TWI752628B - Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology - Google Patents

Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology Download PDF

Info

Publication number
TWI752628B
TWI752628B TW109131479A TW109131479A TWI752628B TW I752628 B TWI752628 B TW I752628B TW 109131479 A TW109131479 A TW 109131479A TW 109131479 A TW109131479 A TW 109131479A TW I752628 B TWI752628 B TW I752628B
Authority
TW
Taiwan
Prior art keywords
signal
pulses
pulse
output
encoding
Prior art date
Application number
TW109131479A
Other languages
Chinese (zh)
Other versions
TW202211637A (en
Inventor
又法 王
王雨微
明東 陳
Original Assignee
新加坡商光寶科技新加坡私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商光寶科技新加坡私人有限公司 filed Critical 新加坡商光寶科技新加坡私人有限公司
Priority to TW109131479A priority Critical patent/TWI752628B/en
Application granted granted Critical
Publication of TWI752628B publication Critical patent/TWI752628B/en
Publication of TW202211637A publication Critical patent/TW202211637A/en

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A coding and decoding method for optical isolated amplifier employing Sigma-Delta modulation technology is disclosed and the amplifier includes an encoder, an optical driver, a light source, a light sensor and a decoder. The method includes: generating a first pulses with a predetermined pulse width by the encoder when an input digital signal has an input pulse rising edge or an input pulse falling edge; outputting an encoding signal having first pulses to the optical driver; driving the light source by the optical driver to output an encoding optical signal according to the first pulses; sensing the optical light signal to output a sensing signal and the sensing signal includes second pulses corresponding to the first pulses of the encoding signal; and duplicating the input digital signal of the encoder by the decoder according to the second pulses of the sensing signal.

Description

採用Σ-Δ調變技術的模擬光耦隔離放大器的編碼和解碼方法Encoding and decoding method of analog optocoupler isolation amplifier using sigma-delta modulation technology

本發明涉及一種採用Σ-Δ調變技術的模擬光耦隔離放大器,特別是涉及一種模擬光耦隔離放大器的編碼和解碼方法,其可以使Σ-Δ調變器產生的一位資料流通過光通道後被準確地恢復。The present invention relates to an analog optocoupler isolation amplifier adopting sigma-delta modulation technology, in particular to a coding and decoding method of an analog optocoupler isolation amplifier, which can make a one-bit data stream generated by a sigma-delta modulator pass through optical After the channel is restored accurately.

光電耦合元件是以光作為媒介來傳輸電信號的一種電路元件,其功能是提供輸入電路及輸出電路之間的電氣隔離,在需要時可以使電信號通過電氣隔離層的方式傳送。The photoelectric coupling element is a circuit element that transmits electrical signals through light as a medium. Its function is to provide electrical isolation between the input circuit and the output circuit. When necessary, the electrical signal can be transmitted through the electrical isolation layer.

圖1顯示傳統的採用Σ-Δ調變技術的模擬光耦隔離放大器(optical isolated amplifier)的電路方塊圖。類比輸入信號經過Σ-Δ調變器轉換成為高速串列的一位元的資料流(one bit data stream),它由邏輯“1”電位和邏輯“0”電位構成,資料流中邏輯“1”的密度與輸入類比信號幅度成正比,然後資料流經編碼器進行編碼,經過編碼的資料流驅動光源,將編碼的資料信號變為光信號,然後通過光學檢測和光放大電路將光信號轉換為資料流,然後通過解碼器還原為一位元的資料流,然後通過數位類比轉換器轉換為類比信號。由於類比信號的幅度和一位元元資料流中,邏輯“1”電位元的密度成正比,通過解碼器後精確地恢復一位元資料流在光隔離放大器設計中變得至關重要。如圖1所示,傳統的採用Σ-Δ調變技術的模擬光耦隔離放大器10包括一調變器11、一編碼器12、一光源13、一光感測器14以及一解碼器15。調變器11為類比數位調變器,可以將輸入的類比信號轉換為一位元的數位信號,編碼器12電連接調變器11,其接收數位信號,並編碼數位信號,光源13電連接編碼器12,接收編碼的數位信號,並以編碼的數位信號驅動光源13輸出光信號。光感測器14感測光信號,並將光信號轉換為數位信號,解碼器15電連接光感測器14,接收數位信號,並解碼輸出類比信號。Figure 1 shows a circuit block diagram of a conventional analog opto-isolated amplifier using sigma-delta modulation technology. The analog input signal is converted into a high-speed serial one-bit data stream through a sigma-delta modulator, which is composed of a logic "1" potential and a logic "0" potential. The logic "1" in the data stream "The density is proportional to the amplitude of the input analog signal, and then the data flows through the encoder for encoding, and the encoded data stream drives the light source to convert the encoded data signal into an optical signal, and then converts the optical signal into an optical signal through an optical detection and optical amplifier circuit. The data stream is then restored to a one-bit data stream by a decoder, and then converted to an analog signal by a digital-to-analog converter. Since the amplitude of the analog signal is proportional to the density of logic "1" potentials in the one-bit data stream, it is critical to accurately recover the one-bit data stream after passing through the decoder in the design of optical isolation amplifiers. As shown in FIG. 1 , the conventional analog optocoupler isolation amplifier 10 using sigma-delta modulation technology includes a modulator 11 , an encoder 12 , a light source 13 , a photo sensor 14 and a decoder 15 . The modulator 11 is an analog digital modulator, which can convert the input analog signal into a one-bit digital signal. The encoder 12 is electrically connected to the modulator 11, which receives the digital signal and encodes the digital signal. The light source 13 is electrically connected to The encoder 12 receives the encoded digital signal, and drives the light source 13 to output the optical signal with the encoded digital signal. The light sensor 14 senses the light signal and converts the light signal into a digital signal. The decoder 15 is electrically connected to the light sensor 14, receives the digital signal, and decodes and outputs an analog signal.

然而,在傳統的採用Σ-Δ調變技術的模擬光耦隔離放大器10中,類比輸入信號經過Σ-Δ調變器轉換成為高速串列的一位元的資料流,這種高速的資料流通過由光驅動器、光源、光檢測器和光放大器等電路構成的光通道時,會發生脈衝形變,上升緣和下降緣等的改變。如果採用傳統的編碼、解碼方法,無法精確地在解碼後,恢復Σ-Δ調變器產生的一位元資料流。圖2顯示傳統的採用Σ-Δ調變技術的模擬光耦隔離放大器的波形示意圖,如圖2所示,調變器11的數位信號21會通過編碼器12轉換為編碼數位信號22,編碼器12輸出的編碼數位信號22脈衝寬度不同於解碼器11的輸出信號23,也就是說資料流中邏輯“1”的密度發生了變化,解碼後的一位元資料流的這些變化,經過Σ-Δ數模轉換器,轉化回類比信號後,轉化為光隔離放大器的失調電壓增加(Vos)、信噪比降低或線性降低等問題。However, in the traditional analog optocoupler isolation amplifier 10 using the sigma-delta modulation technology, the analog input signal is converted into a high-speed serial one-bit data stream through the sigma-delta modulator. This high-speed data flow When passing through an optical channel composed of circuits such as an optical driver, a light source, a photodetector, and an optical amplifier, pulse deformation, changes in the rising and falling edges, etc. will occur. If traditional encoding and decoding methods are used, the one-bit data stream generated by the sigma-delta modulator cannot be accurately recovered after decoding. Figure 2 shows a schematic diagram of the waveform of a traditional analog optocoupler isolation amplifier using sigma-delta modulation technology. As shown in Figure 2, the digital signal 21 of the modulator 11 will be converted into an encoded digital signal 22 by the encoder 12. The pulse width of the coded digital signal 22 output by 12 is different from the output signal 23 of the decoder 11, that is to say, the density of logic "1" in the data stream has changed. The Δ digital-to-analog converter, after converting back to the analog signal, translates into problems such as increased offset voltage (Vos), decreased signal-to-noise ratio or decreased linearity of the optical isolation amplifier.

而且,不同信號脈衝寬度在通過由光源驅動器、光感測器構成的光通道時會有不同的信號變形,例如不同的脈衝上升緣、不同的脈衝下降緣或不同的延時,因此通過解碼器所得到的新的一位元資料流會與Σ-Δ調變器生成的一位元資料流有差異。我們知道類比輸入信號經過Σ-Δ調變器轉換成為一位元資料流,這種資料流中“1”的密度與輸入類比信號幅度成正比。因此,脈衝的形變、上升緣和下降緣等的改變,會導致通過光通道的資料流中“1”的密度發生變化,這種變化在經過Σ-Δ數模轉換器後,轉化為光隔離放大器的失調電壓增加(Vos)、信噪比降低或線性降低等問題。Moreover, different signal pulse widths will have different signal deformations when passing through the optical channel composed of the light source driver and the light sensor, such as different pulse rising edges, different pulse falling edges or different delays. The resulting new one-bit data stream will be different from the one-bit data stream generated by the sigma-delta modulator. We know that the analog input signal is converted into a one-bit data stream by a sigma-delta modulator, and the density of "1" in this data stream is proportional to the amplitude of the input analog signal. Therefore, the change of pulse deformation, rising edge and falling edge, etc., will cause the density of "1" in the data flow through the optical channel to change. This change is converted into optical isolation after passing through the sigma-delta digital-to-analog converter. Problems such as increased offset voltage (Vos), decreased signal-to-noise ratio, or decreased linearity of the amplifier.

故存在一種需求,如何通過電路設計,在模擬光耦隔離放大器中使Σ-Δ調變器產生的一位元的資料流通過光通道後可以被精確地恢復。Therefore, there is a need for how to accurately restore the one-bit data stream generated by the Σ-Δ modulator in the analog optocoupler isolation amplifier through the optical channel through circuit design.

本發明所要解決的技術問題在於,針對現有技術的不足,提供一種編碼和解碼的方法,這種編碼器和解碼器,可以使Σ-Δ調變器產生的一位元資料流通過光通道後可以被精確地恢復。The technical problem to be solved by the present invention is to provide a method for encoding and decoding in view of the deficiencies of the prior art. The encoder and decoder can make the one-bit data stream generated by the sigma-delta modulator pass through the optical channel after passing through the optical channel. can be recovered precisely.

為瞭解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種模擬光耦隔離放大器的編碼和解碼方法,模擬光耦隔離放大器包括一編碼器、一光源驅動器,一光源、一光感測器與一解碼器,編碼和解碼方法包括:當一輸入數位信號產生輸入脈衝上升緣或與輸入脈衝下降緣時,通過編碼器產生具有預定脈衝寬度的一第一脈衝,預定脈衝寬度為調變器時鐘的10%-25%,以保障第一脈衝可以有效地通過光通道;輸出具有多個第一脈衝的一編碼信號至光源驅動器;根據編碼信號的多個第一脈衝,通過光源驅動器,驅動所述光源,輸出一編碼光信號;通過光感測器感測編碼光信號以產生一感測信號,且感測信號具有對應編碼信號的多個第一脈衝的多個第二脈衝;根據具有多個第二脈衝的感測信號,通過解碼器複製出編碼器的輸入數位信號。In order to solve the above-mentioned technical problems, one of the technical solutions adopted by the present invention is to provide an encoding and decoding method for an analog optocoupler isolation amplifier. The analog optocoupler isolation amplifier includes an encoder, a light source driver, a light source, a The optical sensor and a decoder, the encoding and decoding methods include: when an input digital signal generates a rising edge of an input pulse or a falling edge of the input pulse, a first pulse with a predetermined pulse width is generated by the encoder, and the predetermined pulse width is It is 10%-25% of the modulator clock to ensure that the first pulse can effectively pass through the optical channel; output an encoded signal with multiple first pulses to the light source driver; according to multiple first pulses of the encoded signal, pass The light source driver drives the light source to output an encoded optical signal; the encoded optical signal is sensed by the optical sensor to generate a sensing signal, and the sensing signal has multiple second pulses corresponding to multiple first pulses of the encoded signal Pulse; according to the sensing signal with a plurality of second pulses, the input digital signal of the encoder is reproduced through the decoder.

本發明的其中一有益效果在於,本發明所提供採用Σ-Δ調變技術的模擬光耦隔離放大器的編碼和解碼方法,其能通過在編碼器設置雙邊緣觸發信號產生器以及在解碼器中設置上升緣觸發信號解碼器的技術方案,以提升光耦隔離放大器的輸出信號準確性,減少光隔離放大器的失調電壓(Vos),增加信噪比, 改善類比光隔離放大器的線性性。One of the beneficial effects of the present invention is that the present invention provides an encoding and decoding method for an analog optocoupler isolation amplifier using Σ-Δ modulation technology, which can be achieved by setting a double edge trigger signal generator in the encoder and a decoder in the decoder. Set up the technical scheme of the rising edge trigger signal decoder to improve the output signal accuracy of the optocoupler isolation amplifier, reduce the offset voltage (Vos) of the optical isolation amplifier, increase the signal-to-noise ratio, and improve the linearity of the analog optical isolation amplifier.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。For a further understanding of the features and technical content of the present invention, please refer to the following detailed descriptions and drawings of the present invention. However, the drawings provided are only for reference and description, and are not intended to limit the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“採用Σ-Δ調變技術的模擬光耦隔離放大器的編碼和解碼方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。The following are specific specific examples to illustrate the implementation of the "encoding and decoding method of an analog optocoupler isolation amplifier using sigma-delta modulation technology" disclosed in the present invention, and those skilled in the art can refer to the content disclosed in this specification. Learn about the advantages and effects of the present invention. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to the actual size, and are stated in advance. The following embodiments will further describe the related technical contents of the present invention in detail, but the disclosed contents are not intended to limit the protection scope of the present invention.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that although terms such as "first", "second" and "third" may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are primarily used to distinguish one element from another element, or a signal from another signal. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be.

[本發明實施例][Embodiment of the present invention]

圖3為本發明的模擬光耦隔離放大器的方塊圖,圖4為本發明採用Σ-Δ調變技術的模擬光耦隔離放大器的編碼和解碼方法的流程圖,圖5為本發明的模擬光耦隔離放大器的波形示意圖。如圖3所示,本發明的模擬光耦隔離放大器30,其至少包括:一調變器31、一編碼器32、一光源驅動器33、光源34、一光感測器35、一解碼器36、一數位類比轉換器37以及一低通濾波器38。FIG. 3 is a block diagram of the analog optocoupler isolation amplifier of the present invention, FIG. 4 is a flowchart of the encoding and decoding method of the analog optocoupler isolation amplifier using the sigma-delta modulation technology in the present invention, and FIG. 5 is the analog optocoupler isolation amplifier of the present invention. The waveform diagram of the coupled isolation amplifier. As shown in FIG. 3 , the analog optocoupler isolation amplifier 30 of the present invention at least includes: a modulator 31 , an encoder 32 , a light source driver 33 , a light source 34 , a light sensor 35 , and a decoder 36 , a digital-to-analog converter 37 and a low-pass filter 38 .

請參閱圖3、圖4以及圖5,在步驟S401中,通過調變器31將輸入類比信號Sia轉換為輸入數位信號Si。調變器31較佳為積分-微分調變器,或稱為Sigma-Delta(Σ-Δ)調變器或脈衝密度(Pulse Density Modulation,PDM)調變器。積分-微分調變器是一種數位類比轉換的電路,可以將類比信號轉換為數位信號,也就是說將類比信號取樣轉換為一位元的數位信號,其優點在於可以對雜訊進行整型並對量化雜訊進行有效的抑制,具有較高的信噪比(SNR),由微分器、積分器構成的ΔΣ調變電路,會因其微分特性而對量化雜訊(Quantization noise)產生一種高通濾波的效果。有關於積分-微分調變器的原理為本領域具有通常知識者所熟知,在此不再贅述。在本發明的較佳實施例中,輸入信號為一種輸入類比信號Sia,輸入類比信號Sia傳輸至調變器31,調變器31將輸入類比信號Sia轉換為輸入一位元的數位信號Si。Please refer to FIG. 3 , FIG. 4 and FIG. 5 , in step S401 , the input analog signal Sia is converted into the input digital signal Si by the modulator 31 . The modulator 31 is preferably an integral-differential modulator, or called a Sigma-Delta (Σ-Δ) modulator or a Pulse Density Modulation (PDM) modulator. The integral-differential modulator is a digital-to-analog conversion circuit that can convert analog signals into digital signals, that is, convert analog signal samples into one-bit digital signals. It can effectively suppress the quantization noise and has a high signal-to-noise ratio (SNR). The effect of high-pass filtering. The principle of the integrator-derivative modulator is well known to those skilled in the art, and will not be repeated here. In a preferred embodiment of the present invention, the input signal is an input analog signal Sia, the input analog signal Sia is transmitted to the modulator 31, and the modulator 31 converts the input analog signal Sia into an input one-bit digital signal Si.

在步驟S402中,當一輸入數位信號Si產生輸入脈衝上升緣或輸入脈衝下降緣時,通過編碼器32產生具有多個第一脈衝coded_pulses的一編碼信號S,每個第一脈衝coded_pulse具有一預定脈衝寬度。編碼器32電連接調變器31,編碼器32可用於編碼從調變器31傳輸而來的輸入數位信號Si。進一步來說,編碼器32可偵測調變器31產生的輸入數位信號Si的輸入脈衝上升緣(rising edge)或輸入脈衝下降緣(falling edge),並根據輸入數位信號Si的輸入脈衝上升緣或輸入脈衝下降緣產生具有預定脈衝寬度的第一脈衝coded_pulses。In step S402, when an input digital signal Si generates a rising edge of an input pulse or a falling edge of an input pulse, a coded signal S with a plurality of first pulses coded_pulses is generated by the encoder 32, and each first pulse coded_pulse has a predetermined value Pulse Width. The encoder 32 is electrically connected to the modulator 31 , and the encoder 32 can be used for encoding the input digital signal Si transmitted from the modulator 31 . Further, the encoder 32 can detect the rising edge of the input pulse or the falling edge of the input pulse of the input digital signal Si generated by the modulator 31, and according to the rising edge of the input pulse of the input digital signal Si Or the falling edge of the input pulse generates the first pulse coded_pulses with a predetermined pulse width.

在步驟S403中,輸出具有多個第一脈衝coded_pulses的一編碼信號Se至光源驅動器33。詳細來說,編碼器32較佳為一雙邊緣觸發信號編碼器,雙邊緣觸發信號編碼器接收調變器31的輸入數位信號Si,根據調變器31的輸入數位信號Si,雙邊緣觸發信號編碼器會在輸入數位信號Si的輸入脈衝上升緣或輸入脈衝下降緣發生時,產生具有預定脈衝寬度的第一脈衝coded_pulses。換句話說,當雙邊緣觸發信號編碼器偵測到調變器31的輸入數位信號Si的輸入脈衝上升緣或輸入脈衝下降緣時,即會產生具有預定脈衝寬度的第一脈衝coded_pulses,每個第一脈衝coded_pulses的脈衝寬度相同,而多個具有預定脈衝寬度的第一脈衝coded_pulses組合成編碼信號Se。In step S403 , a coded signal Se with a plurality of first pulses coded_pulses is output to the light source driver 33 . In detail, the encoder 32 is preferably a dual-edge-triggered signal encoder, and the dual-edge-triggered signal encoder receives the input digital signal Si of the modulator 31 , and according to the input digital signal Si of the modulator 31 , the dual-edge-triggered signal The encoder will generate a first pulse coded_pulses with a predetermined pulse width when the rising edge of the input pulse or the falling edge of the input pulse of the input digital signal Si occurs. In other words, when the dual edge trigger signal encoder detects the rising edge of the input pulse or the falling edge of the input pulse of the input digital signal Si of the modulator 31, it will generate the first pulse coded_pulses with a predetermined pulse width. The pulse widths of the first pulses coded_pulses are the same, and a plurality of first pulses coded_pulses having predetermined pulse widths are combined into an encoded signal Se.

在步驟S404中,根據編碼信號Se的多個第一脈衝coded_pulses,通過光源驅動器33驅動光源34以輸出一編碼光信號Sp。光源驅動器33電連接編碼器32與光源34,接收編碼器32輸出之具有多個第一脈衝coded_pulses的編碼信號Se,根據具有多個第一脈衝coded_pulses的編碼信號Se,光源驅動器33可驅動光源34輸出編碼光信號Sp。光源34較佳為發光二極體(LED),但在不同實施例,光源34也可以由不同發光體所構成,在此並不侷限。光源驅動器33接收從編碼器32輸出的具有多個第一脈衝coded_pulses的編碼信號Se以驅動光源34發光,進而輸出一編碼光信號Sp,換句話說,光源34輸出的編碼光信號Sp對應於編碼信號Se。In step S404, according to the plurality of first pulses coded_pulses of the coded signal Se, the light source 34 is driven by the light source driver 33 to output a coded optical signal Sp. The light source driver 33 is electrically connected to the encoder 32 and the light source 34, and receives the coded signal Se with a plurality of first pulses coded_pulses output by the encoder 32. According to the coded signal Se with a plurality of first pulses coded_pulses, the light source driver 33 can drive the light source 34. The encoded optical signal Sp is output. The light source 34 is preferably a light emitting diode (LED), but in different embodiments, the light source 34 may also be composed of different light sources, which is not limited herein. The light source driver 33 receives the encoded signal Se with a plurality of first pulses coded_pulses output from the encoder 32 to drive the light source 34 to emit light, and then outputs an encoded optical signal Sp. In other words, the encoded optical signal Sp output by the light source 34 corresponds to the encoded optical signal Sp. Signal Se.

接著,在步驟S405,通過光感測器35感測編碼光信號Sp以產生一感測信號S,且感測信號S具有對應編碼信號Se的多個第一脈衝coded_pulses的多個第二脈衝sensing_pulses。光源驅動器33根據具有多個第一脈衝coded_pulses的編碼信號Se以驅動光源34產生編碼光信號Sp後,光感測器35感測編碼光信號Sp而產生具有失真的多個第二脈衝sensing_pulses的感測信號S,如圖5所示,每個第二脈衝sensing_pulses的信號失真大小與每個第一脈衝coded_pulse的脈衝寬度相關。Next, in step S405, the coded optical signal Sp is sensed by the optical sensor 35 to generate a sensing signal S, and the sensing signal S has a plurality of second pulses sensing_pulses corresponding to the plurality of first pulses coded_pulses of the coded signal Se . After the light source driver 33 drives the light source 34 to generate the encoded optical signal Sp according to the encoded signal Se having a plurality of first pulses coded_pulses, the light sensor 35 senses the encoded optical signal Sp to generate a plurality of second pulses with distortion sensing_pulses. As shown in FIG. 5 , the signal distortion of each second pulse sensing_pulses is related to the pulse width of each first pulse coded_pulse.

詳細來說,光感測器35設置在對應於光源34的位置,也就是說光感測器35的設置位置在光源34的光傳遞路線上,光感測器35用於感測光源34輸出的編碼光信號Sp以產生一感測信號S。光感測器35所產生的感測信號S具有對應於編碼信號Se的多個第一脈衝coded_pulses的多個第二脈衝sensing_pulses,每個第二脈衝sensing_pulse的脈衝寬度與第一脈衝coded_pulse的信號寬度相關,通過感測編碼光信號Sp,光感測器35可通過產生多個第二脈衝sensing_pulse以形成感測信號S。In detail, the light sensor 35 is arranged at a position corresponding to the light source 34 , that is to say, the arrangement position of the light sensor 35 is on the light transmission route of the light source 34 , and the light sensor 35 is used for sensing the output of the light source 34 . The encoded optical signal Sp is generated to generate a sensing signal S. The sensing signal S generated by the light sensor 35 has a plurality of second pulses sensing_pulses corresponding to the plurality of first pulses coded_pulses of the coded signal Se, and the pulse width of each second pulse sensing_pulse is the same as the signal width of the first pulse coded_pulse Relatedly, by sensing the encoded light signal Sp, the light sensor 35 may form a sensing signal S by generating a plurality of second pulses sensing_pulse.

在步驟S406中,根據具有多個第二脈衝sensing_pulse的感測信號S,通過解碼器36還原編碼器31的輸入數位信號Si。解碼器36電連接光感測器35,用於接收光感測器35所產生感測信號S。根據具有多個第二脈衝sensing_pulse的感測信號S,解碼器36還原編碼器31的輸入數位信號Si。進一步來說,解碼器36較佳為上升緣觸發解碼器,當解碼器36偵測每個第二脈衝sensing_pulse的脈衝上升緣,解碼器36的輸出狀態就發生一次改變。舉例來說,假設解碼器36當前的輸出為一高位準(1),當解碼器36偵測到第一個第二脈衝sensing_pulse的上升緣時,會改變輸出狀態為一低位準(0),而當解碼器36偵測到第二個第二脈衝sensing_pulse的上升緣時,進而會改變輸出狀態為一高位準。換句話說,當第一次偵測到上升緣時,輸出高位準,且維持在高位準,而當第二次偵測到上升緣時,會從高位準轉變成低位準,反之亦然。因此,當解碼器36接收到兩個連續的第二脈衝sensing_pulse時,會產生的一輸出脈衝,且輸出脈衝的脈衝寬度是由兩個連續的第二脈衝sensing_pulse的上升緣和他們間的時間間隔決定,輸出數位信號So是由多個輸出脈衝所組成。由於第一脈衝的脈衝寬度是一樣的,所以當第一脈衝通過光通道時,所產生的第二脈衝的脈衝有非常相近的形變或延遲,這樣保證輸出數位信號So可以準確地複製編碼器31的輸入數位信號Si。In step S406, the input digital signal Si of the encoder 31 is restored by the decoder 36 according to the sensing signal S having a plurality of second pulses sensing_pulse. The decoder 36 is electrically connected to the light sensor 35 for receiving the sensing signal S generated by the light sensor 35 . According to the sensing signal S having a plurality of second pulses sensing_pulse, the decoder 36 restores the input digital signal Si of the encoder 31 . Further, the decoder 36 is preferably a rising edge-triggered decoder. When the decoder 36 detects the rising edge of each second pulse sensing_pulse, the output state of the decoder 36 changes once. For example, assuming that the current output of the decoder 36 is a high level (1), when the decoder 36 detects the rising edge of the first second pulse sensing_pulse, it will change the output state to a low level (0), When the decoder 36 detects the rising edge of the second second pulse sensing_pulse, it further changes the output state to a high level. In other words, when a rising edge is detected for the first time, the output is high and remains high, and when a rising edge is detected for the second time, the output will change from high to low, and vice versa. Therefore, when the decoder 36 receives two consecutive second pulses sensing_pulse, an output pulse will be generated, and the pulse width of the output pulse is determined by the rising edges of the two consecutive second pulses sensing_pulse and the time interval between them It is determined that the output digital signal So is composed of a plurality of output pulses. Since the pulse width of the first pulse is the same, when the first pulse passes through the optical channel, the pulse of the second pulse generated has a very similar deformation or delay, which ensures that the output digital signal So can accurately replicate the encoder 31 The input digital signal Si.

另外,如圖6所示,在本發明的較佳實施例中,編碼器32可以是由一互斥或閘(XOR GATE)321以及多個延遲單元322所構成。多個延遲單元322可使所輸入的信號產生四分之一的時脈延遲,調變器31的輸出數位信號Si傳遞至第一個延遲單元322的輸入端A以及由五個反及閘(NAND Gate)323所組成的互斥或閘321的第一輸入端324,而最後一個延遲單元322的輸出端YN連接至互斥或閘321的第二輸入端325,多個具有預定信號寬度的第一脈衝coded_pulse從互斥或閘321的輸出端326輸出。通過本發明的編碼器32的輸入數位信號Si的信號上升緣或信號下降緣,產生具有預定信號寬度的第一脈衝coded_pulse。在此需要說明的是,上述的編碼器32是由多個延遲單元322以及互斥或閘321所組成,但是在不同實施例,編碼器32也可以由不同的邏輯單元所構成,在此並不侷限,本領域具有通常知識者可以根據不同需求,設計不同元件所構成的編碼器32。本發明的編碼器32在產生具有預定信號寬度的第一脈衝coded_pulse後,會輸出具有多個第一脈衝coded_pulse的編碼信號Se。In addition, as shown in FIG. 6 , in a preferred embodiment of the present invention, the encoder 32 may be composed of a mutually exclusive OR gate (XOR GATE) 321 and a plurality of delay units 322 . The plurality of delay units 322 can generate a quarter of the clock delay of the input signal, and the output digital signal Si of the modulator 31 is transmitted to the input end A of the first delay unit 322 and is connected by five inverting gates ( The first input terminal 324 of the mutually exclusive OR gate 321 composed of the NAND Gate) 323, and the output terminal YN of the last delay unit 322 is connected to the second input terminal 325 of the mutually exclusive OR gate 321. The first pulse coded_pulse is output from the output terminal 326 of the exclusive OR gate 321 . The first pulse coded_pulse having a predetermined signal width is generated by the signal rising edge or the signal falling edge of the input digital signal Si of the encoder 32 of the present invention. It should be noted here that the above encoder 32 is composed of a plurality of delay units 322 and mutually exclusive OR gates 321, but in different embodiments, the encoder 32 may also be composed of different logic units. Without limitation, those with ordinary knowledge in the art can design the encoder 32 composed of different elements according to different requirements. After generating the first pulse coded_pulse with a predetermined signal width, the encoder 32 of the present invention outputs a coded signal Se having a plurality of first pulses coded_pulse.

圖7為本發明實施例的解碼器的電路示意圖,如圖7所示,進一步來說,解碼器35又稱為雙邊緣觸發解碼器,其是由一D邊緣觸發正反器(D Flip Flop)351與一反相器352所構成,多個具有預定信號寬度的第二脈衝sensing_pulse的感測信號S傳輸至正反器351的時脈輸入端clk,反相器352的輸出端YN電連接正反器351的資料輸入端data,反向器352的輸入端A連接至正反器351的輸出端Q,輸出數位信號So從正反器351的另一輸出端QN輸出,通過上述由正反器351與反相器352所組成的解碼電路,可解碼多個具有相同信號寬度的第二脈衝sensing_pulse以產生一輸出信號。另外,在此需要說明的是,在本發明的較佳實施例中,雙邊緣觸發解碼器是由一個正反器351與一個反相器352所構成,但在不同實施例中,雙邊緣觸發解碼器也可以由其他不同邏輯單元所構成,在此並不侷限。FIG. 7 is a schematic circuit diagram of a decoder according to an embodiment of the present invention. As shown in FIG. 7 , further, the decoder 35 is also called a dual-edge-triggered decoder, which is a D-edge-triggered flip-flop (D Flip Flop ) 351 and an inverter 352, a plurality of sensing signals S of the second pulse sensing_pulse with a predetermined signal width are transmitted to the clock input terminal clk of the flip-flop 351, and the output terminal YN of the inverter 352 is electrically connected The data input terminal data of the flip-flop 351 and the input terminal A of the inverter 352 are connected to the output terminal Q of the flip-flop 351, and the output digital signal So is output from the other output terminal QN of the flip-flop 351. The decoding circuit composed of the inverter 351 and the inverter 352 can decode a plurality of second pulses sensing_pulse with the same signal width to generate an output signal. In addition, it should be noted here that, in the preferred embodiment of the present invention, the dual-edge trigger decoder is composed of a flip-flop 351 and an inverter 352, but in different embodiments, the dual-edge trigger decoder is The decoder can also be composed of other different logic units, which is not limited here.

另外,在本發明的模擬光耦隔離放大器的編碼和解碼方法中,更可包括通過一數位類比轉換器37,將輸出數位信號轉換為輸出類比信號,然後通過一低通濾波器(Low Pass Filter)38,過濾輸出類比信號中的雜訊。數位類比轉換器37電連接解碼器36,接收解碼器36的輸出數位信號So,並將輸出數位信號So轉換為輸出類比信號Sa,達到還原光耦隔離放大器30最初輸入類比信號Sia的目的。在本發明的較佳實施例中,數位類比轉換器37的低通濾波器38可以用於過濾在輸出數位信號So轉換為輸出類比信號Sa時所產生的雜訊,最後輸出雜訊較少的輸出類比信號Sa。In addition, in the encoding and decoding method of the analog optocoupler isolation amplifier of the present invention, it may further include converting the output digital signal into an output analog signal through a digital-to-analog converter 37, and then passing through a low-pass filter (Low Pass Filter). ) 38, filtering the noise in the output analog signal. The digital-to-analog converter 37 is electrically connected to the decoder 36, receives the output digital signal So of the decoder 36, and converts the output digital signal So into the output analog signal Sa, so as to restore the original input analog signal Sia of the optocoupler isolation amplifier 30. In a preferred embodiment of the present invention, the low-pass filter 38 of the digital-to-analog converter 37 can be used to filter the noise generated when the output digital signal So is converted into the output analog signal Sa, and finally output the signal with less noise. The analog signal Sa is output.

由圖5可以明顯看出,在本發明的光耦隔離放大器30中,通過在編碼器32,可以在輸入數位信號Si的輸入脈衝上升緣或輸入脈衝下降緣產生時,輸出多個具有預定脈衝寬度的第一脈衝coded_pulse的編碼信號Se,由此可以準確知道輸入數位信號Si的信號脈衝開始與結束的時間。同時具有同樣脈衝寬度的Se經過光通道後,他們經歷同樣的脈衝形變,同樣的上升緣和下降緣,而且通過本發明的電路設計,由於多個具有預定脈衝寬度的第二脈衝可以完整複製多個具有預定脈衝寬度的第一脈衝,即使感測信號S經過光通道後存在延遲和形變,經過本發明的解碼後,輸出數位信號So可以準確恢復輸入時的輸入數位信號Si,從而改善光隔離放大器的失調電壓增加(Vos)、信噪比降低或線性降低等問題。It can be clearly seen from FIG. 5 that in the optocoupler isolation amplifier 30 of the present invention, the encoder 32 can output a plurality of predetermined pulses when the input pulse rising edge or the input pulse falling edge of the input digital signal Si is generated. The coded signal Se of the first pulse coded_pulse of the width can accurately know the start and end times of the signal pulse of the input digital signal Si. After Se with the same pulse width passes through the optical channel at the same time, they experience the same pulse deformation, the same rising edge and falling edge, and through the circuit design of the present invention, due to the multiple second pulses with predetermined pulse widths, multiple second pulses with predetermined pulse widths can be completely replicated. A first pulse with a predetermined pulse width, even if the sensing signal S is delayed and deformed after passing through the optical channel, after the decoding of the present invention, the output digital signal So can accurately restore the input digital signal Si at the time of input, thereby improving the optical isolation Problems such as increased offset voltage (Vos), decreased signal-to-noise ratio, or decreased linearity of the amplifier.

[實施例的有益效果][Advantageous effects of the embodiment]

本發明的其中一有益效果在於,本發明所提供的光耦隔離放大器,其能通過雙邊緣觸發的信號編碼器以及在上緣觸發的信號解碼器中設置上緣觸發信號解碼器的技術方案,以提升光耦隔離放大器的輸出信號準確性。One of the beneficial effects of the present invention is that the optocoupler isolation amplifier provided by the present invention can pass the double-edge-triggered signal encoder and the technical solution of setting the upper-edge-triggered signal decoder in the upper-edge-triggered signal decoder, To improve the output signal accuracy of the optocoupler isolation amplifier.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The contents disclosed above are only preferred feasible embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

10:光耦隔離放大器 11:調變器 12:編碼器 13:光源 14:感測器 15:解碼器 21:數位信號 22:編碼數位信號 23:輸出信號 30:模擬光耦隔離放大器 31:調變器 32:編碼器 321:互斥或閘 322:延遲單元 323:反及閘 324:第一輸入端 325:第二輸入端 326:輸出端 Sia:輸入類比信號 Si:輸入數位信號 Se:編碼信號 coded_pulse:第一脈衝 Sp:編碼光信號 S:感測信號 Sensing_pulse:第二脈衝 So:輸出數位信號 Sa:輸出類比信號 33:光源驅動器 34:光源 35:光感測器 351:邊緣觸發D正反器 352:反相器 36:解碼器 37:數位類比轉換器 38:低通濾波器 S401-S406:步驟 A:輸入端 clk:時脈信號 YN:輸出端 Q, QN:輸出端 data:資料輸入端 10: Optocoupler isolation amplifier 11: Modulator 12: Encoder 13: Light source 14: Sensor 15: Decoder 21: digital signal 22: Encoded digital signal 23: output signal 30: Analog optocoupler isolation amplifier 31: Modulator 32: Encoder 321: mutex or gate 322: Delay unit 323: Reverse and gate 324: first input 325: the second input 326: output terminal Sia: Input analog signal Si: Input digital signal Se: encoded signal coded_pulse: first pulse Sp: encoded optical signal S: sensing signal Sensing_pulse: Second pulse So: output digital signal Sa: output analog signal 33: Light source driver 34: Light source 35: Light sensor 351: Edge-triggered D flip-flop 352: Inverter 36: Decoder 37: Digital to Analog Converters 38: Low Pass Filter S401-S406: Steps A: Input terminal clk: clock signal YN: output terminal Q, QN: output terminal data: data input

圖1顯示傳統的光耦隔離放大器的電路方塊圖。Figure 1 shows the circuit block diagram of a conventional optocoupler isolation amplifier.

圖2顯示傳統的光耦隔離放大器的波形示意圖。Figure 2 shows the waveform diagram of a conventional optocoupler isolation amplifier.

圖3為本發明的光耦隔離放大器的方塊圖。FIG. 3 is a block diagram of the optocoupler isolation amplifier of the present invention.

圖4為本發明模擬光耦隔離放大器的編碼和解碼方法的流程圖。FIG. 4 is a flow chart of the encoding and decoding method of the analog optocoupler isolation amplifier of the present invention.

圖5為本發明光耦隔離放大器的波形示意圖。FIG. 5 is a schematic waveform diagram of the optocoupler isolation amplifier of the present invention.

圖6為本發明實施例的解碼器的電路示意圖。FIG. 6 is a schematic circuit diagram of a decoder according to an embodiment of the present invention.

圖7為本發明實施例的編碼器的電路示意圖。FIG. 7 is a schematic circuit diagram of an encoder according to an embodiment of the present invention.

S401-S406:步驟 S401-S406: Steps

Claims (8)

一種採用Σ-△調變技術的模擬光耦隔離放大器的編碼和解碼方法,所述模擬光耦隔離放大器包括一編碼器、一光源驅動器,一光源、一光感測器與一解碼器,所述編碼和解碼方法包括:當一輸入數位信號產生輸入脈衝上升緣或輸入脈衝下降緣時,通過所述編碼器產生具有多個第一脈衝的一編碼信號,每個所述第一脈衝具有一預定脈衝寬度;輸出具有多個所述第一脈衝的所述編碼信號至所述光源驅動器;根據所述編碼信號的多個所述第一脈衝,通過所述光源驅動器,驅動所述光源,輸出一編碼光信號;通過所述光感測器感測所述編碼光信號以產生一感測信號,且所述感測信號具有對應所述編碼信號的多個所述第一脈衝的多個第二脈衝;以及根據具有多個所述第二脈衝的所述感測信號,通過所述解碼器複製出所述編碼器的所述輸入數位信號;其中,在產生所述第一脈衝的步驟之前,更包括通過一積分-微分(Sigma-Delta)調變器,將一輸入類比信號轉換為所述輸入數位信號;其中,所述編碼器所產生的多個所述第一脈衝中,所有的所述預定脈衝寬度的寬度相同,所述預定脈衝寬度的範圍為所述積分-微分調變器的時脈的10%至25%。 An encoding and decoding method of an analog optocoupler isolation amplifier using Σ-Δ modulation technology, the analog optocoupler isolation amplifier includes an encoder, a light source driver, a light source, a light sensor and a decoder, and the The encoding and decoding method includes: when an input digital signal generates a rising edge of an input pulse or a falling edge of an input pulse, generating an encoded signal with a plurality of first pulses by the encoder, each of the first pulses having a a predetermined pulse width; outputting the encoded signal having a plurality of the first pulses to the light source driver; according to the plurality of the first pulses of the encoded signal, the light source driver is driven to drive the light source, and output a coded optical signal; the coded optical signal is sensed by the optical sensor to generate a sensing signal, and the sensing signal has a plurality of first pulses corresponding to a plurality of the first pulses of the coded signal two pulses; and replicating the input digital signal of the encoder by the decoder according to the sensed signal having a plurality of the second pulses; wherein before the step of generating the first pulses , further comprising converting an input analog signal into the input digital signal through an integral-differential (Sigma-Delta) modulator; wherein, among the plurality of first pulses generated by the encoder, all The width of the predetermined pulse width is the same, and the range of the predetermined pulse width is 10% to 25% of the clock pulse of the integral-derivative modulator. 如請求項1所述的編碼和解碼方法,其中,具有多個所述第一脈衝的所述編碼信號經過所述光源驅動器和所述光源後,所述感測器會產生失真的多個所述第二脈衝的所述感測信號,每個所述第二脈衝的失真大小與每個所述第一脈衝的脈衝寬度相關。 The encoding and decoding method according to claim 1, wherein after the encoded signal with a plurality of the first pulses passes through the light source driver and the light source, the sensor will generate a plurality of distorted The sensing signal of the second pulse, the distortion size of each of the second pulses is related to the pulse width of each of the first pulses. 如請求項1所述的編碼和解碼方法,其中,每個所述第二脈衝的脈衝寬度等於或接近於所述第一脈衝的所述脈衝寬度。 The encoding and decoding method of claim 1, wherein the pulse width of each of the second pulses is equal to or close to the pulse width of the first pulse. 如請求項1所述的編碼和解碼方法,其中,所述解碼器是一上升緣觸發解碼器,當所述解碼器感測到所述感測信號的所述第二脈衝是脈衝上升沿時,其輸出狀態從高位準1變低位元準0或從低位元準0變高位準1。 The encoding and decoding method of claim 1, wherein the decoder is a rising edge triggered decoder, and when the decoder senses that the second pulse of the sensing signal is a rising edge of the pulse , its output state changes from high level 1 to low level 0 or from low level 0 to high level 1. 如請求項1所述的編碼和解碼方法,其中,當所述解碼器接收到兩個連續的所述第二脈衝,所述解碼器會產生一輸出脈衝,且所述輸出脈衝的脈衝寬度由兩個連續所述第二脈衝的上升緣以及其時間間隔決定。 The encoding and decoding method of claim 1, wherein when the decoder receives two consecutive second pulses, the decoder generates an output pulse, and the pulse width of the output pulse is determined by The rising edges of the two consecutive second pulses and their time intervals are determined. 如請求項5所述的編碼和解碼方法,更包括通過所述解碼器輸出具有多個所述輸出脈衝的一輸出數位信號。 The encoding and decoding method of claim 5, further comprising outputting an output digital signal having a plurality of the output pulses through the decoder. 如請求項6所述的編碼和解碼方法,更包括通過一數位類比轉換器將所述輸出數位信號轉換為一輸出類比信號。 The encoding and decoding method of claim 6, further comprising converting the output digital signal into an output analog signal through a digital-to-analog converter. 如請求項7所述的編碼和解碼方法,更包括通過一低通濾波器以過濾在所述輸出信號轉換為所述輸出類比信號時所產生的雜訊。 The encoding and decoding method of claim 7, further comprising passing a low-pass filter to filter noise generated when the output signal is converted into the output analog signal.
TW109131479A 2020-09-14 2020-09-14 Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology TWI752628B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109131479A TWI752628B (en) 2020-09-14 2020-09-14 Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109131479A TWI752628B (en) 2020-09-14 2020-09-14 Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology

Publications (2)

Publication Number Publication Date
TWI752628B true TWI752628B (en) 2022-01-11
TW202211637A TW202211637A (en) 2022-03-16

Family

ID=80809394

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109131479A TWI752628B (en) 2020-09-14 2020-09-14 Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology

Country Status (1)

Country Link
TW (1) TWI752628B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287107A (en) * 1992-06-05 1994-02-15 Hewlett-Packard Company Optical isolation amplifier with sigma-delta modulation
US5969839A (en) * 1995-07-10 1999-10-19 Fuji Electric Co., Ltd. Optical communications device
US20090310978A1 (en) * 2008-06-11 2009-12-17 Kabushiki Kaisha Toshiba Complementary optical wiring system
US20100142976A1 (en) * 2008-12-08 2010-06-10 Kabushiki Kaisha Toshiba Transmitting circuit and complementary optical wiring system
WO2013088173A1 (en) * 2011-12-14 2013-06-20 Wolfson Microelectronics Plc Data transfer
TW201902129A (en) * 2017-05-17 2019-01-01 立錡科技股份有限公司 Digital analog conversion circuit and digital analog conversion method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287107A (en) * 1992-06-05 1994-02-15 Hewlett-Packard Company Optical isolation amplifier with sigma-delta modulation
US5969839A (en) * 1995-07-10 1999-10-19 Fuji Electric Co., Ltd. Optical communications device
US20090310978A1 (en) * 2008-06-11 2009-12-17 Kabushiki Kaisha Toshiba Complementary optical wiring system
US20100142976A1 (en) * 2008-12-08 2010-06-10 Kabushiki Kaisha Toshiba Transmitting circuit and complementary optical wiring system
WO2013088173A1 (en) * 2011-12-14 2013-06-20 Wolfson Microelectronics Plc Data transfer
TW201902129A (en) * 2017-05-17 2019-01-01 立錡科技股份有限公司 Digital analog conversion circuit and digital analog conversion method thereof

Also Published As

Publication number Publication date
TW202211637A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
KR101173942B1 (en) Data transmission device, data receiving device, data transmitting system and method for transmitting data
US9584147B2 (en) Isolator system supporting multiple ADCs via a single isolator channel
US6208478B1 (en) Read clock interface for read channel device
CN1941675B (en) Transmitter-receiver apparatus, transmitter apparatus, and receiver apparatus
JPS6318821A (en) Encoder
EP0122027A1 (en) Variable-length encoding-decoding system
JP4604627B2 (en) Encoder device and decoder device
TW463468B (en) Device for encoding N-bit source words into corresponding M-bit channel words and decoding M-bit channel words into corresponding N-bit source words
US6646574B2 (en) Method for recording information, method for reproducing information, and information recording apparatus
KR20010015164A (en) Data encoding method and apparatus
TWI752628B (en) Encoding and decoding method for optical isolated amplifier employing sigma-delta modulation technology
JPS6226102B2 (en)
JPH08194949A (en) Digital signal reproduction system
WO2020119193A1 (en) Code disc and encoder
US11025268B1 (en) Encoding and decoding method for optical isolation amplifier employing sigma-delta modulation technology
US7359471B2 (en) Data communication method and data communication device and semiconductor device
CN114189248A (en) Coding and decoding method of analog optical coupling isolation amplifier adopting sigma-delta modulation technology
KR960015521A (en) Information recorder
US8040626B2 (en) High-rate transition control code for magnetic recording channels
JPS60109358A (en) Coding device of binary data
JP2007533053A (en) Modulation code system and signal encoding and decoding method
Hareedy et al. A new family of constrained codes with applications in data storage
JPS61154237A (en) Synchronizing system
TWI603589B (en) Apparatus for differential amplitude pulse width modulation digital-to-analog conversion and method for encoding output signal thereof
JP2001126402A (en) Method and device for processing digital signal