TWI748327B - 氣體偵測模組 - Google Patents

氣體偵測模組 Download PDF

Info

Publication number
TWI748327B
TWI748327B TW109101601A TW109101601A TWI748327B TW I748327 B TWI748327 B TW I748327B TW 109101601 A TW109101601 A TW 109101601A TW 109101601 A TW109101601 A TW 109101601A TW I748327 B TWI748327 B TW I748327B
Authority
TW
Taiwan
Prior art keywords
gas
detection module
air
gas detection
piezoelectric
Prior art date
Application number
TW109101601A
Other languages
English (en)
Other versions
TW202113324A (zh
Inventor
莫皓然
韓永隆
黃啟峰
李偉銘
郭俊毅
謝錦文
蔡長諺
Original Assignee
研能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研能科技股份有限公司 filed Critical 研能科技股份有限公司
Priority to US17/015,673 priority Critical patent/US11463021B2/en
Publication of TW202113324A publication Critical patent/TW202113324A/zh
Application granted granted Critical
Publication of TWI748327B publication Critical patent/TWI748327B/zh

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一種氣體偵測模組,包含:一基座、一壓電致動器、一驅動電路板、一雷射組件、一微粒傳感器及一外蓋,於基座將導氣組件承載區及雷射設置區間隔,再輔以氣體流道設計,最後由驅動電路板封蓋於基座底面、外蓋封蓋基座表面,進而使基座之一進氣溝槽與驅動電路板共同定義出一進氣路徑,以及使基座之一出氣溝槽、外蓋與驅動電路板共同定義一出氣路徑,可大幅降低氣體偵測模組之厚度。

Description

氣體偵測模組
本案關於一種氣體偵測模組,尤指一種極薄型的氣體偵測模組。
懸浮微粒是指氣體中含有的固體顆粒或液滴。由於其粒徑非常細微,容易通過鼻腔內的鼻毛進入人體的肺部,因而引起肺部的發炎、氣喘或心血管的病變,若是其他汙染物依附於懸浮微粒上,更會加重對於呼吸系統的危害。近年來,氣體汙染問題漸趨嚴重,尤其是細懸浮微粒(例如:PM2.5)之濃度數據常常過高,氣體懸浮微粒濃度之監測漸受重視,但由於氣體會隨風向、風量不穩定的流動,而目前檢測懸浮微粒的氣體品質監測站大都為定點,所以根本無法確認當下周遭的懸浮微粒濃度,因此需要一個微型且方便攜帶的氣體偵測模組來供使用者可無時無刻、隨時隨地的檢測周遭的懸浮微粒濃度。
請參閱第1圖,其為中華民國專利申請案號107130404所示之一種氣體偵測模組。目前現有的氣體偵測模組1A的殼體11A受限於導氣件12A的大小,以及內部氣體流道的限制,難以縮減其體積,如第1圖所示箭頭所指導氣路徑,氣體需由上層入口進入再往下層導入後,經偵測後再由微型泵導送,最後再回到上層出口排出,如此設計之導氣通道結構路徑多層、複雜且厚度較厚,使整體氣體偵測模組之厚度難以輕薄化,較難實施於小型化的行動裝置或其他可攜式電子裝置上應用,有鑑於此,如何將氣體偵測模組輕薄化,實為目前迫切需要解決之問題。
本案之主要目的係提供一種氣體偵測模組,由驅動電路板貼附基座的第二表面,且使基座的第一表面被一外蓋貼附,進而使進氣溝槽定義出一進氣路徑,以及使出氣溝槽定義一出氣路徑。而且將雷射組件設置於驅動電路板上,再以驅動電路板直接封蓋基座,並透過基座之結構將壓電致動器之位置與雷射組件之位置區隔,可大幅降低氣體偵測模組的厚度。
本案之一廣義實施態樣為一種氣體偵測模組,包含:一基座,具有:一第一表面;一第二表面,相對於該第一表面;一雷射設置區,自該第一表面朝向該第二表面挖空形成;一進氣溝槽,自該第二表面凹陷形成,且鄰近於該雷射設置區,該進氣溝槽設有一進氣口,連通該基座外部,以及兩側壁貫穿一透光窗口,與該雷射設置區連通;一導氣組件承載區,自該第二表面凹陷形成,並連通該進氣溝槽,且於底面貫通一通氣孔,以及該導氣組件承載區之四個角分別具有一定位凸塊;以及一出氣溝槽,自該第一表面對應到該導氣組件承載區底面處凹陷,並於該第一表面未對應到該導氣組件承載區之區域自該第一表面朝向該第二表面挖空形成,與該通氣孔連通,並設有一出氣口,連通該基座外部;一壓電致動器,容設於該導氣組件承載區;一驅動電路板,封蓋貼合該基座之該第二表面上;一雷射組件,定位設置於該驅動電路板上與其電性連接,並對應容設於該雷射設置區中,且所發射出之光束穿過該透光窗口並與該進氣溝槽形成正交方向;一微粒傳感器,定位設置於該驅動電路板上與其電性連接,並對應容設於該進氣溝槽與該雷射組件所投射之該光束路徑之正交方向位置處,以對通過該進氣溝槽且受該雷射組件所投射光束照射之微粒做偵測;以及一外蓋,罩蓋於該基座之該第一表 面上,且具有一側板,該側板對應到該基座之該進氣口及該出氣口之位置分別設有一進氣框口及一出氣框口;其中,該基座、該壓電致動器、該驅動電路板、該雷射組件、該微粒傳感器及該外蓋係以微小材料製出之一模組結構,且該模組結構具有一長度、一寬度及一厚度,該基座之該第一表面上罩蓋該外蓋,該第二表面上封蓋該驅動電路板,以使該進氣溝槽與該驅動電路板共同定義出一進氣路徑,該出氣溝槽、該外蓋及該驅動電路板共同定義出一出氣路徑,藉以使該壓電致動器加速導引外部氣體由該進氣框口進入該進氣路徑,並通過該微粒傳感器上,以偵測出氣體中之微粒濃度,且氣體透過該壓電致動器導送,更由該通氣孔排入該出氣路徑,最後由該出氣框口排出。
1A:氣體偵測模組
11A:殼體
12A:導氣件
1:基座
100:氣體偵測模組
11:第一表面
12:第二表面
13:雷射設置區
14:進氣溝槽
14a:進氣口
14b:透光窗口
15:導氣組件承載區
15a:通氣孔
15b:定位凸塊
16:出氣溝槽
16a:出氣口
16b:第一區間
16c:第二區間
17:光陷阱區
17a:光陷阱結構
2:壓電致動器
2A:可攜式電子裝置
21:噴氣孔片
210:懸浮片
211:中空孔洞
212:空隙
22:腔體框架
23:致動體
231:壓電載板
2311:壓電接腳
232:調整共振板
233:壓電板
24:絕緣框架
25:導電框架
251:導電接腳
252:導電電極
26:共振腔室
27:氣流腔室
2a:微機電泵浦
21a:第一基板
211a:流入孔
212a:第一表面
213a:第二表面
22a:第一氧化層
221a:匯流通道
222a:匯流腔室
23a:第二基板
231a:矽晶片層
2311a:致動部
2312a:外周部
2313a:連接部
2314a:流體通道
232a:第二氧化層
2321a:振動腔室
233a:矽材層
2331a:穿孔
2332a:振動部
2333a:固定部
2334a:第三表面
2335a:第四表面
24a:壓電組件
241a:下電極層
242a:壓電層
243a:絕緣層
244a:上電極層
3:驅動電路板
3A:行動裝置
4:雷射組件
5:微粒傳感器
6:外蓋
61:側板
61a:進氣框口
61b:出氣框口
7a:第一揮發性有機物傳感器
7b:第二揮發性有機物傳感器
D:光陷阱距離
H:厚度
L、L1:長度
W、W1:寬度
第1圖為先前技術中氣體偵測模組之立體示意圖。
第2A圖為本案氣體偵測模組之外觀立體示意圖。
第2B圖為本案氣體偵測模組另一角度之外觀立體示意圖。
第2C圖所示為本案氣體偵測模組之分解立體示意圖。
第3A圖為基座之立體示意圖。
第3B圖為基座另一角度之立體示意圖。
第4圖為基座容置雷射組件及微粒傳感器之立體示意圖。
第5A圖為壓電致動器結合基座之分解立體示意圖。
第5B圖為壓電致動器結合基座之立體示意圖。
第6A圖為壓電致動器之分解立體示意圖。
第6B圖為壓電致動器另一角度之分解立體示意圖。
第6C圖為壓電致動器俯視示意圖。
第7A圖為壓電致動器之結合於導氣組件承載區之剖面示意圖。
第7B圖及第7C圖為第7A圖之壓電致動器作動之示意圖。
第8A圖至第8C圖為氣體偵測模組氣體路徑之示意圖。
第9圖為雷射組件發射之光束路徑之示意圖。
第10A圖為微機電泵浦之剖面示意圖。
第10B圖為微機電泵浦之分解示意圖。
第11A圖至第11C圖為微機電泵浦作動之示意圖。
第12圖為微粒監測模組組設應用於小型化可攜式電子裝置之示意圖。
第13圖為微粒監測模組嵌設應用於小型化行動裝置之示意圖。
體現本案特徵與優點的實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。
請參閱第2A圖至第2C圖所示,本案提供一種氣體偵測模組100,包含一基座1、一壓電致動器2、一驅動電路板3、一雷射組件4、一微粒傳感器5及一外蓋6,而基座1、壓電致動器2、驅動電路板3、雷射組件4、微粒傳感器5及外蓋6係以微小材料製出之模組結構,且該模組結構具有一長度、一寬度及一厚度,其中模組結構之長度、寬度及厚度介於1釐米(mm)至999釐米(mm)之間,或者介於1微米(μm)至999微米(μm)之間,或者介於1奈米(nm)至999奈米(nm)之間,但不以此為限。於本實施例中,基座1、壓電致動器2、驅動電路板3、雷射組件4、微粒傳感器5及外蓋6所構成之該模組結構具有其長度介於2.5微米至999微米、寬度介於2.5微米至999微米以及厚度介於2.5微米至999微米時所構成的體積,或者模組結構具有其長度介於1奈米至999奈米、寬度介於1奈米至999奈米以及厚度介於1奈米至999奈米時所構成的體積,但不以此為限。其 中,驅動電路板3封蓋貼合於基座1的第二表面12,雷射組件4設置於驅動電路板3上,並與驅動電路板3電性連接,微粒傳感器5亦設置於驅動電路板3上,並與驅動電路板3電性連接,而外蓋6為罩蓋基座1,且貼附封蓋於基座1的第一表面11上,又外蓋6具有一側板61,側板61具有一進氣框口61a及出氣框口61b。
請審閱第3A圖及第3B圖所示,基座1具有一第一表面11、一第二表面12、一雷射設置區13、一進氣溝槽14、一導氣組件承載區15及一出氣溝槽16,第一表面11及第二表面12為相對設置之兩個表面,雷射設置區13自第一表面11朝向第二表面12挖空形成,進氣溝槽14自第二表面12凹陷形成,且鄰近雷射設置區13,進氣溝槽14設有一進氣口14a,連通於基座1的外部,並與外蓋6的進氣框口61a對應,以及兩側壁貫穿一透光窗口14b,與雷射設置區13連通;因此,基座1的第一表面11被外蓋6貼附封蓋,第二表面12被驅動電路板3貼附封蓋,致使進氣溝槽14與驅動電路板3共同定義出一進氣路徑。
導氣組件承載區15由第二表面12凹陷形成,並連通進氣溝槽14,且於底面貫通一通氣孔15a;出氣溝槽16設有一出氣口16a,出氣口16a與外蓋6的出氣框口61b對應設置,出氣溝槽16包含由第一表面11對應於導氣組件承載區15的垂直投影區域凹陷形成的一第一區間16b,以及於非導氣組件承載區15的垂直投影區域所延伸的區域,且由第一表面11至第二表面12挖空形成的第二區間16c,其中第一區間16b與第二區間16c相連以形成段差,且出氣溝槽16的第一區間16b與導氣組件承載區15的通氣孔15a相通,出氣溝槽16的第二區間16c與出氣口16a連通;因此,當基座1的第一表面11被外蓋6貼附封蓋,第二表面12被驅動電路板3貼附封蓋時,致使出氣溝槽16、外蓋6與驅動電路板3共同定義出一出氣路 徑。
第4圖為基座容置雷射組件及微粒傳感器示意圖,雷射組件4及微粒傳感器5皆設置於驅動電路板3上且於基座1內,為了明確說明雷射組件4及微粒傳感器5於基座1中之位置,故特意於第3圖中省略驅動電路板3,用以明確說明;請審閱第4圖及第2C圖,雷射組件4將容設於基座1的雷射設置區13內,微粒傳感器5容設於基座1的進氣溝槽14內,並與雷射組件4對齊,此外,雷射組件4對應到透光窗口14b,供雷射組件4所發射的雷射光穿過,使雷射光照射至進氣溝槽14內,而雷射組件4所發出射出之光束路徑為穿過透光窗口14b且與進氣溝槽14形成正交方向。
雷射組件4發射投射光束通過透光窗口14b進入進氣溝槽14內,照射進氣溝槽14內的氣體中所含懸浮微粒,光束接觸到懸浮微粒時,會散射並產生投射光點,微粒傳感器5接收散射所產生的投射光點進行計算,來獲取氣體中所含懸浮微粒之粒徑及濃度的相關資訊。其中微粒傳感器5可為PM2.5傳感器,但不以此為限。
請參閱第5A圖及第5B圖,壓電致動器2容設於基座1的導氣組件承載區15,導氣組件承載區15呈一正方形,其四個角分別設有一定位凸塊15b,壓電致動器2通過四個定位凸塊15b設置於導氣組件承載區15內,此外,導氣組件承載區15與進氣溝槽14相通,當壓電致動器2作動時,壓電致動器2汲取進氣溝槽14內的氣體,使氣體進入壓電致動器2,並將氣體通過導氣組件承載區15的通氣孔15a,導入至出氣溝槽16。
請審閱第6A圖及第6B圖,壓電致動器2包含:一噴氣孔片21、一腔體框架22、一致動體23、一絕緣框架24及一導電框架25。
噴氣孔片21為具有可撓性之材料製作,具有一懸浮片210、一中空孔洞211。懸浮片210為可彎曲振動之片狀結構,其形狀與尺寸大致對應導 氣組件承載區15的內緣,但不以此為限,懸浮片210之形狀亦可為方形、圓形、橢圓形、三角形及多角形其中之一。中空孔洞211係貫穿於懸浮片210之中心處,以供氣體流通。使壓電致動器2得以設置於導氣組件承載區15內。
腔體框架22疊設於噴氣孔片21,且其外型與噴氣孔片21對應,致動體23疊設於腔體框架22上,並與腔體框架22、懸浮片210之間定義一共振腔室26,絕緣框架24疊設於致動體23,其外觀與腔體框架22近似,導電框架25疊設於絕緣框架24,其外觀與絕緣框架24近似,且導電框架25具有一導電接腳251及一導電電極252,導電接腳251自導電框架25的外緣向外延伸,導電電極252自導電框架25內緣向內延伸。此外,致動體23更包含一壓電載板231、一調整共振板232及一壓電板233,壓電載板231承載疊置於腔體框架22上,調整共振板232承載疊置於壓電載板231上,壓電板233承載疊置於調整共振板232上,而調整共振板232及壓電板233容設於絕緣框架24內,並由導電框架25的導電電極252電連接壓電板233,其中,壓電載板231、調整共振板232皆為可導電的材料所製成,壓電載板231具有一壓電接腳2311,壓電接腳2311與導電接腳251連接驅動電路板3上的驅動電路(未圖示),以接收驅動訊號(驅動頻率及驅動電壓),驅動訊號得以由壓電接腳2311、壓電載板231、調整共振板232、壓電板233、導電電極252、導電框架25、導電接腳251形成一迴路,並由絕緣框架24將導電框架25與致動體23之間阻隔,避免短路發生,使驅動訊號得以傳遞至壓電板233,壓電板233接受驅動訊號(驅動頻率及驅動電壓)後,因壓電效應產生形變,來進一步驅動壓電載板231及調整共振板232產生往復式地彎曲振動。
承上所述,調整共振板232位於壓電板233與壓電載板231之間,作為兩 者之間的緩衝物,可調整壓電載板231的振動頻率。基本上,調整共振板232的厚度大於壓電載板231的厚度,且調整共振板232的厚度可變動,藉此調整致動體23的振動頻率。
請同時參閱第6A圖、第6B圖、第6C圖及第7A圖,壓電致動器2為了設置於導氣組件承載區15內,整體尺寸設計也會影響到氣體偵測模組100之整體結構尺寸設計。為符合輕薄微小化之趨勢,在一較佳實施例中,本案較大型尺寸之壓電致動器2結構採以長度L1及寬度W1尺寸為9mm~18mm,最佳為12mm~13.5mm,中型尺寸之壓電致動器2結構採以長度L1及寬度W1尺寸為5.5mm~11mm,最佳為7.5mm~8.5mm,小型尺寸之壓電致動器2結構採以長度L1及寬度W1尺寸為3.5mm~7mm,最佳為4.5mm~5.5mm,這大中小型三種實施例尺寸之壓電致動器2結構在特定之驅動訊號波形及頻率下,得以有利於維持一定之輸出功率,達到穩定輸出功率及使用壽命延長之功效;又,噴氣孔片21、腔體框架22、致動體23、絕緣框架24及導電框架25依序對應堆疊並設置定位於導氣組件承載區15內,促使壓電致動器2承置定位於導氣組件承載區15內,並以底部固設於定位凸塊15b上支撐定位,因此壓電致動器2在懸浮片210及導氣組件承載區15的內緣之間定義出空隙212。空隙212環繞於壓電致動器2之外圍,以供氣體流通。
請再參閱第7A圖,噴氣孔片21與導氣組件承載區15之底面間形成一氣流腔室27。氣流腔室27透過噴氣孔片21之中空孔洞211,連通致動體23、腔體框架22及懸浮片210之間的共振腔室26。透過控制共振腔室26中氣體之振動頻率,使其與懸浮片210之振動頻率趨近於相同,可使共振腔室26與懸浮片210產生亥姆霍茲共振效應(Helmholtz resonance),俾使氣體傳輸效率提高。
第7B圖及第7C圖為第7A圖之壓電致動器作動示意圖,請先審閱第7B圖所示,當壓電板233向遠離導氣組件承載區15之底面的方向移動時,帶動噴氣孔片21之懸浮片210以遠離導氣組件承載區15之底面方向移動,使氣流腔室27之容積急遽擴張,其內部壓力下降形成負壓,吸引壓電致動器2外部的氣體由空隙212流入,並經由中空孔洞211進入共振腔室26,使共振腔室26內的氣壓增加而產生一壓力梯度。再如第7C圖所示,當壓電板233帶動噴氣孔片21之懸浮片210朝向導氣組件承載區15之底面移動時,共振腔室26中的氣體經中空孔洞211快速流出,擠壓氣流腔室27內的氣體,並使匯聚後之氣體以接近白努利定律之理想氣體狀態快速且大量地噴出並導入導氣組件承載區15的通氣孔15a中。是以,透過重複第7B圖及第7C圖的動作,得以使壓電板233往復式地振動,且依據慣性原理,排氣後的共振腔室26內部氣壓低於平衡氣壓,會導引氣體再次進入共振腔室26中,如此控制共振腔室26中氣體之振動頻率與壓電板233之振動頻率趨近於相同,以產生亥姆霍茲共振效應,俾實現氣體高速且大量的傳輸。
請參閱第8A圖至第8C圖,第8A圖至第8C圖為氣體偵測模組的氣體路徑示意圖,首先審閱第8A圖,氣體皆由外蓋6的進氣框口61a進入,通過進氣口14a進入至基座1的進氣溝槽14,並流至微粒傳感器5的位置,再如第8B圖所示,壓電致動器2持續驅動會吸取進氣路徑之氣體,以利外部氣體快速導入且穩定流通,並通過微粒傳感器5上方,此時雷射組件4發射投射光束通過透光窗口14b進入進氣溝槽14內,照射進氣溝槽14通過微粒傳感器5上方的氣體中所含懸浮微粒,光束接觸到懸浮微粒時,會散射並產生投射光點,微粒傳感器5接收散射所產生的投射光點進行計算,來獲取氣體中所含懸浮微粒之粒徑及濃度的相關資訊,而 微粒傳感器5上方的氣體也持續受壓電致動器2驅動傳輸而導入導氣組件承載區15的通氣孔15a中,進入出氣溝槽16的第一區間16b,最後如第8C圖所示,氣體進入出氣溝槽16的第一區間16b後,由於壓電致動器2會不斷輸送氣體進入第一區間16b,於第一區間16b的氣體將會被推引至第二區間16c,最後通過出氣口16a及出氣框口61b向外排出。
如第9圖所示,基座1更包含一光陷阱區17,光陷阱區17自第一表面11至第二表面12挖空形成,並對應至雷射設置區13,且光陷阱區17經過透光窗口14b而使雷射組件4所發射之光束能投射到其中,光陷阱區17設有一斜錐面之光陷阱結構17a,光陷阱結構17a對應到雷射組件4所發射之光束的路徑;此外,光陷阱結構17a使雷射組件4所發射之投射光束在斜錐面結構反射至光陷阱區17內,避免光束反射至微粒傳感器5的位置,且光陷阱結構17a所接收之投射光束之位置與透光窗口14b之間保持有一光陷阱距離D,此光陷阱距離D需大於3mm以上,當光陷阱距離D小於3mm時,會導致投射在光陷阱結構17a上之投射光束於反射後因過多雜散光直接反射回微粒傳感器5的位置,造成偵測精度的失真。
請繼續審閱第9圖及第2C圖,本案之氣體偵測模組100,不僅可針對氣體中微粒進行偵測,更可進一步針對導入氣體之特性做偵測,因此本案之氣體偵測模組100更包含第一揮發性有機物傳感器7a,定位設置於驅動電路板3上並與其電性連接,容設於出氣溝槽16中,對出氣路徑所導出氣體做偵測,用以偵測出氣路徑的氣體中所含有之揮發性有機物的濃度。或者本案之氣體偵測模組100更包含一第二揮發性有機物傳感器7b,定位設置於驅動電路板3上並與其電性連接,而第二揮發性有機物傳感器7b容設於光陷阱區17,對於通過進氣溝槽14的進氣路徑且經過透光窗口14b而導入光陷阱區17內的氣體偵測其揮發性有機物的濃 度。
由上述說明可知,本案的氣體偵測模組100經過基座1上雷射設置區13、進氣溝槽14、導氣組件承載區15及出氣溝槽16適當配置的結構設計,且搭配外蓋6及驅動電路板3之封蓋密封設計,致使基座1之第一表面11上罩蓋外蓋6,第二表面12上封蓋驅動電路板3,以使進氣溝槽14與驅動電路板3共同定義出一進氣路徑,出氣溝槽16、外蓋6與驅動電路板3共同定義出一出氣路徑,形成一單層導氣通道路徑,讓本案的氣體偵測模組100整體結構之厚度降低,致使氣體偵測模組100的長度L介於10mm至35mm之間,寬度W介於10mm至35mm之間,厚度H介於1mm至6.5mm之間,有利於組設結合於如第12圖所示的小型化可攜式電子裝置2A,或者有利於組設結合於如第13圖所示的小型化行動裝置3A,便於使用者攜帶以偵測周遭的微粒濃度。
此外,本案的壓電致動器2的另一實施例可為一微機電泵浦2a,請參閱第10A圖及第10B圖,微機電泵浦2a包含一第一基板21a、一第一氧化層22a、一第二基板23a以及一壓電組件24a。
第一基板21a為一矽晶片(Si wafer),其厚度介於150至400微米(μm)之間,第一基板21a具有複數個流入孔211a、一第一表面212a、一第二表面213a,於本實施例中,該些流入孔211a的數量為4個,但不以此為限,且每個流入孔211a皆由第二表面213a貫穿至第一表面212a,而流入孔211a為了提升流入效果,流入孔211a自第二表面213a至第一表面212a呈現漸縮的錐形。
第一氧化層22a為一二氧化矽(SiO2)薄膜,其厚度介於10至20微米(μm)之間,第一氧化層22a疊設於第一基板21a的第一表面212a上,第一氧化層22a具有複數個匯流通道221a以及一匯流腔室222a,匯流通道221a 與第一基板21a的流入孔211a其數量及位置相互對應。於本實施例中,匯流通道221a的數量同樣為4個,4個匯流通道221a的一端分別連通至第一基板21a的4個流入孔211a,而4個匯流通道221a的另一端則連通於匯流腔室222a,讓氣體分別由流入孔211a進入之後,通過其對應相連之匯流通道221a後匯聚至匯流腔室222a內。
第二基板23a為一絕緣層上覆矽之矽晶片(SOI wafer),包含:一矽晶片層231a、一第二氧化層232a以及一矽材層233a;矽晶片層231a的厚度介於10至20微米(μm)之間,具有一致動部2311a、一外周部2312a、複數個連接部2313a以及複數個流體通道2314a,致動部2311a呈圓形;外周部2312a呈中空環狀,環繞於致動部2311a的外圍;該些連接部2313a分別位於致動部2311a與外周部2312a之間,並且連接兩者,提供彈性支撐的功能。該些流體通道2314a環繞形成於致動部2311a的外圍,且分別位於該些連接部2313a之間。
第二氧化層232a為一氧化矽層其厚度介於0.5至2微米(μm)之間,形成於矽晶片層231a上,呈中空環狀,並與矽晶片層231a定義一振動腔室2321a。矽材層233a呈圓形,疊設於第二氧化層232a且結合至第一氧化層22a,矽材層233a為二氧化矽(SiO2)薄膜,厚度介於2至5微米(μm)之間,具有一穿孔2331a、一振動部2332a、一固定部2333a、一第三表面2334a及一第四表面2335a。穿孔2331a形成於矽材層233a的中心,振動部2332a位於穿孔2331a的周邊區域,且垂直對應於振動腔室2321a,固定部2333a則為矽材層233a的周緣區域,由固定部2333a固定於第二氧化層232a,第三表面2334a與第二氧化層232a接合,第四表面2335a與第一氧化層22a接合;壓電組件24a疊設於矽晶片層231a的致動部2311a。
壓電組件24a包含一下電極層241a、壓電層242a、絕緣層243a及上電極 層244a,下電極層241a疊置於矽晶片層231a的致動部2311a,而壓電層242a疊置於下電極層241a,兩者透過其接觸的區域做電性連接,此外,壓電層242a的寬度小於下電極層241a的寬度,使得壓電層242a無法完全遮蔽住下電極層241a,再於壓電層242a的部分區域以及下電極層241a未被壓電層242a所遮蔽的區域上疊置絕緣層243a,最後再於絕緣層243a以及壓電層242a未被絕緣層243a遮蔽的其餘表面上疊置上電極層244a,讓上電極層244a得以與壓電層242a接觸來電性連接,同時利用絕緣層243a阻隔於上電極層244a及下電極層241a之間,避免兩者直接接觸造成短路。
請參考第11A至第11C圖,第11A至11C圖為微機電泵浦2a其作動示意圖。請先參考第11A圖,壓電組件24a的下電極層241a及上電極層244a接收驅動電路板3所傳遞之驅動電壓及驅動訊號(未圖示)後將其傳導至壓電層242a,壓電層242a接受驅動電壓及驅動訊號後,因逆壓電效應的影響開始產生形變,會帶動矽晶片層231a的致動部2311a開始位移,當壓電組件24a帶動致動部2311a向上位移並拉開與第二氧化層232a之間的距離時,此時,第二氧化層232a的振動腔室2321a的容積將提升,讓振動腔室2321a內形成負壓,並將第一氧化層22a的匯流腔室222a內的氣體通過穿孔2331a吸入其中。請繼續參閱第11B圖,當致動部2311a受到壓電組件24a的牽引向上位移時,矽材層233a的振動部2332a會因共振原理的影響向上位移,當振動部2332a向上位移時,會壓縮振動腔室2321a的空間並且推動振動腔室2321a內的氣體往矽晶片層231a的流體通道2314a移動,讓氣體能夠通過流體通道2314a向上排出,在振動部2332a向上位移來壓縮振動腔室2321a的同時,匯流腔室222a的容積因振動部2332a位移而提升,其內部形成負壓,將吸取微機 電泵浦2a外的氣體由流入孔211a進入其中,最後如第11C圖所示,壓電組件24a帶動矽晶片層231a的致動部2311a向下位移時,將振動腔室2321a的氣體往流體通道2314a推動,並將氣體排出,而矽材層233a的振動部2332a亦受致動部2311a的帶動向下位移,同步壓縮匯流腔室222a的氣體通過穿孔2331a向振動腔室2321a移動,後續再將壓電組件24a帶動致動部2311a向上位移時,其振動腔室2321a的容積會大幅提升,進而有較高的汲取力將氣體吸入振動腔室2321a,再重複以上的動作,以至於透過壓電組件24a持續帶動致動部2311a上下位移來使振動部2332a連動並上下位移,透過改變微機電泵浦2a的內部壓力,使其不斷地汲取及排出氣體,藉此以完成微機電泵浦2a的動作。
當然,本案的氣體偵測模組100為了嵌設於行動裝置3A的應用,本案的壓電致動器2可以微機電泵浦2a之結構取代,使本案氣體偵測模組100的整體尺寸更進一步縮小,致使氣體偵測模組100的長度L、寬度W縮減至2mm至4mm之間、厚度H介於1mm至3.5mm之間,實施於現況薄型5mm厚度智慧型手機等行動裝置3A中,將氣體偵測模組100直接嵌設於智慧型手機上,供使用者能夠即時對周遭的空氣品質進行檢測。
綜上所述,本案所提供之氣體偵測模組,雷射組件直接設置於驅動電路板,並由驅動電路板貼附基座的第二表面,且使基座的第一表面被外蓋貼附,進而使進氣溝槽與驅動電路板共同定義出一進氣路徑,以及使出氣溝槽、外蓋與驅動電路板共同定義一出氣路徑,可以大幅減少氣體偵測模組的厚度,此外,將壓電致動器與雷射組件區隔設置,再輔以氣體通道的設計,可以避免壓電致動器於作動時干擾到雷射組件及微粒傳感器運作,又可以縮小氣體偵測模組的體積,其長度可縮小至10mm至35mm之間,寬度可縮減至10mm至35mm之間,厚度可降低 至1mm至6.5mm之間,或是以微機電泵浦取代壓電致動器,進一步將長度L、寬度W縮減至2mm至4mm之間、厚度H介於1mm至3.5mm之間,使本案的氣體偵測模組可以便於攜帶,並且再利用光陷阱區的光陷阱結構,得以減少雷射組件通過微粒傳感器的光束接觸基座本身後所產生的散射光線再度進入微粒傳感器內之機率,能夠提升微粒傳感器的偵測效率,極具產業利用性及進步性。
100:氣體偵測模組
1:基座
11:第一表面
12:第二表面
13:雷射設置區
14a:進氣口
14b:透光窗口
15a:通氣孔
16a:出氣口
2:壓電致動器
3:驅動電路板
4:雷射組件
5:微粒傳感器
6:外蓋
61:側板
61a:進氣框口
61b:出氣框口
7a:第一揮發性有機物傳感器
7b:第二揮發性有機物傳感器

Claims (19)

  1. 一種氣體偵測模組,包含:一基座,具有:一第一表面;一第二表面,相對於該第一表面;一雷射設置區,自該第一表面朝向該第二表面挖空形成;一進氣溝槽,自該第二表面凹陷形成,且鄰近於該雷射設置區,該進氣溝槽設有一進氣口,連通該基座外部,以及兩側壁貫穿一透光窗口,與該雷射設置區連通;一導氣組件承載區,自該第二表面凹陷形成,並連通該進氣溝槽,且於底面貫通一通氣孔,以及該導氣組件承載區之四個角分別具有一定位凸塊;以及一出氣溝槽,自該第一表面對應到該導氣組件承載區底面處凹陷,並於該第一表面未對應到該導氣組件承載區之區域自該第一表面朝向該第二表面挖空而形成,與該通氣孔連通,並設有一出氣口,連通該基座外部;一壓電致動器,容設於該導氣組件承載區;一驅動電路板,封蓋貼合該基座之該第二表面上;一雷射組件,定位設置於該驅動電路板上與其電性連接,並對應容設於該雷射設置區中,且所發射出之一光束路徑穿過該透光窗口並與該進氣溝槽形成正交方向;一微粒傳感器,定位設置於該驅動電路板上與其電性連接,並對應容設於該進氣溝槽與該雷射組件所投射之該光束路徑之正交方向位置處,以對通過該進氣溝槽且受該雷射組件所投射光束照射之微粒做偵測;以及 一外蓋,罩蓋於該基座之該第一表面上,且具有一側板,該側板對應到該基座之該進氣口及該出氣口之位置分別設有一進氣框口及一出氣框口;其中,該基座、該壓電致動器、該驅動電路板、該雷射組件、該微粒傳感器及該外蓋係以微小材料製出之一模組結構,且該模組結構具有一長度、一寬度及一厚度,其中該基座之該第一表面上罩蓋該外蓋,該第二表面上封蓋該驅動電路板,以使該進氣溝槽與該驅動電路板共同定義出一進氣路徑,該出氣溝槽、該外蓋及該驅動電路板共同定義出一出氣路徑,藉以使該壓電致動器加速導引外部氣體由該進氣框口進入該進氣路徑,並通過該微粒傳感器上,以偵測出氣體中之微粒濃度,且氣體透過該壓電致動器導送,更由該通氣孔排入該出氣路徑,最後由該出氣框口排出。
  2. 如請求項1所述之氣體偵測模組,其中該模組結構具有該長度介於2.5微米至999微米、該寬度介於2.5微米至999微米以及該厚度介於2.5微米至999微米時所構成的體積。
  3. 如請求項1所述之氣體偵測模組,其中該基座更包含一光陷阱區,自該第一表面朝該第二表面挖空形成且對應於該雷射設置區,該光陷阱區設有具斜錐面之一光陷阱結構,設置對應到該光束路徑。
  4. 如請求項3所述之氣體偵測模組,其中該光陷阱結構所接收之投射光源之位置與該透光窗口保持有一光陷阱距離。
  5. 如請求項4所述之氣體偵測模組,其中該光陷阱距離大於3mm。
  6. 如請求項1所述之氣體偵測模組,其中該微粒傳感器為PM2.5傳感器。
  7. 如請求項1所述之氣體偵測模組,其中該壓電致動器包含:一噴氣孔片,包含一懸浮片及一中空孔洞,該懸浮片可彎曲振動,而該中空孔洞形成於該懸浮片的中心位置; 一腔體框架,承載疊置於該懸浮片上;一致動體,承載疊置於該腔體框架上,以接受電壓而產生往復式地彎曲振動;一絕緣框架,承載疊置於該致動體上;以及一導電框架,承載疊置於該絕緣框架上;其中,該噴氣孔片固設於該導氣組件承載區內之該定位凸塊支撐定位,促使該噴氣孔片與該導氣組件承載區之內緣間定義出空隙環繞,供氣體流通,且該噴氣孔片與該導氣組件承載區底部間形成一氣流腔室,而該致動體、該腔體框架及該懸浮片之間形成一共振腔室,透過驅動該致動體以帶動該噴氣孔片產生共振,使該噴氣孔片之該懸浮片產生往復式地振動位移,以吸引氣體通過該空隙進入該氣流腔室再排出,實現氣體之傳輸流動。
  8. 如請求項7所述之氣體偵測模組,其中該致動體包含:一壓電載板,承載疊置於該腔體框架上;一調整共振板,承載疊置於該壓電載板上;以及一壓電板,承載疊置於該調整共振板上,以接受電壓而驅動該壓電載板及該調整共振板產生往復式地彎曲振動。
  9. 如請求項1所述之氣體偵測模組,其中該壓電致動器之長度及寬度介於9mm~18mm之間。
  10. 如請求項9所述之氣體偵測模組,其中該壓電致動器之長度及寬度介於12mm~13.5mm之間。
  11. 如請求項1所述之氣體偵測模組,其中該壓電致動器之長度及寬度介於5.5mm~11mm之間。
  12. 如請求項11所述之氣體偵測模組,其中該壓電致動器之長度及寬度介於7.5mm~8.5mm之間。
  13. 如請求項1所述之氣體偵測模組,其中該壓電致動器之長度及寬度介於3.5mm~7mm之間。
  14. 如請求項13所述之氣體偵測模組,其中該壓電致動器之長度及寬度介於4.5mm~5.5mm之間。
  15. 如請求項1所述之氣體偵測模組,進一步包含一第一揮發性有機物傳感器,定位設置於該驅動電路板上電性連接,容設於該出氣溝槽中,對該出氣路徑所導出氣體做偵測。
  16. 如請求項3所述之氣體偵測模組,進一步包含一第二揮發性有機物傳感器,定位設置於該驅動電路板上電性連接,容設於該光陷阱區,對通過該進氣溝槽之該進氣路徑且經過該透光窗口而導入於該光陷阱區之氣體做偵測。
  17. 如請求項1、15或16所述之氣體偵測模組,其中該氣體偵測模組長度介於10mm至35mm之間,寬度介於10mm至35mm之間,厚度介於1mm至6.5mm之間。
  18. 如請求項1所述之氣體偵測模組,其中該壓電致動器為一微機電泵浦,包含:一第一基板,具有複數個流入孔,該些流入孔呈錐形;一第一氧化層,疊設該第一基板,該第一氧化層具有複數個匯流通道以及一匯流腔室,該些匯流通道連通於該匯流腔室及該些流入孔之間;一第二基板,結合至該第一基板,包含:一矽晶片層,具有: 一致動部,呈圓形;一外周部,呈中空環狀,環繞於該致動部的外圍;複數個連接部,分別連接於該致動部與該外周部之間;以及複數個流體通道,環繞於該致動部的外圍,且分別位於該些連接部之間;一第二氧化層,形成於該矽晶片層上,呈中空環狀,並與該矽晶片層定義一振動腔室;以及一矽材層,呈圓形,位於該第二氧化層且結合至該第一氧化層,具有:一穿孔,形成於該矽材層的中心;一振動部,位於該穿孔的周邊區域;以及一固定部,位於該矽材層的周緣區域;以及一壓電組件,呈圓形,疊設於該矽晶片層的該致動部。
  19. 如請求項18所述之氣體偵測模組,其中該壓電組件包含:一下電極層;一壓電層,疊置於該下電極層;一絕緣層,鋪設於該壓電層之部分表面及該下電極層之部分表面;以及一上電極層,疊置於該絕緣層及該壓電層未設有該絕緣層之其餘表面,用以與該壓電層電性連接。
TW109101601A 2019-09-27 2020-01-16 氣體偵測模組 TWI748327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/015,673 US11463021B2 (en) 2019-09-27 2020-09-09 Gas detecting module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108135358 2019-09-27
TW108135358 2019-09-27

Publications (2)

Publication Number Publication Date
TW202113324A TW202113324A (zh) 2021-04-01
TWI748327B true TWI748327B (zh) 2021-12-01

Family

ID=76604215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109101601A TWI748327B (zh) 2019-09-27 2020-01-16 氣體偵測模組

Country Status (1)

Country Link
TW (1) TWI748327B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM553479U (zh) * 2017-08-31 2017-12-21 Microjet Technology Co Ltd 致動傳感模組
TWM570948U (zh) * 2018-12-01 氣體微粒檢測裝置
CN109791104A (zh) * 2017-09-14 2019-05-21 盛思锐股份公司 颗粒物传感器装置
TWM581748U (zh) * 2019-03-15 2019-08-01 研能科技股份有限公司 微粒偵測裝置
TWM581637U (zh) * 2019-03-29 2019-08-01 研能科技股份有限公司 Microelectromechanical pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM570948U (zh) * 2018-12-01 氣體微粒檢測裝置
TWM570950U (zh) * 2018-12-01 微粒偵測模組
TWM553479U (zh) * 2017-08-31 2017-12-21 Microjet Technology Co Ltd 致動傳感模組
CN109791104A (zh) * 2017-09-14 2019-05-21 盛思锐股份公司 颗粒物传感器装置
TWM581748U (zh) * 2019-03-15 2019-08-01 研能科技股份有限公司 微粒偵測裝置
TWM581637U (zh) * 2019-03-29 2019-08-01 研能科技股份有限公司 Microelectromechanical pump

Also Published As

Publication number Publication date
TW202113324A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
TWI708934B (zh) 微粒偵測模組
CN210775135U (zh) 具气体检测的行动装置机壳
US11463021B2 (en) Gas detecting module
TWI735044B (zh) 微粒偵測模組
TWI707129B (zh) 具氣體偵測之行動裝置機殼
TWM574228U (zh) 具微粒偵測模組之行動裝置
CN211576880U (zh) 微粒检测模块
TWI748327B (zh) 氣體偵測模組
CN210775142U (zh) 微粒检测模块
TWI697173B (zh) 具氣體偵測之行動電源裝置
TWI831905B (zh) 外接式氣體偵測裝置
TWI710759B (zh) 氣體偵測模組
CN210775143U (zh) 微粒检测模块
CN112577863A (zh) 气体检测模块
CN112577862A (zh) 微粒检测模块
CN110873685A (zh) 微粒检测模块
CN110873681A (zh) 具有微粒检测模块的行动装置
CN110873680A (zh) 微粒检测模块
TWM574683U (zh) 微粒偵測模組
CN112577861A (zh) 微粒检测模块
TWI720649B (zh) 氣體偵測模組
CN110873682A (zh) 微粒检测模块
CN210775134U (zh) 具气体检测的行动电源装置
TWI693389B (zh) 微粒偵測模組
TWI678525B (zh) 微粒偵測模組