TWI748271B - Integrated chip and method of forming the same - Google Patents

Integrated chip and method of forming the same Download PDF

Info

Publication number
TWI748271B
TWI748271B TW108139191A TW108139191A TWI748271B TW I748271 B TWI748271 B TW I748271B TW 108139191 A TW108139191 A TW 108139191A TW 108139191 A TW108139191 A TW 108139191A TW I748271 B TWI748271 B TW I748271B
Authority
TW
Taiwan
Prior art keywords
field plate
layer
etch stop
dielectric layer
gate structure
Prior art date
Application number
TW108139191A
Other languages
Chinese (zh)
Other versions
TW202121632A (en
Inventor
何嘉政
盧卉庭
王培倫
鐘于彰
周君冠
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/506,129 external-priority patent/US11164970B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202121632A publication Critical patent/TW202121632A/en
Application granted granted Critical
Publication of TWI748271B publication Critical patent/TWI748271B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Abstract

The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a gate structure disposed over a substrate between a source region and a drain region. A first inter-level dielectric (ILD) layer is disposed over the substrate and the gate structure and a second ILD layer is disposed over the first ILD layer. A field plate etch stop structure is between the first ILD layer and the second ILD layer. A field plate extends from an uppermost surface of the second ILD layer to the field plate etch stop structure. A plurality of conductive contacts extend from the uppermost surface of the second ILD layer to the source region and the drain region.

Description

積體晶片及其形成方法 Integrated wafer and its forming method

本發明實施例是有關於積體晶片及其形成方法。 The embodiment of the present invention relates to an integrated wafer and a method of forming the same.

現代積體晶片包括在半導體基底(例如矽)上形成的數百萬或數十億半導體元件。積體晶片(integrated chips;IC)可取決於IC的應用程式而使用許多不同類型的電晶體元件。近年來,對於行動和RF(射頻)元件的市場增加已引起高電壓電晶體元件的使用顯著增長。舉例來說,由於高電壓電晶體元件能夠處理高擊穿電壓(例如大於約50伏的擊穿電壓)和高頻率,所以RF傳輸/接收鏈中的功率放大器經常使用高電壓電晶體元件。 Modern integrated wafers include millions or billions of semiconductor elements formed on a semiconductor substrate, such as silicon. Integrated chips (IC) can use many different types of transistor components depending on the application of the IC. In recent years, the increase in the market for mobile and RF (Radio Frequency) components has caused a significant increase in the use of high-voltage transistor components. For example, since high voltage transistor elements can handle high breakdown voltages (for example, breakdown voltages greater than about 50 volts) and high frequencies, power amplifiers in the RF transmission/reception chain often use high voltage transistor elements.

在一些實施例中,本揭露關於一種積體晶片。所述積體晶片包含:閘極結構,安置於基底上方,在源極區與汲極區之間;第一層間介電(ILD)層,安置於基底和閘極結構上方;第二ILD層,安置於第一ILD層上方;場板蝕刻終止結構,在第一ILD層與第二ILD層之間;場板,從第二ILD層的最上表面延伸到場板蝕刻終止結構;以及多個導電接觸件,從第二ILD層的最上表面 延伸到源極區和汲極區。 In some embodiments, the present disclosure relates to an integrated wafer. The integrated chip includes: a gate structure, arranged above the substrate, between the source region and the drain region; a first interlayer dielectric (ILD) layer, arranged above the substrate and the gate structure; and a second ILD Layer, arranged above the first ILD layer; a field plate etch stop structure, between the first ILD layer and the second ILD layer; a field plate, extending from the uppermost surface of the second ILD layer to the field plate etch stop structure; and more Conductive contacts from the top surface of the second ILD layer Extends to the source and drain regions.

在其他實施例中,本揭露關於一種積體晶片。積體晶片包含:閘極結構,安置於基底上方位於源極區與汲極區之間;介電結構,安置於基底和閘極結構上方;場板蝕刻終止結構,安置在介電結構內;多個導電接觸件,安置在介電結構內;以及場板,安置於場板蝕刻終止結構上,所述場板具有最底表面,所述最底表面沿平行於所述基底的上表面且在所述多個導電接觸件的頂表面與底表面之間與所述多個導電接觸件的側壁相交(intersect)的第一水平面佈置。 In other embodiments, the present disclosure relates to an integrated wafer. The integrated chip includes: a gate structure arranged above the substrate between the source region and the drain region; a dielectric structure arranged above the substrate and the gate structure; a field plate etching termination structure arranged in the dielectric structure; A plurality of conductive contacts arranged in the dielectric structure; and a field plate arranged on the field plate etch stop structure, the field plate having a bottommost surface, the bottommost surface being parallel to the upper surface of the substrate and The top surface and the bottom surface of the plurality of conductive contacts are arranged in a first horizontal plane intersect with the sidewalls of the plurality of conductive contacts.

在又其他實施例中,本揭露關於一種形成積體晶片的方法。所述方法包含:在基底上方在源極區與汲極區之間形成閘極結構;在基底上方形成接觸蝕刻終止層;在接觸蝕刻終止層上方形成第一ILD層;在形成第一ILD層之後在閘極結構與汲極區之間形成場板蝕刻終止結構;在場板蝕刻終止結構上方形成第二ILD層;以及同時形成延伸穿過第一ILD層和第二ILD層的多個接觸件和穿過第二ILD層延伸到場板蝕刻終止結構的場板。 In still other embodiments, the present disclosure relates to a method of forming an integrated wafer. The method includes: forming a gate structure between a source region and a drain region on a substrate; forming a contact etch stop layer on the substrate; forming a first ILD layer above the contact etch stop layer; forming a first ILD layer Then a field plate etch stop structure is formed between the gate structure and the drain region; a second ILD layer is formed above the field plate etch stop structure; and a plurality of contacts extending through the first ILD layer and the second ILD layer are simultaneously formed And a field plate extending through the second ILD layer to the field plate etch stop structure.

100、2000、2200、2300、2400、3500、3600、3700:高電壓電晶體元件 100, 2000, 2200, 2300, 2400, 3500, 3600, 3700: high voltage transistor components

102:半導體基底 102: Semiconductor substrate

104、804:源極區 104, 804: source region

105:箭頭 105: Arrow

106:汲極區 106: Drain Region

108:閘極電極 108: gate electrode

110:閘極介電層 110: gate dielectric layer

112:通道區 112: Passage area

114、204、702、2104:漂移區 114, 204, 702, 2104: drift zone

116、210:閘極結構 116, 210: Gate structure

118、1504、3402:第一ILD層 118, 1504, 3402: the first ILD layer

120、814:接觸件 120, 814: contacts

120a:第一接觸件 120a: first contact

120b:第二接觸件 120b: second contact

120c:第三接觸件 120c: third contact

122、214、408、902:場板 122, 214, 408, 902: field board

124:介電層 124: Dielectric layer

126、416、502、602、3406:第二ILD層 126, 416, 502, 602, 3406: the second ILD layer

128:第一後段製程(BEOL)金屬線層 128: The first post-process (BEOL) metal line layer

200、300、400、500、600、700a、700b、700c、800、1000:LDMOS元件 200, 300, 400, 500, 600, 700a, 700b, 700c, 800, 1000: LDMOS element

202、2106:主體區 202, 2106: main area

206:STI區 206: STI area

208:接觸區 208: contact area

212:側壁間隔件 212: Sidewall spacer

302:隔離區 302: Quarantine

402:矽化物阻擋層 402: Silicide barrier

404、3404、4502:場板蝕刻終止層 404, 3404, 4502: field plate etching stop layer

406、1502:接觸蝕刻終止層 406, 1502: contact etching stop layer

406u:最上表面 406u: the top surface

410、1702:第一金屬材料 410, 1702: the first metal material

412、1802:第二金屬材料 412, 1802: second metal material

414:襯層 414: Lining

418、504、604:第一金屬線層 418, 504, 604: the first metal wire layer

420:平坦表面 420: Flat surface

506、606:導電路徑 506, 606: Conductive path

704:深井 704: Deep Well

706、710:埋入層 706, 710: buried layer

708:塊體區 708: Block Area

802、2102:基底 802, 2102: Base

802b:背側 802b: dorsal

802f:前側表面 802f: Front side surface

806:磊晶層 806: epitaxial layer

812:導電材料 812: conductive material

816:上覆金屬線層 816: Overlying metal wire layer

818:電路徑 818: Electrical Path

900、1200、1300、1400、1500、1600、1700、1800、1900、2100、2500、2600、2700、2800、2900、3000、3100、3200、3800、3900、4000、4100、4200、4300、4400、4500、4600、4700、4800、4900、5000、5100、5200、5300、5400、5500、、5600、5700、5800、5900、6000、6100、6200、6300、6400、6500、6600、6700、6800、6900、7000、7100、7200、7300、7400、7500、7600:橫截面圖 900, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2100, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500,, 5600, 5700, 5800, 5900, 6000, 6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900 , 7000, 7100, 7200, 7300, 7400, 7500, 7600: cross-sectional view

906:俯視圖 906: top view

1002:自對準漂移區 1002: Self-aligned drift zone

1002s、3402s、3502s:側壁 1002s, 3402s, 3502s: sidewall

1100、3300、7700:方法 1100, 3300, 7700: method

1102、1104、1106、1108、1110、1112、1114、1116、1118、1120、3302、3304、3306、3308、3310、3312、3314、3316、3318、7702、7704、7706、7708、7710、7712、7714、7716、7718、7720:動作 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118, 1120, 3302, 3304, 3306, 3308, 3310, 3312, 3314, 3316, 3318, 7702, 7704, 7706, 7708, 7710, 7712 7714, 7716, 7718, 7720: action

1204:高能量摻雜劑 1204: high energy dopant

1602:第一蝕刻劑 1602: the first etchant

1604、2702、3003、4604:遮蔽層 1604, 2702, 3003, 4604: masking layer

1606:接觸開口 1606: contact opening

1608:場板開口 1608: Field Board Opening

1704、3102、5602、5806:線 1704, 3102, 5602, 5806: line

2002、4102:RPO 2002, 4102: RPO

2004:複合蝕刻終止層 2004: Composite etch stop layer

2006、2008、3704:介電材料 2006, 2008, 3704: Dielectric materials

2108:側向距離 2108: Lateral distance

2110、3004:非零深度 2110, 3004: non-zero depth

2112、th1:第一厚度 2112, th1 : first thickness

2116、d、d1、dr、dV:距離 2116, d, d1, dr, dV : distance

2120:俯視圖 2120: Top view

2302、2402:第一介電材料 2302, 2402: the first dielectric material

2304、2404:第二介電材料 2304, 2404: second dielectric material

2306、2406:第三介電材料 2306, 2406: third dielectric material

2408:第四介電材料 2408: Fourth Dielectric Material

3002、4602:蝕刻劑 3002, 4602: Etchant

3403:界面 3403: Interface

3408:第三ILD層 3408: third ILD layer

3410:蝕刻終止層 3410: Etch stop layer

3602:金屬閘極結構 3602: Metal gate structure

3604:金屬閘極電極 3604: Metal gate electrode

3606:閘極介電質 3606: gate dielectric

3702、3902:空腔 3702, 3902: cavity

5102:犧牲閘極結構 5102: Sacrificial gate structure

5104:犧牲閘極電極 5104: Sacrifice gate electrode

5702:替換閘極空腔 5702: Replace gate cavity

d L1 :第一側向距離 d L1 : first lateral distance

d L2 :第二側向距離 d L2 : second lateral distance

s:間距 s : Spacing

t:厚度 t : thickness

th2:第二厚度 th2 : second thickness

th3:第三厚度 th3 : third thickness

th4:第四厚度 th4 : fourth thickness

th5:第五厚度 th5 : fifth thickness

w:寬度 w : width

當結合附圖閱讀時,從以下詳細描述最好地理解本揭露的各方面。應注意,根據行業中的標準慣例,各種特徵未按比例繪製。實際上,為了論述清晰起見,可任意增大或減小各種特徵的尺寸。 When read in conjunction with the accompanying drawings, various aspects of the present disclosure can be best understood from the following detailed description. It should be noted that in accordance with standard practices in the industry, various features are not drawn to scale. In fact, for clarity of discussion, the size of various features can be increased or decreased arbitrarily.

圖1示出了具有場板的所揭露高電壓電晶體元件的一些實施例的橫截面圖。 Figure 1 shows a cross-sectional view of some embodiments of the disclosed high-voltage transistor elements with field plates.

圖2到圖4示出了具有場板的所揭露高電壓側向擴散MOSFET(LDMOS)元件的一些額外實施例的橫截面圖。 Figures 2 to 4 show cross-sectional views of some additional embodiments of the disclosed high-voltage laterally diffused MOSFET (LDMOS) element with field plates.

圖5到圖6示出了通過金屬互連佈線來實現的高電壓LDMOS元件的場板偏壓配置的一些實施例的橫截面圖。 5 to 6 show cross-sectional views of some embodiments of the field plate bias configuration of the high voltage LDMOS element realized by metal interconnection wiring.

圖7A到圖7C示出了呈不同切換隔離配置的高電壓LDMOS元件的一些實施例的橫截面圖。 7A to 7C show cross-sectional views of some embodiments of high voltage LDMOS devices in different switching isolation configurations.

圖8示出了具有場板的源極向下高電壓電晶體元件(source downward high voltage transistor device)的橫截面圖。 Figure 8 shows a cross-sectional view of a source downward high voltage transistor device with a field plate.

圖9A到圖9B示出了在金屬線層上具有場板的所揭露高電壓LDMOS的一些實施例。 9A to 9B show some embodiments of the disclosed high-voltage LDMOS with field plates on the metal line layer.

圖10示出了具有自對準漂移區的高電壓LDMOS元件的一些實施例。 Figure 10 shows some embodiments of high voltage LDMOS devices with self-aligned drift regions.

圖11示出了形成一種具有場板的高電壓電晶體元件的方法的一些實施例的流程圖。 Figure 11 shows a flowchart of some embodiments of a method of forming a high voltage transistor element with a field plate.

圖12到圖19示出了繪示一種形成具有場板的高電壓電晶體元件的方法的一些實施例的橫截面圖。 12 to 19 show cross-sectional views illustrating some embodiments of a method of forming a high-voltage transistor element with a field plate.

圖20到圖24示出了具有界定場板的複合蝕刻終止層的所揭露高電壓電晶體元件的一些實施例。 Figures 20-24 show some embodiments of the disclosed high-voltage transistor elements having a composite etch stop layer defining a field plate.

圖25到圖32示出了繪示一種形成具有界定場板的複合蝕刻終止層的高電壓電晶體元件的方法的一些實施例的橫截面圖。 25 to 32 show cross-sectional views illustrating some embodiments of a method of forming a high voltage transistor element having a composite etch stop layer defining a field plate.

圖33示出了形成一種具有界定場板的複合蝕刻終止層的高電壓電晶體元件的方法的一些實施例的流程圖。 Figure 33 shows a flowchart of some embodiments of a method of forming a high voltage transistor element with a composite etch stop layer defining a field plate.

圖34到圖39示出了具有界定場板的場板蝕刻終止結構的所揭露高電壓電晶體元件的一些實施例的橫截面圖,所述場板包括 從導電接觸件的底部表面豎直偏移的底部表面。 Figures 34 to 39 show cross-sectional views of some embodiments of the disclosed high voltage transistor elements having a field plate etch stop structure defining a field plate, the field plate comprising A bottom surface that is vertically offset from the bottom surface of the conductive contact.

圖40到圖50示出了繪示一種形成具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 40 to 50 show cross-sectional views illustrating some embodiments of a method of forming a high-voltage transistor element having a field plate etch stop structure defining a field plate, the field plate including a conductive contact from the bottom The bottom surface where the surface is offset vertically.

圖51到圖65示出了繪示一種形成具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些額外實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 Figures 51 to 65 show cross-sectional views illustrating some additional embodiments of a method of forming a high-voltage transistor element having a field plate etch stop structure defining a field plate, the field plate including a conductive contact The bottom surface that is vertically offset from the bottom surface.

圖66到圖76示出了繪示一種形成具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些額外實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 66 to 76 show cross-sectional views illustrating some additional embodiments of a method of forming a high-voltage transistor element having a field plate etch stop structure defining a field plate, the field plate including a conductive contact The bottom surface that is vertically offset from the bottom surface.

圖77示出了形成一種具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些實施例的流程圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 FIG. 77 shows a flowchart of some embodiments of a method of forming a high voltage transistor element having a field plate etch stop structure defining a field plate, the field plate including a vertical offset from the bottom surface of the conductive contact The bottom surface.

以下揭露提供用於實施所提供主題的不同特徵的許多不同實施例或實例。下文描述構件和佈置的特定實例以簡化本揭露內容。當然,這些構件和佈置只是實例且並不意欲為限制性的。舉例來說,在以下描述中,第一特徵在第二特徵上方或第二特徵上的形成可包含第一特徵和第二特徵直接接觸地形成或安置的實施例,並且還可包含額外特徵可在第一特徵與第二特徵之間形成或安置,使得第一特徵和第二特徵可不直接接觸的實施例。另外,本發明可以在各種實例中重複參考標號及/或字母。此重複是出於簡單和清晰的目的,且本身並不指示所論述的各種實施例和/或配 置之間的關係。 The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. Of course, these components and arrangements are only examples and are not intended to be limiting. For example, in the following description, the formation of the first feature on or on the second feature may include an embodiment in which the first feature and the second feature are directly formed or arranged in contact, and may also include additional features. An embodiment in which the first feature and the second feature are formed or arranged so that the first feature and the second feature may not directly contact. In addition, the present invention may repeat reference numerals and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and does not in itself indicate the various embodiments and/or configurations discussed. The relationship between the settings.

此外,為易於描述,本文中可使用例如「在......下方」、「在......之下」、「下部」、「在......之上」、「上部」等空間相對術語來描述如圖中所示出的一個構件或特徵相對於另一構件或特徵的關係。除圖中所描繪的取向之外,空間上相對的術語意圖涵蓋在使用或操作中的元件的不同取向。設備可以其他方式定向(旋轉90度或處於其他取向),且本文中所使用的空間相對描述詞同樣可相應地進行解釋。 In addition, for ease of description, for example, "below", "below", "lower", "above", Spatial relative terms such as "upper" describe the relationship of one component or feature relative to another component or feature as shown in the figure. In addition to the orientations depicted in the figures, spatially relative terms are intended to cover different orientations of elements in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the spatial relative descriptors used in this article can also be interpreted accordingly.

高電壓電晶體元件通常構造成具有場板。場板是放置在通道區上方以通過操縱由閘極電極生成的電場(例如減小峰值電場)提高高電壓電晶體元件的性能的導電構件。通過操縱由閘極電極生成的電場,高電壓電晶體元件可達到更高的擊穿電壓。舉例來說,側向擴散金屬氧化物半導體(laterally diffused metal oxide semiconductor;LDMOS)電晶體元件通常包括場板,所述場板從通道區延伸到安置在通道區與汲極區之間的鄰近漂移區。 High-voltage transistor elements are usually constructed with field plates. The field plate is a conductive member placed above the channel region to improve the performance of the high voltage transistor element by manipulating the electric field generated by the gate electrode (for example, reducing the peak electric field). By manipulating the electric field generated by the gate electrode, the high-voltage transistor element can achieve a higher breakdown voltage. For example, a laterally diffused metal oxide semiconductor (LDMOS) transistor element usually includes a field plate that extends from the channel region to the adjacent drift disposed between the channel region and the drain region. Area.

場板可以多個不同方式形成。舉例來說,可通過導電閘極材料(例如多晶矽)從閘極電極朝漂移區延伸以形成場板。然而,在這類配置中,場板與閘極偏壓同步,這給閘極-汲極電容(Cgd)帶來負擔並惡化元件開關損耗。替代地,導電閘極材料可圖案化以形成隔開的場板。這類配置降低閘極-汲極電容(Cgd),但場板的放置往往受限於設計規則。在又一替代方案中,非閘極材料可用於場板形成。然而,這類解決方案使用額外加工步驟,增加所得積體晶片的製造成本。 The field plates can be formed in a number of different ways. For example, a conductive gate material (such as polysilicon) can be extended from the gate electrode toward the drift region to form a field plate. However, in this type of configuration, the field plate is synchronized with the gate bias voltage, which puts a burden on the gate-drain capacitance (C gd ) and deteriorates the switching loss of the element. Alternatively, the conductive gate material can be patterned to form spaced field plates. This type of configuration reduces the gate-drain capacitance (C gd ), but the placement of the field plate is often limited by design rules. In yet another alternative, non-gate materials can be used for field plate formation. However, this type of solution uses additional processing steps, increasing the manufacturing cost of the resulting integrated wafer.

因此,本揭露關於具有由非閘極材料製成的場板的高電 壓電晶體元件,高電壓電晶體元件與後段製程(back-end-of-the-line;BEOL)金屬層的形成同時形成以實現低成本製造方法。在一些實施例中,高電壓電晶體元件具有閘極電極,閘極電極安置在基底上方,位於定位在基底內的源極區與汲極區之間。介電層從閘極電極上方側向延伸到佈置在閘極電極與汲極區之間的漂移區。場板位於上覆基底的第一層間介電(inter-level dielectric;ILD)層內。場板從閘極電極上方側向延伸到漂移區上方且從介電層豎直延伸到第一ILD層的頂部表面。具有與場板相同的材料的多個金屬接觸件從第一ILD層的底部表面豎直延伸到第一ILD層的頂部表面。 Therefore, the present disclosure relates to high-voltage electric field plates with field plates made of non-gate Piezoelectric crystal elements, high-voltage transistor elements and back-end-of-the-line (BEOL) metal layers are formed at the same time to realize a low-cost manufacturing method. In some embodiments, the high-voltage transistor element has a gate electrode, and the gate electrode is disposed above the substrate, between the source region and the drain region positioned in the substrate. The dielectric layer extends laterally from above the gate electrode to a drift region arranged between the gate electrode and the drain region. The field plate is located in the first inter-level dielectric (ILD) layer of the overlying substrate. The field plate extends laterally from above the gate electrode to above the drift region and vertically from the dielectric layer to the top surface of the first ILD layer. A plurality of metal contacts having the same material as the field plate extends vertically from the bottom surface of the first ILD layer to the top surface of the first ILD layer.

圖1示出了具有場板122的高電壓電晶體元件100的一些實施例的橫截面圖。 FIG. 1 shows a cross-sectional view of some embodiments of a high voltage transistor element 100 with a field plate 122.

高電壓電晶體元件100包括安置於半導體基底102內的源極區104和汲極區106。半導體基底102具有第一摻雜類型,而源極區104和汲極區106具有第二摻雜類型,摻雜濃度比半導體基底102的更高。在一些實施例中,第一摻雜類型可以是p型摻雜且第二摻雜類型可以是n型摻雜。 The high-voltage transistor device 100 includes a source region 104 and a drain region 106 disposed in a semiconductor substrate 102. The semiconductor substrate 102 has a first doping type, and the source region 104 and the drain region 106 have a second doping type, and the doping concentration is higher than that of the semiconductor substrate 102. In some embodiments, the first doping type may be p-type doping and the second doping type may be n-type doping.

閘極結構116安置在半導體基底102上方,處於側向佈置在源極區104與汲極區106之間的位置。閘極結構116包括通過閘極介電層110與半導體基底102分離的閘極電極108。當接收偏壓電壓時,閘極電極108配置成生成電場,電場控制通道區112內的電荷載流子的移動,所述通道區側向安置在源極區104與汲極區106之間。舉例來說,在操作期間,閘極-源極電壓(gate-source voltage;VGS)可選擇性地施加於與源極區104相關 的閘極電極108,在通道區112中形成導電通道。雖然施加VGS以形成導電通道,但汲極-源極電壓(drain to source voltage;VDS)被施加以在源極區104與汲極區106之間移動電荷載流子(例如,由箭頭105所示)。 The gate structure 116 is arranged above the semiconductor substrate 102 in a position laterally arranged between the source region 104 and the drain region 106. The gate structure 116 includes a gate electrode 108 separated from the semiconductor substrate 102 by a gate dielectric layer 110. When receiving a bias voltage, the gate electrode 108 is configured to generate an electric field, and the electric field controls the movement of charge carriers in the channel region 112 which is laterally arranged between the source region 104 and the drain region 106. For example, during operation, a gate-source voltage (V GS ) can be selectively applied to the gate electrode 108 associated with the source region 104 to form a conductive channel in the channel region 112. Although V GS is applied to form a conductive channel, a drain to source voltage (V DS ) is applied to move charge carriers between the source region 104 and the drain region 106 (for example, as indicated by the arrow 105).

通道區112從源極區104側向延伸到鄰近漂移區114(即,汲極延伸區)。漂移區114包括具有相對較低摻雜濃度的第二摻雜類型,這在高操作電壓下提供較高電阻。閘極結構116安置於通道區112上方。在一些實施例中,閘極結構116可從通道區112上方延伸到上覆漂移區114的一部分的位置。 The channel region 112 extends laterally from the source region 104 to the adjacent drift region 114 (ie, the drain extension region). The drift region 114 includes a second doping type having a relatively low doping concentration, which provides a higher resistance at a high operating voltage. The gate structure 116 is disposed above the channel region 112. In some embodiments, the gate structure 116 may extend from above the channel region 112 to a position overlying a portion of the drift region 114.

第一層間介電(ILD)層118安置在半導體基底102上方。一或多個導電金屬結構安置在第一ILD層118內。在一些實施例中,一或多個導電金屬結構包括多個接觸件120,多個接觸件配置成提供源極區104、汲極區106或閘極電極108與安置在上覆第一ILD層118的第二ILD層126內的第一後段製程(BEOL)金屬線層128之間的豎直連接。 The first interlayer dielectric (ILD) layer 118 is disposed on the semiconductor substrate 102. One or more conductive metal structures are disposed in the first ILD layer 118. In some embodiments, the one or more conductive metal structures include a plurality of contacts 120 configured to provide a source region 104, a drain region 106 or a gate electrode 108 and an overlying first ILD layer The vertical connection between the first back end of line (BEOL) metal line layer 128 in the second ILD layer 126 of 118.

一或多個導電金屬結構還可包括安置在第一ILD層118內處於上覆閘極電極108和漂移區114的部分的位置的場板122。場板122包括與多個接觸件120相同的導電材料。場板122可安置於介電層124上方,所述介電層配置成將場板122、漂移區114以及閘極電極108隔開。在一些實施例中,介電層124在一或多個方向上側向延伸超過場板122。 The one or more conductive metal structures may also include a field plate 122 disposed in the first ILD layer 118 at a position overlying the gate electrode 108 and the portion of the drift region 114. The field plate 122 includes the same conductive material as the plurality of contacts 120. The field plate 122 may be disposed above the dielectric layer 124 configured to separate the field plate 122, the drift region 114, and the gate electrode 108. In some embodiments, the dielectric layer 124 extends laterally beyond the field plate 122 in one or more directions.

在操作期間,場板122配置成作用於由閘極電極108生成的電場。場板122可配置成改變由閘極電極108生成的電場在漂移區114中的分佈,這增強漂移區114的內部電場且提高漂移 區114的偏移摻雜濃度,由此增強高電壓電晶體元件100的擊穿電壓能力。 During operation, the field plate 122 is configured to act on the electric field generated by the gate electrode 108. The field plate 122 may be configured to change the distribution of the electric field generated by the gate electrode 108 in the drift region 114, which enhances the internal electric field of the drift region 114 and improves the drift. The offset doping concentration of the region 114 thereby enhances the breakdown voltage capability of the high voltage transistor 100.

圖2示出包括具有場板214的高電壓側向擴散MOSFET(LDMOS)元件200的所揭露高電壓電晶體元件的一些額外實施例的橫截面圖。 FIG. 2 shows a cross-sectional view of some additional embodiments of the disclosed high voltage transistor element including a high voltage lateral diffused MOSFET (LDMOS) element 200 with a field plate 214.

LDMOS元件200包括安置在半導體基底102內的源極區104和汲極區106。半導體基底102具有第一摻雜,而源極區104和汲極區106包括具有不同於第一摻雜類型的第二摻雜類型的高度摻雜區。在一些實施例中,第一摻雜類型可以是n型摻雜且第二摻雜類型可以是p型摻雜。在一些實施例中,源極區104和汲極區106可具有介於大約1019cm-3與大約1020cm-3的範圍內的摻雜濃度。 The LDMOS device 200 includes a source region 104 and a drain region 106 disposed in a semiconductor substrate 102. The semiconductor substrate 102 has a first doping, and the source region 104 and the drain region 106 include highly doped regions having a second doping type different from the first doping type. In some embodiments, the first doping type may be n-type doping and the second doping type may be p-type doping. In some embodiments, the source region 104 and the drain region 106 may have a doping concentration in the range of about 10 19 cm −3 and about 10 20 cm −3.

具有第一摻雜類型(例如,p+摻雜)的接觸區208(例如,「p型接觸」(p-tap)或「n型接觸」(n-tap))側向鄰接源極區104。接觸區208為半導體基底102提供歐姆連接。在一些實施例中,接觸區208可具有介於大約1018cm-3與大約1020cm-3的範圍內的p型摻雜濃度。接觸區208和源極區104安置在主體區202內。主體區202具有摻雜濃度比半導體基底102的摻雜濃度高的第一摻雜類型。舉例來說,半導體基底102可具有介於大約1014cm-3與大約1016cm-3的範圍內的摻雜濃度,而主體區202可具有介於大約1016cm-3與大約1018cm-3的範圍內的摻雜濃度。 The contact region 208 (eg, “p-type contact” (p-tap) or “n-type contact” (n-tap)) having the first doping type (eg, p+ doping) laterally adjoins the source region 104. The contact area 208 provides an ohmic connection for the semiconductor substrate 102. In some embodiments, the contact region 208 may have a p-type doping concentration in the range of about 10 18 cm −3 and about 10 20 cm −3. The contact region 208 and the source region 104 are arranged in the body region 202. The body region 202 has a first doping type with a higher doping concentration than the semiconductor substrate 102. For example, the semiconductor substrate 102 may have a doping concentration ranging between about 10 14 cm -3 and about 10 16 cm -3 , and the body region 202 may have a doping concentration ranging between about 10 16 cm -3 and about 10 18 cm -3. The doping concentration in the range of cm -3.

汲極區106安置在漂移區204內,所述漂移區佈置在半導體基底102內,處於側向鄰接主體區202的位置。漂移區204包括具有相對較低摻雜濃度的第二摻雜類型,這在LDMOS元件 200在高操作電壓下操作時提供較高電阻。在一些實施例中,漂移區204可具有介於大約1015cm-3與大約1017cm-3的範圍內的摻雜濃度。 The drain region 106 is disposed in the drift region 204, and the drift region is disposed in the semiconductor substrate 102 at a position laterally adjacent to the body region 202. The drift region 204 includes a second doping type having a relatively low doping concentration, which provides a higher resistance when the LDMOS device 200 is operated at a high operating voltage. In some embodiments, the drift region 204 may have a doping concentration in the range of about 10 15 cm -3 and about 10 17 cm -3.

閘極結構210安置在半導體基底102上方,處於側向佈置在源極區104與汲極區106之間的位置。在一些實施例中,閘極結構210可從主體區202上方延伸到上覆漂移區204的一部分的位置。閘極結構210包括通過閘極介電層110與半導體基底102分離的閘極電極108。在一些實施例中,閘極介電層110可包括二氧化矽(SiO2)或高k閘極介電材料,且閘極電極108可包括多晶矽或金屬閘極材料(例如鋁)。在一些實施例中,閘極結構210還可包括安置在閘極電極108的相對側上的側壁間隔件212。在各種實施例中,側壁間隔件212可包括氮化物類側壁間隔件(例如包括SiN)或氧化物類側壁間隔件(例如SiO2、SiOC等)。 The gate structure 210 is arranged above the semiconductor substrate 102 in a position laterally arranged between the source region 104 and the drain region 106. In some embodiments, the gate structure 210 may extend from above the body region 202 to a position overlying a portion of the drift region 204. The gate structure 210 includes a gate electrode 108 separated from the semiconductor substrate 102 by a gate dielectric layer 110. In some embodiments, the gate dielectric layer 110 may include silicon dioxide (SiO 2 ) or a high-k gate dielectric material, and the gate electrode 108 may include polysilicon or a metal gate material (such as aluminum). In some embodiments, the gate structure 210 may further include sidewall spacers 212 disposed on opposite sides of the gate electrode 108. In various embodiments, the sidewall spacers 212 may include nitride-based sidewall spacers (for example, including SiN) or oxide-based sidewall spacers (for example, SiO 2 , SiOC, etc.).

一或多個介電層124安置於閘極電極108和漂移區204上方。在一些實施例中,一或多個介電層124從閘極電極108的一部分上方持續延伸到漂移區204的一部分上方。在一些實施例中,一或多個介電層124可保形地(conformally)安置到漂移區204、閘極電極108以及側壁間隔件212上。 One or more dielectric layers 124 are disposed above the gate electrode 108 and the drift region 204. In some embodiments, the one or more dielectric layers 124 continuously extend from above a portion of the gate electrode 108 to above a portion of the drift region 204. In some embodiments, one or more dielectric layers 124 may be conformally disposed on the drift region 204, the gate electrode 108, and the sidewall spacers 212.

場板214安置於一或多個介電層124上方且由第一ILD層118側向包圍。場板214從閘極電極108上方延伸到漂移區204上方。場板214的大小可根據LDMOS元件200的大小和特性而不同。在一些實施例中,場板214可具有介於大約50奈米與大約1微米之間的大小。在其他實施例中,場板214可更大或更小。在一些實施例中,第一ILD層118可包括具有相對較低介電常數(例 如,小於或等於大約3.9)的介電材料,這提供多個接觸件120及/或場板122之間的電隔離。在一些實施例中,第一ILD層118可包括超低k介電材料或低k介電材料(例如SiCO)。 The field plate 214 is disposed above the one or more dielectric layers 124 and is laterally surrounded by the first ILD layer 118. The field plate 214 extends from above the gate electrode 108 to above the drift region 204. The size of the field plate 214 may be different according to the size and characteristics of the LDMOS device 200. In some embodiments, the field plate 214 may have a size between about 50 nanometers and about 1 micrometer. In other embodiments, the field plate 214 may be larger or smaller. In some embodiments, the first ILD layer 118 may include a relatively low dielectric constant (e.g. For example, a dielectric material less than or equal to about 3.9), which provides electrical isolation between the plurality of contacts 120 and/or the field plate 122. In some embodiments, the first ILD layer 118 may include an ultra-low-k dielectric material or a low-k dielectric material (such as SiCO).

場板214從介電層124豎直延伸到第一ILD層118的頂部表面。在一些實施例中,場板214可豎直延伸到大於或等於接觸件120和第一ILD層118的頂部表面的高度的高度。場板122具有鄰接一或多個介電層124的非平坦(non-flat)表面。非平坦表面使得場板122在閘極電極108上方的區中具有第一厚度t 1 且在上覆漂移區204的區中具有大於第一厚度t 1 的第二厚度t 2 The field plate 214 extends vertically from the dielectric layer 124 to the top surface of the first ILD layer 118. In some embodiments, the field plate 214 may extend vertically to a height greater than or equal to the height of the contact 120 and the top surface of the first ILD layer 118. The field plate 122 has a non-flat surface adjacent to one or more dielectric layers 124. The uneven surface causes the field plate 122 to have a first thickness t 1 in the region above the gate electrode 108 and a second thickness t 2 greater than the first thickness t 1 in the region overlying the drift region 204.

多個接觸件120也由第一ILD層118包圍。多個接觸件120可包括耦合到接觸區208的第一接觸件120a,耦合到汲極區106的第二接觸件120b,以及耦合到閘極電極108的第三接觸件120c。在一些實施例中,第一接觸件120a可包括鄰接接觸件(未圖示),所述第一接觸件接觸接觸區208和源極區104兩個。在一些實施例中,多個接觸件120和場板122可包括相同金屬材料。舉例來說,多個接觸件120和場板122可包括鎢(tungsten;W)、氮化鉭(tantalum-nitride;TaN)、鈦(titanium;Ti)、氮化鈦(titanium-nitride;TiN)、鋁銅(aluminum copper;AlCu)、銅(copper;Cu)和/或其他類似導電材料中的一或多個。 The plurality of contacts 120 are also surrounded by the first ILD layer 118. The plurality of contacts 120 may include a first contact 120 a coupled to the contact region 208, a second contact 120 b coupled to the drain region 106, and a third contact 120 c coupled to the gate electrode 108. In some embodiments, the first contact 120 a may include abutting contacts (not shown) that contact both the contact region 208 and the source region 104. In some embodiments, the plurality of contacts 120 and the field plate 122 may include the same metal material. For example, the plurality of contacts 120 and the field plate 122 may include tungsten (W), tantalum-nitride (TaN), titanium (Ti), titanium-nitride (TiN) One or more of aluminum copper (AlCu), copper (Cu) and/or other similar conductive materials.

圖3示出了具有場板214的所揭露高電壓LDMOS元件300的一些額外實施例的橫截面圖。 FIG. 3 shows a cross-sectional view of some additional embodiments of the disclosed high-voltage LDMOS device 300 with a field plate 214.

LDMOS元件300包括安置在漂移區204內處於側向佈置於閘極結構210與汲極區106之間的位置的隔離區302。隔離區302改進閘極結構210與汲極區106之間的隔離,以便預防在 LDMOS元件300以大操作電壓操作時的閘極結構210與漂移區204之間的介電擊穿。舉例來說,隔離區302可引入到LDMOS元件的漂移區204中以增大LDMOS元件300的擊穿電壓而不顯著改變LDMOS元件的製造製程,所述LDMOS元件被設計成在擊穿電壓下操作。在一些實施例中,隔離區302可包括淺溝槽隔離(shallow trench isolation;STI)。在其他實施例中,隔離區302可包括場氧化物。 The LDMOS device 300 includes an isolation region 302 arranged in the drift region 204 at a position laterally arranged between the gate structure 210 and the drain region 106. The isolation region 302 improves the isolation between the gate structure 210 and the drain region 106 in order to prevent The dielectric breakdown between the gate structure 210 and the drift region 204 when the LDMOS device 300 is operated at a large operating voltage. For example, the isolation region 302 can be introduced into the drift region 204 of the LDMOS device to increase the breakdown voltage of the LDMOS device 300 without significantly changing the manufacturing process of the LDMOS device, which is designed to operate at the breakdown voltage . In some embodiments, the isolation region 302 may include shallow trench isolation (STI). In other embodiments, the isolation region 302 may include a field oxide.

圖4示出了具有場板408的所揭露高電壓LDMOS元件400的一些額外實施例的橫截面圖。 FIG. 4 shows a cross-sectional view of some additional embodiments of the disclosed high voltage LDMOS device 400 with a field plate 408.

LDMOS元件400包括佈置於場板122與閘極結構210及/或漂移區204之間的多個介電層(402-404)。多個介電層(402-404)配置成使場板408與閘極結構210及/或漂移區204電隔離。在實施例中,多個介電層(402-404)可包括兩個或更多個不同介電材料。在一些實施例中,多個介電層(402-404)可包括在典型CMOS製造製程期間使用的一或多個介電層。以便限制用於使場板408與閘極結構210及/或漂移區204電隔離的額外製造步驟。 The LDMOS device 400 includes a plurality of dielectric layers (402-404) arranged between the field plate 122 and the gate structure 210 and/or the drift region 204. The plurality of dielectric layers (402-404) are configured to electrically isolate the field plate 408 from the gate structure 210 and/or the drift region 204. In an embodiment, the plurality of dielectric layers (402-404) may include two or more different dielectric materials. In some embodiments, the plurality of dielectric layers (402-404) may include one or more dielectric layers used during a typical CMOS manufacturing process. In order to limit the additional manufacturing steps used to electrically isolate the field plate 408 from the gate structure 210 and/or the drift region 204.

舉例來說,多個介電層(402-404)可包括矽化物阻擋層402。在一些實施例中,矽化物阻擋層402可包括配置成預防矽化物形成的光阻保護性氧化物(resist-protection oxide;RPO)層。矽化物阻擋層402可佈置在閘極電極108和漂移區204的部分上方。在一些實施例中,矽化物阻擋層402可從閘極電極108上方持續延伸到漂移區204上方。 For example, the plurality of dielectric layers (402-404) may include a silicide barrier layer 402. In some embodiments, the silicide barrier layer 402 may include a resist-protection oxide (RPO) layer configured to prevent the formation of silicide. The silicide barrier layer 402 may be disposed over the gate electrode 108 and the part of the drift region 204. In some embodiments, the silicide barrier layer 402 may continuously extend from above the gate electrode 108 to above the drift region 204.

在一些實施例中,多個介電層(402-404)還可包括場 板蝕刻終止層(etch stop layer;ESL)404。場板ESL 404可安置於矽化物阻擋層402上方且配置成控制對場板408的開口的蝕刻。場板ESL 404可考慮接觸件120與場板408之間的蝕刻深度的差,及/或考慮蝕刻速率的差(例如,歸因於蝕刻負載效應)。在一些實施例中,舉例來說,場板ESL 404可包括氮化矽(SiN)層。 In some embodiments, the plurality of dielectric layers (402-404) may also include field Etch stop layer (ESL) 404. The field plate ESL 404 may be disposed above the silicide barrier layer 402 and configured to control the etching of the opening of the field plate 408. The field plate ESL 404 may consider the difference in etching depth between the contact 120 and the field plate 408, and/or the difference in etching rate (eg, due to etching load effects). In some embodiments, for example, the field plate ESL 404 may include a silicon nitride (SiN) layer.

在一些替代實施例(未圖示)中,多個介電層(402-404)可另外或替代地包括閘極介電層。在此類實施例中,閘極介電層可佈置成側向鄰近閘極結構210,處於上覆漂移區204的位置。在一些實施例中,介電層氧化物可包括二氧化矽(例如,SiO2)或高k閘極介電材料。在又其他實施例中,多個介電層(402-404)可另外或替代地包括ILD層(例如,第一ILD層118)。 In some alternative embodiments (not shown), the plurality of dielectric layers (402-404) may additionally or alternatively include gate dielectric layers. In such an embodiment, the gate dielectric layer may be arranged laterally adjacent to the gate structure 210 at a position overlying the drift region 204. In some embodiments, the dielectric layer oxide may include silicon dioxide (eg, SiO 2 ) or a high-k gate dielectric material. In still other embodiments, the plurality of dielectric layers (402-404) may additionally or alternatively include an ILD layer (e.g., the first ILD layer 118).

接觸蝕刻終止層(CESL)406安置於半導體基底102和場板ESL 404上方。在一些實施例中,CESL 406在半導體基底102上方在多個接觸件120與場板408之間的位置處延伸,使得CESL 406鄰接多個接觸件120的側壁和場板408。CESL 406上覆閘極結構210。在一些實施例中,CESL 406還可上覆多個介電層(402-404)。在其他實施例中,多個介電層(402-404)中的一或多個(例如,場板ESL 404)可上覆CESL 406。在一些實施例中,CESL 406可包括氮化物層。舉例來說,CESL 406可包括氮化矽(SiN)。 A contact etch stop layer (CESL) 406 is disposed on the semiconductor substrate 102 and the field plate ESL 404. In some embodiments, the CESL 406 extends above the semiconductor substrate 102 at a position between the plurality of contacts 120 and the field plate 408 such that the CESL 406 abuts the sidewalls of the plurality of contacts 120 and the field plate 408. The CESL 406 covers the gate structure 210. In some embodiments, the CESL 406 may also be overlying multiple dielectric layers (402-404). In other embodiments, one or more of the plurality of dielectric layers (402-404) (for example, the field plate ESL 404) may overly the CESL 406. In some embodiments, CESL 406 may include a nitride layer. For example, CESL 406 may include silicon nitride (SiN).

場板408安置在第一ILD層118內且使CESL 406和多個介電層(402-404)中的一或多個鄰接。在一些實施例中,場板408延伸穿過CESL 406以鄰接多個介電層(402-404)中的一或多個。在這類實施例中,多個介電層(402-404)中的一或多個使場 板408與閘極結構210和漂移區204隔開。 The field plate 408 is disposed within the first ILD layer 118 and abuts the CESL 406 and one or more of the plurality of dielectric layers (402-404). In some embodiments, the field plate 408 extends through the CESL 406 to abut one or more of the plurality of dielectric layers (402-404). In such embodiments, one or more of the plurality of dielectric layers (402-404) make the field The plate 408 is separated from the gate structure 210 and the drift region 204.

在一些實施例中,場板408可包括第一金屬材料410和第二金屬材料412。第一金屬材料410可包括沿場板408的外邊緣安置的膠體層,而第二金屬材料412在場板408的內部區中嵌入於第一金屬材料410內(即,第二金屬材料412通過第一金屬材料410與CESL 406分離)。在一些實施例中,襯層414可安置於第一ILD層118與第一金屬材料410之間。 In some embodiments, the field plate 408 may include a first metal material 410 and a second metal material 412. The first metal material 410 may include a gel layer disposed along the outer edge of the field plate 408, and the second metal material 412 is embedded in the first metal material 410 in the inner region of the field plate 408 (ie, the second metal material 412 passes through The first metal material 410 is separated from the CESL 406). In some embodiments, the liner layer 414 may be disposed between the first ILD layer 118 and the first metal material 410.

在一些實施例中,沿場板408的外邊緣安置的第一金屬材料410具有沿實質上平坦(planar)表面420(即,通過平坦化製程形成的平坦表面)佈置的頂部表面。平坦表面420可與多個接觸件120的頂部表面對準。在一些實施例中,第一金屬材料410包括與多個接觸件120相同的材料,且第二金屬材料412包括與上覆多個接觸件120的第一金屬線層418相同的材料。舉例來說,在一些實施例中,第一金屬材料410可包括鎢(W)、鈦(Ti)、氮化鉭(TaN)或氮化鈦(TiN)。在一些實施例中,第二金屬材料412可包括銅(Cu)或鋁銅(AlCu)。 In some embodiments, the first metal material 410 disposed along the outer edge of the field plate 408 has a top surface arranged along a substantially planar surface 420 (ie, a planar surface formed by a planarization process). The flat surface 420 may be aligned with the top surface of the plurality of contacts 120. In some embodiments, the first metal material 410 includes the same material as the plurality of contacts 120, and the second metal material 412 includes the same material as the first metal wire layer 418 overlying the plurality of contacts 120. For example, in some embodiments, the first metal material 410 may include tungsten (W), titanium (Ti), tantalum nitride (TaN), or titanium nitride (TiN). In some embodiments, the second metal material 412 may include copper (Cu) or aluminum copper (AlCu).

應瞭解,歸因於其與後段製程(BEOL)金屬化層整合,所揭露的場板允許將出於不同設計考慮而易於獲得的各種場板偏壓配置。舉例來說,場板偏壓可通過改變金屬佈線層而非通過改變所揭露高電壓元件的設計而改變。此外,應瞭解,通過BEOL金屬互連佈線偏壓高電壓電晶體元件,允許使用單個製造製程流程將各種場板偏壓配置整合於相同晶片上。 It should be understood that due to its integration with the back end of line (BEOL) metallization layer, the disclosed field plate allows various field plate bias configurations that are easily available due to different design considerations. For example, the field plate bias voltage can be changed by changing the metal wiring layer instead of changing the design of the disclosed high-voltage element. In addition, it should be understood that biasing high-voltage transistor components through BEOL metal interconnect wiring allows the integration of various field plate bias configurations on the same wafer using a single manufacturing process flow.

圖5到圖6示出用於通過BEOL金屬互連佈線實現的高電壓電晶體元件的場板偏壓配置的一些實施例的橫截面圖。儘管 圖5到圖6示出借助於第一金屬線層(例如,504或604)的場板214與接觸區208或閘極電極108之間的連接,但BEOL金屬互連佈線不限於此。實際上,應瞭解,場板214可通過BEOL金屬互連層(例如,第一金屬線層、第一金屬通孔層、第二金屬電線層等)的任何組合連接到源極區、閘極電極、汲極區或塊狀接觸。 Figures 5 to 6 show cross-sectional views of some embodiments of field plate bias configurations for high voltage transistor elements implemented by BEOL metal interconnect wiring. although 5 to 6 show the connection between the field plate 214 and the contact area 208 or the gate electrode 108 by means of the first metal line layer (for example, 504 or 604), but the BEOL metal interconnection wiring is not limited thereto. In fact, it should be understood that the field plate 214 can be connected to the source region, the gate electrode by any combination of BEOL metal interconnection layers (for example, the first metal line layer, the first metal via layer, the second metal wire layer, etc.) Electrodes, drain regions or bulk contacts.

圖5示出高電壓LDMOS元件500的橫截面圖,其中場板214沿導電路徑506電耦合到接觸區208。場板214連接到第一金屬線層504,安置在第二ILD層502內。第一金屬線層504耦合到鄰接接觸區208的第一接觸件120a。通過將場板214電耦合到接觸區208,場板214通過源極電壓偏壓。通過源極電壓偏壓場板214向高電壓LDMOS元件500提供低導通狀態電阻Rds(on)和低動態功率耗散(例如,低Rds(on)*Qgd vs.BV)。低動態功率耗散在高頻切換應用期間提供良好效能。 FIG. 5 shows a cross-sectional view of a high voltage LDMOS element 500 in which the field plate 214 is electrically coupled to the contact area 208 along the conductive path 506. The field plate 214 is connected to the first metal line layer 504 and is disposed in the second ILD layer 502. The first metal line layer 504 is coupled to the first contact 120 a adjacent to the contact area 208. By electrically coupling the field plate 214 to the contact area 208, the field plate 214 is biased by the source voltage. The source voltage bias field plate 214 provides the high-voltage LDMOS element 500 with low on-state resistance Rds(on) and low dynamic power dissipation (for example, low Rds(on)*Qgd vs. BV). Low dynamic power dissipation provides good performance during high frequency switching applications.

圖6示出高電壓LDMOS元件600的橫截面圖,其中場板214沿導電路徑606電耦合到閘極電極108。場板214連接到第一金屬線層604,安置在第二ILD層602內。第一金屬線層604連接到鄰接閘極電極108的第二接觸件120b。通過將場板214電耦合到閘極電極108,場板214通過閘極電壓偏壓。通過閘極電壓偏壓場板214向高電壓LDMOS元件600提供低Rds(on)vs.擊穿電壓。 FIG. 6 shows a cross-sectional view of a high voltage LDMOS device 600 in which the field plate 214 is electrically coupled to the gate electrode 108 along a conductive path 606. The field plate 214 is connected to the first metal line layer 604 and is disposed in the second ILD layer 602. The first metal wire layer 604 is connected to the second contact 120 b adjacent to the gate electrode 108. By electrically coupling the field plate 214 to the gate electrode 108, the field plate 214 is biased by the gate voltage. The high voltage LDMOS device 600 is provided with a low Rds(on) vs. breakdown voltage through the gate voltage bias field plate 214.

多種場板偏壓配置允許所揭露場板形成可用於不同應用的通用高電壓電晶體元件。舉例來說,具有閘極偏壓場板的高電壓電晶體元件的導通狀態電阻Rds(on)低於具有源極偏壓場板的高電壓電晶體元件的Rds(on)。然而,具有源極偏壓場板的高電 壓電晶體元件的Rds(on))*Qgd低於具有閘極節點偏壓場板的高電壓電晶體元件的Rds(on))*Qgd。因此,具有閘極偏壓場板的高電壓電晶體元件(例如,高電壓LDMOS元件500)可在低頻切換應用(例如,低於10兆赫茲)中使用,而具有源極偏壓場板的高電壓電晶體元件(例如,高電壓LDMOS元件600)可在高頻切換應用(例如,高於10兆赫茲)中使用。 Multiple field plate bias configurations allow the disclosed field plate to form a universal high voltage transistor element that can be used in different applications. For example, the on-state resistance Rds(on) of the high-voltage transistor element with the gate bias field plate is lower than the Rds(on) of the high-voltage transistor element with the source bias field plate. However, the high-voltage field plate with source bias The Rds(on))*Qgd of the piezoelectric crystal element is lower than the Rds(on))*Qgd of the high-voltage transistor element with a gate node bias field plate. Therefore, high-voltage transistor elements with gate bias field plates (e.g., high-voltage LDMOS element 500) can be used in low-frequency switching applications (e.g., below 10 MHz), while those with source bias field plates High voltage transistor elements (for example, high voltage LDMOS element 600) can be used in high frequency switching applications (for example, higher than 10 MHz).

圖7A到圖7C示出了呈不同切換隔離配置的高電壓LDMOS元件700a-700c的一些實施例的橫截面圖。 7A to 7C show cross-sectional views of some embodiments of high voltage LDMOS devices 700a-700c in different switching isolation configurations.

如圖7A中所示,高電壓LDMOS元件700a被配置成低側開關(例如,在反相器中連接到地的開關)。在這類配置中,高電壓LDMOS元件700a具有在切換週期期間浮置以使得源極區104上的電壓可改變的源極區104。 As shown in FIG. 7A, the high-voltage LDMOS element 700a is configured as a low-side switch (for example, a switch connected to ground in an inverter). In this type of configuration, the high-voltage LDMOS element 700a has a source region 104 that floats during the switching period so that the voltage on the source region 104 can be changed.

如圖7B中所示,高電壓LDMOS元件700b被配置成高側開關(例如,在反相器中連接到VDD的開關)。在這類配置中,高電壓LDMOS元件700b具有連接到源極電壓的源極區104。高電壓LDMOS元件700b具有漂移區702,所述漂移區在主體區202下方延伸以通過防止電荷載流子從接觸區208行進到半導體基底102(例如,借助於穿通(punch through))來防止源極電壓升高到高於基底電壓。 As shown in FIG. 7B, the high-voltage LDMOS element 700b is configured as a high-side switch (for example, a switch connected to V DD in an inverter). In this type of configuration, the high voltage LDMOS element 700b has the source region 104 connected to the source voltage. The high voltage LDMOS element 700b has a drift region 702 that extends below the body region 202 to prevent the source The pole voltage rises above the base voltage.

如圖7C中所示,高電壓LDMOS元件700c與基底完全隔離以允許獨立偏壓。高電壓電晶體元件700c包括深井704和配置成提供豎直隔離的反向摻雜的下伏埋入層706。在一些實施例中,深井704可具有第一摻雜類型(例如,與主體區202相同的摻雜類型),且埋入層706可具有第二摻雜類型。 As shown in FIG. 7C, the high voltage LDMOS device 700c is completely isolated from the substrate to allow independent biasing. The high voltage transistor element 700c includes a deep well 704 and a counter-doped underlying buried layer 706 configured to provide vertical isolation. In some embodiments, the deep well 704 may have a first doping type (for example, the same doping type as the body region 202), and the buried layer 706 may have a second doping type.

高電壓LDMOS元件700c更包括使汲極區與塊體區708側向隔開的一或多個額外STI區206以及具有第二摻雜類型的埋入層710。塊體區708上覆深井704,且埋入層710上覆具有第二第一摻雜類型且鄰接埋入層706的井區712。接觸件120配置成將偏置電壓提供到塊體區708和埋入層710,以便在深井704和埋入層706與井區712之間形成結隔離(junction isolation)。結隔離允許完全隔離的高電壓LDMOS元件700c在一系列偏壓電壓內操作。 The high-voltage LDMOS device 700c further includes one or more additional STI regions 206 laterally separating the drain region from the bulk region 708 and a buried layer 710 having a second doping type. The bulk region 708 overlies the deep well 704, and the buried layer 710 overlies the well region 712 having the second first doping type and is adjacent to the buried layer 706. The contact 120 is configured to provide a bias voltage to the bulk region 708 and the buried layer 710 so as to form junction isolation between the deep well 704 and the buried layer 706 and the well region 712. Junction isolation allows the fully isolated high voltage LDMOS element 700c to operate within a series of bias voltages.

圖8示出了具有場板214的源極向下高電壓電晶體元件800的橫截面圖。 FIG. 8 shows a cross-sectional view of a source-down high-voltage transistor element 800 with a field plate 214.

高電壓電晶體元件800包括具有高摻雜濃度的第一摻雜類型(例如,p+摻雜類型)的基底802。源極區804沿基底802的背側802b安置。在不同實施例中,源極區804可包括高度摻雜區或金屬層。具有第一導電類型的磊晶層806安置於基底802的前側表面802f上方。磊晶層806的摻雜劑濃度小於基底802的摻雜劑濃度。源極接觸區810、汲極區106、主體區808以及漂移區204安置在磊晶層806的頂部表面內。 The high-voltage transistor element 800 includes a substrate 802 of a first doping type (for example, a p+ doping type) with a high doping concentration. The source region 804 is disposed along the backside 802b of the substrate 802. In various embodiments, the source region 804 may include a highly doped region or a metal layer. The epitaxial layer 806 having the first conductivity type is disposed on the front surface 802f of the substrate 802. The dopant concentration of the epitaxial layer 806 is less than the dopant concentration of the substrate 802. The source contact region 810, the drain region 106, the body region 808, and the drift region 204 are disposed in the top surface of the epitaxial layer 806.

導電材料812從磊晶層806的頂部表面延伸到基底802。導電材料812可包括高度摻雜深井區。導電材料812允許由基底802的背側進行源極連接,由此減少金屬佈線複雜度且實現各種封裝相容性。在一些實施例中,場板214可借助於延伸穿過鄰接導電材料812的接觸件814的電路徑818和耦合到場板214的上覆金屬線層816通過源極電壓偏壓。 The conductive material 812 extends from the top surface of the epitaxial layer 806 to the substrate 802. The conductive material 812 may include a highly doped deep well region. The conductive material 812 allows source connections to be made from the backside of the substrate 802, thereby reducing the complexity of metal wiring and achieving various package compatibility. In some embodiments, the field plate 214 may be biased by a source voltage by means of an electrical path 818 extending through a contact 814 adjacent to the conductive material 812 and an overlying metal line layer 816 coupled to the field plate 214.

圖9A到圖9B示出了在金屬線層中具有場板902的所揭露高電壓LDMOS元件的一些實施例。儘管圖9A到圖9B將場板 示出為在第一金屬線層上,但應瞭解,所揭露場板不限於第一金屬線層,而實際上可實施於BEOL金屬化堆疊的替代層上。 9A to 9B show some embodiments of the disclosed high-voltage LDMOS device having a field plate 902 in the metal line layer. Although Figures 9A to 9B show the field board It is shown on the first metal line layer, but it should be understood that the disclosed field plate is not limited to the first metal line layer, but can actually be implemented on an alternative layer of the BEOL metallization stack.

如圖9A的橫截面圖900中所示,場板902安置在第一金屬線層中,在上覆第一ILD層118的第二ILD層904內。在一些實施例中,場板902具有實質上平坦的頂表面及底表面,以便為場板902提供平坦輪廓。場板902借助於第一ILD層118與閘極結構210和漂移區204豎直分離。場板902上覆閘極電極108和漂移區204的部分且與源極區104和汲極區106側向分離。舉例來說,場板902可通過距離d與汲極區106側向分離。在一些實施例中,場板902可從閘極電極108上方側向延伸到漂移區204上方。 As shown in the cross-sectional view 900 of FIG. 9A, the field plate 902 is disposed in the first metal line layer, within the second ILD layer 904 overlying the first ILD layer 118. In some embodiments, the field plate 902 has substantially flat top and bottom surfaces in order to provide the field plate 902 with a flat profile. The field plate 902 is vertically separated from the gate structure 210 and the drift region 204 by means of the first ILD layer 118. The field plate 902 covers portions of the gate electrode 108 and the drift region 204 and is laterally separated from the source region 104 and the drain region 106. For example, the field plate 902 may be laterally separated from the drain region 106 by a distance d. In some embodiments, the field plate 902 may extend laterally from above the gate electrode 108 to above the drift region 204.

如圖9B的俯視圖906中所示,場板902包括上覆閘極電極108和漂移區204的部分的金屬結構。金屬結構並未借助於接觸件120連接到下伏構件或連接到第一金屬線層上的另一金屬結構。實際上,金屬結構將連接到上覆通孔(未圖示),所述上覆通孔配置成將場板連接到使場板902被偏壓的上覆金屬線層。 As shown in the top view 906 of FIG. 9B, the field plate 902 includes a metal structure overlying portions of the gate electrode 108 and the drift region 204. The metal structure is not connected to the underlying member or to another metal structure on the first metal line layer by means of the contact 120. In effect, the metal structure will be connected to an overlying via (not shown) that is configured to connect the field plate to an overlying metal line layer that biases the field plate 902.

圖10示出了具有自對準漂移區1002的所揭露高電壓LDMOS元件1000的一些實施例。 FIG. 10 shows some embodiments of the disclosed high-voltage LDMOS device 1000 with a self-aligned drift region 1002.

自對準漂移區1002具有與閘極電極108的側壁和閘極介電層110實質上對準的側壁1002s。在一些替代實施例中,自對準漂移區1002可形成為具有與側壁間隔件212的邊緣實質上對準的側壁1002s。通過使自對準漂移區1002與閘極電極108的側壁和閘極介電層110對準,自對準漂移區1002通過間距s與主體區202側向分離,由此最小化閘極-汲極重疊且實現低閘極-汲極電荷 (Qgd)和良好高頻效能。上覆自對準漂移區1002的場板214可進一步減少閘極-汲極電荷(Qgd)。 The self-aligned drift region 1002 has sidewalls 1002s that are substantially aligned with the sidewalls of the gate electrode 108 and the gate dielectric layer 110. In some alternative embodiments, the self-aligned drift region 1002 may be formed to have sidewalls 1002s that are substantially aligned with the edges of the sidewall spacers 212. By aligning the self-aligned drift region 1002 with the sidewalls of the gate electrode 108 and the gate dielectric layer 110, the self-aligned drift region 1002 is laterally separated from the body region 202 by the spacing s, thereby minimizing the gate-drain The poles overlap and achieve low gate-drain charge (Qgd) and good high-frequency performance. The field plate 214 overlying the self-aligned drift region 1002 can further reduce the gate-drain charge (Qgd).

圖11示出了形成一種具有場板的高電壓電晶體元件的方法1100的一些實施例的流程圖。方法可使用已在標準CMOS製造過程期間使用的過程步驟形成場板,且因此可提供低成本通用場板。 FIG. 11 shows a flowchart of some embodiments of a method 1100 of forming a high voltage transistor element with a field plate. The method can form the field plate using process steps that have been used during the standard CMOS manufacturing process, and thus can provide a low-cost universal field plate.

雖然所揭露的方法(例如,方法1100、方法3300以及方法7700)在本文中說明且描述為一系列動作或事件,但應瞭解,不應以限制意義來解釋此類動作或事件的所說明排序。舉例來說,除本文中所說明和/或所描述的動作或事件之外,一些動作可與其他動作或事件以不同次序及/或同時出現。另外,可能需要並非所有的所說明動作以實施本文中的描述的一或多個態樣或實施例。此外,本文中所描繪的動作中的一或多個可以一或多個單獨動作和/或階段實行。 Although the disclosed methods (for example, method 1100, method 3300, and method 7700) are illustrated and described herein as a series of actions or events, it should be understood that the illustrated sequence of such actions or events should not be interpreted in a restrictive sense . For example, in addition to the actions or events illustrated and/or described herein, some actions may occur in a different order and/or simultaneously with other actions or events. In addition, not all of the illustrated actions may be required to implement one or more aspects or embodiments described herein. Furthermore, one or more of the actions described herein may be performed in one or more separate actions and/or stages.

在動作1102處,提供基底,基底具有由通道區分隔開的源極區和汲極區。在一些實施例中,基底還可包括位於源極區與汲極區之間,處於與通道區鄰近的位置的漂移區。 At act 1102, a substrate is provided, the substrate having a source region and a drain region separated by a channel region. In some embodiments, the substrate may further include a drift region located between the source region and the drain region and adjacent to the channel region.

在動作1104處,閘極結構形成於基底上方,處於佈置於源極區與汲極區之間的位置。閘極結構可包括閘極介電層和上覆閘極電極。 At action 1104, the gate structure is formed above the substrate in a position arranged between the source region and the drain region. The gate structure may include a gate dielectric layer and an overlying gate electrode.

在動作1106處,漂移區可使用自對準製程形成,在一些實施例中其根據閘極結構選擇性地植入半導體基底以形成漂移區。 At act 1106, the drift region may be formed using a self-aligned process, which in some embodiments is selectively implanted in the semiconductor substrate according to the gate structure to form the drift region.

在動作1108處,一或多個介電層選擇性地形成在閘極 電極和漂移區的一部分上方。 At act 1108, one or more dielectric layers are selectively formed on the gate Above the electrode and part of the drift zone.

在動作1110處,接觸蝕刻終止層(CESL)和第一層間介電(ILD)層形成於基底上方。 At act 1110, a contact etch stop layer (CESL) and a first interlayer dielectric (ILD) layer are formed over the substrate.

在動作1112處,選擇性地蝕刻第一ILD層以界定接觸開口和場板開口。 At act 1112, the first ILD layer is selectively etched to define contact openings and field plate openings.

在動作1114處,以第一金屬材料填充接觸開口和場板開口。 At act 1114, the contact opening and the field plate opening are filled with the first metal material.

在動作1116處,可執行平坦化製程以去除上覆所述第一ILD層的多餘的第一金屬材料。 At act 1116, a planarization process may be performed to remove the excess first metal material overlying the first ILD layer.

在動作1118處,沉積對應於第一金屬線層的第二金屬材料。在一些實施例中,第二金屬材料可進一步填充場板開口。在這類實施例中,第二金屬材料嵌入於場板開口內的第一金屬材料內。 At act 1118, a second metal material corresponding to the first metal line layer is deposited. In some embodiments, the second metal material may further fill the field plate opening. In such embodiments, the second metal material is embedded in the first metal material in the opening of the field plate.

在動作1120處,在第一ILD層上方和第一金屬線層結構上方形成第二層間介電(ILD)層。 At act 1120, a second interlayer dielectric (ILD) layer is formed over the first ILD layer and over the first metal line layer structure.

圖12到圖19示出了繪示一種形成具有場板的MOSFET元件的方法的一些實施例的橫截面圖。儘管相對於方法1100描述圖12到圖19,但應瞭解,圖12到圖19中所揭露的結構不限於此方法,而實際上可單獨作為獨立於方法的結構。 Figures 12 to 19 show cross-sectional views illustrating some embodiments of a method of forming a MOSFET element with a field plate. Although FIGS. 12 to 19 are described with respect to the method 1100, it should be understood that the structure disclosed in FIG. 12 to FIG. 19 is not limited to this method, and may actually be used as a method independent structure alone.

圖12示出對應於動作1102的橫截面圖1200的一些實施例。 FIG. 12 shows some embodiments of a cross-sectional view 1200 corresponding to action 1102.

如橫截面圖1200中所繪示,提供了半導體基底102。半導體基底102可本質上摻雜有第一摻雜類型。在各種實施例中,半導體基底102可包括任何類型的半導體主體(例如矽、SOI), 所述任何類型的半導體主體包含但不限於半導體晶粒或晶片或晶片上的一或多個晶粒,以及任何其他類型的半導體和/或形成於其上和/或以其他方式與其相關聯的磊晶層。 As depicted in the cross-sectional view 1200, a semiconductor substrate 102 is provided. The semiconductor substrate 102 may be substantially doped with the first doping type. In various embodiments, the semiconductor substrate 102 may include any type of semiconductor body (e.g., silicon, SOI), The semiconductor body of any type includes, but is not limited to, semiconductor dies or wafers or one or more dies on the wafer, as well as any other types of semiconductors and/or formed thereon and/or otherwise associated therewith Epitaxial layer.

可使用各種植入步驟選擇性地植入半導體基底102以形成多個植入區(例如井區、接觸區等)。舉例來說,可選擇性地植入半導體基底102以形成主體區202、漂移區204、源極區104、汲極區106以及接觸區208。可通過選擇性地遮蔽半導體基底102(例如使用光阻罩幕),且隨後將高能量摻雜劑1204(例如,例如硼的p型摻雜劑物質或例如磷的n型摻雜劑)引入到半導體基底102的暴露區域中以形成多個植入區。舉例來說,如橫截面視圖1200中所繪示,遮蔽層1202選擇性地圖案化以暴露半導體基底102的部分,隨後將高能量摻雜劑1204植入到暴露部分中以形成源極區104和汲極區106。 Various implantation steps can be used to selectively implant the semiconductor substrate 102 to form multiple implanted regions (eg, well regions, contact regions, etc.). For example, the semiconductor substrate 102 can be selectively implanted to form the body region 202, the drift region 204, the source region 104, the drain region 106, and the contact region 208. The semiconductor substrate 102 can be selectively shielded (for example, using a photoresist mask), and then a high-energy dopant 1204 (for example, a p-type dopant substance such as boron or an n-type dopant such as phosphorus) is introduced Into the exposed area of the semiconductor substrate 102 to form a plurality of implanted regions. For example, as shown in the cross-sectional view 1200, the shielding layer 1202 is selectively patterned to expose a portion of the semiconductor substrate 102, and then a high-energy dopant 1204 is implanted into the exposed portion to form the source region 104 And the drain region 106.

應瞭解,橫截面圖1200中示出的植入區為可能的植入區的一個實例,且半導體基底102可包括植入區的其他配置,舉例來說,例如圖1到圖10中所示出的配置中的任一個, 圖13示出對應於動作1104的橫截面圖1300的一些實施例。 It should be understood that the implantation region shown in the cross-sectional view 1200 is an example of a possible implantation region, and the semiconductor substrate 102 may include other configurations of the implantation region, for example, as shown in FIGS. 1 to 10 Any one of the configured configurations, FIG. 13 shows some embodiments of a cross-sectional view 1300 corresponding to action 1104.

如橫截面圖1300中所繪示,閘極結構210形成於半導體基底102上方,處於佈置在源極區104與汲極區106之間的位置。閘極結構210可通過在半導體基底102上方形成閘極介電層110,並且通過在閘極介電層110上方形成閘極電極材料108來形成。在一些實施例中,閘極介電層110和閘極電極材料108可通過氣相沉積技術來沉積。隨後可將閘極介電層110和閘極電極材 料108圖案化且蝕刻(例如,根據光阻罩幕)以界定閘極結構210。在一些實施例中,側壁間隔件212可通過以下方式在閘極電極108的相對側上形成:將氮化物類材料或氧化物類材料沉積到半導體基底102上,並選擇性地蝕刻氮化物類材料或氧化物類材料以形成側壁間隔件212。 As shown in the cross-sectional view 1300, the gate structure 210 is formed above the semiconductor substrate 102 in a position arranged between the source region 104 and the drain region 106. The gate structure 210 may be formed by forming a gate dielectric layer 110 on the semiconductor substrate 102 and by forming a gate electrode material 108 on the gate dielectric layer 110. In some embodiments, the gate dielectric layer 110 and the gate electrode material 108 may be deposited by a vapor deposition technique. Then the gate dielectric layer 110 and the gate electrode material The material 108 is patterned and etched (for example, according to a photoresist mask) to define the gate structure 210. In some embodiments, the sidewall spacers 212 may be formed on the opposite side of the gate electrode 108 by depositing nitride-based materials or oxide-based materials on the semiconductor substrate 102, and selectively etching the nitride-based materials. Materials or oxide-based materials to form the sidewall spacers 212.

圖14示出對應於動作1108的橫截面圖1400的一些實施例。 FIG. 14 shows some embodiments of a cross-sectional view 1400 corresponding to action 1108.

如橫截面圖1400中所示,一或多個介電層124選擇性地形成於閘極電極108和漂移區204上方。在一些實施例中,一或多個介電層124可通過氣相沉積技術沉積,且隨後被圖案化和蝕刻(例如,根據光阻罩幕)。在一些實施例中,一或多個介電層124可被蝕刻以暴露閘極電極108的一部分且與汲極區106側向間隔開。 As shown in the cross-sectional view 1400, one or more dielectric layers 124 are selectively formed over the gate electrode 108 and the drift region 204. In some embodiments, one or more dielectric layers 124 may be deposited by vapor deposition techniques, and then patterned and etched (eg, according to a photoresist mask). In some embodiments, one or more dielectric layers 124 may be etched to expose a portion of the gate electrode 108 and be laterally spaced from the drain region 106.

在一些實施例中,一或多個介電層124可包括矽化物阻擋層,例如光阻保護性氧化物(RPO)層。在其他實施例中,一或多個介電層124可另外及/或替代地包括場板蝕刻終止層(ESL)。在一些實施例中,場板ESL可以是通過氣相沉積技術形成的氮化矽(SiN)層。在又其他實施例中,一或多個介電層124可另外及/或替代地包括閘極介電層或層間介電(ILD)層。 In some embodiments, the one or more dielectric layers 124 may include a silicide barrier layer, such as a photoresist protective oxide (RPO) layer. In other embodiments, the one or more dielectric layers 124 may additionally and/or alternatively include a field plate etch stop layer (ESL). In some embodiments, the field plate ESL may be a silicon nitride (SiN) layer formed by vapor deposition technology. In still other embodiments, the one or more dielectric layers 124 may additionally and/or alternatively include a gate dielectric layer or an interlayer dielectric (ILD) layer.

圖15示出對應於動作1110的橫截面圖1500的一些實施例。 FIG. 15 shows some embodiments of a cross-sectional view 1500 corresponding to action 1110.

如橫截面圖1500中所示,接觸蝕刻終止層(CESL)1502形成於半導體基底102上方。在一些實施例中,CESL 1502可通過氣相沉積製程形成。第一層間介電(ILD)層1504隨後形成於 CESL 1502上方。在一些實施例中,第一ILD層1504可包括超低k介電材料或低k介電材料(例如SiCO)。在一些實施例中,第一ILD層1504還可通過氣相沉積製程形成。在其他實施例中,第一ILD層1504可通過旋轉塗布製程形成。應瞭解,如本文所使用的術語層間介電(ILD)層還可指代金屬間介電(inter-metal dielectric;IMD)層。 As shown in the cross-sectional view 1500, a contact etch stop layer (CESL) 1502 is formed over the semiconductor substrate 102. In some embodiments, CESL 1502 may be formed by a vapor deposition process. The first interlayer dielectric (ILD) layer 1504 is subsequently formed in Above CESL 1502. In some embodiments, the first ILD layer 1504 may include an ultra-low-k dielectric material or a low-k dielectric material (such as SiCO). In some embodiments, the first ILD layer 1504 may also be formed by a vapor deposition process. In other embodiments, the first ILD layer 1504 may be formed by a spin coating process. It should be understood that the term inter-layer dielectric (ILD) layer as used herein may also refer to an inter-metal dielectric (IMD) layer.

圖16示出對應於動作1112的橫截面圖1600的一些實施例。 FIG. 16 shows some embodiments of a cross-sectional view 1600 corresponding to action 1112.

如橫截面圖1600中所示,第一ILD層1504選擇性地暴露於第一蝕刻劑1602,所述第一蝕刻劑配置成形成接觸開口1606和場板開口1608。在一些實施例中,接觸開口1606可小於場板開口1608。在一些實施例中,第一ILD層1504根據遮蔽層1604(例如,光阻層或硬罩幕層)選擇性地暴露於第一蝕刻劑1602。在一些實施例中,第一蝕刻劑1602在一或多個介電層124內在第一ILD層1504與場板ESL之間可具有較大蝕刻選擇性。在一些實施例中,第一蝕刻劑1602可包括乾蝕刻劑。在一些實施例中,乾蝕刻劑可具有蝕刻化學物質,所述蝕刻化學物質包括氧氣(oxygen;O2)、氮氣(nitrogen;N2)、氫氣(hydrogen;H2)、氬氣(argon;Ar)和/或氟物質(例如CF4、CHF3、C4F8等)中的一個或多個。在其他實施例中,第一蝕刻劑1602可包括濕蝕刻劑,所述濕蝕刻劑包括緩衝氫氟酸(buffered hydroflouric acid;BHF)。 As shown in the cross-sectional view 1600, the first ILD layer 1504 is selectively exposed to a first etchant 1602 configured to form a contact opening 1606 and a field plate opening 1608. In some embodiments, the contact opening 1606 may be smaller than the field plate opening 1608. In some embodiments, the first ILD layer 1504 is selectively exposed to the first etchant 1602 according to the shielding layer 1604 (for example, a photoresist layer or a hard mask layer). In some embodiments, the first etchant 1602 may have greater etching selectivity between the first ILD layer 1504 and the field plate ESL in the one or more dielectric layers 124. In some embodiments, the first etchant 1602 may include a dry etchant. In some embodiments, the dry etchant may have an etching chemical substance including oxygen (oxygen; O 2 ), nitrogen (nitrogen; N 2 ), hydrogen (hydrogen; H 2 ), and argon (argon; Ar) and/or one or more of fluorine substances (for example, CF 4 , CHF 3 , C 4 F 8, etc.). In other embodiments, the first etchant 1602 may include a wet etchant including buffered hydroflouric acid (BHF).

圖17示出對應於動作1114到動作1116的橫截面圖1700的一些實施例。 FIG. 17 shows some embodiments of a cross-sectional view 1700 corresponding to actions 1114 to 1116.

如橫截面圖1700中所示,接觸開口1606和場板開口 1608以第一金屬材料1702填充。在一些實施例中,第一金屬材料1702可借助於氣相沉積技術(例如,CVD、PVD、PE-CVD等)沉積。在一些實施例中,第一金屬材料1702可通過借助於物理氣相沉積,繼之以鍍敷製程(例如,電鍍或無電鍍製程)沉積晶種層而形成。隨後可執行平坦化製程(例如化學機械平坦化)以去除多餘的第一金屬材料1702並形成沿線1704的平坦表面。 As shown in the cross-sectional view 1700, the contact opening 1606 and the field plate opening 1608 is filled with a first metal material 1702. In some embodiments, the first metal material 1702 may be deposited by means of vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.). In some embodiments, the first metal material 1702 may be formed by depositing a seed layer by means of physical vapor deposition followed by a plating process (for example, an electroplating or electroless plating process). Then, a planarization process (such as chemical mechanical planarization) may be performed to remove the excess first metal material 1702 and form a flat surface along the line 1704.

在一些實施例中,第一金屬材料1702可包括鎢(W)、鈦(Ti)、氮化鈦(TiN)或氮化鉭(TaN)。在一些實施例中,擴散阻障層及/或襯層可在沉積第一金屬材料1702之前沉積到接觸開口1606和場板開口1608中。 In some embodiments, the first metal material 1702 may include tungsten (W), titanium (Ti), titanium nitride (TiN), or tantalum nitride (TaN). In some embodiments, the diffusion barrier layer and/or the liner layer may be deposited into the contact opening 1606 and the field plate opening 1608 before the first metal material 1702 is deposited.

圖18示出對應於動作1118的橫截面圖1800的一些實施例。 FIG. 18 shows some embodiments of a cross-sectional view 1800 corresponding to action 1118.

如橫截面圖1800中所示,沉積第二金屬材料1802。第二金屬材料1802形成於場板開口中的剩餘開口內且在第一ILD層118上方。在一些實施例中,第二金屬材料1802可借助於氣相沉積技術(例如,CVD、PVD、PE-CVD等)沉積。在一些實施例中,第二金屬材料1802可通過借助於物理氣相沉積,繼之以鍍敷製程沉積晶種層而形成。在一些實施例中,第二金屬材料1802可包括銅(Cu)或鋁銅(AlCu)合金。 As shown in the cross-sectional view 1800, a second metallic material 1802 is deposited. The second metal material 1802 is formed in the remaining openings in the field plate openings and above the first ILD layer 118. In some embodiments, the second metal material 1802 may be deposited by means of vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.). In some embodiments, the second metal material 1802 may be formed by depositing a seed layer by means of physical vapor deposition followed by a plating process. In some embodiments, the second metal material 1802 may include copper (Cu) or aluminum copper (AlCu) alloy.

在形成之後,第二金屬材料1802可選擇性地圖案化以界定上覆第一ILD層118的第一金屬線層418的一或多個金屬結構。在一些實施例中,第二金屬材料1802可通過在第二金屬材料1802上方形成經圖案化遮蔽層(例如,光阻層或硬罩幕層)(未示出)和通過隨後在由經圖案化遮蔽層暴露的區域中蝕刻第二金屬 材料1802而選擇性地圖案化。 After formation, the second metal material 1802 can be selectively patterned to define one or more metal structures of the first metal line layer 418 overlying the first ILD layer 118. In some embodiments, the second metal material 1802 may be formed by forming a patterned masking layer (for example, a photoresist layer or a hard mask layer) (not shown) over the second metal material 1802 and subsequently patterning The second metal is etched in the exposed area of the chemical masking layer The material 1802 is selectively patterned.

圖19示出對應於動作1120的橫截面圖1900的一些實施例。 FIG. 19 shows some embodiments of a cross-sectional view 1900 corresponding to action 1120.

如橫截面圖1900中所示,第二ILD層416形成於第一ILD層118和第一金屬線層418的一或多個金屬結構上方。在不同實施例中,第二ILD層416可通過在第一ILD層118和第一金屬線層418的一或多個金屬結構上方沉積第二ILD材料而形成。在第二ILD層416形成之後,執行平坦化製程(例如,CMP)以去除多餘的第二ILD層416且暴露第一金屬線層418的一或多個金屬結構的頂部表面。在不同實施例中,第二ILD層416可包括通過氣相沉積處理器、旋塗製程形成的超低k介電材料或低k介電材料(例如,SiCO)。 As shown in the cross-sectional view 1900, the second ILD layer 416 is formed over the one or more metal structures of the first ILD layer 118 and the first metal line layer 418. In various embodiments, the second ILD layer 416 may be formed by depositing a second ILD material over one or more metal structures of the first ILD layer 118 and the first metal line layer 418. After the second ILD layer 416 is formed, a planarization process (for example, CMP) is performed to remove the excess second ILD layer 416 and expose the top surface of one or more metal structures of the first metal line layer 418. In various embodiments, the second ILD layer 416 may include an ultra-low-k dielectric material or a low-k dielectric material (for example, SiCO) formed by a vapor deposition processor or a spin coating process.

已理解,多個接觸件(例如,接觸件120)和場板(例如,場板122)的高度差可在所揭露電晶體元件的製造期間造成困難。舉例來說,由於場板(例如,場板122)形成於介電層124(例如,光阻保護性氧化物)上方,場板(例如,場板122)具有比多個接觸件(例如,接觸件120)更小的高度。然而,場板(例如,場板122)和多個接觸件(例如,接觸件120)是使用相同蝕刻製程形成。高度差可導致場板開口(例如,圖16的場板開口1608)的過度蝕刻,所述過度蝕刻引起場板(例如,場板開口122)與電晶體元件的導電通道之間的短路;或導致接觸開口(例如,圖16的接觸開口1606)的蝕刻不足,所述蝕刻不足引起多個接觸件(例如,接觸件120)與源極區(例如,源極區104)、汲極區(例如,汲極區106)及/或閘極區(例如,閘極區116)之間的不良連接。 It is understood that the height difference between the multiple contacts (for example, the contact 120) and the field plate (for example, the field plate 122) may cause difficulties during the manufacturing of the disclosed transistor element. For example, since the field plate (e.g., field plate 122) is formed over the dielectric layer 124 (e.g., photoresist protective oxide), the field plate (e.g., field plate 122) has more contacts (e.g., The contact 120) has a smaller height. However, the field plate (for example, the field plate 122) and the plurality of contacts (for example, the contact 120) are formed using the same etching process. The height difference can cause over-etching of the field plate opening (for example, the field plate opening 1608 of FIG. 16), which causes a short circuit between the field plate (for example, the field plate opening 122) and the conductive channel of the transistor element; or Leading to insufficient etching of the contact opening (for example, the contact opening 1606 of FIG. 16), which causes a plurality of contacts (for example, the contact 120) and the source region (for example, the source region 104), the drain region ( For example, poor connection between the drain region 106) and/or the gate region (eg, the gate region 116).

為了防止場板開口的過度蝕刻或接觸開口的蝕刻不足,在一些實施例中,複合蝕刻終止層可用於控制場板開口的蝕刻深度。通過控制場板開口的蝕刻深度,複合蝕刻終止層允許多個接觸件(例如,接觸件120)和場板(例如,場板122)兩個都精確地形成為不同高度。 In order to prevent excessive etching of the field plate openings or insufficient etching of the contact openings, in some embodiments, a composite etch stop layer may be used to control the etching depth of the field plate openings. By controlling the etching depth of the field plate opening, the composite etch stop layer allows the multiple contacts (for example, contact 120) and the field plate (for example, field plate 122) to be accurately formed to different heights.

圖20示出了具有界定場板的複合蝕刻終止層的高電壓電晶體元件2000的一些實施例的橫截面圖。 Figure 20 shows a cross-sectional view of some embodiments of a high voltage transistor element 2000 with a composite etch stop layer defining a field plate.

高電壓電晶體元件2000包括安置於半導體基底102上方的閘極結構116。閘極結構116包括閘極介電層110和上覆閘極電極108。在一些實施例中,閘極結構116可具有介於大約1000埃與大約2000埃的範圍內的第一厚度th 1 。源極區104和汲極區106安置在半導體基底102內,在閘極結構116的相對側上。 The high-voltage transistor device 2000 includes a gate structure 116 disposed on the semiconductor substrate 102. The gate structure 116 includes a gate dielectric layer 110 and an overlying gate electrode 108. In some embodiments, the gate structure 116 may have a first thickness th 1 in the range of about 1000 angstroms and about 2000 angstroms. The source region 104 and the drain region 106 are disposed within the semiconductor substrate 102 on opposite sides of the gate structure 116.

光阻保護性氧化物(RPO)2002佈置在閘極結構116上方。RPO 2002從閘極結構116正上方延伸為側向超過閘極結構116的最外部側壁。在一些實施例中,RPO 2002可從閘極結構116的上表面豎直延伸到半導體基底102的上表面,且從閘極結構116正上方側向延伸到閘極結構116與汲極區106之間。在一些實施例中,RPO 2002可包括二氧化矽、氮化矽等等。在一些實施例中,RPO 2002可具有介於大約100埃與大約1000埃的範圍內的第二厚度th 2 The photoresistive protective oxide (RPO) 2002 is arranged above the gate structure 116. The RPO 2002 extends from directly above the gate structure 116 to laterally exceed the outermost sidewall of the gate structure 116. In some embodiments, the RPO 2002 may extend vertically from the upper surface of the gate structure 116 to the upper surface of the semiconductor substrate 102, and extend laterally from directly above the gate structure 116 to between the gate structure 116 and the drain region 106. between. In some embodiments, RPO 2002 may include silicon dioxide, silicon nitride, and the like. In some embodiments, the RPO 2002 may have a second thickness th 2 in the range of about 100 angstroms and about 1000 angstroms.

複合蝕刻終止層2004佈置在RPO 2002上方。在一些實施例中,複合蝕刻終止層2004直接接觸RPO 2002的一或多個上表面。第一層間介電(ILD)層118和場板122佈置在複合蝕刻終止層2004上方。第一ILD層118包圍場板122和多個接觸件120, 所述多個接觸件耦合到源極區104、汲極區106以及閘極結構116。在一些實施例中,場板122和多個接觸件120可包括圍繞包含一或多個金屬的導電芯的擴散阻障(未圖示)。 The composite etch stop layer 2004 is arranged above the RPO 2002. In some embodiments, the composite etch stop layer 2004 directly contacts one or more upper surfaces of the RPO 2002. The first interlayer dielectric (ILD) layer 118 and the field plate 122 are arranged above the composite etch stop layer 2004. The first ILD layer 118 surrounds the field plate 122 and the plurality of contacts 120, The multiple contacts are coupled to the source region 104, the drain region 106 and the gate structure 116. In some embodiments, the field plate 122 and the plurality of contacts 120 may include a diffusion barrier (not shown) surrounding a conductive core including one or more metals.

複合蝕刻終止層2004包括堆疊於RPO 2002上方的多個不同介電材料2006到介電材料2008。在一些實施例中,多個不同介電材料2006到介電材料2008可具有沿垂直於半導體基底102的上表面的線實質上對準的最外部側壁。在一些實施例中,多個不同介電材料2006到介電材料2008可具有與RPO 2002的最外部側壁實質上對準的最外部側壁。在這類實施例中,RPO 2002具有實質上等於複合蝕刻終止層2004的第二寬度的第一寬度。多個不同介電材料2006到介電材料2008具有不同蝕刻性質,不同蝕刻性質提供對蝕刻劑具有不同蝕刻選擇性的多個不同介電材料2006到介電材料2008中的相應介電材料。不同蝕刻選擇性允許複合蝕刻終止層2004緩慢蝕刻場板開口(即,界定場板122的開口),且因此同時緊密地控制場板的高度並實現多個接觸件120與場板122之間的高度差(例如,使多個接觸件120能夠具有比場板122更大的高度)。 The composite etch stop layer 2004 includes a plurality of different dielectric materials 2006 to 2008 stacked on the RPO 2002. In some embodiments, the plurality of different dielectric materials 2006 to 2008 may have outermost sidewalls that are substantially aligned along a line perpendicular to the upper surface of the semiconductor substrate 102. In some embodiments, the plurality of different dielectric materials 2006 to 2008 may have the outermost sidewalls that are substantially aligned with the outermost sidewalls of the RPO 2002. In such embodiments, the RPO 2002 has a first width that is substantially equal to the second width of the composite etch stop layer 2004. The plurality of different dielectric materials 2006 to 2008 have different etching properties, and the different etching properties provide corresponding dielectric materials in the plurality of different dielectric materials 2006 to 2008 with different etching selectivities to the etchant. The different etch selectivity allows the composite etch stop layer 2004 to slowly etch the field plate opening (ie, the opening that defines the field plate 122), and thus at the same time, tightly control the height of the field plate and realize the contact between the multiple contacts 120 and the field plate 122. The height difference (e.g., enabling the plurality of contacts 120 to have a greater height than the field plate 122).

舉例來說,在一些實施例中,場板122的底部沿豎直地高於多個接觸件120中的一或多個(例如,耦合到源極區104和汲極區106的接觸件)的底部表面的界面來接觸複合蝕刻終止層2004。在這類實施例中,在高電壓電晶體元件2000的製造期間,複合蝕刻終止層2004降低用於形成場板開口(即,界定場板122的開口)的蝕刻劑的蝕刻速率。蝕刻速率的降低使得場板122具有高於多個接觸件120中的一或多個的底部表面的底部表面。 For example, in some embodiments, the bottom of the field plate 122 is vertically higher than one or more of the plurality of contacts 120 (eg, the contacts coupled to the source region 104 and the drain region 106) The interface of the bottom surface comes into contact with the composite etch stop layer 2004. In such embodiments, during the manufacture of the high voltage transistor element 2000, the composite etch stop layer 2004 reduces the etching rate of the etchant used to form the field plate openings (ie, the openings that define the field plate 122). The reduction in the etching rate causes the field plate 122 to have a bottom surface higher than the bottom surface of one or more of the plurality of contacts 120.

在一些實施例中,複合蝕刻終止層2004可包括直接接觸RPO 2002的上表面的第一介電材料2006和直接接觸第一介電材料2006的上表面的第二介電材料2008。在一些實施例中,第一介電材料2006可具有第三厚度th 3 ,且第二介電材料2008可具有第四厚度th 4 。在一些實施例中,RPO 2002和複合蝕刻終止層2004可分別具有在最外部側壁之間的實質上恒定的厚度。如果第三厚度th 3 和第四厚度th 4 過小(例如,小於下文闡述的最小值),那麼複合蝕刻終止層2004不能夠有效地終止形成場板開口的蝕刻。如果第三厚度th 3 和第四厚度th 4 過大(例如,大於下文闡述的最大值),那麼場板122對高電壓電晶體元件2000的影響降低,由此負面地影響元件性能。 In some embodiments, the composite etch stop layer 2004 may include a first dielectric material 2006 directly contacting the upper surface of the RPO 2002 and a second dielectric material 2008 directly contacting the upper surface of the first dielectric material 2006. In some embodiments, the first dielectric material 2006 may have a third thickness th 3 , and the second dielectric material 2008 may have a fourth thickness th 4 . In some embodiments, the RPO 2002 and the composite etch stop layer 2004 may each have a substantially constant thickness between the outermost sidewalls. If the third thickness th 3 and the fourth thickness th 4 are too small (for example, less than the minimum value described below), the composite etch stop layer 2004 cannot effectively terminate the etching to form the field plate opening. If the third thickness and the fourth thickness th 3 th 4 is too large (e.g., greater than the maximum value set forth below), then the impact of the high voltage transistor device 2000 for reducing the field plate 122, thereby negatively affecting the device performance.

在一些實施例中,第一介電材料2006可包括或可以是氮化矽(SixNy),且第二介電材料2008可包括或可以是二氧化矽(SiO2)。在這類實施例中,第一厚度th 1 可介於大約50埃與大約400埃的第一範圍內,且第二厚度th 2 可介於大約150埃與大約700埃的第二範圍內。在其他實施例中,第一介電材料2006可包括或可以是二氧化矽(SiO2),且第二介電材料2008可包括或可以是氮化矽(SiNx)或氮氧化矽(SiOxNy)。在這類實施例中,第一厚度th 1 可介於大約600埃與大約900埃的第一範圍內。在一些實施例中,第二厚度th 2 可介於大約100埃與大約500埃的第二範圍內。 In some embodiments, the first dielectric material 2006 may include or may be silicon nitride (Si x N y ), and the second dielectric material 2008 may include or may be silicon dioxide (SiO 2 ). In such embodiments, the first thickness th 1 may be in a first range of about 50 angstroms and about 400 angstroms, and the second thickness th 2 may be in a second range of about 150 angstroms and about 700 angstroms. In other embodiments, the first dielectric material 2006 may include or may be silicon dioxide (SiO 2 ), and the second dielectric material 2008 may include or may be silicon nitride (SiN x ) or silicon oxynitride (SiO 2) x N y ). In such embodiments, the first thickness th 1 may be in a first range between about 600 angstroms and about 900 angstroms. In some embodiments, the second thickness th 2 may be within a second range of about 100 angstroms and about 500 angstroms.

圖21A到圖21B示出了具有界定場板的複合蝕刻終止層的所揭露高電壓電晶體元件的一些額外實施例。 21A to 21B show some additional embodiments of the disclosed high voltage transistor device with a composite etch stop layer defining a field plate.

如圖21A的橫截面圖2100中所示,高電壓電晶體元件包括具有主體區2106的半導體基底102,所述主體區安置在基底 2102上方的漂移區2104內。源極區104佈置在主體區2106內,且汲極區106佈置在漂移區2104內。在一些實施例中,源極區104、汲極區106以及漂移區2104可具有第一摻雜類型(例如,n型),而主體區2106和基底2102具有與第一摻雜類型相反的第二摻雜類型(例如,p型)。在一些實施例中,源極區104和汲極區106可包括具有比漂移區2104高的摻雜濃度的高度摻雜區(即,n+區)。 As shown in the cross-sectional view 2100 of FIG. 21A, the high-voltage transistor element includes a semiconductor substrate 102 having a body region 2106 disposed on the substrate In the drift zone 2104 above 2102. The source region 104 is arranged in the body region 2106, and the drain region 106 is arranged in the drift region 2104. In some embodiments, the source region 104, the drain region 106, and the drift region 2104 may have a first doping type (for example, n-type), and the body region 2106 and the substrate 2102 may have a first doping type opposite to the first doping type. Two-doped type (for example, p-type). In some embodiments, the source region 104 and the drain region 106 may include a highly doped region (ie, n+ region) having a higher doping concentration than the drift region 2104.

閘極結構116佈置在半導體基底102之上,在源極區104與汲極區106之間。RPO 2002佈置在閘極結構116上方且側向延伸超過閘極結構116的最外部側壁。複合蝕刻終止層2004佈置於RPO 2002與場板122之間。在一些實施例中,RPO 2002可封圍場板122(即,延伸超過場板122的最外部側壁)達介於大約0微米與大約2微米的範圍內的一或多個側向距離2108。 The gate structure 116 is arranged on the semiconductor substrate 102 between the source region 104 and the drain region 106. The RPO 2002 is arranged above the gate structure 116 and extends laterally beyond the outermost sidewall of the gate structure 116. The composite etch stop layer 2004 is arranged between the RPO 2002 and the field plate 122. In some embodiments, the RPO 2002 may enclose the field plate 122 (ie, extend beyond the outermost sidewall of the field plate 122) by one or more lateral distances 2108 in the range of about 0 microns and about 2 microns.

在一些實施例中,場板122可延伸到複合蝕刻終止層2004中的非零深度2110。在這類實施例中,場板122接觸複合蝕刻終止層2004的側壁。在不同實施例中,場板122還可接觸複合蝕刻終止層2004的水平延伸表面或RPO 2002的水平延伸表面。在一些實施例中,非零深度2110可介於大約400埃與大約700埃的範圍內。由於場板122延伸到複合蝕刻終止層2004中,複合蝕刻終止層2004具有處於場板122正下方的第一厚度2112和在場板122外部的大於第一厚度2112的第二厚度。在一些實施例中,第一厚度2112介於大約0埃與大約10000埃的範圍內。在一些額外實施例中,第一厚度2112介於大約600埃與大約300埃的範圍內。 In some embodiments, the field plate 122 may extend to the non-zero depth 2110 in the composite etch stop layer 2004. In this type of embodiment, the field plate 122 contacts the sidewall of the composite etch stop layer 2004. In different embodiments, the field plate 122 may also contact the horizontally extending surface of the composite etch stop layer 2004 or the horizontally extending surface of the RPO 2002. In some embodiments, the non-zero depth 2110 may be in the range of about 400 angstroms and about 700 angstroms. Since the field plate 122 extends into the composite etch stop layer 2004, the composite etch stop layer 2004 has a first thickness 2112 directly below the field plate 122 and a second thickness greater than the first thickness 2112 outside the field plate 122. In some embodiments, the first thickness 2112 is in the range of about 0 angstroms and about 10000 angstroms. In some additional embodiments, the first thickness 2112 is between about 600 angstroms and about 300 angstroms.

如圖21B的俯視圖2120(沿圖21A的橫截面線A-A′)中所示,場板122具有寬度2114,所述寬度在在第一方向上延伸在大約150奈米與大約2000奈米的範圍內的距離。場板122還具有長度2122,所述長度在第二方向(垂直於第一方向)上延伸小於大約1000微米的距離。 As shown in the top view 2120 of FIG. 21B (along the cross-sectional line AA′ of FIG. 21A), the field plate 122 has a width 2114 that extends in the first direction in the range of about 150 nm and about 2000 nm. The distance within. The field plate 122 also has a length 2122 that extends in the second direction (perpendicular to the first direction) a distance of less than about 1000 microns.

再次參考圖21A的橫截面圖2100,在一些實施例中,場板122可以距離2116與閘極結構116側向分離。舉例來說,場板122可以介於大約0奈米與大約500奈米的範圍內的距離2116與閘極結構116側向分離。在其他實施例中(未圖示),場板122可與閘極結構116側向重疊(即,延伸到所述閘極結構正上方)。舉例來說,場板122可與閘極結構116側向重疊達介於大約0奈米與大約200奈米的範圍內的距離。 Referring again to the cross-sectional view 2100 of FIG. 21A, in some embodiments, the field plate 122 may be laterally separated from the gate structure 116 by a distance 2116. For example, the field plate 122 may be laterally separated from the gate structure 116 by a distance 2116 in the range of about 0 nanometers and about 500 nanometers. In other embodiments (not shown), the field plate 122 may overlap the gate structure 116 laterally (ie, extend directly above the gate structure). For example, the field plate 122 may overlap the gate structure 116 laterally by a distance in the range of about 0 nanometers and about 200 nanometers.

在一些實施例中,矽化物層2118佈置在源極區104、汲極區106以及未由RPO 2002覆蓋的閘極結構116的部分上方。在不同實施例中,矽化物層2118可包括具有矽的化合物和例如鎳、鉑、鈦、鎢、鎂等的金屬。在一些實施例中,矽化物層2118具有介於大約150埃與大約400埃的範圍內的厚度。 In some embodiments, the silicide layer 2118 is disposed over the source region 104, the drain region 106, and the portion of the gate structure 116 that is not covered by the RPO 2002. In various embodiments, the silicide layer 2118 may include a compound with silicon and metals such as nickel, platinum, titanium, tungsten, magnesium, and the like. In some embodiments, the silicide layer 2118 has a thickness ranging between about 150 angstroms and about 400 angstroms.

圖22示出了具有界定場板的複合蝕刻終止層的高電壓電晶體元件2200的一些額外實施例的橫截面圖。 Figure 22 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 2200 with a composite etch stop layer defining a field plate.

高電壓電晶體元件2200包括佈置在半導體基底102上方的閘極電極108。RPO 2002和複合蝕刻終止層2004在閘極電極108和半導體基底102上方。接觸蝕刻終止層(CESL)406安置於複合蝕刻終止層2004上方。在一些實施例中,複合蝕刻終止層2004的底部表面可直接接觸RPO 2002,且複合蝕刻終止層2004 的頂部表面可直接接觸CESL 406。CESL 406側向延伸超過複合蝕刻終止層2004的最外部側壁且接觸半導體基底102。在一些實施例中,CESL 406可具有介於大約100埃與大約1000埃的範圍內的厚度th 5 。在一些實施例中,CESL 406可包括氮化矽、碳化矽等等。 The high-voltage transistor element 2200 includes a gate electrode 108 arranged above the semiconductor substrate 102. The RPO 2002 and the composite etch stop layer 2004 are above the gate electrode 108 and the semiconductor substrate 102. A contact etch stop layer (CESL) 406 is disposed above the composite etch stop layer 2004. In some embodiments, the bottom surface of the composite etch stop layer 2004 can directly contact the RPO 2002, and the top surface of the composite etch stop layer 2004 can directly contact the CESL 406. The CESL 406 laterally extends beyond the outermost sidewall of the composite etch stop layer 2004 and contacts the semiconductor substrate 102. In some embodiments, the CESL 406 may have a thickness th 5 in the range of about 100 angstroms and about 1000 angstroms. In some embodiments, CESL 406 may include silicon nitride, silicon carbide, and the like.

場板408安置在CESL 406上方的第一ILD層118內。在一些實施例中,場板408可包括第一金屬材料410和第二金屬材料412。複合蝕刻終止層2004側向佈置於場板408與閘極結構116之間且豎直佈置於場板122與半導體基底102之間。RPO 2002和複合蝕刻終止層2004具有接觸406的側壁。複合蝕刻終止層2004另外具有接觸CESL 406的水平延伸表面(例如,上表面)。 The field plate 408 is disposed in the first ILD layer 118 above the CESL 406. In some embodiments, the field plate 408 may include a first metal material 410 and a second metal material 412. The composite etch stop layer 2004 is laterally arranged between the field plate 408 and the gate structure 116 and vertically arranged between the field plate 122 and the semiconductor substrate 102. The RPO 2002 and the composite etch stop layer 2004 have sidewalls contacting 406. The composite etch stop layer 2004 additionally has a horizontally extending surface (for example, an upper surface) that contacts the CESL 406.

在一些實施例中,場板122可延伸到複合蝕刻終止層2004內的多個不同介電材料2006到介電材料2008中的一或多個中。舉例來說,在一些實施例中,複合蝕刻終止層2004可包括第一介電材料2006和接觸第一介電材料2006的上表面的第二介電材料2008。場板122可延伸穿過第二介電材料2008(例如,氧化矽)且具有接觸第一介電材料2006(例如,氮化矽)的底部表面。在這類實施例中,第二介電材料2008可使場板122的最底部點與RPO 2002豎直地隔開。在其他實施例中,場板122可另外延伸穿過第一介電材料2006且具有接觸RPO 2002的底部表面及/或側壁。在一些實施例中,場板122可豎直地延伸穿過第二介電材料2008並且還通過第二介電材料2008與閘極結構116側向分離。 In some embodiments, the field plate 122 may extend into one or more of a plurality of different dielectric materials 2006 to 2008 within the composite etch stop layer 2004. For example, in some embodiments, the composite etch stop layer 2004 may include a first dielectric material 2006 and a second dielectric material 2008 contacting the upper surface of the first dielectric material 2006. The field plate 122 may extend through the second dielectric material 2008 (e.g., silicon oxide) and have a bottom surface contacting the first dielectric material 2006 (e.g., silicon nitride). In such embodiments, the second dielectric material 2008 can vertically separate the bottommost point of the field plate 122 from the RPO 2002. In other embodiments, the field plate 122 may additionally extend through the first dielectric material 2006 and have a bottom surface and/or sidewalls contacting the RPO 2002. In some embodiments, the field plate 122 may extend vertically through the second dielectric material 2008 and also be laterally separated from the gate structure 116 by the second dielectric material 2008.

儘管所揭露的複合蝕刻終止層2004在圖20到圖22中示出為具有堆疊於RPO 2002上方的兩個不同介電材料2006到介 電材料2008,但應瞭解,所揭露的複合蝕刻終止層2004不限於這類配置。實際上,在各種實施例中,複合蝕刻終止層2004可包括介電材料的額外層。圖23到圖24示出所揭露的複合蝕刻終止層2004的替代性實施例的一些非限制性實例。 Although the disclosed composite etch stop layer 2004 is shown in FIGS. 20 to 22 as having two different dielectric materials stacked on top of the RPO 2002 to the dielectric Electrical material 2008, but it should be understood that the disclosed composite etch stop layer 2004 is not limited to this type of configuration. In fact, in various embodiments, the composite etch stop layer 2004 may include an additional layer of dielectric material. Figures 23-24 show some non-limiting examples of alternative embodiments of the disclosed composite etch stop layer 2004.

圖23示出了具有界定場板的複合蝕刻終止層的高電壓電晶體元件2300的一些額外實施例的橫截面圖。 Figure 23 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 2300 with a composite etch stop layer defining a field plate.

高電壓電晶體元件2300包括佈置於RPO 2002上方的複合蝕刻終止層2004。複合蝕刻終止層2004包括第一介電材料2302、接觸第一介電材料2302的上表面的第二介電材料2304,以及接觸第二介電材料2304的上表面的第三介電材料2306。在一些實施例中,第一介電材料2302可包括或可以是二氧化矽(SiO2),第二介電材料2304可包括或可以是氮化矽(SixNy)或氮氧化矽(SiOxNy),且第三介電材料2306可包括或可以是二氧化矽(SiO2)。 The high-voltage transistor 2300 includes a composite etch stop layer 2004 disposed above the RPO 2002. The composite etch stop layer 2004 includes a first dielectric material 2302, a second dielectric material 2304 contacting the upper surface of the first dielectric material 2302, and a third dielectric material 2306 contacting the upper surface of the second dielectric material 2304. In some embodiments, the first dielectric material 2302 may include or may be silicon dioxide (SiO 2 ), and the second dielectric material 2304 may include or may be silicon nitride (Si x N y ) or silicon oxynitride ( SiO x N y ), and the third dielectric material 2306 may include or may be silicon dioxide (SiO 2 ).

在一些實施例中,第一介電材料2302可具有第一厚度,第二介電材料2304可具有第二厚度,且第三介電材料2306可具有第三厚度。在一些實施例中,第一厚度可介於大約300埃與大約900埃的第一範圍內,第二厚度可介於大約50埃與大約200埃的第二範圍內,且第三厚度可介於大約200埃與大約600埃的第三範圍內。 In some embodiments, the first dielectric material 2302 may have a first thickness, the second dielectric material 2304 may have a second thickness, and the third dielectric material 2306 may have a third thickness. In some embodiments, the first thickness may be within a first range of about 300 angstroms and about 900 angstroms, the second thickness may be within a second range of about 50 angstroms and about 200 angstroms, and the third thickness may be between about 50 angstroms and about 200 angstroms. Within the third range of about 200 angstroms and about 600 angstroms.

圖24示出了具有界定場板的複合蝕刻終止層的高電壓電晶體元件2400的一些額外實施例的橫截面圖。 Figure 24 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 2400 with a composite etch stop layer defining a field plate.

高電壓電晶體元件2400包括佈置於RPO 2002上方的複合蝕刻終止層2004。複合蝕刻終止層2004包括第一介電材料 2402、接觸第一介電材料2402的上表面的第二介電材料2404、接觸第二介電材料2404的上表面的第三介電材料2406,以及接觸第三介電材料2406的上表面的第四介電材料2408。在一些實施例中,第一介電材料2402可包括或可以是二氧化矽(SiO2),第二介電材料2404可以是或可包括氮化矽(SixNy)或氮氧化矽(SiOxNy),第三介電材料2406可包括或可以是二氧化矽(SiO2),且第四介電材料2408可包括或可以是氮化矽(SixNy)或氮氧化矽(SiOxNy)。 The high voltage transistor element 2400 includes a composite etch stop layer 2004 disposed above the RPO 2002. The composite etch stop layer 2004 includes a first dielectric material 2402, a second dielectric material 2404 contacting the upper surface of the first dielectric material 2402, a third dielectric material 2406 contacting the upper surface of the second dielectric material 2404, and The fourth dielectric material 2408 contacts the upper surface of the third dielectric material 2406. In some embodiments, the first dielectric material 2402 may include or may be silicon dioxide (SiO 2 ), and the second dielectric material 2404 may be or may include silicon nitride (Si x N y ) or silicon oxynitride ( SiO x N y ), the third dielectric material 2406 may include or may be silicon dioxide (SiO 2 ), and the fourth dielectric material 2408 may include or may be silicon nitride (Si x N y ) or silicon oxynitride (SiO x N y ).

在一些實施例中,第一介電材料2402可具有第一厚度,第二介電材料2404可具有第二厚度,第三介電材料2406可具有第三厚度,且第四介電材料2408可具有第四厚度。在一些實施例中,第一厚度可介於大約300埃與大約900埃的第一範圍內,第二厚度可介於大約50埃與大約200埃的第二範圍內,第三厚度可介於大約200埃與大約600埃的第三範圍內,且第四厚度可介於大約50埃與大約200埃的第四範圍內。 In some embodiments, the first dielectric material 2402 may have a first thickness, the second dielectric material 2404 may have a second thickness, the third dielectric material 2406 may have a third thickness, and the fourth dielectric material 2408 may Has a fourth thickness. In some embodiments, the first thickness may be within a first range of about 300 angstroms and about 900 angstroms, the second thickness may be within a second range of about 50 angstroms and about 200 angstroms, and the third thickness may be between about 50 angstroms and about 200 angstroms. It is within a third range of approximately 200 angstroms and approximately 600 angstroms, and the fourth thickness may be within a fourth range of approximately 50 angstroms and approximately 200 angstroms.

圖25到圖32示出了繪示一種形成具有界定場板的複合蝕刻終止層的高電壓電晶體元件的方法的一些實施例的橫截面圖。雖然參看方法描述圖25到圖32中所繪示的橫截面圖2500到橫截面圖3200,但應瞭解,圖25到圖32中所繪示的結構不限於所述方法而實際上可單獨獨立於所述方法。 25 to 32 show cross-sectional views illustrating some embodiments of a method of forming a high voltage transistor element having a composite etch stop layer defining a field plate. Although referring to the cross-sectional view 2500 to the cross-sectional view 3200 shown in the method description in FIGS. 25 to 32, it should be understood that the structure shown in FIGS. 25 to 32 is not limited to the method and can actually be independently independent于说方法。 In the method.

如圖25的橫截面圖2500中所示,選擇性地植入半導體基底102以形成多個植入區(例如,井區、接觸區等)。在一些實施例中,可選擇性地植入半導體基底102以形成主體區2106、漂移區2104、源極區104以及汲極區106。在其他實施例中,可選 擇性地植入半導體基底102以形成不同植入區(例如,例如圖1到圖10中所示出的那些植入區中的任一個)。在一些實施例中,可通過選擇性地遮蔽半導體基底102(例如,使用光阻罩幕)且隨後將高能量摻雜劑(例如,例如硼的p型摻雜劑物質或例如磷的n型摻雜劑)引入到半導體基底102的暴露區域中以形成多個植入區。 As shown in the cross-sectional view 2500 of FIG. 25, the semiconductor substrate 102 is selectively implanted to form a plurality of implanted regions (eg, well regions, contact regions, etc.). In some embodiments, the semiconductor substrate 102 may be selectively implanted to form the body region 2106, the drift region 2104, the source region 104, and the drain region 106. In other embodiments, optional The semiconductor substrate 102 is selectively implanted to form different implanted regions (for example, any of those implanted regions shown in FIGS. 1 to 10). In some embodiments, the semiconductor substrate 102 may be selectively shielded (for example, using a photoresist mask) and then high-energy dopants (for example, p-type dopant species such as boron or n-type such as phosphorous The dopant) is introduced into the exposed area of the semiconductor substrate 102 to form a plurality of implanted regions.

閘極結構116形成於半導體基底102上方,在源極區104與汲極區106之間。閘極結構116可通過將閘極介電層110沉積於半導體基底102上方且通過將閘極電極材料108沉積於閘極介電層110上方而形成。閘極介電層110和閘極電極材料108隨後可經圖案化(例如,根據光阻罩幕及/或硬罩幕蝕刻)以界定閘極結構116。 The gate structure 116 is formed on the semiconductor substrate 102 between the source region 104 and the drain region 106. The gate structure 116 may be formed by depositing a gate dielectric layer 110 on the semiconductor substrate 102 and by depositing a gate electrode material 108 on the gate dielectric layer 110. The gate dielectric layer 110 and the gate electrode material 108 may then be patterned (eg, etched according to a photoresist mask and/or a hard mask) to define the gate structure 116.

如圖26的橫截面圖2600中所示,光阻保護性氧化物(RPO)2002形成於閘極結構116上方。RPO 2002從閘極結構116正上方延伸超過閘極結構116的最外部側壁。RPO 2002配置成阻擋矽化物在底層上的形成。在一些實施例中,RPO 2002可通過氣相沉積技術(例如,CVD)沉積。在一些實施例中,RPO 2002可包括二氧化矽(SiO2)、氮化矽等等。 As shown in the cross-sectional view 2600 of FIG. 26, a photoresistive protective oxide (RPO) 2002 is formed over the gate structure 116. The RPO 2002 extends from directly above the gate structure 116 beyond the outermost sidewall of the gate structure 116. RPO 2002 is configured to block the formation of silicide on the bottom layer. In some embodiments, RPO 2002 may be deposited by vapor deposition technology (eg, CVD). In some embodiments, RPO 2002 may include silicon dioxide (SiO 2 ), silicon nitride, and the like.

如圖27的橫截面圖2700中所示,包括多個不同介電材料2006到介電材料2008的複合蝕刻終止層2004選擇性地形成於RPO 2002上方。在一些實施例中,多個不同介電材料2006到介電材料2008可通過氣相沉積技術順序地沉積。在一些實施例中,複合蝕刻終止層2004可包括包含氮化矽(SixNy)層、氮氧化矽(SiOxNy)層及/或二氧化矽(SiO2)層中的兩個或更多個的堆疊層。 As shown in the cross-sectional view 2700 of FIG. 27, a composite etch stop layer 2004 including a plurality of different dielectric materials 2006 to 2008 is selectively formed over the RPO 2002. In some embodiments, a plurality of different dielectric materials 2006 to 2008 may be sequentially deposited by a vapor deposition technique. In some embodiments, the composite etch stop layer 2004 may include two of a silicon nitride (Si x N y ) layer, a silicon oxynitride (SiO x N y ) layer, and/or a silicon dioxide (SiO 2 ) layer. Or more stacked layers.

在一些實施例中,多個不同介電材料2006到介電材料2008以及RPO 2002可使用相同遮蔽層2702(例如,光阻層)和蝕刻製程而圖案化。使用相同遮蔽層2702來圖案化多個不同介電材料2006到介電材料2008以及RPO 2002減少形成複合蝕刻終止層2004的成本。在這類實施例中,多個不同介電材料2006到介電材料2008以及RPO 2002可具有實質上對準的側壁。 In some embodiments, a plurality of different dielectric materials 2006 to 2008 and RPO 2002 may be patterned using the same shielding layer 2702 (eg, photoresist layer) and etching process. Using the same shielding layer 2702 to pattern a plurality of different dielectric materials 2006 to 2008 and RPO 2002 reduces the cost of forming the composite etch stop layer 2004. In such embodiments, the plurality of different dielectric materials 2006 to 2008 and RPO 2002 may have substantially aligned sidewalls.

如圖28的橫截面圖2800中所示,接觸蝕刻終止層(CESL)406形成於半導體基底102和複合蝕刻終止層2004上方。在一些實施例中,CESL 406可通過氣相沉積製程形成。CESL可包括氮化物層(例如,Si3N4)、碳化物層(SiC)等等。 As shown in the cross-sectional view 2800 of FIG. 28, a contact etch stop layer (CESL) 406 is formed over the semiconductor substrate 102 and the composite etch stop layer 2004. In some embodiments, CESL 406 may be formed by a vapor deposition process. The CESL may include a nitride layer (for example, Si 3 N 4 ), a carbide layer (SiC), and so on.

如圖29的橫截面圖2900中所示,第一層間介電(ILD)層118形成於CESL 406上方。在一些實施例中,第一ILD層118可包括氧化物(例如,SiO2)、超低k介電材料、低k介電材料(例如SiCO)等等。在一些實施例中,第一ILD層118可通過氣相沉積製程形成。 As shown in the cross-sectional view 2900 of FIG. 29, a first interlayer dielectric (ILD) layer 118 is formed over the CESL 406. In some embodiments, the first ILD layer 118 may include oxide (for example, SiO 2 ), ultra-low-k dielectric material, low-k dielectric material (for example, SiCO), and so on. In some embodiments, the first ILD layer 118 may be formed by a vapor deposition process.

如圖30的橫截面圖3000中所示,第一ILD層118選擇性地暴露於蝕刻劑3002(例如,根據遮蔽層3003)以在第一ILD層118內形成接觸開口1606和場板開口1608。接觸開口1606和場板開口1608具有非零距離3004的蝕刻深度偏移。在一些實施例中,非零深度3004可介於大約400埃與大約2000埃的範圍內。在一些實施例中,場板開口1608延伸到複合蝕刻終止層2004中,使得複合蝕刻終止層2004的側壁界定場板開口1608。在各種實施例中,複合蝕刻終止層2004或RPO 2002可界定場板開口1608的底部。 As shown in the cross-sectional view 3000 of FIG. 30, the first ILD layer 118 is selectively exposed to an etchant 3002 (eg, according to the masking layer 3003) to form contact openings 1606 and field plate openings 1608 in the first ILD layer 118 . The contact opening 1606 and the field plate opening 1608 have an etch depth offset of a non-zero distance 3004. In some embodiments, the non-zero depth 3004 may be in the range of about 400 angstroms and about 2000 angstroms. In some embodiments, the field plate opening 1608 extends into the composite etch stop layer 2004 such that the sidewalls of the composite etch stop layer 2004 define the field plate opening 1608. In various embodiments, the composite etch stop layer 2004 or RPO 2002 may define the bottom of the field plate opening 1608.

在一些實施例中,蝕刻劑3002可使複合蝕刻終止層2004的厚度減少介於大約400埃與大約700埃的範圍內的量。在一些實施例中,處於場板開口1608正下方的複合蝕刻終止層2004的厚度介於大約0埃與大約1,000埃的範圍內。在一些額外實施例中,處於場板開口1608正下方的複合蝕刻終止層2004的厚度介於大約300埃與大約900埃的範圍內。 In some embodiments, the etchant 3002 can reduce the thickness of the composite etch stop layer 2004 by an amount in the range of about 400 angstroms and about 700 angstroms. In some embodiments, the thickness of the composite etch stop layer 2004 directly below the field plate opening 1608 is in the range of about 0 angstroms and about 1,000 angstroms. In some additional embodiments, the thickness of the composite etch stop layer 2004 directly below the field plate opening 1608 is in the range of about 300 angstroms and about 900 angstroms.

選擇用於形成接觸開口1606和場板開口1608的蝕刻劑3002以蝕刻穿過CESL 406的材料。然而,由於複合蝕刻終止層2004由多個不同材料形成,複合蝕刻終止層2004能夠較高程度地抵抗蝕刻劑3002的蝕刻。複合蝕刻終止層2004由此允許接觸開口1606延伸到半導體基底102,同時防止場板開口1608延伸到半導體基底102。複合蝕刻終止層2004還允許基底上的不同位置處、相同批次的基底之間及/或不同批次的基板上方的蝕刻深度的高度均勻性。舉例來說,複合蝕刻終止層2004允許不同基底上的場板開口1608的蝕刻深度在大約2%或更小的偏差內。此蝕刻深度均勻性允許相比於不具有複合蝕刻終止層2004的元件的改進的元件均勻性和性能。 The etchant 3002 used to form the contact opening 1606 and the field plate opening 1608 is selected to etch through the material of the CESL 406. However, since the composite etch stop layer 2004 is formed of a plurality of different materials, the composite etch stop layer 2004 can resist etching by the etchant 3002 to a higher degree. The composite etch stop layer 2004 thus allows the contact opening 1606 to extend to the semiconductor substrate 102 while preventing the field plate opening 1608 from extending to the semiconductor substrate 102. The composite etch stop layer 2004 also allows a high degree of uniformity of the etching depth at different locations on the substrate, between the same batch of substrates, and/or above the substrates of different batches. For example, the composite etch stop layer 2004 allows the etch depth of the field plate opening 1608 on different substrates to be within a deviation of about 2% or less. This etch depth uniformity allows for improved device uniformity and performance compared to devices that do not have the composite etch stop layer 2004.

如圖31的橫截面圖3100中所示,以一或多個導電材料填充接觸開口1606和場板開口1608。在一些實施例中,一或多個導電材料可借助於氣相沉積技術(例如,CVD、PVD、PE-CVD等)及/或鍍敷製程(例如,電鍍或無電鍍製程)沉積。隨後可執行平坦化製程(例如化學機械平坦化)以去除多餘的一或多個導電材料並形成沿線3102的平坦表面。在一些實施例中,一或多個導電材料可包括鎢(W)、鈦(Ti)、氮化鈦(TiN)或氮化鉭(TaN)。 在一些實施例中,在沉積一或多個導電材料之前,擴散阻障層及/或襯層可沉積到接觸開口1606和場板開口1608中。 As shown in the cross-sectional view 3100 of FIG. 31, the contact opening 1606 and the field plate opening 1608 are filled with one or more conductive materials. In some embodiments, one or more conductive materials may be deposited by means of vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.) and/or plating processes (eg, electroplating or electroless plating processes). Then, a planarization process (such as chemical mechanical planarization) may be performed to remove the excess conductive material or materials and form a flat surface along the line 3102. In some embodiments, the one or more conductive materials may include tungsten (W), titanium (Ti), titanium nitride (TiN), or tantalum nitride (TaN). In some embodiments, a diffusion barrier layer and/or liner layer may be deposited into the contact opening 1606 and the field plate opening 1608 before depositing one or more conductive materials.

如圖32的橫截面圖3200中所示,第二ILD層126形成於第一ILD層118上方,且第一後段製程(BEOL)金屬線層128形成於第二ILD層126內。在各種實施例中,第二ILD層126可通過將第二ILD材料沉積於第一ILD層118上方而形成。隨後蝕刻第二ILD層126以形成在第二ILD層126內延伸的溝槽。以導電材料填充溝槽,且執行平坦化製程(例如,CMP)以從第二ILD層126上方去除多餘的導電材料。 As shown in the cross-sectional view 3200 of FIG. 32, the second ILD layer 126 is formed above the first ILD layer 118, and the first back end of line (BEOL) metal line layer 128 is formed in the second ILD layer 126. In various embodiments, the second ILD layer 126 may be formed by depositing a second ILD material over the first ILD layer 118. The second ILD layer 126 is then etched to form a trench extending in the second ILD layer 126. The trench is filled with conductive material, and a planarization process (for example, CMP) is performed to remove excess conductive material from above the second ILD layer 126.

圖33示出了形成一種具有界定場板的複合蝕刻終止層的高電壓電晶體元件的方法3300的一些實施例的流程圖。 Figure 33 shows a flowchart of some embodiments of a method 3300 of forming a high voltage transistor element with a composite etch stop layer defining a field plate.

在動作3302處,在基底上方形成閘極結構。圖25示出對應於動作3302的一些實施例的橫截面圖2500。 At act 3302, a gate structure is formed over the substrate. FIG. 25 shows a cross-sectional view 2500 of some embodiments corresponding to act 3302.

在動作3304處,源極區及汲極區形成於基底內,在閘極結構的相對側上。在一些額外實施例中,一或多個額外摻雜區(例如,主體區、漂移區等)也可形成於基底內。圖25示出對應於動作3304的一些實施例的橫截面圖2500。 At act 3304, the source and drain regions are formed in the substrate, on opposite sides of the gate structure. In some additional embodiments, one or more additional doped regions (for example, body regions, drift regions, etc.) may also be formed in the substrate. FIG. 25 shows a cross-sectional view 2500 of some embodiments corresponding to act 3304.

在動作3306處,光阻保護性氧化物(RPO)形成於閘極結構上方且側向在閘極結構與汲極區之間。圖26示出對應於動作3306的一些實施例的橫截面圖2600。 At act 3306, a photoresistive protective oxide (RPO) is formed above the gate structure and laterally between the gate structure and the drain region. FIG. 26 shows a cross-sectional view 2600 of some embodiments corresponding to act 3306.

在動作3308處,複合蝕刻終止層形成於RPO上方。圖27示出對應於動作3308的一些實施例的橫截面圖2700。 At act 3308, a composite etch stop layer is formed over the RPO. FIG. 27 shows a cross-sectional view 2700 of some embodiments corresponding to act 3308.

在動作3310處,接觸蝕刻終止層(CESL)形成於複合蝕刻終止層上。圖28示出對應於動作3310的一些實施例的橫截 面圖2800。 At act 3310, a contact etch stop layer (CESL) is formed on the composite etch stop layer. Figure 28 shows a cross-section of some embodiments corresponding to act 3310 面图2800。 2800.

在動作3312處,第一層間介電(ILD)層形成於CESL上方。圖29示出對應於動作3312的一些實施例的橫截面圖2900。 At act 3312, a first interlayer dielectric (ILD) layer is formed over CESL. Figure 29 shows a cross-sectional view 2900 of some embodiments corresponding to act 3312.

在動作3314處,選擇性地蝕刻第一ILD層以界定多個接觸件開口和場板開口。多個接觸件開口和場板開口具有不同深度。圖30示出對應於動作3314的一些實施例的橫截面視圖3000。 At act 3314, the first ILD layer is selectively etched to define a plurality of contact openings and field plate openings. The plurality of contact openings and the field plate openings have different depths. FIG. 30 shows a cross-sectional view 3000 of some embodiments corresponding to act 3314.

在動作3316處,以一或多個導電材料填充多個接觸件開口和場板開口。圖31示出對應於動作3316的一些實施例的橫截面圖3100。 At act 3316, the multiple contact openings and field plate openings are filled with one or more conductive materials. Figure 31 shows a cross-sectional view 3100 of some embodiments corresponding to act 3316.

在動作3318處,導電內連線形成於第一ILD層上方的第二ILD層內。圖32示出對應於動作3318的一些實施例的橫截面圖3200。 At act 3318, conductive interconnects are formed in the second ILD layer above the first ILD layer. FIG. 32 shows a cross-sectional view 3200 of some embodiments corresponding to act 3318.

圖34示出了具有界定場板的場板蝕刻終止結構的高電壓電晶體元件3400的一些實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 Figure 34 shows a cross-sectional view of some embodiments of a high voltage transistor element 3400 with a field plate etch stop structure defining a field plate, the field plate including a bottom surface that is vertically offset from the bottom surface of the conductive contact .

高電壓電晶體元件3400包括豎直地佈置在半導體基底102上方,處於側向在源極區104與汲極區106之間的位置的閘極結構116。在一些實施例中,半導體基底102還可包括圍繞源極區104的主體區2106及/或在主體區2106與汲極區106之間的漂移區2104。光阻保護性氧化物(RPO)2002在閘極結構116上方。RPO 2002從閘極結構116正上方延伸為側向在閘極結構116與汲極區106之間。接觸蝕刻終止層(CESL)406安置於RPO 2002、閘極結構116以及半導體基底102上方。 The high-voltage transistor element 3400 includes a gate structure 116 arranged vertically above the semiconductor substrate 102 in a position laterally between the source region 104 and the drain region 106. In some embodiments, the semiconductor substrate 102 may further include a body region 2106 surrounding the source region 104 and/or a drift region 2104 between the body region 2106 and the drain region 106. The photoresistive protective oxide (RPO) 2002 is above the gate structure 116. The RPO 2002 extends from directly above the gate structure 116 to laterally between the gate structure 116 and the drain region 106. A contact etch stop layer (CESL) 406 is disposed on the RPO 2002, the gate structure 116, and the semiconductor substrate 102.

介電結構3401佈置於CESL 406上方。介電結構3401 包括安置於CESL 406上方的第一ILD層3402、第一ILD層3402上方的第二ILD層3406,以及在第二ILD層3406上方的第三ILD層3408。在一些實施例中,第一ILD層3402具有以非零距離d 1 上覆於閘極結構116的頂部的最上表面。在一些實施例中,第二ILD層3406通過蝕刻終止層3410與第三ILD層3408分離。在這類實施例中,第二ILD層3406具有直接接觸第一ILD層3402的頂部表面的底部表面和直接接觸蝕刻終止層3410的底部表面的頂部表面。多個接觸件120從第二ILD層3406的頂部表面豎直延伸到第一ILD層3402的下表面(穿過第一ILD層3402與第二ILD層3406的界面3403)。多個接觸件120配置成接觸源極區104、汲極區106以及閘極結構116。 The dielectric structure 3401 is arranged above the CESL 406. The dielectric structure 3401 includes a first ILD layer 3402 disposed above the CESL 406, a second ILD layer 3406 above the first ILD layer 3402, and a third ILD layer 3408 above the second ILD layer 3406. In some embodiments, the first ILD layer 3402 has an uppermost surface overlying the top of the gate structure 116 with a non-zero distance d 1. In some embodiments, the second ILD layer 3406 is separated from the third ILD layer 3408 by an etch stop layer 3410. In such embodiments, the second ILD layer 3406 has a bottom surface that directly contacts the top surface of the first ILD layer 3402 and a top surface that directly contacts the bottom surface of the etch stop layer 3410. The plurality of contacts 120 extend vertically from the top surface of the second ILD layer 3406 to the lower surface of the first ILD layer 3402 (through the interface 3403 of the first ILD layer 3402 and the second ILD layer 3406). The plurality of contacts 120 are configured to contact the source region 104, the drain region 106 and the gate structure 116.

場板蝕刻終止結構3404安置於第一ILD層3402與第二ILD層3406之間。場板蝕刻終止結構3404的最底表面和最頂部表面豎直地在多個接觸件120的底部表面與頂部表面之間。在一些實施例中,場板蝕刻終止結構3404安置於RPO 2002正上方。在一些此類實施例中,場板蝕刻終止結構3404完全地限制於RPO 2002上方,而在其他實施例中,場板蝕刻終止結構3404可從RPO 2002正上方延伸為側向在RPO 2002與汲極區106之間。在一些實施例中,場板蝕刻終止結構3404可具有側向在閘極結構116與汲極區106之間的相對最外部側壁。舉例來說,場板蝕刻終止結構3404可具有以第一側向距離d L1 與閘極結構116分離的第一最外部側壁和以第二側向距離d L2 與汲極區106分離的相對第二最外部側壁。在其他實施例中,場板蝕刻終止結構3404可延伸到閘極結構116及/或汲極區106正上方。 The field plate etch stop structure 3404 is disposed between the first ILD layer 3402 and the second ILD layer 3406. The bottommost surface and the topmost surface of the field plate etch stop structure 3404 are vertically between the bottom surface and the top surface of the plurality of contacts 120. In some embodiments, the field plate etch stop structure 3404 is disposed directly above the RPO 2002. In some such embodiments, the field plate etch stop structure 3404 is completely confined above the RPO 2002, while in other embodiments, the field plate etch stop structure 3404 can extend from directly above the RPO 2002 to a lateral direction between the RPO 2002 and the RPO 2002. Between the polar regions 106. In some embodiments, the field plate etch stop structure 3404 may have relatively outermost sidewalls laterally between the gate structure 116 and the drain region 106. For example, field plate etch stop structure 3404 may have a first lateral separation distance d L1 and the gate structure 116 of the external sidewalls of the first and second most opposing lateral distance d L2 and drain regions 106 separated Two outermost side walls. In other embodiments, the field plate etch stop structure 3404 may extend to directly above the gate structure 116 and/or the drain region 106.

場板122安置於場板蝕刻終止結構3404上。場板122包括與多個接觸件120相同的材料(例如,鎢、鈷等等)。場板122的最底表面豎直地在多個接觸件120的底部表面與頂部表面之間。舉例來說,場板122的最底表面可沿水平面3405佈置,所述水平面平行於基底102的上表面且延伸穿過多個接觸件120的側壁。場板122的最底表面以距離d V 與半導體基底102分離。在一些實施例中,距離d V 具有在大約400埃與大約700埃之間的值。高電壓電晶體元件3400的擊穿電壓與距離d V 成比例。舉例來說,隨著距離d V 減小,高電壓電晶體元件3400的擊穿電壓也減小。 The field plate 122 is disposed on the field plate etch stop structure 3404. The field plate 122 includes the same material as the plurality of contacts 120 (for example, tungsten, cobalt, etc.). The bottommost surface of the field plate 122 is vertically between the bottom surface and the top surface of the plurality of contacts 120. For example, the bottommost surface of the field plate 122 may be arranged along a horizontal plane 3405 that is parallel to the upper surface of the substrate 102 and extends through the side walls of the plurality of contacts 120. The bottom surface of the field plate 122 by a distance d V and the semiconductor substrate 102 separated. In some embodiments, the distance d V has a value between about 400 angstroms and about 700 angstroms. 3400 element high voltage transistor breakdown voltage is proportional to the distance d V. For example, as the distance d V decreases, the breakdown voltage of the high-voltage transistor 3400 also decreases.

場板蝕刻終止結構3404包括具有相對於第一ILD層3402和第二ILD層3406的高蝕刻選擇性的材料。舉例來說,在各種實施例中,場板蝕刻終止結構3404可包括氮化矽(SiNx)、氮氧化矽(SiOxNy)、非晶矽(a-Si)、氧化鉿(HfOx)、氧化鋯(ZrOx)、金屬氧化物等等。在各種實施例中,場板蝕刻終止結構3404可具有介於大約1奈米與大約100奈米的範圍內的厚度t。在各種實施例中,場板蝕刻終止結構3404可具有介於大約10奈米與大約1,000奈米的範圍內的寬度w。高蝕刻選擇性允許場板122與多個接觸件120同時形成,同時提供場板122的最底表面與多個接觸件120的底部表面之間的豎直偏移。豎直偏移提供對場板122的最底表面與半導體基底102之間的距離d V 的良好控制(即,對高電壓電晶體元件3400的擊穿電壓的良好控制)。 The field plate etch stop structure 3404 includes a material having a high etch selectivity with respect to the first ILD layer 3402 and the second ILD layer 3406. For example, in various embodiments, the field plate etch stop structure 3404 may include silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), amorphous silicon (a-Si), hafnium oxide (HfO x ), zirconium oxide (ZrO x ), metal oxides and so on. In various embodiments, the field plate etch stop structure 3404 may have a thickness t in the range of about 1 nanometer and about 100 nanometers. In various embodiments, the field plate etch stop structure 3404 may have a width w in the range of about 10 nanometers and about 1,000 nanometers. The high etch selectivity allows the field plate 122 to be formed with the plurality of contacts 120 at the same time, while providing a vertical offset between the bottommost surface of the field plate 122 and the bottom surface of the plurality of contacts 120. It provides good control of vertical displacement (i.e., good control of the breakdown voltage of the high voltage transistor device 3400) to the distance between the bottom surface of the semiconductor substrate 102 and field plate 122 d V a.

圖35示出了具有界定場板的場板蝕刻終止結構的高電壓電晶體元件3500的一些額外實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 35 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 3500 with a field plate etch stop structure defining a field plate, the field plate including a bottom that is vertically offset from the bottom surface of the conductive contact surface.

高電壓電晶體元件3500包括安置於第一ILD層3402上方的場板蝕刻終止結構3404。在一些實施例中,場板蝕刻終止結構3404可具有相對於垂直於第一ILD層3402的上表面的線以非零角度定向的側壁。舉例來說,在一些實施例中,非零角度可介於0°與大約30°的範圍內。 The high voltage transistor element 3500 includes a field plate etch stop structure 3404 disposed above the first ILD layer 3402. In some embodiments, the field plate etch stop structure 3404 may have sidewalls oriented at a non-zero angle with respect to a line perpendicular to the upper surface of the first ILD layer 3402. For example, in some embodiments, the non-zero angle may be in the range of 0° and about 30°.

第二ILD層3406安置於場板蝕刻終止結構3404和第一ILD層3402上方。在一些實施例中,第一ILD層3402包括界定在場板蝕刻終止結構3404之下的突起3502的側壁3502s。在這類實施例中,第二ILD層3406沿側壁3502s側向接觸第一ILD層3402。 The second ILD layer 3406 is disposed above the field plate etch stop structure 3404 and the first ILD layer 3402. In some embodiments, the first ILD layer 3402 includes sidewalls 3502s defining protrusions 3502 under the field plate etch stop structure 3404. In such embodiments, the second ILD layer 3406 laterally contacts the first ILD layer 3402 along the sidewall 3502s.

圖36示出了具有界定場板的場板蝕刻終止結構的高電壓電晶體元件3600的一些額外實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 36 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 3600 with a field plate etch stop structure defining a field plate, the field plate including a bottom that is vertically offset from the bottom surface of the conductive contact surface.

高電壓電晶體元件3600包括佈置於半導體基底102上方在源極區104與汲極區106之間的金屬閘極結構3602。金屬閘極結構3602包括通過閘極介電質3606與基底分離的金屬閘極電極3604。在一些實施例中,金屬閘極電極3604可包括鋁、釕、鈀、鉿、鋯、鈦等等。在一些實施例中,閘極介電質3606包括高k介電質,例如氧化鉿、鉿矽氧化物、鉿鉭氧化物、氧化鋁、氧化鋯等等。 The high-voltage transistor element 3600 includes a metal gate structure 3602 arranged above the semiconductor substrate 102 between the source region 104 and the drain region 106. The metal gate structure 3602 includes a metal gate electrode 3604 separated from the substrate by a gate dielectric 3606. In some embodiments, the metal gate electrode 3604 may include aluminum, ruthenium, palladium, hafnium, zirconium, titanium, and the like. In some embodiments, the gate dielectric 3606 includes a high-k dielectric, such as hafnium oxide, hafnium silicon oxide, hafnium tantalum oxide, aluminum oxide, zirconium oxide, and the like.

接觸蝕刻終止層(CESL)406安置於半導體基底102上方。CESL 406具有側向鄰近金屬閘極結構3602的最上表面406u。第一ILD層3402安置於CESL 406上方。在一些實施例中,金屬閘極結構3602、CESL 406以及第一ILD層3402具有實質上平坦 (例如,在化學機械平坦化製程的容限內的平面)的最上表面。第二ILD層3406安置於所述第一ILD層3402上方。第二ILD層3406接觸金屬閘極結構3602、CESL 406以及第一ILD層3402的上表面。 A contact etch stop layer (CESL) 406 is disposed on the semiconductor substrate 102. The CESL 406 has an uppermost surface 406u laterally adjacent to the metal gate structure 3602. The first ILD layer 3402 is disposed above the CESL 406. In some embodiments, the metal gate structure 3602, CESL 406, and the first ILD layer 3402 have substantially flat (For example, the plane within the tolerance of the chemical mechanical planarization process) the uppermost surface. The second ILD layer 3406 is disposed above the first ILD layer 3402. The second ILD layer 3406 contacts the upper surface of the metal gate structure 3602, CESL 406 and the first ILD layer 3402.

場板蝕刻終止結構3404安置於第一ILD層3402的最上表面上方,處於側向在金屬閘極結構3602與汲極區106之間的位置。場板蝕刻終止結構3404具有沿水平面安置的底部表面,所述水平面沿金屬閘極結構3602、CESL 406以及第一ILD層3402的最上表面延伸。在一些實施例(未圖示)中,第一ILD層3402可凹入場板蝕刻終止結構3404的最外部側壁與CESL 406之間。場板122在場板蝕刻終止結構3404上方。場板122從第二ILD層3406的頂部延伸到場板蝕刻終止結構3404,使得場板122的最底表面在金屬閘極結構3602的頂部上方。 The field plate etch stop structure 3404 is disposed above the uppermost surface of the first ILD layer 3402, at a position laterally between the metal gate structure 3602 and the drain region 106. The field plate etch stop structure 3404 has a bottom surface disposed along a horizontal plane that extends along the uppermost surface of the metal gate structure 3602, CESL 406, and first ILD layer 3402. In some embodiments (not shown), the first ILD layer 3402 may be recessed between the outermost sidewall of the field plate etch stop structure 3404 and the CESL 406. The field plate 122 is above the field plate etch stop structure 3404. The field plate 122 extends from the top of the second ILD layer 3406 to the field plate etch stop structure 3404 so that the bottommost surface of the field plate 122 is above the top of the metal gate structure 3602.

圖37示出了具有界定場板的場板蝕刻終止結構的高電壓電晶體元件3700的一些額外實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 FIG. 37 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 3700 with a field plate etch stop structure defining a field plate, the field plate including a bottom that is vertically offset from the bottom surface of the conductive contact surface.

高電壓電晶體元件3700包括佈置於半導體基底102上方在源極區104與汲極區106之間的金屬閘極結構3602。CESL 406安置於半導體基底102上方且具有側向鄰近金屬閘極結構3602的最上表面406u。第一ILD層3402安置於CESL 406上方。第二ILD層3406安置於所述第一ILD層3402上方。第二ILD層3406接觸金屬閘極結構3602、CESL 406以及第一ILD層3402的最上表面。 The high-voltage transistor element 3700 includes a metal gate structure 3602 arranged above the semiconductor substrate 102 between the source region 104 and the drain region 106. The CESL 406 is disposed above the semiconductor substrate 102 and has an uppermost surface 406u laterally adjacent to the metal gate structure 3602. The first ILD layer 3402 is disposed above the CESL 406. The second ILD layer 3406 is disposed above the first ILD layer 3402. The second ILD layer 3406 contacts the uppermost surface of the metal gate structure 3602, CESL 406 and the first ILD layer 3402.

第一ILD層3402具有界定第一ILD層3402內的空腔3702的側壁3402s,所述空腔在金屬閘極結構3602與汲極區106 之間。在一些實施例中,側壁3402s從第一ILD層3402的最上表面延伸到CESL 406,使得空腔3702的底部由CESL 406界定。 The first ILD layer 3402 has sidewalls 3402s defining a cavity 3702 in the first ILD layer 3402, and the cavity is between the metal gate structure 3602 and the drain region 106 between. In some embodiments, the sidewall 3402s extends from the uppermost surface of the first ILD layer 3402 to the CESL 406 so that the bottom of the cavity 3702 is defined by the CESL 406.

在一些實施例中,介電材料3704安置在空腔3702內,且場板蝕刻終止結構3404安置在介電材料3704上方的空腔3702內。在一些實施例中,介電材料3704可包括氧化物(例如,氧化矽)、氮化物等等。在一些其他實施例中,其中場板蝕刻終止結構3404為介電質,介電材料3704可省略(例如,使得場板蝕刻終止結構3404接觸CESL 406)。第二ILD層3406安置於第一ILD層3402上方,且場板122在場板蝕刻終止結構3404上方。場板122由第二ILD層3406側向包圍。場板122從第二ILD層3406的頂部延伸到場板蝕刻終止結構3404。 In some embodiments, the dielectric material 3704 is disposed in the cavity 3702, and the field plate etch stop structure 3404 is disposed in the cavity 3702 above the dielectric material 3704. In some embodiments, the dielectric material 3704 may include oxide (eg, silicon oxide), nitride, or the like. In some other embodiments, where the field plate etch stop structure 3404 is a dielectric, the dielectric material 3704 can be omitted (for example, the field plate etch stop structure 3404 is made to contact the CESL 406). The second ILD layer 3406 is disposed above the first ILD layer 3402, and the field plate 122 is above the field plate etch stop structure 3404. The field plate 122 is laterally surrounded by the second ILD layer 3406. The field plate 122 extends from the top of the second ILD layer 3406 to the field plate etch stop structure 3404.

在一些實施例中,場板蝕刻終止結構3404從所述介電材料3704的頂部延伸到第一ILD層3402的頂部。在這類實施例中,場板122的底部通過由介電材料3704、場板蝕刻終止結構3404以及CESL 406界定的距離d V 與半導體基底102分離。在一些實施例中,距離d V 實質上等於第一ILD層3402的厚度。 In some embodiments, the field plate etch stop structure 3404 extends from the top of the dielectric material 3704 to the top of the first ILD layer 3402. In such embodiments, the bottom of the field plate 122 is separated from the semiconductor substrate 102 by a distance d V defined by the dielectric material 3704, the field plate etch stop structure 3404, and the CESL 406. In some embodiments, the distance d V is substantially equal to the thickness of the first ILD layer 3402.

在圖38的橫截面圖3800中示出的其他實施例中,場板蝕刻終止結構3404具有通過非零距離d r 凹入第一ILD層3402的最上表面下方的最上表面。將場板蝕刻終止結構3404凹入第一ILD層3402的最上表面下方允許場板122的最底表面與半導體基底102之間的距離d V 減小為低於第一ILD層3402的厚度。 In other embodiments, cross-sectional view of FIG. 38 is shown in 3800, etching stop field plate structure 3404 has a concave below the uppermost surface of the uppermost surface of the first ILD layer 3402 by a non-zero distance d r. Recessing the field plate etch stop structure 3404 below the uppermost surface of the first ILD layer 3402 allows the distance d V between the bottommost surface of the field plate 122 and the semiconductor substrate 102 to be reduced to be lower than the thickness of the first ILD layer 3402.

圖39示出了具有界定場板的場板蝕刻終止結構的高電壓電晶體元件3900的一些額外實施例的橫截面圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 Figure 39 shows a cross-sectional view of some additional embodiments of a high voltage transistor element 3900 with a field plate etch stop structure defining a field plate, the field plate including a bottom that is vertically offset from the bottom surface of the conductive contact surface.

高電壓電晶體元件3900包括側向安置在金屬閘極結構3602與CESL 406之間且豎直地在半導體基底102與CESL 406之間的RPO 2002。第一ILD層3402安置於CESL 406上方,且第二ILD層3406安置於第一ILD層3402上方。第二ILD層3406接觸金屬閘極結構3602、CESL 406以及第一ILD層3402的最上表面。 The high-voltage transistor element 3900 includes an RPO 2002 that is laterally disposed between the metal gate structure 3602 and the CESL 406 and vertically between the semiconductor substrate 102 and the CESL 406. The first ILD layer 3402 is disposed above the CESL 406, and the second ILD layer 3406 is disposed above the first ILD layer 3402. The second ILD layer 3406 contacts the uppermost surface of the metal gate structure 3602, CESL 406 and the first ILD layer 3402.

第一ILD層3402和第二ILD層3406的側壁界定空腔3902,所述空腔從第二ILD層3406的頂部豎直延伸到CESL 406且側向在金屬閘極結構3602與汲極區106之間。介電材料3704安置在空腔3902內,且場板蝕刻終止結構3404安置在介電材料3704上方的空腔3902內。在一些實施例中,場板蝕刻終止結構3404從所述介電材料3704的頂部延伸到第二ILD層3406的頂部。在其他實施例(未圖示)中,場板蝕刻終止結構3404可具有凹入第二ILD層3406的頂部下方的最上表面。 The sidewalls of the first ILD layer 3402 and the second ILD layer 3406 define a cavity 3902, which extends vertically from the top of the second ILD layer 3406 to the CESL 406 and is laterally located between the metal gate structure 3602 and the drain region 106 between. The dielectric material 3704 is disposed in the cavity 3902, and the field plate etch stop structure 3404 is disposed in the cavity 3902 above the dielectric material 3704. In some embodiments, the field plate etch stop structure 3404 extends from the top of the dielectric material 3704 to the top of the second ILD layer 3406. In other embodiments (not shown), the field plate etch stop structure 3404 may have an uppermost surface recessed below the top of the second ILD layer 3406.

第三ILD層3408安置於所述第二ILD層3406上方。場板122穿過第三ILD層3408延伸到場板蝕刻終止結構3404。場板122的最底表面以非零距離d v 與半導體基底102豎直地分離。將第一ILD層3402和第二ILD層3406兩個用於界定空腔3902允許更大範圍的非零距離d v The third ILD layer 3408 is disposed above the second ILD layer 3406. The field plate 122 extends through the third ILD layer 3408 to the field plate etch stop structure 3404. The bottom surface of the field plate 122 to separate non-zero distance d v from the semiconductor substrate 102 vertically. Using the first ILD layer 3402 and the second ILD layer 3406 to define the cavity 3902 allows a larger range of non-zero distance d v .

圖40到圖50示出了繪示一種形成具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些實施例的橫截面圖4000到橫截面圖5000,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。雖然參看方法描述圖40到圖50中所繪示的橫截面圖4000到橫截面圖5000,但應瞭解,圖40到圖50中所繪示的結構不限於所述方法而實際上可單獨獨立於所述方法。 40-50 show a cross-sectional view 4000 to a cross-sectional view 5000 of some embodiments of a method for forming a high-voltage transistor element having a field plate etch stop structure defining a field plate, the field plate includes A bottom surface that is vertically offset from the bottom surface of the conductive contact. Although referring to the cross-sectional view 4000 to the cross-sectional view 5000 shown in the method description in FIGS. 40 to 50, it should be understood that the structure shown in FIGS. 40 to 50 is not limited to the method and can actually be independently independent于说方法。 In the method.

如圖40的橫截面圖4000中所示,選擇性地植入半導體基底102以形成多個植入區(例如,井區、接觸區等)。在一些實施例中,可選擇性地植入半導體基底102以形成主體區2106、漂移區2104、源極區104以及汲極區106。在其他實施例中,可選擇性地植入半導體基底102以形成不同植入區(例如,例如圖1到圖10中所示出的那些植入區中的任一個)。在一些實施例中,可通過選擇性地遮蔽半導體基底102(例如,使用光阻罩幕)且隨後將高能量摻雜劑(例如,例如硼的p型摻雜劑物質或例如磷的n型摻雜劑)引入到半導體基底102的暴露區域中以形成多個植入區。 As shown in the cross-sectional view 4000 of FIG. 40, the semiconductor substrate 102 is selectively implanted to form a plurality of implanted regions (eg, well regions, contact regions, etc.). In some embodiments, the semiconductor substrate 102 may be selectively implanted to form the body region 2106, the drift region 2104, the source region 104, and the drain region 106. In other embodiments, the semiconductor substrate 102 may be selectively implanted to form different implanted regions (for example, any of those implanted regions shown in FIGS. 1 to 10). In some embodiments, the semiconductor substrate 102 may be selectively shielded (for example, using a photoresist mask) and then high-energy dopants (for example, p-type dopant species such as boron or n-type such as phosphorous The dopant) is introduced into the exposed area of the semiconductor substrate 102 to form a plurality of implanted regions.

具有閘極介電層110和閘極電極材料108的閘極結構116形成於半導體基底102上方,在源極區104與汲極區106之間。閘極結構116可通過將閘極介電層沉積於半導體基底102上方且通過將閘極電極材料沉積於閘極介電層上方而形成。閘極介電層和閘極電極材隨後可經圖案化(例如,根據光阻罩幕及/或硬罩幕蝕刻)以界定閘極結構116。 A gate structure 116 having a gate dielectric layer 110 and a gate electrode material 108 is formed on the semiconductor substrate 102 between the source region 104 and the drain region 106. The gate structure 116 may be formed by depositing a gate dielectric layer on the semiconductor substrate 102 and by depositing a gate electrode material on the gate dielectric layer. The gate dielectric layer and the gate electrode material may then be patterned (eg, etched according to a photoresist mask and/or a hard mask) to define the gate structure 116.

如圖41的橫截面圖4100中所示,光阻保護性氧化物(RPO)層4102形成於閘極結構116上方。RPO 4102配置成阻擋矽化物在底層上的形成。在一些實施例中,RPO層4102可通過氣相沉積技術(例如,CVD)沉積。在一些實施例中,RPO層4102可包括二氧化矽(SiO2)、氮化矽等等。 As shown in the cross-sectional view 4100 of FIG. 41, a photoresist protective oxide (RPO) layer 4102 is formed over the gate structure 116. RPO 4102 is configured to block the formation of silicide on the bottom layer. In some embodiments, the RPO layer 4102 may be deposited by a vapor deposition technique (eg, CVD). In some embodiments, the RPO layer 4102 may include silicon dioxide (SiO2), silicon nitride, or the like.

如圖42的橫截面圖4200中所示,選擇性地圖案化RPO層(圖41的RPO層4102)以界定RPO 2002。在一些實施例中,選擇性地圖案化RPO層使得RPO 2002從閘極結構116正上方的 第一最外部側壁延伸到側向在閘極結構116與汲極區106之間的第二最外部側壁。在一些實施例中,可通過在RPO層上方形成遮蔽層2702且隨後將RPO層暴露於未由遮蔽層2702覆蓋的區域中的蝕刻劑來選擇性地圖案化RPO層。 As shown in the cross-sectional view 4200 of FIG. 42, the RPO layer (RPO layer 4102 of FIG. 41) is selectively patterned to define RPO 2002. In some embodiments, the RPO layer is selectively patterned so that the RPO 2002 from directly above the gate structure 116 The first outermost sidewall extends to the second outermost sidewall laterally between the gate structure 116 and the drain region 106. In some embodiments, the RPO layer can be selectively patterned by forming a shielding layer 2702 over the RPO layer and then exposing the RPO layer to an etchant in areas not covered by the shielding layer 2702.

如圖43的橫截面圖4300中所示,接觸蝕刻終止層(CESL)406形成於半導體基底102和RPO 2002上方。在一些實施例中,CESL 406可通過氣相沉積製程形成。CESL 406可包括氮化物層(例如,Si3N4)、碳化物層(SiC)等等。 As shown in the cross-sectional view 4300 of FIG. 43, a contact etch stop layer (CESL) 406 is formed over the semiconductor substrate 102 and the RPO 2002. In some embodiments, CESL 406 may be formed by a vapor deposition process. The CESL 406 may include a nitride layer (for example, Si 3 N 4 ), a carbide layer (SiC), and so on.

如圖44的橫截面圖4400中所示,第一層間介電(ILD)層3402形成於CESL 406上方。在一些實施例中,第一ILD層3402可包括氧化物(例如,SiO2)、超低k介電材料、低k介電材料(例如SiCO)等等。在一些實施例中,第一ILD層3402可通過氣相沉積製程形成。 As shown in the cross-sectional view 4400 of FIG. 44, a first interlayer dielectric (ILD) layer 3402 is formed over the CESL 406. In some embodiments, the first ILD layer 3402 may include oxide (for example, SiO 2 ), ultra-low-k dielectric material, low-k dielectric material (for example, SiCO), and so on. In some embodiments, the first ILD layer 3402 may be formed by a vapor deposition process.

如圖45的橫截面圖4500中所示,場板蝕刻終止層4502形成於第一ILD層3402上方。在各種實施例中,場板蝕刻終止結構4502可包括氮化矽(SiNx)、氮氧化矽(SiOxNy)、非晶矽(a-Si)、氧化鉿(HfOx)、氧化鋯(ZrOx)、金屬氧化物等等。在各種實施例中,場板蝕刻終止層4502可形成為具有介於大約1奈米與大約150奈米的範圍內的厚度。 As shown in the cross-sectional view 4500 of FIG. 45, a field plate etch stop layer 4502 is formed above the first ILD layer 3402. In various embodiments, the field plate etch stop structure 4502 may include silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), amorphous silicon (a-Si), hafnium oxide (HfO x ), zirconia (ZrO x ), metal oxide and so on. In various embodiments, the field plate etch stop layer 4502 may be formed to have a thickness ranging between about 1 nanometer and about 150 nanometers.

如圖46的橫截面圖4600中所示,場板蝕刻終止層(圖45的場板蝕刻終止層4502)經圖案化以將場板蝕刻終止結構3404界定在第一ILD層3402上方。在一些實施例中,可通過在場板蝕刻終止層上方形成遮蔽層4604且隨後在未由遮蔽層4604覆蓋的區域中將場板蝕刻終止層暴露於蝕刻劑4602來選擇性地圖案化場 板蝕刻終止層。在一些實施例中,蝕刻劑4602可包括用於離子轟擊蝕刻的離子。在其他實施例中,蝕刻劑4602可包括等離子蝕刻劑(例如,具有氟化學物質、氯化學物質等等)。 As shown in the cross-sectional view 4600 of FIG. 46, the field plate etch stop layer (field plate etch stop layer 4502 of FIG. 45) is patterned to define the field plate etch stop structure 3404 above the first ILD layer 3402. In some embodiments, the field can be selectively patterned by forming a shielding layer 4604 over the field plate etch stop layer and then exposing the field plate etch stop layer to an etchant 4602 in areas not covered by the shielding layer 4604 Board etching stop layer. In some embodiments, the etchant 4602 may include ions for ion bombardment etching. In other embodiments, the etchant 4602 may include a plasma etchant (for example, with a fluorine chemical substance, a chlorine chemical substance, etc.).

如圖47的橫截面圖4700中所示,第二ILD層3406形成於第一ILD層3402和場板蝕刻終止結構3404上方。在一些實施例中,第二ILD層3406可包括氧化物(例如,SiO2)、超低k介電材料、低k介電材料(例如SiCO)等等。在一些實施例中,第二ILD層3406可通過氣相沉積製程形成。在一些實施例中,第二ILD層3406與第一ILD層3402直接接觸形成。 As shown in the cross-sectional view 4700 of FIG. 47, the second ILD layer 3406 is formed above the first ILD layer 3402 and the field plate etch stop structure 3404. In some embodiments, the second ILD layer 3406 may include oxide (for example, SiO 2 ), ultra-low-k dielectric material, low-k dielectric material (for example, SiCO), and so on. In some embodiments, the second ILD layer 3406 may be formed by a vapor deposition process. In some embodiments, the second ILD layer 3406 is formed in direct contact with the first ILD layer 3402.

如圖48的橫截面圖4800中所示,執行蝕刻製程以同時界定多個接觸件開口1606和場板開口1608。多個接觸件開口1606由第一ILD層3402和第二ILD層3406的側壁界定。所得場板開口1608由第二ILD層3406和場板蝕刻終止結構3404的上表面界定。蝕刻製程使用在場板蝕刻終止結構3404與第一ILD層3402及第二ILD層3406之間具高度選擇性的蝕刻劑(例如,所述蝕刻劑比場板蝕刻終止結構3404更快地蝕刻第一ILD層3402及第二ILD層3406),使得接觸開口1606和場板開口1608具有非零距離的蝕刻深度偏移。 As shown in the cross-sectional view 4800 of FIG. 48, an etching process is performed to simultaneously define a plurality of contact openings 1606 and field plate openings 1608. The plurality of contact openings 1606 are defined by the sidewalls of the first ILD layer 3402 and the second ILD layer 3406. The resulting field plate opening 1608 is defined by the second ILD layer 3406 and the upper surface of the field plate etch stop structure 3404. The etching process uses a highly selective etchant between the field plate etch stop structure 3404 and the first ILD layer 3402 and the second ILD layer 3406 (for example, the etchant etches the second layer faster than the field plate etch stop structure 3404). An ILD layer 3402 and a second ILD layer 3406), so that the contact opening 1606 and the field plate opening 1608 have a non-zero distance of etch depth offset.

由於沉積製程的厚度通常比蝕刻製程的深度更易於控制,所以場板開口1608的底部與半導體基底102之間的距離可良好地受控制(由於其由用於形成CESL 406、第一ILD層3402以及場板蝕刻終止結構3404的沉積製程的厚度界定),從而獲得具有充分界定的電學性質(例如,充分界定的擊穿電壓)的場板。在一些實施例中,場板開口1608的底部與半導體基底102之間的 距離可介於大約400埃與大約700埃的範圍內。 Since the thickness of the deposition process is generally easier to control than the depth of the etching process, the distance between the bottom of the field plate opening 1608 and the semiconductor substrate 102 can be well controlled (because it is used to form the CESL 406, the first ILD layer 3402 And the thickness of the deposition process of the field plate etch stop structure 3404), so as to obtain a field plate with well-defined electrical properties (for example, well-defined breakdown voltage). In some embodiments, the gap between the bottom of the field plate opening 1608 and the semiconductor substrate 102 The distance may be in the range of about 400 angstroms and about 700 angstroms.

如圖49的橫截面圖4900中所示,以一或多個導電材料填充接觸開口1606和場板開口1608以界定多個接觸件120和場板122。在一些實施例中,一或多個導電材料可借助於沉積技術(例如,CVD、PVD、PE-CVD、濺鍍等)及/或鍍敷製程(例如,電鍍或無電鍍製程)沉積。隨後可執行平坦化製程(例如化學機械平坦化)以去除多餘的一或多個導電材料並形成沿線3102的平坦表面。在一些實施例中,一或多個導電材料可包括鎢(W)、鈷(Co)、鈦(Ti)、氮化鈦(TiN)或氮化鉭(TaN)等等。在一些實施例中,在沉積一或多個導電材料之前,擴散阻障層及/或襯層可沉積到接觸開口1606和場板開口1608中。 As shown in the cross-sectional view 4900 of FIG. 49, the contact opening 1606 and the field plate opening 1608 are filled with one or more conductive materials to define a plurality of contacts 120 and field plates 122. In some embodiments, one or more conductive materials may be deposited by means of deposition techniques (eg, CVD, PVD, PE-CVD, sputtering, etc.) and/or plating processes (eg, electroplating or electroless plating processes). Then, a planarization process (such as chemical mechanical planarization) may be performed to remove the excess conductive material or materials and form a flat surface along the line 3102. In some embodiments, the one or more conductive materials may include tungsten (W), cobalt (Co), titanium (Ti), titanium nitride (TiN), or tantalum nitride (TaN), among others. In some embodiments, a diffusion barrier layer and/or liner layer may be deposited into the contact opening 1606 and the field plate opening 1608 before depositing one or more conductive materials.

如圖50的橫截面圖5000中所示,第三ILD層3408形成於第二ILD層3406上方,且第一後段製程(BEOL)金屬線層128形成於第三ILD層3408內。在各種實施例中,第三ILD層3408可通過將第三ILD材料沉積於第二ILD層3406上方而形成。隨後蝕刻第三ILD層3408以形成在第三LD層3408內延伸的溝槽。以導電材料填充溝槽,且執行平坦化製程(例如,CMP)以從第二ILD層3406上方去除多餘的導電材料。 As shown in the cross-sectional view 5000 of FIG. 50, the third ILD layer 3408 is formed above the second ILD layer 3406, and the first back end of line (BEOL) metal line layer 128 is formed in the third ILD layer 3408. In various embodiments, the third ILD layer 3408 may be formed by depositing a third ILD material on the second ILD layer 3406. The third ILD layer 3408 is then etched to form trenches extending in the third LD layer 3408. The trench is filled with conductive material, and a planarization process (for example, CMP) is performed to remove excess conductive material from above the second ILD layer 3406.

圖51到圖65示出了繪示一種形成具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些額外實施例的橫截面圖5100到橫截面圖6500,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。雖然參看方法描述圖51到圖65中所繪示的橫截面圖5100到橫截面圖6500,但應瞭解,圖51到圖65中所繪示的結構不限於所述方法而實際上可單獨獨立於所述方 法。 FIGS. 51 to 65 show a cross-sectional view of some additional embodiments of a method of forming a high-voltage transistor element having a field plate etch stop structure defining a field plate. It includes a bottom surface that is vertically offset from the bottom surface of the conductive contact. Although referring to the cross-sectional view 5100 to the cross-sectional view 6500 shown in the method description in FIGS. 51 to 65, it should be understood that the structure shown in FIGS. 51 to 65 is not limited to the method and can actually be independently independent Yu said party Law.

如圖51的橫截面圖5100中所示,選擇性地植入半導體基底102以形成多個植入區(例如,井區、接觸區等)。在一些實施例中,可選擇性地植入半導體基底102以形成主體區2106、漂移區2104、源極區104以及汲極區106。在其他實施例中,可選擇性地植入半導體基底102以形成不同植入區(例如,例如圖1到圖10中所示出的那些植入區中的任一個)。 As shown in the cross-sectional view 5100 of FIG. 51, the semiconductor substrate 102 is selectively implanted to form a plurality of implanted regions (eg, well regions, contact regions, etc.). In some embodiments, the semiconductor substrate 102 may be selectively implanted to form the body region 2106, the drift region 2104, the source region 104, and the drain region 106. In other embodiments, the semiconductor substrate 102 may be selectively implanted to form different implanted regions (for example, any of those implanted regions shown in FIGS. 1 to 10).

犧牲閘極結構5102形成於半導體基底102上方,在源極區104與汲極區106之間。犧牲閘極結構5102包括犧牲閘極電極5104。在一些實施例中,犧牲閘極電極5104可包括多晶矽。在一些實施例中,犧牲閘極結構5102還可包括使犧牲閘極電極5104與半導體基底102分離的閘極介電質3606。在一些實施例中,閘極介電質3606可包括高k介電材料。 The sacrificial gate structure 5102 is formed on the semiconductor substrate 102 between the source region 104 and the drain region 106. The sacrificial gate structure 5102 includes a sacrificial gate electrode 5104. In some embodiments, the sacrificial gate electrode 5104 may include polysilicon. In some embodiments, the sacrificial gate structure 5102 may further include a gate dielectric 3606 that separates the sacrificial gate electrode 5104 from the semiconductor substrate 102. In some embodiments, the gate dielectric 3606 may include a high-k dielectric material.

如圖52的橫截面圖5200中所示,光阻保護性氧化物(RPO)層4102形成於犧牲閘極結構5102上方。在一些實施例中,RPO層4102可通過氣相沉積技術(例如,CVD、PVD等等)沉積。在一些實施例中,RPO層4102可包括二氧化矽(SiO2)、氮化矽等等。 As shown in the cross-sectional view 5200 of FIG. 52, a photoresist protective oxide (RPO) layer 4102 is formed over the sacrificial gate structure 5102. In some embodiments, the RPO layer 4102 may be deposited by vapor deposition techniques (eg, CVD, PVD, etc.). In some embodiments, the RPO layer 4102 may include silicon dioxide (SiO2), silicon nitride, or the like.

如圖53的橫截面圖5300中所示,選擇性地圖案化RPO層(圖52的RPO層4102)以界定RPO 2002。在一些實施例中,選擇性地圖案化RPO層使得RPO 2002從犧牲閘極結構5102正上方的第一最外部側壁延伸到側向在犧牲閘極結構5102與汲極區106之間的第二最外部側壁。在一些實施例中,可通過在RPO層上方形成遮蔽層2702且隨後將RPO層暴露於未由遮蔽層2702覆 蓋的區域中的蝕刻劑來選擇性地圖案化RPO層。 As shown in the cross-sectional view 5300 of FIG. 53, the RPO layer (RPO layer 4102 of FIG. 52) is selectively patterned to define RPO 2002. In some embodiments, the RPO layer is selectively patterned so that the RPO 2002 extends from the first outermost sidewall directly above the sacrificial gate structure 5102 to the second lateral side between the sacrificial gate structure 5102 and the drain region 106. The outermost side wall. In some embodiments, the masking layer 2702 can be formed by forming the masking layer 2702 over the RPO layer and then exposing the RPO layer to be uncovered by the masking layer 2702. The etchant in the covered area selectively pattern the RPO layer.

如圖54的橫截面圖5400中所示,接觸蝕刻終止層(CESL)406形成於半導體基底102和RPO 2002上方。在一些實施例中,CESL 406可通過氣相沉積製程形成。CESL 406可包括氮化物層(例如,Si3N4)、碳化物層(SiC)等等。 As shown in the cross-sectional view 5400 of FIG. 54, a contact etch stop layer (CESL) 406 is formed over the semiconductor substrate 102 and the RPO 2002. In some embodiments, CESL 406 may be formed by a vapor deposition process. The CESL 406 may include a nitride layer (for example, Si 3 N 4 ), a carbide layer (SiC), and so on.

如圖55的橫截面圖5500中所示,第一層間介電(ILD)層3402形成於CESL 406上方。 As shown in the cross-sectional view 5500 of FIG. 55, a first interlayer dielectric (ILD) layer 3402 is formed over the CESL 406.

如圖56的橫截面圖5600中所示,沿線5602執行第一平坦化製程。第一平坦化製程去除犧牲閘極結構5102上方的第一ILD層3402、CESL 406以及RPO 2002的部分。通過去除犧牲閘極結構5102上方的第一ILD層3402、CESL 406以及RPO 2002的部分,暴露犧牲閘極電極5104的頂部。 As shown in the cross-sectional view 5600 of FIG. 56, the first planarization process is performed along the line 5602. The first planarization process removes the portions of the first ILD layer 3402, CESL 406, and RPO 2002 above the sacrificial gate structure 5102. By removing the portions of the first ILD layer 3402, CESL 406, and RPO 2002 above the sacrificial gate structure 5102, the top of the sacrificial gate electrode 5104 is exposed.

如圖57的橫截面圖5700中所示,去除犧牲閘極結構5102以在CESL 406的側壁之間形成替換閘極空腔5702。在一些實施例中,可使用相對於犧牲閘極結構5102選擇的蝕刻劑來去除犧牲閘極結構5102。 As shown in the cross-sectional view 5700 of FIG. 57, the sacrificial gate structure 5102 is removed to form a replacement gate cavity 5702 between the sidewalls of the CESL 406. In some embodiments, an etchant selected relative to the sacrificial gate structure 5102 may be used to remove the sacrificial gate structure 5102.

如圖58的橫截面圖5800中所示,金屬閘極電極3604形成於替換閘極空腔5702內以界定金屬閘極結構3602。在一些實施例中,可通過使用沉積製程(例如,CVD、PE-CVD、PVD、ALD、濺鍍等等)將導電材料(例如,鋁、鉭、鎳、鉬等等)沉積在替換閘極空腔5702內而形成金屬閘極電極3604。在一些實施例(未圖示)中,在導電材料的沉積之前,一或多個閘極介電質可形成於替換閘極空腔5702中。在將導電材料沉積於替換閘極空腔5702內之後執行(沿線5806)第二平坦化製程(例如,CMP製程)。 第二平坦化製程從第一ILD層3402上方去除導電材料以界定金屬閘極電極3604。 As shown in the cross-sectional view 5800 of FIG. 58, a metal gate electrode 3604 is formed in the replacement gate cavity 5702 to define a metal gate structure 3602. In some embodiments, conductive materials (e.g., aluminum, tantalum, nickel, molybdenum, etc.) can be deposited on the replacement gate by using a deposition process (e.g., CVD, PE-CVD, PVD, ALD, sputtering, etc.) A metal gate electrode 3604 is formed in the cavity 5702. In some embodiments (not shown), one or more gate dielectrics may be formed in the replacement gate cavity 5702 before the deposition of the conductive material. After the conductive material is deposited in the replacement gate cavity 5702, a second planarization process (for example, a CMP process) is performed (along line 5806). The second planarization process removes the conductive material from above the first ILD layer 3402 to define the metal gate electrode 3604.

如圖59的橫截面圖5900中所示,執行蝕刻製程以將空腔3702界定在第一ILD層3402內,在金屬閘極結構3602與汲極區106之間。空腔3702由第一ILD層3402的側壁和CESL 406的上表面界定。在一些實施例中,可界定空腔3702,從而在第一ILD層3402上方形成遮蔽層(未圖示)且隨後將第一ILD層3402暴露於未由遮蔽層覆蓋的區域中的蝕刻劑。 As shown in the cross-sectional view 5900 of FIG. 59, an etching process is performed to define a cavity 3702 in the first ILD layer 3402, between the metal gate structure 3602 and the drain region 106. The cavity 3702 is defined by the sidewall of the first ILD layer 3402 and the upper surface of the CESL 406. In some embodiments, a cavity 3702 may be defined, thereby forming a shielding layer (not shown) over the first ILD layer 3402 and then exposing the first ILD layer 3402 to the etchant in areas not covered by the shielding layer.

如圖60的橫截面圖6000中所示,介電材料3704形成於空腔3702內。在一些實施例中,介電材料3704可包括氧化物(例如,氧化矽)、氮化物等等。在一些實施例中,介電材料3704可通過沉積製程(例如,CVD、PE-CVD、PVD、ALD等等),隨後通過化學機械平坦化(CMP)製程及/或蝕刻製程從空腔3702外部去除介電材料而形成。 As shown in the cross-sectional view 6000 of FIG. 60, a dielectric material 3704 is formed in the cavity 3702. In some embodiments, the dielectric material 3704 may include oxide (eg, silicon oxide), nitride, or the like. In some embodiments, the dielectric material 3704 can be removed from the cavity 3702 through a deposition process (for example, CVD, PE-CVD, PVD, ALD, etc.), followed by a chemical mechanical planarization (CMP) process and/or an etching process. It is formed by removing the dielectric material.

如圖61的橫截面圖6100中所示,場板蝕刻終止結構3404形成於空腔3702內,在介電材料3704上方。在各種實施例中,場板蝕刻終止結構3404可包括氮化矽(SiNx)、氮氧化矽(SiOxNy)、非晶矽(a-Si)、氧化鉿(HfOx)、氧化鋯(ZrOx)、金屬氧化物等等。在各種實施例中,場板蝕刻終止結構3404可形成為具有介於大約1奈米與大約150奈米的範圍內的厚度。在一些實施例中,場板蝕刻終止結構3404可通過沉積場板蝕刻終止材料(例如,氮化矽、非晶矽、金屬氧化物等等),隨後通過化學機械平坦化(CMP)製程及/或蝕刻製程從空腔3702外部去除介電材料及/或場板蝕刻終止材料而形成。 As shown in the cross-sectional view 6100 of FIG. 61, the field plate etch stop structure 3404 is formed in the cavity 3702 above the dielectric material 3704. In various embodiments, the field plate etch stop structure 3404 may include silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), amorphous silicon (a-Si), hafnium oxide (HfO x ), zirconia (ZrO x ), metal oxide and so on. In various embodiments, the field plate etch stop structure 3404 may be formed to have a thickness ranging between about 1 nanometer and about 150 nanometers. In some embodiments, the field plate etch stop structure 3404 may be deposited with a field plate etch stop material (for example, silicon nitride, amorphous silicon, metal oxide, etc.), followed by a chemical mechanical planarization (CMP) process and/ Or the etching process removes the dielectric material and/or the field plate etch stop material from the outside of the cavity 3702 to form it.

如圖62的橫截面圖6200中所示,第二ILD層3406形成於第一ILD層3402和場板蝕刻終止結構3404上方。 As shown in the cross-sectional view 6200 of FIG. 62, the second ILD layer 3406 is formed above the first ILD layer 3402 and the field plate etch stop structure 3404.

如圖63的橫截面圖6300中所示,執行蝕刻製程以同時界定多個接觸件開口1606和場板開口1608。在一些實施例中,蝕刻製程將第二ILD層3406的上表面暴露於未由遮蔽層3003覆蓋的區域中的蝕刻劑3002以界定多個接觸件開口1606和場板開口1608。多個接觸件開口1606由第一ILD層3402和第二ILD層3406的側壁界定。場板開口1608由第二ILD層3406的側壁和場板蝕刻終止結構3404的上表面界定。接觸開口1606和場板開口1608具有非零距離的蝕刻深度偏移。在一些實施例中,非零深度可介於大約400埃與大約700埃的範圍內。 As shown in the cross-sectional view 6300 of FIG. 63, an etching process is performed to simultaneously define a plurality of contact openings 1606 and field plate openings 1608. In some embodiments, the etching process exposes the upper surface of the second ILD layer 3406 to the etchant 3002 in the area not covered by the shielding layer 3003 to define a plurality of contact openings 1606 and field plate openings 1608. The plurality of contact openings 1606 are defined by the sidewalls of the first ILD layer 3402 and the second ILD layer 3406. The field plate opening 1608 is defined by the sidewall of the second ILD layer 3406 and the upper surface of the field plate etch stop structure 3404. The contact opening 1606 and the field plate opening 1608 have a non-zero distance etch depth offset. In some embodiments, the non-zero depth may be in the range of about 400 angstroms and about 700 angstroms.

如圖64的橫截面圖6400中所示,以一或多個導電材料填充接觸開口1606和場板開口1608。在一些實施例中,一或多個導電材料可借助於氣相沉積技術(例如,CVD、PVD、PE-CVD、濺鍍等)及/或鍍敷製程(例如,電鍍或無電鍍製程)沉積。隨後可執行平坦化製程(例如化學機械平坦化)以去除多餘的一或多個導電材料並形成沿線3102的平坦表面。 As shown in the cross-sectional view 6400 of FIG. 64, the contact opening 1606 and the field plate opening 1608 are filled with one or more conductive materials. In some embodiments, one or more conductive materials may be deposited by means of vapor deposition techniques (for example, CVD, PVD, PE-CVD, sputtering, etc.) and/or plating processes (for example, electroplating or electroless plating processes) . Then, a planarization process (such as chemical mechanical planarization) may be performed to remove the excess conductive material or materials and form a flat surface along the line 3102.

如圖65的橫截面圖6500中所示,第三ILD層3408形成於第二ILD層3406上方,且第一後段製程(BEOL)金屬線層128形成於第三ILD層3408內。 As shown in the cross-sectional view 6500 of FIG. 65, the third ILD layer 3408 is formed above the second ILD layer 3406, and the first back end of line (BEOL) metal line layer 128 is formed in the third ILD layer 3408.

圖66到圖76示出了繪示一種形成具有界定場板的場板蝕刻終止結構的高電壓電晶體元件的方法的一些額外實施例的橫截面圖6600到橫截面圖7600,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。雖然參看方法描述圖66到圖76中所 繪示的橫截面圖6600到橫截面圖7600,但應瞭解,圖66到圖76中所繪示的結構不限於所述方法而實際上可單獨獨立於所述方法。 66 to 76 show a cross-sectional view 6600 to cross-sectional view 7600 illustrating some additional embodiments of a method of forming a high-voltage transistor element having a field plate etch stop structure defining a field plate, the field plate It includes a bottom surface that is vertically offset from the bottom surface of the conductive contact. Although referring to the method description in Fig. 66 to Fig. 76, The cross-sectional view 6600 to the cross-sectional view 7600 are shown, but it should be understood that the structure shown in FIG. 66 to FIG. 76 is not limited to the method and may actually be independent of the method alone.

如圖66的橫截面圖6600中所示,選擇性地植入半導體基底102以形成多個植入區(例如,井區、接觸區等)。在一些實施例中,可選擇性地植入半導體基底102以形成主體區2106、漂移區2104、源極區104以及汲極區106。在其他實施例中,可選擇性地植入半導體基底102以形成不同植入區(例如,例如圖1到圖10中所示出的那些植入區中的任一個)。 As shown in the cross-sectional view 6600 of FIG. 66, the semiconductor substrate 102 is selectively implanted to form a plurality of implanted regions (eg, well regions, contact regions, etc.). In some embodiments, the semiconductor substrate 102 may be selectively implanted to form the body region 2106, the drift region 2104, the source region 104, and the drain region 106. In other embodiments, the semiconductor substrate 102 may be selectively implanted to form different implanted regions (for example, any of those implanted regions shown in FIGS. 1 to 10).

犧牲閘極結構5102形成於半導體基底102上方,在源極區104與汲極區106之間。犧牲閘極結構5102包括犧牲閘極電極5104。在一些實施例中,犧牲閘極電極5104可包括多晶矽。在一些實施例中,犧牲閘極結構5102還可包括使犧牲閘極電極5104與半導體基底102分離的閘極介電質3606。在一些實施例中,閘極介電質3606可包括高k介電材料。 The sacrificial gate structure 5102 is formed on the semiconductor substrate 102 between the source region 104 and the drain region 106. The sacrificial gate structure 5102 includes a sacrificial gate electrode 5104. In some embodiments, the sacrificial gate electrode 5104 may include polysilicon. In some embodiments, the sacrificial gate structure 5102 may further include a gate dielectric 3606 that separates the sacrificial gate electrode 5104 from the semiconductor substrate 102. In some embodiments, the gate dielectric 3606 may include a high-k dielectric material.

如圖67的橫截面圖6700中所示,接觸蝕刻終止層(CESL)406形成於半導體基底102和犧牲閘極結構5102上方。在一些實施例中,CESL 406可通過氣相沉積製程形成。CESL 406可包括氮化物層(例如,Si3N4)、碳化物層(SiC)等等。 As shown in the cross-sectional view 6700 of FIG. 67, a contact etch stop layer (CESL) 406 is formed over the semiconductor substrate 102 and the sacrificial gate structure 5102. In some embodiments, CESL 406 may be formed by a vapor deposition process. The CESL 406 may include a nitride layer (for example, Si 3 N 4 ), a carbide layer (SiC), and so on.

如圖68的橫截面圖6800中所示,第一層間介電(ILD)層3402形成於CESL 406上方。 As shown in the cross-sectional view 6800 of FIG. 68, a first interlayer dielectric (ILD) layer 3402 is formed over the CESL 406.

如圖69的橫截面圖6900中所示,沿線5602執行第一平坦化製程。第一平坦化製程從犧牲閘極結構5102上方去除第一ILD層3402和CESL 406的部分。通過從犧牲閘極結構5102上方 去除第一ILD層3402和CESL 406的部分,暴露犧牲閘極電極5104的頂部。 As shown in the cross-sectional view 6900 of FIG. 69, the first planarization process is performed along the line 5602. The first planarization process removes portions of the first ILD layer 3402 and CESL 406 from above the sacrificial gate structure 5102. By going from above the sacrificial gate structure 5102 The portions of the first ILD layer 3402 and CESL 406 are removed, and the top of the sacrificial gate electrode 5104 is exposed.

如圖70的橫截面圖7000中所示,去除犧牲閘極結構5102以在CESL 406的側壁之間形成替換閘極空腔5702。在一些實施例中,可通過使用相對於犧牲閘極結構5102選擇的蝕刻劑來去除犧牲閘極結構5102。金屬閘極電極3604隨後形成於替換閘極空腔5702內以界定金屬閘極結構3602。在一些實施例中,金屬閘極電極3604可通過將導電材料沉積於替換閘極空腔5702內而形成。在一些實施例中,在導電材料的沉積之前,一或多個閘極介電質可形成於替換閘極空腔5702中。在將導電材料沉積於替換閘極空腔5702內之後執行(沿線5806)第二平坦化製程(例如,CMP製程)。第二平坦化製程(沿線5806)從第一ILD層3402上方去除導電材料以界定金屬閘極電極3604。 As shown in the cross-sectional view 7000 of FIG. 70, the sacrificial gate structure 5102 is removed to form a replacement gate cavity 5702 between the sidewalls of the CESL 406. In some embodiments, the sacrificial gate structure 5102 can be removed by using an etchant selected with respect to the sacrificial gate structure 5102. The metal gate electrode 3604 is then formed in the replacement gate cavity 5702 to define the metal gate structure 3602. In some embodiments, the metal gate electrode 3604 may be formed by depositing a conductive material in the replacement gate cavity 5702. In some embodiments, one or more gate dielectrics may be formed in the replacement gate cavity 5702 before the deposition of the conductive material. After the conductive material is deposited in the replacement gate cavity 5702, a second planarization process (for example, a CMP process) is performed (along line 5806). The second planarization process (along line 5806) removes conductive material from above the first ILD layer 3402 to define the metal gate electrode 3604.

如圖71的橫截面圖7100中所示,執行蝕刻製程以將空腔3702界定在第一ILD層3402內,在金屬閘極結構3602與汲極區106之間。空腔3702由第一ILD層3402的側壁和CESL 406的上表面界定。在一些實施例中,可界定空腔3702,從而在第一ILD層3402上方形成遮蔽層(未圖示)且隨後將第一ILD層3402暴露於未由遮蔽層覆蓋的區域中的蝕刻劑。 As shown in the cross-sectional view 7100 of FIG. 71, an etching process is performed to define a cavity 3702 in the first ILD layer 3402, between the metal gate structure 3602 and the drain region 106. The cavity 3702 is defined by the sidewall of the first ILD layer 3402 and the upper surface of the CESL 406. In some embodiments, a cavity 3702 may be defined, thereby forming a shielding layer (not shown) over the first ILD layer 3402 and then exposing the first ILD layer 3402 to the etchant in areas not covered by the shielding layer.

如圖72的橫截面圖7200中所示,介電材料3704形成於空腔3702內。在一些實施例中,介電材料3704可包括氧化物(例如,氧化矽)、氮化物等等。場板蝕刻終止結構3404隨後形成於空腔3702內,在所述介電材料3704上方。在各種實施例中,場板蝕刻終止結構4502可包括氮化矽(SiNx)、氮氧化矽 (SiOxNy)、非晶矽(a-Si)、氧化鉿(HfOx)、氧化鋯(ZrOx)、金屬氧化物等等。在一些實施例中,場板蝕刻終止層4502可通過沉積場板蝕刻終止材料(例如,CVD、PE-CVD、PVD、ALD等等),隨後通過從空腔3702外部去除介電材料及/或場板蝕刻終止材料化學機械平坦化製程及/或蝕刻製程而形成。 As shown in the cross-sectional view 7200 of FIG. 72, a dielectric material 3704 is formed in the cavity 3702. In some embodiments, the dielectric material 3704 may include oxide (eg, silicon oxide), nitride, or the like. A field plate etch stop structure 3404 is then formed in the cavity 3702 above the dielectric material 3704. In various embodiments, the field plate etch stop structure 4502 may include silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), amorphous silicon (a-Si), hafnium oxide (HfO x ), zirconia (ZrO x ), metal oxide and so on. In some embodiments, the field plate etch stop layer 4502 can be achieved by depositing a field plate etch stop material (eg, CVD, PE-CVD, PVD, ALD, etc.), followed by removing the dielectric material and/or from outside the cavity 3702 The field plate is formed by the chemical mechanical planarization process and/or the etching process of the stop material.

如圖73的橫截面圖7300中所示,第二ILD層3406形成於第一ILD層3402和場板蝕刻終止結構3404上方。 As shown in the cross-sectional view 7300 of FIG. 73, the second ILD layer 3406 is formed over the first ILD layer 3402 and the field plate etch stop structure 3404.

如圖74的橫截面圖7400中所示,執行蝕刻製程以同時界定多個接觸件開口1606和場板開口1608。多個接觸件開口1606由第一ILD層3402和第二ILD層3406的側壁界定。場板開口1608由第二ILD層3406和場板蝕刻終止結構3404的上表面界定。接觸開口1606和場板開口1608具有非零距離的蝕刻深度偏移。在一些實施例中,非零深度可介於大約400埃與大約700埃的範圍內。 As shown in the cross-sectional view 7400 of FIG. 74, an etching process is performed to simultaneously define a plurality of contact openings 1606 and field plate openings 1608. The plurality of contact openings 1606 are defined by the sidewalls of the first ILD layer 3402 and the second ILD layer 3406. The field plate opening 1608 is defined by the second ILD layer 3406 and the upper surface of the field plate etch stop structure 3404. The contact opening 1606 and the field plate opening 1608 have a non-zero distance etch depth offset. In some embodiments, the non-zero depth may be in the range of about 400 angstroms and about 700 angstroms.

如圖75的橫截面圖7500中所示,以一或多個導電材料填充接觸開口1606和場板開口1608。在一些實施例中,一或多個導電材料可借助於氣相沉積技術(例如,CVD、PVD、PE-CVD、濺鍍等)及/或鍍敷製程(例如,電鍍或無電鍍製程)沉積。隨後可執行平坦化製程(例如,化學機械平坦化)以從第二ILD層3406上方去除多餘的一或多個導電材料。 As shown in the cross-sectional view 7500 of FIG. 75, the contact opening 1606 and the field plate opening 1608 are filled with one or more conductive materials. In some embodiments, one or more conductive materials may be deposited by means of vapor deposition techniques (for example, CVD, PVD, PE-CVD, sputtering, etc.) and/or plating processes (for example, electroplating or electroless plating processes) . A planarization process (eg, chemical mechanical planarization) may then be performed to remove the excess conductive material or materials from above the second ILD layer 3406.

如圖76的橫截面圖7600中所示,第三ILD層3408形成於第二ILD層3406上方,且第一後段製程(BEOL)金屬線層128形成於第三ILD層3408內。 As shown in the cross-sectional view 7600 of FIG. 76, the third ILD layer 3408 is formed above the second ILD layer 3406, and the first back end of line (BEOL) metal line layer 128 is formed in the third ILD layer 3408.

圖77示出了形成一種具有界定場板的場板蝕刻終止結 構的高電壓電晶體元件的方法7700的一些實施例的流程圖,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 Figure 77 shows the formation of a field plate etch stop junction with a defined field plate A flowchart of some embodiments of a method 7700 of constructing a high voltage transistor element, the field plate includes a bottom surface that is vertically offset from the bottom surface of the conductive contact.

在動作7702處,在基底上方形成閘極結構。圖40、圖51以及圖66示出對應於動作7702的各種實施例的橫截面圖4000、橫截面圖5100以及橫截面圖6600。 At act 7702, a gate structure is formed over the substrate. 40, 51, and 66 show a cross-sectional view 4000, a cross-sectional view 5100, and a cross-sectional view 6600 of various embodiments corresponding to action 7702.

在動作7704處,源極區及汲極區形成於基底內,在閘極結構的相對側上。在一些額外實施例中,一或多個額外摻雜區(例如,主體區、漂移區等)也可形成於基底內。圖40、圖51以及圖66示出對應於動作7704的各種實施例的橫截面圖4000、橫截面圖5100以及橫截面圖6600。 At act 7704, the source and drain regions are formed within the substrate, on opposite sides of the gate structure. In some additional embodiments, one or more additional doped regions (for example, body regions, drift regions, etc.) may also be formed in the substrate. 40, 51, and 66 show a cross-sectional view 4000, a cross-sectional view 5100, and a cross-sectional view 6600 of various embodiments corresponding to action 7704.

在動作7706處,光阻保護性氧化物(RPO)可形成於閘極結構上方且側向在閘極結構與汲極區之間。圖41到圖42以及圖52到圖53示出對應於動作7706的各種實施例的橫截面圖4100到橫截面圖4200以及橫截面圖5200到橫截面圖5300。 At act 7706, a photoresistive protective oxide (RPO) may be formed over the gate structure and laterally between the gate structure and the drain region. 41 to 42 and 52 to 53 show cross-sectional views 4100 to 4200 and cross-sectional views 5200 to 5300 of various embodiments corresponding to action 7706.

在動作7708處,接觸蝕刻終止層(CESL)形成於閘極結構和基底上方。圖43、圖54以及圖67示出對應於動作7708的各種實施例的橫截面圖4300、橫截面圖5400以及橫截面圖6700。 At act 7708, a contact etch stop layer (CESL) is formed over the gate structure and the substrate. Figures 43, 54 and 67 show cross-sectional views 4300, 5400, and 6700 of various embodiments corresponding to act 7708.

在動作7710處,第一層間介電(ILD)層形成於CESL上方。圖44、圖54以及圖68示出對應於動作7710的各種實施例的橫截面圖4400、橫截面圖5400以及橫截面圖6800。 At act 7710, a first interlayer dielectric (ILD) layer is formed over CESL. 44, 54 and 68 show cross-sectional views 4400, 5400, and 6800 of various embodiments corresponding to action 7710.

在動作7712處,在第一ILD層形成之後形成場板蝕刻終止結構。圖45到圖46、圖59到圖61以及圖71到圖72示出對應於動作7712的各種實施例的橫截面圖4500到橫截面圖4600、 橫截面圖5900到橫截面圖6100以及橫截面圖7100到橫截面圖7200。 At act 7712, the field plate etch stop structure is formed after the formation of the first ILD layer. FIGS. 45 to 46, 59 to 61, and 71 to 72 show cross-sectional views 4500 to 4600 of various embodiments corresponding to action 7712, Cross-sectional view 5900 to cross-sectional view 6100 and cross-sectional view 7100 to cross-sectional view 7200.

在動作7714處,第二ILD層形成於第一ILD層和場板蝕刻終止結構上方。圖47、圖62以及圖73示出對應於動作7714的各種實施例的橫截面圖4700、橫截面圖6200以及橫截面圖7300。 At act 7714, a second ILD layer is formed over the first ILD layer and the field plate etch stop structure. FIGS. 47, 62, and 73 show a cross-sectional view 4700, a cross-sectional view 6200, and a cross-sectional view 7300 of various embodiments corresponding to action 7714.

在動作7716處,選擇性地蝕刻第一ILD層和第二ILD層以同時界定延伸穿過第一ILD層和第二ILD的多個接觸件開口和穿過第二ILD層延伸到場板蝕刻終止結構的場板開口。圖48、圖63以及圖74示出對應於動作7716的各種實施例的橫截面圖4800、橫截面圖6300以及橫截面圖7400。 At act 7716, the first ILD layer and the second ILD layer are selectively etched to simultaneously define a plurality of contact openings extending through the first ILD layer and the second ILD and extending through the second ILD layer to the field plate etch Terminate the field plate opening of the structure. FIGS. 48, 63, and 74 show a cross-sectional view 4800, a cross-sectional view 6300, and a cross-sectional view 7400 of various embodiments corresponding to action 7716.

在動作7718處,以一或多個導電材料填充多個接觸件開口和場板開口。圖49、圖64以及圖75示出對應於動作7718的各種實施例的橫截面圖4900、橫截面圖6400以及橫截面圖7500。 At act 7718, the multiple contact openings and field plate openings are filled with one or more conductive materials. 49, 64, and 75 show a cross-sectional view 4900, a cross-sectional view 6400, and a cross-sectional view 7500 of various embodiments corresponding to action 7718.

在動作7720處,導電內連線形成於第二ILD層上方的第三ILD層內。圖50、圖65以及圖76示出對應於動作7720的各種實施例的橫截面圖5000、橫截面圖6500以及橫截面圖7600。 At act 7720, conductive interconnects are formed in the third ILD layer above the second ILD layer. 50, 65, and 76 show a cross-sectional view 5000, a cross-sectional view 6500, and a cross-sectional view 7600 corresponding to various embodiments of action 7720.

因此,本揭露關於具有界定場板的場板蝕刻終止結構的高電壓電晶體元件,所述場板包括從導電接觸件的底部表面豎直偏移的底部表面。 Therefore, the present disclosure relates to a high voltage transistor element having a field plate etch stop structure defining a field plate, the field plate including a bottom surface that is vertically offset from the bottom surface of the conductive contact.

在一些實施例中,本揭露關於一種積體晶片。所述積體晶片包含:閘極結構,安置於基底上方,在源極區與汲極區之間;第一層間介電(ILD)層,安置於基底和閘極結構上方;第二ILD 層,安置於第一ILD層上方;場板蝕刻終止結構,在第一ILD層與第二ILD層之間;場板,從第二ILD層的最上表面延伸到場板蝕刻終止結構;以及多個導電接觸件,從第二ILD層的最上表面延伸到源極區和汲極區。在一些實施例中,積體晶片更包含從閘極結構正上方側向延伸到閘極結構與汲極區之間的介電層;以及安置於基底、介電層以及閘極結構上方的接觸蝕刻終止層。在一些實施例中,場板的最底表面沿平行於基底的上表面且延伸穿過多個導電接觸件的側壁的水平面佈置。在一些實施例中,場板蝕刻終止結構具有在第一ILD層的最頂部表面上方的最底表面。在一些實施例中,第一ILD層具有界定側向在閘極結構與汲極區之間的空腔的側壁,場板蝕刻終止結構佈置於空腔內位於第一ILD層的側壁之間。在一些實施例中,積體晶片更包含安置在空腔內位於場板蝕刻終止結構與基底之間的介電材料。在一些實施例中,積體晶片更包含安置於基底和閘極結構上方的接觸蝕刻終止層,所述接觸蝕刻終止層的上表面界定空腔的底部。在一些實施例中,場板蝕刻終止結構包含非晶矽。在一些實施例中,場板蝕刻終止結構包含氮化矽、氮氧化矽或金屬氧化物。在一些實施例中,場板蝕刻終止結構包含具有側向在閘極結構與汲極區之間的相對最外部側壁。在一些實施例中,積體晶片更包含安置於第二ILD層上方的蝕刻終止層,第二ILD層的最底表面接觸第一ILD層,且第二ILD層的最上表面接觸蝕刻終止層。 In some embodiments, the present disclosure relates to an integrated wafer. The integrated chip includes: a gate structure, arranged above the substrate, between the source region and the drain region; a first interlayer dielectric (ILD) layer, arranged above the substrate and the gate structure; and a second ILD Layer, arranged above the first ILD layer; a field plate etch stop structure, between the first ILD layer and the second ILD layer; a field plate, extending from the uppermost surface of the second ILD layer to the field plate etch stop structure; and more A conductive contact extends from the uppermost surface of the second ILD layer to the source region and the drain region. In some embodiments, the integrated wafer further includes a dielectric layer extending laterally from directly above the gate structure to between the gate structure and the drain region; and contacts disposed on the substrate, the dielectric layer, and the gate structure Etch stop layer. In some embodiments, the bottommost surface of the field plate is arranged along a horizontal plane parallel to the upper surface of the substrate and extending through the side walls of the plurality of conductive contacts. In some embodiments, the field plate etch stop structure has a bottommost surface above the topmost surface of the first ILD layer. In some embodiments, the first ILD layer has sidewalls defining a cavity laterally between the gate structure and the drain region, and the field plate etch stop structure is arranged in the cavity between the sidewalls of the first ILD layer. In some embodiments, the integrated wafer further includes a dielectric material disposed in the cavity between the field plate etch stop structure and the substrate. In some embodiments, the integrated wafer further includes a contact etch stop layer disposed above the substrate and the gate structure, and the upper surface of the contact etch stop layer defines the bottom of the cavity. In some embodiments, the field plate etch stop structure includes amorphous silicon. In some embodiments, the field plate etch stop structure includes silicon nitride, silicon oxynitride, or metal oxide. In some embodiments, the field plate etch stop structure includes a relatively outermost sidewall laterally between the gate structure and the drain region. In some embodiments, the integrated wafer further includes an etch stop layer disposed above the second ILD layer, the bottommost surface of the second ILD layer contacts the first ILD layer, and the uppermost surface of the second ILD layer contacts the etch stop layer.

在其他實施例中,本揭露關於一種積體晶片。積體晶片包含:閘極結構,安置於基底上方位於源極區與汲極區之間;介電結構,安置於基底和閘極結構上方;場板蝕刻終止結構,安置 在介電結構內;多個導電接觸件,安置在介電結構內;以及場板,安置於場板蝕刻終止結構上,所述場板具有最底表面,所述最底表面沿平行於所述基底的上表面且在所述多個導電接觸件的頂表面與底表面之間與所述多個導電接觸件的側壁相交(intersect)的第一水平面佈置。在一些實施例中,場板蝕刻終止結構具有最底表面,所述最底表面沿平行於第一水平面且在多個導電接觸件的頂表面與底表面之間與多個導電接觸件的側壁相交的第二水平面佈置。在一些實施例中,所述介電結構包含多個堆疊ILD層;且場板和多個導電接觸件由多個堆疊ILD層中的第一ILD層側向包圍且豎直地延伸到第一ILD層的頂部。在一些實施例中,所述介電結構包含第一ILD層和在第一ILD層上方的第二ILD層;導電接觸件從第一ILD層的底部延伸到第二ILD層的頂部;且場板蝕刻終止結構在第一ILD層的一部分上方和第二ILD層的下表面下方。在一些實施例中,所述介電結構包含第一ILD層和在第一ILD層上方的第二ILD層;且場板蝕刻終止結構接觸第一ILD層的最上表面。 In other embodiments, the present disclosure relates to an integrated wafer. The integrated chip includes: a gate structure, which is arranged above the substrate and located between the source region and the drain region; a dielectric structure, which is arranged above the substrate and the gate structure; a field plate etching termination structure, which is arranged In the dielectric structure; a plurality of conductive contacts are arranged in the dielectric structure; and a field plate is arranged on the field plate etch stop structure, the field plate has a bottommost surface, and the bottommost surface is parallel to the The upper surface of the substrate is arranged in a first horizontal plane intersecting the side walls of the plurality of conductive contacts between the top surface and the bottom surface of the plurality of conductive contacts. In some embodiments, the field plate etch stop structure has a bottommost surface that is parallel to the first horizontal plane and is between the top and bottom surfaces of the plurality of conductive contacts and the sidewalls of the plurality of conductive contacts. Intersecting second horizontal plane arrangement. In some embodiments, the dielectric structure includes a plurality of stacked ILD layers; and the field plate and the plurality of conductive contacts are laterally surrounded by the first ILD layer of the plurality of stacked ILD layers and extend vertically to the first ILD layer. The top of the ILD layer. In some embodiments, the dielectric structure includes a first ILD layer and a second ILD layer above the first ILD layer; conductive contacts extend from the bottom of the first ILD layer to the top of the second ILD layer; and the field The plate etch stop structure is above a portion of the first ILD layer and below the lower surface of the second ILD layer. In some embodiments, the dielectric structure includes a first ILD layer and a second ILD layer above the first ILD layer; and the field plate etch stop structure contacts the uppermost surface of the first ILD layer.

在又其他實施例中,本揭露關於一種形成積體晶片的方法。所述方法包含:在基底上方在源極區與汲極區之間形成閘極結構;在基底上方形成接觸蝕刻終止層;在接觸蝕刻終止層上方形成第一ILD層;在形成第一ILD層之後在閘極結構與汲極區之間形成場板蝕刻終止結構;在場板蝕刻終止結構上方形成第二ILD層;以及同時形成延伸穿過第一ILD層和第二ILD層的多個接觸件和穿過第二ILD層延伸到場板蝕刻終止結構的場板。在一些實施例中,方法更包含在第一ILD層上方形成場板蝕刻終止層;以 及圖案化場板蝕刻終止層以將場板蝕刻終止結構界定為具有在閘極結構與汲極區之間的最外部側壁。在一些實施例中,方法更包含選擇性地圖案化第一ILD層以界定閘極結構與汲極區之間的空腔;以及在空腔內形成場板蝕刻終止結構。在一些實施例中,方法更包含在空腔內形成介電材料;以及在介電材料上方形成場板蝕刻終止結構。 In still other embodiments, the present disclosure relates to a method of forming an integrated wafer. The method includes: forming a gate structure between a source region and a drain region on a substrate; forming a contact etch stop layer on the substrate; forming a first ILD layer above the contact etch stop layer; forming a first ILD layer Then a field plate etch stop structure is formed between the gate structure and the drain region; a second ILD layer is formed above the field plate etch stop structure; and a plurality of contacts extending through the first ILD layer and the second ILD layer are simultaneously formed And a field plate extending through the second ILD layer to the field plate etch stop structure. In some embodiments, the method further includes forming a field plate etch stop layer on the first ILD layer; And patterning the field plate etch stop layer to define the field plate etch stop structure as having the outermost sidewall between the gate structure and the drain region. In some embodiments, the method further includes selectively patterning the first ILD layer to define a cavity between the gate structure and the drain region; and forming a field plate etch stop structure in the cavity. In some embodiments, the method further includes forming a dielectric material in the cavity; and forming a field plate etch stop structure above the dielectric material.

前文概述若干實施例的特徵以使得本領域的技術人員可更好地理解本揭露內容的各方面。所屬領域的技術人員應瞭解,其可以易於使用本揭露作為設計或修改用於進行本文中所引入的實施例的相同目的和/或獲得相同優點的其他製程和結構的基礎。所屬領域的技術人員還應認識到,此類等效構造並不脫離本揭露的精神及範圍,且其可在不脫離本揭露的精神和範圍的情況下在本文中進行各種改變、替代及更改。 The foregoing summarizes the features of several embodiments so that those skilled in the art can better understand various aspects of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purpose and/or obtaining the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent structures do not depart from the spirit and scope of the present disclosure, and various changes, substitutions and alterations can be made in this article without departing from the spirit and scope of the present disclosure. .

400:LDMOS元件 400: LDMOS element

102:半導體基底 102: Semiconductor substrate

104:源極區 104: source region

106:汲極區 106: Drain Region

108:閘極電極 108: gate electrode

110:閘極介電層 110: gate dielectric layer

118:第一ILD層 118: First ILD layer

120:接觸件 120: Contact

210:閘極結構 210: Gate structure

212:側壁間隔件 212: Sidewall spacer

402:矽化物阻擋層 402: Silicide barrier

404:場板蝕刻終止層 404: Field plate etching stop layer

406:接觸蝕刻終止層 406: contact etch stop layer

410:第一金屬材料 410: The first metal material

412:第二金屬材料 412: second metal material

414:襯層 414: Lining

416:第二ILD層 416: The second ILD layer

418:第一金屬線層 418: first metal wire layer

420:平坦表面 420: Flat surface

Claims (10)

一種積體晶片,包括:閘極結構,安置於基底上方,位於源極區與汲極區之間;第一層間介電層,安置於所述基底上方且側向地環繞所述閘極結構;第二層間介電層,安置於所述第一層間介電層以及所述閘極結構上方,其中所述閘極結構位於所述基底與所述第二層間介電層之間;場板蝕刻終止結構,具有側向地位於所述閘極結構與所述汲極區之間的相對最外部側壁;場板,從所述第二層間介電層的最上表面延伸到所述場板蝕刻終止結構;以及多個導電接觸件,從所述第二層間介電層的所述最上表面延伸到所述源極區以及所述汲極區。 An integrated wafer comprising: a gate structure arranged above a substrate and located between a source region and a drain region; a first interlayer dielectric layer arranged above the substrate and laterally surrounding the gate Structure; a second interlayer dielectric layer, arranged above the first interlayer dielectric layer and the gate structure, wherein the gate structure is located between the substrate and the second interlayer dielectric layer; The field plate etch stop structure has a relatively outermost sidewall laterally located between the gate structure and the drain region; a field plate extends from the uppermost surface of the second interlayer dielectric layer to the field A plate etch stop structure; and a plurality of conductive contacts extending from the uppermost surface of the second interlayer dielectric layer to the source region and the drain region. 如申請專利範圍第1項所述的積體晶片,更包括:介電層,沿所述閘極結構的側壁連續地延伸到所述閘極結構與所述汲極區之間;以及接觸蝕刻終止層,安置於所述基底以及所述介電層上方,其中所述場板蝕刻終止結構接觸所述蝕刻終止層的上表面。 The integrated wafer described in the first item of the scope of patent application further includes: a dielectric layer that continuously extends along the sidewall of the gate structure to between the gate structure and the drain region; and contact etching A stop layer is arranged above the substrate and the dielectric layer, wherein the field plate etch stop structure contacts the upper surface of the etch stop layer. 如申請專利範圍第1項所述的積體晶片,其中所述場板的最底表面沿平行於所述基底的上表面且延伸穿過所述多個導電接觸件的側壁的水平面佈置。 The integrated wafer according to claim 1, wherein the bottommost surface of the field plate is arranged along a horizontal plane parallel to the upper surface of the substrate and extending through the side walls of the plurality of conductive contacts. 如申請專利範圍第1項所述的積體晶片,其中所述場板蝕刻終止結構具有在所述第一層間介電層的最頂部表面上方的最 底表面。 The integrated wafer according to the first item of the scope of patent application, wherein the field plate etch stop structure has a maximum value above the topmost surface of the first interlayer dielectric layer. The bottom surface. 如申請專利範圍第1項所述的積體晶片,其中所述第一層間介電層具有界定側向在所述閘極結構與所述汲極區之間的空腔的側壁,所述場板蝕刻終止結構佈置在所述空腔內位於所述第一層間介電層的所述側壁之間。 The integrated wafer according to claim 1, wherein the first interlayer dielectric layer has sidewalls defining a cavity laterally between the gate structure and the drain region, the A field plate etch stop structure is arranged in the cavity between the sidewalls of the first interlayer dielectric layer. 如申請專利範圍第1項所述的積體晶片,更包括:蝕刻終止層,安置於所述第二層間介電層上方,其中所述第二層間介電層的最底表面接觸所述第一層間介電層,且所述第二層間介電層的所述最上表面接觸所述蝕刻終止層。 The integrated wafer described in item 1 of the scope of patent application further includes: an etching stop layer disposed above the second interlayer dielectric layer, wherein the bottommost surface of the second interlayer dielectric layer contacts the first An interlayer dielectric layer, and the uppermost surface of the second interlayer dielectric layer contacts the etch stop layer. 一種積體晶片,包括:閘極結構,安置於基底上方,位於源極區與汲極區之間;蝕刻終止層,安置於所述基底上方且安置於所述閘極結構與所述汲極區之間;介電結構,安置於所述蝕刻終止層以及所述閘極結構上方,其中所述介電結構包含第一層間介電層和在所述第一層間介電層上方的第二層間介電層;場板蝕刻終止結構,安置在所述介電結構內,其中所述場板蝕刻終止結構在所述第一層間介電層的一部分上方和所述第二層間介電層的下表面下方,且其中所述蝕刻終止層連續地延伸為超過所述場板蝕刻終止結構的相對最外部側壁;多個導電接觸件,安置在所述介電結構內,其中所述多個導電接觸件從所述第一層間介電層的底部延伸到所述第二層間介電層的頂部;以及場板,安置於所述場板蝕刻終止結構上,其中所述場板具有 最底表面,所述最底表面沿平行於所述基底的上表面且在所述多個導電接觸件的頂表面與底表面之間與所述多個導電接觸件的側壁相交的第一水平面佈置。 An integrated wafer comprising: a gate structure arranged above a substrate and located between a source region and a drain region; and an etching stop layer arranged above the substrate and arranged on the gate structure and the drain electrode Between regions; a dielectric structure, disposed above the etch stop layer and the gate structure, wherein the dielectric structure includes a first interlayer dielectric layer and a dielectric structure above the first interlayer dielectric layer A second interlayer dielectric layer; a field plate etch stop structure, arranged in the dielectric structure, wherein the field plate etch stop structure is above a portion of the first interlayer dielectric layer and the second interlayer Below the lower surface of the electrical layer, and wherein the etch stop layer continuously extends beyond the relatively outermost sidewall of the field plate etch stop structure; a plurality of conductive contacts are arranged in the dielectric structure, wherein the A plurality of conductive contacts extend from the bottom of the first interlayer dielectric layer to the top of the second interlayer dielectric layer; and a field plate disposed on the field plate etch stop structure, wherein the field plate have The bottommost surface, the bottommost surface being along a first horizontal plane parallel to the upper surface of the substrate and intersecting the sidewalls of the plurality of conductive contacts between the top and bottom surfaces of the plurality of conductive contacts Layout. 如申請專利範圍第7項所述的積體晶片,其中所述場板蝕刻終止結構具有最底表面,所述最底表面沿平行於所述第一水平面且在所述閘極結構的頂表面與底表面之間與所述閘極結構的側壁相交的第二水平面佈置。 The integrated wafer according to claim 7, wherein the field plate etch stop structure has a bottommost surface, and the bottommost surface is parallel to the first horizontal plane and on the top surface of the gate structure It is arranged on a second horizontal plane intersecting the side wall of the gate structure between the bottom surface. 如申請專利範圍第7項所述的積體晶片,其中所述場板以及所述多個導電接觸件由所述第一層間介電層側向包圍且豎直地延伸到所述第一層間介電層的頂部。 The integrated wafer according to the seventh item of the scope of patent application, wherein the field plate and the plurality of conductive contacts are laterally surrounded by the first interlayer dielectric layer and extend vertically to the first The top of the interlayer dielectric layer. 一種形成積體晶片的方法,包括:在基底上方在源極區與汲極區之間形成閘極結構;在所述基底上方形成接觸蝕刻終止層;在所述接觸蝕刻終止層上方形成第一層間介電層;在形成所述第一層間介電層之後在所述閘極結構與所述汲極區之間形成場板蝕刻終止結構,其中所述場板蝕刻終止結構具有側向地位於所述閘極結構與所述汲極區之間的相對最外部側壁;在所述場板蝕刻終止結構上方形成第二層間介電層,其中所述閘極結構位於所述基底與所述第二層間介電層之間;以及同時形成延伸穿過所述第一層間介電層和所述第二層間介電層的多個接觸件以及穿過所述第二層間介電層延伸到所述場板蝕刻終止結構的場板。 A method for forming an integrated wafer includes: forming a gate structure between a source region and a drain region above a substrate; forming a contact etching stop layer above the substrate; and forming a first contact etching stop layer above the contact etching stop layer. An interlayer dielectric layer; after forming the first interlayer dielectric layer, a field plate etch stop structure is formed between the gate structure and the drain region, wherein the field plate etch stop structure has a lateral direction Ground is located on the relatively outermost sidewall between the gate structure and the drain region; a second interlayer dielectric layer is formed above the field plate etch stop structure, wherein the gate structure is located between the substrate and the drain region. Between the second interlayer dielectric layer; and simultaneously forming a plurality of contacts extending through the first interlayer dielectric layer and the second interlayer dielectric layer and through the second interlayer dielectric layer The field plate of the etch stop structure extends to the field plate.
TW108139191A 2019-07-09 2019-10-30 Integrated chip and method of forming the same TWI748271B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/506,129 US11164970B2 (en) 2014-11-25 2019-07-09 Contact field plate
US16/506,129 2019-07-09

Publications (2)

Publication Number Publication Date
TW202121632A TW202121632A (en) 2021-06-01
TWI748271B true TWI748271B (en) 2021-12-01

Family

ID=74048648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139191A TWI748271B (en) 2019-07-09 2019-10-30 Integrated chip and method of forming the same

Country Status (2)

Country Link
CN (1) CN112216738A (en)
TW (1) TWI748271B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794969B (en) * 2021-09-13 2023-03-01 旺宏電子股份有限公司 Semiconductor device and method of fabricating the same
US11742422B2 (en) 2021-09-13 2023-08-29 Macronix International Co., Ltd. Semiconductor device and method of fabricating the same
WO2023216163A1 (en) * 2022-05-11 2023-11-16 华为技术有限公司 Semiconductor device, integrated circuit and electronic device
WO2024065853A1 (en) * 2022-09-30 2024-04-04 华为技术有限公司 Chip and preparation method therefor, and electronic device
CN115274858B (en) * 2022-09-30 2023-01-17 北京芯可鉴科技有限公司 LDMOS device, manufacturing method of LDMOS device and chip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200947703A (en) * 2007-12-10 2009-11-16 Transphorm Inc Insulated gate e-mode transistors
TW201119033A (en) * 2009-08-28 2011-06-01 Transphorm Inc Semiconductor devices with field plates
US20120319182A1 (en) * 2011-06-15 2012-12-20 Fujitsu Semiconductor Limited Semiconductor device production method and semiconductor device
TW201340327A (en) * 2012-03-30 2013-10-01 Alpha & Omega Semiconductor Top drain LDMOS, semiconductor power device and method of manufacturing the same
TW201407780A (en) * 2012-05-25 2014-02-16 Triquint Semiconductor Inc Group III-nitride transistor with charge-inducing layer
TW201430917A (en) * 2013-01-23 2014-08-01 Vanguard Int Semiconduct Corp Semiconductor device and methods for forming the same
TW201438229A (en) * 2013-02-15 2014-10-01 Transphorm Inc Electrodes for semiconductor devices and methods of forming the same
US20190097001A1 (en) * 2017-09-25 2019-03-28 Raytheon Company Electrode structure for field effect transistor
US20190288112A1 (en) * 2018-03-19 2019-09-19 Macronix International Co., Ltd. High-voltage transistor devices with two-step field plate structures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200947703A (en) * 2007-12-10 2009-11-16 Transphorm Inc Insulated gate e-mode transistors
TW201119033A (en) * 2009-08-28 2011-06-01 Transphorm Inc Semiconductor devices with field plates
TW201711196A (en) * 2009-08-28 2017-03-16 全斯法姆公司 Semiconductor devices with field plates
US20120319182A1 (en) * 2011-06-15 2012-12-20 Fujitsu Semiconductor Limited Semiconductor device production method and semiconductor device
TW201340327A (en) * 2012-03-30 2013-10-01 Alpha & Omega Semiconductor Top drain LDMOS, semiconductor power device and method of manufacturing the same
TW201407780A (en) * 2012-05-25 2014-02-16 Triquint Semiconductor Inc Group III-nitride transistor with charge-inducing layer
TW201430917A (en) * 2013-01-23 2014-08-01 Vanguard Int Semiconduct Corp Semiconductor device and methods for forming the same
TW201438229A (en) * 2013-02-15 2014-10-01 Transphorm Inc Electrodes for semiconductor devices and methods of forming the same
US20190097001A1 (en) * 2017-09-25 2019-03-28 Raytheon Company Electrode structure for field effect transistor
US20190288112A1 (en) * 2018-03-19 2019-09-19 Macronix International Co., Ltd. High-voltage transistor devices with two-step field plate structures

Also Published As

Publication number Publication date
TW202121632A (en) 2021-06-01
CN112216738A (en) 2021-01-12

Similar Documents

Publication Publication Date Title
US10964810B2 (en) Methodology and structure for field plate design
US11164970B2 (en) Contact field plate
TWI748271B (en) Integrated chip and method of forming the same
US11271104B2 (en) Composite etch stop layer for contact field plate etching
TWI719430B (en) Integrated chip and method of forming the same
US10950708B2 (en) Dishing prevention dummy structures for semiconductor devices
TWI735139B (en) Integrated chip and method for forming high voltage transistor device
TW202139459A (en) Intergrated chip and method of forming transistor device
CN110767749B (en) Semiconductor structure and forming method thereof
US20220271146A1 (en) Method and related apparatus for reducing gate-induced drain leakage in semiconductor devices
KR102404493B1 (en) High voltage device with gate extensions
US11908891B2 (en) High voltage device with gate extensions
TWI708282B (en) Fusi gated device and method of forming the same
TWI836689B (en) Semiconductor device and methods for forming the same
US20230326979A1 (en) Contact field plate
US20240136397A1 (en) High voltage device with gate extensions
JP7417671B2 (en) High voltage equipment with improved breakdown voltage
US20230010333A1 (en) Integrated chip with good thermal dissipation performance
TW202405891A (en) Semiconductor device and method for forming the same