TWI751681B - Alignment marker of thin film solar cell and manufacturing method thereof - Google Patents

Alignment marker of thin film solar cell and manufacturing method thereof Download PDF

Info

Publication number
TWI751681B
TWI751681B TW109130334A TW109130334A TWI751681B TW I751681 B TWI751681 B TW I751681B TW 109130334 A TW109130334 A TW 109130334A TW 109130334 A TW109130334 A TW 109130334A TW I751681 B TWI751681 B TW I751681B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
material layer
substrate
electrode material
Prior art date
Application number
TW109130334A
Other languages
Chinese (zh)
Other versions
TW202211494A (en
Inventor
吳哲耀
周凱茹
江宜達
Original Assignee
凌巨科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凌巨科技股份有限公司 filed Critical 凌巨科技股份有限公司
Priority to TW109130334A priority Critical patent/TWI751681B/en
Application granted granted Critical
Publication of TWI751681B publication Critical patent/TWI751681B/en
Publication of TW202211494A publication Critical patent/TW202211494A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A manufacturing method of an alignment marker of a thin film solar cell including steps below is provided. First, a first electrode material layer is formed on a substrate, wherein a surface, away from the substrate, of the first electrode material layer having a plurality of microstructures. Then, a photoelectric conversion layer and a second electrode layer are formed on the first electrode material layer, wherein the photoelectric conversion layer is disposed between the first electrode material layer and the second electrode layer, and an orthographic projection of the first electrode material layer regarding to a normal direction of the substrate is larger than an orthographic projection of the photoelectric conversion layer and the second electrode layer regarding to a normal direction of the substrate. Next, a photoresist layer is formed on the first electrode material layer, wherein the photoresist layer covers a portion of the first electrode material layer, the second electrode layer and the photoelectric conversion layer. After that, an etching process is performed on the first electrode material layer by using the photoresist layer to form a first electrode layer. An alignment marker is also provided.

Description

薄膜太陽能電池的對位標記及其製造方法Alignment mark for thin film solar cell and method for producing the same

本發明是有關於一種對位標記及其製造方法,且特別是有關於一種薄膜太陽能電池的對位標記及其製造方法。The present invention relates to an alignment mark and a manufacturing method thereof, and in particular, to an alignment mark of a thin film solar cell and a manufacturing method thereof.

請參照圖3A以及圖3B,在太陽能電池的製程中,用於對準的對位標記1、2一般是由依序堆疊於基板1000上的第一電極層1100、光電轉換層1200(包括依序層疊的第一非本徵半導體層1220、本徵半導體層1240以及第二非本徵半導體層1260)以及第二電極層1300所組成。然而,對位標記在形成的過程中須歷經多個蝕刻製程,其中在第一電極層1100的形成過程中,其歷經的蝕刻製程將使自身被過度的側蝕或者使得已形成的第二電極層1300被部分的移除,其所產生的問題各自如圖3A以及圖3B所示。在此情況下,用於對準的對位標記1、2將因結構不完整而使對準的精度降低或者甚至出現對位標記1、2自基板1000上剝離的現象。Referring to FIGS. 3A and 3B , in the manufacturing process of the solar cell, the alignment marks 1 and 2 used for alignment are generally composed of the first electrode layer 1100 and the photoelectric conversion layer 1200 (including the sequential stacking on the substrate 1000 ) The stacked first extrinsic semiconductor layer 1220 , the intrinsic semiconductor layer 1240 , the second extrinsic semiconductor layer 1260 ) and the second electrode layer 1300 are formed. However, in the process of forming the alignment mark, it needs to go through multiple etching processes. During the formation process of the first electrode layer 1100 , the etching process it undergoes will cause itself to be excessively side-etched or cause the second electrode layer that has been formed. 1300 is partially removed, and the resulting problems are shown in Figures 3A and 3B, respectively. In this case, the alignment marks 1 and 2 used for alignment will reduce the accuracy of alignment due to incomplete structures or even peel off the alignment marks 1 and 2 from the substrate 1000 .

本發明提供一種薄膜太陽能電池的對位標記的製造方法,其製成的對位標記具有完整的結構而使後續用於對準時具有準確的精度。此外,本發明提供的薄膜太陽能電池的對位標記可在製作薄膜太陽能電池的過程中同時形成,因此無需額外增加新的製程。The present invention provides a method for manufacturing an alignment mark of a thin-film solar cell, and the produced alignment mark has a complete structure, so that the alignment mark can be used for subsequent alignment with accurate precision. In addition, the alignment mark of the thin-film solar cell provided by the present invention can be simultaneously formed in the process of manufacturing the thin-film solar cell, so there is no need to add a new process.

本發明的薄膜太陽能電池的對位標記的製造方法包括以下步驟。首先,在基板上形成第一電極材料層,其中第一電極材料層遠離基板的表面上具有多個微結構。接著,在第一電極材料層上形成光電轉換層以及第二電極層,其中光電轉換層設置於第一電極材料層與第二電極層之間,且第一電極材料層在基板的法線方向上的正投影面大於第二電極層及光電轉換層在基板的法線方向上的正投影面。再來,在第一電極材料層上形成光阻層,其中光阻層覆蓋部分的第一電極材料層、第二電極層以及光電轉換層。然後,利用光阻層對第一電極材料層進行蝕刻製程,以形成第一電極層。The manufacturing method of the alignment mark of the thin film solar cell of the present invention includes the following steps. First, a first electrode material layer is formed on a substrate, wherein a surface of the first electrode material layer away from the substrate has a plurality of microstructures. Next, a photoelectric conversion layer and a second electrode layer are formed on the first electrode material layer, wherein the photoelectric conversion layer is disposed between the first electrode material layer and the second electrode layer, and the first electrode material layer is in the normal direction of the substrate The orthographic projection surface of the upper surface is larger than the orthographic projection surface of the second electrode layer and the photoelectric conversion layer in the normal direction of the substrate. Next, a photoresist layer is formed on the first electrode material layer, wherein the photoresist layer covers part of the first electrode material layer, the second electrode layer and the photoelectric conversion layer. Then, an etching process is performed on the first electrode material layer by using the photoresist layer to form a first electrode layer.

在本發明的一實施例中,上述的光阻層與部分的第一電極材料層的接觸部分在基板的法線方向上的正投影面具有至少大於1微米的寬度。In an embodiment of the present invention, the orthographic projection surface of the contact portion between the above-mentioned photoresist layer and part of the first electrode material layer in the normal direction of the substrate has a width of at least greater than 1 μm.

在本發明的一實施例中,上述的在基板上形成第一電極材料層的步驟中包括進行蝕刻製程。In an embodiment of the present invention, the above-mentioned step of forming the first electrode material layer on the substrate includes performing an etching process.

在本發明的一實施例中,上述的對第一電極材料層進行的蝕刻製程包括濕式蝕刻製程。In an embodiment of the present invention, the above-mentioned etching process for the first electrode material layer includes a wet etching process.

在本發明的一實施例中,上述的在第一電極材料層上形成光電轉換層以及第二電極層包括以下步驟。首先,在第一電極材料層上形成光電轉換材料層。接著,在光電轉換材料層上形成第二電極材料層。再來,依序對第二電極材料層以及光電轉換材料層進行蝕刻製程。In an embodiment of the present invention, the above-mentioned formation of the photoelectric conversion layer and the second electrode layer on the first electrode material layer includes the following steps. First, a photoelectric conversion material layer is formed on the first electrode material layer. Next, a second electrode material layer is formed on the photoelectric conversion material layer. Next, an etching process is sequentially performed on the second electrode material layer and the photoelectric conversion material layer.

在本發明的一實施例中,上述的對第二電極材料層進行的蝕刻製程包括濕式蝕刻製程。In an embodiment of the present invention, the above-mentioned etching process for the second electrode material layer includes a wet etching process.

在本發明的一實施例中,上述的對光電轉換材料層進行的蝕刻製程包括乾式蝕刻製程。In an embodiment of the present invention, the above-mentioned etching process for the photoelectric conversion material layer includes a dry etching process.

在本發明的一實施例中,上述的在形成第一電極層之後,移除光阻層。In an embodiment of the present invention, the photoresist layer is removed after the first electrode layer is formed.

本發明提供一種薄膜太陽能電池的對位標記,其具有完整的結構而使後續用於對準時具有準確的精度。The present invention provides an alignment mark for a thin film solar cell, which has a complete structure and can be used for subsequent alignment with accurate precision.

本發明的薄膜太陽能電池的對位標記包括依序設置於基板上的第一電極層、光電轉換層以及第二電極層,其中第一電極層在基板的法線方向上的正投影面大於第二電極層及光電轉換層在基板的法線方向上的正投影面。The alignment mark of the thin-film solar cell of the present invention includes a first electrode layer, a photoelectric conversion layer and a second electrode layer sequentially arranged on the substrate, wherein the orthographic projection surface of the first electrode layer in the normal direction of the substrate is larger than that of the first electrode layer in the normal direction of the substrate. The orthographic projection plane of the two electrode layers and the photoelectric conversion layer in the normal direction of the substrate.

在本發明的一實施例中,上述的第一電極層在基板的法線方向上的正投影面涵蓋第二電極層及光電轉換層在基板的法線方向上的正投影面。In an embodiment of the present invention, the orthographic plane of the first electrode layer in the normal direction of the substrate covers the orthographic plane of the second electrode layer and the photoelectric conversion layer in the normal direction of the substrate.

基於上述,本發明提供的薄膜太陽能電池的對位標記的製造方法藉由在對第一電極材料層進行蝕刻製程之前先形成覆蓋部分的第一電極材料層以及第二電極層的光阻層,可避免後續第一電極材料層在歷經蝕刻製程時使得第二電極層被部分的移除或者第一電極材料層被過度的側蝕,藉此使製成的對位標記具有完整的結構而使後續用於對準時具有準確的精度。Based on the above, the present invention provides a method for manufacturing an alignment mark of a thin film solar cell by forming a photoresist layer covering a portion of the first electrode material layer and the second electrode layer before performing the etching process on the first electrode material layer, It can avoid partial removal of the second electrode layer or excessive side etching of the first electrode material layer during the subsequent etching process of the first electrode material layer, so that the alignment mark produced has a complete structure and Subsequent use for alignment with accurate precision.

現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於附圖中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。本發明亦可以各種不同的形式體現,而不應限於本文中所述的實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似的參考號碼表示相同或相似的元件,以下段落將不再一一贅述。另外,實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附圖的方向。因此,使用的方向用語是用來說明並非用來限制本發明。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts. The present invention may also be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and the detailed description in the following paragraphs will not be repeated. In addition, the directional terms mentioned in the embodiments, such as: up, down, left, right, front or rear, etc., only refer to the directions of the drawings. Accordingly, the directional terms used are illustrative and not limiting of the present invention.

圖1為本發明的一實施例的薄膜太陽能電池的對位標記的製造方法的流程圖。FIG. 1 is a flowchart of a method for manufacturing an alignment mark of a thin film solar cell according to an embodiment of the present invention.

請參照圖1,首先,在基板100上形成第一電極材料層110a。基板100例如是使用透明材料所製成,以利環境光可穿透其而進入薄膜太陽能電池的內部。在一些實施例中,基板100的材料包括玻璃、透明樹脂或其他合適的透明材料。上述的透明樹脂可例如是聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚碳酸酯、聚醚或聚醯亞胺。在本實施例中,基板100的材料為玻璃。第一電極材料層110a的形成方法例如是利用物理氣相沉積法或化學氣相沉積法而全面性地形成於基板上。在一些實施例中,第一電極材料層110a的材料包括透明導電氧化物(Transparent Conductive Oxide;TCO)。舉例來說,第一電極材料層110a的材料可包括氧化銦錫(ITO)、摻雜鋁的氧化鋅(AZO)、氧化錫(SnO 2)或氧化銦(In 2O 3)。 Referring to FIG. 1 , first, a first electrode material layer 110 a is formed on the substrate 100 . The substrate 100 is made of, for example, a transparent material, so that ambient light can penetrate through it and enter the interior of the thin film solar cell. In some embodiments, the material of the substrate 100 includes glass, transparent resin, or other suitable transparent materials. The above-mentioned transparent resin may be, for example, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyether or polyimide. In this embodiment, the material of the substrate 100 is glass. The formation method of the first electrode material layer 110a is, for example, comprehensively formed on the substrate by using physical vapor deposition method or chemical vapor deposition method. In some embodiments, the material of the first electrode material layer 110 a includes transparent conductive oxide (Transparent Conductive Oxide; TCO). For example, the material of the first electrode material layer 110a may include indium tin oxide (ITO), aluminum doped zinc oxide (AZO), tin oxide (SnO 2 ), or indium oxide (In 2 O 3 ).

接著,對第一電極材料層110a進行蝕刻製程,以形成第一電極材料層110b,其中第一電極材料層110b遠離基板100的表面上具有多個微結構112。進行蝕刻製程的目的是使第一電極材料層110b遠離基板100的表面具有提高的表面粗糙度,因此,當環境光行進至其時會因該些微結構112而散射,經散射的環境光的行進路程將增加而達到全反射條件,藉此提高環境光的反射量。在一些實施例中,上述的蝕刻製程可包括濕式蝕刻製程、乾式蝕刻製程或其組合。在本實施例中是採用濕式蝕刻製程。Next, an etching process is performed on the first electrode material layer 110 a to form a first electrode material layer 110 b , wherein a surface of the first electrode material layer 110 b away from the substrate 100 has a plurality of microstructures 112 . The purpose of performing the etching process is to make the surface of the first electrode material layer 110b away from the substrate 100 to have improved surface roughness. Therefore, when ambient light travels to it, it will be scattered by the microstructures 112, and the scattered ambient light will travel The distance will be increased to reach a total reflection condition, thereby increasing the amount of reflected ambient light. In some embodiments, the above-mentioned etching process may include a wet etching process, a dry etching process, or a combination thereof. In this embodiment, a wet etching process is used.

再來,在第一電極材料層110b上形成光電轉換材料層120a。光電轉換材料層120a的形成方法例如是藉由化學氣相沉積法形成,但本發明並不限於此。在一些實施例中,光電轉換材料層120a的材料可包括單晶矽、多晶矽或非晶矽,即,本實施例經形成後的薄膜太陽能電池可為一種矽薄膜太陽能電池。在本實施例中,光電轉換材料層120a的材料為非晶矽。光電轉換材料層120a例如包括依序層疊的第一非本徵半導體材料層122a、本徵半導體材料層124a以及第二非本徵半導體材料層126a,其中第一非本徵半導體材料層122a具有第一摻雜類型,且第二非本徵半導體材料層126a具有第二摻雜類型。上述的第一摻雜類型與第二摻雜類型各自為P型與N型中的一者。在本實施例中,第一摻雜類型為P型,且第二摻雜類型為N型,但本發明並不限於此。Next, a photoelectric conversion material layer 120a is formed on the first electrode material layer 110b. The formation method of the photoelectric conversion material layer 120a is formed by, for example, chemical vapor deposition, but the present invention is not limited thereto. In some embodiments, the material of the photoelectric conversion material layer 120a may include monocrystalline silicon, polycrystalline silicon or amorphous silicon, that is, the formed thin film solar cell in this embodiment may be a silicon thin film solar cell. In this embodiment, the material of the photoelectric conversion material layer 120a is amorphous silicon. The photoelectric conversion material layer 120a includes, for example, a first extrinsic semiconductor material layer 122a, an intrinsic semiconductor material layer 124a, and a second extrinsic semiconductor material layer 126a that are sequentially stacked, wherein the first extrinsic semiconductor material layer 122a has the first extrinsic semiconductor material layer 122a. a doping type, and the second extrinsic semiconductor material layer 126a has a second doping type. The above-mentioned first doping type and second doping type are each one of P-type and N-type. In this embodiment, the first doping type is P-type, and the second doping type is N-type, but the invention is not limited thereto.

然後,在光電轉換材料層120a上形成第二電極材料層130a。第二電極材料層130a的形成方法例如是藉由濺鍍法或化學氣相沉積法形成,但本發明並不限於此。第二電極材料層130a的材料例如是金屬、合金或金屬氧化物。舉例來說,第二電極材料層130a的材料包括鉬鉭或鉬鉭與鋁的組合。Then, a second electrode material layer 130a is formed on the photoelectric conversion material layer 120a. The formation method of the second electrode material layer 130a is formed by, for example, sputtering or chemical vapor deposition, but the present invention is not limited thereto. The material of the second electrode material layer 130a is, for example, metal, alloy or metal oxide. For example, the material of the second electrode material layer 130a includes molybdenum-tantalum or a combination of molybdenum-tantalum and aluminum.

之後,依序對第二電極材料層130a與光電轉換材料層120a進行蝕刻製程,以各自形成第二電極層130以及光電轉換層120。在一些實施例中,上述的蝕刻製程可包括濕式蝕刻製程、乾式蝕刻製程或其組合。在本實施例中,對第二電極材料層130a進行的蝕刻製程是採用濕式蝕刻製程,且對光電轉換材料層120a進行的蝕刻製程是採用乾式蝕刻製程。另外,形成後的光電轉換層120包括依序層疊的第一非本徵半導體層122、本徵半導體層124以及第二非本徵半導體層126。另外,第一電極材料層110b在基板100的法線方向Z上的正投影面大於第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面。在本實施例中,第一電極材料層110b在基板100的法線方向Z上的正投影面涵蓋第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面,即,第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面的邊緣不會超出第一電極材料層110b在基板100的法線方向Z上的正投影面的邊緣。After that, an etching process is sequentially performed on the second electrode material layer 130 a and the photoelectric conversion material layer 120 a to form the second electrode layer 130 and the photoelectric conversion layer 120 respectively. In some embodiments, the above-mentioned etching process may include a wet etching process, a dry etching process, or a combination thereof. In this embodiment, the etching process for the second electrode material layer 130 a is a wet etching process, and the etching process for the photoelectric conversion material layer 120 a is a dry etching process. In addition, the formed photoelectric conversion layer 120 includes a first extrinsic semiconductor layer 122 , an intrinsic semiconductor layer 124 and a second extrinsic semiconductor layer 126 that are sequentially stacked. In addition, the orthographic projection surface of the first electrode material layer 110 b in the normal direction Z of the substrate 100 is larger than the orthographic projection surfaces of the second electrode layer 130 and the photoelectric conversion layer 120 in the normal direction Z of the substrate 100 . In this embodiment, the orthographic projection surface of the first electrode material layer 110 b on the normal direction Z of the substrate 100 covers the orthographic projection surface of the second electrode layer 130 and the photoelectric conversion layer 120 on the normal direction Z of the substrate 100 , That is, the edge of the orthographic projection surface of the second electrode layer 130 and the photoelectric conversion layer 120 in the normal direction Z of the substrate 100 does not exceed the normal projection surface of the first electrode material layer 110b in the normal direction Z of the substrate 100. edge.

而後,在第一電極材料層110b上形成光阻層200,其中光阻層200覆蓋部分的第一電極材料層110b、第二電極層130以及光電轉換層120。詳細地說,光阻層200除了形成於第一電極材料層110b上,還形成於第二電極層130的頂表面、第二電極層130的側表面以及光電轉換層120的側表面上,基於此,在後續第一電極材料層110b歷經蝕刻製程時,光阻層200的設置可避免部分的第二電極層130亦因上述的蝕刻製程而被移除。光阻層200例如包括耐蝕刻的薄膜材料。在一些實施例中,光阻層200的材料可包括正型光阻材料或負型光阻材料,本發明並無特別限制。在本實施例中,光阻層200與部分的第一電極材料層110b的具有多個微結構112的表面接觸,其中光阻層200與部分的第一電極材料層110b的接觸部分在基板100的法線方向Z上的正投影面具有至少大於1微米的寬度w。在此情況下,光阻層200的設置可避免使後續第一電極材料層110b在歷經蝕刻製程時被過度的側蝕。Then, a photoresist layer 200 is formed on the first electrode material layer 110b, wherein the photoresist layer 200 covers part of the first electrode material layer 110b, the second electrode layer 130 and the photoelectric conversion layer 120. In detail, in addition to being formed on the first electrode material layer 110b, the photoresist layer 200 is also formed on the top surface of the second electrode layer 130, the side surface of the second electrode layer 130 and the side surface of the photoelectric conversion layer 120, based on Therefore, when the first electrode material layer 110b is subsequently subjected to the etching process, the photoresist layer 200 is disposed to avoid that part of the second electrode layer 130 is also removed due to the above-mentioned etching process. The photoresist layer 200 includes, for example, an etch-resistant thin film material. In some embodiments, the material of the photoresist layer 200 may include a positive type photoresist material or a negative type photoresist material, which is not particularly limited in the present invention. In the present embodiment, the photoresist layer 200 is in contact with a part of the surface of the first electrode material layer 110 b having the plurality of microstructures 112 , wherein the contact part of the photoresist layer 200 and a part of the first electrode material layer 110 b is on the substrate 100 The orthographic plane of projection in the normal direction Z has a width w of at least greater than 1 micron. In this case, the arrangement of the photoresist layer 200 can avoid excessive side etching of the subsequent first electrode material layer 110b during the etching process.

最後,對第一電極材料層110b進行蝕刻製程,以形成第一電極層110,且後續移除光阻層200。在一些實施例中,上述的蝕刻製程可包括濕式蝕刻製程、乾式蝕刻製程或其組合。在本實施例中,對第一電極材料層110b進行的蝕刻製程是採用濕式蝕刻製程。由於在前述步驟中設置有光阻層200,可避免部分的第二電極層130被移除,且使形成的第一電極層110具有完整的結構。在本實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有至少大於1微米的寬度W。Finally, an etching process is performed on the first electrode material layer 110b to form the first electrode layer 110, and the photoresist layer 200 is subsequently removed. In some embodiments, the above-mentioned etching process may include a wet etching process, a dry etching process, or a combination thereof. In this embodiment, the etching process for the first electrode material layer 110b is a wet etching process. Since the photoresist layer 200 is provided in the foregoing steps, part of the second electrode layer 130 can be prevented from being removed, and the formed first electrode layer 110 has a complete structure. In this embodiment, the portion of the first electrode layer 110 exposed by the second electrode layer 130 in the normal direction Z of the substrate 100 has a width W of at least greater than 1 μm.

至此,完成本實施例的薄膜太陽能電池的對位標記10的製作。So far, the fabrication of the alignment mark 10 of the thin film solar cell of the present embodiment is completed.

本實施例的薄膜太陽能電池的對位標記10的製造方法雖然是以上述方法為例進行說明,然而本發明的薄膜太陽能電池的對位標記的形成方法並不以此為限。Although the method of manufacturing the alignment mark 10 of the thin film solar cell of the present embodiment is described by taking the above method as an example, the method of forming the alignment mark of the thin film solar cell of the present invention is not limited thereto.

基於上述,本實施例的薄膜太陽能電池的對位標記製造方法藉由在對第一電極材料層進行蝕刻製程之前先形成覆蓋部分的第一電極材料層以及第二電極層的光阻層,可避免後續第一電極材料層在歷經蝕刻製程時使得第二電極層被部分的移除或者第一電極材料層被過度的側蝕。Based on the above, the method for manufacturing an alignment mark for a thin film solar cell of the present embodiment is to form a photoresist layer covering a portion of the first electrode material layer and the second electrode layer before performing the etching process on the first electrode material layer. To avoid partial removal of the second electrode layer or excessive side etching of the first electrode material layer when the subsequent first electrode material layer undergoes an etching process.

請繼續參照圖1,在圖1繪示的最後步驟示出了的薄膜太陽能電池的對位標記10的局部剖面示意圖。本發明實施例的薄膜太陽能電池的對位標記10包括第一電極層110、光電轉換層120以及第二電極層130,其中第一電極層110、光電轉換層120以及第二電極層130依序設置於基板100上。基板100、第一電極層110、光電轉換層120以及第二電極層130具有的材料及其功能可參照前述實施例,於此不再贅述。在一些實施例中,光電轉換層120包括依序層疊的第一非本徵半導體層122、本徵半導體層124以及第二非本徵半導體層126,其中第一非本徵半導體層122以及第二非本徵半導體層126具有的摻雜類型可參照前述實施例,於此不再贅述。在本實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有最小寬度W,其中最小寬度W至少大於1微米。另外,第一電極層110在基板100的法線方向Z上的正投影面大於第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面。在本實施例中,第一電極層110在基板100的法線方向Z上的正投影面涵蓋第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面,即,第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面的邊緣不會超出第一電極層110在基板100的法線方向Z上的正投影面的邊緣。基於此,本發明的薄膜太陽能電池的對位標記10可具有穩固的基底,其可避免對位標記10自基板100上剝離以具有良好的對準精度。Please continue to refer to FIG. 1 , which is a schematic partial cross-sectional view of the alignment mark 10 of the thin film solar cell shown in the final step shown in FIG. 1 . The alignment mark 10 of the thin film solar cell according to the embodiment of the present invention includes a first electrode layer 110 , a photoelectric conversion layer 120 and a second electrode layer 130 , wherein the first electrode layer 110 , the photoelectric conversion layer 120 and the second electrode layer 130 are in sequence arranged on the substrate 100 . The materials and functions of the substrate 100 , the first electrode layer 110 , the photoelectric conversion layer 120 and the second electrode layer 130 can be referred to the above-mentioned embodiments, and details are not repeated here. In some embodiments, the photoelectric conversion layer 120 includes a first extrinsic semiconductor layer 122 , an intrinsic semiconductor layer 124 and a second extrinsic semiconductor layer 126 stacked in sequence, wherein the first extrinsic semiconductor layer 122 and the second extrinsic semiconductor layer 126 The doping type of the two extrinsic semiconductor layers 126 can be referred to the above-mentioned embodiments, and details are not described herein again. In this embodiment, the portion of the first electrode layer 110 exposed by the second electrode layer 130 in the normal direction Z of the substrate 100 has a minimum width W, wherein the minimum width W is at least greater than 1 micrometer. In addition, the orthographic plane of the first electrode layer 110 in the normal direction Z of the substrate 100 is larger than the orthographic plane of the second electrode layer 130 and the photoelectric conversion layer 120 in the normal direction Z of the substrate 100 . In this embodiment, the orthographic plane of the first electrode layer 110 on the normal direction Z of the substrate 100 covers the orthographic plane of the second electrode layer 130 and the photoelectric conversion layer 120 on the normal direction Z of the substrate 100 , that is, , the edge of the orthographic plane of the second electrode layer 130 and the photoelectric conversion layer 120 in the normal direction Z of the substrate 100 does not exceed the edge of the orthographic plane of the first electrode layer 110 in the normal direction Z of the substrate 100 . Based on this, the alignment mark 10 of the thin film solar cell of the present invention can have a stable base, which can prevent the alignment mark 10 from being peeled off from the substrate 100 to have good alignment accuracy.

請參照圖2A,圖2A繪示了本發明的一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。Please refer to FIG. 2A . FIG. 2A is a schematic top view of a partial top view of an alignment mark of a thin film solar cell according to an embodiment of the present invention.

在圖2A繪示的薄膜太陽能電池的對位標記10a中,第二電極層130在基板100的法線方向Z上的正投影為十字形,但本發明並不以此為限。如圖2A所示,第二電極層130由一個第一矩形130_a以及兩個第二矩形130_b組成,其中兩個第二矩形130_b各自位於第一矩形130_a的相對兩側邊且與第一矩形130a接觸。第一矩形130_a例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第一矩形130_a具有0.05毫米的長度以及0.01毫米的寬度。第二矩形130_b例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第二矩形130_b具有0.02毫米的長度以及0.01毫米的寬度。另外,在圖2A中,第一電極層110在基板100的法線方向Z上的正投影為正方形,但本發明並不以此為限。第一電極層110在基板100的法線方向Z上的正投影例如具有0.01~10毫米的邊長。在本實施例中,第一電極層110在基板100的法線方向Z上的正投影具有1毫米的邊長。在一些實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有最小寬度W1,其中最小寬度W1至少大於1微米。In the alignment mark 10 a of the thin film solar cell shown in FIG. 2A , the orthographic projection of the second electrode layer 130 on the normal direction Z of the substrate 100 is a cross, but the invention is not limited thereto. As shown in FIG. 2A , the second electrode layer 130 is composed of a first rectangle 130_a and two second rectangles 130_b, wherein the two second rectangles 130_b are respectively located on opposite sides of the first rectangle 130_a and are opposite to the first rectangle 130a get in touch with. The first rectangle 130_a has, for example, a length of 0.005˜10 mm and a width of 0.005˜10 mm. In this embodiment, the first rectangle 130_a has a length of 0.05 mm and a width of 0.01 mm. The second rectangle 130_b has, for example, a length of 0.005˜10 mm and a width of 0.005˜10 mm. In this embodiment, the second rectangle 130_b has a length of 0.02 mm and a width of 0.01 mm. In addition, in FIG. 2A , the orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 is a square, but the present invention is not limited to this. The orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 has, for example, a side length of 0.01-10 mm. In this embodiment, the orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 has a side length of 1 mm. In some embodiments, the portion of the first electrode layer 110 exposed by the second electrode layer 130 in the normal direction Z of the substrate 100 has a minimum width W1, wherein the minimum width W1 is at least greater than 1 micrometer.

請參照圖2B,圖2B繪示了本發明的另一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。Please refer to FIG. 2B . FIG. 2B illustrates a partial top view of an alignment mark of a thin film solar cell according to another embodiment of the present invention.

在圖2B繪示的薄膜太陽能電池的對位標記10b中,第二電極層130在基板100的法線方向Z上的正投影為十字形與四個矩形的組合,但本發明並不以此為限。如圖2B所示,第二電極層130具有的十字形投影由一個第三矩形130_c以及兩個第四矩形130_d組成,其中兩個第四矩形130_d各自位於第三矩形130_c的相對兩側邊且與第三矩形130_c接觸。第二電極層130具有的四個矩形投影則由四個第五矩形130_e組成,該些第五矩形130_e各自位於由十字形投影劃分出的四個區域,且各自與十字形投影之間具有特定間隔。第三矩形130_c例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第三矩形130_c具有0.05毫米的長度以及0.01毫米的寬度。第四矩形130_d例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第四矩形130_d具有0.02毫米的長度以及0.01毫米的寬度。第五矩形130_e例如具有0.0025~5毫米的長度以及0.0025~5毫米的寬度。在本實施例中,第五矩形130_e具有0.05毫米的長度以及0.01毫米的寬度。另外,在圖2B中,第一電極層110在基板100的法線方向Z上的正投影為正方形,但本發明並不以此為限。第一電極層110在基板100的法線方向Z上的正投影例如具有0.01~10毫米的邊長。在本實施例中,第一電極層110在基板100的法線方向Z上的正投影具有0.07毫米的邊長。在一些實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有最小寬度W2,其中最小寬度W2至少大於1微米。In the alignment mark 10b of the thin film solar cell shown in FIG. 2B , the orthographic projection of the second electrode layer 130 on the normal direction Z of the substrate 100 is a combination of a cross and four rectangles, but the present invention does not use this limited. As shown in FIG. 2B , the cross-shaped projection of the second electrode layer 130 is composed of a third rectangle 130_c and two fourth rectangles 130_d, wherein the two fourth rectangles 130_d are respectively located on opposite sides of the third rectangle 130_c and Contact with the third rectangle 130_c. The four rectangular projections of the second electrode layer 130 are composed of four fifth rectangles 130_e. The fifth rectangles 130_e are located in the four regions divided by the cross-shaped projections, and each has a specific relationship with the cross-shaped projections. interval. The third rectangle 130_c has, for example, a length of 0.005˜10 mm and a width of 0.005˜10 mm. In this embodiment, the third rectangle 130_c has a length of 0.05 mm and a width of 0.01 mm. The fourth rectangle 130_d has, for example, a length of 0.005˜10 mm and a width of 0.005˜10 mm. In this embodiment, the fourth rectangle 130_d has a length of 0.02 mm and a width of 0.01 mm. The fifth rectangle 130_e has, for example, a length of 0.0025˜5 mm and a width of 0.0025˜5 mm. In this embodiment, the fifth rectangle 130_e has a length of 0.05 mm and a width of 0.01 mm. In addition, in FIG. 2B , the orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 is a square, but the present invention is not limited to this. The orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 has, for example, a side length of 0.01-10 mm. In this embodiment, the orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 has a side length of 0.07 mm. In some embodiments, the portion of the first electrode layer 110 exposed by the second electrode layer 130 in the normal direction Z of the substrate 100 has a minimum width W2, wherein the minimum width W2 is at least greater than 1 micrometer.

請參照圖2C,圖2C繪示了圖2A示出的薄膜太陽能電池的對位標記的局部俯視示意圖的變形實施例。Please refer to FIG. 2C . FIG. 2C shows a modified embodiment of the partial top view of the alignment mark of the thin film solar cell shown in FIG. 2A .

圖2C示出的薄膜太陽能電池的對位標記10c與圖2A示出的薄膜太陽能電池的對位標記10a的主要差異在於:第一電極層110在基板100的法線方向Z上的正投影亦為十字形。在本實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分皆具有實質上相同的寬度W3,其中最小寬度W3至少大於1微米。The main difference between the alignment mark 10c of the thin film solar cell shown in FIG. 2C and the alignment mark 10a of the thin film solar cell shown in FIG. 2A is that the orthographic projection of the first electrode layer 110 on the normal direction Z of the substrate 100 is also for the cruciform. In this embodiment, the portions of the first electrode layer 110 exposed by the second electrode layer 130 in the normal direction Z of the substrate 100 all have substantially the same width W3, wherein the minimum width W3 is at least greater than 1 μm.

綜上所述,本發明提供的薄膜太陽能電池的對位標記的製造方法藉由在對第一電極材料層進行蝕刻製程之前先形成覆蓋部分的第一電極材料層以及第二電極層的光阻層,可避免後續第一電極材料層在歷經蝕刻製程時使得第二電極層被部分的移除或者第一電極材料層被過度的側蝕,藉此使製成的對位標記具有完整的結構而使後續用於對準時具有準確的精度。此外,本發明提供的薄膜太陽能電池的對位標記可在製作薄膜太陽能電池的過程中同時形成,因此無需額外增加新的製程,可降低製作對位標記的製造成本。To sum up, the method for manufacturing the alignment mark of the thin film solar cell provided by the present invention is to form a photoresist covering a portion of the first electrode material layer and the second electrode layer before performing the etching process on the first electrode material layer. layer, which can avoid partial removal of the second electrode layer or excessive side etching of the first electrode material layer when the subsequent first electrode material layer undergoes an etching process, thereby enabling the alignment mark to have a complete structure. This enables accurate precision for subsequent use in alignment. In addition, the alignment mark of the thin-film solar cell provided by the present invention can be simultaneously formed during the process of manufacturing the thin-film solar cell, so there is no need to add a new process, and the manufacturing cost of the alignment mark can be reduced.

再者,在本發明提供的薄膜太陽能電池的對位標記中,第一電極層在基板的法線方向上被第二電極層暴露的部分具有最小寬度,其中最小寬度至少大於1微米。基於此,本發明的薄膜太陽能電池的對位標記可具有穩固的基底,其可避免對位標記自基板上剝離以具有良好的對準精度。Furthermore, in the alignment mark of the thin film solar cell provided by the present invention, the portion of the first electrode layer exposed by the second electrode layer in the normal direction of the substrate has a minimum width, wherein the minimum width is at least greater than 1 micron. Based on this, the alignment mark of the thin film solar cell of the present invention can have a stable base, which can avoid peeling of the alignment mark from the substrate to have good alignment accuracy.

1、2、10:對位標記 100、1000:基板 110、1100:第一電極層 110a、110b:第一電極材料層 112:微結構 120、1200:光電轉換層 120a:光電轉換材料層 122:第一非本徵半導體層 122a:第一非本徵半導體材料層 124:本徵半導體層 124a:本徵半導體材料層 126:第二非本徵半導體層 126a:第二非本徵半導體材料層 130、1300:第二電極層 130a:第二電極材料層 130_a:第一矩形 130_b:第二矩形 130_c:第三矩形 130_d:第四矩形 130_e:第五矩形 200:光阻層 w、W、W1、W2、W3:寬度 Z:法線方向 1, 2, 10: alignment mark 100, 1000: substrate 110, 1100: the first electrode layer 110a, 110b: first electrode material layer 112: Microstructure 120, 1200: Photoelectric conversion layer 120a: Photoelectric conversion material layer 122: the first extrinsic semiconductor layer 122a: the first extrinsic semiconductor material layer 124: Intrinsic semiconductor layer 124a: Intrinsic semiconductor material layer 126: the second extrinsic semiconductor layer 126a: the second extrinsic semiconductor material layer 130, 1300: the second electrode layer 130a: second electrode material layer 130_a: first rectangle 130_b: Second rectangle 130_c: Third rectangle 130_d: Fourth rectangle 130_e: Fifth rectangle 200: photoresist layer w, W, W1, W2, W3: width Z: normal direction

圖1為本發明的一實施例的薄膜太陽能電池的對位標記的製造方法的流程圖。 圖2A繪示了本發明的一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。 圖2B繪示了本發明的另一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。 圖2C繪示了圖2A示出的薄膜太陽能電池的對位標記的局部俯視示意圖的變形實施例。 圖3A以及圖3B繪示了習知薄膜太陽能電池的對位標記的局部剖面示意圖。 FIG. 1 is a flowchart of a method for manufacturing an alignment mark of a thin film solar cell according to an embodiment of the present invention. FIG. 2A is a partial top schematic view of an alignment mark of a thin film solar cell according to an embodiment of the present invention. FIG. 2B is a partial top schematic view of an alignment mark of a thin film solar cell according to another embodiment of the present invention. FIG. 2C shows a modified example of a partial top view of the alignment mark of the thin film solar cell shown in FIG. 2A . 3A and 3B are schematic partial cross-sectional views of alignment marks of a conventional thin-film solar cell.

10:對位標記 10: Alignment mark

100:基板 100: Substrate

110:第一電極層 110: the first electrode layer

110a、110b:第一電極材料層 110a, 110b: first electrode material layer

112:微結構 112: Microstructure

120:光電轉換層 120: Photoelectric conversion layer

120a:光電轉換材料層 120a: Photoelectric conversion material layer

122:第一非本徵半導體層 122: the first extrinsic semiconductor layer

122a:第一非本徵半導體材料層 122a: the first extrinsic semiconductor material layer

124:本徵半導體層 124: Intrinsic semiconductor layer

124a:本徵半導體材料層 124a: Intrinsic semiconductor material layer

126:第二非本徵半導體層 126: the second extrinsic semiconductor layer

126a:第二非本徵半導體材料層 126a: the second extrinsic semiconductor material layer

130:第二電極層 130: the second electrode layer

130a:第二電極材料層 130a: second electrode material layer

200:光阻層 200: photoresist layer

w、W:寬度 w, W: width

Z:法線方向 Z: normal direction

Claims (10)

一種薄膜太陽能電池的對位標記的製造方法,包括:在基板上形成第一電極材料層,其中所述第一電極材料層遠離所述基板的表面上具有多個微結構;在所述第一電極材料層上形成光電轉換層以及第二電極層,其中所述光電轉換層設置於所述第一電極材料層與所述第二電極層之間,且所述第一電極材料層在所述基板的法線方向上的正投影面大於所述第二電極層及所述光電轉換層在所述基板的所述法線方向上的正投影面;在所述第一電極材料層上形成光阻層,其中所述光阻層覆蓋部分的所述第一電極材料層、所述第二電極層以及所述光電轉換層;以及利用所述光阻層對所述第一電極材料層進行蝕刻製程,以形成第一電極層。 A method for manufacturing an alignment mark of a thin film solar cell, comprising: forming a first electrode material layer on a substrate, wherein the surface of the first electrode material layer away from the substrate has a plurality of microstructures; A photoelectric conversion layer and a second electrode layer are formed on the electrode material layer, wherein the photoelectric conversion layer is arranged between the first electrode material layer and the second electrode layer, and the first electrode material layer is in the The orthographic projection surface in the normal direction of the substrate is larger than the orthographic projection surface of the second electrode layer and the photoelectric conversion layer in the normal direction of the substrate; the light is formed on the first electrode material layer A resist layer, wherein the photoresist layer covers part of the first electrode material layer, the second electrode layer and the photoelectric conversion layer; and the first electrode material layer is etched by using the photoresist layer process to form the first electrode layer. 如請求項1所述的薄膜太陽能電池的對位標記的製造方法,其中所述光阻層與部分的所述第一電極材料層的接觸部分在所述基板的所述法線方向上的正投影面具有至少大於1微米的寬度。 The method for manufacturing an alignment mark of a thin film solar cell according to claim 1, wherein a contact portion of the photoresist layer and a portion of the first electrode material layer is in a positive direction in the normal direction of the substrate. The projection surface has a width of at least greater than 1 micron. 如請求項1所述的薄膜太陽能電池的對位標記的製造方法,其中在所述基板上形成所述第一電極材料層的步驟中包括進行蝕刻製程。 The method for manufacturing an alignment mark of a thin film solar cell according to claim 1, wherein the step of forming the first electrode material layer on the substrate includes performing an etching process. 如請求項3所述的薄膜太陽能電池的對位標記的製造方法,其中對所述第一電極材料層進行的所述蝕刻製程包括濕式蝕刻製程。 The method for manufacturing an alignment mark of a thin film solar cell according to claim 3, wherein the etching process performed on the first electrode material layer includes a wet etching process. 如請求項1所述的薄膜太陽能電池的對位標記的製造方法,其中在所述第一電極材料層上形成所述光電轉換層以及所述第二電極層的步驟中包括:在所述第一電極材料層上形成光電轉換材料層:在所述光電轉換材料層上形成第二電極材料層;以及依序對所述第二電極材料層以及所述光電轉換材料層進行蝕刻製程。 The method for manufacturing an alignment mark for a thin film solar cell according to claim 1, wherein the step of forming the photoelectric conversion layer and the second electrode layer on the first electrode material layer includes: forming a photoelectric conversion material layer on an electrode material layer: forming a second electrode material layer on the photoelectric conversion material layer; and sequentially performing an etching process on the second electrode material layer and the photoelectric conversion material layer. 如請求項5所述的薄膜太陽能電池的對位標記的製造方法,其中對所述第二電極材料層進行的所述蝕刻製程包括濕式蝕刻製程。 The method for manufacturing an alignment mark of a thin film solar cell according to claim 5, wherein the etching process performed on the second electrode material layer includes a wet etching process. 如請求項5所述的薄膜太陽能電池的對位標記的製造方法,其中對所述光電轉換材料層進行的所述蝕刻製程包括乾式蝕刻製程。 The method for manufacturing an alignment mark of a thin film solar cell according to claim 5, wherein the etching process performed on the photoelectric conversion material layer includes a dry etching process. 如請求項1所述的薄膜太陽能電池的對位標記的製造方法,其中在形成所述第一電極層之後,移除所述光阻層。 The method for manufacturing an alignment mark of a thin film solar cell according to claim 1, wherein after forming the first electrode layer, the photoresist layer is removed. 一種薄膜太陽能電池的對位標記,包括依序設置於基板上的第一電極層、光電轉換層以及第二電極層,其中所述第一電極層在所述基板的法線方向上的正投影面大於所述第二電極層及所述光電轉換層在所述基板的所述法線方向上的正投影面, 其中所述第二電極層在所述基板的所述法線方向上的所述正投影面至少包括十字形圖案,其中所述第一電極層在所述基板的所述法線方向上被所述第二電極層暴露的部分具有實質上相同的寬度,所述寬度至少大於1微米。 An alignment mark for a thin film solar cell, comprising a first electrode layer, a photoelectric conversion layer and a second electrode layer sequentially arranged on a substrate, wherein the orthographic projection of the first electrode layer on the normal direction of the substrate The surface is larger than the orthographic projection surface of the second electrode layer and the photoelectric conversion layer in the normal direction of the substrate, The orthographic projection surface of the second electrode layer in the normal direction of the substrate includes at least a cross-shaped pattern, wherein the first electrode layer is surrounded by the normal direction of the substrate. The exposed portions of the second electrode layer have substantially the same width, and the width is at least greater than 1 micrometer. 如請求項9所述的薄膜太陽能電池的對位標記,其中所述第一電極層在所述基板的所述法線方向上的所述正投影面涵蓋所述第二電極層及所述光電轉換層在所述基板的所述法線方向上的所述正投影面。 The alignment mark for thin film solar cells according to claim 9, wherein the orthographic projection surface of the first electrode layer in the normal direction of the substrate covers the second electrode layer and the photovoltaic the orthographic projection plane of the conversion layer in the normal direction of the substrate.
TW109130334A 2020-09-04 2020-09-04 Alignment marker of thin film solar cell and manufacturing method thereof TWI751681B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109130334A TWI751681B (en) 2020-09-04 2020-09-04 Alignment marker of thin film solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109130334A TWI751681B (en) 2020-09-04 2020-09-04 Alignment marker of thin film solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI751681B true TWI751681B (en) 2022-01-01
TW202211494A TW202211494A (en) 2022-03-16

Family

ID=80809191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109130334A TWI751681B (en) 2020-09-04 2020-09-04 Alignment marker of thin film solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI751681B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253473A (en) * 2003-02-18 2004-09-09 Sharp Corp Process for fabricating thin film solar cell, thin film solar cell, and thin film solar cell module
JP2004260014A (en) * 2003-02-26 2004-09-16 Kyocera Corp Multilayer type thin film photoelectric converter
TW201016749A (en) * 2008-08-07 2010-05-01 Mitsubishi Chem Corp Polymer, fluorescent layer material, organic electroluminescence element material, composition for organic electroluminescence element, and organic electroluminescence element, solar cell element organic EL display and organic EL lighting, using the same
US20110100414A1 (en) * 2009-10-30 2011-05-05 Taeho Moon Thin film solar cell module
CN103026508A (en) * 2010-10-06 2013-04-03 三菱重工业株式会社 Method for manufacturing photoelectric conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253473A (en) * 2003-02-18 2004-09-09 Sharp Corp Process for fabricating thin film solar cell, thin film solar cell, and thin film solar cell module
JP2004260014A (en) * 2003-02-26 2004-09-16 Kyocera Corp Multilayer type thin film photoelectric converter
TW201016749A (en) * 2008-08-07 2010-05-01 Mitsubishi Chem Corp Polymer, fluorescent layer material, organic electroluminescence element material, composition for organic electroluminescence element, and organic electroluminescence element, solar cell element organic EL display and organic EL lighting, using the same
US20110100414A1 (en) * 2009-10-30 2011-05-05 Taeho Moon Thin film solar cell module
CN103026508A (en) * 2010-10-06 2013-04-03 三菱重工业株式会社 Method for manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
TW202211494A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US10916185B1 (en) Array substrate, display panel, display device and array-substrate manufacturing method
KR100908557B1 (en) Thin film transistor having a channel containing zinc oxide and method of manufacturing the same
US20080115821A1 (en) Multilayer transparent conductive oxide for improved chemical processing
US10510901B2 (en) Thin film transistor and fabrication method thereof, array substrate and display device
US20110014772A1 (en) Aligning method of patterned electrode in a selective emitter structure
CN109742151A (en) Thin film transistor and its manufacturing method, array substrate and display panel
CN101689575A (en) Solar cell and method of manufacturing the same
WO2022027741A1 (en) Array substrate and manufacturing method therefor, and display panel
US20080276986A1 (en) Photolithography Method For Contacting Thin-Film Semiconductor Structures
US20130220414A1 (en) Back electrode type solar cell
TWI751681B (en) Alignment marker of thin film solar cell and manufacturing method thereof
WO2019242550A1 (en) Solar cell and method for manufacturing same
TWM607916U (en) Alignment marker of thin film solar cell
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP2006303322A (en) Solar cell
US11282867B2 (en) Manufacturing method of display substrate motherboard, and display device
CN102569445A (en) Solar cell unit and method for manufacturing the same
TWI735247B (en) Front electrode layer of thin film solar cell and manufacturing method thereof
JP3105999B2 (en) Solar cell manufacturing method
WO2014042109A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
TWI732444B (en) Solar cell gentle slope structure and manufacturing method thereof
TWM604493U (en) Front electrode layer of thin film solar cell and thin film solar cell
TWI774397B (en) Thin film photovoltaic structure
CN113488593A (en) Thin film photovoltaic structure
JPS59110175A (en) Manufacture of solar battery