[bis{2,2-(allyloxymethyl) ) butanol}] titanium and so on. III) Titanocene compounds: such as (pentamethylcyclopentadienyl)titanium trimethoxide, bis(η 5 -2,4-Cyclopentadien-1-yl)bis(2,6-difluorophenyl)titanium, bis(η 5 -2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, etc. IV) Monoalkoxytitanium compounds: for example, titanium tris(dioctylphosphoric acid) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide, and the like. V) Oxytitanium compounds: for example, bis(glutaric acid) oxytitanium, bis(tetramethylpimelate) oxytitanium, phthalocyanine oxytitanium, and the like. VI) Titanium tetraacetylacetonate compound: for example, titanium tetraacetylacetonate and the like. VII) Titanate coupling agent: for example, isopropyl tris(dodecylbenzenesulfonyl)titanate and the like. Among them, the organotitanium compound is preferably selected from the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound and III) titanocene compound from the viewpoint of exhibiting better chemical resistance. At least one compound of the group consisting of. Especially preferred are bis(ethylacetate)titanium diisopropoxide, tetrakis(n-butoxide)titanium, and bis(n-butoxide) 5 -2,4-Cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium. About the compounding quantity at the time of compounding an organic titanium compound, 0.05-10 mass parts is preferable with respect to 100 mass parts of (A) resins, and 0.1-2 mass parts is more preferable. When this compounding quantity is 0.05 mass part or more, favorable heat resistance and chemical resistance are exhibited, and on the other hand, when it is 10 mass parts or less, it is excellent in storage stability. Furthermore, in order to improve the adhesiveness of the film formed using the photosensitive resin composition of this invention, and a base material, an adhesive agent can be mix|blended arbitrarily. Examples of adhering aids include γ-aminopropyldimethoxysilane, N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-glycidyloxysilane propylpropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3-methacryloyloxypropyldimethoxymethylsilane, 3-methacryloyloxy Propyltrimethoxysilane, Dimethoxymethyl-3-piperidinylpropylsilane, Diethoxy-3-glycidoxypropylmethylsilane, N-(3-diethoxymethylsilane Silylpropyl) butadiimide, N-[3-(triethoxysilyl)propyl]phthalimide, Benzophenone-3,3'-bis(N-[ 3-Triethoxysilyl]propylamide)-4,4'-dicarboxylic acid, benzene-1,4-bis(N-[3-triethoxysilyl]propylamide)- 2,5-Dicarboxylic acid, 3-(triethoxysilyl)propylsuccinic anhydride, N-phenylaminopropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, 3- Silane coupling agents such as ureidopropyltriethoxysilane, 3-(trialkoxysilyl)propylsuccinic anhydride, Aluminum-based adhesives, such as ethyl aluminum diisopropyl acetoacetate, etc. Among these adhesive agents, it is more preferable to use a silane coupling agent in terms of adhesive force. When the photosensitive resin composition contains an adhesive adjuvant, the blending amount of the adhesive adjuvant is preferably in the range of 0.5 to 25 parts by mass relative to 100 parts by mass of the (A) resin. Examples of the silane coupling agent include: 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: trade name KBM803, manufactured by Chisso Co., Ltd.: trade name Sila-Ace S810), 3-mercaptopropyl trimethoxysilane Ethoxysilane (manufactured by Azmax Co., Ltd.: trade name SIM6475.0), 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: trade name LS1375, manufactured by Azmax Co., Ltd.: product Name SIM6474.0), mercaptomethyltrimethoxysilane (manufactured by Azmax Co., Ltd.: trade name SIM6473.5C), mercaptomethylmethyldimethoxysilane (manufactured by Azmax Co., Ltd.: trade name SIM6473.0) , 3-mercaptopropyldiethoxymethoxysilane, 3-mercaptopropylethoxydimethoxysilane, 3-mercaptopropyltripropoxysilane, 3-mercaptopropyldiethoxypropyl Oxysilane, 3-mercaptopropylethoxydipropoxysilane, 3-mercaptopropyldimethoxypropoxysilane, 3-mercaptopropylmethoxydipropoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyldiethoxymethoxysilane, 2-mercaptoethylethoxydimethoxysilane, 2-mercaptoethyltripropoxysilane, 2-mercaptoethyl Tripropoxysilane, 2-mercaptoethylethoxydipropoxysilane, 2-mercaptoethyldimethoxypropoxysilane, 2-mercaptoethylmethoxydipropoxysilane, 4- mercaptobutyltrimethoxysilane, 4-mercaptobutyltriethoxysilane, 4-mercaptobutyltripropoxysilane, N-(3-triethoxysilylpropyl)urea (Shin-Etsu Chemical Co., Ltd. Manufactured by Co., Ltd.: trade name LS3610, manufactured by Azmax Co., Ltd.: trade name SIU9055.0), N-(3-trimethoxysilylpropyl)urea (manufactured by Azmax Co., Ltd.: trade name SIU9058.0), N -(3-diethoxymethoxysilylpropyl)urea, N-(3-ethoxydimethoxysilylpropyl)urea, N-(3-tripropoxysilylpropyl) ) urea, N-(3-diethoxypropoxysilylpropyl)urea, N-(3-ethoxydipropoxysilylpropyl)urea, N-(3-dimethoxy Propoxysilylpropyl)urea, N-(3-methoxydipropoxysilylpropyl)urea, N-(3-trimethoxysilylethyl)urea, N-(3-ethyl) Oxydimethoxysilylethyl)urea, N-(3-tripropoxysilylethyl)urea, N-(3-tripropoxysilylethyl)urea, N-(3- Ethoxydipropoxysilylethyl)urea, N-(3-dimethoxypropoxysilylethyl)urea, N-(3-methoxydipropoxysilylethyl) Urea, N-(3-trimethoxysilylbutyl)urea, N-(3-triethoxysilylbutyl)urea, N-(3-tripropoxysilylbutyl)urea, 3 -(m-Aminophenoxy)propyltrimethoxysilane (Azmax shares Co., Ltd.: trade name SLA0598.0), m-aminophenyltrimethoxysilane (manufactured by Azmax Co., Ltd.: trade name SLA0599.0), p-aminophenyltrimethoxysilane (manufactured by Azmax Co., Ltd. : trade name SLA0599.1), aminophenyltrimethoxysilane (manufactured by Azmax Co., Ltd.: trade name SLA0599.2), 2-(trimethoxysilylethyl)pyridine (manufactured by Azmax Co., Ltd.: product SIT8396.0), 2-(triethoxysilylethyl)pyridine, 2-(dimethoxysilylmethylethyl)pyridine, 2-(diethoxysilylmethylethyl) Pyridine, (3-triethoxysilylpropyl) tert-butyl carbamate, (3-glycidoxypropyl) triethoxysilane, tetramethoxysilane, tetraethoxysilane, Tetra-n-propoxysilane, Tetraisopropoxysilane, Tetra-n-butoxysilane, Tetraisobutoxysilane, Tetratert-butoxysilane, Tetrakis(methoxyethoxysilane), Tetrakis(methyl) oxyn-propoxysilane), tetrakis(ethoxyethoxysilane), tetrakis(methoxyethoxyethoxysilane), bis(trimethoxysilyl)ethane, bis(trimethoxysilane) Silyl)hexane, bis(triethoxysilyl)methane, bis(triethoxysilyl)ethane, bis(triethoxysilyl)ethylene, bis(triethoxysilyl)octane Alkane, bis(triethoxysilyl)octadiene, bis[3-(triethoxysilyl)propyl]disulfide, bis[3-(triethoxysilyl)propyl]tetra Thioether, di-tert-butoxydiacetoxysilane, diisobutoxyaluminoxytriethoxysilane, bis(glutarate)titanium-O,O'-bis(oxyethyl) -aminopropyltriethoxysilane, phenylsilanetriol, methylphenylsilanediol, ethylphenylsilanediol, n-propylphenylsilanediol, isopropylphenylsilanediol , n-butylphenylsilanediol, isobutylphenylsilanediol, tert-butylphenylsilanediol, diphenylsilanediol, dimethoxydiphenylsilane, diethoxydi Phenylsilane, Dimethoxydi-p-Tolylsilane, Ethylmethylphenylsilanol, n-propylmethylphenylsilanol, isopropylmethylphenylsilanol, n-butylmethylphenylsilanol , isobutyl methylphenyl silanol, tert-butyl methyl phenyl silanol, ethyl n-propyl phenyl silanol, ethyl isopropyl phenyl silanol, n-butyl ethyl phenyl silanol, isobutyl Ethyl ethyl phenyl silanol, tert-butyl ethyl phenyl silanol, methyl diphenyl silanol, ethyl diphenyl silanol, n-propyl diphenyl silanol, isopropyl diphenyl Silanol, n-butyldiphenylsilanol, isobutyldiphenylsilanol, t-butyldiphenylsilanol, triphenylsilanol, etc., but not limited to these. These may be used alone or in combination of a plurality of them. As the silane coupling agent, among the above-mentioned silane coupling agents, from the viewpoint of storage stability, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy(p-tolyl)silane, and diphenyl are preferred. Silanediol, dimethoxydiphenylsilane, diethoxydiphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol, and silane coupling agents represented by the following structures. [Chemical 126]
Figure 02_image251
About the compounding quantity in the case of using a silane coupling agent, 0.01-20 mass parts is preferable with respect to 100 mass parts of (A) resins. The photosensitive resin composition of this invention may further contain components other than the said components. Desirable ones of this component are based on, as the resin (A), for example, a negative type using a polyimide precursor, a polyamide, or the like, or a positive type using a polyoxazole precursor, a soluble polyimide, a phenol resin, and the like. different. In the case of using a polyimide precursor, polyimide, etc. as the negative type of the resin (A), a sensitizer can be arbitrarily blended in order to improve the photosensitivity. Examples of the sensitizer include Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzylidene) ) cyclopentane, 2,6-bis(4'-diethylaminobenzylidene)cyclohexanone, 2,6-bis(4'-diethylaminobenzylidene)-4-methyl Cyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamidoindanone , p-dimethylaminobenzylidene indanone, 2-(p-dimethylaminophenyl biphenylene) benzothiazole, 2-(p-dimethylaminophenyl vinylidene) benzothiazole , 2-(p-dimethylaminophenylvinylidene)isonaphthothiazole, 1,3-bis(4'-dimethylaminobenzylidene)acetone, 1,3-bis(4'-bis ethylaminobenzylidene)acetone, 3,3'-carbonyl-bis(7-diethylaminocoumarin), 3-acetyl-7-dimethylaminocoumarin, 3- Ethoxycarbonyl-7-dimethylaminocoumarin, 3-benzyloxycarbonyl-7-dimethylaminocoumarin, 3-methoxycarbonyl-7-diethylaminocoumarin 3-ethoxycarbonyl-7-diethylaminocoumarin, N-phenyl-N'-ethylethanolamine, N-phenyldiethanolamine, N-p-tolyldiethanolamine, N-benzene Ethanolamine, 4-𠰌olinyl benzophenone, isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 2-mercaptobenzimidazole, 1-phenyl-5-mercapto Tetrazole, 2-mercaptobenzothiazole, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzothiazole, 2-(p-dimethylaminostyryl)benzothiazole Methylaminostyryl)naphtho(1,2-d)thiazole, 2-(p-dimethylaminostyryl)styrene, and the like. These can be used alone or in a combination of, for example, 2 to 5. When the photosensitive resin composition contains a sensitizer for improving photosensitivity, it is preferable that it is 0.1-25 mass parts with respect to 100 mass parts of (A) resins. Moreover, in order to improve the resolution of an embossed pattern, the monomer which has a photopolymerizable unsaturated bond can be mix|blended arbitrarily. Such a monomer is preferably a (meth)acrylic compound that undergoes radical polymerization by a photopolymerization initiator, and is not particularly limited to those listed below, and examples thereof include: diethylene glycol dimethyl Mono- or di-acrylates and methacrylates of ethylene glycol or polyethylene glycol such as tetraethylene glycol dimethacrylate and methacrylate, propylene glycol or polypropylene glycol mono- or diacrylates and methacrylates, Glycerol mono-, di- or triacrylates and methacrylates, cyclohexane diacrylates and dimethacrylates, 1,4-butanediol diacrylates and dimethacrylates, 1,6- Diacrylates and dimethacrylates of hexanediol, diacrylates and dimethacrylates of neopentyl glycol, mono- or diacrylates and methacrylates of bisphenol A, trimellitic acrylates , acrylate and methacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, two or three glycerol Acrylates and methacrylates, di-, tri- or tetra-acrylates and methacrylates of pentaerythritol, and compounds such as ethylene oxide or propylene oxide adducts of these compounds. When the photosensitive resin composition contains the above-mentioned monomer having a photopolymerizable unsaturated bond for improving the resolution of the relief pattern, the compounding amount of the monomer having a photopolymerizable unsaturated bond is: 1-50 mass parts is preferable with respect to 100 mass parts of (A) resins. Moreover, in the case of using a polyimide precursor, polyimide, etc. as the negative type of the resin (A), in particular, in order to improve the viscosity and lightness of the photosensitive resin composition when stored in the state of a solution containing a solvent For the stability of sensitivity, thermal polymerization inhibitors can be prepared arbitrarily. As the thermal polymerization inhibitor, hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1, 2-Cyclohexanediaminetetraacetic acid, glycol ether diaminetetraacetic acid, 2,6-di-tert-butyl-p-cresol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2 - Naphthol, 2-nitroso-1-naphthol, 2-nitroso-5-(N-ethyl-N-sulfopropylamino)phenol, N-nitroso-N-phenylhydroxy Amine ammonium salt, N-nitroso-N (1-naphthyl) hydroxylamine ammonium salt, etc. The compounding quantity at the time of compounding the thermal polymerization inhibitor in the photosensitive resin composition is preferably in the range of 0.005 to 12 parts by mass with respect to 100 parts by mass of the (A) resin. On the other hand, in the photosensitive resin composition of the present invention, when a polyoxazole precursor, a soluble polyimide, or a phenol resin is used as the positive type of the resin (A), the photosensitive resin previously used as a photosensitive resin may be appropriately added as needed. Dyes, surfactants, thermal acid generators, dissolution accelerators, and adhesives for improving adhesion to substrates, etc., are used as additives to the resin composition. If the said additive is demonstrated more concretely, as a dye, methyl violet, crystal violet, malachite green etc. are mentioned, for example. In addition, as the surfactant, for example, nonionic surfactants containing polyglycols such as polypropylene glycol and polyoxyethylene lauryl ether or derivatives thereof, such as Fluorad (trade name, manufactured by Sumitomo 3M), MEGAFAC ( Fluorine-based surfactants such as trade name, Dainippon Ink & Chemical Industry Co., Ltd.) or Lumiflon (trade name, manufactured by Asahi Glass Co., Ltd.), such as KP341 (trade name, manufactured by Shin-Etsu Chemical Industry Co., Ltd.), DBE (trade name, manufactured by Chisso Corporation) , Glanol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and other organosiloxane surfactants. Examples of adhesive adjuvants include alkyl imidazoline, butyric acid, alkyl acid, polyhydroxystyrene, polyvinyl methyl ether, tert-butyl novolak, epoxy silane, epoxy polymer, and the like, and Various silane coupling agents. About the compounding quantity of the said dye and surfactant, 0.1-30 mass parts is preferable with respect to 100 mass parts of (A) resins. Moreover, the thermal acid generator can be arbitrarily blended from the viewpoint of exhibiting favorable thermal properties and mechanical properties of the cured product even when the curing temperature is lowered. From the viewpoint of exhibiting favorable thermal properties and mechanical properties of the cured product even when the curing temperature is lowered, it is preferable to prepare a thermal acid generator. As a thermal acid generator, the salt which consists of a strong acid and a base, such as an onium salt which has the function of generating an acid by heat, or an imine sulfonate can be mentioned. Examples of the onium salt include diaryl iodonium salts such as aryldiazonium salts and diphenyl iodonium salts; bis(alkylaryl) iodonium salts such as bis(tert-butylphenyl) iodonium salts; Trialkyl perionium salts such as methyl pericynium salts; dialkylmonoaryl pericynium salts such as dimethylphenyl pericynium salts; diaryl monoalkyl pericynium salts such as diphenyl methyl pericynium salts; triaryl pericynium salts salt etc. Among them, preferred are bis(tert-butylphenyl) iodonium salt of p-toluenesulfonic acid, bis(tertiary butylphenyl) iodonium salt of trifluoromethanesulfonic acid, and trifluoromethanesulfonic acid Methyl sulfamate, dimethylphenyl sulfamate trifluoromethanesulfonate, diphenylmethyl sulfamate trifluoromethanesulfonate, bis(tert-butylphenyl) iodonium nonafluorobutanesulfonate , diphenyl iodonium salt of camphor sulfonic acid, diphenyl iodonium salt of ethanesulfonic acid, dimethylphenyl pericynium salt of benzenesulfonic acid, diphenylmethyl pericylium salt of toluenesulfonic acid, etc. Moreover, as the salt formed from a strong acid and a base, in addition to the above-mentioned onium salt, a salt formed from the following strong acid and base, for example, a pyridinium salt can be used. Examples of strong acids include arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, perfluoroalkylsulfonic acids such as camphorsulfonic acid, trifluoromethanesulfonic acid, and nonafluorobutanesulfonic acid, and methanesulfonic acid. , ethanesulfonic acid, butanesulfonic acid and other alkyl sulfonic acids, etc. Examples of the base include pyridine, alkylpyridines such as 2,4,6-collidine, N-alkylpyridines such as 2-chloro-N-methylpyridine, and halogenated-N-alkylpyridines Wait. As the imidimine sulfonate, for example, naphthyl imine sulfonate, phthalimine sulfonate, etc. can be used, and it is not limited as long as it is a compound which generates an acid under the action of heat. The compounding amount in the case of using a thermal acid generator is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 10 parts by mass, and still more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the resin (A). . In the case of a positive-type photosensitive resin composition, a dissolution accelerator can be used in order to promote the removal of unnecessary resin after photosensitive. For example, a compound having a hydroxyl group or a carboxyl group is preferable. Examples of compounds having a hydroxyl group include ballasts used for the above-mentioned naphthoquinonediazide compounds, and linear chains such as p-cumylphenol, bisphenols, resorcinols, and MtrisPC and MtetraPC. Phenolic compounds, TrisP-HAP, TrisP-PHBA, TrisP-PA and other non-linear phenolic compounds (all manufactured by Honshu Chemical Industry Co., Ltd.), 2 to 5 phenol substitutions of diphenylmethane, 3,3-diphenylmethane 1-5 phenol substituents of phenylpropane, 2,2-bis-(3-amino-4-hydroxyphenyl)hexafluoropropane and 5-noralkene-2,3-dicarboxylic acid anhydride A compound obtained by reacting bis-(3-amino-4-hydroxyphenyl) anhydride with 1,2-cyclohexyldicarboxylic anhydride at a molar ratio of 1:2 Compounds, N-hydroxysuccinimide, N-hydroxyphthalimide, N-hydroxy 5-norene-2,3-dicarboxyimide, etc. Examples of compounds having a carboxyl group include 3-phenyllactic acid, 4-hydroxyphenyllactic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid, and 4-hydroxy-3-methoxy Mandelic acid, 2-methoxy-2-(1-naphthyl) propionic acid, mandelic acid, 2-phenyllactic acid, α-methoxyphenylacetic acid, O-acetylmandelic acid, Ikon acid etc. About the compounding quantity in the case of using a dissolution accelerator, 0.1-30 mass parts is preferable with respect to 100 mass parts of (A) resins. <Manufacturing method of hardened relief pattern and semiconductor device> Furthermore, the present invention provides a method of manufacturing a hardened relief pattern, comprising: step (1), by coating the above-mentioned photosensitive resin combination of the present invention on a substrate forming a resin layer on the substrate; step (2), exposing the resin layer; step (3), developing the exposed resin layer to form a relief pattern; and step (4) ), which forms a hardened embossed pattern by subjecting the embossed pattern to a heat treatment. A typical aspect of each step is described below. (1) Step of forming a resin layer on the substrate by coating the photosensitive resin composition on the substrate In this step, the photosensitive resin composition of the present invention is coated on the substrate, and then dried as necessary A resin layer is formed. As the coating method, a method previously used for coating the photosensitive resin composition, for example, using a spin coater, a bar coater, a knife coater, a curtain coater, a screen printing machine, etc., can be used A method of coating, a method of spray coating using a spray coater, and the like. As a method of forming a relief pattern using the photosensitive resin composition of the present invention, not only can a resin layer be formed on the substrate by coating the photosensitive resin composition on the substrate, but also the photosensitive resin can be combined After the material is formed into a film form, a layer of the photosensitive resin composition is laminated on a substrate to form a resin layer. Moreover, when the film of the photosensitive resin composition of this invention is formed on a support base material, when using this film, a support base material can be removed after lamination|stacking, and a support base material can also be removed before lamination|stacking. If necessary, the coating film containing the photosensitive resin composition can be dried. As the drying method, methods such as air drying, heating drying using an oven or a hot plate, and vacuum drying can be used. Specifically, in the case of air-drying or heat-drying, drying can be performed under the conditions of 20° C. to 140° C. for 1 minute to 1 hour. The resin layer can be formed on the substrate by the above method. (2) The step of exposing the resin layer In this step, an exposure device such as a contact exposure machine, a mirror projection exposure machine, a stepper, etc. is used, and a photomask or reticle having a pattern is interposed therebetween. Alternatively, the above-formed resin layer may be directly exposed to light with an ultraviolet light source or the like. Thereafter, in order to improve the photosensitivity, etc., a post-exposure bake (PEB) and/or a pre-development bake under the conditions of any combination of temperature and time may also be implemented as necessary. The ranges of the baking conditions are preferably temperature: 40 to 120° C. and time: 10 seconds to 240 seconds, but are not limited to these ranges as long as the properties of the photosensitive resin composition of the present invention are not impaired. (3) The step of developing the exposed resin layer to form a relief pattern In this step, the exposed part or the unexposed part of the exposed photosensitive resin layer is developed and removed. In the case of using a negative-type photosensitive resin composition (for example, when using a polyimide precursor or polyamide as the (A) resin), the unexposed part is developed and removed, and a positive-type photosensitive resin is used. In the case of a composition (for example, when a polyoxazole precursor or a soluble polyimide is used as the (A) resin), the exposed portion is developed and removed. As the development method, any method can be selected and used from among the development methods of photoresist known previously, for example, the spin spray method, the liquid coating method, the immersion method with ultrasonic treatment, and the like. Moreover, after developing, in order to adjust the shape of a relief pattern, etc., the post-development baking under the conditions of the combination of arbitrary temperature and time can also be implemented as needed. As a developing solution used at the time of image development, it is preferable that it is a good solvent for the photosensitive resin composition, or the combination of this good solvent and a poor solvent. For example, in the case of a photosensitive resin composition insoluble in an alkaline aqueous solution, as a good solvent, N-methylpyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylpyrrolidone are preferable Acetamide, cyclopentanone, cyclohexanone, γ-butyrolactone, α-acetyl-γ-butyrolactone, etc. As poor solvents, toluene, xylene, methanol, ethanol, isopropanol are preferred , ethyl lactate, propylene glycol methyl ether acetate and water, etc. When a good solvent and a poor solvent are used in combination, it is preferable to adjust the ratio of the poor solvent to the good solvent according to the solubility of the polymer in the photosensitive resin composition. Moreover, each solvent of 2 or more types, for example, a plurality of solvents may be used in combination. On the other hand, in the case of a photosensitive resin composition soluble in an alkaline aqueous solution, the developer used during development is one that dissolves and removes the alkaline aqueous solution-soluble polymer, typically an alkaline solution in which an alkaline compound is dissolved. aqueous solution. The alkaline compound dissolved in the developing solution may be any of an inorganic alkaline compound or an organic alkaline compound. Examples of the inorganic basic compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, diammonium hydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, lithium silicate, sodium silicate, potassium silicate, Lithium carbonate, sodium carbonate, potassium carbonate, lithium borate, sodium borate, potassium borate, and ammonia, etc. Moreover, as this organic basic compound, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, methylamine, dimethylamine, trimethylamine, monoethylamine can be mentioned. , diethylamine, triethylamine, n-propylamine, di-n-propylamine, isopropylamine, diisopropylamine, methyldiethylamine, dimethylethanolamine, ethanolamine, and triethanolamine, etc. Furthermore, water-soluble organic solvents such as methanol, ethanol, propanol, or ethylene glycol, surfactants, storage stabilizers, and resin dissolution inhibitors, etc. may be added to the above-mentioned alkaline aqueous solution as necessary. The relief pattern can be formed in the above manner. (4) Step of forming a hardened relief pattern by heat-treating the relief pattern In this step, the relief pattern obtained by the above-described development is heated to be converted into a hardened relief pattern. As a method of heating and curing, various methods such as those using a hot plate, those using an oven, and those using a temperature-controlled oven that can be set to a temperature control program can be selected. Heating can be performed under the conditions of, for example, 180°C to 400°C for 30 minutes to 5 hours. Air can be used as an ambient gas during heating and hardening, and an inert gas such as nitrogen and argon can also be used. <Semiconductor Device> The present invention also provides a semiconductor device including the cured relief pattern obtained by the method for producing the cured relief pattern of the present invention. The present invention also provides a semiconductor device including a base material of a semiconductor element, and a cured relief pattern of resin formed on the base material by the above-mentioned method of manufacturing a cured relief pattern. In addition, the present invention is also applicable to a method of manufacturing a semiconductor device using a semiconductor element as a base material and including the method of manufacturing the above-described hardened relief pattern as a part of the steps. The semiconductor device of the present invention can be formed into a surface protection film, an interlayer insulating film, an insulating film for rewiring, a protection film for flip chip devices, or a A protective film of a semiconductor device with a bump structure, etc., is manufactured by combining it with a known manufacturing method of a semiconductor device. The photosensitive resin composition of the present invention can be used not only for semiconductor devices as described above, but also for interlayer insulation of multilayer circuits, protective coatings for flexible copper-clad laminates, solder resist films, and liquid crystal alignment films. [Examples] Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. In Examples, Comparative Examples, and Production Examples, the physical properties of the photosensitive resin composition were measured and evaluated according to the following methods. (1) Weight average molecular weight The weight average molecular weight (Mw) of each resin was measured by gel permeation chromatography (standard polystyrene conversion). The column used for the measurement is the trade name "Shodex 805M/806M series" manufactured by Showa Denko Co., Ltd., the standard monodisperse polystyrene is the trade name "Shodex STANDARD SM-105" manufactured by Showa Denko Co., Ltd., and the developing solvent As N-methyl-2-pyrrolidone, the detector used the trade name "Shodex RI-930" manufactured by Showa Denko Co., Ltd. (2) The hardening relief pattern on Cu was prepared using a sputtering device (L-440S-FHL type, manufactured by Canon Anelva Co., Ltd.) on a 6-inch silicon wafer (manufactured by Fujimi Electronic Industry Co., Ltd., thickness 625±25 mm) μm) were sequentially sputtered with Ti with a thickness of 200 nm and Cu with a thickness of 400 nm. Next, using a coating developer (Coater Developer) (D-Spin60A type, manufactured by SOKUDO), the photosensitive resin composition prepared by the following method was spin-coated on the wafer, and dried to form a photosensitive resin composition. A coating film with a thickness of 10 μm (a coating film with a thickness of 6 to 10 μm was formed in the second embodiment). Using a photomask with a test pattern, a parallel photomask was used to align an exposure machine (model PLA-501FA, manufactured by Canon), and the coating film was irradiated with 300 mJ/cm 2 of energy. Then, in the case of negative type, cyclopentanone was used as the developer, and in the case of positive type, 2.38% TMAH (tetramethylammonium hydroxide, tetramethylammonium hydroxide) was used as the developer, and a coating developer (D-Spin60A) was used. type, manufactured by SOKUDO Co., Ltd.), carry out spray development of the coating film, rinse with propylene glycol methyl ether acetate in the case of negative type, and rinse with pure water in the case of positive type, thereby obtaining relief on Cu pattern. Using a heating program type curing furnace (Model VF-2000, manufactured by Koyo Lindberg Co., Ltd.), in a nitrogen atmosphere, the wafer with the relief pattern formed on the Cu was heated for 2 hours at the temperature described in each example. , thereby obtaining a hardened relief pattern containing a resin with a thickness of about 6-7 μm on the Cu. (3) High temperature storage test of hardened relief pattern on Cu and evaluation afterward The wafer with the hardened relief pattern formed on the Cu was heated for 168 hours. Then, using a plasma surface treatment apparatus (EXAM type, manufactured by Shinko Seiki Co., Ltd.), all the resin layers on the Cu were removed by plasma etching. The plasma etching conditions are as follows. Output: 133 W Gas type, flow rate: O 2 : 40 ml/min+CF 4 : 1 ml/min Gas pressure: 50 Pa Mode: hard mode Etching time: 1800 seconds Using FE-SEM (field emission-scanning electron microscope) (S-4800 type, Hitachi High -Technologies Co., Ltd.) observed the Cu surface from which all the resin layers were removed, and calculated the area ratio of the voids on the surface of the Cu layer using image analysis software (Azakun, manufactured by Asahi Kasei Co., Ltd.). <1st Example> The following experiment was performed as a 1st Example. <Production Example 1> ((A) Synthesis of Polymer (A)-1 as a Polyimide Precursor) 4,4'-oxydiphthalic acid was placed in a separable flask with a volume of 2 L 155.1 g of dianhydride (ODPA), 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added and stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exotherm generated by the reaction was completed, it was left to cool to room temperature for 16 hours. Then, under ice-cooling, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture while stirring for 40 minutes. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Further, after stirring at room temperature for 2 hours, 30 ml of ethanol was added, followed by stirring for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The produced crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate a polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer (A)-1). The molecular weight of the polymer (A)-1 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each production example was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in terms of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 pieces of Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP (N-methylpyrrolidone, N- Methylpyrrolidone) Flow rate: 1 ml/min. <Production Example 2> ((A) Synthesis of Polymer (A)-2 as a Polyimide Precursor) Using 3,3',4,4' -In addition to replacing 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) in Production Example 1 with 147.1 g of biphenyltetracarboxylic dianhydride (BPDA), the same The reaction was carried out in the same manner as the described method to obtain a polymer (A)-2. The molecular weight of the polymer (A)-2 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 22,000. <Production Example 3> ((A) Synthesis of Polymer (A)-3 as a Polyimide Precursor) 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl ( 147.8 g of TFMB) instead of 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) of Production Example 1, the reaction was carried out in the same manner as in the method described in Production Example 1 above to obtain a polymerization Substance (A)-3. The molecular weight of the polymer (A)-3 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 21,000. <Production Example 4> ((A) Synthesis of Polymer (A)-4 as Polyamide) (Synthesis of Phthalic Acid Compound End-capped Body AIPA-MO) Into a 5 L separable flask, 5 -Aminoisophthalic acid {hereinafter abbreviated as AIPA} 543.5 g and N-methyl-2-pyrrolidone 1700 g were mixed and stirred, and heated to 50°C with a water bath. The solution obtained by diluting 512.0 g (3.3 mol) of 2-methacryloyloxyethyl isocyanate with 500 g of γ-butyrolactone was added dropwise using a dropping funnel, and stirred at 50°C for about 2 hours. . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography {hereinafter referred to as low molecular weight GPC}, the reaction solution was poured into 15 L of ion-exchanged water, and stirred, It was allowed to stand, and the reaction product was separated by filtration after the crystallization and precipitation appeared. After appropriate washing, it was vacuum-dried at 40 ° C for 48 hours, thereby obtaining the amine group and isocyanide of 5-aminoisophthalic acid. AIPA-MO obtained by the action of the isocyanate group of 2-methacryloyloxyethyl acid. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of polymer (A)-4) The obtained AIPA-MO 100.89 g (0.3 mol), pyridine 71.2 g (0.9 mol), GBL (butyrolactone, γ) were put into a separable flask with a volume of 2 L. -butyrolactone) 400 g, mixed, cooled to 5°C by ice bath. Under ice-bath cooling, the resulting solution was added dropwise to dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in GBL 125 g over a period of about 20 minutes. 4,4'-bis(4-aminophenoxy)biphenyl {hereinafter referred to as BAPB} 103.16 g (0.28 mol) obtained by dissolving 168 g of NMP, maintained at 5°C by ice bath for 3 hours, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed solution of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction solution, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer (A)-4). The molecular weight of the polymer (A)-4 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 34,700. <Production Example 5> ((A) Synthesis of Polymer (A)-5 as a Polyoxazole Precursor) In a separable flask with a volume of 3 L, 2,2-bis(3-amino-4- 183.1 g of hydroxyphenyl)-hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25° C.) to prepare a homogeneous solution. The solution obtained by dissolving 118.0 g of 4,4'-diphenyl ether dimethyl chloride in 354 g of diethylene glycol dimethyl ether (DMDG) was added dropwise using a dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping was 40 minutes, and the temperature of the reaction liquid was up to 30°C. After 3 hours after dripping, 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic acid anhydride was added to the reaction solution, and the mixture was stirred at room temperature for 15 hours, so that the amine of the polymer chain accounted for 99% of the total. The end groups are capped with carboxycyclohexyl amido groups. The reaction rate at this time can be easily calculated by tracing the residual amount of 1,2-cyclohexyldicarboxylic anhydride charged by high performance liquid chromatography (HPLC). After that, the above reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a polymer through gel permeation chromatography (GPC). A crude polybenzoxazole precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) measured by the ) method. After redissolving the crude polybenzoxazole precursor obtained above in γ-butyrolactone (GBL), it was treated with a cation exchange resin and an anion exchange resin, and the obtained solution was poured into ion-exchanged water. , the precipitated polymer was separated by filtration, washed with water and dried in vacuo to obtain a purified polybenzoxazole precursor (polymer (A)-5). <Production Example 6> ((A) Synthesis of Polymer (A)-6 as Polyimide) A separable four-necked flask made of glass equipped with a Teflon (registered trademark) anchor stirrer was attached. Cooling tubes for Ann-Stark separators. The above-mentioned flask was immersed in a silicone oil bath and stirred while flowing nitrogen gas. 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan) (hereinafter referred to as BAP) 72.28 g (280 mmol), 5-(2,5-dioxytetrahydro) were added -3-furyl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, stirred at room temperature at 100 rpm for 4 hours, then added 4.6 g (28 mmol) of 5-norene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) The mixture was heated and stirred at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath under nitrogen gas. Then, it heated to 180 degreeC of silicon bath temperature, and it heated and stirred at 100 rpm for 2 hours. Toluene and water distilled during the reaction were removed. After the imidization reaction was completed, it was returned to room temperature. After that, the above reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a solution obtained by gel permeation chromatography (GPC). The crude polyimide (polymer (A)-6) with a weight average molecular weight of 23,000 (in terms of polystyrene) measured by the method. <Production Example 7> ((A) Synthesis of Polymer (A)-8 as Phenol Resin) A separable flask with a volume of 1.0 L with a Dean-Stark apparatus was replaced with nitrogen, and then, in the same In a separable flask, 81.3 g (0.738 mol) of resorcinol, 84.8 g (0.35 mol) of BMMB, 3.81 g (0.02 mol) of p-toluenesulfonic acid, and 116 g of propylene glycol monomethyl ether (hereinafter also referred to as PGME) were added to the flask. The solid matter was dissolved by mixing and stirring at 50°C. The mixed solution was heated to 120°C in an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was stirred directly at 120°C for 3 hours. Then, in another container, 24.9 g (0.150 mol) of 2,6-bis(hydroxymethyl) p-cresol and 249 g of PGME were mixed and stirred to dissolve them uniformly, and the obtained solution was used a dropping funnel for a period of time. It was dripped in this separable flask for 1 hour, and it stirred for 2 hours after dripping. After the completion of the reaction, the same treatment as in Production Example 7 was performed to obtain a copolymer (polymer H) containing resorcinol/BMMB/2,6-bis(hydroxymethyl)p-cresol with a yield of 77%. The weight average molecular weight of this polymer H calculated|required by the standard polystyrene conversion by GPC method was 9,900. <Example 1> Using polymers (A)-1 and (A)-2, a negative photosensitive resin composition was prepared by the following method, and the evaluation of the photosensitive resin composition was performed. Polymers (A)-1 50 g and (A)-2 50 g (equivalent to (A) resin) as polyimide precursors were mixed with dicyclohexyl phthalate (Tokyo Chemical Industry Co., Ltd. Production, equivalent to (B)-1) 4 g, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (referred to as "PDO" in Table 1) (equivalent to (C) Sensitizer) 4 g, tetraethylene glycol dimethacrylate 8 g, N-[3-(triethoxysilyl)propyl] phthalic acid 1.5 g were dissolved in A mixed solvent containing 80 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and 20 g of ethyl lactate. The viscosity of the obtained solution was adjusted to about 35 poise by further adding a small amount of the said mixed solvent, and it was set as a negative photosensitive resin composition. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.1% was obtained. <Example 2> In the above-mentioned Example 1, except having changed (B) component to diphenyl phthalate (made by Tokyo Chemical Industry Co., Ltd.), it is the same as that of Example 1, except having prepared negative type photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. <Example 3> Except having changed (B) component into di-2-ethylhexyl phthalate (manufactured by Tokyo Chemical Industry Co., Ltd.) in the above-mentioned Example 1, it is the same as that of Example 1. A negative photosensitive resin composition solution was prepared in the same manner. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 5.2% was obtained. <Example 4> It was prepared in the same manner as in Example 1, except that the component (B) was changed to dicyclohexyl trimellitate (manufactured by Tokyo Chemical Industry Co., Ltd.) in the above-mentioned Example 1. Negative photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.3% was obtained. <Example 5> In said Example 1, except having changed (B) component to dicyclohexyl pyromellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), it was prepared in the same manner as in Example 1 Negative photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.2% was obtained. <Example 6> In the above-mentioned Example 1, except having changed (B) component to dicyclohexyl adipate (made by Tokyo Chemical Industry Co., Ltd.), it was carried out in the same manner as in Example 1 to prepare a negative type photosensitive resin composition solution. The composition was cured at 230°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.9% was obtained. <Example 7> In the above-mentioned Example 1, except having changed (B) component to dicyclohexyl sebacate (manufactured by Tokyo Chemical Industry Co., Ltd.), a negative electrode was prepared in the same manner as in Example 1. type photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. <Example 8> The negative type was prepared in the same manner as in Example 1, except that the component (B) was changed to tetrahydrofurfuryl butyrate (manufactured by Tokyo Chemical Industry Co., Ltd.) in the above-mentioned Example 1. Photosensitive resin composition solution. The composition was cured at 230°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example 9> Except having changed the addition amount of (B)-1 component into 2 g in said Example 1, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 7.6% was obtained. <Example 10> Except having changed the addition amount of (B)-1 component into 8 g in said Example 1, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. The composition was cured at 230°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example 11> Except having changed the addition amount of (B)-1 component into 16 g in said Example 1, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 10.5% was obtained. <Example 12> In the said Example 1, except having changed the curing temperature from 230 degreeC to 350 degreeC, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.5% was obtained. <Example 13> In the above-mentioned Example 1, as the resin (A), 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-1, and (C) Component was changed from PDO to 1,2-octanedione-1-{4-(phenylthio)-2-(O-benzyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name) )) 2.5 g, except for this, a negative photosensitive resin composition solution was prepared in the same manner as in Example 1. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.3% was obtained. <Example 14> A negative photosensitive resin was prepared in the same manner as in Example 12, except that the solvent was changed to 85 g of γ-butyrolactone and 15 g of dimethyl methylene in the above-mentioned Example 12. composition solution. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.5% was obtained. <Example 15> In the above Example 1, as the resin (A), 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-3, and A negative photosensitive resin composition solution was prepared in the same manner as in Example 1, except that the curing temperature was changed from 230°C to 350°C. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example 16> In the above Example 1, as the resin (A), 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-4, except Otherwise, a negative photosensitive resin composition solution was prepared in the same manner as in Example 1. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. <Example 17> Using the polymer (A)-5, a positive-type photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. 100 g of polymer (A)-5 (equivalent to resin (A)) as a polyoxazole precursor was combined with the following formula (96): [Chemical 127]
Figure 02_image253
A photosensitive diazoquinone compound (manufactured by Toyo Gosei Co., Ltd., equivalent to component (C)) in which 77% of the phenolic hydroxyl group represented is esterified with naphthoquinonediazide-4-sulfonic acid (C1) 15 g was dissolved in γ -Butyrolactone (as solvent) 100 g. By further adding a small amount of γ-butyrolactone, the viscosity of the obtained solution was adjusted to about 20 poise to prepare a positive photosensitive resin composition. The composition was cured at 350°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.1% was obtained. <Example 18> The same procedure as in Example 17 was carried out except that 100 g of polymer (A)-5 was changed to 100 g of polymer (A)-6 as the resin (A) in the above-mentioned Example 17. The positive photosensitive resin composition solution was prepared in the same way. The composition was cured at 250°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.2% was obtained. <Example 19> In the above-mentioned Example 17, as the resin (A), 100 g of polymer (A)-6 was changed to polymer (A)-7 (novolak resin, polystyrene conversion weight average molecular weight (Mw) )=10,600 (manufactured by Asahi Organic Materials Co., Ltd., product name EP-4080G) 100 g, a positive-type photosensitive resin composition solution was prepared in the same manner as in Example 17. For this composition, the above-mentioned Method After curing at 250°C to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and the result was 5.2%. <Example 20> The above examples In 17, as the resin (A), 100 g of polymer (A)-6 was changed to polymer (A)-7 (novolak resin, weight average molecular weight (Mw) in terms of polystyrene) = 10,600 (Asahi Organic Materials Co., Ltd. Production, product name EP-4080G) 100 g, except that (B) component was changed to tetrahydrofurfuryl butyrate (manufactured by Tokyo Chemical Industry Co., Ltd.), except that, a positive type was prepared in the same manner as in Example 17 Photosensitive resin composition solution. For the composition, by the above method, curing at 250°C is performed to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test is performed, the area ratio occupied by voids on the surface of the Cu layer is evaluated. A result of 5.6% was obtained. <Example 21> In the above-mentioned Example 17, except that 100 g of polymer (A)-6 was changed to 100 g of polymer (A)-8 as the resin (A), A positive-type photosensitive resin composition solution was prepared in the same manner as in Example 17. The composition was cured at 250° C. by the above-described method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test was performed, the evaluation was conducted. The area ratio occupied by voids on the surface of the Cu layer was 4.6%.<Example 22> In the above-mentioned Example 17, as the resin (A), 100 g of polymer (A)-6 was changed into a polymer (A)-8 100 g, except having changed (B) component into tetrahydrofurfuryl butyrate (manufactured by Tokyo Chemical Industry Co., Ltd.), a positive photosensitive resin was prepared in the same manner as in Example 17 The composition solution. For the composition, the above-mentioned method was used to cure the Cu layer at 250°C to form a hardened embossed pattern on the Cu layer. % of the results. <Comparative Example 1> A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that the component (B)-1 was not added in the composition of Example 1, and the The same evaluation as in Example 1. Since the (B) plasticizer of the present invention was not included, the evaluation result was 15.2%. <Comparative Example 2> In the composition of Example 16, the component (B)-1 was not added, Except for this, a negative photosensitive resin composition was prepared in the same manner as in Example 15, The same evaluation as in Example 15 was carried out. Since the (B) plasticizer of the present invention is not included, the evaluation result is 14.3%. <Comparative example 3> Except not having added (B)-1 component in the composition of Example 14, except having added the negative photosensitive resin composition in the same manner as in Example 13, the same procedure as Example 13 was carried out to prepare a negative photosensitive resin composition. the same evaluation. Since the (B) plasticizer of the present invention is not included, the evaluation result is 15.7%. <Comparative example 4> Except not having added (B)-1 component in the composition of Example 18, except having added the positive photosensitive resin composition in the same manner as in Example 17, the same procedure as Example 17 was carried out to prepare a positive photosensitive resin composition. the same evaluation. Since the (B) plasticizer of the present invention is not included, the evaluation result is 16.3%. <Comparative Example 5> A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that the addition amount of the component (B)-1 was changed to 0.05 g in the composition of Example 1, and The same evaluation as in Example 1 was performed. The evaluation result was 13.1%. <Comparative Example 6> A negative photosensitive resin composition was prepared in the same manner as in Example 1, except that the addition amount of the component (B)-1 was changed to 60 g in the composition of Example 1, and The same evaluation as in Example 1 was performed. The evaluation result was 15.2%. The results of these Examples 1 to 22 and Comparative Examples 1 to 6 are collectively shown in Table 1. [Table 1] (Table 1)    Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 (A) Ingredients (A)-1 50 50 50 50 50 50 50 50 50 50 50 50 100 100 (A)-2 50 50 50 50 50 50 50 50 50 50 50 50       (A)-3                                           (A)-4                                           (A)-5                                           (A)-6                                           (A)-7                                           (A)-8                                           (B) Ingredients (B)-1 4                      2       4 4 4 (B)-2    4                      8 16          (B)-3       4                                  (B)-4          4                               (B)-5             4                            (B)-6                4                         (B)-7                   4                      (B)-8                      4                   ingredient C PDO 4 4 4 4 4 4 4 4 4 4 4 4       OXE01                                     2.5 2.5 C1                                           solvent M-Methylpyrrolidone 80 80 80 80 80 80 80 80 80 80 80 80 80    Ethyl lactate 20 20 20 20 20 20 20 20 20 20 20 20 20    gamma-butyrolactone                                        85 dimethyl sulfoxide                                        15 Curing temperature °C 230 230 230 230 230 230 230 230 230 230 230 350 230 230 Void area ratio of Cu surface % 4.1 4.9 5.2 4.3 4.2 5.9 5.8 4.8 7.6 4.8 10.5 4.5 4.3 4.5       Example 15 Example 16 Example 17 Example 18 Example 19 Example 20 Example 21 Example 22 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 (A) Ingredients (A)-1                         50    100    50 50 (A)-2                         50          50 50 (A)-3 100                                        (A)-4    100                      100             (A)-5       100                                  (A)-6          100                      100       (A)-7             100 100                         (A)-8                   100 100                   (B) Ingredients (B)-1 4 4 4 4 4    4                0.05 60 (B)-2                                           (B)-3                                           (B)-4                                           (B)-5                                           (B)-6                                           (B)-7                                           (B)-8                4    4                   ingredient C PDO 4 4                   4 4       4 4 OXE01                               2.5          C1       20 20 20 20 20 20          20       solvent N-Methylpyrrolidone 80 80                   80 80       80 80 Ethyl lactate 20 20                   20 20       20 20 gamma-butyrolactone       100 100 100 100 100 100       85 100       dimethyl sulfoxide                               15          Curing temperature °C 350 250 350 250 250 250 250 250 230 250 230 250 230 230 Void area ratio of Cu surface % 4.8 4.9 5.1 6.2 5.2 5.6 4.6 4.3 15.2 14.3 15.7 16.3 13.1 15.2 <Second Example> As a second example, the following experiments were performed. <Production Example 1> ((A) Synthesis of Polymer A as a Polyimide Precursor) 4,4'-Oxydiphthalic dianhydride (ODPA) was placed in a separable flask with a volume of 2 L. ) 155.1 g, 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added, the mixture was stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exotherm generated by the reaction was completed, it was left to cool to room temperature for 16 hours. Then, under ice-cooling, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture while stirring for 40 minutes. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Further, after stirring at room temperature for 2 hours, 30 ml of ethanol was added, followed by stirring for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The produced crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate a polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer A). The molecular weight of the polymer A was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each production example was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in terms of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 pieces of Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP Flow rate: 1 ml/min. <Production Example 2> ((A) Synthesis of Polymer B as a Polyimide Precursor) 147.1 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) was used instead of Production Example Polymer B was obtained by reacting in the same manner as in the method described in Production Example 1 above, except that 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) was used. The molecular weight of the polymer B was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 22,000. <Production Example 3> ((A) Synthesis of Polymer C as a Polyimide Precursor) 147.8 g of 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was used A polymer C was obtained by reacting in the same manner as in the method described in the above-mentioned Production Example 1, except that 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in Production Example 1 was replaced. The molecular weight of the polymer C was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 21,000. <Production Example 4> ((A) Synthesis of Polymer D as Polyamide) (Synthesis of Phthalic Acid Compound End-capped Body AIPA-MO) 5-Amino group was put into a separable flask with a volume of 5 L Phthalic acid {hereinafter abbreviated as AIPA} 543.5 g and N-methyl-2-pyrrolidone 1700 g were mixed and stirred, and heated to 50° C. with a water bath. The solution obtained by diluting 512.0 g (3.3 mol) of 2-methacryloyloxyethyl isocyanate with 500 g of γ-butyrolactone was added dropwise using a dropping funnel, and stirred at 50°C for about 2 hours. . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography {hereinafter referred to as low molecular weight GPC}, the reaction solution was poured into 15 L of ion-exchanged water, and stirred, It was allowed to stand, and the reaction product was separated by filtration after the crystallization and precipitation appeared. After appropriate washing, it was vacuum-dried at 40 ° C for 48 hours, thereby obtaining the amine group and isocyanide of 5-aminoisophthalic acid. AIPA-MO obtained by the action of the isocyanate group of 2-methacryloyloxyethyl acid. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of Polymer D) The obtained AIPA-MO 100.89 g (0.3 mol), pyridine 71.2 g (0.9 mol), and GBL 400 g were put into a separable flask with a volume of 2 L, and mixed with an ice bath. Cool to 5°C. Under ice-bath cooling, the resulting solution was added dropwise to dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in GBL 125 g over a period of about 20 minutes. 4,4'-bis(4-aminophenoxy)biphenyl {hereinafter referred to as BAPB} 103.16 g (0.28 mol) obtained by dissolving 168 g of NMP, maintained at 5°C by ice bath for 3 hours, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed solution of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction solution, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer E). The molecular weight of polymer D was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 34,700. <Production Example 5> ((A) Synthesis of Polymer E as a Polyoxazole Precursor) In a separable flask with a volume of 3 L, 2,2-bis(3-amino-4-hydroxyphenyl) -183.1 g of hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25°C) to prepare a homogeneous solution. The solution obtained by dissolving 118.0 g of 4,4'-diphenyl ether dimethyl chloride in 354 g of diethylene glycol dimethyl ether (DMDG) was added dropwise using a dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping was 40 minutes, and the temperature of the reaction liquid was up to 30°C. After 3 hours after dripping, 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic acid anhydride was added to the reaction solution, and the mixture was stirred at room temperature for 15 hours, so that the amine of the polymer chain accounted for 99% of the total. The end groups are capped with carboxycyclohexyl amido groups. The reaction rate at this time can be easily calculated by tracing the residual amount of 1,2-cyclohexyldicarboxylic anhydride charged by high performance liquid chromatography (HPLC). After that, the above reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a polymer through gel permeation chromatography (GPC). A crude polybenzoxazole precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) measured by the ) method. After redissolving the crude polybenzoxazole precursor obtained above in γ-butyrolactone (GBL), it was treated with a cation exchange resin and an anion exchange resin, and the obtained solution was poured into ion-exchanged water. , the precipitated polymer was separated by filtration, washed with water and dried in vacuum, thereby obtaining a purified polybenzoxazole precursor (polymer E). <Production Example 6> ((A) Synthesis of Polymer F as Polyimide) A glass-made separable four-neck flask equipped with an anchor type stirrer made of Teflon (registered trademark) was attached with Dean-Star Cooling pipe of gram separator. The above-mentioned flask was immersed in a silicone oil bath and stirred while flowing nitrogen gas. 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan) (hereinafter referred to as BAP) 72.28 g (280 mmol), 5-(2,5-dioxytetrahydro) were added -3-furyl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, stirred at room temperature at 100 rpm for 4 hours, then added 4.6 g (28 mmol) of 5-norene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) The mixture was heated and stirred at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath under nitrogen gas. Then, it heated to 180 degreeC of silicon bath temperature, and it heated and stirred at 100 rpm for 2 hours. Toluene and water distilled during the reaction were removed. After the imidization reaction was completed, it was returned to room temperature. After that, the above reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a solution obtained by gel permeation chromatography (GPC). The crude polyimide (polymer F) with a weight average molecular weight of 23,000 (in terms of polystyrene) measured by the method. <Production Example 7> ((A) Synthesis of Polymer G as Phenol Resin) Methyl 3,5-dihydroxybenzoate 128.3 was placed in a 0.5 L separable flask with a Dean-Stark apparatus. g (0.76 mol), 4,4'-bis(methoxymethyl)biphenyl (hereinafter also referred to as "BMMB") 121.2 g (0.5 mol), diethylsulfuric acid 3.9 g (0.025 mol), diethyl 140 g of glycol dimethyl ethers were mixed and stirred at 70°C to dissolve the solid matter. The mixed solution was heated to 140°C in an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was directly stirred at 140°C for 2 hours. Next, the reaction vessel was cooled in the air, and 100 g of tetrahydrofuran was additionally added thereto and stirred. The above-mentioned reaction diluent was added dropwise to 4 L of water under high-speed stirring to disperse and precipitate the resin, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a compound containing 3,5-dihydroxyl group with a yield of 70%. Copolymer of methyl benzoate/BMMB (polymer G). The weight average molecular weight of this polymer G calculated|required by the standard polystyrene conversion by GPC method was 21,000. <Production Example 8> ((A) Synthesis of Polymer H as Phenolic Resin) A separable flask with a volume of 1.0 L with a Dean-Stark apparatus was replaced with nitrogen, and then the separable flask was 81.3 g (0.738 mol) of resorcinol, 84.8 g (0.35 mol) of BMMB, 3.81 g (0.02 mol) of p-toluenesulfonic acid, and 116 g of propylene glycol monomethyl ether (hereinafter also referred to as PGME) were prepared at 50°C. Mix and stir to dissolve the solids. The mixed solution was heated to 120°C in an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was stirred directly at 120°C for 3 hours. Then, in another container, 24.9 g (0.150 mol) of 2,6-bis(hydroxymethyl) p-cresol and 249 g of PGME were mixed and stirred to dissolve them uniformly, and the obtained solution was used a dropping funnel for a period of time. It was dripped in this separable flask for 1 hour, and it stirred for 2 hours after dripping. After the completion of the reaction, the same treatment as in Production Example 7 was performed to obtain a copolymer (polymer H) containing resorcinol/BMMB/2,6-bis(hydroxymethyl)p-cresol with a yield of 77%. The weight average molecular weight of this polymer H calculated|required by the standard polystyrene conversion by GPC method was 9,900. <Example 1> Using polymers A and B, a negative photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. 50 g of polymers A and B 50 g (equivalent to (A) resin) and zirconium phosphate (plate-like particles with a long axis of 100 nm and a short axis of 5 nm, equivalent to an aspect ratio of 20) were used as polyimide precursors. (B-1) Nanoparticles) 5 g, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (referred to as "PDO" in Table 1) (equivalent to (C) Sensitizer) 4 g, 8 g of tetraethylene glycol dimethacrylate, and 1.5 g of N-[3-(triethoxysilyl)propyl]phthalic acid were dissolved in a mixture containing A mixed solvent of 80 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and 20 g of ethyl lactate. The viscosity of the obtained solution was adjusted to about 35 poise by further adding a small amount of the said mixed solvent, and it was set as a negative photosensitive resin composition. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example 2> A negative photosensitive resin composition was prepared in the same manner as in Example 1, except that the addition amount of zirconium phosphate was changed to 1 g as the component (B-1) in the above-mentioned Example 1. solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.6% was obtained. <Example 3> In the above-mentioned Example 1, except that montmorillonite (a long axis of 100 nm, a short axis of 10 nm, and plate-like particles with an aspect ratio of 10) was used as the component (B-1) instead of zirconium phosphate, A negative photosensitive resin composition solution was prepared in the same manner as in Example 1. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. <Example 4> In the above-mentioned Example 1, except that 1 g of Aerotech (spherical particles with a particle size of 12 nm, aspect ratio 1) was used instead of 5 g of zirconium phosphate as the component (B-1), the A negative photosensitive resin composition solution was prepared in the same manner as in Example 1. The composition was cured at 230°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. <Example 5> A negative photosensitive resin composition solution was prepared in the same manner as in the above-mentioned Example 1, and the composition was cured at 350° C. by the above-mentioned method to form a hardened relief pattern on the Cu layer, and the After the high-temperature storage test, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.5% was obtained. <Example 6> In the above-mentioned Example 1, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A as resin (A), and 4 g of PDO was changed to 1 as component (C) ,2-Octanedione-1-{4-(phenylthio)-2-(O-benzyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, in addition to A negative photosensitive resin composition solution was prepared in the same manner as in Example 1. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.3% was obtained. <Example 7> In the above-mentioned Example 1, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A as resin (A), and 4 g of PDO was changed to 1 as component (C) ,2-octanedione-1-{4-(phenylthio)-2-(O-benzyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, and the solvent was changed to A negative photosensitive resin composition solution was prepared in the same manner as in Example 1, except for 85 g of γ-butyrolactone and 15 g of dimethylsulfoxide. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.3% was obtained. <Example 8> The same procedure as in Example 1 was carried out except that 50 g of the polymer A and 50 g of the polymer B were changed to 100 g of the polymer C as the resin (A) in the above-mentioned Example 1. A negative photosensitive resin composition solution was prepared. The composition was cured at 350°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example 9> The same procedure as in Example 1 was carried out, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer D as resin (A) in the above-mentioned Example 1 A negative photosensitive resin composition solution was prepared. The composition was cured at 250°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.6% was obtained. <Example 10> Using the polymer E, a positive photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. 100 g of polymer E (equivalent to (A) resin) as a polyoxazole precursor was mixed with the following formula (96): [Chemical 128]
Figure 02_image255
Photosensitive diazoquinone compound (manufactured by Toyo Gosei Co., Ltd., equivalent to (C) sensitizer) (C1) 15 g, phosphoric acid Zirconium (plate-like particles with a length of 100 nm and a thickness of 5 nm, equivalent to (B) nanoparticles) 5 g and 6 g of 3-tert-butoxycarbonylaminopropyltriethoxysilane were dissolved in γ-Butyrolactone (as solvent) 100 g. By further adding a small amount of γ-butyrolactone, the viscosity of the obtained solution was adjusted to about 20 poise to prepare a positive photosensitive resin composition. The composition was cured at 350°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.7% was obtained. <Example 11> A positive photosensitive resin was prepared in the same manner as in Example 10, except that 100 g of polymer E was changed to 100 g of polymer F as the resin (A) in the above-mentioned Example 10 composition solution. The composition was cured at 250°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.7% was obtained. <Example 12> A positive photosensitive resin was prepared in the same manner as in Example 10, except that 100 g of polymer E was changed to 100 g of polymer G as resin (A) in the above-mentioned Example 10 composition solution. The composition was cured at 220°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. <Example 13> A positive photosensitive resin was prepared in the same manner as in Example 10, except that 100 g of polymer E was changed to 100 g of polymer H as the resin (A) in the above-mentioned Example 10 composition solution. The composition was cured at 220°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Comparative example 1> Except having not added zirconium phosphate in the composition of Example 1, it carried out similarly to Example 1 to prepare a negative photosensitive resin composition, and performed the same evaluation as Example 1. Since the compound (B) of the present invention was not included, the evaluation result was 14.3%. <Comparative example 2> Except having not added zirconium phosphate in the composition of Example 8, the negative photosensitive resin composition was prepared in the same manner as in Example 8, and the same evaluation as in Example 10 was performed. Since the compound (B) of the present invention was not contained, the evaluation result was 14.9%. <Comparative example 3> Except having not added zirconium phosphate in the composition of Example 10, it carried out similarly to Example 10 to prepare a positive photosensitive resin composition, and performed the same evaluation as Example 10. Since the compound (B) of the present invention was not included, the evaluation result was 14.6%. These results are collectively shown in Table 2. [Table 2]    Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Comparative Example 1 Comparative Example 2 Comparative Example 3 polymer A 50 50 50 50 50 100 100                   50       polymer B 50 50 50 50 50                         50       polymer C                      100                   100    polymer D                         100                      polymer E                            100                100 Polymer F                               100                polymer G                                  100             polymer H                                     100          PDO 4 4 4 4 4       4 4             4 4    OXE01                2.5 2.5                            C1                            15 15 15 15       15 Zirconium Phosphate 5 1       5 5 5 5 5 5 5 5 5          Montmorillonite       5                                        Airlogitech (Silicon Dioxide)          1                                     N-Methylpyrrolidone 80 80 80 80 80 80    80 80             80 80    Ethyl lactate 20 20 20 20 20 20    20 20             20 20    gamma-butyrolactone                   85       100 100 100 100       100 dimethyl sulfoxide                   15                            Curing temperature °C 230 230 230 230 350 230 230 350 250 350 250 220 220 230 350 350 Void area ratio of Cu surface % 5.5 6.6 5.8 5.4 4.5 5.3 5.3 4.8 5.6 5.7 5.7 5.4 5.5 14.3 14.9 14.6 <Third Example> As a third example, the following experiments were performed. <Production Example 1> ((A) Synthesis of Polymer A as a Polyimide Precursor) 4,4'-Oxydiphthalic dianhydride (ODPA) was placed in a separable flask with a volume of 2 L. ) 155.1 g, 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added, the mixture was stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exotherm generated by the reaction was completed, it was left to cool to room temperature for 16 hours. Then, under ice-cooling, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture while stirring for 40 minutes. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Further, after stirring at room temperature for 2 hours, 30 ml of ethanol was added, followed by stirring for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The produced crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate a polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer A). The molecular weight of the polymer A was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each production example was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in terms of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 pieces of Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP Flow rate: 1 ml/min. <Production Example 2> ((A) Synthesis of Polymer B as a Polyimide Precursor) 147.1 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) was used instead of Production Example Polymer B was obtained by reacting in the same manner as in the method described in Production Example 1 above, except that 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) was used. The molecular weight of the polymer B was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 22,000. <Production Example 3> ((A) Synthesis of Polymer C as a Polyimide Precursor) 147.8 g of 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was used A polymer C was obtained by reacting in the same manner as in the method described in the above-mentioned Production Example 1, except that 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in Production Example 1 was replaced. The molecular weight of the polymer C was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 21,000. <Production Example 4> ((A) Synthesis of Polymer D as Polyamide) (Synthesis of Phthalic Acid Compound End-capped Body AIPA-MO) 5-Amino group was put into a separable flask with a volume of 5 L Phthalic acid {hereinafter abbreviated as AIPA} 543.5 g and N-methyl-2-pyrrolidone 1700 g were mixed and stirred, and heated to 50° C. with a water bath. The solution obtained by diluting 512.0 g (3.3 mol) of 2-methacryloyloxyethyl isocyanate with 500 g of γ-butyrolactone was added dropwise using a dropping funnel, and stirred at 50°C for about 2 hours. . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography {hereinafter referred to as low molecular weight GPC}, the reaction solution was poured into 15 L of ion-exchanged water, and stirred, It was allowed to stand, and the reaction product was separated by filtration after the crystallization and precipitation appeared. After appropriate washing, it was vacuum-dried at 40 ° C for 48 hours, thereby obtaining the amine group and isocyanide of 5-aminoisophthalic acid. AIPA-MO obtained by the action of the isocyanate group of 2-methacryloyloxyethyl acid. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of Polymer D) The obtained AIPA-MO 100.89 g (0.3 mol), pyridine 71.2 g (0.9 mol), and GBL 400 g were put into a separable flask with a volume of 2 L, and mixed with an ice bath. Cool to 5°C. Under ice-bath cooling, the resulting solution was added dropwise to dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in GBL 125 g over a period of about 20 minutes. 4,4'-bis(4-aminophenoxy)biphenyl {hereinafter referred to as BAPB} 103.16 g (0.28 mol) obtained by dissolving 168 g of NMP, maintained at 5°C by ice bath for 3 hours, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed solution of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction solution, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer E). The molecular weight of polymer D was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 34,700. <Example 1> Using polymers A and B, a negative photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. 50 g of polymers A and B 50 g (equivalent to (A) resin) as polyimide precursors and TMOM-BP (trade name, Honshu Chemical, equivalent to (B-2) thermal crosslinking agent) 10 g, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (referred to as "PDO" in Table 1) (equivalent to (C) sensitizer) 4 g, four 8 g of ethylene glycol dimethacrylate and 1.5 g of N-[3-(triethoxysilyl)propyl]phthalic acid were dissolved in a mixture containing N-methyl-2-pyrrolidone A mixed solvent of 80 g (hereinafter referred to as NMP) and 20 g of ethyl lactate. The viscosity of the obtained solution was adjusted to about 35 poise by further adding a small amount of the said mixed solvent, and it was set as a negative photosensitive resin composition. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.7% was obtained. <Example 2> A negative photosensitive resin combination was prepared in the same manner as in Example 1, except that the addition amount of TMOM-BP was changed to 20 g as the component (B-2) in the above-mentioned Example 1. substance solution. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 3.8% was obtained. <Example 3> In the above-mentioned Example 1, except having changed the addition amount of TMOM-BP to 5 g as the component (B-2), a negative photosensitive resin combination was prepared in the same manner as in Example 1. substance solution. The composition was cured at 230°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 9.3% was obtained. <Example 4> The same procedure as in Example 1 was carried out except that TM-BIP-A (trade name, Honshu Chemical) was used as the component (B-2) in the above-mentioned Example 1 instead of TMOM-BP A negative photosensitive resin composition solution was prepared. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.2% was obtained. <Example 5> The same procedure as in Example 1 was carried out, except that HMOM-TP-HAP (trade name, Honshu Chemical) was used as the component (B-2) in the above-mentioned Example 1 instead of TMOM-BP A negative photosensitive resin composition solution was prepared. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. <Example 6> In the above-mentioned Example 1, it was prepared in the same manner as in Example 1, except that NIKALAC MW-390 (trade name, SANWA CHEMICAL) was used as the component (B-2) instead of TMOM-BP Negative photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 10.3% was obtained. <Example 7> The same procedure as in Example 1 was carried out except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A as resin (A) in the above-mentioned Example 1 A negative photosensitive resin composition solution was prepared. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.3% was obtained. <Example 8> In the above-mentioned Example 1, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A as resin (A), and 4 g of PDO was changed to 1 as component (C) ,2-octanedione-1-{4-(phenylthio)-2-(O-benzyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.0 g, and the solvent was changed to A negative photosensitive resin composition solution was prepared in the same manner as in Example 1, except for 80 g of γ-butyrolactone and 20 g of dimethylsulfoxide. The composition was cured at 230°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. <Example 9> The same procedure as in Example 1 was carried out, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer C as resin (A) in the above-mentioned Example 1 A negative photosensitive resin composition solution was prepared. The composition was cured at 350°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.0% was obtained. <Example 10> The same procedure as in Example 1 was carried out, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer D as resin (A) in the above-mentioned Example 1 A negative photosensitive resin composition solution was prepared. The composition was cured at 250°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.9% was obtained. <Comparative Example 1> A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that TMOM-BP was not added in the composition of Example 1, and the same evaluations as in Example 1 were performed. . Since the compound (B) of the present invention was not included, the evaluation result was 14.3%. <Comparative Example 2> In the composition of Example 10, except that TMOM-BP was not added, a negative photosensitive resin composition was prepared in the same manner as in Example 10, and the same evaluation as in Example 11 was performed. . Since the compound (B) of the present invention was not included, the evaluation result was 15.5%. Table 3 summarizes the results of these Examples 1 to 10 and Comparative Examples 1 to 2. [table 3]    Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 (A) Resin Polymer A (g) 50 50 50 50 50 50 100 100 Polymer B (g) 50 50 50 50 50 50       Polymer C (g)                         Polymer D (g)                         Polymer E (g)                         Polymer F(g)                         (B-2) Thermal crosslinking agent TMOM-BP(g) 10 20 5          10 10 TM-BIP-A(g)          10             HMOM-TP-HAP(g)             10          NIKALAC MW-390(g)                10       (C) Photosensitive agent PDO(g) 4 4 4 4 4 4 4    OXE-01(g)                      2 C1(g)                         solvent N-Methylpyrrolidone (g) 80 80 80 80 80 80 80    Ethyl lactate (g) 20 20 20 20 20 20 20    γ-Butyrolactone (g)                      80 Dimethyl sulfite (g)                      20 Curing temperature(℃) 230 230 230 230 230 230 230 230 void area (%) 5.7 3.8 9.3 7.1 6.6 10.1 5.3 5.8    Example 9 Example 10 Comparative Example 1 Comparative Example 2 (A) Resin Polymer A (g)       50    Polymer B (g)       50    Polymer C (g) 100          Polymer D (g)    100    100 Polymer E (g)             Polymer F(g)             (B-2) Thermal crosslinking agent TMOM-BP(g) 10 10       TM-BIP-A(g)             HMOM-TP-HAP(g)             NIKALAC MW-390(g)             (C) Photosensitive agent PDO(g) 4 4 4 4 OXE-01(g)             C1(g)             solvent N-Methylpyrrolidone (g) 80 80 80 80 Ethyl lactate (g) 20 20 20 20 γ-Butyrolactone (g)             Dimethyl sulfite (g)             Curing temperature(℃) 350 250 230 250 void area (%) 6.2 5.0 14.3 15.5 <4th Example> The following experiment was performed as a 4th Example. <Production Example 1> ((A) Synthesis of Polymer (A)-1 as a Polyimide Precursor) 4,4'-oxydiphthalic acid was placed in a separable flask with a volume of 2 L 155.1 g of dianhydride (ODPA), 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added and stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exotherm generated by the reaction was completed, it was left to cool to room temperature for 16 hours. Then, under ice-cooling, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture while stirring for 40 minutes. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Further, after stirring at room temperature for 2 hours, 30 ml of ethanol was added, followed by stirring for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The produced crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate a polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer (A)-1). The molecular weight of the polymer (A)-1 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each production example was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in terms of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 pieces of Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP Flow rate: 1 ml/min. <Production Example 2> ((A) Synthesis of Polymer (A)-2 as a Polyimide Precursor) 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) 147.1 was used A polymer was obtained by reacting in the same manner as in the method described in the above-mentioned Production Example 1, except that g instead of 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) in Production Example 1 (A)-2. The molecular weight of the polymer (A)-2 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 22,000. <Production Example 3> ((A) Synthesis of Polymer (A)-3 as a Polyimide Precursor) 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl ( 147.8 g of TFMB) instead of 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) of Production Example 1, the reaction was carried out in the same manner as in the method described in Production Example 1 above to obtain a polymerization Substance (A)-3. The molecular weight of the polymer (A)-3 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 21,000. <Production Example 4> ((A) Synthesis of Polymer (A)-4 as Polyamide) (Synthesis of Phthalic Acid Compound End-capped Body AIPA-MO) Into a 5 L separable flask, 5 -Aminoisophthalic acid {hereinafter abbreviated as AIPA} 543.5 g and N-methyl-2-pyrrolidone 1700 g were mixed and stirred, and heated to 50°C with a water bath. The solution obtained by diluting 512.0 g (3.3 mol) of 2-methacryloyloxyethyl isocyanate with 500 g of γ-butyrolactone was added dropwise using a dropping funnel, and stirred at 50°C for about 2 hours. . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography {hereinafter referred to as low molecular weight GPC}, the reaction solution was poured into 15 L of ion-exchanged water, and stirred, It was allowed to stand, and the reaction product was separated by filtration after the crystallization and precipitation appeared. After appropriate washing, it was vacuum-dried at 40 ° C for 48 hours, thereby obtaining the amine group and isocyanide of 5-aminoisophthalic acid. AIPA-MO obtained by the action of the isocyanate group of 2-methacryloyloxyethyl acid. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of polymer (A)-4) The obtained AIPA-MO 100.89 g (0.3 mol), pyridine 71.2 g (0.9 mol), and GBL 400 g were put into a separable flask with a volume of 2 L, and mixed, Cool to 5°C by ice bath. Under ice-bath cooling, the resulting solution was added dropwise to dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in GBL 125 g over a period of about 20 minutes. 4,4'-bis(4-aminophenoxy)biphenyl {hereinafter referred to as BAPB} 103.16 g (0.28 mol) obtained by dissolving 168 g of NMP, maintained at 5°C by ice bath for 3 hours, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed solution of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction solution, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, the obtained precipitate was separated by filtration, and then vacuum-dried to obtain a powdery polymer (polymer (A)-4). The molecular weight of the polymer (A)-4 was measured by gel permeation chromatography (standard polystyrene conversion), and as a result, the weight average molecular weight (Mw) was 34,700. <Production Example 5> ((A) Synthesis of Polymer (A)-5 as a Polyoxazole Precursor) In a separable flask with a volume of 3 L, 2,2-bis(3-amino-4- 183.1 g of hydroxyphenyl)-hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25° C.) to prepare a homogeneous solution. The solution obtained by dissolving 118.0 g of 4,4'-diphenyl ether dimethyl chloride in 354 g of diethylene glycol dimethyl ether (DMDG) was added dropwise using a dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping was 40 minutes, and the temperature of the reaction liquid was up to 30°C. After 3 hours after dripping, 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic acid anhydride was added to the reaction solution, and the mixture was stirred at room temperature for 15 hours, so that the amine of the polymer chain accounted for 99% of the total. The end groups are capped with carboxycyclohexyl amido groups. The reaction rate at this time can be easily calculated by tracing the residual amount of 1,2-cyclohexyldicarboxylic anhydride charged by high performance liquid chromatography (HPLC). After that, the above reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a polymer through gel permeation chromatography (GPC). The crude precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) measured by the ) method. After redissolving the crude polybenzoxazole precursor obtained above in γ-butyrolactone (GBL), it was treated with a cation exchange resin and an anion exchange resin, and the obtained solution was poured into ion-exchanged water. , the precipitated polymer was separated by filtration, washed with water and dried in vacuo to obtain a purified polybenzoxazole precursor (polymer (A)-5). <Production Example 6> ((A) Synthesis of Polymer (A)-6 as Polyimide) A separable four-necked flask made of glass equipped with a Teflon (registered trademark) anchor stirrer was attached. Cooling tubes for Ann-Stark separators. The above-mentioned flask was immersed in a silicone oil bath and stirred while flowing nitrogen gas. 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan) (hereinafter referred to as BAP) 72.28 g (280 mmol), 5-(2,5-dioxytetrahydro) were added -3-furyl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, stirred at room temperature at 100 rpm for 4 hours, then added 4.6 g (28 mmol) of 5-norene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) The mixture was heated and stirred at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath under nitrogen gas. Then, it heated to 180 degreeC of silicon bath temperature, and it heated and stirred at 100 rpm for 2 hours. Toluene and water distilled during the reaction were removed. After the imidization reaction was completed, it was returned to room temperature. After that, the above reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain a solution obtained by gel permeation chromatography (GPC). The crude polyimide (polymer (A)-6) with a weight average molecular weight of 23,000 (in terms of polystyrene) measured by the method. <Production Example 7> ((A) Synthesis of Polymer (A)-8 as Phenol Resin) A separable flask with a volume of 1.0 L with a Dean-Stark apparatus was replaced with nitrogen, and then, in the same In a separable flask, 81.3 g (0.738 mol) of resorcinol, 84.8 g (0.35 mol) of BMMB, 3.81 g (0.02 mol) of p-toluenesulfonic acid, and 116 g of propylene glycol monomethyl ether (hereinafter also referred to as PGME) were added to the flask. The solid matter was dissolved by mixing and stirring at 50°C. The mixed solution was heated to 120°C in an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was stirred directly at 120°C for 3 hours. Then, in another container, 24.9 g (0.150 mol) of 2,6-bis(hydroxymethyl) p-cresol and 249 g of PGME were mixed and stirred to dissolve them uniformly, and the obtained solution was used a dropping funnel for a period of time. It was dripped in this separable flask for 1 hour, and it stirred for 2 hours after dripping. After the completion of the reaction, the same treatment as in Production Example 7 was performed to obtain a copolymer (polymer H) containing resorcinol/BMMB/2,6-bis(hydroxymethyl)p-cresol with a yield of 77%. The weight average molecular weight of this polymer H calculated|required by the standard polystyrene conversion by GPC method was 9,900. <Example 1> Using polymers (A)-1 and (A)-2, a negative photosensitive resin composition was prepared by the following method, and the evaluation of the photosensitive resin composition was performed. The polymer (A)-1 50 g and (A)-2 50 g (equivalent to (A) resin) as polyimide precursors were mixed with 1H, 1H, 8H, 8H-perfluorotetraethylene glycol two Acrylate (represented by the following formula (B-3-1), manufactured by Exfluor Corporation) 8 g, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (Table 1 Indicated as "PDO") (equivalent to (C) sensitizer) 4 g, tetraethylene glycol dimethacrylate 8 g, N-[3-(triethoxysilyl)propyl]xylylene 1.5 g of amide acid was dissolved in a mixed solvent containing 80 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and 20 g of ethyl lactate. The viscosity of the obtained solution was adjusted to about 35 poise by further adding a small amount of the said mixed solvent, and it was set as a negative photosensitive resin composition. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 3.1% was obtained. In addition, the compound (B-3)-1 (represents a compound represented by the following formula (B-3-1). Hereinafter, the compound represented by the following formula (B-3-X) (X is 1 to 9) is referred to as The weight ratio of the fluorine atom in the molecule of (B-3)-X) was 44 mass %. <Example 2> In the above-mentioned Example 1, the component (B-3) was changed to 1H,1H,6H,6H-perfluoro-1,6-hexanediol diacrylate (with the following formula (B- 2) indicates, Exfluor Corporation), except that a negative photosensitive resin composition solution was prepared in the same manner as in Example 1. This composition was cured at 230° C. by the above-mentioned method to form a solution on the Cu layer. A hardened embossed pattern was produced, and after a high-temperature storage test was performed, the area ratio of voids on the surface of the Cu layer was evaluated, and the result was 3.3%. The weight ratio was 41% by mass. <Example 3> In the above-mentioned Example 1, the component (B-3) was changed to 1H,1H-perfluoron-decyl methacrylate (in the following formula (B-3-3) A negative-type photosensitive resin composition solution was prepared in the same manner as in Example 1, except that a For the relief pattern, after the high-temperature storage test, the area ratio of the voids on the surface of the Cu layer was evaluated, and the result was 3.4%. Furthermore, the weight ratio of fluorine atoms in the molecule of the compound (B-3)-3 <Example 4> Except for changing the component (B-3) into perfluorodecanoic acid (represented by the following formula (B-3-4), manufactured by Exfluor Corporation) in the above-mentioned Example 1 , a negative photosensitive resin composition solution was prepared in the same manner as in Example 1. The composition was cured at 230°C by the above-mentioned method to make a hardened relief pattern on the Cu layer, and after a high-temperature storage test was performed, The area ratio occupied by voids on the surface of the Cu layer was evaluated, and the result was 6.2%. Furthermore, the weight ratio of fluorine atoms in the molecule of the compound (B-3)-4 was 70% by mass. <Example 5> In the above Example 1, except that the component (B-3) was changed to 1H,1H-perfluoro-1-decanol (represented by the following formula (B-3-5), manufactured by Exfluor Corporation), A negative photosensitive resin composition solution was prepared in the same manner as in Example 1. The composition was cured at 230° C. by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test was performed, the voids were evaluated in The area ratio occupied by the surface of the Cu layer was 6.9%, and the weight ratio of fluorine atoms in the molecule of the compound (B-3)-5 was 72% by mass. <Example 6> The above example 1, except that the component (B-3) was changed to perfluorotridecane (represented by the following formula (B-3-6), manufactured by Exfluor Corporation), a negative solution was prepared in the same manner as in Example 1. Type photosensitive resin composition solution.For the composition, the above-mentioned method was used to cure the Cu layer at 230°C to form a hardened relief pattern, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated. ,and A result of 7.7% was obtained. In addition, the weight ratio of the fluorine atom in the molecule of (B-3)-6 compound was 77 mass %. <Example 7> Except having changed the component (B-3) into methyl perfluorodecanoate (represented by the following formula (B-7), manufactured by Exfluor Corporation) in the above Example 1, the same Example 1 A negative photosensitive resin composition solution was prepared in the same manner. The composition was cured at 230°C by the method described above to form a hardened relief pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.9% was obtained. In addition, the weight ratio of the fluorine atom in the molecule of (B-3)-7 compound was 68 mass %. <Example 8> Except having changed the component (B-3) into perfluorotetraethylene glycol dimethyl ether (represented by the following formula (B-3-8), manufactured by Exfluor Corporation) in the above-mentioned Example 1 , a negative photosensitive resin composition solution was prepared in the same manner as in Example 1. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.8% was obtained. In addition, the weight ratio of the fluorine atom in the molecule of (B-3)-8 compound was 68 mass %. <Example 9> Except having changed the addition amount of (B-3)-1 component into 2 g in said Example 1, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. The composition was cured at 230°C by the above-mentioned method to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.5% was obtained. <Example 10> Except having changed the addition amount of (B-3)-1 component into 20 g in said Example 1, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. The composition was cured at 230°C by the above method to form a hardened embossed pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 3.8% was obtained. <Example 11> In the said Example 1, except having changed the curing temperature from 230 degreeC to 350 degreeC, it carried out similarly to Example 1, and prepared the negative photosensitive resin composition solution. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.2% was obtained. <Example 12> In the above-mentioned Example 1, as the resin (A), 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-1. (C) Component was changed from PDO to 1,2-octanedione-1-{4-(phenylthio)-2-(O-benzyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name) )) 2.5 g, except for this, a negative photosensitive resin composition solution was prepared in the same manner as in Example 1. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.6% was obtained. <Example 13> A negative photosensitive resin was prepared in the same manner as in Example 12, except that the solvent was changed to 85 g of γ-butyrolactone and 15 g of dimethyl methylene in the above-mentioned Example 12. composition solution. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example 14> In the above Example 1, as the resin (A), 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-3, and A negative photosensitive resin composition solution was prepared in the same manner as in Example 1, except that the curing temperature was changed from 230°C to 350°C. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.7% was obtained. <Example 15> In the above Example 1, as the resin (A), 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-4, and A negative photosensitive resin composition solution was prepared in the same manner as in Example 1, except that the curing temperature was changed from 230°C to 250°C. For this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test, the area ratio occupied by voids on the surface of the Cu layer was evaluated, and a result of 4.4% was obtained. <Example 16> Using the polymer (A)-5, a positive photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. 100 g of polymer (A)-5 (equivalent to resin (A)) as a polyoxazole precursor was mixed with the following formula (96): [Chemical 129]
Figure 02_image257
A photosensitive diazoquinone compound (manufactured by Toyo Gosei Co., Ltd., equivalent to component (C)) in which 77% of the phenolic hydroxyl group represented is esterified with naphthoquinonediazide-4-sulfonic acid (C1) 15 g was dissolved in γ -Butyrolactone (as solvent) 100 g. By further adding a small amount of γ-butyrolactone, the viscosity of the obtained solution was adjusted to about 20 poise to prepare a positive photosensitive resin composition. The composition was cured at 350°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.2% was obtained. <Example 17> The same procedure as in Example 11 was carried out except that 100 g of polymer (A)-5 was changed to 100 g of polymer (A)-6 as the resin (A) in the above-mentioned Example 16. The positive photosensitive resin composition solution was prepared in the same way. The composition was cured at 250°C by the above method to form a hardened relief pattern on the Cu layer, and after a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example 18> In the above-mentioned Example 16, as the resin (A), 100 g of polymer (A)-5 was changed to polymer (A)-7 (novolak resin, polystyrene conversion weight average molecular weight (Mw) )=10,600 (manufactured by Asahi Organic Materials Co., Ltd., product name EP-4080G) 100 g, a positive-type photosensitive resin composition solution was prepared in the same manner as in Example 11. For this composition, the above-mentioned Method After curing at 250° C. to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and the result was 4.8%. <Example 19> The above examples In 16, a positive photosensitive resin was prepared in the same manner as in Example 11, except that 100 g of polymer (A)-5 was changed to 100 g of polymer (A)-8 as resin (A) A composition solution. For the composition, the above-mentioned method was used to cure the Cu layer at 250°C to form a hardened embossed pattern on the Cu layer, and after a high-temperature storage test was performed, the area ratio occupied by voids on the surface of the Cu layer was evaluated to obtain 5.1 % of the results. <Comparative Example 1> A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that the component (B)-1 was not added in the composition of Example 1, and the The same evaluation as in Example 1. Since the (B) fluorine-containing hydrophobic compound of the present invention was not included, the evaluation result was 15.2%. <Comparative Example 2> Tetraethylene glycol dimethacrylate (in the following formula ( A negative photosensitive resin composition was prepared in the same manner as in Example 1, except that the component (B)-1 of Example 1 was replaced by B-9), which is manufactured by Tokyo Chemical Industry Co., Ltd. The same evaluation as in Example 1. Since the (B) fluorine-containing hydrophobic compound of the present invention is not included, the evaluation result is 15.5%. Furthermore, the weight ratio of fluorine atoms in the molecule of the compound (B)-9 is 0 <Comparative Example 3> Except having used tetraethylene glycol dimethacrylate ((B)-9, manufactured by Tokyo Chemical Industry Co., Ltd.) in place of the component (B)-1 of Example 15, the same A negative photosensitive resin composition was prepared in the same manner as in Example 15, and the same evaluation was performed as in Example 15. Since the (B) fluorine-containing hydrophobic compound of the present invention was not included, the evaluation result was 14.3%.< Comparative Example 4> In addition to using tetraethylene glycol dimethacrylate ((B)-9, manufactured by Tokyo Chemical Industry Co., Ltd.) in place of the component (B)-1 of Example 12, the same A negative photosensitive resin composition was prepared in the same manner as in Example 12, and the same evaluation was performed as in Example 12. Since the (B) fluorine-containing hydrophobic compound of the present invention was not included, the evaluation result was 15.7%. <Comparative Example 5> Except for using tetraethylene glycol dimethacrylate ((B)-9, manufactured by Tokyo Chemical Industry Co., Ltd.) in place of the component (B)-1 of Example 17 , a positive-type photosensitive resin composition was prepared in the same manner as in Example 17, and the same evaluation as in Example 17 was performed. Since the (B) fluorine-containing hydrophobic compound of the present invention was not included, the evaluation result was 16.3%. Hereinafter, the weight ratios of the fluorine atoms in the molecules of the compounds (B-3)-1 to (B-3)-9 are collectively shown in Table 4. [Table 4] (B-3) Compound Weight ratio of fluorine atoms in the molecule (mass %) (B-3)-1 44% (B-3)-2 41% (B-3)-3 64% (B-3)-4 70% (B-3)-5 72% (B-3)-6 77% (B-3)-7 68% (B-3)-8 68% (B-3)-9 0 [Chemical 130]
Figure 02_image259
[Chemical 131]
Figure 02_image261
[Chemical 132]
Figure 02_image263
[Chemical 133]
Figure 02_image265
[Chemical 134]
Figure 02_image267
[Chemical 135]
Figure 02_image269
[Chemical 136]
Figure 02_image271
[Chemical 137]
Figure 02_image273
[Chemical 138]
Figure 02_image275
The results of Examples 1 to 19 and Comparative Examples 1 to 5 are collectively shown in Table 5. [table 5]    Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Example 19 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 (A) Ingredients (A)-1 50 50 50 50 50 50 50 50 50 50 50 100 100                   50 50    100    (A)-2 50 50 50 50 50 50 50 50 50 50 50                         50 50          (A)-3                                        100                               (A)-4                                           100                   100       (A)-5                                              100                         (A)-6                                                 100                   100 (A)-7                                                    100                   (A)-8                                                       100                (B-3) Ingredients (B-3)-1 8                      2    8 8 8 8 8 8 8                      (B-3)-2    8                      20                                           (B-3)-3       8                                                                (B-3)-4          8                                                             (B-3)-5             8                                                          (B-3)-6                8                                                       (B-3)-7                   8                                                    (B-3)-8                      8                                                 (B-3)-9                                                             8 8 8    (C) Ingredients PDO 4 4 4 4 4 4 4 4 4 4 4       4 4             4 4 4       OXE01                                  2.5 2.5                            2.5    C1                                              20 20 20 20             20 solvent N-Methylpyrrolidone 80 80 80 80 80 80 80 80 80 80 80 80    80 80             80 80 80       Ethyl lactate 20 20 20 20 20 20 20 20 20 20 20 20    20 20             20 20 20       gamma-butyrolactone                                     85       100 100 100 100          85 100 dimethyl sulfoxide                                     15                            15    Curing temperature °C 230 230 230 230 230 230 230 230 230 230 350 230 230 350 250 350 250 250 250 230 230 250 230 250 Void area ratio of Cu surface % 3.1 3.3 3.4 6.2 6.9 7.7 6.9 6.8 4.5 3.8 4.2 4.6 4.8 4.7 4.4 5.2 5.5 4.8 5.1 15.2 15.5 14.3 15.7 16.3 [Industrial Applicability] The photosensitive resin composition of the present invention can be preferably used in the field of photosensitive materials useful for the production of electrical and electronic materials such as semiconductor devices and multilayer wiring boards, for example.

Claims (7)

一種感光性樹脂組合物,其包含:(A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺及聚苯并
Figure 109146146-A0305-02-0208-7
唑所組成之群中之至少一種樹脂:100質量份,(B-3)含氟疏水性化合物:以上述(A)樹脂100質量份為基準計0.01~50質量份,以及(C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。
A photosensitive resin composition comprising: (A) selected from the group consisting of polyamides, polyamides, polyamides, polyhydroxyamides, polyaminoamides, polyamides, polyamides Imide, polyimide and polybenzyl
Figure 109146146-A0305-02-0208-7
At least one resin in the group consisting of azoles: 100 parts by mass, (B-3) fluorine-containing hydrophobic compound: 0.01 to 50 parts by mass based on 100 parts by mass of the above (A) resin, and (C) sensitizer : 1 to 50 parts by mass based on 100 parts by mass of the above-mentioned (A) resin.
如請求項1之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺、包含下述通式(5)之聚
Figure 109146146-A0305-02-0208-8
唑前驅物及包含下述通式(6)之聚醯亞胺所組成之群中之至少一種,下述通式(1)為
Figure 109146146-A0305-02-0208-1
{式中,X1為4價之有機基,Y1為2價之有機基,n1為2~150之整數,並且R1及R2分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2):
Figure 109146146-A0305-02-0209-2
(式中,R3、R4及R5分別獨立為氫原子或碳數1~3之有機基,並且m1為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3):
Figure 109146146-A0305-02-0209-3
(式中,R6、R7及R8分別獨立為氫原子或碳數1~3之有機基,並且m2為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽,下述通式(4)為具有
Figure 109146146-A0305-02-0209-4
{式中,X2為碳數6~15之3價之有機基,Y2為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2為1~1000之整數}所表示之結構之聚醯胺,下述通式(5)為具有
Figure 109146146-A0305-02-0210-5
{式中,Y3為具有碳原子之4價之有機基,Y4、X3及X4分別獨立為具有2個以上之碳原子之2價之有機基,n3為1~1000之整數,n4為0~500之整數,n3/(n3+n4)>0.5,並且包含X3及Y3之n3個二羥基二醯胺單元以及包含X4及Y4之n4個二醯胺單元之排列順序為任意}所表示之結構之作為聚
Figure 109146146-A0305-02-0210-9
唑前驅物之聚羥基醯胺,下述通式(6)為具有
Figure 109146146-A0305-02-0210-6
{式中,X5為4~14價之有機基,Y5為2~12價之有機基,R10及R11分別獨立地表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,n5為3~200之整數,並且m3及m4表示0~10之整數}所表示之結構之聚醯亞胺。
The photosensitive resin composition according to claim 1, wherein the resin (A) is selected from the group consisting of a polyimide precursor comprising the following general formula (1), a polyamide comprising the following general formula (4), a The polymer of the following general formula (5)
Figure 109146146-A0305-02-0208-8
At least one of the azole precursor and the group consisting of the polyimide of the following general formula (6), the following general formula (1) is
Figure 109146146-A0305-02-0208-1
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are independently hydrogen atoms and saturated carbons with 1 to 30 carbon atoms. Aliphatic group, aromatic group, or the following general formula (2):
Figure 109146146-A0305-02-0209-2
(in the formula, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10) a monovalent organic group represented by, or an organic group having a carbon number of 1 The saturated aliphatic group of ~4, or the following general formula (3):
Figure 109146146-A0305-02-0209-3
(in the formula, R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 2 is an integer of 2 to 10) represented by a monovalent ammonium ion} Polyamic acid, polyamic acid ester or polyamic acid salt of polyimide precursor, the following general formula (4) has
Figure 109146146-A0305-02-0209-4
{In the formula, X 2 is a trivalent organic group with a carbon number of 6 to 15, Y 2 is a divalent organic group with a carbon number of 6 to 35, and may have the same structure or a plurality of structures, and R 9 is a group with at least A polyamide of a structure represented by a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms, and n 2 is an integer of 1 to 1000}, the following general formula (5) is a polyamide having a structure.
Figure 109146146-A0305-02-0210-5
{In the formula, Y 3 is a tetravalent organic group having carbon atoms, Y 4 , X 3 and X 4 are each independently a divalent organic group having 2 or more carbon atoms, and n 3 is an integer of 1 to 1000 , n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and includes n 3 dihydroxydiamide units of X 3 and Y 3 and n 4 including X 4 and Y 4 The arrangement order of the diamide units is any
Figure 109146146-A0305-02-0210-9
The polyhydroxyamide of azole precursor, the following general formula (6) has
Figure 109146146-A0305-02-0210-6
{In the formula, X 5 is an organic group with a valence of 4-14, Y 5 is an organic group with a valence of 2-12, and R 10 and R 11 independently represent at least one selected from phenolic hydroxyl group, sulfonic acid group or thiol. The organic group of the group in the group, n 5 is an integer of 3 to 200, and m 3 and m 4 are an integer of 0 to 10} The polyimide of the structure represented.
如請求項1或2之感光性樹脂組合物,其中上述(B-3)含氟疏水性化合物之分子中之氟原子之重量比率為30質量%以上且80質量%以下。 The photosensitive resin composition according to claim 1 or 2, wherein the weight ratio of the fluorine atoms in the molecule of the (B-3) fluorine-containing hydrophobic compound is 30 mass % or more and 80 mass % or less. 如請求項1或2之感光性樹脂組合物,其中上述(B-3)含氟疏水性化合物於分子內具有至少1個不飽和雙鍵。 The photosensitive resin composition according to claim 1 or 2, wherein the (B-3) fluorine-containing hydrophobic compound has at least one unsaturated double bond in the molecule. 如請求項1或2之感光性樹脂組合物,其中上述(B-3)含氟疏水性化合物為具有全氟基之丙烯酸酯或甲基丙烯酸酯化合物。 The photosensitive resin composition according to claim 1 or 2, wherein the (B-3) fluorine-containing hydrophobic compound is an acrylate or methacrylate compound having a perfluoro group. 一種硬化浮凸圖案之製造方法,其包括:步驟(1),其係藉由於基板上塗佈如請求項1至5中任一項記載之感光性樹脂組合物而於上述基板上形成感光性樹脂層;步驟(2),其係對上述感光性樹脂層進行曝光;步驟(3),其係將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案;及步驟(4),其係藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案。 A method for manufacturing a hardened relief pattern, comprising: step (1), forming a photosensitive resin composition on the substrate by coating the photosensitive resin composition as described in any one of claims 1 to 5 on the substrate resin layer; step (2), exposing the photosensitive resin layer; step (3), developing the exposed photosensitive resin layer to form a relief pattern; and step (4), the The hardened relief pattern is formed by subjecting the relief pattern to heat treatment. 如請求項6之方法,其中上述基板係由銅或銅合金形成。The method of claim 6, wherein the substrate is formed of copper or a copper alloy.
TW109146146A 2016-04-14 2017-03-31 Photosensitive resin composition and method for producing hardened relief pattern TWI753721B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP??2016-081185 2016-04-14
JP??2016-081554 2016-04-14
JP2016081554 2016-04-14
JP2016081185 2016-04-14
JP2016085419 2016-04-21
JP??2016-085419 2016-04-21
JP2016086447 2016-04-22
JP??2016-086447 2016-04-22

Publications (2)

Publication Number Publication Date
TW202125103A TW202125103A (en) 2021-07-01
TWI753721B true TWI753721B (en) 2022-01-21

Family

ID=60237899

Family Applications (4)

Application Number Title Priority Date Filing Date
TW106111042A TWI638232B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for producing cured embossed pattern
TW107130266A TWI684066B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for manufacturing hardened relief pattern
TW109146146A TWI753721B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for producing hardened relief pattern
TW108147363A TWI717167B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for producing hardened relief pattern

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW106111042A TWI638232B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for producing cured embossed pattern
TW107130266A TWI684066B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for manufacturing hardened relief pattern

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108147363A TWI717167B (en) 2016-04-14 2017-03-31 Photosensitive resin composition and method for producing hardened relief pattern

Country Status (2)

Country Link
JP (4) JP6923334B2 (en)
TW (4) TWI638232B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102299419B1 (en) 2018-02-28 2021-09-06 주식회사 엘지화학 Photosensitive resin composition and cured layer
JP7407518B2 (en) * 2018-04-27 2024-01-04 旭化成株式会社 Negative photosensitive resin composition and method for producing the same
WO2019221194A1 (en) * 2018-05-16 2019-11-21 Dic株式会社 Pattern formation material, cured film, and production method for cured pattern
EP3847506A1 (en) * 2018-09-05 2021-07-14 Merck Patent GmbH Positive working photosensitive material
WO2020066540A1 (en) * 2018-09-28 2020-04-02 太陽ホールディングス株式会社 Photosensitive resin composition, dry film, cured product, and electronic component
JP2020136430A (en) * 2019-02-18 2020-08-31 日立化成株式会社 Photosensitive resin composition for forming wiring interlayer insulating layer, wiring layer for semiconductor, and wiring layer laminate for semiconductor using the same
JP7154184B2 (en) * 2019-04-15 2022-10-17 信越化学工業株式会社 Positive type photosensitive resin composition, pattern forming method, cured film forming method, interlayer insulating film, surface protective film, and electronic component
JP7374189B2 (en) * 2019-07-02 2023-11-06 富士フイルム株式会社 Negative curable composition, cured film, laminate, method for producing cured film, and semiconductor device
JPWO2021117586A1 (en) * 2019-12-11 2021-06-17
WO2023021961A1 (en) * 2021-08-18 2023-02-23 日東電工株式会社 Polyimide precursor composition, polyimide resin, and circuit substrate
CN113683776B (en) * 2021-08-20 2022-05-24 华南理工大学 Polyquinolinedione compound and preparation method and application thereof
WO2023181637A1 (en) * 2022-03-25 2023-09-28 Hdマイクロシステムズ株式会社 Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device
TWI812336B (en) * 2022-07-08 2023-08-11 新應材股份有限公司 Resin composition and cured film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154040A (en) * 2006-09-25 2008-04-02 Az电子材料(日本)株式会社 Photoresist composition, its coating method and method of forming photoresist pattern
WO2008146625A1 (en) * 2007-06-01 2008-12-04 Tokyo Ohka Kogyo Co., Ltd. Composition for antireflection film formation and method for resist pattern formation using the composition
TW201027244A (en) * 2008-10-07 2010-07-16 Tokyo Ohka Kogyo Co Ltd Resist composition for immersion exposure, method of forming resist pattern, and fluorine-containing resin
TW201030462A (en) * 2008-09-30 2010-08-16 Tokyo Ohka Kogyo Co Ltd Resist composition, method of forming resist pattern, compound and acid generator including the compound

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310853A (en) * 1999-02-23 2000-11-07 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive element using same, photosensitive laminated body, production of flexible printed circuit board and production of mounted substrate
JP2002131906A (en) * 2000-10-30 2002-05-09 Hitachi Chemical Dupont Microsystems Ltd Photosensitive polyimide precursor composition and pattern forming method using the same and electronic component
JP2003295431A (en) * 2002-03-29 2003-10-15 Kyocera Chemical Corp Photosensitive resin composition and method for producing the same
JP2003337409A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Positive photosensitive composition, positive photosensitive image forming material and positive image forming method using the same
JP4337481B2 (en) * 2002-09-17 2009-09-30 東レ株式会社 Negative photosensitive resin precursor composition, electronic component using the same, and display device
JP4800321B2 (en) * 2004-12-09 2011-10-26 コーロン インダストリーズ インク Positive dry film photoresist and composition for producing the same
JP5120539B2 (en) * 2007-08-31 2013-01-16 国立大学法人豊橋技術科学大学 Heat resistant resin composition
JP2009282513A (en) * 2008-04-23 2009-12-03 Asahi Kasei E-Materials Corp Photosensitive resin composition and photosensitive film using the same
JP5222624B2 (en) * 2008-05-12 2013-06-26 富士フイルム株式会社 Black photosensitive resin composition, color filter, and method for producing the same
TW201033251A (en) * 2008-12-15 2010-09-16 Toyoboseki Kabushikikaisha Positive type photosensitive polyimide resin composition
JP5515394B2 (en) * 2009-04-30 2014-06-11 株式会社ピーアイ技術研究所 Photosensitive modified polyimide resin composition and use thereof
JP5415861B2 (en) * 2009-07-29 2014-02-12 旭化成イーマテリアルズ株式会社 Photosensitive resin composition, pattern forming method, and semiconductor device
JP5516044B2 (en) * 2010-05-11 2014-06-11 日立化成株式会社 Photosensitive adhesive composition, photosensitive element using the same, method for forming resist pattern, and method for bonding bonded member
TWI430024B (en) * 2010-08-05 2014-03-11 Asahi Kasei E Materials Corp A photosensitive resin composition, a method for manufacturing a hardened bump pattern, and a semiconductor device
EP2447773B1 (en) * 2010-11-02 2013-07-10 Fujifilm Corporation Method for producing a pattern, method for producing a MEMS structure, use of a cured film of a photosensitive composition as a sacrificial layer or as a component of a MEMS structure
CN103238111B (en) * 2010-12-10 2016-12-07 旭硝子株式会社 Negative light-sensitive resin combination, spaced walls used for optical elements and manufacture method thereof, there is the manufacture method of the optical element of this spaced walls and refuse ink agent solution
TW201329618A (en) * 2011-09-26 2013-07-16 Nippon Steel & Sumikin Chem Co Photosensitive resin composition, and dry film resist
JP5997982B2 (en) * 2012-08-31 2016-09-28 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, resist film using the composition, pattern formation method, and electronic device manufacturing method
US9403977B2 (en) * 2012-12-12 2016-08-02 Hitachi Chemical Company, Ltd. Photosensitive resin composition and photosensitive film using same
JP6080620B2 (en) * 2013-03-08 2017-02-15 旭化成株式会社 Polyimide precursor, polyimide and photosensitive resin composition
JP6209035B2 (en) * 2013-09-25 2017-10-04 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern, and method for producing semiconductor device
JP6232997B2 (en) * 2013-12-18 2017-11-22 東レ株式会社 Photosensitive resin composition, photosensitive resin film comprising the same, insulating film formed therefrom, and multilayer wiring board having the same
JP2015135481A (en) * 2013-12-20 2015-07-27 日立化成株式会社 Photosensitive resin composition, photosensitive element using the same, method for forming resist pattern, and method for manufacturing touch panel
WO2015141618A1 (en) * 2014-03-17 2015-09-24 旭化成イーマテリアルズ株式会社 Photosensitive resin composition, cured-relief-pattern production method, and semiconductor device
JP5686217B1 (en) * 2014-04-30 2015-03-18 住友ベークライト株式会社 Photosensitive resin material and resin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154040A (en) * 2006-09-25 2008-04-02 Az电子材料(日本)株式会社 Photoresist composition, its coating method and method of forming photoresist pattern
WO2008146625A1 (en) * 2007-06-01 2008-12-04 Tokyo Ohka Kogyo Co., Ltd. Composition for antireflection film formation and method for resist pattern formation using the composition
TW201030462A (en) * 2008-09-30 2010-08-16 Tokyo Ohka Kogyo Co Ltd Resist composition, method of forming resist pattern, compound and acid generator including the compound
TW201027244A (en) * 2008-10-07 2010-07-16 Tokyo Ohka Kogyo Co Ltd Resist composition for immersion exposure, method of forming resist pattern, and fluorine-containing resin

Also Published As

Publication number Publication date
JP7408599B2 (en) 2024-01-05
JP2021182149A (en) 2021-11-25
JP2017198977A (en) 2017-11-02
TW201841060A (en) 2018-11-16
TWI638232B (en) 2018-10-11
TWI684066B (en) 2020-02-01
TW202125103A (en) 2021-07-01
TW202016654A (en) 2020-05-01
JP2023169198A (en) 2023-11-29
JP6923334B2 (en) 2021-08-18
JP2024032725A (en) 2024-03-12
TW201738655A (en) 2017-11-01
TWI717167B (en) 2021-01-21

Similar Documents

Publication Publication Date Title
TWI753721B (en) Photosensitive resin composition and method for producing hardened relief pattern
JP7293299B2 (en) Photosensitive resin composition, method for producing cured relief pattern, and semiconductor device
JP7457669B2 (en) Photosensitive resin composition, method for producing cured relief pattern, and semiconductor device
JP2024043132A (en) Photosensitive resin composition and method for producing cured relief pattern