TWI752642B - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TWI752642B
TWI752642B TW109132296A TW109132296A TWI752642B TW I752642 B TWI752642 B TW I752642B TW 109132296 A TW109132296 A TW 109132296A TW 109132296 A TW109132296 A TW 109132296A TW I752642 B TWI752642 B TW I752642B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
metal silicide
memory
layers
Prior art date
Application number
TW109132296A
Other languages
Chinese (zh)
Other versions
TW202213644A (en
Inventor
呂函庭
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW109132296A priority Critical patent/TWI752642B/en
Application granted granted Critical
Publication of TWI752642B publication Critical patent/TWI752642B/en
Publication of TW202213644A publication Critical patent/TW202213644A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A semiconductor device includes a substrate, a stack, a conductive pillar, a memory layer, and a salicide layer. The stack is disposed on the substrate, wherein the stack includes a plurality of insulating layers and a plurality of conductive layers that are alternately stacked along a first direction. The conductive pillar penetrates the stack along the first direction. The memory layer surrounds the conductive pillar. The salicide layer surrounds the conductive pillar, wherein the memory layer is disposed between the conductive pillar and the salicide layer.

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing the same

本發明是有關於一種半導體裝置,且特別是有關於一種三維半導體裝置。 The present invention relates to a semiconductor device, and more particularly, to a three-dimensional semiconductor device.

近來,由於對於更優異之記憶體元件的需求已逐漸增加,已提供各種三維(3D)記憶體裝置。一般而言,三維記憶體裝置包括由複數個記憶胞所組成的一記憶體陣列區,然而,目前的記憶體陣列區之中仍存在有漏電流的問題,使得三維記憶體元件無法執行其正常的功能,因此,有需要提出一種改善的三維記憶體裝置及其製作方法以解決習知技術所面臨的問題。 Recently, various three-dimensional (3D) memory devices have been provided as the demand for more superior memory devices has gradually increased. Generally speaking, a 3D memory device includes a memory array area composed of a plurality of memory cells. However, there is still a leakage current problem in the current memory array area, which makes the 3D memory device unable to perform its normal operation. Therefore, there is a need to propose an improved 3D memory device and a method for fabricating the same to solve the problems faced by the prior art.

本發明係有關於一種半導體裝置。由於本案的半導體裝置包括金屬矽化物層,金屬矽化物層可與導電層形成蕭特基二極體,且蕭特基二極體可作為一選擇器,使得選擇器電性連接於導電層與記憶層,故可在記憶體陣列中提供整流的特性,蕭特基二極體(選擇器)可對於記憶體進行單極性操作(unipolar operation),避免逆向電流的情 形,故可消除記憶體陣列中的漏電流路徑,進而解決習知技術所面臨的漏電流的問題。 The present invention relates to a semiconductor device. Since the semiconductor device of this application includes a metal silicide layer, the metal silicide layer and the conductive layer can form a Schottky diode, and the Schottky diode can be used as a selector, so that the selector is electrically connected to the conductive layer and the conductive layer. The memory layer can provide rectification characteristics in the memory array, and the Schottky diode (selector) can perform unipolar operation on the memory to avoid reverse current. Therefore, the leakage current path in the memory array can be eliminated, thereby solving the leakage current problem faced by the prior art.

根據本發明之一實施例,提出一種半導體裝置。半導體裝置包括一基板、一堆疊、一導電柱、一記憶層以及一金屬矽化物層。堆疊設置於基板上,其中堆疊包括沿著一第一方向交替堆疊的多個絕緣層及多個導電層。導電柱沿著第一方向穿過堆疊。記憶層環繞導電柱。金屬矽化物層環繞導電柱,其中記憶層設置於導電柱與金屬矽化物層之間。 According to an embodiment of the present invention, a semiconductor device is provided. The semiconductor device includes a substrate, a stack, a conductive column, a memory layer and a metal silicide layer. The stack is disposed on the substrate, wherein the stack includes a plurality of insulating layers and a plurality of conductive layers alternately stacked along a first direction. The conductive pillars pass through the stack in a first direction. The memory layer surrounds the conductive pillars. The metal silicide layer surrounds the conductive pillar, wherein the memory layer is disposed between the conductive pillar and the metal silicide layer.

根據本發明之另一實施例,提出一種半導體裝置的製造方法。方法包括下列步驟。首先,提供一基板。然後,形成一堆疊於基板上,其中堆疊包括沿著一第一方向交替堆疊的多個絕緣層及多個導電層。形成一導電柱,其中導電柱沿著第一方向穿過堆疊。形成一記憶層,其中記憶層環繞導電柱。此後,形成一金屬矽化物層,其中金屬矽化物層環繞導電柱,其中記憶層設置於導電柱與金屬矽化物層之間。 According to another embodiment of the present invention, a method for manufacturing a semiconductor device is provided. The method includes the following steps. First, a substrate is provided. Then, a stack is formed on the substrate, wherein the stack includes a plurality of insulating layers and a plurality of conductive layers alternately stacked along a first direction. A conductive pillar is formed, wherein the conductive pillar passes through the stack in a first direction. A memory layer is formed, wherein the memory layer surrounds the conductive pillars. Thereafter, a metal silicide layer is formed, wherein the metal silicide layer surrounds the conductive pillars, and the memory layer is disposed between the conductive pillars and the metal silicide layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given and described in detail in conjunction with the accompanying drawings as follows:

10,20,30:半導體裝置 10, 20, 30: Semiconductor devices

110:基板 110: Substrate

110a:上表面 110a: Upper surface

112:絕緣層 112: Insulation layer

114:導電層 114: Conductive layer

116:金屬層 116: Metal layer

120:導電柱 120: Conductive column

122,322:記憶層 122,322: Memory Layer

124:金屬矽化物層 124: metal silicide layer

226:側壁導體層 226: Sidewall Conductor Layer

A,A’,B,B’:剖面線端點 A,A',B,B': Hatch line endpoints

BL,BL1,BL2:位元線 BL, BL1, BL2: bit lines

C1:第一濃度 C1: first concentration

C2:第二濃度 C2: Second concentration

RM:記憶體 RM: memory

SD:蕭特基二極體 SD: Schottky Diode

WL1-WL4:字元線 WL1-WL4: word lines

p1:垂直開口 p1: vertical opening

p2:第一側向開口 p2: first lateral opening

p3:溝槽 p3: groove

p4:第二側向開口 p4: second lateral opening

p5:第三側向開口 p5: third lateral opening

S1:堆疊 S1: stack

SS1,SS2:次堆疊 SS1, SS2: Secondary stack

SW1,SW2:外側壁 SW1, SW2: Outer side wall

第1A圖繪示依照本發明一實施例的半導體裝置局部上視圖;第1B圖繪示沿著第1A圖之A-A’連線的剖面圖;第2A~2H圖繪示依照本發明一實施例的半導體裝置的製造流程圖; 第2I圖繪示第2F圖之步驟的另一實施例;第3A圖繪示依照本發明一實施例的半導體裝置的局部上視圖;第3B圖繪示沿著第3A圖之A-A’連線的剖面圖;第4A~4B圖繪示依照本發明一實施例的半導體裝置的製造流程圖;第5圖繪示依照本發明一實施例的半導體裝置的剖面圖;及第6圖繪示依照本發明一實施例的半導體裝置的等效電路圖。 Fig. 1A shows a partial top view of a semiconductor device according to an embodiment of the present invention; Fig. 1B shows a cross-sectional view along the line AA' of Fig. 1A; A manufacturing flow chart of the semiconductor device of the embodiment; Fig. 2I shows another embodiment of the steps of Fig. 2F; Fig. 3A shows a partial top view of a semiconductor device according to an embodiment of the present invention; Fig. 3B shows along AA' of Fig. 3A 4A~4B show a manufacturing flow diagram of a semiconductor device according to an embodiment of the present invention; Figure 5 shows a cross-sectional view of a semiconductor device according to an embodiment of the present invention; and Figure 6 An equivalent circuit diagram of a semiconductor device according to an embodiment of the present invention is shown.

第1A圖繪示依照本發明一實施例的半導體裝置10的局部上視圖。第1B圖繪示沿著第1A圖之A-A’連線的剖面圖。第1A圖繪示對應於第1B圖之B-B’連線的剖面。 FIG. 1A shows a partial top view of a semiconductor device 10 according to an embodiment of the present invention. Fig. 1B is a cross-sectional view taken along the line A-A' of Fig. 1A. Fig. 1A shows a cross section corresponding to the line B-B' in Fig. 1B.

請參照第1A及1B圖,半導體裝置10包括一基板110、一堆疊S1、多個導電柱120、多個記憶層122以及多個金屬矽化物層124。堆疊S1設置於基板110的一上表面110a上,其中堆疊S1包括沿著一第一方向(例如是Z方向)交替堆疊的多個絕緣層112及多個導電層114。在本實施例中,最底層的絕緣層112的厚度是大於其他層絕緣層112的厚度,然本發明並不限於此。本實施例僅示例性繪示5層絕緣層112與4層導電層114,然絕緣層112與導電層114的數量並不限於此。 Referring to FIGS. 1A and 1B , the semiconductor device 10 includes a substrate 110 , a stack S1 , a plurality of conductive pillars 120 , a plurality of memory layers 122 and a plurality of metal silicide layers 124 . The stack S1 is disposed on an upper surface 110 a of the substrate 110 , wherein the stack S1 includes a plurality of insulating layers 112 and a plurality of conductive layers 114 alternately stacked along a first direction (eg, the Z direction). In this embodiment, the thickness of the bottommost insulating layer 112 is greater than that of the other insulating layers 112 , but the present invention is not limited to this. In this embodiment, only five insulating layers 112 and four conductive layers 114 are illustrated, but the number of insulating layers 112 and conductive layers 114 is not limited thereto.

導電柱120沿著第一方向穿過堆疊S1。導電柱120的底部與基板100的上表面110a之間可具有一間隔。記憶層122分別環繞導電柱120。金屬矽化物層124環繞導電柱120,其中記憶層122設置於導電柱120與金屬矽化物層124之間。溝槽p3穿過堆疊S1並沿著第二方向(例如是X方向)延伸,將堆疊S1分為多個次堆疊SS1、SS2...。在一些 實施例中,多條位元線BL可分別沿著第三方向(例如是Y方向)延伸,導電柱120可分別電性連接於對應的位元線BL。 The conductive pillars 120 pass through the stack S1 along the first direction. There may be a space between the bottoms of the conductive pillars 120 and the upper surface 110 a of the substrate 100 . The memory layers 122 surround the conductive pillars 120 respectively. The metal silicide layer 124 surrounds the conductive pillar 120 , wherein the memory layer 122 is disposed between the conductive pillar 120 and the metal silicide layer 124 . The trench p3 passes through the stack S1 and extends along a second direction (eg, the X direction), dividing the stack S1 into a plurality of sub-stacks SS1 , SS2 . . . in some In an embodiment, the plurality of bit lines BL may extend along the third direction (eg, the Y direction), respectively, and the conductive pillars 120 may be electrically connected to the corresponding bit lines BL, respectively.

在一實施例中,基板110及絕緣層112可由氧化物所形成,例如是二氧化矽。 In one embodiment, the substrate 110 and the insulating layer 112 may be formed of oxide, such as silicon dioxide.

在一實施例中,導電層114可由半導體材質所形成,例如是摻雜或未摻雜的多晶矽;特別是可為p型或n型摻雜的多晶矽。在一實施例中,導電層114可作為字元線。 In one embodiment, the conductive layer 114 may be formed of a semiconductor material, such as doped or undoped polysilicon; in particular, it may be p-type or n-type doped polysilicon. In one embodiment, the conductive layer 114 may function as a word line.

在一實施例中,導電柱120的材料例如是多晶矽、非晶矽、鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSiX)、矽化鈷(CoSiX)或其他合適的材料。導電柱120與每個記憶層122之間的交叉點可形成一記憶胞;多個沿著導電柱120排列的記憶胞可形成一記憶體串列;多個記憶體串列可形成記憶體陣列。 In one embodiment, the material of the conductive pillar 120 is, for example, polysilicon, amorphous silicon, tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide (WSi X ), cobalt silicide (CoSi X ) or other suitable materials. s material. The intersection between the conductive pillar 120 and each memory layer 122 can form a memory cell; a plurality of memory cells arranged along the conductive pillar 120 can form a memory string; a plurality of memory strings can form a memory array .

在一實施例中,記憶層122包括一電阻式記憶體材料,電阻式記憶體材料例如是可變電阻式隨機存取記憶體材料或相變化記憶體材料。當記憶層122包括可變電阻式隨機存取記憶體材料時,記憶層122的材料例如是鈦矽氧化物(TiSiXOY)或其他合適的可變電阻式隨機存取記憶體材料,以在導電柱120與每個記憶層122的交叉點形成一可變電阻式隨機存取記憶胞。當記憶層122包括相變化記憶體材料時,記憶層122的材料例如是鍺銻碲(Ge2Sb2Te5(GST))或其他合適的相變化記憶體材料,以在導電柱120與每個記憶層122之間的交叉點形成一相變化記憶體。在本實施例中,多個記憶層122是藉由絕緣層112 彼此分開,例如是在第一方向上不連續地環繞導電柱120,然本發明並不以此為限。 In one embodiment, the memory layer 122 includes a resistive memory material, such as a variable resistance random access memory material or a phase change memory material. When the memory layer 122 includes a variable resistance random access memory material, the material of the memory layer 122 is, for example, titanium silicon oxide (TiSi X O Y ) or other suitable variable resistance random access memory materials, so as to A variable resistance random access memory cell is formed at the intersection of the conductive pillar 120 and each memory layer 122 . When the memory layer 122 includes a phase change memory material, the material of the memory layer 122 is, for example, germanium antimony tellurium (Ge2Sb2Te5 (GST)) or other suitable phase change memory materials, so as to form a space between the conductive pillars 120 and each memory layer 122. The intersection between them forms a phase change memory. In this embodiment, the plurality of memory layers 122 are separated from each other by the insulating layer 112 , for example, the conductive pillars 120 are discontinuously surrounded in the first direction, but the invention is not limited to this.

在一實施例中,金屬矽化物層124的材料例如是矽化鈦(TiSiX)、矽化鈷(CoSiX)或其他合適的金屬矽化物。在一實施例中,金屬矽化物層124與每個所對應的一導電層114形成一蕭特基二極體,且蕭特基二極體可作為一選擇器。由於本案的金屬矽化物層124可與導電層114形成蕭特基二極體,且蕭特基二極體可作為一選擇器,使得選擇器電性連接於導電層114與記憶層122,故可在記憶體陣列中提供整流的特性,蕭特基二極體(選擇器)可對於記憶體進行單極性操作(unipolar operation),避免逆向電流的情形,故可減少或消除記憶體陣列中的漏電流路徑,進而解決習知技術所面臨的漏電流的問題。此外,蕭特基二極體對於記憶體操作具有相當快速的切換速度(switching speed)。 In one embodiment, the material of the metal silicide layer 124 is, for example, titanium silicide (TiSi X ), cobalt silicide (CoSi X ) or other suitable metal silicides. In one embodiment, the metal silicide layer 124 and each corresponding conductive layer 114 form a Schottky diode, and the Schottky diode can be used as a selector. Since the metal silicide layer 124 and the conductive layer 114 in this case can form a Schottky diode, and the Schottky diode can be used as a selector, so that the selector is electrically connected to the conductive layer 114 and the memory layer 122, so It can provide rectification characteristics in the memory array, and the Schottky diode (selector) can perform unipolar operation on the memory to avoid the reverse current situation, so it can reduce or eliminate the memory array. A leakage current path is provided, thereby solving the leakage current problem faced by the prior art. In addition, Schottky diodes have fairly fast switching speeds for memory operation.

第2A~2H圖繪示依照本發明一實施例的半導體裝置10的製造流程圖,例如是對應於第1A圖之A-A’連線的剖面位置。 FIGS. 2A-2H illustrate a manufacturing flow chart of the semiconductor device 10 according to an embodiment of the present invention, for example, corresponding to the cross-sectional positions of the line A-A' in FIG. 1A.

請參照第2A圖,提供一基板110,並在基板110上(例如是基板110的上表面110a上)形成一堆疊S1。堆疊S1包括沿著一第一方向(例如是Z方向)交替堆疊的多個絕緣層112及多個導電層114。在本實施例中,最底層的絕緣層112的厚度是大於其他層絕緣層112的厚度,然本發明並不限於此。在一實施例中,基板110及絕緣層112可由氧化物所形成,例如是二氧化矽。導電層114可由半導體材質所形成,例如是摻雜或未摻雜的多晶矽;特別是可為p型或n型摻雜的多晶矽。 Referring to FIG. 2A , a substrate 110 is provided, and a stack S1 is formed on the substrate 110 (eg, on the upper surface 110 a of the substrate 110 ). The stack S1 includes a plurality of insulating layers 112 and a plurality of conductive layers 114 alternately stacked along a first direction (eg, the Z direction). In this embodiment, the thickness of the bottommost insulating layer 112 is greater than that of the other insulating layers 112 , but the present invention is not limited to this. In one embodiment, the substrate 110 and the insulating layer 112 may be formed of oxide, such as silicon dioxide. The conductive layer 114 can be formed of a semiconductor material, such as doped or undoped polysilicon; in particular, it can be p-type or n-type doped polysilicon.

請參照第2B圖,形成垂直開口p1,其中垂直開口p1穿過堆疊S1,且垂直開口p1的底部可停留於最底層的絕緣層112之中,並沒有暴露出基板110的上表面110a,換言之,垂直開口p1的底部可與基板110之間具有一間隙。 Referring to FIG. 2B, a vertical opening p1 is formed, wherein the vertical opening p1 passes through the stack S1, and the bottom of the vertical opening p1 can stay in the bottommost insulating layer 112 without exposing the upper surface 110a of the substrate 110, in other words , there may be a gap between the bottom of the vertical opening p1 and the substrate 110 .

請參照第2C圖,透過垂直開口p1,移除部分的導電層114以形成多個第一側向開口p2,其中第一側向開口p2連通於垂直開口p1。 Referring to FIG. 2C, through the vertical opening p1, a portion of the conductive layer 114 is removed to form a plurality of first lateral openings p2, wherein the first lateral openings p2 communicate with the vertical opening p1.

請參照第2D圖,沿著垂直開口p1與第一側向開口p2的側壁沉積(例如是藉由一化學氣相沉積(Chemical Vapor Deposition,CVD))一金屬層116。金屬層116的材料例如是鈦(Ti)、鈷(Co)或其他合適的金屬。 Referring to FIG. 2D, a metal layer 116 is deposited (eg, by chemical vapor deposition (CVD)) along the sidewalls of the vertical opening p1 and the first lateral opening p2. The material of the metal layer 116 is, for example, titanium (Ti), cobalt (Co) or other suitable metals.

此後,請參照第2E圖,進行一快速熱退火(Rapid Thermal Annealing,RTA)製程,以在金屬層116與各個導電層114之間的接觸表面上形成金屬矽化物層124。金屬矽化物層124的材料例如是矽化鈦(TiSix)、矽化鈷(CoSix)或其他合適的金屬矽化物。在一些實施例中,可進行2次的快速熱退火製程,然本發明並不限於此。 Thereafter, referring to FIG. 2E , a rapid thermal annealing (RTA) process is performed to form a metal silicide layer 124 on the contact surface between the metal layer 116 and each conductive layer 114 . The material of the metal silicide layer 124 is, for example, titanium silicide (TiSix), cobalt silicide (CoSix) or other suitable metal silicides. In some embodiments, the rapid thermal annealing process may be performed twice, but the present invention is not limited thereto.

請參照第2F圖,在金屬矽化物層124形成之後,藉由一選擇性蝕刻製程移除金屬層116,選擇性蝕刻製程例如是一濕蝕刻製程。 Referring to FIG. 2F, after the metal silicide layer 124 is formed, the metal layer 116 is removed by a selective etching process, such as a wet etching process.

請參照第2G圖,在移除金屬層116之後,進行一氧化製程,以在垂直開口p1與金屬矽化物層124之間形成記憶層122;或者,可進行一沉積製程(例如是化學氣相沉積製程),將記憶體材料沉積於 垂直開口p1與金屬矽化物層124之間的空間中,以在垂直開口p1與金屬矽化物層124之間形成記憶層122。在一實施例中,當記憶層122是經由氧化製程所形成時,記憶層122包括可變電阻式隨機存取記憶體材料,其中記憶層122可為金屬矽化物層124的氧化物。例如,當金屬矽化物層124包括矽化鈦(TiSiX)時,記憶層122可包括鈦矽氧化物(TiSiXOY)。在另一實施例中,當記憶層122是經由沉積製程所形成時,記憶層122包括相變化記憶體材料,記憶層122的材料例如是鍺銻碲(Ge2Sb2Te5(GST))或其他合適的相變化記憶體材料。在一些實施例中,可在形成記憶層122之後進行一蝕刻製程,以移除多餘的記憶體材料。 Referring to FIG. 2G, after removing the metal layer 116, an oxidation process is performed to form the memory layer 122 between the vertical opening p1 and the metal silicide layer 124; alternatively, a deposition process (eg, chemical vapor phase) may be performed deposition process), depositing memory material in the space between the vertical opening p1 and the metal silicide layer 124 to form the memory layer 122 between the vertical opening p1 and the metal silicide layer 124 . In one embodiment, when the memory layer 122 is formed by an oxidation process, the memory layer 122 includes a variable resistance random access memory material, wherein the memory layer 122 can be an oxide of the metal silicide layer 124 . For example, when the metal silicide layer 124 includes titanium silicide (TiSi X ), the memory layer 122 may include titanium silicon oxide (TiSi X O Y ). In another embodiment, when the memory layer 122 is formed by a deposition process, the memory layer 122 includes a phase change memory material, and the material of the memory layer 122 is, for example, germanium antimony tellurium (Ge2Sb2Te5 (GST)) or other suitable phase Change the memory material. In some embodiments, an etching process may be performed after forming the memory layer 122 to remove excess memory material.

請參照第2H圖,在形成記憶層122之後,填充一導電材料於垂直開口p1中,以形成該導電柱120。導電柱120的材料例如是鉑(Pt)、鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSiX)、矽化鈷(CoSiX)或其他合適的材料。 Referring to FIG. 2H , after the memory layer 122 is formed, a conductive material is filled in the vertical opening p1 to form the conductive pillar 120 . The material of the conductive pillar 120 is, for example, platinum (Pt), tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide (WSi X ), cobalt silicide (CoSi X ) or other suitable materials.

在形成導電柱120之後,形成穿過堆疊S1且沿著一第二方向(例如是X方向)延伸的一溝槽p3,其中第二方向與第一方向彼此交錯,溝槽p3將堆疊S1區分為2個次堆疊SS1與SS2,形成如第1A及1B圖所示的半導體裝置10。第1A~1B圖僅示例性繪示1個溝槽p3及2個次堆疊,然本發明並不以此為限,溝槽p3的數量可大於1,次堆疊的數量可大於2。 After the conductive pillars 120 are formed, a trench p3 is formed through the stack S1 and extending along a second direction (eg, the X direction), wherein the second direction and the first direction intersect with each other, and the trench p3 distinguishes the stack S1 For two sub-stacks SS1 and SS2, a semiconductor device 10 as shown in FIGS. 1A and 1B is formed. FIGS. 1A-1B only illustrate one trench p3 and two sub-stacks, but the present invention is not limited to this. The number of trenches p3 may be greater than one, and the number of sub-stacks may be greater than two.

在一些實施例中,可將絕緣材料填入於溝槽p3之中。 In some embodiments, an insulating material may be filled in the trench p3.

選擇性地,可在形成溝槽p3的步驟之後,進一步對導電層114進行一摻雜製程(例如是電漿摻雜製程),使得各個導電層114摻雜有一摻雜質(例如是p型或n型摻雜質),摻雜質鄰近於金屬矽化物層124的區域具有一第一濃度C1,在遠離於金屬矽化物層124的區域具有一第二濃度C2,第二濃度C2大於第一濃度C1,換言之,摻雜質在導電層114中鄰近於溝槽p3的區域的第二濃度C2係大於摻雜質在導電層114中遠離於溝槽p3的區域的第一濃度C1,如第1B圖所示,然本發明並不以此為限。 Optionally, after the step of forming the trench p3, a doping process (such as a plasma doping process) may be further performed on the conductive layers 114, so that each conductive layer 114 is doped with a dopant (such as a p-type dopant). or n-type dopant), the dopant has a first concentration C1 in the region adjacent to the metal silicide layer 124, and a second concentration C2 in the region far from the metal silicide layer 124, and the second concentration C2 is greater than the second concentration C2. A concentration C1, in other words, the second concentration C2 of the dopant in the region of the conductive layer 114 adjacent to the trench p3 is greater than the first concentration C1 of the dopant in the region of the conductive layer 114 away from the trench p3, such as As shown in FIG. 1B, the present invention is not limited thereto.

第2I圖繪示第2F圖之步驟的另一實施例。 Figure 2I illustrates another embodiment of the steps of Figure 2F.

在一些實施例中,在藉由選擇性蝕刻製程移除金屬層116的步驟之後,一部分的金屬層116是殘留於第一側向開口p2中,如第2I圖所示。第2I圖的後續步驟是相同或類似於第2G~2H圖的步驟。 In some embodiments, after the step of removing the metal layer 116 by the selective etching process, a portion of the metal layer 116 remains in the first lateral opening p2, as shown in FIG. 2I. The subsequent steps of Figure 2I are the same or similar to those of Figures 2G~2H.

第3A圖繪示依照本發明一實施例的半導體裝置20的局部上視圖。第3B圖繪示沿著第3A圖之A-A’連線的剖面圖。第3A圖繪示對應於第3B圖之B-B’連線的剖面。 FIG. 3A shows a partial top view of the semiconductor device 20 according to an embodiment of the present invention. Fig. 3B is a cross-sectional view taken along the line A-A' of Fig. 3A. Fig. 3A shows a cross section corresponding to the line B-B' in Fig. 3B.

請參照第3A圖,半導體裝置20是類似於半導體裝置10,差異在於半導體裝置20更包括鄰接於導電層114的側壁導體層226,其他相同或類似的元件是使用相同或類似的元件符號,此處將不再詳細描述。側壁導體層226的電導率是大於導電層114的電導率,側壁導體層226設置於溝槽p3的相對兩側,不同層之間的側壁導體層226是藉由絕緣層112彼此隔開(如第3B圖所示)。相較於半導體裝置10而言,由於 半導體裝置20具有側壁導體層226,能夠降低導電層114的電阻值,故後續製程中在鄰近於溝槽p3的位置能夠形成較好的歐姆接觸。 Please refer to FIG. 3A, the semiconductor device 20 is similar to the semiconductor device 10, the difference is that the semiconductor device 20 further includes a sidewall conductor layer 226 adjacent to the conductive layer 114. will not be described in detail. The conductivity of the sidewall conductor layer 226 is greater than that of the conductive layer 114, the sidewall conductor layers 226 are disposed on opposite sides of the trench p3, and the sidewall conductor layers 226 between different layers are separated from each other by the insulating layer 112 (eg, shown in Figure 3B). Compared with the semiconductor device 10, since The semiconductor device 20 has a sidewall conductor layer 226, which can reduce the resistance value of the conductive layer 114, so that a better ohmic contact can be formed at a position adjacent to the trench p3 in the subsequent process.

在本實施例中,導電層114可摻雜有一摻雜質(可為p型或n型),且導電層114中的摻雜質具有濃度梯度變化的分布。例如,摻雜質在鄰近於金屬矽化物層124的區域具有一第一濃度C1,在遠離於金屬矽化物層124的區域具有一第二濃度C2,第二濃度C2大於第一濃度C1。換言之,在導電層114中,摻雜質(可為p型或n型)在遠離於溝槽p3的區域具有第一濃度C1,在鄰近於溝槽p3的區域具有第二濃度C2,第二濃度C2大於第一濃度C1,然本發明並不以此為限。在其他實施例中,導電層114中的摻雜質可具有相同的濃度,並無上述濃度梯度分布的現象。 In this embodiment, the conductive layer 114 can be doped with a dopant (which can be p-type or n-type), and the dopant in the conductive layer 114 has a concentration gradient distribution. For example, the dopant has a first concentration C1 in a region adjacent to the metal silicide layer 124 , and a second concentration C2 in a region remote from the metal silicide layer 124 , and the second concentration C2 is greater than the first concentration C1 . In other words, in the conductive layer 114, the dopant (which may be p-type or n-type) has a first concentration C1 in a region far from the trench p3, a second concentration C2 in a region adjacent to the trench p3, and a second concentration C2 in the region adjacent to the trench p3. The concentration C2 is greater than the first concentration C1, but the present invention is not limited to this. In other embodiments, the dopants in the conductive layer 114 may have the same concentration without the above-mentioned concentration gradient distribution phenomenon.

第4A~4B圖繪示依照本發明一實施例的半導體裝置20的製造流程圖。 FIGS. 4A-4B illustrate a manufacturing flow chart of the semiconductor device 20 according to an embodiment of the present invention.

半導體裝置20的部分的製造流程是類似於半導體裝置10的製造流程,在進行如第2A~2I圖所示的製程步驟之後,請參照第4A圖,可透過溝槽p3移除部分的導電層114以形成多個第二側向開口p4,其中第二側向開口p4連通於溝槽p3。此後,對導電層114進行一摻雜製程(例如是電漿摻雜製程),使得各個導電層114摻雜有一摻雜質(例如是p型或n型摻雜質),摻雜質鄰近於金屬矽化物層124的區域具有一第一濃度C1,在遠離於金屬矽化物層124的區域具有一第二濃度C2,第二濃度C2大於第一濃度C1,亦即,在導電層114中,摻雜質(可為p型或n型)在鄰近於 溝槽p3的區域中的第二濃度C2可大於在遠離於溝槽p3的區域中的第一濃度C1。 Part of the manufacturing process of the semiconductor device 20 is similar to the manufacturing process of the semiconductor device 10. After performing the process steps shown in FIGS. 2A to 2I, please refer to FIG. 4A, a part of the conductive layer can be removed through the trench p3 114 to form a plurality of second lateral openings p4, wherein the second lateral openings p4 communicate with the trenches p3. After that, a doping process (eg, a plasma doping process) is performed on the conductive layers 114, so that each conductive layer 114 is doped with a dopant (eg, a p-type or n-type dopant), and the dopant is adjacent to The region of the metal silicide layer 124 has a first concentration C1, and the region far from the metal silicide layer 124 has a second concentration C2, and the second concentration C2 is greater than the first concentration C1, that is, in the conductive layer 114, The dopant (which can be p-type or n-type) is adjacent to the The second concentration C2 in the region of the trench p3 may be greater than the first concentration C1 in the region farther from the trench p3.

由於導電層114中,摻雜質鄰近於金屬矽化物層124的區域的濃度較低,有利於形成蕭特基二極體;摻雜質鄰近於溝槽p3的區域的濃度較高,有利於後續製程中在鄰近於溝槽p3(如第3圖所示)的位置形成較好的歐姆接觸。 In the conductive layer 114, the concentration of the dopant in the region adjacent to the metal silicide layer 124 is lower, which is favorable for the formation of Schottky diodes; the concentration of the dopant in the region adjacent to the trench p3 is higher, which is favorable for the formation of Schottky diodes. A better ohmic contact is formed at a position adjacent to the trench p3 (as shown in FIG. 3 ) in the subsequent process.

此後,請參照第4B圖,填充一導電材料於第二側向開口p4中,以形成多個側壁導體層226,其中側壁導體層226是鄰接於導電層114,且側壁導體層226的電導率是大於導電層114的電導率。側壁導體層226的材料例如是鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSiX)或矽化鈷(CoSiX)。由於側壁導體層226是鄰接於導電層114,且側壁導體層226的電導率大於導電層114的電導率,更有利於後續製程中在鄰近於溝槽p3的位置形成較好的歐姆接觸。 Thereafter, referring to FIG. 4B, a conductive material is filled in the second lateral opening p4 to form a plurality of sidewall conductor layers 226, wherein the sidewall conductor layers 226 are adjacent to the conductive layer 114, and the conductivity of the sidewall conductor layers 226 is greater than the conductivity of the conductive layer 114 . The material of the sidewall conductor layer 226 is, for example, tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide (WSi X ) or cobalt silicide (CoSi X ). Since the sidewall conductor layer 226 is adjacent to the conductive layer 114 , and the conductivity of the sidewall conductor layer 226 is greater than that of the conductive layer 114 , it is more beneficial to form a better ohmic contact adjacent to the trench p3 in the subsequent process.

此後,可藉由一回蝕製程,移除部分的側壁導體層226以形成多個第三側向開口p5,第三側向開口p5可連通於溝槽p3,形成如第3B圖所示的半導體裝置20。在一實施例中,絕緣層112的外側壁SW1相較於側壁導體層226的外側壁SW2而言,更遠離於導電柱120。 After that, through an etch back process, part of the sidewall conductor layer 226 can be removed to form a plurality of third lateral openings p5, and the third lateral openings p5 can be communicated with the trench p3 to form as shown in FIG. 3B Semiconductor device 20 . In one embodiment, the outer sidewall SW1 of the insulating layer 112 is farther away from the conductive pillar 120 than the outer sidewall SW2 of the sidewall conductor layer 226 .

在一些實施例中,可將絕緣材料填入於溝槽p3及第三側向開口p5之中。 In some embodiments, insulating material may be filled in the trenches p3 and the third lateral openings p5.

第5圖繪示依照本發明一實施例的半導體裝置30的剖面圖。半導體裝置30是類似於半導體裝置20,差異在於記憶層322的結構,相同的元件係使用相同的元件符號,此處將不再詳細描述。 FIG. 5 is a cross-sectional view of a semiconductor device 30 according to an embodiment of the present invention. The semiconductor device 30 is similar to the semiconductor device 20 , and the difference lies in the structure of the memory layer 322 , and the same components use the same symbols, which will not be described in detail here.

請參照第5圖,記憶層322環繞導電柱120;記憶層322沿著第一方向延伸且對應於多個導電層114。例如,記憶層322是連續性地延伸於堆疊S1及導電柱120之間,與導電柱120在第一方向上具有相同的高度。記憶層322的材料例如是可變電阻式隨機存取記憶體材料(然本發明並不以此為限),其中記憶層322可包括鈦矽氧化物(TiSiXOY)、鈷矽化物(CoSiXOY)或其他合適的材料。相較於記憶層沒有沿著第一方向延伸的比較例而言,本實施例的製程較為簡單。 Referring to FIG. 5 , the memory layer 322 surrounds the conductive pillars 120 ; the memory layer 322 extends along the first direction and corresponds to the plurality of conductive layers 114 . For example, the memory layer 322 continuously extends between the stack S1 and the conductive pillars 120 , and has the same height as the conductive pillars 120 in the first direction. The material of the memory layer 322 is, for example, a variable resistance random access memory material (though the invention is not limited to this), wherein the memory layer 322 may include titanium silicon oxide (TiSi X O Y ), cobalt silicide ( CoSi X O Y ) or other suitable materials. Compared with the comparative example in which the memory layer does not extend along the first direction, the manufacturing process of this embodiment is simpler.

第6圖繪示依照本發明一實施例的半導體裝置10~30的等效電路圖。 FIG. 6 is an equivalent circuit diagram of the semiconductor devices 10 - 30 according to an embodiment of the present invention.

請參照第6圖,其示例性繪示其中2個記憶體串列,2個導電柱120分別電性連接於位元線BL1與BL2,4條導電層114可分別作為字元線WL1~WL4,導電層114與導電柱120之間的每個交叉點具有彼此連接的蕭特基二極體SD(例如是作為選擇器)及記憶體RM(例如是電阻式記憶體)。 Please refer to FIG. 6, which exemplarily shows two memory strings, two conductive pillars 120 are electrically connected to bit lines BL1 and BL2, respectively, and four conductive layers 114 can be used as word lines WL1-WL4, respectively , each intersection between the conductive layer 114 and the conductive post 120 has a Schottky diode SD (eg, as a selector) and a memory RM (eg, a resistive memory) connected to each other.

根據本發明之一實施例,提供一種半導體裝置。半導體裝置包括一基板、一堆疊、一導電柱、一記憶層以及一金屬矽化物層。堆疊設置於基板上,其中堆疊包括沿著一第一方向交替堆疊的多個絕緣層及多個導電層。導電柱沿著第一方向穿過堆疊。記憶層環繞導電柱。金屬矽化物層環繞導電柱,其中記憶層設置於導電柱與金屬矽化物層之間。 According to an embodiment of the present invention, a semiconductor device is provided. The semiconductor device includes a substrate, a stack, a conductive column, a memory layer and a metal silicide layer. The stack is disposed on the substrate, wherein the stack includes a plurality of insulating layers and a plurality of conductive layers alternately stacked along a first direction. The conductive pillars pass through the stack in a first direction. The memory layer surrounds the conductive pillars. The metal silicide layer surrounds the conductive pillar, wherein the memory layer is disposed between the conductive pillar and the metal silicide layer.

由於本案的金屬矽化物層可與導電層形成蕭特基二極體,且蕭特基二極體可作為一選擇器,使得選擇器電性連接於導電層與記憶層,故可在記憶體陣列中提供整流的特性,蕭特基二極體(選擇 器)可對於記憶體進行單極性操作,避免逆向電流的情形,故可減少或消除記憶體陣列中的漏電流路徑,進而解決習知所面臨的漏電流的問題。此外,蕭特基二極體對於記憶體操作具有相當快速的切換速度。 Since the metal silicide layer and the conductive layer in this case can form a Schottky diode, and the Schottky diode can be used as a selector, so that the selector is electrically connected to the conductive layer and the memory layer, so it can be used in the memory Rectifying features are provided in the array, Schottky diodes (select The device) can perform unipolar operation on the memory to avoid the situation of reverse current, so the leakage current path in the memory array can be reduced or eliminated, thereby solving the conventional leakage current problem. Additionally, Schottky diodes have fairly fast switching speeds for memory operation.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the appended patent application.

110:基板 110: Substrate

110a:上表面 110a: Upper surface

112:絕緣層 112: Insulation layer

114:導電層 114: Conductive layer

120:導電柱 120: Conductive column

122:記憶層 122: Memory Layer

124:金屬矽化物層 124: metal silicide layer

A,A’,B,B’:剖面線端點 A,A',B,B': Hatch line endpoints

C1:第一濃度 C1: first concentration

C2:第二濃度 C2: Second concentration

p3:溝槽 p3: groove

S1:堆疊 S1: stack

Claims (9)

一種半導體裝置,包括:一基板;一堆疊,設置於該基板上,其中該堆疊包括沿著一第一方向交替堆疊的複數個絕緣層及複數個導電層;一導電柱,沿著該第一方向穿過該堆疊;一記憶層,環繞該導電柱;一金屬矽化物層,環繞該導電柱,其中該記憶層設置於該導電柱與該金屬矽化物層之間;以及複數個側壁導體層,該些側壁導體層是鄰接於該些導電層且與該記憶層及該金屬矽化物層分開,其中該些側壁導體層的電導率是大於該些導電層的電導率。 A semiconductor device, comprising: a substrate; a stack disposed on the substrate, wherein the stack comprises a plurality of insulating layers and a plurality of conductive layers alternately stacked along a first direction; a conductive column along the first direction direction through the stack; a memory layer surrounding the conductive pillar; a metal silicide layer surrounding the conductive pillar, wherein the memory layer is disposed between the conductive pillar and the metal silicide layer; and a plurality of sidewall conductor layers , the sidewall conductor layers are adjacent to the conductive layers and separated from the memory layer and the metal silicide layer, wherein the conductivity of the sidewall conductor layers is greater than that of the conductive layers. 如請求項1所述之半導體裝置,其中該金屬矽化物層與該些導電層之中所對應的一導電層形成一蕭特基二極體。 The semiconductor device of claim 1, wherein the metal silicide layer and a corresponding conductive layer among the conductive layers form a Schottky diode. 如請求項1所述之半導體裝置,其中各該導電層是摻雜有一摻雜質,該摻雜質鄰近於該金屬矽化物層的區域具有一第一濃度,在遠離於該金屬矽化物層的區域具有一第二濃度,該第二濃度大於該第一濃度。 The semiconductor device of claim 1, wherein each of the conductive layers is doped with a dopant, and the dopant has a first concentration in a region adjacent to the metal silicide layer and at a distance away from the metal silicide layer The region has a second concentration that is greater than the first concentration. 如請求項1所述之半導體裝置,更包括複數個該記憶層,該些記憶層是藉由該些絕緣層彼此分開。 The semiconductor device of claim 1, further comprising a plurality of the memory layers, the memory layers are separated from each other by the insulating layers. 如請求項1所述之半導體裝置,其中該記憶層沿著該第一方向延伸且對應於該些導電層。 The semiconductor device of claim 1, wherein the memory layer extends along the first direction and corresponds to the conductive layers. 一種半導體裝置的製造方法,包括:提供一基板;形成一堆疊於該基板上,其中該堆疊包括沿著一第一方向交替堆疊的複數個絕緣層及複數個導電層;形成一導電柱,其中該導電柱沿著該第一方向穿過該堆疊;形成一記憶層,其中該記憶層環繞該導電柱,形成一金屬矽化物層,其中該金屬矽化物層環繞該導電柱,其中該記憶層設置於該導電柱與該金屬矽化物層之間;以及形成複數個側壁導體層,該些側壁導體層是鄰接於該些導電層且與該記憶層及該金屬矽化物層分開,其中該些側壁導體層的電導率是大於該些導電層的電導率。 A method of manufacturing a semiconductor device, comprising: providing a substrate; forming a stack on the substrate, wherein the stack includes a plurality of insulating layers and a plurality of conductive layers alternately stacked along a first direction; forming a conductive column, wherein the conductive pillar passes through the stack along the first direction; a memory layer is formed, wherein the memory layer surrounds the conductive pillar, a metal silicide layer is formed, wherein the metal silicide layer surrounds the conductive pillar, wherein the memory layer Disposed between the conductive pillar and the metal silicide layer; and forming a plurality of sidewall conductor layers, the sidewall conductor layers are adjacent to the conductive layers and separated from the memory layer and the metal silicide layer, wherein the The conductivity of the sidewall conductor layers is greater than the conductivity of the conductive layers. 如請求項6所述之半導體裝置的製造方法,其中形成該金屬矽化物層的步驟包括:形成一垂直開口,其中該垂直開口穿過該堆疊;移除部分的該些導電層以形成複數個第一側向開口,其中該些第一側向開口連通於該垂直開口;沿著該垂直開口與該些第一側向開口的側壁沉積一金屬層;以及進行一快速熱退火製程,以在該金屬層與各該導電層之間的一接觸表面上形成該金屬矽化物層。 The method for manufacturing a semiconductor device as claimed in claim 6, wherein the step of forming the metal silicide layer comprises: forming a vertical opening, wherein the vertical opening passes through the stack; removing a portion of the conductive layers to form a plurality of first lateral openings, wherein the first lateral openings communicate with the vertical opening; deposit a metal layer along the vertical opening and the sidewalls of the first lateral openings; and perform a rapid thermal annealing process to The metal silicide layer is formed on a contact surface between the metal layer and each of the conductive layers. 如請求項7所述之半導體裝置的製造方法,更包括包括:在該金屬矽化物層形成之後,移除該金屬層;進行一氧化製程,以在該垂直開口與該金屬矽化物層之間形成該記憶層;以及填充一導電材料於該垂直開口中,以形成該導電柱。 The method for manufacturing a semiconductor device as claimed in claim 7, further comprising: after the metal silicide layer is formed, removing the metal layer; and performing an oxidation process to form between the vertical opening and the metal silicide layer forming the memory layer; and filling a conductive material in the vertical opening to form the conductive column. 如請求項7所述之半導體裝置的製造方法,更包括包括:在該金屬矽化物層形成之後,移除該金屬層;進行一沉積製程,以在該垂直開口與該金屬矽化物層之間形成該記憶層;以及填充一導電材料於該垂直開口中,以形成該導電柱。 The method for manufacturing a semiconductor device as claimed in claim 7, further comprising: after the metal silicide layer is formed, removing the metal layer; and performing a deposition process to form between the vertical opening and the metal silicide layer forming the memory layer; and filling a conductive material in the vertical opening to form the conductive column.
TW109132296A 2020-09-18 2020-09-18 Semiconductor device and method for manufacturing the same TWI752642B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109132296A TWI752642B (en) 2020-09-18 2020-09-18 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132296A TWI752642B (en) 2020-09-18 2020-09-18 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI752642B true TWI752642B (en) 2022-01-11
TW202213644A TW202213644A (en) 2022-04-01

Family

ID=80809403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132296A TWI752642B (en) 2020-09-18 2020-09-18 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI752642B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175032A1 (en) * 2007-01-23 2008-07-24 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing the same
TW200913253A (en) * 2007-07-31 2009-03-16 Samsung Electronics Co Ltd Phase change memory device having schottky diode and method of fabricating the same
US20150214276A1 (en) * 2012-12-20 2015-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive random access memory (rram) structure
US20160308128A1 (en) * 2015-04-16 2016-10-20 Stmicroelectronics, Inc. High density resistive random access memory (rram)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175032A1 (en) * 2007-01-23 2008-07-24 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing the same
TW200913253A (en) * 2007-07-31 2009-03-16 Samsung Electronics Co Ltd Phase change memory device having schottky diode and method of fabricating the same
US20150214276A1 (en) * 2012-12-20 2015-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive random access memory (rram) structure
US20160308128A1 (en) * 2015-04-16 2016-10-20 Stmicroelectronics, Inc. High density resistive random access memory (rram)

Also Published As

Publication number Publication date
TW202213644A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US10868016B2 (en) Semiconductor memory device and method of fabricating the same
US10991699B2 (en) Semiconductor memory devices
KR102681114B1 (en) Semiconductor memory device
US10892278B2 (en) Three-dimensional semiconductor devices
US20160240665A1 (en) Vertical transistor and local interconnect structure
US11043537B2 (en) Three-dimensional phase change memory device including vertically constricted current paths and methods of manufacturing the same
US10522350B2 (en) Method of fabricating three-dimensional semiconductor devices
KR20220033587A (en) Semiconductor devices
TWI778796B (en) Semiconductor devices
US11716839B2 (en) Semiconductor devices
US10861901B2 (en) Resistive random access memory and manufacturing method thereof
US11393875B2 (en) Semiconductor device and method for manufacturing the same
TWI752642B (en) Semiconductor device and method for manufacturing the same
CN110931557A (en) Semiconductor device and method for manufacturing the same
US20240172426A1 (en) Semiconductor device
US11882687B2 (en) Semiconductor devices
US20230320076A1 (en) Semiconductor memory device
EP4284140A1 (en) Semiconductor device
KR101115512B1 (en) a Phase change memory device and a manufacturing method thereof
TW202310201A (en) Semiconductor structure and method for manufacturing same
KR20230038354A (en) Semiconductor device and method of fabricating the same
TW202331933A (en) Semiconductor device
KR20220009470A (en) Semiconductor device and method of manufacturing the same
CN117979688A (en) Semiconductor structure and manufacturing method thereof
TW202316626A (en) Semiconductor memory device