TWI748467B - 奈米操縱器 - Google Patents

奈米操縱器 Download PDF

Info

Publication number
TWI748467B
TWI748467B TW109116805A TW109116805A TWI748467B TW I748467 B TWI748467 B TW I748467B TW 109116805 A TW109116805 A TW 109116805A TW 109116805 A TW109116805 A TW 109116805A TW I748467 B TWI748467 B TW I748467B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanofiber
vanadium dioxide
carbon
nanomanipulator
Prior art date
Application number
TW109116805A
Other languages
English (en)
Other versions
TW202140876A (zh
Inventor
王廣
馬赫
金翔
原華
魏洋
李群慶
姜開利
范守善
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Publication of TW202140876A publication Critical patent/TW202140876A/zh
Application granted granted Critical
Publication of TWI748467B publication Critical patent/TWI748467B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/002Devices comprising flexible or deformable elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/008Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for characterised by the actuating element
    • F03G7/012Electro-chemical actuators
    • F03G7/0121Electroactive polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J1/00Manipulators positioned in space by hand
    • B25J1/06Manipulators positioned in space by hand of the lazy-tongs type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/006Controlling the movement of the flexible or movable, e.g. slidable or rotatable, elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/029Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for characterised by the material or the manufacturing process, e.g. the assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本發明涉及一種奈米操縱器,包括一基體和一夾持結構,所述夾持結構包括兩個奈米纖維致動器,兩個所述奈米纖維致動器間隔設置在所述基體上,所述奈米纖維致動器包括一複合結構體及一二氧化釩層,所述複合結構體包括一奈米碳管線及一氧化鋁層,所述氧化鋁層包覆在所述奈米碳管線的表面並與所述奈米碳管線同軸設置,所述二氧化釩層包覆在所述複合結構體的表面,且所述二氧化釩層與所述複合結構體非同軸設置。

Description

奈米操縱器
本發明涉及一種奈米操縱器,尤其涉及一種基於奈米碳管的奈米操縱器。
致動器的工作原理為將其它能量轉換為機械能,實現這一轉換經常採用的途徑有三種:通過靜電場轉化為靜電力,即靜電驅動;通過電磁場轉化為磁力,即磁驅動;利用材料的熱膨脹或其它熱特性實現能量的轉換,即熱驅動。
採用上述熱驅動進行能量轉換的致動器為熱致動器。先前的熱致動器通常是以聚合物為主體的膜狀結構,通過電流使聚合物溫度升高並導致明顯的體積膨脹,從而實現致動。熱致動設備的原理決定了電極材料必須具備很好的導電性、柔性和熱穩定性。
含有奈米碳管的複合材料已被發現可用來製備電熱致動複合材料。先前技術提供一種含有奈米碳管的電熱致動複合材料,包括柔性高分子基底材料及分散在柔性高分子基底材料中的奈米碳管。含有奈米碳管的電熱致動複合材料可以導電,通電以後可發熱,發熱後,所述含有奈米碳管的電熱致動複合材料體積發生膨脹,進而實現彎曲致動。然而,該電熱致動複合材料只能朝一個方向彎曲,應用範圍較窄。
有鑑於此,確有必要提供一種能夠雙向致動且能夠快速夾持目標物的奈米操縱器。
一種奈米操縱器,包括一基體和一夾持結構,所述夾持結構包括兩個奈米纖維致動器,兩個所述奈米纖維致動器間隔設置在所述基體上,其特徵在於,所述奈米纖維致動器包括一複合結構體及一二氧化釩層,所述複合結構體包括一奈米碳管線及一氧化鋁層,所述氧化鋁層包覆在所述奈米碳管線的 表面並與所述奈米碳管線同軸設置,所述二氧化釩層包覆在所述複合結構體的表面,且所述二氧化釩層與所述複合結構體非同軸設置。
相較於先前技術,本案提供的奈米操縱器包括兩個所述奈米纖維致動器,所述奈米纖維致動器中所述二氧化釩層與所述複合結構體非同軸設置,且所述二氧化釩層與所述複合結構體之間的熱失配使所述奈米纖維致動器具有大幅度的雙向致動功能,所述奈米纖維致動器在兩個方向均具有較大的位移,形變較大,利於所述奈米操縱器夾持及轉移目標物。由於所述奈米纖維致動器的直徑為奈米級,利於夾持奈米級顆粒,同時所述奈米纖維致動器的回應速度快,利於提高夾持速度。
100,200:奈米纖維致動器
12:複合結構體
121:奈米碳管線
123:氧化鋁層
125:碳層
14:二氧化釩層
20:仿生手臂
22:仿生手掌
24:手指
30:奈米操縱器
32:基體
34:夾持結構
36:操縱臂
40:鐳射遙控開關系統
42:電源
43:電子裝置
44:第一電極
46:第二電極
48:光敏元件
S11,S12,S13:步驟編號
圖1為本發明第一實施例提供的奈米纖維致動器的結構示意圖。
圖2為本發明第一實施例提供的奈米纖維致動器在加熱和冷卻過程中彎曲變化的光學照片。
圖3為本發明第一實施例提供的非扭轉的奈米碳管線的掃描電鏡照片。
圖4為本發明第一實施例提供的扭轉的奈米碳管線的掃描電鏡照片。
圖5為本發明第一實施例提供的奈米纖維致動器在加熱和冷卻的過程中的四個致動階段的示意圖。
圖6為本發明第一實施例提供的奈米纖維致動器的位移與加熱溫度的函數關係圖。
圖7為純二氧化釩薄膜在加熱和冷卻過程中電阻和溫度的關係圖。
圖8為本發明第一實施例提供的奈米纖維致動器在加熱和冷卻過程中電阻與溫度的關係圖。
圖9為本發明第一實施例提供的奈米纖維致動器的位移與鐳射功率強度的函數關係圖。
圖10為本發明第一實施例提供的奈米纖維致動器的製備方法流程圖。
圖11為本發明第二實施例提供的仿生手臂的結構示意圖。
圖12為本發明第三實施例提供的奈米操縱器的結構示意圖。
圖13為本發明第三實施例提供的另一奈米操縱器的結構示意圖。
圖14為本發明第三實施例提供的有無被鐳射照射的奈米操縱器的狀態的光學照片。
圖15為本發明第四實施例製備的鐳射遙控開關系統的控制電路的結構示意圖。
以下將結合附圖詳細說明本發明提供的奈米纖維致動器,採用該致動器的致動系統以及其他應用。
請參見圖1,本發明第一實施例提供一種奈米纖維致動器100,其包括一複合結構體12及一二氧化釩層14。所述複合結構體12包括一奈米碳管線121及一氧化鋁層123,所述氧化鋁層123包覆在所述奈米碳管線121的表面並與所述奈米碳管線121同軸設置,所述二氧化釩層14包覆在所述複合結構體12的表面,且所述二氧化釩層14與所述複合結構體12非同軸設置。
所述複合結構體12包括所述奈米碳管線121及所述氧化鋁層123。所述複合結構體12可以僅由所述奈米碳管線121及所述氧化鋁層123組成。所述氧化鋁層123均勻地包覆在所述奈米碳管線121的表面,並與所述奈米碳管線121同軸設置。所述奈米碳管線121的長度為10微米至3厘米。所述奈米碳管線121的直徑為0.5奈米至100奈米。優選地,所述奈米碳管線121的直徑為0.5奈米至10奈米。所述氧化鋁層123的厚度為5奈米至100奈米。本實施例中,所述氧化鋁層123的厚度為10奈米。
所述奈米碳管線121為一自支撐結構。所述自支撐結構是指為所述奈米碳管線121不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身線狀狀態,即將所述奈米碳管線121置於(或固定於)間隔一定距離設置的兩個支撐體上時,位於兩個支撐體之間的所述奈米碳管線121能夠懸空保持自身線狀狀態。
所述奈米碳管線121包括至少一奈米碳管。所述奈米碳管線121可以為一單根奈米碳管。所述奈米碳管線121也可以包括複數個奈米碳管。當所述奈米碳管線121為單根奈米碳管時,所述單根奈米碳管可以為一超長奈米碳管。所述超長奈米碳管的長度大於1厘米。可以理解,可以裁減所述超長奈米碳管獲得 所需的長度的所述奈米碳管線121。所述超長奈米碳管的製備方法可以參見范守善等人於2008年2月1日申請的,於2009年8月5日公開的第CN101497436A號大陸公開專利申請。為節省篇幅,僅引用於此,但所述申請所有技術揭露也應視為本發明申請技術揭露的一部分。本實施例中,所述奈米碳管線121為單根奈米碳管,其長度為50微米,直徑為2.11奈米。
當所述奈米碳管線121包括複數個奈米碳管時,所述奈米碳管線121可以為非扭轉的奈米碳管線或者為扭轉的奈米碳管線。
請參見圖3,當所述奈米碳管線121為非扭轉的奈米碳管線時,所述非扭轉的奈米碳管線包括複數個相互平行的複數個奈米碳管,所述複數個奈米碳管可以通過凡得瓦爾力首尾相連,且沿所述奈米碳管線121軸向延伸排列。所述奈米碳管線121可通過將奈米碳管拉膜通過有機溶劑處理得到。所謂奈米碳管拉膜即為從奈米碳管陣列中直接拉取獲得的一種具有自支撐性的奈米碳管膜。具體地,該奈米碳管拉膜包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦爾力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦爾力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。具體地,可將有機溶劑浸潤所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管拉膜中的相互平行的複數個奈米碳管通過凡得瓦爾力緊密結合,從而使奈米碳管拉膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿。通過有機溶劑處理的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,粘性降低。所述奈米碳管拉膜的結構及其製備方法請參見范守善等人於2007年2月9申請的,2010年5月26日公告的,公告號為CN101239712B的中國發明專利申請公開說明書。所述非扭轉的奈米碳管線及其製備方法請參見范守善等人於2002年9月16日申請的,於2008年8月20日公告的第CN100411979C號中國公告專利“一種奈米碳管繩及其製造方法”。為節省篇幅,僅引用於此,但所述申請所有技術揭露也應視為本發明申請技術揭露的一部分。
請參閱圖4,當所述奈米碳管線121為扭轉的奈米碳管線時,所述扭轉的奈米碳管線包括複數個螺旋排列的奈米碳管,所述複數個奈米碳管可以通過凡得瓦爾力首尾相連,且沿所述奈米碳管線121軸向螺旋延伸排列。所述扭轉 的奈米碳管線為採用一機械力將上述奈米碳管拉膜沿奈米碳管延伸方向的兩端依照相反方向扭轉獲得。具體地,該扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦爾力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦爾力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦爾力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。所述非扭轉的奈米碳管線及其製備方法請參見范守善等人於2005年12月16日申請的,於2009年6月17日公告的第CN100500556C號中國公告專利“奈米碳管絲及其製作方法”。為節省篇幅,僅引用於此,但所述申請所有技術揭露也應視為本發明申請技術揭露的一部分。
進一步,所述複合結構體12可以進一步包括一碳層125。所述複合結構體12可以僅由所述奈米碳管線121、所述碳層125及所述氧化鋁層123構成。所述碳層125設置在所述奈米碳管線121及所述氧化鋁層123之間,並且與所述奈米碳管線121及所述氧化鋁層123接觸設置。所述碳層125與所述奈米碳管線121及所述氧化鋁層123同軸設置。所述碳層均勻地包覆在奈米碳管線121的表面。所述該碳層125為一非晶碳層。所述碳層125的厚度為0.1奈米至10奈米。本實施例中,所述碳層125的厚度為0.92奈米。
所述二氧化釩層14包覆在所述複合結構體12表面,即所述二氧化釩層14包覆在所述氧化鋁層123的表面。所述奈米纖維致動器100可以僅由所述複合結構體12及所述二氧化釩層14組成。所述二氧化釩層14與所述複合結構體12非同軸設置。具體地,請參見圖1,在奈米纖維致動器100的垂直於軸向方向的橫截面上,包覆在所述複合結構體12表面的二氧化釩層14厚度不同,即,所述複合結構體12偏離所述奈米纖維致動器100的軸心設置。可以理解,單獨的二氧化釩層14為一空心結構,其壁厚(包覆在所述複合結構體12表面的二氧化釩層14厚度)並非均一。所述二氧化釩層14厚度的厚度可以根據實際需要選擇,所述二氧化釩層14的厚度最大值與最小值的比例約為9:1至7:1。優選地,所述二氧化釩層14的厚度最大值與最小值的比例約為8:1。本實施例中,所述二氧化釩層14厚度的最大值為72奈米,與所述二氧化釩層14厚度的最小值為9奈米。以所述 奈米纖維致動器100的軸心為基準,定義所述二氧化釩層14厚度大的一側為第一側,定義所述二氧化釩層14厚度小的一側為第二側。
所述二氧化釩層14的材料可以是純的二氧化釩,也可以為摻雜的二氧化釩。通過摻雜可以改變所述二氧化釩層14的相變溫度。所述摻雜的元素可以為鎢、鉬、鋁、磷、鈮、鉈、氟等,摻雜的重量比例可以為0.5%~5%。其中,摻雜鎢、鉬等大尺寸原子可以有效降低所述二氧化釩層14的相變溫度。而摻雜鋁、磷等小尺寸原子可以有效升高所述二氧化釩層14的相變溫度。
由圖4及圖5所示,所述奈米纖維致動器100具有雙向致動的特性。圖2中,所述奈米纖維致動器100的一端固定一鎢針尖上,所述奈米纖維致動器100通過其自身和鎢針尖的吸引力固定在一起。採用鐳射照射所述奈米纖維致動器100。由圖2所示,在加熱和冷卻過程中,所述奈米纖維致動器100朝兩個相對的方向彎曲。因此,所述奈米纖維致動器100具有雙向致動的特性。以所述奈米纖維致動器100的軸心為基準,定義所述奈米纖維致動器100朝向所述第一側彎曲時的致動行為為正向致動,定義所述奈米纖維致動器100朝向所述第二側彎曲時的致動行為為負向致動。由圖3所示,所述奈米纖維致動器100在加熱和冷卻的過程中具有四個致動階段。在加熱所述奈米纖維致動器100的過程中,所述奈米纖維致動器100的致動過程包括第一致動階段及第二致動階段。在冷卻所述奈米纖維致動器100的過程中,所述奈米纖維致動器100的致動過程包括第三致動階段及第四致動階段。所述奈米纖維致動器100的致動過程中,所述第一致動階段及第四致動階段為負向致動,第二致動階段與第三致動階為正向致動。
所述二氧化釩層14的相變溫度為65℃。當所述二氧化釩層14在低於相變溫度時,例如常溫下,具有絕緣相,表現為絕緣體。當所述二氧化釩層14被加熱至相變溫度後,其突然發生相變,從絕緣相轉變為金屬相,而且,在沿著金屬相的c軸方向引起體積收縮。因此,當所述奈米纖維致動器100的溫度大於等於所述二氧化釩層14的相變溫度時,所述奈米纖維致動器100的所述第一側發生彎曲。當所述奈米纖維致動器100的溫度小於所述二氧化釩層14的相變溫度時,所述奈米纖維致動器100的所述第二側發生彎曲。所述二氧化釩層14的相變體積收縮主導著所述奈米纖維致動器100具在第二致動階段的正向致動和第四致動階段的負向致動。另外,參見表1,由於二氧化釩具有比氧化鋁和奈米碳管大的熱膨脹係數,因此,所述奈米纖維致動器100在第一致動階段為負向致動, 在第三致動階段為正向致動。具體地,在所述第一致動階段,由於二氧化釩的熱膨脹係數大於氧化鋁和奈米碳管的熱膨脹係數,加熱後的所述奈米纖維致動器100的所述第一側的體積變化大於所述第二側的體積,因此,所述奈米纖維致動器100的所述第二側發生彎曲。在冷卻所述奈米纖維致動器100的所述第三致動階段,所述奈米纖維致動器100的熱膨脹係數依舊維持第二致動階段的熱膨脹係數,因此,所述奈米纖維致動器100的所述第二側仍然繼續彎曲,即所述奈米纖維致動器100的致動行為仍保持正向致動。
Figure 109116805-A0305-02-0009-1
圖6為奈米纖維致動器100的位移與加熱溫度的函數關係圖。採用加熱板給所述奈米纖維致動器100加熱。所述加熱板的材料為Pi加熱帶和銅塊。由圖6可見,所述奈米纖維致動器100在加熱和降溫的過程中發生雙向致動且具有較大的位移。因此,所述奈米纖維致動器100具有較大的形變。
圖7為純二氧化釩薄膜在加熱和冷卻過程中電阻和溫度的關係圖。圖8為奈米纖維致動器100在加熱和冷卻過程中電阻和溫度的關係圖。圖7中,將所述純二氧化釩薄膜設置在石英基板上,圖8中將奈米纖維致動器100設置在具有到氧化矽塗層的矽基板上,在相同的參數下對所述純二氧化釩薄膜和所述奈米纖維致動器100進行檢測。由圖7可見,在加熱和冷卻純二氧化釩薄膜的過程中,純二氧化釩薄膜的電阻急劇降低了約3個數量級。由圖8可見,在加熱和冷卻所述奈米纖維致動器100的過程中,所述奈米纖維致動器100的電阻在整個MIT區域變化約200倍。由此可見,所述奈米纖維致動器100的電阻變化率低於純二氧化釩薄膜。
圖9為奈米纖維致動器100的位移與鐳射功率強度的函數關係圖。其中,採用波長為808奈米的鐳射照射長度為50微米奈米纖維致動器100,奈米纖維致動器100吸收鐳射的熱量後發生雙向致動。由圖9可見,在加熱過程中, 奈米纖維致動器100在300mW和460mW的功率強度下分別實現了約37μm最大負位移和約45μm的最大正位移。
本實施例的所述奈米纖維致動器100中所述二氧化釩層14與所述複合結構體12非同軸設置,且所述二氧化釩層14與所述複合結構體12之間的熱失配使所述奈米纖維致動器100具有大幅度的雙向致動功能,所述奈米纖維致動器100在兩個方向均具有較大的位移,形變較大。由於所述奈米纖維致動器100的直徑為奈米級,因此,所述奈米纖維致動器100回應速度快,且同時減小了所述奈米纖維致動器100的品質,有利於擴大所述奈米纖維致動器100的應用範圍。
參見圖10,本發明第一實施例進一步提供一種奈米纖維致動器100的製備方法,該方法包括以下步驟:步驟S11,提供一奈米碳管線及一基底,將所述奈米碳管線121設置在基底上使所述奈米碳管線至少部分懸空;步驟S12,包覆一氧化鋁層於所述奈米碳管線的表面形成一複合結構體;步驟S13,包覆一二氧化釩層於所述複合結構體的表面。
在所述步驟S11中,通過物理氣相沉積法或化學氣相沉積法在所述基底上生長所述奈米碳管線121。所述奈米碳管線121包括至少一奈米碳管。所述基底的材料可以為矽、氧化矽、氮化矽及其組合。所述基底可以包括複數個空隙。該複數個空隙可以通過光刻形成。當所述奈米碳管線121設置在所述基底上時,對應所述空隙的所述奈米碳管線121懸空設置。本實施例中,所述奈米碳管線121為化學氣相沉積法生長的單根奈米碳管,所述基底的材料為Si-SiO2-Si3N4,所述基底具有七個長條狀空隙,其寬度為350微米。
本實施例中,在步驟S11中,在Si-SiO2-Si3N4基底上設置Fe催化劑膜進行化學氣相沉積來生長奈米碳管。具體地,將設置有催化劑的所述基底轉移到石英管中,通入452sccm的保護氣體氬氣加熱至970℃,通入流量為216sccm的氫氣,流量為0.8sccm的乙烯氣體,流量為0.3sccm的二氧化碳氣體生長奈米碳管,生長奈米碳管的時間為14分鐘。然後將溫度降至600℃,將氬氣氣氛增加到1000sccm,停止通入乙烯和二氧化碳,並保持10分鐘。最後,自然冷卻至環境溫度獲得奈米碳管。該奈米碳管為一超長奈米碳管,長度為大於1厘米。
在所述步驟S12中,通過原子沉積法在所述奈米碳管線121的表面的沉積所述氧化鋁層123。具體地,通過原子沉積法使所述氧化鋁層123均勻地 包覆在所述奈米碳管線121懸空部分的外表面形成所述複合結構體12。本實施例中,採用三甲基鋁(TMA)作為金屬前體,H2O和氮氣(N2)用作氧氣源和載氣。將設置有所述奈米碳管線121的基底轉移到ALD系統(NorthStarTM,SVTA,美國)的腔室中,在120℃下沉積所述氧化鋁層123,N2的流速為5sccm。所述氧化鋁層123的厚度為10奈米。
所述步驟S13中,在所述複合結構體12的表面包覆所述二氧化釩層14的方法包括:S131,在所述氧化鋁層123的表面沉積一層氧化釩層;以及S132,在含氧氣氛中退火使所述氧化釩層轉變為二氧化釩層14。
在所述步驟S131中,所述沉積氧化釩層的方法不限,可以為化學氣相沉積、磁控濺射等。在所述步驟S132中,含氧氣氛可以為空氣中或氧氣中。
本實施例中,所述步驟S131中,通過直流磁控濺射的方法在所述氧化鋁層123的表面沉積一層氧化釩層。所述直流磁控濺射採用高純釩金屬靶,濺射功率為60W,濺射溫度為室溫,工作氣體為49.7sccm的氬氣和0.3sccm的氧氣的混合氣體,濺射時間為25分鐘。所述氧化釩層的成分為VOx。所述步驟S132中,在低壓氧氣(4sccm)環境中對氧化釩層進行退火處理,所述退火溫度為450℃,時間為10分鐘。
可選擇地,在所述步驟S11和步驟S12之間,可以包括一在所述奈米碳管線121的表面形成所述碳層125的步驟。具體地,通過直流磁控濺射的方法在所述奈米碳管線121的表面沉積所述碳層125。本實施例中,通過直流磁控濺射的方法將非晶碳沉積在所述奈米碳管線121的表面。濺射功率為72W,濺射溫度為室溫,工作氣體為25sccm的氬氣,工作壓強為0.3pa,濺射時間為10秒。所述碳層125的厚度為0.92奈米。
本實施例提供的奈米纖維致動器100的製備方法操作簡單,利於批量生產。在步驟S12中,通過原子沉積法在懸空的所述奈米碳管線121的表面形成所述氧化鋁層123,所述氧化鋁層123均勻地包覆在所述奈米碳管線121懸空部分的表面,且形成的所述氧化鋁層123與所述奈米碳管線121同軸設置。在步驟S13中,過直流磁控濺射的方法在所述氧化鋁層123的表面沉積一層氧化釩,然後經過退火形成所述二氧化釩層14。所述二氧化釩層14包覆在所述複合結構12的表面,且所述二氧化釩層14與所述複合結構12非同軸設置。
請參見圖11,本發明第二實施例提供一種的仿生手臂20,其包括一仿生手掌22和至少一個手指24。所述至少一個手指24為一奈米纖維致動器200。所述奈米纖維致動器200與所述奈米纖維致動器100的結構一樣,區別點在所述奈米纖維致動器200的直徑大於所述奈米纖維致動器100的直徑。所述奈米纖維致動器200的直徑為0.5厘米至3厘米。
所述奈米纖維致動器200包括一複合結構體12及一二氧化釩層14。所述複合結構體12包括一奈米碳管線121及一氧化鋁層123,所述氧化鋁層123包覆在所述奈米碳管線121的表面並與所述奈米碳管線121同軸設置,所述二氧化釩層14包覆在所述複合結構體12的表面,且所述二氧化釩層14與所述複合結構體12非同軸設置。在所述奈米纖維致動器200中,所述二氧化釩層14厚度的厚度可以根據實際需要選擇,所述二氧化釩層14的厚度最大值與最小值的比例約為9:1至7:1。優選地,所述二氧化釩層14的厚度最大值與最小值的比例約為8:1。所述複合結構體12的直徑與所述奈米纖維致動器200直徑的百分比為10%-30%。本實施例中,所述二氧化釩層14的厚度最大值與最小值的比例約為8:1,所述複合結構體12的直徑與所述奈米纖維致動器200直徑的百分比為20%。
所述奈米纖維致動器200固定在所述仿生手掌22的方式不限,例如,可通過粘貼或焊接的方式將所述奈米纖維致動器200固定在所述仿生手掌22上。所述仿生手掌22的材料和形狀不限可以根據實際需要選擇。所述仿生手掌22的材料可以為導電材料或者絕緣材料。所述導電材料可以為銀、銅、金、鋁、鎢、鎳、鐵等金屬或任意兩種的合金。所述絕緣材料為陶瓷、玻璃或橡膠。當所述仿生手掌22為導電材料時,通過給所述仿生手掌22通電可以使所述奈米碳管線121通電進而加熱所述奈米纖維致動器200使所述奈米纖維致動器200產生致動行為。當所述仿生手掌22為絕緣材料時,可以通過鐳射照射加熱所述奈米纖維致動器200使所述奈米纖維致動器200產生致動行為。所述鐳射可以是各種顏色的鐳射,也可以是被調製的雷射光束,也可以是無調製的雷射光束,只要能達到一定強度使所述奈米纖維致動器200彎曲致動即可。
本實施例中,所述仿生手臂20包括四個間隔設置的所述手指24,所述仿生手掌22的材料為鋁,通過銀漿將所述奈米纖維致動器200固定在所述仿生手掌22上。
所述採用鐳射照射所述手指24或者給所述手指24通電時時,所述手指24中由於所述二氧化釩層與所述複合結構體非同軸設置,且所述二氧化釩層與所述複合結構體之間的熱失配使所述手指24具有大幅度的雙向致動功能,形變較大且回應速度快。因此,所述手指24可以快速彎曲實現點觸及抓握功能。
請參見圖12,本發明第三實施例提供一種採用上述奈米纖維致動器100的奈米操縱器30,其包括:一基體32和一夾持結構34,所述夾持結構34包括兩個所述奈米纖維致動器100。兩個所述奈米纖維致動器100間隔設置在所述基體32上。所述奈米纖維致動器100,其包括所述複合結構體12及所述二氧化釩層14。所述複合結構體12包括一奈米碳管線121及一氧化鋁層123,所述氧化鋁層123包覆在所述奈米碳管線121的表面並與所述奈米碳管線121同軸設置,所述二氧化釩層14包覆在所述複合結構體12的表面,且所述二氧化釩層14與所述複合結構體12非同軸設置。以所述奈米纖維致動器100的軸心為基準,定義所述二氧化釩層14厚度大的一側為第一側,定義所述二氧化釩層14厚度小的一側為第二側。兩個所述奈米纖維致動器100的兩個所述第一側相鄰設置,或者兩個所述奈米纖維致動器100的兩個所述第二側相鄰設置。
所述基體32用於承載所述奈米纖維致動器100。所述奈米纖維致動器100固定在所述基體32的方式不限,例如,可通過粘貼、焊接或二者之間的吸引力將所述奈米纖維致動器100固定在所述基體32上。所述基體32的材料不限可以根據實際需要選擇。所述基體32的材料可以為導電材料或者絕緣材料。所述導電材料可以為銀、銅、金、鋁、鎢、鎳、鐵等金屬或任意兩種的合金。所述絕緣材料為陶瓷、玻璃或橡膠。當所述基體32為導電材料時,通過給所述基體32通電可以使所述奈米碳管線121通電進而加熱所述奈米纖維致動器100使所述奈米纖維致動器100產生致動行為。當所述基體32為絕緣材料時,可以通過鐳射照射加熱所述奈米纖維致動器100使所述奈米纖維致動器100產生致動行為。本實施例中,所述基體32為一鎢針,所述奈米纖維致動器100和鎢針通過二者之間的吸引力使所述奈米纖維致動器100固定在鎢針尖上。
所述基體32的形狀不限,可以根據實際需要進行選擇。如圖12所示,所述基體32可以為一個整體結構,兩個所述奈米纖維致動器13間隔設置在所述基體32的一端。請參照圖13,所述基體32可以包括兩個操縱臂36,兩個所述操縱臂36間隔設置,兩個所述奈米纖維致動器100分別設置在兩個所述操縱臂 36的端部。兩個所述操縱臂36之間的距離可以根據實際需要設計。本實施例中,兩個所述奈米纖維致動器100間隔設置在一鎢針尖的端部。
兩個所述奈米纖維致動器100的兩個所述第一側相鄰設置,或者兩個所述奈米纖維致動器100的兩個所述第二側相鄰設置。當兩個所述奈米纖維致動器100的兩個所述第一側相鄰設置時,兩個所述奈米纖維致動器100之間的距離會隨著溫度的升高先變大然後變小。當兩個所述奈米纖維致動器100的兩個所述第二側相鄰設置時,兩個所述奈米纖維致動器100之間的距離會隨著溫度的升高先變小然後變大。兩個所述奈米纖維致動器100之間的距離變小時可實現夾持及轉移目標物的功能。本實施例中,兩個所述奈米纖維致動器100的兩個所述第一側相鄰設置。
圖14為採用鐳射照射本實施例的奈米操縱器30,奈米操縱器30的形態變化過程圖。在圖14中,兩個所述奈米纖維致動器100的兩個所述第一側相鄰設置。如圖14所示,圖14A為所述奈米操縱器30的初始形態,圖14B為開始採用鐳射照射所述奈米操縱器30時所述奈米操縱器30的形態。圖14C為繼續採用鐳射照射所述奈米操縱器30時所述奈米操縱器30的形態。圖14D為停止鐳射照射所述奈米操縱器30後所述奈米操縱器30的形態。由圖14B可見,剛採用鐳射照射所述奈米操縱器30時,所述奈米纖維致動器100的溫度還沒有達到所述二氧化釩層14的相變溫度,此時,所述奈米纖維致動器100朝向所述第二側彎曲。因此,兩個所述奈米纖維致動器100之間的距離變大。由圖14C可見,繼續採用鐳射照射所述奈米操縱器30時,所述奈米纖維致動器100的溫度繼續升高,所述奈米纖維致動器100的溫度達到並超過所述二氧化釩層14的相變溫度,此時,所述奈米纖維致動器100朝向所述第一側彎曲。因此,兩個所述奈米纖維致動器100之間的距離變小並相互接觸。由圖14D可見,停止鐳射照射所述奈米操縱器30後,隨著溫度的下降,所述奈米操縱器30恢復到初始形態。
本實施例提供的所述奈米操縱器30包括兩個所述奈米纖維致動器100,所述奈米纖維致動器100中所述二氧化釩層14與所述複合結構體12非同軸設置,且所述二氧化釩層14與所述複合結構體12之間的熱失配使所述奈米纖維致動器100具有大幅度的雙向致動功能,所述奈米纖維致動器100在兩個方向均具有較大的位移,形變較大,利於所述奈米操縱器30夾持及轉移目標物。由於 所述奈米纖維致動器100的直徑為奈米級,利於夾持奈米級顆粒,同時所述奈米纖維致動器100的回應速度快,利於提高夾持速度。
請參見圖15,本發明第四實施例提供一種採用上述奈米纖維致動器100的一種鐳射遙控開關系統。所述鐳射遙控開關系統包括一鐳射源和一控制電路40。所述控制電路40包括一電源42、一電子裝置43、一第一電極44、一第二電極46、以及一光敏元件48。所述電源42、所述電子裝置43、所述第一電極44、所述光敏元件48以及所述第二電極46依次電連接形成一回路。所述光敏元件48包括兩個所述奈米纖維致動器100。所述奈米纖維致動器100,其包括所述複合結構體12及所述二氧化釩層14。所述複合結構體12包括一奈米碳管線121及一氧化鋁層123,所述氧化鋁層123包覆在所述奈米碳管線121的表面並與所述奈米碳管線121同軸設置,所述二氧化釩層14包覆在所述複合結構體12的表面,且所述二氧化釩層14與所述複合結構體12非同軸設置。所述鐳射源用於照射所述光敏元件48,所述光敏元件48中的所述奈米纖維致動器100隨著溫度的變化彎曲致動,使所述回路斷開或閉合,即實現所述控制電路40的斷開和導通。
兩個所述奈米纖維致動器100可以分別設置在所述第一電極44及所述第二電極46上。兩個所述奈米纖維致動器100可以通過粘貼或者焊接的方式設置在所述第一電極44及所述第二電極46上。具體地,採用導電材料將兩個所述奈米纖維致動器100分別固定在所述第一電極44及所述第二電極46上。兩個所述奈米纖維致動器100分別設置在所述第一電極44及所述第二電極46的端部。兩個所述奈米纖維致動器100的之間的距離及設置在所述第一電極44及所述第二電極46端部上的位置可以根據實際需要進行設計,只要能實現兩個所述奈米纖維致動器100在彎曲時能夠接觸即可。具體地,所述第一電極44具有相對的第一端部和第二端部,所述第二電極46具有相對的第三端部和第四端部。所述第二端部和第四端部相鄰且間隔設置,兩個所述奈米纖維致動器100分別設置在所述第二端部和第四端部上。優選地,所述第二端部和第四端部平行且間隔設置。本實施例中,所述第一電極44及所述第二電極46平行且間隔設置,兩個所述奈米纖維致動器100通過銀漿分別固定在所述第一電極44的第二端部及所述第二電極46的第四端部,且兩個所述奈米纖維致動器100也平行間隔設置。以所述奈米纖維致動器100的軸心為基準,定義所述二氧化釩層14厚度大的一側為第一側,定義所述二氧化釩層14厚度小的一側為第二側。兩個所述奈米纖維致動器100的 兩個所述第一側相鄰設置,或者兩個所述奈米纖維致動器100的兩個所述第二側相鄰設置。本實施例中,兩個所述奈米纖維致動器100的兩個所述第一側相鄰設置。
所述鐳射遙控開關系統由所述鐳射源發出的鐳射照射所述光敏元件48實現控制電路40的導通,使電流流經所述電子裝置43使所述電子裝置43工作。所述鐳射源為一鐳射發射裝置。鐳射可以是各種顏色的鐳射,也可以是被調製的雷射光束,也可以是無調製的雷射光束,只要能達到一定強度使所述光敏元件48中的所述奈米纖維致動器100彎曲致動進而使所述控制電路導通即可。具體地,本實施例中,採用鐳射照射所述光敏元件48,當所述奈米纖維致動器100的溫度還沒有達到所述二氧化釩層14的相變溫度,所述奈米纖維致動器100朝向所述第二側彎曲。此時,兩個所述奈米纖維致動器100之間的距離變大。繼續採用鐳射照射所述光敏元件48,所述奈米纖維致動器100的溫度繼續升高,當所述奈米纖維致動器100的溫度達到並超過所述二氧化釩層14的相變溫度,所述奈米纖維致動器100朝向所述第一側彎曲。此時,兩個所述奈米纖維致動器100之間的距離慢慢變小最終相互接觸使所述控制電路40導通,使電流流過所述電子裝置43並啟動所述電子裝置43。
所述電子裝置43為所述鐳射遙控開關系統遙控的目標物。所述電子裝置43可以為家用電器,例如燈具、空調、電視等,但不限於上述種類。
本實施例的鐳射遙控開關系統的中,所述光敏元件48包括兩個所述奈米纖維致動器100,所述奈米纖維致動器100中所述二氧化釩層14與所述複合結構體12非同軸設置,且所述二氧化釩層14與所述複合結構體12之間的熱失配使所述奈米纖維致動器100具有大幅度的雙向致動功能。採用鐳射照射所述光敏元件48使兩個所述奈米纖維致動器100彎曲接觸可直接實現所述控制電路40閉合,實現遙控所述電子裝置43的目的。鐳射源發射的雷射光束直接作為控制信號,所述光敏元件48接收的信號不需要解調、放大電路,使控制電路變得簡單,成本較低,可靠性大大提高,抗干擾性強。而且,所述奈米纖維致動器100的直徑為奈米級,具有較快的回應速率,從而提高了鐳射遙控開關系統40的靈敏度。
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專 利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。
100:奈米纖維致動器
30:奈米操縱器
32:基體
34:夾持結構

Claims (10)

  1. 一種奈米操縱器,包括一基體和一夾持結構,所述夾持結構包括兩個奈米纖維致動器,兩個所述奈米纖維致動器間隔設置在所述基體上,其特徵在於,所述奈米纖維致動器包括一複合結構體及一二氧化釩層,所述複合結構體包括一奈米碳管線及一氧化鋁層,所述氧化鋁層包覆在所述奈米碳管線的表面並與所述奈米碳管線同軸設置,所述二氧化釩層包覆在所述複合結構體的表面,且所述二氧化釩層與所述複合結構體非同軸設置。
  2. 如請求項1所述之奈米操縱器,其中,所述二氧化釩層厚度的最大值與最小值的比例為9:1至7:1。
  3. 如請求項1所述之奈米操縱器,其中,所述奈米碳管線的長度為10微米至3厘米。
  4. 如請求項1所述之奈米操縱器,其中,所述奈米碳管線的直徑為0.5奈米至100奈米。
  5. 如請求項1所述之奈米操縱器,其特徵在於,所述奈米碳管線為一非扭轉的奈米碳管線,所述非扭轉的奈米碳管線包括複數個相互平行的奈米碳管,所述複數個奈米碳管通過凡得瓦爾力首尾相連,且沿所述奈米碳管線軸向延伸排列。
  6. 如權利要求1所述的奈米操縱器,其中,所述奈米碳管線為一扭轉的奈米碳管線,所述扭轉的奈米碳管線包括複數個螺旋排列的奈米碳管,所述複數個奈米碳管通過凡得瓦爾力首尾相連,且沿所述奈米碳管線軸向螺旋延伸排列。
  7. 如請求項1所述之奈米操縱器,其中,所述複合結構體進一步包括一碳層,所述碳層設置在所述奈米碳管線及所述氧化鋁層之間,並且與所述奈米碳管線及所述氧化鋁層接觸設置,所述碳層與所述奈米碳管線及所述氧化鋁層同軸設置。
  8. 如請求項7所述之奈米操縱器,其中,所述碳層的厚度為0.1奈米至10奈米。
  9. 如請求項1所述之奈米操縱器,其中,所述二氧化釩層為摻雜的二氧化釩層,摻雜的元素為鎢、鉬、鋁、磷、鈮、鉈、或氟。
  10. 如請求項1所述之奈米操縱器,其中,所述氧化鋁層的厚度為5奈米至100奈米。
TW109116805A 2020-04-28 2020-05-20 奈米操縱器 TWI748467B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010348553.1 2020-04-28
CN202010348553.1A CN113562690B (zh) 2020-04-28 2020-04-28 纳米操纵器

Publications (2)

Publication Number Publication Date
TW202140876A TW202140876A (zh) 2021-11-01
TWI748467B true TWI748467B (zh) 2021-12-01

Family

ID=78157924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116805A TWI748467B (zh) 2020-04-28 2020-05-20 奈米操縱器

Country Status (3)

Country Link
US (1) US11190114B2 (zh)
CN (1) CN113562690B (zh)
TW (1) TWI748467B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501790A (zh) * 2006-06-06 2009-08-05 康乃尔研究基金会有限公司 含有内部空隙的纳米结构金属氧化物及其使用方法
CN102026918A (zh) * 2008-05-16 2011-04-20 住友电气工业株式会社 碳线、由碳膜形成的纳米结构以及它们的制备方法
CN105073408A (zh) * 2013-03-12 2015-11-18 Hrl实验室有限责任公司 具有高刚度和阻尼的约束微层多孔材料
WO2019171402A1 (en) * 2018-03-09 2019-09-12 Indian Institute Of Science Superconducting block, superconducting nanocrystal, superconducting device and a process thereof
US20200043674A1 (en) * 2017-02-17 2020-02-06 Aict High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723412B1 (ko) * 2005-11-10 2007-05-30 삼성전자주식회사 나노튜브를 이용하는 비휘발성 메모리 소자
KR100889752B1 (ko) * 2006-12-05 2009-03-24 한국전자통신연구원 이종 접합막 및 그의 제조 방법
KR100848813B1 (ko) * 2007-04-27 2008-07-28 포항공과대학교 산학협력단 탄소나노튜브의 압전효과에 의한 변형을 이용한 트랜지스터및 비휘발성 메모리
KR20100097146A (ko) 2007-11-15 2010-09-02 이 아이 듀폰 디 네모아 앤드 캄파니 탄소 나노튜브의 보호
KR100997843B1 (ko) * 2008-08-29 2010-12-01 주식회사 솔켐 전기방사법에 의해 제조된 고분자 전해질을 포함한 염료감응형 태양전지 소자 및 이의 제조방법
CN102201532B (zh) * 2010-03-26 2014-04-23 清华大学 电致动材料及电致动元件
TWI419834B (zh) * 2011-01-10 2013-12-21 Nat Univ Kaohsiung 以內嵌式感應磁場電路做為奈米碳管開關的半導體裝置及其製造方法
JP5831926B2 (ja) * 2011-07-06 2015-12-09 アルプス電気株式会社 高分子アクチュエータ素子及びその製造方法
JP5586553B2 (ja) * 2011-09-22 2014-09-10 株式会社東芝 活物質及びその製造方法、非水電解質電池及び電池パック
CN104952989B (zh) 2014-03-26 2018-02-27 清华大学 外延结构
CN105336841B (zh) * 2014-07-23 2018-08-17 清华大学 电热致动器
CN107934904B (zh) 2016-10-12 2019-07-12 清华大学 一种基于碳纳米管的致动器以及致动系统
CN107932475B (zh) 2016-10-12 2019-07-12 清华大学 一种仿生手臂及采用该仿生手臂的机器人
CN108839009B (zh) 2018-07-18 2020-12-01 北京工业大学 光致纳米机械手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501790A (zh) * 2006-06-06 2009-08-05 康乃尔研究基金会有限公司 含有内部空隙的纳米结构金属氧化物及其使用方法
CN102026918A (zh) * 2008-05-16 2011-04-20 住友电气工业株式会社 碳线、由碳膜形成的纳米结构以及它们的制备方法
CN105073408A (zh) * 2013-03-12 2015-11-18 Hrl实验室有限责任公司 具有高刚度和阻尼的约束微层多孔材料
US20200043674A1 (en) * 2017-02-17 2020-02-06 Aict High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof
WO2019171402A1 (en) * 2018-03-09 2019-09-12 Indian Institute Of Science Superconducting block, superconducting nanocrystal, superconducting device and a process thereof

Also Published As

Publication number Publication date
TW202140876A (zh) 2021-11-01
CN113562690A (zh) 2021-10-29
CN113562690B (zh) 2022-05-31
US11190114B2 (en) 2021-11-30
US20210336563A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
TWI485099B (zh) 奈米碳管結構及其製備方法
EP2043406B1 (en) Plane heat source
TWI462873B (zh) 奈米碳管結構的製備方法
US10431408B2 (en) Temperature sensitive system
US10661448B2 (en) Biomimetic limb and robot using the same
US10259703B2 (en) Method for making an actuator based on carbon nanotubes
US10641252B2 (en) Actuator based on carbon nanotubes and actuating system using the same
US20040109815A1 (en) Carbon nanotube array and method for making same
TWI748467B (zh) 奈米操縱器
TWI736274B (zh) 仿生手臂
TWI734487B (zh) 奈米纖維致動器及其製備方法
TWI741611B (zh) 鐳射遙控開關系統
TWI581664B (zh) 場發射裝置
US10807713B2 (en) Biomimetic insect
TWI425553B (zh) 奈米碳管線尖端之製備方法及場發射結構之製備方法
CN113913779A (zh) 高红外元件及其制备方法和应用
TWI388013B (zh) 薄膜電晶體的製備方法
CN111524787A (zh) 一种纳米冷阴极平板紫外光源器件及制备方法