TWI750154B - Systems and methods for tuning an impedance matching network in a step-wise fashion - Google Patents

Systems and methods for tuning an impedance matching network in a step-wise fashion Download PDF

Info

Publication number
TWI750154B
TWI750154B TW106106910A TW106106910A TWI750154B TW I750154 B TWI750154 B TW I750154B TW 106106910 A TW106106910 A TW 106106910A TW 106106910 A TW106106910 A TW 106106910A TW I750154 B TWI750154 B TW I750154B
Authority
TW
Taiwan
Prior art keywords
value
matching network
impedance
impedance matching
processor
Prior art date
Application number
TW106106910A
Other languages
Chinese (zh)
Other versions
TW201742514A (en
Inventor
亞瑟 M 豪瓦德
約翰 C 小微寇爾
安德魯 馮
大衛 霍普金斯
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/061,705 external-priority patent/US10296676B2/en
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201742514A publication Critical patent/TW201742514A/en
Application granted granted Critical
Publication of TWI750154B publication Critical patent/TWI750154B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Systems and methods for tuning an impedance matching network in a step-wise fashion are described. By tuning the impedance matching network in a step-wise fashion instead of directly to achieve optimum values of a radio frequency (RF) and a combined variable capacitance, processing of a wafer using the tuned optimal values becomes feasible.

Description

以步進方式調節阻抗匹配網路之系統及方法System and method for stepwise adjustment of impedance matching network

本發明關於以步進方式調節阻抗匹配網路的系統及方法。The present invention relates to systems and methods for adjusting impedance matching networks in a stepwise manner.

電漿系統係用以控制電漿製程。電漿系統包含多個射頻(RF)源、一阻抗匹配件、及一電漿反應器。一工作件係放置在電漿腔室內部,而電漿係在該電漿腔室之內加以產生以處理該工作件。以類似或均勻的方式處理工作件係重要的。為了以類似或均勻的方式處理工作件,調節RF源及阻抗匹配件係重要的。The plasma system is used to control the plasma process. The plasma system includes multiple radio frequency (RF) sources, an impedance matching member, and a plasma reactor. A workpiece is placed inside the plasma chamber, and plasma is generated within the plasma chamber to process the workpiece. It is important to treat the work pieces in a similar or uniform manner. In order to treat the workpiece in a similar or uniform manner, it is important to adjust the RF source and impedance matching components.

這是本揭示內容中描述之實施例產生的背景。This is the context in which the embodiments described in this disclosure arise.

本揭示內容的實施例提供以步進方式調節阻抗匹配網路的設備、方法、及電腦程式。應理解本發明實施例可以多種方式(例如:製程、設備、系統、硬體、或電腦可讀媒體上的方法)加以實施。幾個實施例係描述於下。Embodiments of the present disclosure provide apparatus, methods, and computer programs for adjusting an impedance matching network in a stepwise manner. It should be understood that embodiments of the present invention can be implemented in various ways (eg, processes, apparatus, systems, hardware, or methods on computer-readable media). Several embodiments are described below.

一電漿工具具有射頻(RF)匹配網路調節演算法。該電漿工具具有一或兩個RF產生器,且每一RF產生器係連接至50歐姆同軸RF電纜。該等RF電纜係連接至一阻抗匹配網路,該阻抗匹配網路係經由RF傳輸線連接至電漿腔室。該等RF產生器係設計成以50+0j歐姆或接近50+0j歐姆的負載阻抗加以操作。阻抗匹配網路的一個目的係將通常非接近50+0j歐姆之電漿腔室及RF傳輸線的負載阻抗轉變為50+0j歐姆或接近50+0j歐姆。在50+0j歐姆或接近50+0j歐姆的目標阻抗有兩部分:實部,其應在50歐姆或近50歐姆;及虛部,其應在0歐姆或接近0歐姆。因此,連接至該兩個RF產生器之其中一者之阻抗匹配網路的分支電路具有兩個可變元件。該兩個可變元件包含馬達驅動可變電容及來自該等RF產生器之該其中一者的可變RF頻率輸出。A plasma tool has a radio frequency (RF) matching network tuning algorithm. The plasma tool has one or two RF generators, and each RF generator is connected to a 50 ohm coaxial RF cable. The RF cables are connected to an impedance matching network, which is connected to the plasma chamber via RF transmission lines. The RF generators are designed to operate with a load impedance of 50+0j ohms or close to 50+0j ohms. One purpose of the impedance matching network is to convert the load impedance of plasma chambers and RF transmission lines, which are typically not near 50+0j ohms, to 50+0j ohms or near 50+0j ohms. The target impedance at or near 50+0j ohms has two parts: the real part, which should be at or near 50 ohms; and the imaginary part, which should be at or near 0 ohms. Thus, the branch circuit connected to the impedance matching network of one of the two RF generators has two variable elements. The two variable elements include a motor driven variable capacitor and a variable RF frequency output from the one of the RF generators.

可變電容係在配方中預先設定,且在配方步驟內不加以變化。可變電容係藉由編輯配方而加以改變。可變RF頻率係藉由在RF產生器內部運行的製程加以控制。該製程根據電壓反射係數加以操作。若該反射係數相對於閾值是高的,則該製程增加或降低RF頻率,且以此方式,基於該反射係數以一種方向或其他方向改變RF頻率。在RF產生器中的感測器使用窄帶濾波器偵測反射電壓,及偵測在基頻處之反射電壓的一部分,而在互調頻率處可能存在未被偵測之大的反射波振幅。用於阻抗匹配網路的匹配網路模型係用以當下列輸入(例如:RF功率、可變電容和可變RF頻率的值、及在RF產生器之輸出處之RF負載阻抗的測量值等)係作為輸入提供至匹配網路模型時,預測在RF電壓與在阻抗匹配網路之輸出處之電流或負載阻抗之間的RF電壓、電流及相位。匹配網路模型係擴展至預測在阻抗匹配網路的輸出與夾盤之間的RF電壓及電流。在各種實施例中,匹配網路模型包含具有相同形式的一系列模組,如在美國專利申請案第14/245,803號中所述。The variable capacitance is preset in the recipe and is not changed during recipe steps. Variable capacitance is changed by editing recipes. The variable RF frequency is controlled by a process running inside the RF generator. The process operates according to the voltage reflection coefficient. If the reflection coefficient is high relative to the threshold, the process increases or decreases the RF frequency and, in this way, changes the RF frequency in one direction or the other based on the reflection coefficient. The sensor in the RF generator detects the reflected voltage using a narrowband filter, and detects a portion of the reflected voltage at the fundamental frequency, where there may be undetected large reflected wave amplitudes at the intermodulation frequency. A matching network model for an impedance matching network is used when the following inputs (e.g. RF power, values of variable capacitance and variable RF frequency, and measurements of RF load impedance at the output of the RF generator, etc. ) is the predicted RF voltage, current and phase between the RF voltage and the current or load impedance at the output of the impedance matching network when provided as input to the matching network model. The matching network model is extended to predict the RF voltage and current between the output of the impedance matching network and the chuck. In various embodiments, the matching network model includes a series of modules having the same form, as described in US Patent Application Serial No. 14/245,803.

在一些實施例中,在RF產生器之輸出處的負載阻抗係經由匹配網路模型向前傳播,以在匹配網路模型的輸出處自可變電容及可變RF頻率計算負載阻抗,而在輸出處的負載阻抗係接著向後傳播以決定可變電容及可變RF頻率的最佳值。一旦決定最佳值,RF產生器及阻抗匹配網路係加以調節以達到可變電容及RF可變頻率的最佳值。相對於改變可變電容以達到可變電容的最佳值,可變RF頻率可更快速地加以改變以達到可變RF頻率的最佳值。舉例而言,與以秒等級改變可變電容相比,可變RF頻率係以微秒等級加以改變。因此,直接設定RF產生器以在可變RF頻率的最佳值下操作及設定阻抗匹配網路以在可變電容的最佳值下操作係困難的。為了調節阻抗匹配網路,取代調節阻抗匹配網路以達到可變電容的最佳值及調節RF產生器以達到可變RF頻率的最佳值,阻抗匹配網路係以步進方式加以調節以產生步階可變電容值而非可變電容的最佳值,且該步階可變電容之可變RF頻率的局部最佳值係加以計算。舉例而言,阻抗匹配網路係加以調節,以具有在可變電容之最佳值方向上的可變電容值,及針對該可變電容值決定之可變RF頻率的局部最佳值。以此方式,達到可變電容的最佳值及可變RF頻率的最佳值,而非直接達到可變電容的最佳值及可變RF頻率的最佳值。In some embodiments, the load impedance at the output of the RF generator is propagated forward through the matching network model to calculate the load impedance from the variable capacitance and variable RF frequency at the output of the matching network model, while at the output of the matching network model the load impedance is calculated from the variable capacitance and the variable RF frequency. The load impedance at the output is then propagated back to determine the optimum value for the variable capacitance and variable RF frequency. Once the optimum values are determined, the RF generator and impedance matching network are adjusted to achieve optimum values for the variable capacitance and RF variable frequency. The variable RF frequency can be changed more rapidly to achieve the optimum value of the variable RF frequency than changing the variable capacitance to achieve the optimum value of the variable capacitance. For example, the variable RF frequency is changed on the order of microseconds compared to changing the variable capacitance on the order of seconds. Therefore, it is difficult to directly set the RF generator to operate at the optimum value of the variable RF frequency and the impedance matching network to operate at the optimum value of the variable capacitance. In order to adjust the impedance matching network, instead of adjusting the impedance matching network to achieve the optimum value of the variable capacitor and adjusting the RF generator to achieve the optimum value of the variable RF frequency, the impedance matching network is adjusted in steps to A step variable capacitance value is generated instead of an optimal value for the variable capacitance, and a local optimal value for the variable RF frequency of the step variable capacitance is calculated. For example, the impedance matching network is adjusted to have a variable capacitance value in the direction of the optimum value of the variable capacitance, and a local optimum for the variable RF frequency determined for the variable capacitance value. In this way, the optimum value of the variable capacitance and the optimum value of the variable RF frequency are achieved, rather than directly reaching the optimum value of the variable capacitance and the optimum value of the variable RF frequency.

本文描述之系統及方法的一些優點包含應用步進方式調節阻抗匹配網路的可變電容。以該步進方式,在匹配網路模型之輸入處之反射係數係最小值之可變RF頻率的局部最佳值係針對可變電容的步階值加以計算。該步階值係接著加以增量,且在匹配網路模型的輸入處之反射係數係最小值之可變RF頻率的另一值係針對可變電容之增量的步階值加以計算。該步階值係加以增量直到達到可變電容的最佳值。直接從阻抗匹配網路係正操作的值達到可變電容的最佳值且同時達到可變RF頻率的最佳值係困難的。這是因為以與控制RF產生器之相同的速度控制阻抗匹配網路的一個以上可變電容器係困難的。藉由使用該步進方式,可變電容及RF頻率的最佳值係加以達成。Some of the advantages of the systems and methods described herein include the application of stepwise adjustment of the variable capacitance of the impedance matching network. In this stepwise manner, the local optimum of the variable RF frequency of the minimum value of the reflection coefficient at the input of the matching network model is calculated for the step value of the variable capacitor. The step value is then incremented, and another value of the variable RF frequency where the reflection coefficient is the minimum value at the input to the matching network model is calculated for the incremental step value of the variable capacitance. The step value is incremented until the optimum value of the variable capacitance is reached. It is difficult to achieve the optimum value for the variable capacitance and at the same time the optimum value for the variable RF frequency directly from the value at which the impedance matching network is operating. This is because it is difficult to control more than one variable capacitor of the impedance matching network at the same speed as the RF generator. By using this stepping method, optimum values of variable capacitance and RF frequency are achieved.

其他實施態樣將自結合附圖的以下詳細敘述變得明顯。Other embodiments will become apparent from the following detailed description taken in conjunction with the accompanying drawings.

以下實施例描述以步進方式調節阻抗匹配網路的系統及方法。應理解本發明實施例可以不具有某些或全部這些具體細節而加以實施。在其他情況下,為了不要不必要地模糊本發明實施例,未詳細說明眾所周知的製程操作。The following embodiments describe systems and methods for adjusting an impedance matching network in a stepwise fashion. It should be understood that embodiments of the invention may be practiced without some or all of these specific details. In other instances, well-known process operations have not been described in detail in order not to unnecessarily obscure embodiments of the invention.

圖1係電漿系統100之一實施例的圖,以說明使用匹配網路模型102產生負載阻抗ZL1。電漿系統100包含射頻(RF)產生器104、阻抗匹配網路106、及電漿腔室108。電漿系統100包含主機電腦系統110、驅動組件112、及一個以上連接機構114。FIG. 1 is a diagram of one embodiment of a plasma system 100 to illustrate the use of matching network model 102 to generate load impedance ZL1. Plasma system 100 includes radio frequency (RF) generator 104 , impedance matching network 106 , and plasma chamber 108 . The plasma system 100 includes a host computer system 110 , a drive assembly 112 , and one or more connection mechanisms 114 .

電漿腔室108包含上電極116、夾盤118、及晶圓W。上電極116面向夾盤118且係例如接地的、耦合至參考電壓、耦合至零電壓、耦合至負電壓等。夾盤118的實例包含靜電夾盤(ESC)及磁性夾盤。夾盤118的下電極係由金屬製成,例如:陽極化的鋁、鋁的合金等。在各種實施例中,夾盤118的下電極係覆蓋一層陶瓷的金屬薄層。此外,上電極116係由金屬製成,例如:鋁、鋁的合金等。在一些實施例中,上電極116係由矽製成。上電極116係位在夾盤118之下電極的對向側且面向該夾盤118的下電極。晶圓W係放置在夾盤118的頂部表面120上以進行處理,例如:在晶圓W上沉積材料、或清潔晶圓W、或蝕刻在晶圓W上沉積的層、或摻雜晶圓W、或在晶圓W上植入離子、或在晶圓W上產生光微影圖案、或蝕刻晶圓W、或濺鍍晶圓W、或其組合。The plasma chamber 108 includes the upper electrode 116 , the chuck 118 , and the wafer W. The upper electrode 116 faces the chuck 118 and is, for example, grounded, coupled to a reference voltage, coupled to zero voltage, coupled to a negative voltage, or the like. Examples of chucks 118 include electrostatic chucks (ESCs) and magnetic chucks. The lower electrode of the chuck 118 is made of metal, such as anodized aluminum, aluminum alloys, and the like. In various embodiments, the lower electrode of the chuck 118 is covered with a thin metal layer of ceramic. In addition, the upper electrode 116 is made of metal, such as aluminum, an alloy of aluminum, and the like. In some embodiments, the upper electrode 116 is made of silicon. The upper electrode 116 is located on the opposite side of the lower electrode of the chuck 118 and faces the lower electrode of the chuck 118 . Wafer W is placed on top surface 120 of chuck 118 for processing, such as depositing material on wafer W, or cleaning wafer W, or etching layers deposited on wafer W, or doping the wafer W, or implanting ions on wafer W, or creating a photolithographic pattern on wafer W, or etching wafer W, or sputtering wafer W, or a combination thereof.

在一些實施例中,電漿腔室108係使用額外的部件加以形成,例如:圍繞上電極116的上電極延伸部、圍繞夾盤118之下電極的下電極延伸部、在上電極116與上電極延伸部之間的介電環、在下電極與下電極延伸部之間的介電環、位於上電極116和夾盤118之邊緣處以圍繞形成電漿之電漿腔室108內之一區域的限制環等。In some embodiments, the plasma chamber 108 is formed using additional components, such as: an upper electrode extension surrounding the upper electrode 116, a lower electrode extension surrounding the lower electrode of the chuck 118, a connection between the upper electrode 116 and the upper electrode A dielectric ring between the electrode extensions, a dielectric ring between the lower electrode and the lower electrode extension, at the edge of the upper electrode 116 and the chuck 118 to surround an area within the plasma chamber 108 where the plasma is formed Limit rings, etc.

阻抗匹配網路106包含一個以上電路元件,例如:一個以上電感器、或一個以上電容器、或一個以上電阻器、或其兩者以上的組合等,該等電路元件係彼此耦合。舉例而言,阻抗匹配網路106包含一串聯電路,該串聯電路包含與一電容器串聯耦接的一電感器。阻抗匹配網路106更包含連接至該串聯電路的一分流電路。該分流電路包含與一電感器串聯連接的一電容器。阻抗匹配網路106包含一個以上電容器,且該一個以上電容器(例如所有可變電容器等)之相應的電容係可變的(例如使用驅動組件加以改變等)。阻抗匹配網路106包含具有固定電容的一個以上電容器,例如無法使用驅動組件112加以改變的電容器等。阻抗匹配網路106之一個以上可變電容器的組合可變電容係值C1。舉例而言,一個以上可變電容器之相應相對放置的板係調整至在固定位置以設定可變電容C1。為了說明,彼此並聯連接之兩個以上電容器的組合電容係該等電容器之電容的總和。作為另一說明,彼此串聯連接之兩個以上電容器的組合電容係該等電容器之電容之倒數的總和之倒數。美國專利申請案第14/245,803號提供了阻抗匹配網路106的一實例。Impedance matching network 106 includes one or more circuit elements, such as one or more inductors, or one or more capacitors, or one or more resistors, or a combination of two or more, etc., which are coupled to each other. For example, the impedance matching network 106 includes a series circuit including an inductor coupled in series with a capacitor. Impedance matching network 106 further includes a shunt circuit connected to the series circuit. The shunt circuit includes a capacitor connected in series with an inductor. Impedance matching network 106 includes one or more capacitors, and the corresponding capacitances of the one or more capacitors (eg, all variable capacitors, etc.) are variable (eg, changed using drive components, etc.). Impedance matching network 106 includes one or more capacitors with fixed capacitances, such as capacitors that cannot be changed using driving component 112 . The combined variable capacitance value C1 of one or more variable capacitors of the impedance matching network 106 . For example, the respective opposing plates of the one or more variable capacitors are adjusted to be in fixed positions to set the variable capacitance C1. For illustration, the combined capacitance of two or more capacitors connected in parallel with each other is the sum of the capacitances of the capacitors. As another illustration, the combined capacitance of two or more capacitors connected in series with each other is the inverse of the sum of the inverses of the capacitances of the capacitors. An example of an impedance matching network 106 is provided in US Patent Application Serial No. 14/245,803.

匹配網路模型102係推導自阻抗匹配網路106的一分支,例如表示該阻抗匹配網路106的一分支等。舉例而言,當x MHz的RF產生器係連接至阻抗匹配網路106的分支電路時,匹配網路模型102表示例如阻抗匹配網路106之分支電路的電路之電腦產生模型等。作為另一實例,匹配網路模型102之電路元件的數目不等於阻抗匹配網路106之電路元件的數目。在一些實施例中,相較於阻抗匹配網路106之電路元件的數目,匹配網路模型102具有較少之電路元件的數目。為了說明,匹配網路模型102係阻抗匹配網路106之分支電路的一簡化形式。為了進一步說明,阻抗匹配網路106之分支電路之多個可變電容器的可變電容係組合成由匹配網路模型102之一個以上可變電容元件表示的一組合可變電容;阻抗匹配網路106之分支電路之多個固定電容器的固定電容係組合成由匹配網路模型102之一個以上固定電容元件表示的一組合固定電容;及/或阻抗匹配網路106之分支電路之多個固定電感器的電感係組合成由匹配網路模型102之一個以上電感元件表示的一組合電感;及/或阻抗匹配網路106之分支電路之多個電阻器的電阻係組合成由匹配網路模型102之一個以上電阻元件表示的一固定電阻。為了說明更多,串聯之電容器的電容係藉由下列加以組合:對每一電容值取倒數以產生多個倒數電容值,將該等倒數電容值加總以產生一倒數組合電容值,接著藉由對該倒數組合電容值取倒數以產生一組合電容值。作為另一說明,串聯連接之多個電感器的電感係加總以產生一組合電感,且串聯之多個電阻器的電阻係加以組合以產生一組合電阻。阻抗匹配網路106之部分之所有固定電容器的所有固定電容係組合成匹配網路模型102之一個以上固定電容元件的一組合固定電容。匹配網路模型102的其他實例係在美國專利申請案第14/245,803號中加以提供。此外,自阻抗匹配網路產生匹配網路模型的方式係在美國專利申請案第14/245,803號中加以描述。The matching network model 102 is derived from a branch of the impedance matching network 106, eg, represents a branch of the impedance matching network 106, or the like. For example, when an x MHz RF generator is connected to a branch circuit of impedance matching network 106, matching network model 102 represents a computer-generated model of a circuit such as a branch circuit of impedance matching network 106, or the like. As another example, the number of circuit elements of matching network model 102 is not equal to the number of circuit elements of impedance matching network 106 . In some embodiments, the matching network model 102 has a smaller number of circuit elements than the number of circuit elements of the impedance matching network 106 . For illustration, matching network model 102 is a simplified form of the branch circuits of impedance matching network 106 . For further illustration, the variable capacitances of the plurality of variable capacitors of the branch circuits of the impedance matching network 106 are combined into a combined variable capacitance represented by one or more variable capacitance elements of the matching network model 102; the impedance matching network The fixed capacitances of the plurality of fixed capacitors of the branch circuit of 106 are combined into a combined fixed capacitance represented by one or more fixed capacitance elements of the matching network model 102; and/or the plurality of fixed inductances of the branch circuits of the impedance matching network 106 The inductances of the resistors are combined into a combined inductance represented by one or more inductive elements of matching network model 102; A fixed resistance represented by one or more resistive elements. To illustrate more, the capacitances of capacitors in series are combined by taking the reciprocal of each capacitance value to produce a plurality of reciprocal capacitance values, summing the reciprocal capacitance values to produce a reciprocal combined capacitance value, and then by A combined capacitance value is generated by taking the inverse of the reciprocal combined capacitance value. As another illustration, the inductances of a plurality of inductors connected in series are summed to produce a combined inductance, and the resistances of a plurality of resistors connected in series are combined to produce a combined resistance. All fixed capacitances of all fixed capacitors that are part of impedance matching network 106 are combined into a combined fixed capacitance of one or more fixed capacitance elements of matching network model 102 . Other examples of matching network models 102 are provided in US Patent Application Serial No. 14/245,803. Additionally, the manner in which a matching network model is generated from an impedance matching network is described in US Patent Application Serial No. 14/245,803.

在一些實施例中,匹配網路模型102係自針對具有三個分支(每一者分別用於x MHz、y MHz、及z MHz的RF產生器)之阻抗匹配網路106的示意圖加以產生。該三個分支在阻抗匹配網路106的輸出140處彼此連接。示意圖最初包含各種組合的若干電感器及電容器。對於獨立考慮之該三分支的其中一者,匹配網路模型102表示該三分支中的其中一者。電路元件係藉由輸入裝置增加至匹配網路模型102,其示例係在下面加以提供。所增加之電路元件的示例包含:先前在示意圖中未包含的電阻器,以解釋在阻抗匹配網路106之分支中的功率損失;先前在示意圖中未包含的電感器,以表示各種連接之RF帶的電感;及先前在示意圖中未包含的電容器,以表示寄生電容。此外,一些電路元件係藉由輸入裝置進一步增加至示意圖,以表示因阻抗匹配網路106之實體尺寸之阻抗匹配網路106之分支的傳輸線本質。舉例而言,與經由一個以上電感器傳遞之RF訊號的波長相比,在阻抗匹配網路106之分支中之該一個以上電感器之未旋捲的長度係不可忽略的。為了解釋此結果,示意圖中的一電感器係分成兩個以上的電感器。之後,一些電路元件係藉由輸入裝置自該示意圖加以移除以產生匹配網路模型102。In some embodiments, the matching network model 102 is generated from a schematic diagram for an impedance matching network 106 with three branches, one for each RF generator at x MHz, y MHz, and z MHz. The three branches are connected to each other at the output 140 of the impedance matching network 106 . The schematic initially contains several inductors and capacitors in various combinations. For one of the three branches considered independently, the matching network model 102 represents one of the three branches. Circuit elements are added to the matching network model 102 by means of input devices, examples of which are provided below. Examples of added circuit elements include: resistors not previously included in the schematic to account for power losses in the branches of the impedance matching network 106; inductors not previously included in the schematic to represent RF for various connections The inductance of the strip; and the capacitor, which was not previously included in the schematic, to represent the parasitic capacitance. In addition, some circuit elements are further added to the schematic diagram by means of input devices to represent the transmission line nature of the branches of the impedance matching network 106 due to the physical size of the impedance matching network 106 . For example, the unconvoluted length of the one or more inductors in a branch of the impedance matching network 106 is not negligible compared to the wavelength of the RF signal passed through the one or more inductors. To explain this result, an inductor in the schematic is divided into more than two inductors. Afterwards, some circuit elements are removed from the schematic by the input device to generate the matching network model 102 .

在各種實施例中,匹配網路模型102與阻抗匹配網路106之分支電路具有相同的拓撲,例如在電路元件之間的連接、電路元件的數目等。舉例而言,若阻抗匹配網路106的分支電路包含與一電感器串聯耦接的一電容器,則匹配網路模型102包含與一電感器串聯耦接的一電容器。在此實例中,阻抗匹配網路106之分支電路的電感器與匹配網路模型102的電感器具有相同的值,且阻抗匹配網路106之分支電路的電容器與匹配網路模型102的電容器具有相同的值。作為另一實例,若阻抗匹配網路106的分支電路包含與一電感器並聯耦接的一電容器,則匹配網路模型102包含與一電感器並聯耦接的一電容器。在此實例中,阻抗匹配網路106之分支電路的電感器與匹配網路模型102的電感器具有相同的值,且阻抗匹配網路106之分支電路的電容器與匹配網路模型102的電容器具有相同的值。作為另一實例,匹配網路模型102係與阻抗匹配網路106的電路元件相比具有相同數目及相同類型的電路元件,且匹配網路模型102係與阻抗匹配網路106在電路元件之間的連接相比具有相同類型的連接。電路元件之類型的實例包含電阻器、電感器、及電容器。連接之類型的實例包含串聯、並聯等。In various embodiments, the matching network model 102 and the branch circuits of the impedance matching network 106 have the same topology, eg, connections between circuit elements, number of circuit elements, and the like. For example, if the branch circuit of impedance matching network 106 includes a capacitor coupled in series with an inductor, then matching network model 102 includes a capacitor coupled in series with an inductor. In this example, the inductors of the branch circuits of impedance matching network 106 and the inductors of matching network model 102 have the same value, and the capacitors of the branch circuits of impedance matching network 106 and the capacitors of matching network model 102 have the same value. As another example, if the branch circuits of impedance matching network 106 include a capacitor coupled in parallel with an inductor, then matching network model 102 includes a capacitor coupled in parallel with an inductor. In this example, the inductors of the branch circuits of impedance matching network 106 and the inductors of matching network model 102 have the same value, and the capacitors of the branch circuits of impedance matching network 106 and the capacitors of matching network model 102 have the same value. As another example, the matching network model 102 has the same number and same type of circuit elements as the circuit elements of the impedance matching network 106, and the matching network model 102 and the impedance matching network 106 are between the circuit elements A connection is compared to a connection of the same type. Examples of types of circuit elements include resistors, inductors, and capacitors. Examples of types of connections include series, parallel, and the like.

此外,RF產生器104包含用於產生RF訊號的RF電源122。RF產生器104包含連接至RF產生器104之輸出126的感測器124,例如:複阻抗(complex impedance)感測器、複電流與電壓(complex current and voltage)感測器、複反射係數(complex reflection coefficient)感測器、複電壓感測器、複電流感測器等。輸出126係經由RF電纜130連接至阻抗匹配網路106之分支電路的輸入128。阻抗匹配網路106係經由RF傳輸線132連接至電漿腔室108,該RF傳輸線132包含RF桿及圍繞該RF桿的RF外導體。Additionally, the RF generator 104 includes an RF power source 122 for generating RF signals. The RF generator 104 includes a sensor 124 connected to the output 126 of the RF generator 104, such as a complex impedance sensor, a complex current and voltage sensor, a complex reflection coefficient ( complex reflection coefficient) sensor, complex voltage sensor, complex current sensor, etc. The output 126 is connected via the RF cable 130 to the input 128 of the branch circuit of the impedance matching network 106 . Impedance matching network 106 is connected to plasma chamber 108 via RF transmission line 132, which includes an RF rod and an RF outer conductor surrounding the RF rod.

驅動組件112包含驅動器(例如一個以上電晶體等)及馬達,且該馬達係經由連接機構114連接至阻抗匹配網路106的一可變電容器。連接機構114的實例包含一個以上的桿、或藉由齒輪彼此連接之複數的桿等。連接機構114係連接至阻抗匹配網路106的一可變電容器。舉例而言,連接機構114係連接至分支電路之一部分的一可變電容器,該分支電路係經由輸入128連接至RF產生器104。The drive component 112 includes a driver (eg, one or more transistors, etc.) and a motor, and the motor is connected to a variable capacitor of the impedance matching network 106 via the connection mechanism 114 . Examples of the connection mechanism 114 include more than one rod, or a plurality of rods connected to each other by gears, or the like. The connection mechanism 114 is connected to a variable capacitor of the impedance matching network 106 . For example, connection mechanism 114 is connected to a variable capacitor that is part of a branch circuit that is connected to RF generator 104 via input 128 .

應注意,在阻抗匹配網路106包含連接至RF產生器104之分支電路中之多於一個可變電容器的情況下,驅動組件112包含用於控制該多於一個可變電容器的獨立馬達,且每一馬達係經由一相應的連接機構連接至相應的可變電容器。在此實例中,該等多個連接機構係稱為連接機構114。It should be noted that where the impedance matching network 106 includes more than one variable capacitor in the branch circuit connected to the RF generator 104, the drive component 112 includes a separate motor for controlling the more than one variable capacitor, and Each motor is connected to a corresponding variable capacitor via a corresponding connection mechanism. In this example, the plurality of attachment mechanisms are referred to as attachment mechanisms 114 .

RF產生器104係x百萬赫(MHz)的RF產生器或y MHz的RF產生器或z MHz的RF產生器。在一些實施例中,x MHz之RF產生器的一實例包含2 MHz的RF產生器,y MHz之RF產生器的一實例包含27 MHz的RF產生器,而z MHz之RF產生器的一實例包含60 MHz的RF產生器。在各種實施例中,x MHz之RF產生器的一實例包含400 kHz的RF產生器,y MHz之RF產生器的一實例包含27 MHz的RF產生器,而z MHz之RF產生器的一實例包含60 MHz的RF產生器。The RF generator 104 is an x megahertz (MHz) RF generator or a y MHz RF generator or a z MHz RF generator. In some embodiments, an example of an RF generator of x MHz includes a 2 MHz RF generator, an example of an RF generator of y MHz includes a 27 MHz RF generator, and an example of an RF generator of z MHz Contains a 60 MHz RF generator. In various embodiments, an example of an RF generator of x MHz includes a 400 kHz RF generator, an example of an RF generator of y MHz includes a 27 MHz RF generator, and an example of an RF generator of z MHz Contains a 60 MHz RF generator.

應注意在兩個RF產生器(例如x及y MHz的RF產生器等)係在電漿系統100內加以使用的情況下,該兩個RF產生器的其中一者係連接至輸入128且該等RF產生器的另一者係連接至阻抗匹配網路106的另一輸入。類似地,在三個RF產生器(例如x、y及z MHz的RF產生器等)係在電漿系統100內加以使用的情況下,該等RF產生器的第一者係連接至輸入128,該等RF產生器的第二者係連接至阻抗匹配網路106的第二輸入,且該等RF產生器的第三者係連接至阻抗匹配網路106的第三輸入。輸出140係經由阻抗匹配網路106的分支電路連接至輸入128。在多個RF產生器係加以使用的實施例中,輸出140係經由阻抗匹配網路106的第二分支電路連接至該第二輸入,且該輸出140係經由阻抗匹配網路106的第三分支電路連接至該第三輸入。It should be noted that where two RF generators (eg, x and y MHz RF generators, etc.) are used within plasma system 100, one of the two RF generators is connected to input 128 and the The other of the RF generators is connected to the other input of the impedance matching network 106 . Similarly, where three RF generators (eg, x, y, and z MHz RF generators, etc.) are used within plasma system 100, the first of the RF generators is connected to input 128 , the second of the RF generators is connected to the second input of the impedance matching network 106 , and the third of the RF generators is connected to the third input of the impedance matching network 106 . Output 140 is connected to input 128 via a branch circuit of impedance matching network 106 . In embodiments where multiple RF generators are used, the output 140 is connected to the second input via a second branch of the impedance matching network 106 and the output 140 is connected via a third branch of the impedance matching network 106 A circuit is connected to the third input.

主機電腦系統110包含處理器134及記憶體裝置137。主機電腦系統110的實例包含膝上型電腦、或桌上型電腦、或平板、或智慧型手機等。如本文所使用,中央處理單元(CPU)、控制器、特定應用積體電路(ASIC)、或可程式邏輯裝置(PLD)係取代處理器而加以使用,且這些術語在本文係可互換地加以使用。記憶體裝置的實例包含唯讀記憶體(ROM)、隨機存取記憶體(RAM)、硬碟、揮發性記憶體、非揮發性記憶體、儲存磁碟的冗餘陣列、快閃記憶體等。感測器124係經由網路電纜136連接至主機電腦系統110。文中使用之網路電纜的實例係用以以串列方式、或以平行方式、或使用USB協定等傳輸資料的電纜。The host computer system 110 includes a processor 134 and a memory device 137 . Examples of host computer systems 110 include laptops, or desktops, or tablets, or smartphones, and the like. As used herein, a central processing unit (CPU), controller, application specific integrated circuit (ASIC), or programmable logic device (PLD) is used in place of a processor, and these terms are used interchangeably herein use. Examples of memory devices include read only memory (ROM), random access memory (RAM), hard disks, volatile memory, non-volatile memory, redundant array of storage disks, flash memory, etc. . Sensor 124 is connected to host computer system 110 via network cable 136 . Examples of network cables used herein are cables used to transmit data in series, or in parallel, or using the USB protocol or the like.

RF產生器104係以射頻RF1加以操作。舉例而言,處理器134將包含射頻RF1及功率值的配方提供至RF產生器104。RF產生器104經由連接至RF產生器104及主機電腦系統110的網路電纜138接收配方,且RF產生器104的數位訊號處理器(DSP)將該配方提供至RF電源122。RF電源122產生具有配方中規定之射頻RF1及功率的RF訊號。RF generator 104 operates at radio frequency RF1. For example, processor 134 provides a recipe including radio frequency RF1 and power values to RF generator 104 . The RF generator 104 receives the recipe via a network cable 138 connected to the RF generator 104 and the host computer system 110 , and the digital signal processor (DSP) of the RF generator 104 provides the recipe to the RF power supply 122 . The RF power source 122 generates an RF signal having the RF1 and power specified in the recipe.

阻抗匹配網路106係加以初始化以具有組合可變電容C1。舉例而言,處理器134將訊號發送至驅動組件112的驅動器以產生一個以上電流訊號。該一個以上電流訊號係藉由驅動器加以產生且發送至驅動組件112之相應的一個以上馬達之相應的一個以上定子。驅動組件112之相應的一個以上轉子係旋轉以移動連接機構114,以將阻抗匹配網路106之分支電路的組合可變電容改變至C1。具有組合可變電容C1之阻抗匹配網路106的分支電路經由輸入128及RF電纜130自輸出126接收具有射頻RF1的RF訊號,且將連接至阻抗匹配網路106之負載的阻抗與連接至阻抗匹配網路106之來源的阻抗加以匹配以產生一修改的訊號,其為一RF訊號。負載的實例包含電漿腔室108及RF傳輸線132。來源的實例包含RF電纜130及RF產生器104。該修改的訊號係經由RF傳輸線132自阻抗匹配網路106之分支電路的輸出140提供至夾盤118。當該修改的訊號係結合一種以上處理氣體(例如含氧氣體、含氟氣體等)提供至夾盤118時,電漿係在夾盤118與上電極116之間的空隙中加以產生或加以維持。Impedance matching network 106 is initialized to have combined variable capacitance C1. For example, the processor 134 sends signals to the drivers of the drive components 112 to generate more than one current signal. The one or more current signals are generated by the driver and sent to the corresponding one or more stators of the corresponding one or more motors of the drive assembly 112 . The corresponding one or more rotors of the drive assembly 112 are rotated to move the connection mechanism 114 to change the combined variable capacitance of the branch circuits of the impedance matching network 106 to C1. The branch circuit of the impedance matching network 106 with the combined variable capacitor C1 receives the RF signal with the radio frequency RF1 from the output 126 via the input 128 and the RF cable 130 and compares the impedance of the load connected to the impedance matching network 106 to the impedance of the load connected to the impedance matching network 106. The impedance of the source of the matching network 106 is matched to produce a modified signal, which is an RF signal. Examples of loads include plasma chamber 108 and RF transmission line 132 . Examples of sources include RF cable 130 and RF generator 104 . The modified signal is provided to the chuck 118 from the output 140 of the branch circuit of the impedance matching network 106 via the RF transmission line 132 . When the modified signal is provided to the chuck 118 in combination with one or more process gases (eg, oxygen-containing gas, fluorine-containing gas, etc.), plasma is generated or maintained in the gap between the chuck 118 and the upper electrode 116 .

當具有射頻RF1的RF訊號係加以產生且阻抗匹配網路106具有組合可變電容C1時,感測器124感測在輸出126處的電壓反射係數Γmi1且經由網路電纜136將該電壓反射係數提供至處理器134。電壓反射係數的實例包含自電漿腔室108朝RF產生器104反射之功率與藉由RF產生器104產生之在RF訊號之內供應之功率的一比值。處理器134自電壓反射係數Γmi1計算阻抗Zmi1。舉例而言,處理器134藉由應用方程式(1)Γmi1=(Zmi1–Zo)/(Zmi1+Zo),及求解以得Zmi1,而計算阻抗Zmi1,其中Zo係RF傳輸線132的特性阻抗。阻抗Zo係藉由輸入裝置(例如滑鼠、鍵盤、觸控筆、小鍵盤、按鈕、觸控螢幕等)提供至處理器134,該輸入裝置係藉由輸入/輸出介面(例如串列介面、平行介面、通用串列匯流排(USB)介面等)連接至處理器134。在一些實施例中,感測器124測量阻抗Zmi1且經由網路電纜136將該阻抗Zmi1提供至處理器134。When the RF signal with the radio frequency RF1 is generated and the impedance matching network 106 has the combined variable capacitor C1 , the sensor 124 senses the voltage reflection coefficient Γmi1 at the output 126 and via the network cable 136 the voltage reflection coefficient provided to processor 134 . An example of a voltage reflection coefficient includes the ratio of the power reflected from the plasma chamber 108 toward the RF generator 104 to the power supplied within the RF signal generated by the RF generator 104 . The processor 134 calculates the impedance Zmi1 from the voltage reflection coefficient Γmi1. For example, the processor 134 calculates the impedance Zmi1 by applying equation (1) Γmi1=(Zmi1−Zo)/(Zmi1+Zo), and solving to obtain Zmi1 , where Zo is the characteristic impedance of the RF transmission line 132 . The impedance Zo is provided to the processor 134 by an input device (eg, mouse, keyboard, stylus, keypad, button, touch screen, etc.) through an input/output interface (eg, serial interface, Parallel interface, Universal Serial Bus (USB) interface, etc.) are connected to the processor 134 . In some embodiments, sensor 124 measures impedance Zmi1 and provides this impedance Zmi1 to processor 134 via network cable 136 .

阻抗Zmi1係藉由處理器134施加於匹配網路模型102的輸入142,且係藉由匹配網路模型102向前傳播以計算在匹配網路模型102之輸出144處的負載阻抗ZL1。舉例而言,阻抗Zmi1係藉由處理器134經由匹配網路模型102的一個以上電路元件向前傳播以產生負載阻抗ZL1。為了說明,匹配網路模型102係加以初始化以具有射頻RF1。當匹配網路模型102包含一電阻元件、一電感元件、一固定電容元件、及一可變電容元件的串聯組合時,處理器134計算在匹配網路模型102之輸入142處接收的阻抗Zmi1、橫跨該電阻元件的複阻抗、橫跨該電感元件的複阻抗、橫跨具有可變電容C1之該可變電容元件的複阻抗、及橫跨該固定電容元件的複阻抗之定向和(directional sum)以產生負載阻抗ZL1。The impedance Zmi1 is applied by the processor 134 to the input 142 of the matching network model 102 and propagated forward by the matching network model 102 to calculate the load impedance ZL1 at the output 144 of the matching network model 102 . For example, impedance Zmi1 is propagated forward by processor 134 through one or more circuit elements of matching network model 102 to generate load impedance ZL1. For illustration, matching network model 102 is initialized to have radio frequency RF1. When the matching network model 102 includes a series combination of a resistive element, an inductive element, a fixed capacitive element, and a variable capacitive element, the processor 134 calculates the impedances Zmi1 , Zmi1 received at the input 142 of the matching network model 102 , The directional sum of the complex impedance across the resistive element, the complex impedance across the inductive element, the complex impedance across the variable capacitive element with variable capacitance C1, and the complex impedance across the fixed capacitive element sum) to generate the load impedance ZL1.

在一些實施例中,RF產生器104在不是脈衝波模式的連續波模式下操作。舉例而言,RF產生器104不具有脈衝狀態S1及S2,其中,在狀態S2中之RF訊號的所有功率值係不包括在狀態S2中之RF訊號的功率值。狀態S2的功率值係低於狀態S1的功率值。作為另一實例,在連續波模式中,狀態S1中的至少一功率值與狀態S2中的至少一功率值有重疊,以消除在狀態S1及S2之間的差異而產生一種狀態。In some embodiments, the RF generator 104 operates in a continuous wave mode that is not a pulsed wave mode. For example, the RF generator 104 does not have pulse states S1 and S2, wherein all power values of the RF signal in state S2 are exclusive of the power values of the RF signal in state S2. The power value of state S2 is lower than the power value of state S1. As another example, in the continuous wave mode, at least one power value in state S1 overlaps at least one power value in state S2 to eliminate the difference between states S1 and S2 to generate one state.

在各種實施例中,取代測量在輸出126處的電壓反射係數,電壓反射係數係在RF電纜130上自輸出126(包含輸出126)至輸入128的任一點處加以測量。舉例而言,感測器124係連接至在RF電源122及阻抗匹配網路106之間的點以測量電壓反射係數。In various embodiments, instead of measuring the voltage reflection coefficient at output 126 , the voltage reflection coefficient is measured at any point on RF cable 130 from output 126 (including output 126 ) to input 128 . For example, sensor 124 is connected to a point between RF power supply 122 and impedance matching network 106 to measure the voltage reflection coefficient.

圖2係匹配網路模型102之一實施例的圖,該匹配網路模型102係初始化至射頻RF1及可變電容C1,以在輸入142處產生電壓反射係數Γi。處理器134自負載阻抗ZL1及匹配網路模型102計算電壓反射係數Γi係零的射頻值RFoptimum 及組合可變電容值Coptimum 1。舉例而言,處理器134經由匹配網路模型102向後傳播負載阻抗ZL1,以產生對應於在輸入142處具有數值零之電壓反射係數Γi的輸入阻抗Zi。向後傳播與向前傳播係相同的,除了向後傳播的方向係與向前傳播的方向相反。在一些實施例中,非線性最小平方最佳化程序係藉由處理器134加以執行,以自負載阻抗ZL1及匹配網路模型102計算電壓反射係數Γi係零的射頻值RFoptimum 及組合可變電容值Coptimum 1。在各種實施例中,預定的方程式係由處理器134加以應用以自負載阻抗ZL1及匹配網路模型102計算電壓反射係數Γi係零的射頻值RFoptimum 及組合可變電容值Coptimum 1。FIG. 2 is a diagram of one embodiment of a matching network model 102 initialized to radio frequency RF1 and variable capacitor C1 to generate a voltage reflection coefficient Γi at input 142 . The processor 134 calculates, from the load impedance ZL1 and the matching network model 102, the radio frequency value RF optimum and the combined variable capacitance value C optimum 1 where the voltage reflection coefficient Γi is zero. For example, the processor 134 propagates the load impedance ZL1 back through the matching network model 102 to generate an input impedance Zi corresponding to a voltage reflection coefficient Γi having a value of zero at the input 142 . Backward propagation is the same as forward propagation, except that the direction of backward propagation is opposite to that of forward propagation. In some embodiments, the non-linear least squares optimization procedure is executed by the processor 134 to calculate the RF value RF optimum and the combination variable with the voltage reflection coefficient Γi being zero from the load impedance ZL1 and the matching network model 102 The capacitance value C optimum 1. In various embodiments, predetermined equations are applied by processor 134 to calculate from load impedance ZL1 and matching network model 102 the RF value RF optimum and the combined variable capacitance value C optimum 1 where the voltage reflection coefficient Γi is zero.

此外,處理器134將施加於匹配網路模型102的射頻值從RFoptimum 1@C1改變為RFoptimumn @C1且向後傳播負載阻抗ZL1,以決定電壓反射係數Γi係最小值的射頻RFoptimum 1@C1,其中n係大於1的整數。舉例而言,當匹配網路模型102具有射頻RFoptimum 1@C1時,處理器134經由具有可變電容C1的匹配網路模型102向後傳播負載阻抗ZL1,以決定電壓反射係數Γi具有第一值。此外,在該實例中,當匹配網路模型102具有射頻RFoptimum 2@C1時,處理器134經由具有可變電容C1的匹配網路模型102向後傳播負載阻抗ZL1,以決定電壓反射係數Γi具有第二值。處理器134決定該第一值係該第一及第二值的最小值,以進一步決定RFoptimum 1@C1係電壓反射係數Γi為最小值的射頻值。在一些實施例中,非線性平方最佳化程序係用以找到電壓反射係數Γi具有最小值的射頻值RFoptimum 1@C1。In addition, the processor 134 changes the radio frequency value applied to the matching network model 102 from RF optimum 1@C1 to RF optimumn @C1 and propagates the load impedance ZL1 backward to determine the radio frequency RF optimum 1@ of the minimum voltage reflection coefficient Γi. C1, where n is an integer greater than 1. For example, when the matching network model 102 has the RF optimum 1@C1, the processor 134 propagates the load impedance ZL1 backward through the matching network model 102 with the variable capacitance C1 to determine that the voltage reflection coefficient Γi has the first value . Furthermore, in this example, when the matching network model 102 has the RF optimum 2@C1, the processor 134 propagates the load impedance ZL1 backward via the matching network model 102 with the variable capacitance C1 to determine that the voltage reflection coefficient Γi has second value. The processor 134 determines that the first value is the minimum value of the first and second values, so as to further determine the RF optimum 1@C1 which is the radio frequency value at which the voltage reflection coefficient Γi is the minimum value. In some embodiments, a non-linear square optimization procedure is used to find the RF value RF optimum 1@C1 where the voltage reflection coefficient Γi has a minimum value.

在各種實施例中,電壓反射係數係在最小值處之射頻的值在本文係稱作為有利的RF值。In various embodiments, the value of the radio frequency at which the voltage reflection coefficient is at a minimum is referred to herein as the favorable RF value.

在一些實施例中,RF值在本文有時係稱作為「參數值」。此外,電容在本文有時係稱作為「可量測因子」。In some embodiments, RF values are sometimes referred to herein as "parameter values." Additionally, capacitance is sometimes referred to herein as a "measurable factor."

圖3係電漿系統100之一實施例的圖,以說明使用電容值Coptimum 1以產生步進組合可變電容值Cstep 1,及使用值RFoptimum 1@C1以在匹配網路模型102的輸出144處產生負載阻抗ZL2。處理器134修改配方以包含射頻值RFoptimum 1@C1,且將該射頻值RFoptimum 1@C1提供至RF產生器104。此外,處理器134決定步進可變電容值Cstep 1,該步進可變電容值Cstep 1係自值C1往值Coptimum 1之方向上的一步階。應注意即使阻抗匹配網路106之相應的一個以上可變電容器之一個以上電容係加以修改以自C1朝Coptimum 1改變,該一個以上可變電容器相對於由RF產生器104產生之RF訊號之RF頻率中的變化足夠慢地移動。FIG. 3 is a diagram of one embodiment of the plasma system 100 to illustrate the use of the capacitance value C optimum 1 to generate the step combined variable capacitance value C step 1 and the use of the value RF optimum 1@C1 to match the network model 102 A load impedance ZL2 is produced at the output 144 of . The processor 134 modifies the recipe to include the RF value RF optimum 1@C1 and provides the RF value RF optimum 1@C1 to the RF generator 104 . Further, processor 134 determines the capacitance value of the variable STEP 1 step C, the step-variable capacitance value C based STEP 1 value C from the value C1 to the direction of the optimum order of step 1. It should be noted that even if one or more capacitances of the corresponding one or more variable capacitors of impedance matching network 106 are modified to change from C1 toward C optimum 1, the one or more variable capacitors are relative to the value of the RF signal generated by RF generator 104. Changes in RF frequency move slowly enough.

取代將阻抗匹配網路106的組合可變電容設定在值Coptimum 1且取代設定RF產生器104以產生具有射頻RFoptimum 的RF訊號,處理器134控制驅動組件112使得阻抗匹配網路106的組合可變電容係在值Cstep 1加以設定,及控制RF產生器104以在射頻RFoptimum 1@C1下加以操作。阻抗匹配網路106達到可變電容Coptimum 1所需的時間(例如在秒的等級等)比RF產生器104產生具有射頻RFoptimum 之RF訊號所需的時間長。舉例而言,RF產生器104以微秒等級的時間自射頻RF1達到射頻RFoptimum 。因此,難以自值C1直接達到值Coptimum 1且同時自值RF1達到值RFoptimum 而使得在RF產生器104之輸出126處的電壓反射係數係零。因此,阻抗匹配網路106的可變電容係以步階方式(例如Cstep 1等)以往可變電容Coptimum 1的方向加以調整。Instead of setting the combined variable capacitance of the impedance matching network 106 to a value of C optimum 1 and instead of setting the RF generator 104 to generate an RF signal having a radio frequency RF optimum , the processor 134 controls the driver assembly 112 such that the combination of the impedance matching network 106 The variable capacitance is set at the value C step 1, and the RF generator 104 is controlled to operate at the radio frequency RF optimum 1@C1. The time required for the impedance matching network 106 to reach the variable capacitance C optimum 1 (eg, on the order of seconds, etc.) is longer than the time required for the RF generator 104 to generate the RF signal with the RF RF optimum. For example, the RF generator 104 reaches the RF optimum from the RF RF1 in microseconds. Therefore, it is difficult to directly reach the value C optimum 1 from the value C1 and simultaneously reach the value RF optimum from the value RF1 such that the voltage reflection coefficient at the output 126 of the RF generator 104 is zero. Therefore, the variable capacitance of the impedance matching network 106 is adjusted in a stepwise manner (eg, C step 1, etc.) in the direction of the conventional variable capacitance C optimum 1 .

對於射頻RFoptimum 1@C1及可變電容Cstep 1,RF產生器104產生具有射頻RFoptimum 1@C1的RF訊號,該RF訊號經由阻抗匹配網路106傳遞以產生提供至夾盤118之下電極之修改的訊號。當RF產生器104產生具有射頻RFoptimum 1@C1的RF訊號且組合可變電容係Cstep 1時,感測器124測量在輸出126處的電壓反射係數Γmi2,且處理器134,以如上所述阻抗Zmi1係自電壓反射係數Γmi1加以產生之相同的方式,自電壓反射係數Γmi2產生阻抗Zmi2。此外,阻抗Zmi2係經由匹配網路模型102向前傳播,而以負載阻抗ZL1係自在匹配網路模型102之輸入142處的阻抗Zmi1在輸出144處加以產生之相同的方式,在匹配網路模型102的輸出144處產生負載阻抗ZL2。For the radio frequency RF optimum 1@C1 and the variable capacitor C step 1, the RF generator 104 generates an RF signal with the radio frequency RF optimum 1@C1, and the RF signal is passed through the impedance matching network 106 to generate a supply to the underside of the chuck 118 The modified signal of the electrode. When the RF generator 104 generates the RF signal with the RF optimum 1@C1 and the combined variable capacitance system C step 1, the sensor 124 measures the voltage reflection coefficient Γ at the output 126, and the processor 134, as described above The impedance Zmi1 is generated from the voltage reflection coefficient Γmi1 in the same way that the impedance Zmi2 is generated from the voltage reflection coefficient Γmi2. Furthermore, the impedance Zmi2 is propagated forward through the matching network model 102 in the same way that the load impedance ZL1 is generated at the output 144 from the impedance Zmi1 at the input 142 of the matching network model 102. A load impedance ZL2 is produced at the output 144 of 102 .

圖4係匹配網路模型102之一實施例的圖,該匹配網路模型102係設成射頻RFoptimum 1@C1及組合可變電容Cstep 1,以在輸入142處產生電壓反射係數Γi的最小值。舉例而言,處理器134將射頻RFoptimum 1@C1及組合可變電容Cstep 1施加於匹配網路模型102。作為另一實例,處理器134將匹配網路模型102之參數的值設為具有射頻值RFoptimum 1@C1及組合可變電容值Cstep 1。FIG. 4 is a diagram of one embodiment of a matching network model 102 set to RF optimum 1@C1 and combined variable capacitance C step 1 to generate a voltage reflection coefficient Γ at input 142 minimum value. For example, the processor 134 applies the RF optimum 1@C1 and the combined variable capacitance C step 1 to the matching network model 102 . As another example, the processor 134 sets the values of the parameters of the matching network model 102 to have the radio frequency value RF optimum 1@C1 and the combined variable capacitance value C step 1 .

以如上所述計算組合可變電容Coptimum 1之相同的方式,處理器134自負載阻抗ZL2及匹配網路模型102計算電壓反射係數Γi為零的組合可變電容值Coptimum 2。處理器134將施加於匹配網路模型102的射頻值從RFoptimum 1@Cstep 1改變為RFoptimumn @Cstep 1且向後傳播負載阻抗ZL2,以決定電壓反射係數Γi係最小值的射頻RFoptimum 1@Cstep 1,其中n係大於1的整數。舉例而言,當匹配網路模型102具有射頻RFoptimum 1@Cstep 1時,處理器134經由具有可變電容Cstep 1的匹配網路模型102向後傳播阻抗ZL2,以決定電壓反射係數Γi具有第一值。此外,在該實例中,當匹配網路模型102具有射頻RFoptimum 2@Cstep 1時,處理器134經由具有可變電容Cstep 1的匹配網路模型102向後傳播阻抗ZL2,以決定電壓反射係數Γi具有第二值。處理器134決定該第一值係該第一及第二值的最小值,以進一步決定RFoptimum 1@Cstep 1係電壓反射係數Γi為最小值的射頻值。In the same manner as described above for calculating the combined variable capacitance C optimum 1, the processor 134 calculates the combined variable capacitance value C optimum 2 with a voltage reflection coefficient Γi of zero from the load impedance ZL2 and the matching network model 102. The RF processor 134 is applied to the value of the matching network model 102 from RF optimum 1 1 @ C step of changing RF optimumn @C step 1 and the backward propagation of the load impedance ZL2, to determine the minimum value of voltage reflection coefficient Γi based radio frequency RF optimum 1@C step 1, where n is an integer greater than 1. For example, when the matching network model 102 has the RF optimum 1@C step 1, the processor 134 propagates the impedance ZL2 backward through the matching network model 102 with the variable capacitance C step 1 to determine that the voltage reflection coefficient Γi has first value. Furthermore, in this example, when the matching network model 102 has RF optimum 2@C step 1, the processor 134 propagates impedance ZL2 backwards via the matching network model 102 with variable capacitance C step 1 to determine the voltage reflection The coefficient Γi has a second value. The processor 134 determines that the first value is the minimum value of the first and second values, so as to further determine the RF optimum 1@C step 1 is the radio frequency value at which the voltage reflection coefficient Γi is the minimum value.

圖5係電漿系統100之一實施例的圖,以說明使用電容值Coptimum 2以產生另一步進組合可變電容值Cstep 2,及使用值RFoptimum 1@Cstep 1以產生負載阻抗ZL3。處理器134修改配方以包含射頻值RFoptimum 1@Cstep 1,且將該射頻值RFoptimum 1@Cstep 1提供至RF產生器104。此外,處理器134決定步進可變電容值Cstep 2,該步進可變電容值Cstep 2係自值Cstep 1往值Coptimum 2之方向上的一額外步階。舉例而言,在可變電容值Cstep 1、Cstep 2、及Coptimum 2中,可變電容值Cstep 2係大於值Cstep 1及小於值Coptimum 2,且值Cstep 2和Cstep 1係大於值C1。作為另一實例,在可變電容值Cstep 1、Cstep 2、及Coptimum 2中,可變電容值Cstep 2係小於值Cstep 1及大於值Coptimum 2,且值Cstep 1和Cstep 2係小於值C1。FIG. 5 is a diagram of one embodiment of the plasma system 100 to illustrate the use of a capacitance value of C optimum 2 to generate another step combined variable capacitance value of C step 2, and a value of RF optimum 1@C step 1 to generate a load impedance ZL3. The processor 134 modifies the recipe to include the RF value RF optimum 1@C step 1 and provides the RF value RF optimum 1@C step 1 to the RF generator 104 . Further, processor 134 determines the step value of the variable capacitance C step 2, the step-variable capacitance value C step 2 based value from an additional step C step 1 step 2 in the direction towards the optimum value C. For example, among the variable capacitance values C step 1, C step 2, and C optimum 2, the variable capacitance value C step 2 is greater than the value C step 1 and smaller than the value C optimum 2, and the values C step 2 and C step 1 is greater than the value C1. As another example, among the variable capacitance values C step 1, C step 2, and C optimum 2, the variable capacitance value C step 2 is smaller than the value C step 1 and greater than the value C optimum 2, and the values C step 1 and C optimum 2 are C step 2 is less than the value C1.

取代設定在值Coptimum 2之阻抗匹配網路106的組合可變電容及取代設定RF產生器104以產生具有射頻RFoptimum 的RF訊號,處理器134控制驅動組件112使得阻抗匹配網路106的組合可變電容係在值Cstep 2加以設定,及控制RF產生器104以在射頻RFoptimum 1@Cstep 1下加以操作。對於射頻RFoptimum 1@Cstep 1及可變電容Cstep 2,RF產生器104產生具有射頻RFoptimum 1@Cstep 1的RF訊號,該RF訊號經由阻抗匹配網路106傳遞以產生提供至夾盤118之下電極之修改的訊號。對於射頻RFoptimum 1@Cstep 1及可變電容Cstep 2,感測器124測量在輸出126處的電壓反射係數Γmi3,且處理器134,以阻抗Zmi1係自電壓反射係數Γmi1加以產生之相同的方式,自電壓反射係數產生阻抗Zmi3。此外,阻抗Zmi3係經由匹配網路模型102向前傳播,而以負載阻抗ZL1係自在匹配網路模型102之輸入142處的阻抗Zmi1在輸出144處加以產生之相同的方式,在匹配網路模型102的輸出144處產生負載阻抗ZL3。Instead of setting the combined variable capacitance of the impedance matching network 106 at a value of C optimum 2 and instead of setting the RF generator 104 to generate an RF signal with radio frequency RF optimum , the processor 134 controls the drive assembly 112 to make the combination of the impedance matching network 106 The variable capacitance is set at the value C step 2, and the RF generator 104 is controlled to operate at RF optimum 1@C step 1. For the radio frequency RF optimum 1@C step 1 and the variable capacitor C step 2, the RF generator 104 generates an RF signal with the radio frequency RF optimum 1@C step 1, and the RF signal is passed through the impedance matching network 106 to generate a The modified signal of the electrode below the disk 118. For radio frequency RF optimum 1@C step 1 and variable capacitance C step 2, the sensor 124 measures the voltage reflection coefficient Γmi3 at the output 126, and the processor 134 generates the same impedance Zmi1 from the voltage reflection coefficient Γmi1 In this way, the impedance Zmi3 is generated from the voltage reflection coefficient. Furthermore, the impedance Zmi3 is propagated forward through the matching network model 102 in the same way that the load impedance ZL1 is generated at the output 144 from the impedance Zmi1 at the input 142 of the matching network model 102. A load impedance ZL3 is produced at the output 144 of 102 .

在一些實施例中,射頻RFoptimum 1@Cstep 1係等於最佳射頻值RFoptimum ,且Cstep 2的組合可變電容係等於值Coptimum 2。在這些實施例中,不執行參照圖6至9之以下描述的操作。In some embodiments, the radio frequency RF optimum 1@C step 1 is equal to the optimum radio frequency value RF optimum , and the combined variable capacitance of C step 2 is equal to the value C optimum 2 . In these embodiments, the operations described below with reference to FIGS. 6 to 9 are not performed.

圖6係匹配網路模型102之一實施例的圖,該匹配網路模型102係設成射頻RFoptimum 1@Cstep 1及組合可變電容Cstep 2,以在輸入142處產生電壓反射係數Γi的最小值。以如上所述計算組合可變電容Coptimum 1之相同的方式,處理器134自負載阻抗ZL3及匹配網路模型102計算電壓反射係數Γi為零的組合可變電容值Coptimum 3。6 is a diagram of one embodiment of a matching network model 102 set to RF optimum 1@C step 1 and combined variable capacitance C step 2 to generate a voltage reflection coefficient at input 142 The minimum value of Γi. In the same manner as described above for calculating the combined variable capacitance C optimum 1, the processor 134 calculates the combined variable capacitance value C optimum 3 with zero voltage reflection coefficient Γi from the load impedance ZL3 and the matching network model 102 .

此外,處理器134將施加於匹配網路模型102的射頻值從RFoptimum 1@Cstep 2改變為RFoptimumn @Cstep 2且向後傳播負載阻抗ZL3,以決定電壓反射係數Γi係最小值的射頻RFoptimum 1@Cstep 2,其中n係大於1的整數。舉例而言,當匹配網路模型102具有射頻RFoptimum 1@Cstep 2時,處理器134經由具有組合可變電容Cstep 2的匹配網路模型102向後傳播阻抗ZL3,以決定電壓反射係數Γi具有第一值。此外,在該實例中,當匹配網路模型102具有射頻RFoptimum 2@Cstep 2時,處理器134經由具有組合可變電容Cstep 2的匹配網路模型102向後傳播阻抗ZL3,以決定電壓反射係數Γi具有第二值。處理器134決定該第一值係該第一及第二值的最小值,以進一步決定RFoptimum 1@Cstep 2係電壓反射係數Γi為最小值的射頻值。In addition, the processor 134 changes the RF value applied to the matching network model 102 from RF optimum 1@C step 2 to RF optimumn @C step 2 and propagates the load impedance ZL3 backward to determine the RF value of the minimum voltage reflection coefficient Γi RF optimum 1@C step 2, where n is an integer greater than 1. For example, when the matching network model 102 has RF optimum 1@C step 2, the processor 134 propagates the impedance ZL3 backward through the matching network model 102 with the combined variable capacitance C step 2 to determine the voltage reflection coefficient Γi has the first value. Furthermore, in this example, when the matching network model 102 has RF optimum 2@C step 2, the processor 134 propagates impedance ZL3 backward through the matching network model 102 with the combined variable capacitance C step 2 to determine the voltage The reflection coefficient Γi has a second value. The processor 134 determines that the first value is the minimum value of the first and second values, so as to further determine the RF optimum 1@C step 2 is the radio frequency value at which the voltage reflection coefficient Γi is the minimum value.

在一些實施例中,電容值Coptimum 2及Coptimum 3的任一者係等於電壓反射係數Γi為零的電容值Coptimum 1。In some embodiments, any one of the capacitance values C optimum 2 and C optimum 3 is equal to the capacitance value C optimum 1 where the voltage reflection coefficient Γi is zero.

圖7係電漿系統100之一實施例的圖,以說明使用電容值Coptimum 3,及使用值RFoptimum 1@Cstep 2,以產生負載阻抗ZL4。處理器134修改配方以包含射頻值RFoptimum 1@Cstep 2,且將該射頻值RFoptimum 1@Cstep 2提供至RF產生器104。此外,處理器134決定步進可變電容值Cstep 3,該步進可變電容值Cstep 3係自值Cstep 2往值Coptimum 3之方向上的一額外步階。舉例而言,值Cstep 3係值Coptimum 3。為了進一步說明,在可變電容值Cstep 1、Cstep 2、及Coptimum 3中,可變電容值Coptimum 3係大於值Cstep 2,且值Cstep 2係大於值Cstep 1,該值Cstep 1係大於電容值C1。作為另一說明,在可變電容值Cstep 1、Cstep 2、及Coptimum 3中,可變電容值Coptimum 3係小於值Cstep 2,該值Cstep 2係小於值Cstep 1,且值Cstep 1係小於值C1。FIG. 7 is a diagram of one embodiment of the plasma system 100 to illustrate the use of a capacitance value of C optimum 3, and a use of a value of RF optimum 1@C step 2, to generate load impedance ZL4. The processor 134 modifies the recipe to include the RF value RF optimum 1@C step 2, and provides the RF value RF optimum 1@C step 2 to the RF generator 104. Further, processor 134 determines the step value of the variable capacitance C step 3, the step-variable capacitance value C step 3 lines from an additional value C step 2 step 3 step in the direction towards the optimum value C. For example, the value C step 3 is the value C optimum 3 . For further explanation, among the variable capacitance values C step 1, C step 2, and C optimum 3, the variable capacitance value C optimum 3 is greater than the value C step 2, and the value C step 2 is greater than the value C step 1, and the The value C step 1 is greater than the capacitance value C1. As another illustration, among the variable capacitance values C step 1, C step 2, and C optimum 3, the variable capacitance value C optimum 3 is smaller than the value C step 2, and the value C step 2 is smaller than the value C step 1, And the value C step 1 is smaller than the value C1.

處理器134控制驅動組件112,使得阻抗匹配網路106的組合可變電容係在值Coptimum 3加以設定。此外,取代設定RF產生器104以產生具有射頻RFoptimum 的RF訊號,處理器134控制RF產生器104以在射頻RFoptimum 1@Cstep 2下加以操作。The processor 134 controls the drive assembly 112 so that the combined variable capacitance of the impedance matching network 106 is set at a value of C optimum 3 . Furthermore, instead of setting the RF generator 104 to generate an RF signal having the RF optimum , the processor 134 controls the RF generator 104 to operate at the RF optimum 1@C step 2.

對於射頻RFoptimum 1@Cstep 2及可變電容Coptimum 3,RF產生器104產生具有射頻RFoptimum 1@Cstep 2的RF訊號,該RF訊號經由阻抗匹配網路106傳遞以產生提供至夾盤118之下電極之修改的訊號。對於射頻RFoptimum 1@Cstep 2及可變電容Coptimum 3,感測器124測量在輸出126處的電壓反射係數Γmi4,且處理器134,以阻抗Zmi1係自電壓反射係數Γmi1加以產生之相同的方式,自電壓反射係數Γmi4產生阻抗Zmi4。此外,阻抗Zmi4係經由匹配網路模型102向前傳播,而以負載阻抗ZL1係自在匹配網路模型102之輸入142處的阻抗Zmi1在輸出144處加以產生之相同的方式,在匹配網路模型102的輸出144處產生負載阻抗ZL4。For the radio frequency RF optimum 1@C step 2 and the variable capacitance C optimum 3, the RF generator 104 generates an RF signal with the radio frequency RF optimum 1@C step 2, and the RF signal is transmitted through the impedance matching network 106 to generate a The modified signal of the electrode below the disk 118. For radio frequency RF optimum 1@C step 2 and variable capacitance C optimum 3, the sensor 124 measures the voltage reflection coefficient Γmi4 at the output 126, and the processor 134 is identical to the one generated by the impedance Zmi1 from the voltage reflection coefficient Γmi1 way, the impedance Zmi4 is generated from the voltage reflection coefficient Γmi4. Furthermore, the impedance Zmi4 is propagated forward through the matching network model 102 in the same way that the load impedance ZL1 is generated at the output 144 from the impedance Zmi1 at the input 142 of the matching network model 102 . A load impedance ZL4 is produced at the output 144 of 102 .

在一些實施例中,值RFoptimum 1@Cstep 2係等於射頻值RFoptimum 。在這些實施例中,不執行參照圖8及9之以下描述的操作。In some embodiments, the value RF optimum 1@C step 2 is equal to the radio frequency value RF optimum . In these embodiments, the operations described below with reference to FIGS. 8 and 9 are not performed.

在各種實施例中,最佳值Coptimum 1、Coptimum 2、及Coptimum 3的每一者係在處理器134被編程而受約束以計算在預定電容值邊界之內的一最佳電容值之後加以獲得。舉例而言,處理器134係加以編程而以上面參照圖2描述的方式決定最佳電容值Coptimum 1,除了該電容值Coptimum 1係在上預定界限和下預定界限之間。該等預定邊界係與阻抗匹配網路106之一個以上可變電容器的操作邊界相同(圖1)。舉例而言,一個以上可變電容器在該等操作邊界之外係在物理上無法操作。作為另一實例,處理器134係加以編程而以上面參照圖4描述的方式決定最佳電容值Coptimum 2,除了該電容值Coptimum 2係在上預定界限和下預定界限之間。作為又另一實例,處理器134係加以編程而以上面參照圖6描述的方式決定最佳電容值Coptimum 3,除了該電容值Coptimum 3係在上預定界限和下預定界限之間。In various embodiments, each of the optimum values C optimum 1, C optimum 2, and C optimum 3 are programmed and constrained in the processor 134 to calculate an optimum capacitance value within predetermined capacitance value boundaries obtained later. For example, the processor 134 is programmed to determine the optimum capacitance value C optimum 1 in the manner described above with reference to FIG. 2, except that the capacitance value C optimum 1 is between an upper predetermined limit and a lower predetermined limit. These predetermined boundaries are the same as the operating boundaries of one or more variable capacitors of impedance matching network 106 (FIG. 1). For example, one or more variable capacitors are physically inoperable outside these operational boundaries. As another example, the processor 134 is programmed to determine the optimum capacitance value C optimum 2 in the manner described above with reference to FIG. 4, except that the capacitance value C optimum 2 is between an upper predetermined limit and a lower predetermined limit. As yet another example, the processor 134 is programmed to determine the optimum capacitance value C optimum 3 in the manner described above with reference to FIG. 6 , except that the capacitance value C optimum 3 is between an upper predetermined limit and a lower predetermined limit.

在一些實施例中,值RFoptimum 1@C1、RFoptimum 1@Cstep 1、RFoptimum 1@Cstep 2、及RFoptimum 1@Coptimum 的每一者係在處理器134被編程而受約束以計算在預定界限之內的一最佳RF值之後加以獲得。舉例而言,處理器134係加以編程而以上面參照圖2描述的方式決定RF值RFoptimum 1@C1,除了該RF值RFoptimum 1@C1係在上預定邊界和下預定邊界之間。該等預定界限係與RF產生器104的操作邊界相同(圖1)。舉例而言,RF產生器104在操作邊界之外係在物理上無法操作。作為另一實例,處理器134係加以編程而以上面參照圖4描述的方式決定RF值RFoptimum 1@Cstep 1,除了該RF值RFoptimum 1@Cstep 1係在上預定邊界和下預定邊界之間。作為又另一實例,處理器134係加以編程而以上面參照圖6描述的方式決定最佳RF值RFoptimum 1@Cstep 2,除了該RF值RFoptimum 1@Cstep 2係在上預定邊界和下預定邊界之間。作為另一實例,處理器134係加以編程而以上面參照圖8描述的方式決定最佳RF值RFoptimum 1@Coptimum ,除了該RF值RFoptimum 1@Coptimum 係在上預定邊界和下預定邊界之間。In some embodiments, each of the values RF optimum 1@C1, RF optimum 1@C step 1, RF optimum 1@C step 2, and RF optimum 1@C optimum is constrained when the processor 134 is programmed It is obtained after calculating an optimum RF value within predetermined limits. For example, the processor 134 is programmed to determine the RF value RF optimum 1@C1 in the manner described above with reference to FIG. 2, except that the RF value RF optimum 1@C1 is between an upper predetermined boundary and a lower predetermined boundary. These predetermined boundaries are the same as the operational boundaries of RF generator 104 (FIG. 1). For example, the RF generator 104 is physically inoperable outside the operational boundaries. As another example, the processor 134 is programmed to determine the RF value RF optimum 1@C step 1 in the manner described above with reference to FIG. 4, except that the RF value RF optimum 1@C step 1 is at the upper predetermined boundary and the lower predetermined boundary between the boundaries. As yet another example, the processor 134 is programmed to determine the optimum RF value RF optimum 1@C step 2 in the manner described above with reference to FIG. 6, except that the RF value RF optimum 1@C step 2 is at an upper predetermined boundary and the lower predetermined boundary. As another example, the processor 134 is programmed to determine the optimum RF value RF optimum 1@C optimum in the manner described above with reference to FIG. 8, except that the RF value RF optimum 1@C optimum is at the upper predetermined boundary and the lower predetermined boundary between the boundaries.

圖8係匹配網路模型102之一實施例的圖,該匹配網路模型102係設成射頻RFoptimum 1@Cstep 2及組合可變電容Coptimum 3,以在輸入142處產生電壓反射係數Γi的最小值。處理器134將施加於匹配網路模型102的射頻值從RFoptimum 1@Coptimum 改變為RFoptimumn @Coptimum 且向後傳播負載阻抗ZL4,以決定電壓反射係數Γi係最小值的射頻RFoptimum 1@Coptimum ,其中n係大於1的整數。舉例而言,當匹配網路模型具有射頻RFoptimum 1@Cstep 2時,處理器134經由具有可變電容Coptimum 3的匹配網路模型102向後傳播負載阻抗ZL4,以決定電壓反射係數Γi具有第一值。此外,在該實例中,當匹配網路模型具有射頻RFoptimum 2@Cstep 2時,處理器134經由具有可變電容Coptimum 3的匹配網路模型102向後傳播負載阻抗ZL4,以決定電壓反射係數Γi具有第二值。處理器134決定該第一值係該第一及第二值的最小值,以進一步決定RFoptimum 1@Coptimum 係電壓反射係數Γi為最小值的射頻值。8 is a diagram of one embodiment of a matching network model 102 set to RF optimum 1@C step 2 and combined variable capacitance C optimum 3 to generate a voltage reflection coefficient at input 142 The minimum value of Γi. The processor 134 changes the radio frequency value applied to the matching network model 102 from RF optimum 1@C optimum to RF optimumn @C optimum and propagates the load impedance ZL4 backwards, to determine the radio frequency RF optimum 1@ of the minimum voltage reflection coefficient Γi system C optimum , where n is an integer greater than 1. For example, when the matching network model has RF optimum 1@C step 2, the processor 134 propagates the load impedance ZL4 backward through the matching network model 102 with variable capacitance C optimum 3 to determine that the voltage reflection coefficient Γi has first value. Furthermore, in this example, when the matching network model has RF optimum 2@C step 2, the processor 134 propagates the load impedance ZL4 backwards via the matching network model 102 with variable capacitance C optimum 3 to determine the voltage reflection The coefficient Γi has a second value. The processor 134 determines that the first value is the minimum value of the first and second values, so as to further determine the RF optimum 1@C optimum is the radio frequency value at which the voltage reflection coefficient Γi is the minimum value.

在一些實施例中,值RFoptimum 1@Coptimum 係等於值RFoptimumIn some embodiments, the value RF optimum 1@C optimum is equal to the value RF optimum .

圖9係電漿系統100之一實施例的圖,以說明使用電容值Coptimum 3及使用值RFoptimum 1@Coptimum 處理晶圓W。處理器134修改配方以包含射頻值RFoptimum 1@Coptimum ,且將該射頻值RFoptimum 1@Coptimum 提供至RF產生器104。此外,處理器134繼續控制驅動組件112,使得阻抗匹配網路106的組合可變電容係在值Coptimum 3加以設定。此外,取代設定RF產生器104以產生具有射頻RFoptimum 的RF訊號,處理器134控制RF產生器104以在射頻RFoptimum 1@Coptimum 下加以操作。FIG. 9 is a diagram of one embodiment of plasma system 100 to illustrate processing of wafer W using capacitance values C optimum 3 and using values RF optimum 1@C optimum. The processor 134 modifies the recipe to include the RF value RF optimum 1@C optimum and provides the RF value RF optimum 1@C optimum to the RF generator 104 . In addition, the processor 134 continues to control the drive assembly 112 so that the combined variable capacitance of the impedance matching network 106 is set at the value C optimum 3 . Furthermore, instead of setting the RF generator 104 to generate an RF signal having a radio frequency RF optimum , the processor 134 controls the RF generator 104 to operate at the radio frequency RF optimum 1@C optimum .

對於射頻RFoptimum 1@Coptimum 及可變電容Coptimum 3,RF產生器104產生具有射頻RFoptimum 1@Coptimum 的RF訊號,該RF訊號經由阻抗匹配網路106傳遞以產生一修改的訊號,該修改的訊號係提供至夾盤118的下電極以用於處理晶圓W。以此方式,取代直接從射頻RF1施加射頻RFoptimum 及取代直接從組合可變電容值C1施加組合可變電容值Coptimum 1,一步階方式進行如下:首先,組合可變電容值Cstep 1係伴隨射頻RFoptimum 1@C1加以施加,接著施加組合可變電容值Cstep 1及射頻RFoptimum 1@C1,接著施加組合可變電容值Cstep 2及射頻RFoptimum 1@Cstep 1,接著施加組合可變電容值Coptimum 3及射頻RFoptimum 1@Cstep 2,最後施加組合可變電容值Coptimum 3及射頻RFoptimum 1@Coptimum 。舉例而言,組合可變電容值Coptimum 3及射頻RFoptimum 1@Cstep 2的施加先於組合可變電容值Coptimum 3及射頻RFoptimum 1@Coptimum 的施加。此外,組合可變電容值Cstep 2及射頻RFoptimum 1@Cstep 1的施加先於組合可變電容值Coptimum 3及射頻RFoptimum 1@Cstep 2的施加。此外,組合可變電容值Cstep 1及射頻RFoptimum 1@C1的施加先於組合可變電容值Cstep 2及射頻RFoptimum 1@Cstep 1的施加。For the radio frequency RF optimum 1@C optimum and the variable capacitance C optimum 3, the RF generator 104 generates an RF signal with the radio frequency RF optimum 1@C optimum , and the RF signal is transmitted through the impedance matching network 106 to generate a modified signal, The modified signal is provided to the lower electrode of the chuck 118 for processing the wafer W. In this way, instead of directly applying the radio frequency RF optimum from the radio frequency RF1 and replacing directly applying the combined variable capacitance value C optimum 1 from the combined variable capacitance value C1, the one-step mode is carried out as follows: First, the combined variable capacitance value C step 1 is Apply with radio frequency RF optimum 1@C1, then apply combined variable capacitance value C step 1 and radio frequency RF optimum 1@C1, then apply combined variable capacitance value C step 2 and radio frequency RF optimum 1@C step 1, then apply Combine the variable capacitance value C optimum 3 and the radio frequency RF optimum 1@C step 2, and finally apply the combined variable capacitance value C optimum 3 and the radio frequency RF optimum 1@C optimum . For example, the application of the combined variable capacitance value C optimum 3 and the radio frequency RF optimum 1@C step 2 precedes the application of the combined variable capacitance value C optimum 3 and the radio frequency RF optimum 1@C optimum . In addition, the application of the combined variable capacitance value C step 2 and the radio frequency RF optimum 1@C step 1 precedes the application of the combined variable capacitance value C optimum 3 and the radio frequency RF optimum 1@C step 2. In addition, the application of the combined variable capacitance value C step 1 and the radio frequency RF optimum 1@C1 precedes the application of the combined variable capacitance value C step 2 and the radio frequency RF optimum 1@C step 1.

在一些實施例中,取代直接從射頻RF1施加射頻RFoptimum 及取代直接從組合可變電容值C1施加組合可變電容值Coptimum 1,一步階方式進行如下:首先,組合可變電容值Cstep 1係伴隨射頻RFoptimum 1@C1加以施加(見圖3),接著施加組合可變電容值Cstep 2及射頻RFoptimum 1@Cstep 1(見圖5),接著施加組合可變電容值Coptimum 3及射頻RFoptimum 1@Cstep 2(見圖7),最後施加組合可變電容值Coptimum 3及射頻RFoptimum 1@Coptimum (見圖9)。In some embodiments, instead of directly applying the radio frequency RF optimum from the radio frequency RF1 and instead of directly applying the combined variable capacitance value C optimum 1 from the combined variable capacitance value C1, the step-by-step approach is performed as follows: first, the combined variable capacitance value C step 1 is applied with the RF optimum 1@C1 (see Figure 3), then the combined variable capacitance value C step 2 and the RF optimum 1@C step 1 (see Figure 5) are applied, and then the combined variable capacitance value C is applied optimum 3 and RF optimum 1@C step 2 (see Figure 7), and finally apply the combined variable capacitance value C optimum 3 and RF optimum 1@C optimum (see Figure 9).

在一些實施例中,取代自從感測器124接收的電壓反射係數(例如Γmi1、Γmi2、Γmi3、Γmi4等)產生阻抗(例如阻抗Zmi1等),處理器134接收電壓反射係數以在匹配網路模型102的輸出144處產生相應的負載電壓反射係數阻抗(例如ΓL1、ΓL2、ΓL3、ΓL4等)。不需要將電壓反射係數轉換為阻抗,且反之亦然。In some embodiments, instead of generating impedances (eg, impedance Zmi1 , etc.) from voltage reflection coefficients (eg, Γmi1 , Γmi2 , Γmi3 , Γmi4 , etc.) received from sensor 124 , processor 134 receives the voltage reflection coefficients for use in matching network models Corresponding load voltage reflection coefficient impedances (eg, ΓL1, ΓL2, ΓL3, ΓL4, etc.) are produced at the output 144 of 102 . There is no need to convert the voltage reflection coefficient to impedance and vice versa.

在各種實施例中,取代匹配網路模型102,匹配網路模型102與RF傳輸模型的組合係加以使用,以如本文所述以步進方式改變阻抗匹配網路106的電容。舉例而言,負載阻抗ZL1、ZL2、ZL3、及ZL4係在RF傳輸模型的輸出處而非在匹配網路模型102的輸出144處加以計算。作為另一實例,取代使用在圖2、4、6及8中的匹配網路模型102,匹配網路模型102及RF傳輸模型兩者係加以使用。RF傳輸模型係與匹配網路模型102的輸出144串聯連接,且以類似於匹配網路模型102源自阻抗匹配網路106的方式源自RF傳輸線132。舉例而言,RF傳輸模型具有源自RF傳輸線132之電感、電容、及/或電阻的電感、電容、及/或電阻。作為另一實例,RF傳輸模型的電容與RF傳輸線132的電容匹配,RF傳輸模型的電感與RF傳輸線132的電感匹配,且RF傳輸模型的電阻與RF傳輸線132的電阻匹配。In various embodiments, instead of the matching network model 102, a combination of the matching network model 102 and the RF transmission model is used to change the capacitance of the impedance matching network 106 in a stepwise fashion as described herein. For example, the load impedances ZL1 , ZL2 , ZL3 , and ZL4 are calculated at the output of the RF transmission model rather than at the output 144 of the matching network model 102 . As another example, instead of the matching network model 102 used in Figures 2, 4, 6 and 8, both the matching network model 102 and the RF transmission model are used. The RF transmission model is connected in series with the output 144 of the matching network model 102 and is derived from the RF transmission line 132 in a similar manner as the matching network model 102 is derived from the impedance matching network 106 . For example, the RF transmission model has inductance, capacitance, and/or resistance derived from the inductance, capacitance, and/or resistance of the RF transmission line 132 . As another example, the capacitance of the RF transmission model matches the capacitance of RF transmission line 132 , the inductance of the RF transmission model matches the inductance of RF transmission line 132 , and the resistance of the RF transmission model matches the resistance of RF transmission line 132 .

在一些實施例中,取代匹配網路模型102,RF電纜模型、匹配網路模型102及RF傳輸模型的組合係加以使用,以如本文所述以步進方式改變阻抗匹配網路106的電容。舉例而言,負載阻抗ZL1、ZL2、ZL3、及ZL4係在RF傳輸模型的輸出處而非在匹配網路模型102的輸出144處加以計算。作為另一實例,取代使用在圖2、4、6及8中的匹配網路模型102,RF電纜模型、匹配網路模型102、及RF傳輸模型係加以使用。RF電纜模型係與匹配網路模型102的輸入142串聯連接,且以類似於匹配網路模型102源自阻抗匹配網路106的方式源自RF電纜130。舉例而言,RF電纜模型具有源自RF電纜130之電感、電容、及/或電阻的電感、電容、及/或電阻。作為另一實例,RF電纜模型的電容與RF電纜130的電容匹配,RF電纜模型的電感與RF電纜130的電感匹配,且RF電纜模型的電阻與RF電纜130的電阻匹配。In some embodiments, instead of matching network model 102, a combination of RF cable model, matching network model 102, and RF transmission model is used to change the capacitance of impedance matching network 106 in steps as described herein. For example, the load impedances ZL1 , ZL2 , ZL3 , and ZL4 are calculated at the output of the RF transmission model rather than at the output 144 of the matching network model 102 . As another example, instead of the matching network model 102 used in Figures 2, 4, 6, and 8, an RF cable model, matching network model 102, and RF transmission model are used. The RF cable model is connected in series with the input 142 of the matching network model 102 and is derived from the RF cable 130 in a similar manner as the matching network model 102 is derived from the impedance matching network 106 . For example, the RF cable model has inductance, capacitance, and/or resistance derived from the inductance, capacitance, and/or resistance of the RF cable 130 . As another example, the capacitance of the RF cable model matches the capacitance of RF cable 130 , the inductance of the RF cable model matches the inductance of RF cable 130 , and the resistance of the RF cable model matches the resistance of RF cable 130 .

圖10係說明阻抗匹配網路106及RF產生器104之步進方式調節之圖1000的一實施例。圖1000繪製由RF產生器104產生之RF訊號的頻率相對於阻抗匹配網路106的組合可變電容。圖1000繪製電壓反射係數Γ之代表性等值線隨阻抗匹配網路106的組合可變電容及由RF產生器104產生之RF訊號的頻率變化。從電壓反射係數之量值係大約等於0.5的點B開始,匹配網路模型102指示最佳調節點係A,在點A,Γ的量值係大約等於零且在輸出126處的電阻值係50歐姆(圖1)。若阻抗匹配網路106的組合可變電容及由RF產生器104產生之RF訊號的頻率係以最大可達成速率加以改變,則在阻抗匹配網路106之較慢的可變電容有機會移動之前,頻率非常快速地降至電壓反射係數Γ的量值係更糟的點C。在步進方式的調節中,阻抗匹配網路106的組合可變電容係從點B改變至點A,但是經由點D、E、及F,且RF訊號的頻率係針對在點D、E、及F之可變電容的每一者加以調節。在點D、E、及F的每一者處,電壓反射係數Γ之最小量值之RF訊號的局部最佳頻率係加以決定。FIG. 10 is one embodiment of a graph 1000 illustrating stepwise adjustment of the impedance matching network 106 and the RF generator 104. FIG. Graph 1000 plots the frequency of the RF signal generated by RF generator 104 versus the combined variable capacitance of impedance matching network 106 . The graph 1000 plots a representative contour of the voltage reflection coefficient Γ as a function of the combined variable capacitance of the impedance matching network 106 and the frequency of the RF signal generated by the RF generator 104 . Starting from point B, where the magnitude of the voltage reflection coefficient is approximately equal to 0.5, the matching network model 102 indicates that the optimal adjustment point is A, where the magnitude of Γ is approximately equal to zero and the resistance value at output 126 is 50 ohms (Figure 1). If the combined variable capacitance of impedance matching network 106 and the frequency of the RF signal generated by RF generator 104 are changed at the maximum achievable rate, before the slower variable capacitance of impedance matching network 106 has a chance to move , the frequency drops very quickly to a point C where the magnitude of the voltage reflection coefficient Γ is worse. In a step-wise adjustment, the combined variable capacitance of the impedance matching network 106 is changed from point B to point A, but through points D, E, and F, and the frequency of the RF signal is set for points D, E, and F. and each of the variable capacitances of F are adjusted. At each of points D, E, and F, the local optimum frequency of the RF signal for the smallest magnitude of the voltage reflection coefficient Γ is determined.

應理解在上述實施例的某些者中,RF訊號係供應至夾盤118的下電極且上電極116係接地的。在各種實施例中,RF訊號係施加於上電極116且夾盤118的下電極係接地的。It should be understood that in some of the above-described embodiments, the RF signal is supplied to the lower electrode of the chuck 118 and the upper electrode 116 is grounded. In various embodiments, the RF signal is applied to the upper electrode 116 and the lower electrode of the chuck 118 is grounded.

本文描述的實施例可利用各種電腦系統配置加以實施,該等各種電腦系統配置包含手持硬體單元、微處理器系統、基於微處理器或可程式化的消費者電子產品、迷你電腦、大型電腦等。文中描述的該等實施例亦可在分散的計算環境中加以實施,在該分散的計算環境中,任務係藉由經由電腦網路鏈接的遠程處理硬體單元加以執行。The embodiments described herein may be implemented with various computer system configurations including hand-held hardware units, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers Wait. The embodiments described herein can also be practiced in distributed computing environments where tasks are performed by remote processing hardware units that are linked through a computer network.

在一些實施例中,控制器為系統的一部分,其可為上述例子的一部分。該系統包括半導體處理設備,其包含一個以上處理工具、一個以上腔室、用於處理的一個以上平臺、及/或特定的處理元件(晶圓基座、氣流系統等)。該系統係與電子設備整合,該等電子設備用於在半導體晶圓或基板的處理之前、期間、及之後控制該系統的操作。電子設備係稱作為「控制器」,其可控制該系統的各種元件或子部分。依據該系統的處理需求及/或類型,控制器係加以編程以控制本文揭示的任何製程,包含:處理氣體的遞送、溫度設定(例如加熱及/或冷卻)、壓力設定、真空設定、功率設定、RF產生器設定、RF匹配電路設定、頻率設定、流率設定、流體遞送設定、位置及操作設定、出入一工具和其他轉移工具及/或與該系統連接或介接的裝載鎖定部之晶圓轉移。In some embodiments, the controller is part of a system, which may be part of the above examples. The system includes semiconductor processing equipment including one or more processing tools, one or more chambers, one or more platforms for processing, and/or specific processing elements (wafer pedestals, gas flow systems, etc.). The system is integrated with electronic equipment for controlling the operation of the system before, during, and after processing of semiconductor wafers or substrates. Electronic devices are referred to as "controllers" that control various elements or subsections of the system. Depending on the processing needs and/or type of the system, the controller is programmed to control any of the processes disclosed herein, including: delivery of process gases, temperature settings (eg, heating and/or cooling), pressure settings, vacuum settings, power settings , RF generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, position and operation settings, access to a tool and other transfer tools and/or crystals of load locks connected or interfaced with the system Circle transfer.

廣義地說,在各種實施例中,控制器係定義為電子設備,具有各種積體電路、邏輯、記憶體、及/或軟體,其接收指令、發布指令、控制操作、啟用清潔操作、啟用端點量測等。積體電路包含呈儲存程式指令之韌體形式的晶片、數位訊號處理器(DSP)、定義為ASIC的晶片、PLD、執行程式指令(例如軟體)的一個以上微處理器或微控制器。該等程式指令係以各種個別設定(或程式檔案)的形式與控制器通訊的指令,該等設定定義對於半導體晶圓執行製程的操作參數。在一些實施例中,該等操作參數係由製程工程師定義之配方的一部分,以在一或多個層、材料、金屬、氧化物、矽、二氧化矽、表面、電路、及/或晶圓的晶粒製造期間完成一個以上處理步驟。Broadly speaking, in various embodiments, a controller is defined as an electronic device having various integrated circuits, logic, memory, and/or software that receives commands, issues commands, controls operations, enables cleaning operations, enables terminals point measurement, etc. Integrated circuits include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as ASICs, PLDs, one or more microprocessors or microcontrollers that execute program instructions (eg, software). These program instructions are instructions that communicate with the controller in the form of various individual settings (or program files) that define the operating parameters for the execution of the process on the semiconductor wafer. In some embodiments, the operating parameters are part of a recipe defined by a process engineer for one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or wafers More than one processing step is completed during die fabrication.

在一些實施例中,控制器係電腦的一部分或耦接至電腦,該電腦係與系統整合、耦接至系統、以其他方式網路連至系統、或以上方式組合。例如:控制器係在「雲端」或晶圓廠主機電腦系統的整體或一部分,允許晶圓處理的遠端存取。該控制器允許針對系統的遠端存取以監控製造操作的當前進度,檢查過往製造操作的歷史,檢查來自複數個製造操作的趨勢或性能度量,以改變目前處理的參數,以設定目前操作之後的處理步驟,或啟動新的製程。In some embodiments, the controller is part of or coupled to a computer that is integrated with the system, coupled to the system, otherwise networked to the system, or a combination of the above. For example, the controller resides in the "cloud" or as a whole or part of the fab's host computer system, allowing remote access to wafer processing. The controller allows remote access to the system to monitor the current progress of manufacturing operations, review the history of past manufacturing operations, review trends or performance metrics from multiple manufacturing operations, to change parameters of the current process, to set after the current operation process steps, or start a new process.

在一些實施例中,遠程電腦(例如伺服器)經由電腦網路提供製程配方給系統,該電腦網路包含區域網路或網際網路。遠程電腦包含使用者介面,其允許參數及/或設定的輸入或編程,這些參數及/或設定係接著從遠程電腦被傳遞至系統。在一些示例中,控制器接收呈設定形式的指令以用於處理晶圓。應理解該等設定係專門用於在晶圓上將執行之製程的類型及與控制器介接或控制之工具的類型。因此,如上所述,控制器係分散式的,諸如藉由包含一個以上分散的控制器,其由網路連在一起且朝共同的目的(諸如此處描述之實現的製程)作業。一個用於此等目的之分散式控制器的例子包含腔室上的一個以上積體電路,連通位於遠端(諸如在平台級或作為遠程電腦之一部分)的一個以上積體電路,其結合以控制腔室中的製程。In some embodiments, a remote computer (eg, a server) provides recipes to the system via a computer network, including a local area network or the Internet. The remote computer includes a user interface that allows entry or programming of parameters and/or settings, which are then passed from the remote computer to the system. In some examples, the controller receives instructions in a set form for processing the wafer. It should be understood that these settings are specific to the type of process to be performed on the wafer and the type of tool to interface or control the controller. Thus, as described above, the controllers are distributed, such as by including more than one distributed controller, linked together by a network and working toward a common purpose, such as the process of implementation described herein. An example of a distributed controller for these purposes includes one or more integrated circuits on a chamber, communicating with one or more integrated circuits at a remote location (such as at the platform level or as part of a remote computer), which combine to Control the process in the chamber.

不受限制地,在各種實施例中,系統包含電漿蝕刻腔室、沉積腔室、旋轉-潤洗腔室、金屬電鍍腔室、清潔腔室、斜邊蝕刻腔室、物理氣相沉積(PVD)腔室、化學氣相沉積(CVD)腔室組、原子層沉積(ALD)腔室、原子層蝕刻(ALE)腔室、離子植入腔室、軌道腔室、及關聯或用於半導體晶圓的製造及/或生產中的任何其他半導體處理腔室。Without limitation, in various embodiments, the system includes a plasma etch chamber, a deposition chamber, a spin-rinse chamber, a metal plating chamber, a cleaning chamber, a bevel etch chamber, a physical vapor deposition ( PVD) chambers, groups of chemical vapor deposition (CVD) chambers, atomic layer deposition (ALD) chambers, atomic layer etching (ALE) chambers, ion implantation chambers, orbital chambers, and associated or for semiconductors Any other semiconductor processing chamber in the fabrication and/or production of wafers.

更應注意,雖然上述操作係參照平行板電漿腔室(例如:電容耦合電漿腔室等)加以描述,但在一些實施例中,上述操作可應用於其他類型的電漿腔室,例如:包含感應耦合電漿(ICP)反應器、變壓器耦合電漿(TCP)反應器、導體工具、介電工具的電漿腔室;包含電子迴旋共振(ECR)反應器的電漿腔室等。舉例而言:x MHz的RF產生器、y MHz的RF產生器、及z MHz的RF產生器係耦合至在ICP電漿腔室內的電感器。It should be further noted that although the above operations are described with reference to parallel plate plasma chambers (eg, capacitively coupled plasma chambers, etc.), in some embodiments, the above operations may be applied to other types of plasma chambers, such as : Plasma chambers containing inductively coupled plasma (ICP) reactors, transformer coupled plasma (TCP) reactors, conductor tools, dielectric tools; plasma chambers containing electron cyclotron resonance (ECR) reactors, etc. For example: an x MHz RF generator, a y MHz RF generator, and a z MHz RF generator are coupled to inductors within the ICP plasma chamber.

如上所述,依據將由工具執行的製程操作,控制器與下列通訊:一個以上其他工具電路或模組、其他工具元件、群組工具、其他工具介面、毗鄰工具、相鄰工具、位於工廠各處的工具、主電腦、另一控制器、或用於材料傳送的工具,該等用於材料傳送的工具將晶圓的容器攜帶進出半導體生產工廠內的工具位置及/或負載端。As mentioned above, depending on the process operation to be performed by the tool, the controller communicates with: one or more other tool circuits or modules, other tool elements, group tools, other tool interfaces, adjacent tools, adjacent tools, located throughout the factory A tool, a host computer, another controller, or a tool for material transfer that carries containers of wafers to and from tool locations and/or load ends within a semiconductor fabrication facility.

在考慮上述實施例後,應理解一些實施例使用包含儲存於電腦系統中的資料之各種可利用電腦實現的操作。這些可利用電腦實現的操作係那些操縱物理量的操作。After considering the above-described embodiments, it should be understood that some embodiments employ various computer-implementable operations involving data stored in computer systems. These computer-implemented operations are those that manipulate physical quantities.

一些實施例亦關於用於執行這些操作的硬體單元或設備。該設備係針對特殊用途電腦而特別加以建構。當被界定成特殊用途電腦時,該電腦執行非為特殊用途之部分的其他處理、程式執行或常用程式,但仍然能夠針對特殊用途而加以操作。Some embodiments also pertain to hardware units or devices for performing these operations. This device is specially constructed for special purpose computers. When defined as a special-purpose computer, the computer performs other processing, program execution, or common programs that are not part of the special-purpose computer, but is still capable of operating for the special-purpose use.

在一些實施例中,在此描述的該等操作係藉由電腦加以執行,該電腦藉由儲存在電腦記憶體中或透過電腦網路獲得的一個以上電腦程式選擇性地加以啟動或配置。當資料係透過電腦網路而獲得時,該資料可藉由在電腦網路上的其他電腦(例如雲端計算資源)加以處理。In some embodiments, the operations described herein are performed by a computer selectively activated or configured by one or more computer programs stored in computer memory or obtained over a computer network. When the data is obtained through a computer network, the data can be processed by other computers (eg cloud computing resources) on the computer network.

此在描述的一個以上實施例亦可被製作成在非暫時性電腦可讀媒體上的電腦可讀碼。該非暫時性電腦可讀媒體係儲存資料的任何資料儲存硬體單元(例如記憶體裝置等),該資料之後係藉由電腦系統加以讀取。非暫時性電腦可讀媒體的示例包含硬碟、網路附接儲存器(NAS)、ROM、RAM、光碟ROM(CD-ROM)、可錄式光碟(CD-R)、可讀寫式光碟(CD-RW)、磁帶及其他光學和非光學資料儲存硬體單元。在一些實施例中,該非暫時性電腦可讀媒體包含分散在網路耦合電腦系統的電腦可讀實體媒體,使得電腦可讀碼係以分散的方式加以儲存及執行。One or more of the embodiments described herein can also be fabricated as computer readable code on a non-transitory computer readable medium. The non-transitory computer-readable medium is any data storage hardware unit (eg, a memory device, etc.) that stores data that is later read by a computer system. Examples of non-transitory computer readable media include hard disks, network attached storage (NAS), ROM, RAM, compact disk ROM (CD-ROM), compact disk recordable (CD-R), compact disk read/write (CD-RW), magnetic tape, and other optical and non-optical data storage hardware units. In some embodiments, the non-transitory computer-readable medium comprises computer-readable physical media distributed across network-coupled computer systems such that computer-readable code is stored and executed in a distributed fashion.

雖然上述的一些方法操作係以特定順序加以呈現,但應理解在各種實施例中,其他內務處理作業係在該等方法操作之間加以執行,或該等方法操作係加以調整使得該等操作發生在略微不同的時間點,或在允許該等方法操作發生在各種時距內的系統中加以分散,或以不同於上述的順序加以執行。Although some of the method operations described above are presented in a particular order, it should be understood that in various embodiments, other housekeeping operations are performed between the method operations, or the method operations are adjusted such that the operations occur At slightly different points in time, or in a system that allows the method operations to occur over various time intervals, or are performed in a different order than described above.

更應注意,在一實施例中,來自上述任何實施例的一個以上特徵可與任何其他實施例的一個以上特徵結合而不背離在本揭示內容中所述之各種實施例描述的範圍。It should be further noted that, in one embodiment, one or more features from any of the above-described embodiments may be combined with one or more features of any other embodiment without departing from the scope of the various embodiments described in this disclosure.

雖然上述實施例為了清楚理解的目的已以一些細節加以描述,但顯然地,某些改變與修改可在隨附申請專利範圍的範疇內加以實施。因此,本發明實施例係被視為說明性而非限制性的,且該等實施例係非限制於此處提供的細節,而是可在隨附申請專利範圍的範疇及等同物之內加以修改。Although the above-described embodiments have been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, embodiments of the present invention are to be regarded as illustrative rather than restrictive, and such embodiments are not to be limited to the details provided herein, but may be added within the scope and equivalents of the appended claims Revise.

100‧‧‧電漿系統102‧‧‧匹配網路模型104‧‧‧射頻(RF)產生器106‧‧‧阻抗匹配網路108‧‧‧電漿腔室110‧‧‧主機電腦系統112‧‧‧驅動組件114‧‧‧連接機構116‧‧‧上電極118‧‧‧夾盤120‧‧‧頂部表面122‧‧‧RF電源124‧‧‧感測器126‧‧‧輸出128‧‧‧輸入130‧‧‧RF電纜132‧‧‧RF傳輸線134‧‧‧處理器136‧‧‧網路電纜137‧‧‧記憶體裝置138‧‧‧網路電纜140‧‧‧輸出142‧‧‧輸入144‧‧‧輸出1000‧‧‧圖100‧‧‧Plasma System 102‧‧‧Matching Network Model 104‧‧‧Radio Frequency (RF) Generator 106‧‧‧Impedance Matching Network 108‧‧‧Plasma Chamber 110‧‧‧Host Computer System 112‧ ‧‧Drive Assembly 114‧‧‧Connecting Mechanism 116‧‧‧Top Electrode 118‧‧‧Chuck 120‧‧‧Top Surface 122‧‧‧RF Power Supply 124‧‧‧Sensor 126‧‧‧Output 128‧‧‧ Input 130‧‧‧RF Cable 132‧‧‧RF Transmission Line 134‧‧‧Processor 136‧‧‧Network Cable 137‧‧‧Memory Device 138‧‧‧Network Cable 140‧‧‧Output 142‧‧‧Input 144‧‧‧Output 1000‧‧‧map

實施例係藉由參照結合附圖的以下敘述加以理解。Embodiments are understood by reference to the following description taken in conjunction with the accompanying drawings.

圖1係電漿系統之一實施例的圖,以說明使用匹配網路模型產生負載阻抗ZL1。FIG. 1 is a diagram of one embodiment of a plasmonic system to illustrate the use of a matching network model to generate load impedance ZL1.

圖2係匹配網路模型之一實施例的圖,該匹配網路模型係初始化至射頻RF1及可變電容C1,以在匹配網路模型的輸入處產生反射係數Γi。Figure 2 is a diagram of one embodiment of a matching network model initialized to radio frequency RF1 and variable capacitor C1 to generate reflection coefficients Γi at the input of the matching network model.

圖3係電漿系統之一實施例的圖,以說明使用電容Coptimum 1以產生步進組合可變電容值Cstep 1,及使用值RFoptimum 1@C1以產生負載阻抗ZL2。Figure 3 is a diagram of one embodiment of a plasma system to illustrate the use of capacitor C optimum 1 to generate a step combined variable capacitance value C step 1, and the use of value RF optimum 1@C1 to generate load impedance ZL2.

圖4係匹配網路模型之一實施例的圖,該匹配網路模型係設成射頻RFoptimum 1@C1及組合可變電容Cstep 1,以在匹配網路模型的輸入處產生反射係數Γi的最小值。FIG. 4 is a diagram of an embodiment of a matching network model set to RF optimum 1@C1 and a combined variable capacitor C step 1 to generate a reflection coefficient Γi at the input of the matching network model the minimum value of .

圖5係電漿系統之一實施例的圖,以說明使用電容值Coptimum 2以產生另一步進組合可變電容值Cstep 2,及使用值RFoptimum 1@Cstep 1以產生負載阻抗ZL3。Figure 5 is a diagram of one embodiment of a plasma system to illustrate the use of capacitance values C optimum 2 to generate another step combined variable capacitance value C step 2, and the use of values RF optimum 1@C step 1 to generate load impedance ZL3 .

圖6係匹配網路模型之一實施例的圖,該匹配網路模型係設成射頻RFoptimum 1@Cstep 1及組合可變電容Cstep 2,以在匹配網路模型的輸入處產生反射係數Γi的最小值。FIG. 6 is a diagram of an embodiment of a matching network model set to RF optimum 1@C step 1 and combined variable capacitance C step 2 to generate reflections at the input of the matching network model Minimum value of coefficient Γi.

圖7係電漿系統之一實施例的圖,以說明使用電容值Coptimum 3,及使用值RFoptimum 1@Cstep 2,以產生負載阻抗ZL4。Figure 7 is a diagram of one embodiment of a plasma system to illustrate the use of a capacitance value of C optimum 3, and a use of a value of RF optimum 1@C step 2, to generate load impedance ZL4.

圖8係匹配網路模型之一實施例的圖,該匹配網路模型係設成射頻RFoptimum 1@Cstep 2及組合可變電容Coptimum 3,以在匹配網路模型的輸入處產生反射係數Γi的最小值。FIG. 8 is a diagram of an embodiment of a matching network model set to RF optimum 1@C step 2 and combined variable capacitance C optimum 3 to generate reflections at the input of the matching network model Minimum value of coefficient Γi.

圖9係電漿系統之一實施例的圖,以說明使用電容值Coptimum 3及使用值RFoptimum 1@Coptimum 處理晶圓W。FIG. 9 is a diagram of one embodiment of a plasma system to illustrate processing of wafer W using capacitance values C optimum 3 and using values RF optimum 1@C optimum.

圖10係說明電漿系統之阻抗匹配網路及RF產生器之步進方式調節之圖的一實施例。10 is one embodiment of a diagram illustrating stepwise adjustment of the impedance matching network and RF generator of the plasmonic system.

100‧‧‧電漿系統 100‧‧‧Plasma System

102‧‧‧匹配網路模型 102‧‧‧Matching Network Models

104‧‧‧射頻(RF)產生器 104‧‧‧Radio Frequency (RF) Generators

106‧‧‧阻抗匹配網路 106‧‧‧Impedance matching network

108‧‧‧電漿腔室 108‧‧‧Plasma Chamber

110‧‧‧主機電腦系統 110‧‧‧Host computer system

112‧‧‧驅動組件 112‧‧‧Drive components

114‧‧‧連接機構 114‧‧‧Connection mechanism

116‧‧‧上電極 116‧‧‧Top electrode

118‧‧‧夾盤 118‧‧‧Chuck

120‧‧‧頂部表面 120‧‧‧Top surface

122‧‧‧RF電源 122‧‧‧RF Power

124‧‧‧感測器 124‧‧‧Sensor

126‧‧‧輸出 126‧‧‧output

128‧‧‧輸入 128‧‧‧Input

130‧‧‧RF電纜 130‧‧‧RF cable

132‧‧‧RF傳輸線 132‧‧‧RF Transmission Line

134‧‧‧處理器 134‧‧‧Processors

136‧‧‧網路電纜 136‧‧‧Network Cable

137‧‧‧記憶體裝置 137‧‧‧Memory Devices

138‧‧‧網路電纜 138‧‧‧Network Cable

140‧‧‧輸出 140‧‧‧output

142‧‧‧輸入 142‧‧‧Input

144‧‧‧輸出 144‧‧‧Output

Claims (26)

一種以步進方式調節阻抗匹配網路的方法,包含:當一射頻(RF)產生器在一第一參數值下操作且該阻抗匹配網路具有一第一可變可量測因子時,接收在該RF產生器之一輸出與該阻抗匹配網路之一輸入之間的一點處所感測的一第一測得輸入電壓反射係數值;基於該第一測得輸入電壓反射係數值,決定一第一輸入阻抗值;初始化一個以上模型以具有該第一可變可量測因子及該第一參數值,其中該一個以上模型包含該阻抗匹配網路的一匹配網路模型;傳播該第一輸入阻抗值經過該一個以上模型以輸出一第一輸出阻抗值,其中該傳播該第一輸入阻抗值的步驟係當該一個以上模型具有該第一可變可量測因子及該第一參數值時加以執行;使用該第一輸出阻抗值及該一個以上模型,決定在該一個以上模型之一輸入處之一反射係數為零的一計算之最佳參數值及一最佳可變可量測因子;使用該第一輸出阻抗值及該一個以上模型,決定在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第一最佳參數值;在該第一最佳參數值下操作該RF產生器;及設定該阻抗匹配網路以具有一第一步進可變可量測因子,其中該第一步進可變可量測因子與該第一可變可量測因子相比係較靠近該最佳可變可量測因子,使得該阻抗匹配網路係以該步進方式加以調節。 A method of adjusting an impedance matching network in a stepwise manner, comprising: when a radio frequency (RF) generator is operating at a first parameter value and the impedance matching network has a first variable measurable factor, receiving a first measured input voltage reflection coefficient value sensed at a point between an output of the RF generator and an input of the impedance matching network; based on the first measured input voltage reflection coefficient value, a a first input impedance value; initialize one or more models to have the first variable measurable factor and the first parameter value, wherein the one or more models include a matching network model of the impedance matching network; propagate the first The input impedance value is passed through the one or more models to output a first output impedance value, wherein the step of propagating the first input impedance value is when the one or more models have the first variable measurable factor and the first parameter value is performed when the first output impedance value and the one or more models are used to determine a calculated optimal parameter value and an optimal variable measurable value with a reflection coefficient of zero at an input of the one or more models factor; using the first output impedance value and the one or more models, determine a first optimal parameter value where the reflection coefficient at the input of the one or more models is the minimum value between a plurality of reflection coefficient values; operating the RF generator at the first optimum parameter value; and setting the impedance matching network to have a first step variable scalability factor, wherein the first step variable scalability factor is related to the The first variable scalability factor is relatively close to the optimal variable scalability factor, so that the impedance matching network is adjusted in the stepwise manner. 如申請專利範圍第1項之以步進方式調節阻抗匹配網路的方法,更包含:當該RF產生器係在該第一最佳參數值下操作且該阻抗匹配網路係設成具有該第一步進可變可量測因子時,接收在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間的該點處所感測的一第二測得輸入電壓反射係數值;基於該第二測得輸入電壓反射係數值,決定一第二輸入阻抗值;設定該一個以上模型以具有該第一步進可變可量測因子及該第一最佳參數值;當該一個以上模型具有該第一步進可變可量測因子及該第一最佳參數值時,使用該一個以上模型自該第二輸入阻抗值計算一第二輸出阻抗值;使用該第二輸出阻抗值及該一個以上模型,計算在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第二最佳參數值;在該第二最佳參數值下操作該RF產生器;及設定該阻抗匹配網路以具有一第二步進可變可量測因子。 The method for adjusting an impedance matching network in a stepwise manner as claimed in claim 1 of the claimed scope, further comprising: when the RF generator is operated at the first optimum parameter value and the impedance matching network is configured to have the receiving a second measured input voltage reflection coefficient value sensed at the point between the output of the RF generator and the input of the impedance matching network in a first step to the variable measurable factor; Determine a second input impedance value based on the second measured input voltage reflection coefficient value; set the one or more models to have the first step variable measurable factor and the first optimal parameter value; when the one When the above model has the first step variable measurable factor and the first optimal parameter value, use the one or more models to calculate a second output impedance value from the second input impedance value; use the second output impedance value and the one or more models, calculating a second optimal parameter value where the reflection coefficient at the input of the one or more models is the minimum value between a plurality of reflection coefficient values; at the second optimal parameter value operating the RF generator down; and setting the impedance matching network to have a second step variable scalability factor. 如申請專利範圍第2項之以步進方式調節阻抗匹配網路的方法,其中,該第二最佳參數值等於該計算之最佳參數值。 The method for adjusting an impedance matching network in a step-by-step manner of claim 2, wherein the second optimal parameter value is equal to the calculated optimal parameter value. 如申請專利範圍第2項之以步進方式調節阻抗匹配網路的方法,更包含: 當該RF產生器係在該第二最佳參數值下操作且該阻抗匹配網路係設成具有該第二步進可變可量測因子時,接收在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間的該點處所感測的一第三測得輸入電壓反射係數值;基於該第三測得輸入電壓反射係數值,決定一第三輸入阻抗值;設定該一個以上模型,以具有該第二步進可變可量測因子及該第二最佳參數值;使用該一個以上模型,自該第三輸入阻抗值計算一第三輸出阻抗值;使用該第三輸出阻抗值及該一個以上模型,計算在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第三最佳參數值;及在該第三最佳參數值下操作該RF產生器。 For example, the method for adjusting the impedance matching network in a step-by-step manner in item 2 of the scope of the patent application further includes: The output received at the RF generator and the a third measured input voltage reflection coefficient value sensed at the point between the inputs of the impedance matching network; determining a third input impedance value based on the third measured input voltage reflection coefficient value; setting the one The above model has the second step variable measurable factor and the second optimal parameter value; using the one or more models, calculates a third output impedance value from the third input impedance value; using the third output impedance values and the one or more models, calculating a third optimal parameter value where the reflection coefficient at the input of the one or more models is the minimum value between a plurality of reflection coefficient values; and at the third most Operate the RF generator at optimal parameter values. 如申請專利範圍第4項之以步進方式調節阻抗匹配網路的方法,其中,該第三最佳參數值係等於該計算之最佳參數值。 The method for adjusting the impedance matching network in a step-by-step manner as claimed in claim 4, wherein the third optimal parameter value is equal to the calculated optimal parameter value. 如申請專利範圍第4項之以步進方式調節阻抗匹配網路的方法,其中,該第三最佳參數值係不同於該計算之最佳參數值。 The method for adjusting an impedance matching network in a step-by-step manner as claimed in claim 4, wherein the third optimal parameter value is different from the calculated optimal parameter value. 如申請專利範圍第1項之以步進方式調節阻抗匹配網路的方法,其中,該第一測得輸入電壓反射係數值係由耦接至該RF產生器之該輸出的一感測器加以感測。 The method of adjusting an impedance matching network in a stepwise manner as claimed in claim 1, wherein the first measured input voltage reflection coefficient value is obtained by a sensor coupled to the output of the RF generator Sensing. 如申請專利範圍第1項之以步進方式調節阻抗匹配網路的方法,其中,該第一輸出阻抗值係藉由經由該一個以上模型的電路元件向前傳播該第一輸入阻抗值而加以計算。 The method of stepwise adjusting an impedance matching network of claim 1, wherein the first output impedance value is added by propagating the first input impedance value forward through circuit elements of the one or more models calculate. 如申請專利範圍第1項之以步進方式調節阻抗匹配網路的方法,其中,該計算之最佳參數值及該最佳可變可量測因子係藉由經由該一個以上模型的電路元件向後傳播該第一輸出阻抗值而加以計算,以達到該零反射係數。 The method for adjusting an impedance matching network in a step-by-step manner as claimed in claim 1, wherein the calculated optimal parameter values and the optimal variable scalability factor are determined by circuit elements passing through the one or more models The first output impedance value is propagated back and calculated to achieve the zero reflection coefficient. 一種以步進方式調節阻抗匹配網路的系統,包含:一處理器,配置成當一射頻(RF)產生器在一第一參數值下操作且該阻抗匹配網路具有一第一可變可量測因子時,接收在該RF產生器之一輸出與該阻抗匹配網路之一輸入之間的一點處所感測的一參數的一第一測得輸入電壓反射係數值,其中該處理器係建構以基於該第一測得輸入電壓反射係數值,決定一第一輸入阻抗值,其中,該處理器係配置成初始化一個以上模型以具有該第一可變可量測因子及該第一參數值,其中該一個以上模型包含該阻抗匹配網路的一模型;及連接至該處理器的一記憶體裝置,其中,該記憶體裝置係配置成儲存該一個以上模型, 其中,該處理器係配置成傳播該第一輸入阻抗值經過該一個以上模型以輸出一第一輸出阻抗值,其中該處理器係配置成該當該一個以上模型具有該第一可變可量測因子及該第一參數值時傳播該第一輸入阻抗值,其中,該處理器係配置成使用該第一輸出阻抗值及該一個以上模型,決定在該一個以上模型之一輸入處之一反射係數為零的一計算之最佳參數值及一最佳可變可量測因子,其中,該處理器係配置成使用該第一輸出阻抗值及該一個以上模型,決定在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第一最佳參數值,其中,該處理器係配置成在該第一最佳參數值下操作該RF產生器,其中,該處理器係配置成設定該阻抗匹配網路以具有一第一步進可變可量測因子,其中該第一步進可變可量測因子與該第一可變可量測因子相比係較靠近該最佳可變可量測因子,使得該阻抗匹配網路係以該步進方式加以調節。 A system for adjusting an impedance matching network in a stepwise manner, comprising: a processor configured to operate when a radio frequency (RF) generator operates at a first parameter value and the impedance matching network has a first variable adjustable When measuring the factor, a first measured input voltage reflection coefficient value of a parameter sensed at a point between an output of the RF generator and an input of the impedance matching network is received, wherein the processor is constructed to determine a first input impedance value based on the first measured input voltage reflection coefficient value, wherein the processor is configured to initialize one or more models to have the first variable scalability factor and the first parameter value, wherein the one or more models comprise a model of the impedance matching network; and a memory device connected to the processor, wherein the memory device is configured to store the one or more models, wherein the processor is configured to propagate the first input impedance value through the one or more models to output a first output impedance value, wherein the processor is configured to output a first output impedance value when the one or more models have the first variable measurable factor and the first parameter value when propagating the first input impedance value, wherein the processor is configured to use the first output impedance value and the one or more models to determine a reflection at an input of the one or more models a calculated optimal parameter value with a coefficient of zero and an optimal variable measurable factor, wherein the processor is configured to use the first output impedance value and the one or more models to determine an optimal value between the one or more models The reflection coefficient at the input is a first optimal parameter value that is the minimum value between reflection coefficient values, wherein the processor is configured to operate the RF generator at the first optimal parameter value , wherein the processor is configured to set the impedance matching network to have a first step variable scalability factor, wherein the first step variable scalability factor and the first variable scalability factor The factor ratio is closer to the best variable measurable factor so that the impedance matching network is adjusted in the stepwise fashion. 如申請專利範圍第10項之以步進方式調節阻抗匹配網路的系統,其中,該處理器係配置成,當該RF產生器係在該第一最佳參數值下操作且該阻抗匹配網路係設成具有該第一步進可變可量測因子時,接收在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間的該點處所感測的一第二測得輸入電壓反射係數值, 其中該處理器係配置成基於該第二測得輸入電壓反射係數值,決定一第二輸入阻抗值,其中,該處理器係配置成設定該一個以上模型以具有該第一步進可變可量測因子及該第一最佳參數值,其中,該處理器係配置成,當該一個以上模型具有該第一步進可變可量測因子及該第一最佳參數值時,使用該一個以上模型自該第二輸入阻抗值計算一第二輸出阻抗值,其中,該處理器係配置成使用該第二輸出阻抗值及該一個以上模型,計算在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第二最佳參數值,其中,該處理器係配置成在該第二最佳參數值下操作該RF產生器,及其中,該處理器係配置成設定該阻抗匹配網路以具有一第二步進可變可量測因子。 The system for adjusting an impedance matching network in a stepwise manner as claimed in claim 10, wherein the processor is configured such that when the RF generator is operating at the first optimum parameter value and the impedance matching network The circuit is configured to have the first step variable scalability factor to receive a second measured value sensed at the point between the output of the RF generator and the input of the impedance matching network Enter the voltage reflection coefficient value, wherein the processor is configured to determine a second input impedance value based on the second measured input voltage reflection coefficient value, wherein the processor is configured to set the one or more models to have the first step variable A measurement factor and the first optimal parameter value, wherein the processor is configured to use the first step variable measurement factor and the first optimal parameter value when the one or more models have the One or more models calculate a second output impedance value from the second input impedance value, wherein the processor is configured to use the second output impedance value and the one or more models to calculate the value at the input of the one or more models The reflection coefficient is a second optimal parameter value that is the minimum value between a plurality of reflection coefficient values, wherein the processor is configured to operate the RF generator at the second optimal parameter value, and wherein, The processor is configured to configure the impedance matching network to have a second step variable scalability factor. 如申請專利範圍第11項之以步進方式調節阻抗匹配網路的系統,其中,該處理器係配置成,當該RF產生器係在該第二最佳參數值下操作且該阻抗匹配網路係設成具有該第二步進可變可量測因子時,接收在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間的該點處所感測的一第三測得輸入電壓反射係數值,其中該處理器係建構以基於該第三測得輸入電壓反射係數值,決定一第三輸入阻抗值, 其中,該處理器係配置成設定該一個以上模型以具有該第二步進可變可量測因子及該第二最佳參數值,其中,該處理器係配置成使用該一個以上模型自該第三輸入阻抗值計算一第三輸出阻抗值,其中,該處理器係配置成使用該第三輸出阻抗值及該一個以上模型,計算在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第三最佳參數值,及其中,該處理器係配置成在該第三最佳參數值下操作該RF產生器。 The system of step-wise adjustment of an impedance matching network of claim 11, wherein the processor is configured such that when the RF generator is operating at the second optimum parameter value and the impedance matching network The circuit is configured to have the second step variable measurable factor to receive a third measured value sensed at the point between the output of the RF generator and the input of the impedance matching network an input voltage reflection coefficient value, wherein the processor is configured to determine a third input impedance value based on the third measured input voltage reflection coefficient value, wherein the processor is configured to set the one or more models to have the second step-variable scalable factor and the second optimal parameter value, wherein the processor is configured to use the one or more models from the A third input impedance value calculates a third output impedance value, wherein the processor is configured to use the third output impedance value and the one or more models to calculate the reflection coefficient at the input of the one or more models at a third optimal parameter value of the smallest value between the plurality of reflection coefficient values, and wherein the processor is configured to operate the RF generator at the third optimal parameter value. 如申請專利範圍第12項之以步進方式調節阻抗匹配網路的系統,其中,該第三最佳參數值係等於該計算之最佳參數值。 The system for adjusting the impedance matching network in a stepwise manner as claimed in claim 12, wherein the third optimum parameter value is equal to the calculated optimum parameter value. 如申請專利範圍第12項之以步進方式調節阻抗匹配網路的系統,其中,該第三最佳參數值係不同於該計算之最佳參數值。 The system for adjusting an impedance matching network in a stepwise manner as claimed in claim 12, wherein the third optimum parameter value is different from the calculated optimum parameter value. 如申請專利範圍第10項之以步進方式調節阻抗匹配網路的系統,其中,該第一測得輸入電壓反射係數值係由耦接至該RF產生器之該輸出的一感測器加以感測。 The system for adjusting an impedance matching network in a stepwise manner as claimed in claim 10, wherein the first measured input voltage reflection coefficient value is added by a sensor coupled to the output of the RF generator Sensing. 一種以步進方式調節阻抗匹配網路的系統,包含:一射頻(RF)產生器,其具有一輸出;該阻抗匹配網路,連接至該RF產生器之輸出;一電漿腔室,經由一RF傳輸線連接至該阻抗匹配網路;及 一處理器,其耦接至該RF產生器,其中,該處理器係配置成,當該RF產生器在一第一參數值下操作且該阻抗匹配網路具有一第一可變可量測因子時,接收在該RF產生器之輸出與該阻抗匹配網路之一輸入之間的一點處所感測的一第一測得輸入電壓反射係數值,其中該處理器係建構以基於該第一測得輸入電壓反射係數值,決定一第一輸入阻抗值,其中,該處理器係配置成初始化一個以上模型以具有該第一可變可量測因子及該第一參數值,其中該一個以上模型包含該阻抗匹配網路的一匹配網路模型,其中,該處理器係配置成,傳播該第一測得輸入阻抗值經過該一個以上模型以輸出一第一輸出阻抗值,其中該處理器係配置成當該一個以上模型具有該第一可變可量測因子及該第一參數值時傳播該第一輸入阻抗值,其中,該處理器係配置成使用該第一輸出阻抗值及該一個以上模型,決定在該一個以上模型之一輸入處之一反射係數為零的一計算之最佳參數值及一最佳可變可量測因子;其中,該處理器係配置成使用該第一輸出阻抗值及該一個以上模型,決定在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第一最佳參數值,其中,該處理器係配置成在該第一最佳參數值下操作該RF產生器, 其中,該處理器係配置成設定該阻抗匹配網路以具有一第一步進可變可量測因子,其中該第一步進可變可量測因子與該第一可變可量測因子相比係較靠近該最佳可變可量測因子,使得該阻抗匹配網路係以該步進方式加以調節。 A system for adjusting an impedance matching network in a stepwise manner, comprising: a radio frequency (RF) generator having an output; the impedance matching network connected to the output of the RF generator; a plasma chamber via an RF transmission line connected to the impedance matching network; and a processor coupled to the RF generator, wherein the processor is configured to, when the RF generator operates at a first parameter value and the impedance matching network has a first variable measurable factor, receiving a first measured input voltage reflection coefficient value sensed at a point between the output of the RF generator and an input of the impedance matching network, wherein the processor is configured to be based on the first measuring an input voltage reflection coefficient value to determine a first input impedance value, wherein the processor is configured to initialize one or more models to have the first variable scalability factor and the first parameter value, wherein the one or more The model includes a matching network model of the impedance matching network, wherein the processor is configured to propagate the first measured input impedance value through the one or more models to output a first output impedance value, wherein the processor is configured to propagate the first input impedance value when the one or more models have the first variable measurable factor and the first parameter value, wherein the processor is configured to use the first output impedance value and the first parameter value one or more models determining a calculated optimal parameter value and an optimal variable scalability factor with a reflection coefficient of zero at an input of the one or more models; wherein the processor is configured to use the first an output impedance value and the one or more models, determining a first optimal parameter value where the reflection coefficient at the input of the one or more models is the minimum value between a plurality of reflection coefficient values, wherein the processor is configured to operate the RF generator at the first optimum parameter value, wherein the processor is configured to set the impedance matching network to have a first step variable scalability factor, wherein the first step variable scalability factor and the first variable scalability factor The phase is closer to the optimal variable scalability factor, so that the impedance matching network is adjusted in the stepwise manner. 如申請專利範圍第16項之以步進方式調節阻抗匹配網路的系統,其中,該處理器係配置成,當該RF產生器係在該第一最佳參數值下操作且該阻抗匹配網路係設成具有該第一步進可變可量測因子時,接收在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間的該點處所感測的一第二測得輸入電壓反射係數值,其中該處理器係配置成基於該第二測得輸入電壓反射係數值,決定一第二輸入阻抗值,其中,該處理器係配置成設定該一個以上模型以具有該第一步進可變可量測因子及該第一最佳參數值,其中,該處理器係配置成,當該一個以上模型具有該第一步進可變可量測因子及該第一最佳參數值時,使用該一個以上模型自該第二輸入阻抗值計算一第二輸出阻抗值,其中,該處理器係配置成使用該第二輸出阻抗值及該一個以上模型,計算在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第二最佳參數值,其中,該處理器係配置成在該第二最佳參數值下操作該RF產生器,及 其中,該處理器係配置成設定該阻抗匹配網路以具有一第二步進可變可量測因子。 The system of step-wise adjustment of an impedance matching network of claim 16, wherein the processor is configured such that when the RF generator is operating at the first optimum parameter value and the impedance matching network The circuit is configured to have the first step variable scalability factor to receive a second measured value sensed at the point between the output of the RF generator and the input of the impedance matching network an input voltage reflection coefficient value, wherein the processor is configured to determine a second input impedance value based on the second measured input voltage reflection coefficient value, wherein the processor is configured to set the one or more models to have the first a further variable scalability factor and the first optimal parameter value, wherein the processor is configured such that when the one or more models have the first step variable scalability factor and the first optimal parameter value When the parameter value is used, a second output impedance value is calculated from the second input impedance value using the one or more models, wherein the processor is configured to use the second output impedance value and the one or more models to calculate the one or more output impedance values. The reflection coefficient at the input to the model is a second optimal parameter value at the minimum value between reflection coefficient values, wherein the processor is configured to operate the RF at the second optimal parameter value generator, and Wherein, the processor is configured to set the impedance matching network to have a second step variable scalability factor. 如申請專利範圍第17項之以步進方式調節阻抗匹配網路的系統,其中,該處理器係配置成,當該RF產生器係在該第二最佳參數值下操作且該阻抗匹配網路係設成具有該第二步進可變可量測因子時,接收在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間的該點處所感測的一第三測得輸入電壓反射係數值,其中該處理器係建構以基於該第三測得輸入電壓反射係數值,決定一第三輸入阻抗值,其中,該處理器係配置成設定該一個以上模型以具有該第二步進可變可量測因子及該第二最佳參數值,其中,該處理器係配置成使用該一個以上模型自該第三輸入阻抗值計算一第三輸出阻抗值,其中,該處理器係配置成使用該第三輸出阻抗值及該一個以上模型,計算在該一個以上模型之該輸入處之該反射係數係在多個反射係數數值之間的最小值的一第三最佳參數值,及其中,該處理器係配置成在該第三最佳參數值下操作該RF產生器。 The system for adjusting an impedance matching network in a stepwise manner as claimed in claim 17, wherein the processor is configured such that when the RF generator is operating at the second optimum parameter value and the impedance matching network The circuit is configured to have the second step variable measurable factor to receive a third measured value sensed at the point between the output of the RF generator and the input of the impedance matching network an input voltage reflection coefficient value, wherein the processor is configured to determine a third input impedance value based on the third measured input voltage reflection coefficient value, wherein the processor is configured to set the one or more models to have the first A two-step variable measurable factor and the second optimal parameter value, wherein the processor is configured to calculate a third output impedance value from the third input impedance value using the one or more models, wherein the processing The device is configured to use the third output impedance value and the one or more models to calculate a third optimal parameter for which the reflection coefficient at the input of the one or more models is the minimum value between a plurality of reflection coefficient values value, and wherein the processor is configured to operate the RF generator at the third optimal parameter value. 如申請專利範圍第18項之以步進方式調節阻抗匹配網路的系統,其中,該第三最佳參數值係等於該計算之最佳參數值。 The system for adjusting the impedance matching network in a step-by-step manner as claimed in claim 18, wherein the third optimum parameter value is equal to the calculated optimum parameter value. 如申請專利範圍第18項之以步進方式調節阻抗匹配網路的系統,其中,該第三最佳參數值係不同於該計算之最佳參數值。 The system for adjusting an impedance matching network in a stepwise manner as claimed in claim 18, wherein the third optimum parameter value is different from the calculated optimum parameter value. 如申請專利範圍第17項之以步進方式調節阻抗匹配網路的系統,其中,該第一測得輸入電壓反射係數值係由耦接至該RF產生器之該輸出的一感測器加以感測。 The system for stepwise adjustment of an impedance matching network of claim 17, wherein the first measured input voltage reflection coefficient value is added by a sensor coupled to the output of the RF generator Sensing. 一種控制器,包含:一種處理器,建構以:當一阻抗匹配網路在一第一可變電容值下操作時,取得與一射頻(RF)產生器的一輸出相關聯的一第一輸入電壓反射係數值;基於該第一輸入電壓反射係數值,決定一第一輸入阻抗值;初始化一模型以具有該第一可變電容值;當該模型具有該第一可變電容值時,傳播該第一輸入阻抗值經過該模型以輸出一第一輸出阻抗值;使用該第一輸出阻抗值及該模型,決定使得在該模型之一輸入處之一反射係數為在多個反射係數數值之間的最小值的一最佳電容值;及控制該阻抗匹配網路以將該第一可變電容值以步進方式調節為更接近該最佳電容值;及一記憶體,連接至該處理器。 A controller comprising: a processor configured to obtain a first input associated with an output of a radio frequency (RF) generator when an impedance matching network operates at a first variable capacitance value voltage reflection coefficient value; based on the first input voltage reflection coefficient value, determine a first input impedance value; initialize a model to have the first variable capacitance value; when the model has the first variable capacitance value, propagate The first input impedance value is passed through the model to output a first output impedance value; using the first output impedance value and the model, it is determined that a reflection coefficient at an input of the model is the sum of the reflection coefficient values an optimal capacitance value with the minimum value between the two; and controlling the impedance matching network to adjust the first variable capacitance value stepwise to be closer to the optimal capacitance value; and a memory connected to the processing device. 如申請專利範圍第22項之控制器,其中該第一可變電容值為該阻抗匹配網路的一個以上可變電容器的一組合電容,其中該處理器係連接至一驅動器系統以控制該一個以上可變電容器操作於該第一可變電容值。 The controller of claim 22, wherein the first variable capacitance value is a combined capacitance of one or more variable capacitors of the impedance matching network, wherein the processor is connected to a driver system to control the one The above variable capacitor operates at the first variable capacitance value. 如申請專利範圍第22項之控制器,其中該模型係該阻抗匹配網路的一電腦模型。 The controller of claim 22, wherein the model is a computer model of the impedance matching network. 如申請專利範圍第22項之控制器,其中為了傳播該第一輸入阻抗值,該處理器係建構以計算該第一輸入阻抗值與關聯於該阻抗匹配網路的一個以上網路元件的一個以上阻抗值的定向和。 The controller of claim 22, wherein in order to propagate the first input impedance value, the processor is configured to calculate the first input impedance value and one of more than one network element associated with the impedance matching network The directional sum of the above impedance values. 如申請專利範圍第22項之控制器,其中在該模型之輸入處之該反射係數為一電壓反射係數,其中在該模型之輸入處之該電壓反射係數的最小值為數值零。 The controller of claim 22, wherein the reflection coefficient at the input to the model is a voltage reflection coefficient, wherein the minimum value of the voltage reflection coefficient at the input to the model is a value of zero.
TW106106910A 2016-03-04 2017-03-03 Systems and methods for tuning an impedance matching network in a step-wise fashion TWI750154B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/061,705 2016-03-04
US15/061,705 US10296676B2 (en) 2013-05-09 2016-03-04 Systems and methods for tuning an impedance matching network in a step-wise fashion

Publications (2)

Publication Number Publication Date
TW201742514A TW201742514A (en) 2017-12-01
TWI750154B true TWI750154B (en) 2021-12-21

Family

ID=59791740

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110143901A TWI804067B (en) 2016-03-04 2017-03-03 Systems and methods for tuning an impedance matching network in a step-wise fashion
TW106106910A TWI750154B (en) 2016-03-04 2017-03-03 Systems and methods for tuning an impedance matching network in a step-wise fashion
TW112116255A TW202333541A (en) 2016-03-04 2017-03-03 Systems and methods for tuning an impedance matching network in a step-wise fashion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110143901A TWI804067B (en) 2016-03-04 2017-03-03 Systems and methods for tuning an impedance matching network in a step-wise fashion

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW112116255A TW202333541A (en) 2016-03-04 2017-03-03 Systems and methods for tuning an impedance matching network in a step-wise fashion

Country Status (3)

Country Link
KR (1) KR102460246B1 (en)
CN (1) CN107154787B (en)
TW (3) TWI804067B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10679825B2 (en) * 2017-11-15 2020-06-09 Lam Research Corporation Systems and methods for applying frequency and match tuning in a non-overlapping manner for processing substrate
CN108668395B (en) * 2017-12-29 2022-03-04 恩智浦美国有限公司 Planar inductor for RF heating system
CN110534392B (en) * 2018-05-25 2022-04-22 北京北方华创微电子装备有限公司 Radio frequency impedance matching method and device and semiconductor processing equipment
CN110311646A (en) * 2019-06-28 2019-10-08 高斯贝尔数码科技股份有限公司 A kind of adaptive matching method and system of microwave power source and reaction chamber
CN111328175B (en) * 2020-04-14 2022-03-22 深圳市恒运昌真空技术有限公司 Impedance adjusting method, system and device of matching box and radio frequency power supply system
CN112272031A (en) * 2020-08-26 2021-01-26 华南理工大学 Antenna impedance automatic matching method and system
CN116190190B (en) * 2023-04-25 2023-07-25 季华实验室 Automatic impedance matching method, device, system, electronic equipment and storage medium
CN117538616B (en) * 2024-01-09 2024-04-23 深圳市瀚强科技股份有限公司 Impedance detection method, impedance detection circuit and impedance detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259334B1 (en) * 1998-12-22 2001-07-10 Lam Research Corporation Methods for controlling an RF matching network
US7326872B2 (en) * 2004-04-28 2008-02-05 Applied Materials, Inc. Multi-frequency dynamic dummy load and method for testing plasma reactor multi-frequency impedance match networks
TW201533797A (en) * 2013-11-05 2015-09-01 Tokyo Electron Ltd Plasma processing device
TWI523417B (en) * 2013-07-29 2016-02-21 Beijing Nmc Co Ltd RF power supply system and the use of RF power supply system impedance matching method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2554844Y2 (en) * 1992-07-15 1997-11-19 サンスター株式会社 Interdental cleaning brush
JP2000049216A (en) * 1998-07-28 2000-02-18 Mitsubishi Electric Corp Plasma processing apparatus and method of adsorption by electrostatic chucking used in apparatus thereof
US7901952B2 (en) * 2003-05-16 2011-03-08 Applied Materials, Inc. Plasma reactor control by translating desired values of M plasma parameters to values of N chamber parameters
JP5150053B2 (en) * 2006-02-03 2013-02-20 株式会社日立ハイテクノロジーズ Plasma processing equipment
US7649363B2 (en) * 2007-06-28 2010-01-19 Lam Research Corporation Method and apparatus for a voltage/current probe test arrangements
CN101437353B (en) * 2007-11-15 2012-01-11 北京北方微电子基地设备工艺研究中心有限责任公司 Matcher and matching method thereof
JP5319150B2 (en) * 2008-03-31 2013-10-16 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and computer-readable storage medium
JP2012138581A (en) * 2012-01-10 2012-07-19 Hitachi High-Technologies Corp Plasma processing apparatus and plasma processing method
CN103687267B (en) * 2012-09-17 2017-03-22 北京北方微电子基地设备工艺研究中心有限责任公司 Impedance matching device, impedance matching method and substrate processing equipment
US9082589B2 (en) * 2012-10-09 2015-07-14 Novellus Systems, Inc. Hybrid impedance matching for inductively coupled plasma system
TWI668725B (en) * 2013-10-01 2019-08-11 美商蘭姆研究公司 Control of etch rate using modeling, feedback and impedance match
CN103632927B (en) * 2013-12-19 2016-03-16 中微半导体设备(上海)有限公司 The impedance matching methods of plasma etching system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259334B1 (en) * 1998-12-22 2001-07-10 Lam Research Corporation Methods for controlling an RF matching network
US7326872B2 (en) * 2004-04-28 2008-02-05 Applied Materials, Inc. Multi-frequency dynamic dummy load and method for testing plasma reactor multi-frequency impedance match networks
TWI523417B (en) * 2013-07-29 2016-02-21 Beijing Nmc Co Ltd RF power supply system and the use of RF power supply system impedance matching method
TW201533797A (en) * 2013-11-05 2015-09-01 Tokyo Electron Ltd Plasma processing device

Also Published As

Publication number Publication date
TW202333541A (en) 2023-08-16
KR102460246B1 (en) 2022-10-27
TW201742514A (en) 2017-12-01
TW202211732A (en) 2022-03-16
TWI804067B (en) 2023-06-01
CN107154787A (en) 2017-09-12
CN107154787B (en) 2020-11-06
KR20170103660A (en) 2017-09-13

Similar Documents

Publication Publication Date Title
TWI750154B (en) Systems and methods for tuning an impedance matching network in a step-wise fashion
US10403482B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion for multiple states of an RF generator
US10911081B2 (en) Systems and methods for reducing power reflected towards a higher frequency RF generator during a period of a lower RF generator and for using a relationship to reduce reflected power
US10621265B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion
US10296676B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion
US10651013B2 (en) Systems and methods for tuning to reduce reflected power in multiple states
JP6909590B2 (en) Plasma systems, controllers and methods that use relationships to reduce the power reflected towards higher RF generators in lower frequency RF generator cycles and reduce reflected power.
US10276350B2 (en) Systems and methods for using computer-generated models to reduce reflected power towards an RF generator during state transitions of the RF generator by controlling RF values of the RF generator
WO2019245905A1 (en) Active control of radial etch uniformity
US10020168B1 (en) Systems and methods for increasing efficiency of delivered power of a megahertz radio frequency generator in the presence of a kilohertz radio frequency generator
US9837252B2 (en) Systems and methods for using one or more fixtures and efficiency to determine parameters of a match network model
US9831071B2 (en) Systems and methods for using multiple inductive and capacitive fixtures for applying a variety of plasma conditions to determine a match network model
CN112585715A (en) Direct frequency tuning for unmatched plasma sources in substrate processing systems
TWI742049B (en) Systems for tuning an rf generator and an impedance matching network in a step-wise fashion for multiple states of the rf generator
TWI751138B (en) Systems and methods for reducing reflected power during state transitions by using radio frequency values