TWI750900B - Method for establishing tool assessment index and computer program product thereof - Google Patents
Method for establishing tool assessment index and computer program product thereof Download PDFInfo
- Publication number
- TWI750900B TWI750900B TW109140119A TW109140119A TWI750900B TW I750900 B TWI750900 B TW I750900B TW 109140119 A TW109140119 A TW 109140119A TW 109140119 A TW109140119 A TW 109140119A TW I750900 B TWI750900 B TW I750900B
- Authority
- TW
- Taiwan
- Prior art keywords
- tool
- force distribution
- sensor
- force
- sensing data
- Prior art date
Links
Images
Landscapes
- Machine Tool Sensing Apparatuses (AREA)
Abstract
Description
本發明有關於一種刀具評估指標的建立方法及其應用,特別是有關於一種利用感測器擷取刀具加工時之刀刃受力狀況來建立刀具評估指標的方法及其在電腦程式產品的應用。 The present invention relates to a method for establishing a tool evaluation index and its application, in particular to a method for establishing a tool evaluation index by using a sensor to capture the force condition of the tool during machining and its application in computer program products.
刀具磨損或缺刃是機械加工中經常發生的問題,刀具磨損會降低工件加工精度及整體工具機設備使用壽命、導致影響生產效率之問題發生。 Tool wear or missing edge is a common problem in machining. Tool wear will reduce the machining accuracy of the workpiece and the service life of the overall machine tool equipment, resulting in problems affecting production efficiency.
為了避免因刀具磨損造成損失,目前的作法是操作人員根據其經驗或參考刀具平均壽命來替換刀具,但此作法經常會發生刀具已經磨損嚴重而未即時被換下,刀具磨損不嚴重而被淘汰等情形。因此,即時監測並掌握刀具健康狀態已成為相關業者努力的目標。 In order to avoid losses due to tool wear, the current practice is for operators to replace the tool based on their experience or with reference to the average life of the tool. However, this practice often causes the tool to be severely worn and not replaced immediately, and the tool is not severely worn and is eliminated. and so on. Therefore, real-time monitoring and mastering of tool health status has become the goal of the relevant industry.
因此,本發明之一目的是在提供一種刀具評估指標 的建立方法,其係根據刀具在加工階段所擷取之受力感測資料,來建立刀刃受力分布圖,並利用刀刃受力分布圖來建立刀具評估指標,以作為判斷刀具可否繼續使用的參考。 Therefore, an object of the present invention is to provide a tool evaluation index The establishment method is based on the force sensing data captured by the tool in the processing stage to establish the force distribution map of the cutting edge, and use the force distribution map of the cutting edge to establish the tool evaluation index, which is used to judge whether the tool can continue to be used. refer to.
根據本發明之上述目的,提出一種刀具評估指標的建立方法。刀具評估指標的建立方法包含以下步驟:獲得刀具在處理至少一工件時依時序所產生之至少一組感測資料,其中每一組感測資料是由裝設在刀把上之第一感測器與第二感測器在一段加工時間內所產生,其中刀具安裝在刀把上,且刀具具有複數個刀刃;使用感測資料來建立至少一刀刃受力分布圖,其中每一刀刃受力分布圖顯示在一段加工時間中刀具之刀刃的複數個受力點;根據刀刃受力分布圖進行計算步驟,其中計算步驟包含計算複數個受力點分別與中心點之相對位置關係,而獲得至少一刀具評估指標。 According to the above purpose of the present invention, a method for establishing a tool evaluation index is proposed. The method for establishing the tool evaluation index includes the following steps: obtaining at least one set of sensing data generated by the tool in time sequence when processing at least one workpiece, wherein each set of sensing data is obtained by a first sensor installed on the tool handle and the second sensor are generated during a period of machining time, wherein the tool is mounted on the tool handle, and the tool has a plurality of cutting edges; using the sensing data to establish at least one cutting edge force distribution map, wherein each cutting edge force distribution map Displays a plurality of force points of the cutting edge of the tool during a machining time; the calculation step is performed according to the force distribution diagram of the cutting edge, wherein the calculation step includes calculating the relative positional relationship between the plurality of force points and the center point, so as to obtain at least one tool Evaluation Metrics.
依據本發明之一實施例,其中上述之受力點係分布在刀刃受力分布圖中之第一座標軸和第二座標軸所建立之正交座標系統中,其中第一座標軸與第二座標軸之交錯點為中心點,且第一座標軸對應至由第一感測器所產生之力矩,第二座標軸對應至由第二感測器所產生之力矩。其中,刀具評估指標包含不對稱度指標,且上述之計算步驟包含以下步驟:判斷受力點中距離中心點最遠之複數個部分,其中這些部分一對一地對應至刀具之刀刃;分別計算這些部分中之受力點的平均位置與中心點間之距離,而獲得複數 個距離值;計算這些刀刃中每一任二相鄰或任二相對刀刃所對應之距離值的比值及上述之比值的倒數值,並以比值與倒數值中之最大者為每一任二相鄰或任二相對刀刃之不對稱度值;以每一任二相鄰或任二相對刀刃之該不對稱度值之最大者來建立該不對稱度指標。 According to an embodiment of the present invention, the above-mentioned force points are distributed in the orthogonal coordinate system established by the first coordinate axis and the second coordinate axis in the force distribution diagram of the blade, wherein the first coordinate axis and the second coordinate axis are staggered. The point is the center point, the first coordinate axis corresponds to the torque generated by the first sensor, and the second coordinate axis corresponds to the torque generated by the second sensor. Among them, the tool evaluation index includes the asymmetry index, and the above calculation step includes the following steps: judging the plurality of parts in the force point that are farthest from the center point, wherein these parts correspond to the cutting edge of the tool one-to-one; calculate separately The distance between the average position of the points of force in these parts and the center point, and the complex number is obtained A distance value; calculate the ratio of the distance values corresponding to any two adjacent or any two opposite blades and the reciprocal value of the above ratio, and take the largest of the ratio and the reciprocal value as each any two adjacent or The asymmetry value of any two opposite blades; the asymmetry index is established by taking the maximum of the asymmetry values of any two adjacent or any two opposite blades.
依據本發明之一實施例,其中上述之刀刃的數量為奇數或偶數。當刀刃的數量為奇數時,以每一任二相鄰刀刃來計算不對稱度值。當該些刀刃的數量為偶數時,以每一任二相對刀刃來計算不對稱度值。 According to an embodiment of the present invention, the number of the above-mentioned blades is odd or even. When the number of cutting edges is odd, the asymmetry value is calculated with every two adjacent cutting edges. When the number of the cutting edges is an even number, the asymmetry value is calculated based on any two opposing cutting edges.
依據本發明之一實施例,其中上述之受力點係分布在刀刃受力分布圖中之第一座標軸和第二座標軸所建立之正交座標系統中,其中第一座標軸與第二座標軸之交錯點為中心點,且第一座標軸對應至由第一感測器所產生之力矩,第二座標軸對應至由第二感測器所產生之力矩。其中,刀具評估指標包含最大扭矩指標,且上述之計算步驟包含以下步驟:判斷受力點中距離中心點最遠之複數個部分,其中這些部分一對一地對應至刀具之刀刃;分別計算這些部分中之受力點的平均位置與中心點間之距離,而獲得複數個距離值;計算對應這些部分之距離值分別與基準值之複數個比值;以上述之比值之平均值來建立最大扭矩指標。 According to an embodiment of the present invention, the above-mentioned force points are distributed in the orthogonal coordinate system established by the first coordinate axis and the second coordinate axis in the force distribution diagram of the blade, wherein the first coordinate axis and the second coordinate axis are staggered. The point is the center point, the first coordinate axis corresponds to the torque generated by the first sensor, and the second coordinate axis corresponds to the torque generated by the second sensor. Among them, the tool evaluation index includes the maximum torque index, and the above calculation step includes the following steps: judging the multiple parts of the force point that are farthest from the center point, and these parts correspond to the cutting edge of the tool one-to-one; Calculate the distance between the average position of the force point in the part and the center point, and obtain multiple distance values; calculate multiple ratios between the distance values corresponding to these parts and the reference value; use the average of the above ratios to establish the maximum torque index.
依據本發明之一實施例,其中上述之受力點係分布在刀刃受力分布圖中之第一座標軸和第二座標軸所建立之正交座標系統中,其中第一座標軸與第二座標軸之交錯點為中心點,且第一座標軸對應至由第一感測器所產生之力 矩,第二座標軸對應至由第二感測器所產生之力矩。其中,刀具評估指標包含中心偏擺指標。感測資料包含依時序所產生之第一組感測資料和第二組感測資料。上述之至少一刀刃受力分布圖包含分別由第一組感測資料和第二組感測資料所建立之第一刀刃受力分布圖和第二刀刃受力分布圖。其中,上述之計算步驟包含以下步驟:在第一刀刃受力分布圖和第二刀刃受力分布圖其中每一者上,以中心點為中心設定預設範圍;以及計算第一刀刃受力分布圖和第二刀刃受力分布圖上之預設範圍內中受力點數量的減少比例,來建立中心偏擺指標。 According to an embodiment of the present invention, the above-mentioned force points are distributed in the orthogonal coordinate system established by the first coordinate axis and the second coordinate axis in the force distribution diagram of the blade, wherein the first coordinate axis and the second coordinate axis are staggered. The point is the center point, and the first coordinate axis corresponds to the force generated by the first sensor moment, the second coordinate axis corresponds to the moment generated by the second sensor. Among them, the tool evaluation index includes the center deflection index. The sensing data includes a first set of sensing data and a second set of sensing data generated in time series. The at least one blade force distribution map above includes a first blade edge force distribution map and a second blade edge force distribution map established by the first set of sensing data and the second set of sensing data, respectively. Wherein, the above calculation step includes the following steps: on each of the force distribution map of the first cutting edge and the force distribution map of the second cutting edge, setting a preset range with the center point as the center; and calculating the force distribution of the first cutting edge The reduction ratio of the number of medium force points within the preset range on the force distribution diagram of the second blade and the second edge force distribution diagram is used to establish the center deflection index.
依據本發明之一實施例,其中上述之刀具評估指標的建立方法,更包含判斷刀具是否有對至少一工件加工,若判斷結果為是時,進行獲得感測資料的步驟。 According to an embodiment of the present invention, the above-mentioned method for establishing a tool evaluation index further includes judging whether the tool has processed at least one workpiece, and if the judgment result is yes, performing the step of obtaining sensing data.
依據本發明之一實施例,其中上述之刀把具有中心軸線,第一感測器與第二感測器的設置位置分別與中心軸線的連線的夾角為90度。 According to an embodiment of the present invention, wherein the knife handle has a central axis, and the included angles between the installation positions of the first sensor and the second sensor and the line connecting the central axis are 90 degrees.
依據本發明之一實施例,其中上述之第一感測器與第二感測器的設置方向是平行於刀把的旋轉切線。 According to an embodiment of the present invention, the disposition direction of the first sensor and the second sensor is parallel to the rotation tangent of the handle.
根據本發明之上述目的,另提出一種用於建立刀具評估指標的電腦程式產品。當電腦載入此電腦程式並執行後,可完成上述之刀具評估指標的建立方法。 According to the above object of the present invention, another computer program product for establishing tool evaluation index is proposed. When the computer program is loaded and executed, the establishment method of the above-mentioned tool evaluation index can be completed.
由上述可知,本發明主要是以刀具在加工時,感測器所擷取之刀具與刀把所承受力的感測資料,並以這些感測資料建立出刀刃受力分布圖。另一方面,本發明還進一 步根據此刀刃受力分布圖來計算不對稱度指標、最大扭矩指標及中心偏擺指標等刀具評估指標,進而提供操作人員快速判讀刀具健康狀態參考,並及時更換刀具,進而提升整體加工品質。 As can be seen from the above, the present invention mainly uses the sensing data of the force on the tool and the handle captured by the sensor when the tool is being processed, and establishes the force distribution map of the cutting edge based on the sensing data. On the other hand, the present invention further According to the force distribution map of the blade edge, the tool evaluation indicators such as the asymmetry index, the maximum torque index and the center deflection index are calculated, so as to provide the operator with a reference to quickly interpret the health status of the tool, and replace the tool in time, thereby improving the overall processing quality.
110:主軸 110: Spindle
120:刀把 120: Knife handle
121:第一感測器 121: The first sensor
122:第二感測器 122: Second sensor
200:刀具評估指標的建立方法 200: Establishment of Tool Evaluation Metrics
210,220,230,240:步驟 210, 220, 230, 240: Steps
A1:第一部分 A1: Part 1
A2:第二部分 A2: Part II
A3:第三部分 A3: Part III
A4:第四部分 A4: Part IV
B1,B2,B3,B4:距離值 B1,B2,B3,B4: Distance value
C1:第一部分 C1: Part 1
C2:第二部分 C2: Part II
C3:與第三部分 C3: with the third part
D1,D2,D3:距離值 D1, D2, D3: distance value
E1,E1’:第一部分 E1,E1': Part 1
E2,E2’:第二部分 E2, E2': Part II
E3,E3’:第三部分 E3, E3': Part Three
E4,E4’:第四部分 E4, E4': Part Four
F1,F1’,F2,F2’,F3,F3’,F4,F4’:距離值 F1,F1',F2,F2',F3,F3',F4,F4': distance value
G1,G2:預設範圍 G1, G2: Preset range
R1:第一門檻值的預設範圍 R1: The preset range of the first threshold value
R2:第二門檻值的預設範圍 R2: The preset range of the second threshold value
S1:中心軸線 S1: central axis
T1:刀具 T1: Tool
為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:圖1A係繪示依照本發明一實施方式之一種加工機之局部裝置示意圖;圖1B係繪示依照本發明一實施方式之一種刀把的俯視圖;圖2係繪示依照本發明一實施方式之一種刀具評估指標的建立方法的方塊流程圖;圖3係繪示依照本發明一實施方式之用以說明對具有偶數數量刀刃之刀具的刀刃受力分布圖建立不對稱度指標之示意圖;圖4係繪示依照本發明一實施方式之用以說明對具有奇數數量刀刃之刀具的刀刃受力分布圖建立不對稱度指標之示意圖;圖5A及圖5B係繪示依照本發明一實施方式之用以說明對刀刃受力分布圖建立最大扭矩指標之示意圖;圖6A及圖6B係繪示依照本發明一實施方式之用以說明對刀刃受力分布圖建立中心偏擺指標之示意圖;以及 圖7A及圖7B係繪示依照本發明一實施方式之不同狀態之刀具評估指標示意圖。 In order to make the above-mentioned and other objects, features, advantages and embodiments of the present disclosure more clearly understood, the accompanying drawings are described as follows: FIG. 1A is a schematic diagram of a partial device of a processing machine according to an embodiment of the present invention; 1B is a top view of a tool handle according to an embodiment of the present invention; FIG. 2 is a block flow diagram illustrating a method for establishing a tool evaluation index according to an embodiment of the present invention; The schematic diagram of the embodiment for explaining the establishment of asymmetry index for the force distribution map of the blade of a tool with an even number of blades; FIG. Figure 5A and Figure 5B are schematic diagrams illustrating the establishment of the maximum torque index for the force distribution map of the blade according to an embodiment of the present invention; Figures 6A and 6B are a schematic diagram illustrating the establishment of a center yaw index for a force distribution map of a blade according to an embodiment of the present invention; and 7A and 7B are schematic diagrams illustrating tool evaluation indicators in different states according to an embodiment of the present invention.
請參照圖1A及圖1B,其中圖1A係繪示依照本發明一實施方式之一種加工機之局部裝置示意圖,圖1B係繪示依照本發明一實施方式之一種刀把的俯視圖。加工機包含主軸110、設置在主軸110上之刀把120以及安裝在刀把120上之刀具T1。在本實施例中,刀把120上設有第一感測器121與第二感測器122。其中,刀把120具有中心軸線S1,第一感測器121與第二感測器122的設置位置分別與中心軸線的距離連線的夾角為90度,且第一感測器121與第二感測器122的設置方向是平行於刀把的旋轉切線。藉此,當刀具T1在對工件進行加工時,設置在刀把120上的第一感測器121與第二感測器122可產生刀具T1與刀把120受力的感測資料。在一些例子中,第一感測器121與第二感測器122可為應變規或壓電材料。
Please refer to FIGS. 1A and 1B , wherein FIG. 1A is a schematic diagram of a partial device of a processing machine according to an embodiment of the present invention, and FIG. 1B is a top view of a knife handle according to an embodiment of the present invention. The processing machine includes a
另請一併參照圖2,圖2係繪示依照本發明一實施方式之一種刀具評估指標的建立方法的方塊流程圖。本實施方式之刀具評估指標的建立方法200主要包含以下步驟。首先,進行步驟210,以判斷刀具T1是否有對工件加工,當判斷結果為是時,則可設定一段加工時間作為預設採樣時間。在一例子中,可透過直接擷取工具機之相關加工資
料,或是根據刀把120之受力感測資料來判斷刀具T1是否有對工件加工。在判斷刀具T1有對工件進行加工,且在加工時間內設定預設採樣時間後,則接著進行步驟220,以獲得刀具T1在處理至少一工件時依時序所產生之至少一組感測資料。如圖1所示,刀具T1安裝在刀把120上,且每一組感測資料是由裝設在刀把120上之第一感測器121與第二感測器122在一段加工時間(預設採樣時間)內所產生。
Please also refer to FIG. 2 . FIG. 2 is a block flow diagram illustrating a method for establishing a tool evaluation index according to an embodiment of the present invention. The
在進行步驟220後,接著進行步驟230,以使用感測資料來建立至少一刀刃受力分布圖。刀刃受力分布圖可參照例如圖3所示,在一實施例中,刀具T1具有複數個刀刃,且刀刃受力分布圖顯示在一段加工時間中刀具T1之刀刃的複數個受力點。如圖3所示,受力點係分布在刀刃受力分布圖中之第一座標軸和第二座標軸所建立之正交座標系統中,其中第一座標軸與第二座標軸之交錯點為中心點,且第一座標軸對應至由第一感測器121所產生之力矩,第二座標軸對應至由第二感測器122所產生之力矩。在建立刀刃受力分布圖後,接著,進行步驟240,以根據刀刃受力分布圖進行計算步驟。其中,計算步驟包含計算受力點分別與中心點之相對位置關係,而獲得至少一刀具評估指標。在一實施例中,刀具評估指標可包含不對稱度指標、最大扭矩指標及中心偏擺指標。刀具評估指標主要是用以作為判斷刀具可否繼續使用的參考。
After
以下說明不對稱度指標的建立方法。首先,判斷受 力點中距離中心點最遠之複數個部分,其中這些部分一對一地對應至刀具T1之刀刃。 The method for establishing the asymmetry index will be described below. First, judge the A plurality of parts of the force point farthest from the center point, wherein these parts correspond to the cutting edge of the tool T1 one-to-one.
請參照圖3,圖3係繪示依照本發明一實施方式之用以說明對具有偶數數量刀刃之刀具的刀刃受力分布圖建立不對稱度指標之示意圖。具體而言,圖3是使用具有4個刀刃之刀具T1處理工件時所產生的刀刃受力分布圖。因此,距離中心點最遠有4個部分,例如圖3中之第一部分A1、第二部分A2、第三部分A3與第四部分A4。接著,分別計算這些部分(第一部分A1、第二部分A2、第三部分A3與第四部分A4)中之受力點的平均位置與中心點間之距離,而獲得複數個距離值。上述之平均位置是以每一部分中距離中心點最遠的複數個受力點分別與中心點之距離平均值,來做為每一部分與中心點的距離值。在圖3的例子中,第一部分A1與中心點的距離值為B1,第二部分A2與中心點的距離值為B2,第三部分A3與中心點的距離值為B3,第四部分A4與中心點的距離值為B4。然後,計算這4個刀刃中任二相對刀刃所對應之距離值的比值及比值的倒數值,並以比值與比值的倒數值中之最大者作為任二相對刀刃之不對稱度值。例如以具有4個刀刃之刀具來說,相對之第一刀刃與第三刀刃的距離比值為(B1/B3),比值的倒數值為(B3/B1),其中以比值(B1/B3)與比值的倒數值(B3/B1)中之最大者作為第一刀刃與第三刀刃之不對稱度值m1,即m1=max[(B1/B3),(B3/B1)]。同樣地,相對之第二刀刃與第四刀刃的距離比值為(B2/B4), 比值的倒數值為(B4/B2),其中以比值(B2/B4)與比值的倒數值(B4/B2)中之最大者作為第二刀刃與第四刀刃之不對稱度值m2,即m2=max[(B2/B4),(B4/B2)]。最後,再以每一任二相對刀刃之不對稱度值之最大者來建立不對稱度指標Sym1,即Sym1=max(m1,m2)。 Please refer to FIG. 3 . FIG. 3 is a schematic diagram illustrating establishing an asymmetry index for a force distribution diagram of a blade of a tool with an even number of blades according to an embodiment of the present invention. Specifically, FIG. 3 is a diagram of the force distribution of the blade edge generated when the tool T1 with 4 blade edges is used to process the workpiece. Therefore, there are four parts farthest from the center point, such as the first part A1 , the second part A2 , the third part A3 and the fourth part A4 in FIG. 3 . Next, calculate the distance between the average position and the center point of the force points in these parts (the first part A1, the second part A2, the third part A3 and the fourth part A4) respectively, and obtain a plurality of distance values. The above-mentioned average position is the average of the distances between the plurality of force-bearing points farthest from the center point in each part and the center point, as the distance value between each part and the center point. In the example of FIG. 3 , the distance between the first part A1 and the center point is B1, the distance between the second part A2 and the center point is B2, the distance between the third part A3 and the center point is B3, and the fourth part A4 and the center point are B3. The distance value of the center point is B4. Then, calculate the ratio and the reciprocal value of the distance values corresponding to any two opposite blades among the four blades, and take the largest of the ratio and the inverse value of the ratio as the asymmetry value of any two opposite blades. For example, for a tool with 4 cutting edges, the ratio of the distance between the first cutting edge and the third cutting edge is (B1/B3), and the reciprocal value of the ratio is (B3/B1), where the ratio (B1/B3) and the The largest of the reciprocal values of the ratio (B3/B1) is used as the asymmetry value m1 between the first cutting edge and the third cutting edge, that is, m1=max[(B1/B3),(B3/B1)]. Similarly, the ratio of the distance between the second cutting edge and the fourth cutting edge is (B2/B4), The reciprocal value of the ratio is (B4/B2), and the largest of the ratio (B2/B4) and the reciprocal value (B4/B2) of the ratio is used as the asymmetry value m2 between the second blade and the fourth blade, that is, m2 =max[(B2/B4),(B4/B2)]. Finally, the asymmetry index Sym1 is established by taking the maximum value of the asymmetry between any two relative blades, namely Sym1=max(m1,m2).
一般而言,刀具在未使用時,刀刃於受力分布圖之間的形狀會相近,而在刀具使用一段時間後,同一把刀具中之不同的刀刃會因為加工因素產生缺角或損耗的情形。因此,使用過的刀具的不同刀刃在加工過程中的受力會不同,故刀刃受力分布圖中的受力點也會有所變化。因此,透過計算刀刃受力分布圖中對應刀刃之不同部分與中心點的距離比例關係,可作為建立不對稱度指標之依據。 Generally speaking, when the tool is not in use, the shape of the cutting edge in the force distribution diagram will be similar, and after the tool has been used for a period of time, different cutting edges in the same tool will be missing or lost due to machining factors. . Therefore, the force of different cutting edges of used tools will be different during the machining process, so the force points in the force distribution diagram of the cutting edge will also change. Therefore, by calculating the proportional relationship between the distances between the different parts of the corresponding blade and the center point in the force distribution diagram of the blade, it can be used as the basis for establishing the asymmetry index.
欲陳明者,前述實施例是以具有偶數數量(例如4個)刀刃之刀具為例作為示範說明用,並非用以限制本發明。在其他實施例中,當刀具之刀刃數量為奇數時,不對稱度指標之計算步驟包含以下步驟。另請參照圖4所示,圖4係繪示依照本發明一實施方式之用以說明對具有奇數數量刀刃之刀具的刀刃受力分布圖建立不對稱度指標之示意圖。在本實施例中,建立不對稱度指標之計算步驟包含以下步驟。首先,判斷受力點中距離中心點最遠之複數個部分,其中這些部分一對一地對應至刀具T1之刀刃。 For the sake of illustration, the foregoing embodiment takes a knife having an even number (eg, 4) blades as an example for illustration purposes, and is not intended to limit the present invention. In other embodiments, when the number of cutting edges of the tool is odd, the calculation step of the asymmetry index includes the following steps. Please also refer to FIG. 4 , which is a schematic diagram illustrating establishing an asymmetry index for a force distribution diagram of a blade of a tool with an odd number of blades according to an embodiment of the present invention. In this embodiment, the calculation step of establishing the asymmetry index includes the following steps. First, determine the plurality of parts of the force-bearing point that are farthest from the center point, and these parts correspond to the cutting edge of the tool T1 one-to-one.
以圖4為例,圖4是使用具有3個刀刃之刀具T1處理工件時所產生的刀刃受力分布圖。因此,距離中心點最遠有3個部分,例如第一部分C1、第二部分C2、與第 三部分C3。接著,分別計算這些部分(第一部分C1、第二部分C2、與第三部分C3)中之受力點的平均位置與中心點間之距離,而獲得複數個距離值。上述之平均位置是以每一部分中距離中心點最遠的複數個受力點分別與中心點之距離平均值,來做為每一部分與中心點的距離值。在圖4的例子中,第一部分B1與中心點的距離值為C1,第二部分B2與中心點的距離值為C2,第三部分B3與中心點的距離值為C3。然後,計算這3個刀刃中任二相鄰刀刃所對應之距離值的比值及比值的倒數值,並以比值與倒數值中之最大者作為任二相對刀刃之不對稱度值。例如以具有3個刀刃之刀具為例,相鄰之第一刀刃與第二刀刃的距離比值為(C1/C2),比值的倒數值為(C2/C1),其中以比值(C1/C2)與比值的倒數值(C2/C1)中之最大者為相鄰之第一刀刃與第二刀刃之不對稱度值m3,即m3=max[(C1/C2),(C2/C1)]。相鄰之第二刀刃與第三刀刃的距離比值為(C2/C3),比值的倒數值為(C3/C2),其中以比值(C2/C3)與比值的倒數值(C3/C2)中之最大者作為第二刀刃與第三刀刃之不對稱度值m4,即即m3=max[(C2/C3),(C3/C2)]。相鄰之第三刀刃與第一刀刃的距離比值為(C3/C1),比值的倒數值為(C1/C3),並以比值(C3/C1)與比值的倒數值(C1/C3)中之最大者作為第三刀刃與第一刀刃之不對稱度值m5,即m5=max[(C3/C1),(C1/C3)]。最後,再以每一任二相鄰刀刃之不對稱度值之最大者來建立不對稱度指標Sym2,即 Sym2=max[m3,m4,m5]。 Taking FIG. 4 as an example, FIG. 4 is a diagram showing the force distribution of the cutting edge when the tool T1 with three cutting edges is used to process the workpiece. Therefore, there are 3 parts farthest from the center point, such as the first part C1, the second part C2, and the second part C2. Three-part C3. Next, the distances between the average positions of the force-receiving points in these parts (the first part C1, the second part C2, and the third part C3) and the center point are calculated respectively to obtain a plurality of distance values. The above-mentioned average position is the average of the distances between the plurality of force-bearing points farthest from the center point in each part and the center point, as the distance value between each part and the center point. In the example of FIG. 4 , the distance between the first part B1 and the center point is C1 , the distance between the second part B2 and the center point is C2 , and the distance between the third part B3 and the center point is C3 . Then, calculate the ratio and the reciprocal value of the distance values corresponding to any two adjacent cutting edges among the three cutting edges, and take the largest of the ratio and the reciprocal value as the asymmetry value of any two opposing cutting edges. For example, taking a tool with 3 cutting edges as an example, the ratio of the distance between the adjacent first cutting edge and the second cutting edge is (C1/C2), and the reciprocal value of the ratio is (C2/C1), where the ratio (C1/C2) The largest of the reciprocal values of the ratio (C2/C1) is the asymmetry value m3 of the adjacent first cutting edge and the second cutting edge, that is, m3=max[(C1/C2),(C2/C1)]. The ratio of the distance between the adjacent second cutting edge and the third cutting edge is (C2/C3), and the reciprocal value of the ratio is (C3/C2). The largest one is used as the asymmetry value m4 between the second blade and the third blade, that is, m3=max[(C2/C3),(C3/C2)]. The ratio of the distance between the adjacent third cutting edge and the first cutting edge is (C3/C1), the reciprocal value of the ratio is (C1/C3), and the ratio (C3/C1) and the reciprocal value of the ratio (C1/C3) The largest one is used as the asymmetry value m5 between the third blade and the first blade, that is, m5=max[(C3/C1),(C1/C3)]. Finally, the asymmetry index Sym2 is established by taking the maximum of the asymmetry values of each two adjacent blades, namely Sym2=max[m3,m4,m5].
以下說明最大扭矩指標的建立方法。請同時參照圖5A及圖5B,圖5A及圖5B係繪示依照本發明一實施方式之用以說明對刀刃受力分布圖建立最大扭矩指標之示意圖。在建立最大扭矩指標之前,首先依照前述步驟220及230,獲得利用一新刀具在加工工件時所產生感測資料所建立之如圖5A所示之刀刃受力分布圖。然後,從刀刃受力分布圖中,判斷受力點中距離中心點最遠之複數個部分,且這些部分一對一地對應至新刀具之刀刃。以圖5A為例,距離中心點最遠有4個部分,例如第一部分E1、第二部分E2、第三部分E3與第四部分E4。接著,分別計算這些部分(第一部分E1、第二部分E2、第三部分E3與第四部分E4)中之受力點的平均位置與中心點間之距離,而獲得複數個距離值。例如,第一部分E1與中心點的距離值為F1,第二部分E2與中心點的距離值為F2,第三部分E3與中心點的距離值為F3,第四部分E4與中心點的距離值為F4。在獲得以新刀具加工所產生之刀刃受力分布圖所計算之距離值F1、F2、F3及F4後,可以這些距離值作為建立最大扭矩指標時之基準值。
The method for establishing the maximum torque index will be described below. Please refer to FIG. 5A and FIG. 5B at the same time. FIGS. 5A and 5B are schematic diagrams illustrating establishing a maximum torque index for a force distribution map of a blade according to an embodiment of the present invention. Before establishing the maximum torque index, first, according to the
請參照圖5B,建立最大扭矩指標包含以下步驟。首先,依照前述步驟220及230,獲得利用待測刀具在加工工件時所產生感測資料所建立之如圖5B所示之刀刃受力分布圖。然後,從圖5B所示之刀刃受力分布圖中,判斷受力點中距離中心點最遠之複數個部分,且這些部分一對
一地對應至待測刀具之刀刃。以圖5B為例,距離中心點最遠有4個部分,例如第一部分E1’、第二部分E2’、第三部分E3’與第四部分E4’。接著,分別計算這些部分(例如第一部分E1’、第二部分E2’、第三部分E3’與第四部分E4’)中之受力點的平均位置與中心點間之距離,而獲得複數個距離值。例如,第一部分E1’與中心點的距離值為F1’,第二部分E’2與中心點的距離值為F2’,第三部分E3’與中心點的距離值為F3’,第四部分E4’與中心點的距離值為F4’。接著,計算對應這些部分之距離值分別與基準值之複數個比值。具體而言,對應待測刀具之第一部分的距離值與對應新刀具之第一部分的距離值的比值sub1為(F1’/F1),即sub1=(F1’/F1);對應待測刀具之第二部分的距離值與對應新刀具之第二部分的距離值的比值sub2為(F2’/F2),即sub2=(F2’/F2);對應待測刀具之第三部分的距離值與對應新刀具之第三部分的距離值的比值sub3為(F3’/F3),即sub3=(F3’/F3);對應待測刀具之第四部分的距離值與對應新刀具之第四部分的距離值的比值sub4為(F4’/F4),即sub4=(F4’/F4)。在獲得待測刀具之刀刃受力分布圖中距離中心點最遠之複數個部分的距離值分別與對應之基準值的比值後,可以這些比值之平均值來建立最大扭矩指標Torque,在本實施例中,Torque=(sub1+sub2+sub3+sub4)/4。
Referring to FIG. 5B , establishing the maximum torque index includes the following steps. First, according to the
一般而言,刀具在未使用時,刀刃於刀刃受力圖之間的形狀會相近,故刀具的每一個刀刃所受到的扭矩會相 近,而在刀具使用一段時間後,刀具中之不同的刀刃會因為加工因素產生缺角或損耗的情形。因此,使用過的刀具的不同刀刃在加工過程中的受力會產生較大差異,故刀刃受力分布圖中的受力點也會有所變化。因此,透過計算待測刀具中之每一刀刃受力分別與新刀具每一刃受力的比值,可得知待側刀具之各刃刀具受力扭矩相對新刀具之變化,而這些刀刃扭矩的變化平均值可作為最大扭矩指標。 Generally speaking, when the tool is not in use, the shape of the force diagram between the blade and the blade will be similar, so the torque received by each blade of the tool will be similar. Recently, after the tool has been used for a period of time, the different cutting edges of the tool will be missing or worn due to machining factors. Therefore, the force of the different cutting edges of the used tool will vary greatly during the machining process, so the force points in the force distribution diagram of the cutting edge will also change. Therefore, by calculating the ratio of the force of each edge of the tool to be tested to the force of each edge of the new tool, the change of the force torque of each edge of the tool to be tested relative to the new tool can be obtained. The average value of variation can be used as a maximum torque indicator.
以下說明中心偏擺指標的建立方法。請同時參照圖6A及圖6B,圖6A及圖6B係繪示依照本發明一實施方式之用以說明對刀刃受力分布圖建立中心偏擺指標之示意圖。在建立中心偏擺指標時,首先依照前述步驟220取得同一把刀具在加工時依時序所產生之第一組感測資料和第二組感測資料。接著,依照前述步驟230,使用第一組感測資料來建立如圖6A所示之第一刀刃受力分布圖,以及使用第二組感測資料來建立如圖6B所示之第二刀刃受力分布圖。然後,分別在圖6A所示之第一刀刃受力分布圖和圖6B所示之第二刀刃受力分布圖上,以中心點為中心設定預設範圍(例如預設範圍G1及G2)。接著,分別計算圖6A所示之第一刀刃受力分布圖上之預設範圍G1內之受力點的數量n、以及和圖6B所示之第二刀刃受力分布圖上之預設範圍G2內之受力點的數量n’。具體而言,當同一刀具在加工過程逐漸耗損時,當各刃耗損不平均或刀尖不平衡時,會逐漸出現中心偏擺的情形,也就是說,刀把所受到的力也會隨之改變。因此,利用第一感測器與第二感測
器所偵測到的感測資料所建立的刀刃受力分布圖中,刀具中心預設範圍內的受力點數量也會有所改變。因此,透過計算刀刃受力分布圖上之預設範圍內中受力點數量的減少比例,可建立中心偏擺指標RC。在一實施例中,RC=常數k+max(n-n’)/n。其中,常數k可為0或可依據需求設定。
The following describes the method of establishing the center yaw indicator. Please refer to FIG. 6A and FIG. 6B at the same time. FIG. 6A and FIG. 6B are schematic diagrams illustrating the establishment of the center yaw index for the force distribution map of the blade according to an embodiment of the present invention. When the center yaw index is established, the first set of sensing data and the second set of sensing data generated by the same tool in time sequence during processing are first obtained according to the
在獲得不對稱度指標、最大扭矩指標及中心偏擺指標等刀具評估指標後,可由專家根據歷史(或刀具樣本)資料所計算不對稱度指標、最大扭矩指標及中心偏擺指標來定義門檻值,以用來判斷根據待測刀具計算的不對稱度指標、最大扭矩指標及中心偏擺指標對應之刀具狀態,並可將判斷結果圖像化。舉例而言,可以圖7A及圖7B所示之內外同心圓來表示第一門檻值的預設範圍R1與第二門檻值的預設範圍R2,其中第一門檻值與第二門檻值分別代表刀具之健康與不健康(或建議更換)之狀態。然後,根據所計算的待測刀具之不對稱度指標、最大扭矩指標及中心偏擺指標分別與第一門檻值及第二門檻值的關係,以三個指向圖形呈現。以圖7A為例,圖7A所示之不對稱度指標、最大扭矩指標及中心偏擺指標的指向圖形是落在第一門檻值的預設範圍R1內,故表示刀具處於健康狀態。又如圖7B為例,圖7B所示之不對稱度指標與中心偏擺指標已超出第一門檻值的預設範圍R1,且最大扭矩指標則超出第二門檻值的預設範圍R2,這表示刀具已超出負荷,並建議更換刀具。藉此,透過將刀具評估指標轉換成如圖7A及圖 7B的圖像來顯示是否超出門檻值的方式,可提供操作人員快速掌握刀具之健康狀態。在一些實施例中,對應不對稱度指標、最大扭矩指標及中心偏擺指標等三個指向圖形可以不同顏色的方式呈現,以提升操作人員之判別速度。 After obtaining the tool evaluation indexes such as asymmetry index, maximum torque index and center yaw index, experts can define the threshold value according to the asymmetry index, maximum torque index and center yaw index calculated according to the historical (or tool sample) data , which is used to judge the tool state corresponding to the asymmetry index, the maximum torque index and the center deflection index calculated according to the tool to be tested, and the judgment result can be visualized. For example, the inner and outer concentric circles shown in FIGS. 7A and 7B can be used to represent the preset range R1 of the first threshold value and the preset range R2 of the second threshold value, wherein the first threshold value and the second threshold value respectively represent The health and unhealthy (or recommended replacement) status of the tool. Then, according to the relationship between the calculated asymmetry index, the maximum torque index and the center yaw index of the tool to be tested and the first threshold value and the second threshold value, respectively, three pointing graphs are presented. Taking FIG. 7A as an example, the directional patterns of the asymmetry index, the maximum torque index and the center yaw index shown in FIG. 7A are within the preset range R1 of the first threshold value, which means that the tool is in a healthy state. Taking FIG. 7B as an example, the asymmetry index and the center yaw index shown in FIG. 7B have exceeded the preset range R1 of the first threshold value, and the maximum torque index has exceeded the preset range R2 of the second threshold value. Indicates that the tool is overloaded and a tool replacement is recommended. Thereby, by converting the tool evaluation index into Fig. 7A and Fig. 7B image to display whether the threshold value is exceeded, which can provide the operator with a quick grasp of the health status of the tool. In some embodiments, the three directional graphics corresponding to the asymmetry index, the maximum torque index, and the center yaw index can be presented in different colors, so as to improve the operator's judgment speed.
可理解的是,本發明之刀具評估指標的建立方法200為以上所述之實施步驟。上述實施例所說明的各實施步驟的次序可依實際需要而調動、結合或省略。上述實施例可利用電腦程式產品來實現,其可包含儲存有多個指令之機器可讀取媒體,這些指令可程式化(programming)電腦來進行上述實施例中的步驟。機器可讀取媒體可為但不限定於軟碟、光碟、唯讀光碟、磁光碟、唯讀記憶體、隨機存取記憶體、可抹除可程式唯讀記憶體(EPROM)、電子可抹除可程式唯讀記憶體(EEPROM)、光卡(optical card)或磁卡、快閃記憶體、或任何適於儲存電子指令的機器可讀取媒體。再者,本發明之實施例也可做為電腦程式產品來下載,其可藉由使用通訊連接(例如網路連線之類的連接)之資料訊號來從遠端電腦轉移本發明之電腦程式產品至請求電腦。
It can be understood that, the
由上述本發明實施方式可知,本發明主要是以刀具在加工時,感測器所擷取之刀具與刀把所承受力的感測資料,並以這些感測資料建立出刀刃受力分布圖。另一方面,本發明還進一步根據此刀刃受力分布圖來計算不對稱度指標、最大扭矩指標及中心偏擺指標等刀具評估指標,進而提供操作人員快速判讀刀具狀態參考,並及時更換刀具, 進而提升整體加工品質。 As can be seen from the above embodiments of the present invention, the present invention mainly uses the sensing data of the force on the tool and the handle captured by the sensor when the tool is being processed, and establishes the force distribution map of the cutting edge based on the sensing data. On the other hand, the present invention further calculates tool evaluation indexes such as asymmetry index, maximum torque index and center yaw index according to the force distribution diagram of the blade, so as to provide the operator with a reference for quickly interpreting the tool status and changing the tool in time. This improves the overall processing quality.
雖然本揭露之實施例已以實施例揭露如上,然其並非用以限定本揭露之實施例,任何所屬技術領域中具有通常知識者,在不脫離本揭露之實施例的精神和範圍內,當可作些許的更動與潤飾,故本揭露之實施例的保護範圍當視後附的申請專利範圍所界定者為準。 Although the embodiments of the present disclosure have been disclosed above with examples, they are not intended to limit the embodiments of the present disclosure. Anyone with ordinary knowledge in the technical field, without departing from the spirit and scope of the embodiments of the present disclosure, should Slight changes and modifications may be made, so the protection scope of the embodiments of the present disclosure should be determined by the scope of the appended patent application.
200:刀具評估指標的建立方法 200: Establishment of Tool Evaluation Metrics
210,220,230,240:步驟 210, 220, 230, 240: Steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109140119A TWI750900B (en) | 2020-11-17 | 2020-11-17 | Method for establishing tool assessment index and computer program product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109140119A TWI750900B (en) | 2020-11-17 | 2020-11-17 | Method for establishing tool assessment index and computer program product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI750900B true TWI750900B (en) | 2021-12-21 |
TW202221299A TW202221299A (en) | 2022-06-01 |
Family
ID=80681360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109140119A TWI750900B (en) | 2020-11-17 | 2020-11-17 | Method for establishing tool assessment index and computer program product thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI750900B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140216170A1 (en) * | 2013-02-05 | 2014-08-07 | Georgia Tech Research Corporation | Systems And Methods For Monitoring Cutting Forces In Peripheral End Milling |
CN106650001A (en) * | 2016-11-15 | 2017-05-10 | 大连理工大学 | Prediction method for early damage of micro-milling cutter |
US20190001456A1 (en) * | 2015-12-22 | 2019-01-03 | Sandvik Intellectual Property Ab | Sensor module and tool holder for a cutting tool |
-
2020
- 2020-11-17 TW TW109140119A patent/TWI750900B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140216170A1 (en) * | 2013-02-05 | 2014-08-07 | Georgia Tech Research Corporation | Systems And Methods For Monitoring Cutting Forces In Peripheral End Milling |
US20190001456A1 (en) * | 2015-12-22 | 2019-01-03 | Sandvik Intellectual Property Ab | Sensor module and tool holder for a cutting tool |
CN106650001A (en) * | 2016-11-15 | 2017-05-10 | 大连理工大学 | Prediction method for early damage of micro-milling cutter |
Also Published As
Publication number | Publication date |
---|---|
TW202221299A (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11227375B2 (en) | Machine vision and machine intelligence aided electronic and computer system for assisting on formation drilling, boring, tunneling on-line guidance, assisted decision and dull grading system for drilling tool and associated drill string components | |
CN111644900B (en) | Tool damage real-time monitoring method based on spindle vibration characteristic fusion | |
Paul et al. | Chisel edge and cutting lip shape optimization for improved twist drill point design | |
CN107529334B (en) | Method and device for machining a tool by removing material | |
TWI649152B (en) | Tool state detection system and method | |
Segreto et al. | Machine learning for in-process end-point detection in robot-assisted polishing using multiple sensor monitoring | |
EP2821870B1 (en) | Setting method of revolutions per minute on real time of rotating cutting tool, and control device | |
CN107627152B (en) | Numerical control machining chip control method based on BP neural network | |
CN107330138A (en) | A kind of Milling Force Analytic modeling method of flat helical end millses | |
CN102735204B (en) | Chord-line-based aviation thin-wall blade machining torsion degree error measurement method | |
CN104182631B (en) | A kind of modeling method of the cutter bias of multiple spindle processing system | |
CN101876536A (en) | Three-dimensional color gradation comparison dynamic analysis method | |
Yuan et al. | Surface roughness modeling in micro end-milling | |
CN114186175B (en) | Method for resolving energy consumption dynamic characteristics of main cutting force of high-energy-efficiency milling cutter under vibration effect | |
JPWO2020217614A1 (en) | Processing condition determination support device | |
TWI750900B (en) | Method for establishing tool assessment index and computer program product thereof | |
CN114896753A (en) | Method for identifying instantaneous friction energy consumption distribution characteristics of rear cutter face of high-energy-efficiency milling cutter | |
CN105223903A (en) | Manufacture manufacturing installation and the manufacture method of unbalance few air-supply wing | |
CN107607080B (en) | A kind of prism-shaped cross-section of pipeline distortion measurement calculation method | |
CN110727246B (en) | Tool and workpiece instantaneous contact contour extraction method based on tool position file | |
KR101618470B1 (en) | Main shaft sensing system of machine tool using acceleration sensor | |
WO2020010902A1 (en) | Cutter state detection system | |
US10310494B2 (en) | Diagnostic result display method in diagnostic device and diagnostic device | |
CN113610812B (en) | Weight resolving method for judging subsurface crack form of ultrasonic vibration grinding optical glass and influencing factors | |
JP2012071389A (en) | Burnishing method |