TWI747634B - Memory device - Google Patents

Memory device Download PDF

Info

Publication number
TWI747634B
TWI747634B TW109141453A TW109141453A TWI747634B TW I747634 B TWI747634 B TW I747634B TW 109141453 A TW109141453 A TW 109141453A TW 109141453 A TW109141453 A TW 109141453A TW I747634 B TWI747634 B TW I747634B
Authority
TW
Taiwan
Prior art keywords
memory array
array chip
chip stack
functional surface
memory
Prior art date
Application number
TW109141453A
Other languages
Chinese (zh)
Other versions
TW202221907A (en
Inventor
陳士弘
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW109141453A priority Critical patent/TWI747634B/en
Application granted granted Critical
Publication of TWI747634B publication Critical patent/TWI747634B/en
Publication of TW202221907A publication Critical patent/TW202221907A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A memory device includes a periphery wafer, a memory array chip stack, and a plurality of first conductive contacts. The periphery wafer has a functional surface. The memory array chip stack is disposed on the periphery wafer and has a functional surface, in which the functional surface of the periphery wafer faces toward the functional surface of the memory array chip stack, and a first side of the memory array chip stack is in a staircase configuration. The first conductive contacts are on the first side of the memory array chip stack, and between and interconnecting the functional surface of the periphery wafer and the functional surface of the memory array chip stack.

Description

記憶體裝置Memory device

本揭露內容是有關於一種記憶體裝置。This disclosure relates to a memory device.

近年來,半導體裝置的結構不斷改變,且半導體裝置的儲存容量不斷增加。記憶體裝置被應用於許多產品(例如MP3播放器、數位相機及電腦檔案等)的儲存元件中。隨著這些應用的增加,記憶體裝置的需求集中在小尺寸與大儲存容量上。為了滿足此條件,需要具有高元件密度與小尺寸的記憶體裝置及其製造方法。In recent years, the structure of semiconductor devices has continued to change, and the storage capacity of semiconductor devices has continued to increase. Memory devices are used in storage components of many products (such as MP3 players, digital cameras, and computer files). With the increase of these applications, the demand for memory devices is focused on small size and large storage capacity. In order to meet this condition, a memory device with high component density and small size and a manufacturing method thereof are required.

本揭露之技術態樣為一種記憶體裝置。The technical aspect of this disclosure is a memory device.

根據本揭露一些實施方式,記憶體裝置包括周邊晶圓、記憶體陣列晶片堆疊以及複數個第一導電接觸。周邊晶圓具有功能表面,且周邊晶圓包括控制器邏輯。記憶體陣列晶片堆疊設置於周邊晶圓上且具有功能表面。周邊晶圓的功能表面面對記憶體陣列晶片堆疊的功能表面,記憶體陣列晶片堆疊的第一側為階梯形狀配置,記憶體陣列晶片堆疊包括複數個記憶體陣列晶片,且記憶體陣列晶片包括非揮發性記憶體。第一導電接觸設置於記憶體陣列晶片堆疊的第一側,且位於周邊晶圓的功能表面與記憶體陣列晶片堆疊的功能表面之間,並連接周邊晶圓的功能表面及記憶體陣列晶片堆疊的功能表面。According to some embodiments of the present disclosure, the memory device includes a peripheral wafer, a stack of memory array chips, and a plurality of first conductive contacts. The peripheral wafer has a functional surface, and the peripheral wafer includes controller logic. The memory array chip is stacked on the peripheral wafer and has a functional surface. The functional surface of the peripheral wafer faces the functional surface of the memory array chip stack, the first side of the memory array chip stack is configured in a stepped shape, the memory array chip stack includes a plurality of memory array chips, and the memory array chip includes Non-volatile memory. The first conductive contact is arranged on the first side of the memory array chip stack, and is located between the functional surface of the peripheral wafer and the functional surface of the memory array chip stack, and connects the functional surface of the peripheral wafer and the memory array chip stack The functional surface.

根據本揭露一些實施方式,記憶體裝置包括周邊晶圓、記憶體陣列晶片堆疊以及複數個第一導電接觸。周邊晶圓具有功能表面,且周邊晶圓包括控制器邏輯。記憶體陣列晶片堆疊設置於周邊晶圓上且具有功能表面。周邊晶圓的功能表面面對記憶體陣列晶片堆疊的功能表面,記憶體陣列晶片堆疊的第一側為階梯形狀配置,記憶體陣列晶片堆疊包括複數個記憶體陣列晶片,且記憶體陣列晶片包括揮發性記憶體。第一導電接觸設置於記憶體陣列晶片堆疊的第一側,且位於周邊晶圓的功能表面與記憶體陣列晶片堆疊的功能表面之間,並連接周邊晶圓的功能表面及記憶體陣列晶片堆疊的功能表面。According to some embodiments of the present disclosure, the memory device includes a peripheral wafer, a stack of memory array chips, and a plurality of first conductive contacts. The peripheral wafer has a functional surface, and the peripheral wafer includes controller logic. The memory array chip is stacked on the peripheral wafer and has a functional surface. The functional surface of the peripheral wafer faces the functional surface of the memory array chip stack, the first side of the memory array chip stack is configured in a stepped shape, the memory array chip stack includes a plurality of memory array chips, and the memory array chip includes Volatile memory. The first conductive contact is arranged on the first side of the memory array chip stack, and is located between the functional surface of the peripheral wafer and the functional surface of the memory array chip stack, and connects the functional surface of the peripheral wafer and the memory array chip stack The functional surface.

在本揭露一些實施方式中,記憶體陣列晶片堆疊的第二側為階梯形狀配置,且第二側相鄰於記憶體陣列晶片堆疊的第一側。In some embodiments of the present disclosure, the second side of the memory array chip stack is configured in a stepped shape, and the second side is adjacent to the first side of the memory array chip stack.

在本揭露一些實施方式中,記憶體裝置更包括複數個第二導電接觸,設置於記憶體陣列晶片堆疊的第二側,且位於周邊晶圓的功能表面與記憶體陣列晶片堆疊的功能表面之間,並連接周邊晶圓的功能表面及記憶體陣列晶片堆疊的功能表面。In some embodiments of the present disclosure, the memory device further includes a plurality of second conductive contacts disposed on the second side of the memory array chip stack and located between the functional surface of the peripheral wafer and the functional surface of the memory array chip stack And connect the functional surface of the peripheral wafer and the functional surface of the memory array chip stack.

在本揭露一些實施方式中,記憶體陣列晶片堆疊相對於第一側的第三側為倒階梯形狀配置。In some embodiments of the present disclosure, the third side of the memory array chip stack relative to the first side is configured in an inverted step shape.

在本揭露一些實施方式中,記憶體陣列晶片堆疊包括複數個記憶體陣列晶片,以面朝背的方式垂直地堆疊。In some embodiments of the present disclosure, the memory array chip stack includes a plurality of memory array chips, which are vertically stacked face-to-back.

在本揭露一些實施方式中,每一個記憶體陣列晶片由相鄰的記憶體陣列晶片的其中一者以相同的間隔裸露。In some embodiments of the present disclosure, each memory array chip is exposed at the same interval from one of the adjacent memory array chips.

在本揭露一些實施方式中,周邊晶圓的長度及寬度分別大於記憶體陣列晶片堆疊的長度及寬度。In some embodiments of the present disclosure, the length and width of the peripheral wafer are larger than the length and width of the memory array chip stack, respectively.

在本揭露一些實施方式中,記憶體裝置更包括複數個第三導電接觸,設置於周邊晶圓的功能表面上,且圍繞記憶體陣列晶片堆疊。In some embodiments of the present disclosure, the memory device further includes a plurality of third conductive contacts disposed on the functional surface of the peripheral wafer and stacked around the memory array chip.

在本揭露一些實施方式中,記憶體裝置更包括第一介電層,橫向地延伸於周邊晶圓上方,且圍繞記憶體陣列晶片堆疊及第一導電接觸。In some embodiments of the present disclosure, the memory device further includes a first dielectric layer that extends laterally above the peripheral wafer and surrounds the memory array chip stack and the first conductive contact.

在本揭露一些實施方式中,記憶體陣列晶片堆疊相對於第二側的第四側為倒階梯形狀配置。In some embodiments of the present disclosure, the fourth side of the memory array chip stack relative to the second side is configured in an inverted step shape.

根據本揭露上述實施方式,由於記憶體陣列晶片堆疊的第一側為階梯形狀配置,因此大量的第一導電接觸可形成於記憶體陣列晶片堆疊的第一側,並位於周邊晶圓與記憶體陣列晶片堆疊之間。如此一來,可形成一種高密度及高速度的記憶體裝置。此外,由於記憶體陣列晶片堆疊是設置於周邊晶圓的上方,而並非橫向地相鄰於周邊晶圓,因此記憶體陣列晶片堆疊上的導電圖案以及周邊晶圓上的導電圖案可分開製作。藉此,可分別針對記憶體陣列晶片堆疊及周邊晶圓來調整兩者在製程方面(例如,熱製程)的最佳化條件,使得記憶體陣列晶片堆疊及周邊晶圓的製程不會相互牽制與干擾。According to the above-mentioned embodiments of the present disclosure, since the first side of the memory array chip stack is configured in a stepped shape, a large number of first conductive contacts can be formed on the first side of the memory array chip stack and located between the peripheral wafers and the memory. Between array wafer stacks. In this way, a high-density and high-speed memory device can be formed. In addition, since the memory array chip stack is disposed above the peripheral wafer, and is not laterally adjacent to the peripheral wafer, the conductive patterns on the memory array chip stack and the conductive patterns on the peripheral wafer can be fabricated separately. In this way, the optimized conditions of the two processes (for example, thermal process) can be adjusted separately for the memory array chip stack and the surrounding wafers, so that the memory array chip stack and the surrounding wafer processes do not restrict each other And interference.

以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的,因此不應用以限制本揭露。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。另外,為了便於讀者觀看,圖式中各元件的尺寸並非依實際比例繪示。Hereinafter, multiple implementation manners of the present disclosure will be disclosed in diagrams. For the sake of clarity, many practical details will be described in the following description. However, it should be understood that these practical details should not be used to limit this disclosure. That is to say, in some implementations of this disclosure, these practical details are unnecessary, and therefore should not be used to limit this disclosure. In addition, in order to simplify the drawings, some conventionally used structures and elements are shown in the drawings in a simple and schematic manner. In addition, for the convenience of readers, the size of each element in the drawings is not drawn according to actual scale.

本文所用「約」、「近似」或「實質上」應通常是指給定值或範圍的百分之二十以內,優選地為百分之十以內,且更優選地為百分之五以內。 在此給出的數值是近似的,意味著若沒有明確說明,則術語「約」、「近似」或「實質上」的涵意可被推斷出來。As used herein, "about", "approximately" or "substantially" shall generally mean within 20 percent of a given value or range, preferably within 10 percent, and more preferably within 5 percent . The numerical values given here are approximate, which means that the meaning of the terms "about", "approximately" or "substantially" can be inferred if not explicitly stated.

第1A圖繪示根據本揭露一些實施方式之記憶體裝置100的上視圖。第1B圖繪示根據本揭露一些實施方式之第1A圖的記憶體裝置100沿線段1B-1B'截取的剖面圖。第1C圖繪示根據本揭露一些實施方式之第1A圖的記憶體裝置100沿線段1C-1C'截取的剖面圖。請同時參閱第1A圖至第1C圖,記憶體裝置100包括周邊晶圓110以及設置於周邊晶圓110上方的記憶體陣列晶片堆疊120。周邊晶圓110包括具有功能表面113的矽基板112。記憶體陣列晶片堆疊120包括複數個記憶體陣列晶片124,垂直地堆疊於周邊晶圓110上方。每一個記憶體陣列晶片124包括具有功能表面123的矽基板122。應瞭解到,此處的「功能表面」是指在其上具有諸如導電跡線、導線或導電層之導電圖案的表面,且在第1B圖中可被繪示為「功能層」。在一些實施方式中,記憶體陣列晶片124是以面朝背(face-to-bottom)的方式垂直地堆疊於周邊晶圓110的上方,使得每一個記憶體陣列晶片124的矽基板122面對相鄰之記憶體陣列晶片124的功能表面123,並直接接觸相鄰之記憶體陣列晶片124的功能表面123。此外,記憶體陣列晶片124的功能表面123共同地被視為記憶體陣列晶片堆疊120的功能表面,且記憶體陣列晶片堆疊120的功能表面面對周邊晶圓110的功能表面113。FIG. 1A shows a top view of a memory device 100 according to some embodiments of the present disclosure. FIG. 1B illustrates a cross-sectional view of the memory device 100 in FIG. 1A according to some embodiments of the present disclosure, taken along the line 1B-1B′. FIG. 1C is a cross-sectional view of the memory device 100 in FIG. 1A according to some embodiments of the present disclosure, taken along the line 1C-1C′. Please refer to FIGS. 1A to 1C at the same time. The memory device 100 includes a peripheral wafer 110 and a memory array chip stack 120 disposed on the peripheral wafer 110. The peripheral wafer 110 includes a silicon substrate 112 with a functional surface 113. The memory array chip stack 120 includes a plurality of memory array chips 124 vertically stacked above the peripheral wafer 110. Each memory array chip 124 includes a silicon substrate 122 with a functional surface 123. It should be understood that the "functional surface" herein refers to a surface having conductive patterns such as conductive traces, wires, or conductive layers thereon, and can be depicted as a "functional layer" in Figure 1B. In some embodiments, the memory array chip 124 is vertically stacked above the peripheral wafer 110 in a face-to-bottom manner, so that the silicon substrate 122 of each memory array chip 124 faces The functional surface 123 of the adjacent memory array chip 124 directly contacts the functional surface 123 of the adjacent memory array chip 124. In addition, the functional surface 123 of the memory array chip 124 is collectively regarded as the functional surface of the memory array chip stack 120, and the functional surface of the memory array chip stack 120 faces the functional surface 113 of the peripheral wafer 110.

在一些實施方式中,周邊晶圓110包括用於記憶體陣列晶片124的周邊電路或用於記憶體陣列晶片124的控制器邏輯(control logics)。 控制器邏輯包括控制器(controllers)。記憶體陣列晶片124包括非揮發性記憶體(NAND、AND、NOR或其他快閃記憶體)或揮發性記憶體(DRAM或SRAM)。In some embodiments, the peripheral wafer 110 includes peripheral circuits for the memory array chip 124 or control logics for the memory array chip 124. Controller logic includes controllers. The memory array chip 124 includes non-volatile memory (NAND, AND, NOR or other flash memory) or volatile memory (DRAM or SRAM).

在一些實施方式中,記憶體陣列晶片124包括非揮發性記憶體陣列區域,且周邊晶圓110包括用於非揮發性記憶體陣列區域的周邊電路。In some embodiments, the memory array chip 124 includes a non-volatile memory array area, and the peripheral wafer 110 includes peripheral circuits for the non-volatile memory array area.

在一些實施方式中,記憶體陣列晶片124包括非揮發性記憶體陣列區域及用於非揮發性記憶體陣列區域的周邊電路,且周邊晶圓110包括用於非揮發性記憶體的控制器邏輯。In some embodiments, the memory array chip 124 includes a non-volatile memory array area and peripheral circuits for the non-volatile memory array area, and the peripheral wafer 110 includes controller logic for the non-volatile memory. .

在一些實施方式中,記憶體陣列晶片124包括DRAM或SRAM記憶體陣列區域以及用於DRAM或SRAM記憶體陣列區域的周邊電路,且周邊晶圓110包括用於DRAM或SRAM記憶體的控制器邏輯。In some embodiments, the memory array chip 124 includes a DRAM or SRAM memory array area and peripheral circuits for the DRAM or SRAM memory array area, and the peripheral wafer 110 includes controller logic for DRAM or SRAM memory. .

在一些實施方式中,記憶體陣列晶片124是以偏移的方式堆疊,也就是說,每一個記憶體陣列晶片124堆疊於相鄰的記憶體陣列晶片124上,而不完全覆蓋相鄰的記憶體陣列晶片124。舉例而言,每一個記憶體陣列晶片124可以是矩形,且其四個邊中的兩個邊從上視角度由相鄰的記憶體陣列晶片124裸露,如第1A圖所示。換句話說,每一個記憶體陣列晶片124之非功能表面121(亦即記憶體陣列晶片124之矽基板122背對於功能表面123的表面)的邊緣部分從第1A圖所示的上視角度由相鄰的記憶體陣列晶片124裸露,從而形成倒階梯形狀配置。另一方面,每一個記憶體陣列晶片124的四個邊中的另兩個邊則從下視角度由相鄰的記憶體陣列晶片124裸露,其中第1B圖僅繪示出兩個邊中的一個邊由相鄰的記憶體陣列晶片124裸露。換句話說,每一個記憶體陣列晶片124之功能表面123的邊緣部分從下視角度由相鄰的記憶體陣列晶片124裸露,從而形成階梯形狀配置。In some embodiments, the memory array chips 124 are stacked in an offset manner, that is, each memory array chip 124 is stacked on an adjacent memory array chip 124, and does not completely cover the adjacent memory.体array chip 124. For example, each memory array chip 124 may be rectangular, and two of its four sides are exposed by the adjacent memory array chip 124 from a top view angle, as shown in FIG. 1A. In other words, the edge portion of the non-functional surface 121 of each memory array chip 124 (that is, the surface of the silicon substrate 122 of the memory array chip 124 facing away from the functional surface 123) from the top view angle shown in Figure 1A Adjacent memory array chips 124 are exposed to form an inverted stepped configuration. On the other hand, the other two of the four sides of each memory array chip 124 are exposed from the adjacent memory array chip 124 from the bottom view, and Figure 1B only shows one of the two sides. One side is exposed by the adjacent memory array chip 124. In other words, the edge portion of the functional surface 123 of each memory array chip 124 is exposed by the adjacent memory array chip 124 from the bottom view, thereby forming a stepped configuration.

根據上述,由於記憶體陣列晶片124是以前述方式堆疊,因此所形成的記憶體陣列晶片堆疊120會具有四個側,其中兩個側為階梯形狀配置,而另兩個側為倒階梯形狀配置。舉例而言,記憶體陣列晶片堆疊120的第一側S1及第二側S2為階梯形狀配置,其中記憶體陣列晶片堆疊120的第一側S1相鄰於第二側S2,且記憶體陣列晶片124之功能表面123的邊緣部分共同地形成部分的階梯形狀配置。舉另一例而言,記憶體陣列晶片堆疊120的第三側S3及第四側S4為倒階梯形狀配置,其中第三側S3相鄰於第四側S4,第三側S3及第四側S4分別相對於第一側S1及第二側S2,且記憶體陣列晶片124之非功能表面121的邊緣部分共同地形成部分的倒階梯形狀配置。應瞭解到,記憶體陣列晶片堆疊120的四個側鄰接且相鄰於記憶體陣列晶片堆疊120的頂面TS(亦即最頂部之記憶體陣列晶片124的非功能表面121)以及記憶體陣列晶片堆疊120的底面BS(亦即最底部之記憶體陣列晶片124的功能表面123)。According to the above, since the memory array chip 124 is stacked in the aforementioned manner, the formed memory array chip stack 120 will have four sides, two of which are in a stepped configuration, and the other two are in an inverted stepped configuration. . For example, the first side S1 and the second side S2 of the memory array chip stack 120 are configured in a stepped shape, wherein the first side S1 of the memory array chip stack 120 is adjacent to the second side S2, and the memory array chip The edge portions of the functional surfaces 123 of 124 collectively form part of a stepped configuration. For another example, the third side S3 and the fourth side S4 of the memory array chip stack 120 are in an inverted stepped configuration, wherein the third side S3 is adjacent to the fourth side S4, and the third side S3 and the fourth side S4 Relative to the first side S1 and the second side S2, respectively, the edge portions of the non-functional surface 121 of the memory array chip 124 collectively form a partial inverted stepped configuration. It should be understood that the four sides of the memory array chip stack 120 are adjacent to and adjacent to the top surface TS of the memory array chip stack 120 (that is, the non-functional surface 121 of the topmost memory array chip 124) and the memory array The bottom surface BS of the chip stack 120 (that is, the functional surface 123 of the bottommost memory array chip 124).

在一些實施方式中,周邊晶圓110與記憶體陣列晶片堆疊120相互隔開,且記憶體裝置100更包括複數個第一導電接觸130垂直地設置於周邊晶圓110與記憶體陣列晶片堆疊120之間,從而電性連接周邊晶圓110及記憶體陣列晶片堆疊120。舉例而言,第一導電接觸130可設置於記憶體陣列晶片堆疊120的第一側S1,且設置於記憶體陣列晶片124的功能表面123之裸露的邊緣部分上,並位於記憶體陣列晶片124的功能表面123(亦即記憶體陣列晶片堆疊120的功能表面)與周邊晶圓110的功能表面113之間,且連接記憶體陣列晶片124的功能表面123與周邊晶圓110的功能表面113。在一些實施方式中,第一導電接觸130電性連接至字元線(word lines,WLs)。在一些實施方式中,記憶體裝置100更包括複數個第二導電接觸140垂直地設置於周邊晶圓110與記憶體陣列晶片堆疊120之間,從而電性連接周邊晶圓110及記憶體陣列晶片堆疊120。舉例而言,第二導電接觸140可設置於記憶體陣列晶片堆疊120的第二側S2,且設置於記憶體陣列晶片124的功能表面123之裸露的邊緣部分上,並位於記憶體陣列晶片124的功能表面123與周邊晶圓110的功能表面113之間,且連接記憶體陣列晶片124的功能表面123與周邊晶圓110的功能表面113。在一些實施方式中,第二導電接觸140電性連接至位元線(bit lines,BLs)。In some embodiments, the peripheral wafer 110 and the memory array chip stack 120 are separated from each other, and the memory device 100 further includes a plurality of first conductive contacts 130 vertically disposed on the peripheral wafer 110 and the memory array chip stack 120 Thereby, the peripheral wafer 110 and the memory array chip stack 120 are electrically connected. For example, the first conductive contact 130 may be disposed on the first side S1 of the memory array chip stack 120, and disposed on the exposed edge portion of the functional surface 123 of the memory array chip 124, and located on the memory array chip 124 Between the functional surface 123 (that is, the functional surface of the memory array chip stack 120) and the functional surface 113 of the peripheral wafer 110, and connect the functional surface 123 of the memory array chip 124 and the functional surface 113 of the peripheral wafer 110. In some embodiments, the first conductive contact 130 is electrically connected to word lines (WLs). In some embodiments, the memory device 100 further includes a plurality of second conductive contacts 140 vertically disposed between the peripheral wafer 110 and the memory array chip stack 120, thereby electrically connecting the peripheral wafer 110 and the memory array chip Stack 120. For example, the second conductive contact 140 may be disposed on the second side S2 of the memory array chip stack 120, and disposed on the exposed edge portion of the functional surface 123 of the memory array chip 124, and located on the memory array chip 124 Between the functional surface 123 of the peripheral wafer 110 and the functional surface 113 of the peripheral wafer 110, and connect the functional surface 123 of the memory array chip 124 and the functional surface 113 of the peripheral wafer 110. In some embodiments, the second conductive contact 140 is electrically connected to bit lines (BLs).

在一些實施方式中,第一導電接觸130及第二導電接觸140可包括銅、金或其他合適的導電金屬材料。藉由第一導電接觸130及第二導電接觸140的配置,位於周邊晶圓110上的電子元件(例如,記憶控制單元等)可電性連接至記憶體陣列晶片堆疊120,從而維持記憶體裝置100的運作。在一些實施方式中,第一導電接觸130及第二導電接觸140的總數量介於約100,000個至約100,000,000個之間,或較佳地介於約1,000,000個至10,000,000約個之間。詳細而言,若第一導電接觸130及第二導電接觸140的總數量小於100,000個時,可能無法形成高密度及高速度的記憶體裝置100;而若第一導電接觸130及第二導電接觸140的總數量大於100,000,000個時,容易使得第一導電接觸130及第二導電接觸140因密度過高而造成電性短路。在一些實施方式中,每一個第一導電接觸130及第二導電接觸140各自的長度L1、L2及寬度W1、W2(請先參閱第3圖)介於約0.1微米至約2微米之間。詳細而言,若所述長度L1、L2及寬度W1、W2小於約0.1微米時,可能不易控制第一導電接觸130(及第二導電接觸140)在製造過程中的接合;而若所述長度L1、L2及寬度W1、W2大於約2微米時,可能無法形成高密度的第一及第二導電第二導電接觸130、140以及高速度的記憶體裝置100。In some embodiments, the first conductive contact 130 and the second conductive contact 140 may include copper, gold, or other suitable conductive metal materials. With the configuration of the first conductive contact 130 and the second conductive contact 140, the electronic components (for example, memory control unit, etc.) located on the peripheral wafer 110 can be electrically connected to the memory array chip stack 120, thereby maintaining the memory device 100 operations. In some embodiments, the total number of the first conductive contacts 130 and the second conductive contacts 140 is between about 100,000 and about 100,000,000, or preferably between about 1,000,000 and about 10,000,000. In detail, if the total number of the first conductive contact 130 and the second conductive contact 140 is less than 100,000, it may not be possible to form a high-density and high-speed memory device 100; and if the first conductive contact 130 and the second conductive contact When the total number of 140 is greater than 100,000,000, the first conductive contact 130 and the second conductive contact 140 are likely to be electrically short-circuited due to the high density. In some embodiments, each of the first conductive contact 130 and the second conductive contact 140 has a length L1, L2 and a width W1, W2 (please refer to FIG. 3 first) of each between about 0.1 μm and about 2 μm. In detail, if the lengths L1, L2 and widths W1, W2 are less than about 0.1 μm, it may be difficult to control the bonding of the first conductive contact 130 (and the second conductive contact 140) during the manufacturing process; and if the length is When L1, L2 and widths W1, W2 are greater than about 2 microns, high-density first and second conductive second conductive contacts 130, 140 and high-speed memory device 100 may not be formed.

在一些實施方式中,記憶體陣列晶片堆疊120可包括至少四個記憶體陣列晶片124堆疊於周邊晶圓110上方,使得記憶體陣列晶片124的功能表面123具有足夠的表面積是裸露的。如此一來,大量的第一導電接觸130以及第二導電接觸140可被設置於裸露的功能表面123上。在一些實施方式中,每一個記憶體陣列晶片124具有相同的尺寸(亦即具有相同的長度以及相同的寬度),使得記憶體陣列晶片124的堆疊較簡單且穩固。在一些實施方式中,位於同一側(例如,第一側S1、第二側S2、第三側S3或第四側S4)之每一個記憶體陣列晶片124的邊緣部分以相同的間隔裸露。換句話說,記憶體陣列晶片124位於同一側(例如,第三側S3)的側壁S之間的橫向距離D皆相同。舉例而言,最頂部之記憶體陣列晶片124位於第三側S3的側壁S與次頂部之記憶體陣列晶片124位於第三側S3的側壁S之間的橫向距離D實質上等同於次頂部之記憶體陣列晶片124位於第三側S3的側壁S與第三頂部之記憶體陣列晶片124位於第三側S3的側壁S之間的橫向距離D。如此一來,記憶體陣列晶片124的堆疊可較簡單且穩固。In some embodiments, the memory array chip stack 120 may include at least four memory array chips 124 stacked above the peripheral wafer 110 so that the functional surface 123 of the memory array chip 124 has sufficient surface area to be exposed. In this way, a large number of first conductive contacts 130 and second conductive contacts 140 can be disposed on the exposed functional surface 123. In some embodiments, each memory array chip 124 has the same size (that is, has the same length and the same width), so that the stacking of the memory array chip 124 is simple and stable. In some embodiments, the edge portions of each memory array chip 124 located on the same side (for example, the first side S1, the second side S2, the third side S3, or the fourth side S4) are exposed at the same interval. In other words, the lateral distance D between the sidewalls S of the memory array chip 124 on the same side (for example, the third side S3) is the same. For example, the lateral distance D between the topmost memory array chip 124 on the side wall S of the third side S3 and the next top memory array chip 124 on the side wall S of the third side S3 is substantially equal to that of the next top The lateral distance D between the memory array chip 124 on the side wall S of the third side S3 and the memory array chip 124 on the third top side of the side wall S on the third side S3. In this way, the stacking of the memory array chip 124 can be simpler and more stable.

在一些實施方式中,每一個記憶體陣列晶片124的厚度T1介於約1微米至約50微米之間,使得記憶體裝置100的整體厚度得以被維持在一個合適的範圍中,並使得記憶體陣列晶片124的堆疊較簡單且穩固。舉例而言,若每一個記憶體陣列晶片124的厚度T1小於約1微米,記憶體陣列晶片124可能因太薄而無法被功能化,且記憶體陣列晶片124可能因其不易被拾取而難以堆疊;而若每一個記憶體陣列晶片124的厚度T1大於約50微米,記憶體裝置100的整體厚度可能太厚,從而不利於減小記憶體裝置100的體積。In some embodiments, the thickness T1 of each memory array chip 124 is between about 1 micrometer and about 50 micrometers, so that the overall thickness of the memory device 100 can be maintained in an appropriate range, and the memory The stacking of the array chip 124 is simple and stable. For example, if the thickness T1 of each memory array chip 124 is less than about 1 micron, the memory array chip 124 may be too thin to be functionalized, and the memory array chip 124 may be difficult to stack because it is difficult to pick up If the thickness T1 of each memory array chip 124 is greater than about 50 microns, the overall thickness of the memory device 100 may be too thick, which is not conducive to reducing the volume of the memory device 100.

在一些實施方式中,記憶體裝置100更包括複數個第三導電接觸150垂直地設置於周邊晶圓110的功能表面113上,且圍繞記憶體陣列晶片堆疊120。第三導電接觸150配置以電性連接位於周邊晶圓110上的電子元件及外部電子元件(例如,輸入/輸出電源)。在一些實施方式中,可進一步以導線由第三導電接觸150的頂面151連接至外部電子元件。第三導電接觸150可進一步配置以將第一導電接觸130及第二導電接觸140分別連接至字元線及位元線。在一些實施方式中,每一個第三導電接觸150的頂面151實質上與記憶體陣列晶片堆疊120的頂面TS(亦即最頂部之記憶體陣列晶片124的非功能表面121)共平面。在一些實施方式中,每一個第三導電接觸150的高度H3大於每一個第一導電接觸130及第二導電接觸140各自的高度H1、H2。在一些實施方式中,每一個第三導電接觸150的長度L3及寬度W3介於約0.1微米至約2微米之間。詳細而言,若所述長度L3及寬度W3小於約0.1微米時,可能不易控制第三導電接觸150在製造過程中的接合;而若所述長度L3及寬度W3大於約2微米時,可能無法形成高密度的第三導電接觸150及高速度的記憶體裝置100。在一些實施方式中,第三導電接觸150可包括銅、金或其他合適的導電金屬材料。In some embodiments, the memory device 100 further includes a plurality of third conductive contacts 150 vertically disposed on the functional surface 113 of the peripheral wafer 110 and surrounds the memory array chip stack 120. The third conductive contact 150 is configured to electrically connect the electronic components on the peripheral wafer 110 and external electronic components (for example, input/output power). In some embodiments, the top surface 151 of the third conductive contact 150 may be further connected to an external electronic component by a wire. The third conductive contact 150 may be further configured to connect the first conductive contact 130 and the second conductive contact 140 to the word line and the bit line, respectively. In some embodiments, the top surface 151 of each third conductive contact 150 is substantially coplanar with the top surface TS of the memory array chip stack 120 (that is, the non-functional surface 121 of the topmost memory array chip 124). In some embodiments, the height H3 of each third conductive contact 150 is greater than the respective heights H1 and H2 of each of the first conductive contact 130 and the second conductive contact 140. In some embodiments, the length L3 and width W3 of each third conductive contact 150 are between about 0.1 micrometers and about 2 micrometers. In detail, if the length L3 and the width W3 are less than about 0.1 μm, it may not be easy to control the bonding of the third conductive contact 150 during the manufacturing process; and if the length L3 and the width W3 are greater than about 2 μm, it may not be possible A high-density third conductive contact 150 and a high-speed memory device 100 are formed. In some embodiments, the third conductive contact 150 may include copper, gold, or other suitable conductive metal materials.

在一些實施方式中,周邊晶圓110的長度X1及寬度Y1分別大於記憶體陣列晶片堆疊120的長度X2及寬度Y2,使得第三導電接觸150可形成於周邊晶圓110的功能表面113上並圍繞記憶體陣列晶片堆疊120。換句話說,由於周邊晶圓110的長度X1及寬度Y1分別大於記憶體陣列晶片堆疊120的長度X2及寬度Y2,因此在周邊晶圓110上得以保留空間以供第三導電接觸150形成。此外,由於周邊晶圓110的長度X1及寬度Y1分別大於記憶體陣列晶片堆疊120的長度X2及寬度Y2,因此在將記憶體陣列晶片堆疊120接合至周邊晶圓110上時,不需精準地對齊,也因此可節省用於對齊的成本。在一些實施方式中,第三導電接觸150陣列地排列於周邊晶圓110上,如第1A圖所示。在一些實施方式中,相鄰於記憶體陣列晶片堆疊120之每一側(例如,第一側S1、第二側S2、第三側S3或第四側S4)的第三導電接觸150的數量可相異。In some embodiments, the length X1 and the width Y1 of the peripheral wafer 110 are respectively greater than the length X2 and the width Y2 of the memory array chip stack 120, so that the third conductive contact 150 can be formed on the functional surface 113 of the peripheral wafer 110 and Around the memory array chip stack 120. In other words, since the length X1 and the width Y1 of the peripheral wafer 110 are respectively greater than the length X2 and the width Y2 of the memory array chip stack 120, a space is reserved on the peripheral wafer 110 for the third conductive contact 150 to be formed. In addition, since the length X1 and width Y1 of the peripheral wafer 110 are respectively greater than the length X2 and the width Y2 of the memory array chip stack 120, it is not necessary to accurately bond the memory array chip stack 120 to the peripheral wafer 110. Alignment, and therefore can save the cost for alignment. In some embodiments, the third conductive contacts 150 are arranged in an array on the peripheral wafer 110, as shown in FIG. 1A. In some embodiments, the number of third conductive contacts 150 adjacent to each side of the memory array chip stack 120 (for example, the first side S1, the second side S2, the third side S3, or the fourth side S4) Can be different.

在一些實施方式中,記憶體裝置100更包括第一介電層160,橫向地延伸於周邊晶圓110上方,且圍繞記憶體陣列晶片堆疊120。在一些實施方式中,第一介電層160更圍繞第一導電接觸130、第二導電接觸140以及第三導電接觸150。換句話說,第一介電層160完全地填充於位於周邊晶圓110、記憶體陣列晶片堆疊120、第一導電接觸130、第二導電接觸140與第三導電接觸150之間的空間中,以電性絕緣上述各元件。在一些實施方式中,第一介電層160的頂面161實質上與記憶體陣列晶片堆疊120的頂面TS(亦即最頂部之記憶體陣列晶片124的非功能表面121)及第三導電接觸150的頂面151共平面。在一些實施方式中,第一介電層160可包括例如是聚醯亞胺的有機材料。在替代的實施方式中,第一介電層160可包括例如是旋塗式玻璃(spin-on glass,SOG)之二氧化矽(SiO 2)的無機材料。 In some embodiments, the memory device 100 further includes a first dielectric layer 160 that extends laterally above the peripheral wafer 110 and surrounds the memory array chip stack 120. In some embodiments, the first dielectric layer 160 further surrounds the first conductive contact 130, the second conductive contact 140 and the third conductive contact 150. In other words, the first dielectric layer 160 is completely filled in the space between the peripheral wafer 110, the memory array chip stack 120, the first conductive contact 130, the second conductive contact 140, and the third conductive contact 150, To electrically insulate the above-mentioned components. In some embodiments, the top surface 161 of the first dielectric layer 160 is substantially aligned with the top surface TS of the memory array chip stack 120 (that is, the non-functional surface 121 of the topmost memory array chip 124) and the third conductive layer. The top surface 151 of the contact 150 is coplanar. In some embodiments, the first dielectric layer 160 may include an organic material such as polyimide. In an alternative embodiment, the first dielectric layer 160 may include an inorganic material such as silicon dioxide (SiO 2) such as spin-on glass (SOG).

根據上述,由於記憶體陣列晶片堆疊的至少一側為階梯形狀配置,因此大量的第一導電接觸可形成於記憶體陣列晶片堆疊的所述側,並位於周邊晶圓與記憶體陣列晶片堆疊之間。如此一來,可形成一種高密度及高速度的記憶體裝置。此外,由於周邊晶圓的尺寸(亦即長度及寬度)大於記憶體陣列晶片堆疊的尺寸,因此在將記憶體陣列晶片堆疊接合至周邊晶圓上時,不需精準地對齊,也因此可節省用於對齊的成本。According to the above, because at least one side of the memory array chip stack is configured in a stepped shape, a large number of first conductive contacts can be formed on the side of the memory array chip stack and located between the peripheral wafer and the memory array chip stack. between. In this way, a high-density and high-speed memory device can be formed. In addition, since the size of the peripheral wafers (that is, the length and width) is larger than the size of the memory array chip stack, when the memory array chip stack is bonded to the peripheral wafer, precise alignment is not required, which can save The cost used for alignment.

第2A、3A、4A、5A、6A以及7A圖繪示根據本揭露一些實施方式之記憶體裝置100的製造方法在各步驟的上視圖。第2B及2C、3B及3C、4B及4C、5B及5C、6B及6C以及7B及7C圖繪示根據本揭露一些實施方式之記憶體裝置100的製造方法在各步驟的剖面圖。應瞭解到,已敘述過的元件連接關係、材料與功效將不再重複贅述,合先敘明。在以下敘述中,將說明記憶體裝置100的製造方法。Figures 2A, 3A, 4A, 5A, 6A, and 7A show top views of the steps of the method of manufacturing the memory device 100 according to some embodiments of the present disclosure. FIGS. 2B and 2C, 3B and 3C, 4B and 4C, 5B and 5C, 6B and 6C, and 7B and 7C are cross-sectional views of various steps of the method of manufacturing the memory device 100 according to some embodiments of the present disclosure. It should be understood that the connection relationship, materials and effects of the components that have been described will not be repeated, and will be described first. In the following description, a method of manufacturing the memory device 100 will be explained.

請參閱第2A圖至第2C圖,其中第2B圖是沿第2A圖之線段2B-2B'截取的剖面圖,且第2C圖是沿第2A圖之線段2C-2C'截取的剖面圖。在步驟S10中,提供載板170。在一些實施方式中,載板170可為二氧化矽晶圓,但並不用以限制本揭露。在提供載板170之後,複數個記憶體陣列晶片124接著以面朝背的方式(亦即每一個記憶體陣列晶片124的矽基板122面對相鄰之記憶體陣列晶片124的功能表面123)及偏移的方式堆疊於載板170的表面171,以形成具有階梯/倒階梯形狀配置的複數個記憶體陣列晶片堆疊120。舉例而言,每一個記憶體陣列晶片堆疊120的第一側S1及第二側S2為階梯形狀配置,而第三側S3及第四側S4為倒階梯形狀配置。在一些實施方式中,每一個記憶體陣列晶片堆疊120的方向皆實質上相同,如第2A圖所示。Please refer to FIGS. 2A to 2C, where FIG. 2B is a cross-sectional view taken along the line 2B-2B' of FIG. 2A, and FIG. 2C is a cross-sectional view taken along the line 2C-2C' of FIG. 2A. In step S10, a carrier board 170 is provided. In some embodiments, the carrier 170 may be a silicon dioxide wafer, but it is not used to limit the disclosure. After the carrier 170 is provided, the plurality of memory array chips 124 are then face-to-back (that is, the silicon substrate 122 of each memory array chip 124 faces the functional surface 123 of the adjacent memory array chip 124) It is stacked on the surface 171 of the carrier 170 in an offset manner to form a plurality of memory array chip stacks 120 having a stepped/inverted stepped configuration. For example, the first side S1 and the second side S2 of each memory array chip stack 120 are configured in a stepped shape, and the third side S3 and the fourth side S4 are configured in an inverted stepped shape. In some embodiments, the directions of each memory array chip stack 120 are substantially the same, as shown in FIG. 2A.

請參閱第3A圖至第3C圖,其中第3B圖是沿第3A圖之線段3B-3B'截取的剖面圖,且第3C圖是沿第3A圖之線段3C-3C'截取的剖面圖。在步驟S20中,第一介電層160橫向地形成於載板170上方,並覆蓋記憶體陣列晶片堆疊120。在形成第一介電層160後,第一導電接觸130及第二導電接觸140形成於第一介電層160中以及每一個記憶體陣列晶片堆疊120位於第一側S1及第二側S2之部分的功能表面上。在一些實施方式中,第一導電接觸130及第二導電接觸140的形成是透過移除部分之第一介電層160,以形成暴露每一個記憶體陣列晶片堆疊120之部分的功能表面123之凹槽R,並於凹槽R中填充導電材料來完成。在一些實施方式中,移除部分之第一介電層160是透過乾式或濕式蝕刻製程來執行。在一些實施方式中,硬遮罩(未繪示)可於蝕刻製程期間形成於部分之第一介電層160上方,以移除未被硬遮罩覆蓋之暴露部分的第一介電層160。此外,可執行例如是化學機械研磨製程的平坦化製程,以移除剩餘部分之導電材料及第一介電層160,使得第一介電層160的頂面163(將於記憶體裝置100形成後成為第一介電層160的底面163)實質上與第一導電接觸130的頂面133(將於記憶體裝置100形成後成為第一導電接觸130的底面133)以及第二導電接觸140的頂面143(將於記憶體裝置100形成後成為第二導電接觸140的底面143)共平面。Please refer to FIGS. 3A to 3C, where FIG. 3B is a cross-sectional view taken along the line 3B-3B' of FIG. 3A, and FIG. 3C is a cross-sectional view taken along the line 3C-3C' of FIG. 3A. In step S20, the first dielectric layer 160 is formed laterally above the carrier 170 and covers the memory array chip stack 120. After the first dielectric layer 160 is formed, the first conductive contact 130 and the second conductive contact 140 are formed in the first dielectric layer 160 and each memory array chip stack 120 is located between the first side S1 and the second side S2 Part of the function on the surface. In some embodiments, the first conductive contact 130 and the second conductive contact 140 are formed by removing a portion of the first dielectric layer 160 to form a functional surface 123 that exposes a portion of each memory array chip stack 120 The groove R is filled with conductive material to complete the groove R. In some embodiments, removing a portion of the first dielectric layer 160 is performed through a dry or wet etching process. In some embodiments, a hard mask (not shown) may be formed over a portion of the first dielectric layer 160 during the etching process to remove the exposed portion of the first dielectric layer 160 that is not covered by the hard mask . In addition, a planarization process such as a chemical mechanical polishing process may be performed to remove the remaining conductive material and the first dielectric layer 160, so that the top surface 163 of the first dielectric layer 160 (which will be formed in the memory device 100 The bottom surface 163 of the first dielectric layer 160 is substantially connected to the top surface 133 of the first conductive contact 130 (which will become the bottom surface 133 of the first conductive contact 130 after the memory device 100 is formed) and the bottom surface of the second conductive contact 140 The top surface 143 (the bottom surface 143 that will become the second conductive contact 140 after the memory device 100 is formed) is coplanar.

在一些實施方式中,形成於不同之記憶體陣列晶片124上的第一導電接觸130及第二導電接觸140的高度H1、H2可相異,其中形成在較靠近於載板170之記憶體陣列晶片124上的第一導電接觸130及第二導電接觸140具有較大的高度H1、H2,而形成在較遠離於載板170之記憶體陣列晶片124上的第一導電接觸130及第二導電接觸140具有較小的高度H1、H2。在一些實施方式中,可預先形成複數個導電墊(未繪示)於每一個記憶體陣列晶片124的功能表面123上,使得第一導電接觸130及第二導電接觸140可直接形成於導電墊上,以形成電性連接。在一些實施方式中,導電墊可包括銅、金或其他合適的導電金屬材料。在較佳的實施方式中,導電墊、第一導電接觸130以及第二導電接觸140可包括相同的材料。In some embodiments, the heights H1 and H2 of the first conductive contact 130 and the second conductive contact 140 formed on different memory array chips 124 can be different, and the memory array formed closer to the carrier 170 The first conductive contact 130 and the second conductive contact 140 on the chip 124 have larger heights H1, H2, and the first conductive contact 130 and the second conductive contact 130 and the second conductive contact formed on the memory array chip 124 farther from the carrier 170 The contact 140 has a small height H1, H2. In some embodiments, a plurality of conductive pads (not shown) can be pre-formed on the functional surface 123 of each memory array chip 124, so that the first conductive contact 130 and the second conductive contact 140 can be directly formed on the conductive pad , To form an electrical connection. In some embodiments, the conductive pad may include copper, gold, or other suitable conductive metal materials. In a preferred embodiment, the conductive pad, the first conductive contact 130, and the second conductive contact 140 may include the same material.

請參閱第4A圖至第4C圖,其中第4B圖是沿第4A圖之線段4B-4B'截取的剖面圖,且第4C圖是沿第4A圖之線段4C-4C'截取的剖面圖。在步驟S30中,將第3A圖至第3C圖的結構由記憶體陣列晶片堆疊120之間分開。詳細而言,垂直地切割位於記憶體陣列晶片堆疊120之間的第一介電層160以及載板170,從而形成包括一個記憶體陣列晶片堆疊120於其上的載板170。Please refer to FIGS. 4A to 4C, where FIG. 4B is a cross-sectional view taken along the line 4B-4B' of FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line 4C-4C' of FIG. 4A. In step S30, the structures in FIG. 3A to FIG. 3C are separated by the memory array chip stack 120. In detail, the first dielectric layer 160 and the carrier 170 located between the memory array chip stack 120 are vertically cut to form the carrier 170 including a memory array chip stack 120 thereon.

請參閱第5A圖至第5C圖,其中第5B圖是沿第5A圖之線段5B-5B'截取的剖面圖,且第5C圖是沿第5A圖之線段5C-5C'截取的剖面圖。在步驟S40中,將載板170(見第4B圖)由記憶體陣列晶片堆疊120及第一介電層160脫離,使得第一介電層160的底面161(將於記憶體裝置100形成後成為第一介電層160的頂面161)及記憶體陣列晶片堆疊120的底面TS(將於記憶體裝置100形成後成為記憶體陣列晶片堆疊120的頂面TS)裸露。在一些實施方式中,可選擇性地執行步驟S40,此將於後文中進行詳細的說明。Please refer to FIGS. 5A to 5C, where FIG. 5B is a cross-sectional view taken along the line 5B-5B' of FIG. 5A, and FIG. 5C is a cross-sectional view taken along the line 5C-5C' of FIG. 5A. In step S40, the carrier 170 (see FIG. 4B) is separated from the memory array chip stack 120 and the first dielectric layer 160, so that the bottom surface 161 of the first dielectric layer 160 (after the memory device 100 is formed) The top surface 161 of the first dielectric layer 160 and the bottom surface TS of the memory array chip stack 120 (which will become the top surface TS of the memory array chip stack 120 after the memory device 100 is formed) are exposed. In some embodiments, step S40 can be selectively performed, which will be described in detail later.

請參閱第6A圖至第6C圖,其中第6B圖是沿第6A圖之線段6B-6B'截取的剖面圖,且第6C圖是沿第6A圖之線段6C-6C'截取的剖面圖。在步驟S50中,提供周邊晶圓110,並接著將第5A圖至第5C圖的結構倒置(亦即以顛倒的方式設置)於周邊晶圓110的功能表面113上,以進行面朝面(face-to-face,亦即周邊晶圓110的功能表面113面對記憶體陣列晶片堆疊120的功能表面)的接合。在一些實施方式中,可預先形成複數個導電墊(未繪示)於周邊晶圓110的功能表面113上,使得第一導電接觸130及第二導電接觸140可直接形成於導電墊上,以形成電性連接。在一些實施方式中,導電墊可包括銅、金或其他合適的導電金屬材料。在較佳的實施方式中,導電墊、第一導電接觸130以及第二導電接觸140可包括相同的材料。Please refer to FIGS. 6A to 6C, where FIG. 6B is a cross-sectional view taken along the line 6B-6B' of FIG. 6A, and FIG. 6C is a cross-sectional view taken along the line 6C-6C' of FIG. 6A. In step S50, the peripheral wafer 110 is provided, and then the structures shown in FIGS. 5A to 5C are inverted (that is, arranged in an upside-down manner) on the functional surface 113 of the peripheral wafer 110 so as to face-to-face ( Face-to-face, that is, the bonding of the functional surface 113 of the peripheral wafer 110 facing the functional surface of the memory array chip stack 120). In some embodiments, a plurality of conductive pads (not shown) can be pre-formed on the functional surface 113 of the peripheral wafer 110, so that the first conductive contact 130 and the second conductive contact 140 can be directly formed on the conductive pad to form Electrical connection. In some embodiments, the conductive pad may include copper, gold, or other suitable conductive metal materials. In a preferred embodiment, the conductive pad, the first conductive contact 130, and the second conductive contact 140 may include the same material.

在接合製程期間,位於導電墊與第一導電接觸130之連接處以及導電墊與第二導電接觸140之連接處的導電金屬材料因受到相對高溫及高壓(相對於常溫常壓的狀態,normal temperature and pressure,NTP)的作用而擴散。所述擴散可導致導電墊與第一導電接觸130之間的相連接以及導電墊與第二導電接觸140之間的相連接。在一些實施方式中,導電墊與第一導電接觸130在接合製程後為一體成型,且兩者之間不具有介面。類似而言,導電墊與第二導電接觸140在接合製程後為一體成型,且兩者之間不具有介面。由於此接合製程為無焊料製程(solderless process),因此每一個第一導電接觸130及第二導電接觸140各自的長度L1、L2以及寬度W1、W2(見第3A圖)可以很小(亦即介於約0.1微米至約2微米之間),從而為通過第一導電接觸130及第二導電接觸140的電流提供較小的電阻。During the bonding process, the conductive metal material at the connection between the conductive pad and the first conductive contact 130 and the connection between the conductive pad and the second conductive contact 140 is subjected to relatively high temperature and high pressure (relative to the normal temperature and pressure state, normal temperature and pressure, NTP). The diffusion may result in the connection between the conductive pad and the first conductive contact 130 and the connection between the conductive pad and the second conductive contact 140. In some embodiments, the conductive pad and the first conductive contact 130 are integrally formed after the bonding process, and there is no interface between the two. Similarly, the conductive pad and the second conductive contact 140 are integrally formed after the bonding process, and there is no interface between the two. Since this bonding process is a solderless process, the respective lengths L1, L2 and widths W1, W2 (see Figure 3A) of each of the first conductive contact 130 and the second conductive contact 140 can be very small (that is, (Between about 0.1 μm and about 2 μm), so as to provide a small resistance for the current passing through the first conductive contact 130 and the second conductive contact 140.

請參閱第7A圖至第7C圖,其中第7B圖是沿第7A圖之線段7B-7B'截取的剖面圖,且第7C圖是沿第7A圖之線段7C-7C'截取的剖面圖。在步驟S60中,第三導電接觸150形成於第一介電層160中以及周邊晶圓110之部分的功能表面113上。在一些實施方式中,第三導電接觸150的形成是透過移除部分之第一介電層160以形成暴露周邊晶圓110之部分的功能表面113之凹槽R,並於凹槽R中填充導電材料來完成。在一些實施方式中,移除部分之第一介電層160是透過乾式或濕式蝕刻製程來執行。在一些實施方式中,硬遮罩(未繪示)可於蝕刻製程期間形成於部分之第一介電層160上方,以移除未被硬遮罩覆蓋之暴露部分的第一介電層160。此外,可執行例如是化學機械研磨製程的平坦化製程,以移除剩餘部分之導電材料及第一介電層160,使得第一介電層160的頂面161實質上與記憶體陣列晶片堆疊120的頂面TS(亦即最頂部之記憶體陣列晶片124的非功能表面121)以及第三導電接觸150的頂面151共平面。在完成步驟S60之後,便可形成如第1A圖至第1C圖所示的記憶體裝置100。Please refer to FIGS. 7A to 7C, where FIG. 7B is a cross-sectional view taken along the line 7B-7B' of FIG. 7A, and FIG. 7C is a cross-sectional view taken along the line 7C-7C' of FIG. 7A. In step S60, the third conductive contact 150 is formed in the first dielectric layer 160 and on the functional surface 113 of the peripheral wafer 110. In some embodiments, the third conductive contact 150 is formed by removing part of the first dielectric layer 160 to form a groove R exposing a portion of the functional surface 113 of the peripheral wafer 110, and filling the groove R Conductive material to complete. In some embodiments, removing a portion of the first dielectric layer 160 is performed through a dry or wet etching process. In some embodiments, a hard mask (not shown) may be formed over a portion of the first dielectric layer 160 during the etching process to remove the exposed portion of the first dielectric layer 160 that is not covered by the hard mask . In addition, a planarization process such as a chemical mechanical polishing process may be performed to remove the remaining conductive material and the first dielectric layer 160, so that the top surface 161 of the first dielectric layer 160 is substantially stacked with the memory array chip The top surface TS of 120 (that is, the non-functional surface 121 of the topmost memory array chip 124) and the top surface 151 of the third conductive contact 150 are coplanar. After step S60 is completed, the memory device 100 as shown in FIG. 1A to FIG. 1C can be formed.

第8圖繪示根據本揭露其他實施方式之記憶體裝置100a的剖面圖。第8圖的記憶體裝置100a與第1B圖的記憶體裝置100的至少一差異在於:記憶體裝置100a更包括第二介電層180橫向地延伸於第一介電層160上方,且覆蓋記憶體陣列晶片堆疊120。在一些實施方式中,第三導電接觸150可更進一步穿過第二介電層180,使得第三導電接觸150的頂面151高於記憶體陣列晶片堆疊120的頂面TS,並使得第三導電接觸150的頂面151更進一步由第二介電層180裸露。在一些實施方式中,第二介電層180可包括例如是聚醯亞胺的有機材料。在替代的實施方式中,第二介電層180可包括例如是旋塗式玻璃之二氧化矽的無機材料。詳細而言,當第二介電層180所包括的材料與第一介電層160所包括的材料相異時,可於第一介電層160與第二介電層180之間觀察到介面F;而當第二介電層180所包括的材料與第一介電層160所包括的材料實質上相同時,於第一介電層160與第二介電層180之間無法觀察到介面F,也就是說,第一介電層160與第二介電層180為一體成型,且兩者之間不具有介面F。然而,當將記憶體裝置100浸入酸性溶液(例如,氟化氫溶液)中時,即便第二介電層180所包括的材料與第一介電層160所包括的材料相異,仍可於第一介電層160與第二介電層180之間觀察到介面F。FIG. 8 is a cross-sectional view of a memory device 100a according to another embodiment of the present disclosure. At least one difference between the memory device 100a of FIG. 8 and the memory device 100 of FIG. 1B is that the memory device 100a further includes a second dielectric layer 180 extending laterally above the first dielectric layer 160 and covering the memory The bulk array wafer is stacked 120. In some embodiments, the third conductive contact 150 may further penetrate the second dielectric layer 180, so that the top surface 151 of the third conductive contact 150 is higher than the top surface TS of the memory array chip stack 120, and the third conductive contact 150 The top surface 151 of the conductive contact 150 is further exposed by the second dielectric layer 180. In some embodiments, the second dielectric layer 180 may include an organic material such as polyimide. In an alternative embodiment, the second dielectric layer 180 may include an inorganic material such as silicon dioxide of spin-on glass. In detail, when the material included in the second dielectric layer 180 is different from the material included in the first dielectric layer 160, an interface can be observed between the first dielectric layer 160 and the second dielectric layer 180 F; and when the material included in the second dielectric layer 180 is substantially the same as the material included in the first dielectric layer 160, the interface cannot be observed between the first dielectric layer 160 and the second dielectric layer 180 F, that is, the first dielectric layer 160 and the second dielectric layer 180 are integrally formed, and there is no interface F between them. However, when the memory device 100 is immersed in an acid solution (for example, a hydrogen fluoride solution), even if the material included in the second dielectric layer 180 is different from the material included in the first dielectric layer 160, it can still be used in the first dielectric layer. An interface F is observed between the dielectric layer 160 and the second dielectric layer 180.

在一些實施方式中,第二介電層180可形成於第三導電接觸150形成之前以及面朝面的接合製程之後。在替代的實施方式中,第二介電層180可以是前述步驟S10中的載板170(見第2B圖)。詳細而言,如前述步驟S40中所述,可選擇性地執行載板170脫離的步驟,且當載板170在步驟S40中未脫離時,載板170可被保留以作為此處的第二介電層180。在此情況下,第二介電層180可包括與載板170實質上相同的材料(例如,二氧化矽)。由於載板170可於面朝面的接合製程之前被保留下來,因此可提升將第5A圖至第5C圖的結構倒置於周邊晶圓110的功能表面113上的便利性。In some embodiments, the second dielectric layer 180 may be formed before the formation of the third conductive contact 150 and after the face-to-face bonding process. In an alternative embodiment, the second dielectric layer 180 may be the carrier 170 in the aforementioned step S10 (see FIG. 2B). In detail, as described in the foregoing step S40, the step of detaching the carrier plate 170 can be selectively performed, and when the carrier plate 170 is not detached in step S40, the carrier plate 170 can be retained as the second step here. The dielectric layer 180. In this case, the second dielectric layer 180 may include substantially the same material as the carrier 170 (for example, silicon dioxide). Since the carrier plate 170 can be retained before the face-to-face bonding process, the convenience of placing the structures shown in FIGS. 5A to 5C upside down on the functional surface 113 of the peripheral wafer 110 can be improved.

第9圖繪示根據本揭露其他實施方式之記憶體裝置100b的剖面圖。第9圖的記憶體裝置100b與第8圖的記憶體裝置100a的至少一差異在於:記憶體裝置100b更包括複數個重分佈層(redistribution layers,RDLs)190於第二介電層180中,並連接至第三導電接觸150。在一些實施方式中,重分佈層190可包括銅、金或其他合適的導電金屬材料。在一些實施方式中,在記憶體裝置100b中之第二介電層180的厚度T3大於在記憶體裝置100a中之第二介電層180的厚度T2,從而保留空間以供重分佈層190形成。FIG. 9 is a cross-sectional view of a memory device 100b according to another embodiment of the present disclosure. At least one difference between the memory device 100b in FIG. 9 and the memory device 100a in FIG. 8 is that the memory device 100b further includes a plurality of redistribution layers (RDLs) 190 in the second dielectric layer 180. And connected to the third conductive contact 150. In some embodiments, the redistribution layer 190 may include copper, gold, or other suitable conductive metal materials. In some embodiments, the thickness T3 of the second dielectric layer 180 in the memory device 100b is greater than the thickness T2 of the second dielectric layer 180 in the memory device 100a, so as to reserve space for the redistribution layer 190 to be formed .

第10圖繪示根據本揭露其他實施方式之記憶體裝置100c的剖面圖。第10圖的記憶體裝置100c與第8圖的記憶體裝置100a的至少一差異在於:記憶體裝置100c包括複數個介電層200橫向地延伸並堆疊於周邊晶圓110上方,而並非僅包括一個介電層(例如,第一介電層160)位於周邊晶圓110上方。此外,介電層200圍繞記憶體陣列晶片堆疊120、第一導電接觸130、第二導電接觸140(未繪示)以及第三導電接觸150。在一些實施方式中,介電層200可進一步橫向地插入至記憶體陣列晶片124之間。換句話說,相鄰的記憶體陣列晶片124可被介電層200隔開。舉例而言,插入至最頂部之記憶體陣列晶片124與次頂部之記憶體陣列晶片124之間的介電層200可直接接觸最頂部之記憶體陣列晶片124的功能表面123以及次頂部之記憶體陣列晶片124的非功能表面121。在一些實施方式中,介電層200可包括例如是聚醯亞胺的有機材料。在替代的實施方式中,介電層200可包括例如是旋塗式玻璃之二氧化矽的無機材料。在一些實施方式中,每一個介電層200可包括相同的材料。在其他實施方式中,每一個介電層200可包括不同的材料。在替代的實施方式中,相鄰之介電層200可包括不同的材料。FIG. 10 is a cross-sectional view of a memory device 100c according to another embodiment of the present disclosure. At least one difference between the memory device 100c of FIG. 10 and the memory device 100a of FIG. 8 is that the memory device 100c includes a plurality of dielectric layers 200 that extend laterally and are stacked on the peripheral wafer 110, instead of only including A dielectric layer (for example, the first dielectric layer 160) is located above the peripheral wafer 110. In addition, the dielectric layer 200 surrounds the memory array chip stack 120, the first conductive contact 130, the second conductive contact 140 (not shown), and the third conductive contact 150. In some embodiments, the dielectric layer 200 may be further inserted between the memory array chips 124 laterally. In other words, adjacent memory array chips 124 can be separated by the dielectric layer 200. For example, the dielectric layer 200 inserted between the topmost memory array chip 124 and the next-top memory array chip 124 can directly contact the functional surface 123 of the topmost memory array chip 124 and the next-top memory The non-functional surface 121 of the bulk array wafer 124. In some embodiments, the dielectric layer 200 may include an organic material such as polyimide. In an alternative embodiment, the dielectric layer 200 may include an inorganic material such as silicon dioxide of spin-on glass. In some embodiments, each dielectric layer 200 may include the same material. In other embodiments, each dielectric layer 200 may include different materials. In alternative embodiments, adjacent dielectric layers 200 may include different materials.

根據本揭露上述實施方式,由於記憶體陣列晶片堆疊的至少一側為階梯形狀配置,因此大量的第一導電接觸可形成於記憶體陣列晶片堆疊的所述側,並位於周邊晶圓與記憶體陣列晶片堆疊之間。如此一來,可形成一種高密度及高速度的記憶體裝置。此外,由於記憶體陣列晶片堆疊是設置於周邊晶圓的上方,而並非橫向地相鄰於周邊晶圓,因此記憶體陣列晶片堆疊上的導電圖案以及周邊晶圓上的導電圖案可分開製作。藉此,可分別針對記憶體陣列晶片堆疊及周邊晶圓來調整兩者在製程方面(例如,熱製程)的最佳化條件,使得記憶體陣列晶片堆疊及周邊晶圓的製程不會相互牽制與干擾。此外,由於周邊晶圓的尺寸大於記憶體陣列晶片堆疊的尺寸,因此在將記憶體陣列晶片堆疊以面朝面的方式接合至周邊晶圓上時,不需精準地對齊,也因此可節省用於對齊的成本。此外,具有控制器的堆疊揮發性工作記憶體(DRAM或SRAM)晶片可實現高帶寬記憶體(high-bandwidth-memory,HBM)及高速讀寫能力,並且本揭露是採用介電穿孔(through dielectric via)而並非採用矽穿孔(through silicon via),因此可帶來低成本的優點。另外,一個堆疊揮發性工作記憶體(DRAM或SRAM)晶片的輸入/輸出(I/O)數量可大於等於1024。According to the above-mentioned embodiments of the present disclosure, since at least one side of the memory array chip stack is configured in a stepped shape, a large number of first conductive contacts can be formed on the side of the memory array chip stack and located between the peripheral wafers and the memory. Between array wafer stacks. In this way, a high-density and high-speed memory device can be formed. In addition, since the memory array chip stack is disposed above the peripheral wafer, and is not laterally adjacent to the peripheral wafer, the conductive patterns on the memory array chip stack and the conductive patterns on the peripheral wafer can be fabricated separately. In this way, the optimized conditions of the two processes (for example, thermal process) can be adjusted separately for the memory array chip stack and the surrounding wafers, so that the memory array chip stack and the surrounding wafer processes do not restrict each other And interference. In addition, since the size of the peripheral wafer is larger than the size of the memory array chip stack, when the memory array chip stack is bonded to the peripheral wafer in a face-to-face manner, it does not need to be precisely aligned, so it can save money. The cost of alignment. In addition, a stacked volatile working memory (DRAM or SRAM) chip with a controller can achieve high-bandwidth-memory (HBM) and high-speed read and write capabilities, and this disclosure uses through dielectric perforation (through dielectric Via) instead of through silicon via, it can bring the advantage of low cost. In addition, the number of input/output (I/O) of a stacked volatile working memory (DRAM or SRAM) chip can be greater than or equal to 1024.

雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although this disclosure has been disclosed in the above implementation manner, it is not intended to limit this disclosure. Anyone who is familiar with this technique can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, this disclosure is protected The scope shall be subject to those defined in the attached patent scope.

100,100a,100b,100c:記憶體裝置 110:周邊晶圓 112:矽基板 113:功能表面 120:記憶體陣列晶片堆疊 121:非功能表面 122:矽基板 123:功能表面 124:記憶體陣列晶片 130:第一導電接觸 133:底面(頂面) 140:第二導電接觸 143:底面(頂面) 150:第三導電接觸 151:頂面 160:第一介電層 161:頂面(底面) 163:底面(頂面) 170:載板 171:表面 180:第二介電層 190:重分佈層 200:介電層 S1:第一側 S2:第二側 S3:第三側 S4:第四側 S:側壁 R:凹槽 D:橫向距離 F:介面 TS:頂面(底面) BS:底面(頂面) L1~L3,X1~X2:長度 W1~W3,Y1~Y2:寬度 T1~T3:厚度 H1~H3:高度 S10~S60:步驟 1B-1B'~7B-7B',1C-1C'~7C-7C':線段 100, 100a, 100b, 100c: memory device 110: Peripheral wafer 112: Silicon substrate 113: functional surface 120: Memory array chip stacking 121: non-functional surface 122: Silicon substrate 123: functional surface 124: Memory Array Chip 130: first conductive contact 133: bottom surface (top surface) 140: second conductive contact 143: bottom surface (top surface) 150: third conductive contact 151: Top Surface 160: first dielectric layer 161: top surface (bottom surface) 163: bottom surface (top surface) 170: carrier board 171: Surface 180: second dielectric layer 190: Redistribution layer 200: Dielectric layer S1: First side S2: second side S3: Third side S4: Fourth side S: sidewall R: groove D: Horizontal distance F: Interface TS: Top surface (bottom surface) BS: bottom surface (top surface) L1~L3, X1~X2: length W1~W3, Y1~Y2: width T1~T3: thickness H1~H3: height S10~S60: steps 1B-1B'~7B-7B',1C-1C'~7C-7C': line segment

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1A圖繪示根據本揭露一些實施方式之記憶體裝置的上視圖;第1B圖繪示根據本揭露一些實施方式之第1A圖的記憶體裝置沿線段1B-1B'截取的剖面圖;第1C圖繪示根據本揭露一些實施方式之第1A圖的記憶體裝置沿線段1C-1C'截取的剖面圖;第2A圖、第3A圖、第4A圖、第5A圖、第6A圖及第7A圖繪示根據本揭露一些實施方式之記憶體裝置的製造方法在各步驟的上視圖;第2B及2C圖、第3B及3C圖、第4B及4C圖、第5B及5C圖、第6B及6C圖及第7B及7C圖繪示根據本揭露一些實施方式之記憶體裝置的製造方法在各步驟的剖面圖;以及第8圖至第10圖繪示根據本揭露其他實施方式之記憶體裝置的剖面圖。 In order to make the above and other objectives, features, advantages and embodiments of the present disclosure more comprehensible, the description of the accompanying drawings is as follows: FIG. 1A shows a top view of a memory device according to some embodiments of the present disclosure; 1B shows a cross-sectional view of the memory device in FIG. 1A according to some embodiments of the present disclosure taken along line 1B-1B'; FIG. 1C shows a cross-sectional view of the memory device in FIG. 1A according to some embodiments of the present disclosure 1C-1C' cross-sectional view; FIG. 2A, FIG. 3A, FIG. 4A, FIG. 5A, FIG. 6A, and FIG. 7A illustrate the steps of the method of manufacturing a memory device according to some embodiments of the present disclosure The top view of Figures 2B and 2C, Figures 3B and 3C, Figures 4B and 4C, Figures 5B and 5C, Figures 6B and 6C, and Figures 7B and 7C show the memory according to some embodiments of the present disclosure Cross-sectional views of the manufacturing method of the device at each step; and FIGS. 8 to 10 are cross-sectional views of memory devices according to other embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in the order of deposit institution, date and number) none Foreign hosting information (please note in the order of hosting country, institution, date, and number) none

100:記憶體裝置 100: Memory device

110:周邊晶圓 110: Peripheral wafer

112:矽基板 112: Silicon substrate

113:功能表面 113: functional surface

120:記憶體陣列晶片堆疊 120: Memory array chip stacking

121:非功能表面 121: non-functional surface

122:矽基板 122: Silicon substrate

123:功能表面 123: functional surface

124:記憶體陣列晶片 124: Memory Array Chip

130:第一導電接觸 130: first conductive contact

150:第三導電接觸 150: third conductive contact

151:頂面 151: Top Surface

160:第一介電層 160: first dielectric layer

161:頂面 161: top surface

S1:第一側 S1: First side

S3:第二側 S3: second side

TS:頂面 TS: top surface

BS:底面 BS: bottom surface

T1:厚度 T1: thickness

H1,H3:高度 H1, H3: height

Claims (10)

一種記憶體裝置,包括:一周邊晶圓,具有一功能表面,其中該周邊晶圓包括控制器邏輯;一記憶體陣列晶片堆疊,設置於該周邊晶圓上且具有一功能表面,其中該周邊晶圓的該功能表面面對該記憶體陣列晶片堆疊的該功能表面,該記憶體陣列晶片堆疊的一第一側為一階梯形狀配置,該記憶體陣列晶片堆疊的一第二側為一階梯形狀配置,且該第二側相鄰於該記憶體陣列晶片堆疊的該第一側,該記憶體陣列晶片堆疊包括複數個記憶體陣列晶片,且該些記憶體陣列晶片包括非揮發性記憶體;以及複數個第一導電接觸,設置於該記憶體陣列晶片堆疊的該第一側,且位於該周邊晶圓的該功能表面與該記憶體陣列晶片堆疊的該功能表面之間,並連接該周邊晶圓的該功能表面及該記憶體陣列晶片堆疊的該功能表面。 A memory device includes: a peripheral wafer with a functional surface, wherein the peripheral wafer includes controller logic; a stack of memory array chips arranged on the peripheral wafer and having a functional surface, wherein the peripheral wafer The functional surface of the wafer faces the functional surface of the memory array chip stack, a first side of the memory array chip stack is a stepped configuration, and a second side of the memory array chip stack is a step Shape configuration, and the second side is adjacent to the first side of the memory array chip stack, the memory array chip stack includes a plurality of memory array chips, and the memory array chips include non-volatile memory And a plurality of first conductive contacts, disposed on the first side of the memory array chip stack, and located between the functional surface of the peripheral wafer and the functional surface of the memory array chip stack, and connected to the The functional surface of the peripheral wafer and the functional surface of the memory array chip stack. 一種記憶體裝置,包括:一周邊晶圓,具有一功能表面,其中該周邊晶圓包括控制器邏輯;一記憶體陣列晶片堆疊,設置於該周邊晶圓上且具有一功能表面,其中該周邊晶圓的該功能表面面對該記憶體陣列晶片堆疊的該功能表面,該記憶體陣列晶片堆疊的一第一側為一階梯形狀配置,該記憶體陣列晶片堆疊的一第二 側為一階梯形狀配置,且該第二側相鄰於該記憶體陣列晶片堆疊的該第一側,該記憶體陣列晶片堆疊包括複數個記憶體陣列晶片,且該些記憶體陣列晶片包括揮發性記憶體;以及複數個第一導電接觸,設置於該記憶體陣列晶片堆疊的該第一側,且位於該周邊晶圓的該功能表面與該記憶體陣列晶片堆疊的該功能表面之間,並連接該周邊晶圓的該功能表面及該記憶體陣列晶片堆疊的該功能表面。 A memory device includes: a peripheral wafer with a functional surface, wherein the peripheral wafer includes controller logic; a stack of memory array chips arranged on the peripheral wafer and having a functional surface, wherein the peripheral wafer The functional surface of the wafer faces the functional surface of the memory array chip stack, a first side of the memory array chip stack is configured in a stepped shape, and a second side of the memory array chip stack The side is a stepped configuration, and the second side is adjacent to the first side of the memory array chip stack, the memory array chip stack includes a plurality of memory array chips, and the memory array chips include volatile Memory; and a plurality of first conductive contacts disposed on the first side of the memory array chip stack and located between the functional surface of the peripheral wafer and the functional surface of the memory array chip stack, And connect the functional surface of the peripheral wafer and the functional surface of the memory array chip stack. 如請求項1或2所述的記憶體裝置,更包括複數個第二導電接觸,設置於該記憶體陣列晶片堆疊的該第二側,且位於該周邊晶圓的該功能表面與該記憶體陣列晶片堆疊的該功能表面之間,並連接該周邊晶圓的該功能表面及該記憶體陣列晶片堆疊的該功能表面。 The memory device according to claim 1 or 2, further comprising a plurality of second conductive contacts, arranged on the second side of the memory array chip stack, and located on the functional surface of the peripheral wafer and the memory Between the functional surfaces of the array chip stack, and connect the functional surface of the peripheral wafer and the functional surface of the memory array chip stack. 如請求項1或2所述的記憶體裝置,其中該記憶體陣列晶片堆疊相對於該第一側的一第三側為一倒階梯形狀配置。 The memory device according to claim 1 or 2, wherein a third side of the memory array chip stack relative to the first side is an inverted stepped configuration. 如請求項1或2所述的記憶體裝置,其中該些記憶體陣列晶片以面朝背的方式垂直地堆疊。 The memory device according to claim 1 or 2, wherein the memory array chips are vertically stacked in a face-to-back manner. 如請求項1或2所述的記憶體裝置,其中每一該些記憶體陣列晶片由相鄰的該些記憶體陣列晶片的 其中一者以相同的間隔裸露。 The memory device according to claim 1 or 2, wherein each of the memory array chips is composed of adjacent memory array chips One of them is exposed at the same interval. 如請求項1或2所述的記憶體裝置,其中該周邊晶圓的一長度及一寬度分別大於該記憶體陣列晶片堆疊的一長度及一寬度。 The memory device according to claim 1 or 2, wherein a length and a width of the peripheral wafer are respectively greater than a length and a width of the memory array chip stack. 如請求項1或2所述的記憶體裝置,更包括複數個第三導電接觸,設置於該周邊晶圓的該功能表面上,且圍繞該記憶體陣列晶片堆疊。 The memory device according to claim 1 or 2, further comprising a plurality of third conductive contacts arranged on the functional surface of the peripheral wafer and stacked around the memory array chip. 如請求項1或2所述的記憶體裝置,更包括一第一介電層,橫向地延伸於該周邊晶圓上方,且圍繞該記憶體陣列晶片堆疊及該些第一導電接觸。 The memory device according to claim 1 or 2, further comprising a first dielectric layer that extends laterally above the peripheral wafer and surrounds the memory array chip stack and the first conductive contacts. 如請求項1或2所述的記憶體裝置,其中該記憶體陣列晶片堆疊相對於該第二側的一第四側為一倒階梯形狀配置。 The memory device according to claim 1 or 2, wherein a fourth side of the memory array chip stack relative to the second side is an inverted stepped configuration.
TW109141453A 2020-11-25 2020-11-25 Memory device TWI747634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109141453A TWI747634B (en) 2020-11-25 2020-11-25 Memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109141453A TWI747634B (en) 2020-11-25 2020-11-25 Memory device

Publications (2)

Publication Number Publication Date
TWI747634B true TWI747634B (en) 2021-11-21
TW202221907A TW202221907A (en) 2022-06-01

Family

ID=79907744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141453A TWI747634B (en) 2020-11-25 2020-11-25 Memory device

Country Status (1)

Country Link
TW (1) TWI747634B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232701A (en) * 2011-01-19 2012-08-01 Macronix Int Co Ltd Multilayer connection structure and making method
WO2019212623A1 (en) * 2018-05-01 2019-11-07 Western Digital Technologies, Inc. Bifurcated memory die module semiconductor device
WO2020139424A1 (en) * 2018-12-24 2020-07-02 Sandisk Technologies Llc Three-dimensional memory devices having a multi-stack bonded structure using a logic die and multiple three-dimensional memory dies and method of making the same
US20200294918A1 (en) * 2019-02-18 2020-09-17 Sandisk Technologies Llc Bonded assembly including a semiconductor-on-insulator die and methods for making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232701A (en) * 2011-01-19 2012-08-01 Macronix Int Co Ltd Multilayer connection structure and making method
WO2019212623A1 (en) * 2018-05-01 2019-11-07 Western Digital Technologies, Inc. Bifurcated memory die module semiconductor device
CN111164752A (en) * 2018-05-01 2020-05-15 西部数据技术公司 Bifurcated memory die module semiconductor device
WO2020139424A1 (en) * 2018-12-24 2020-07-02 Sandisk Technologies Llc Three-dimensional memory devices having a multi-stack bonded structure using a logic die and multiple three-dimensional memory dies and method of making the same
US20200294918A1 (en) * 2019-02-18 2020-09-17 Sandisk Technologies Llc Bonded assembly including a semiconductor-on-insulator die and methods for making the same

Also Published As

Publication number Publication date
TW202221907A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
KR102632563B1 (en) Semiconductor Package
KR100721353B1 (en) structure and fabrication method of chip-embedded interposer, wafer-level stack structure of different kinds of chips using the same, and resultant package structure
US20230422528A1 (en) Three-dimensional memory devices and manufacturing methods thereof and three-dimensional memories
US8319329B2 (en) Stacked integrated circuit package having recessed sidewalls
TWI497687B (en) Semiconductor device and manufacturing method thereof
JP5832782B2 (en) Memory device and laminated semiconductor substrate
KR20100045857A (en) Semiconductor chip, stack module, memory card, and method of fabricating the semiconductor chip
KR20220028741A (en) Semiconductor package including stacked semiconductor chips
US20210280563A1 (en) Semiconductor device, fabrication method thereof, package and fabrication method thereof
US20070267738A1 (en) Stack-type semiconductor device having cooling path on its bottom surface
KR100914987B1 (en) Molded reconfigured wafer and stack package using the same
JP5852359B2 (en) Memory device and manufacturing method thereof
US8482105B2 (en) Semiconductor substrate, laminated chip package, semiconductor plate and method of manufacturing the same
JP2013247139A (en) Semiconductor device and method of manufacturing the same
TWI747634B (en) Memory device
KR102474933B1 (en) Semiconductor chip having through electrode, chip stack structure including the same and method of manufacturing semiconductor chip
TWI719927B (en) Memory device
US11289130B2 (en) Memory device
KR100983471B1 (en) Semiconductor device and method for manufacturing the same
US8569878B2 (en) Semiconductor substrate, laminated chip package, semiconductor plate and method of manufacturing the same
KR20090011568A (en) Semiconductor pacakge and method for fabricating of the same
KR100631934B1 (en) Stack package
CN111244054A (en) Semiconductor device and manufacturing method thereof, and package and manufacturing method thereof
TWI433284B (en) Stackable package and method for making the same and semiconductor package
US20240243081A1 (en) Semiconductor device including bonding pads and method for fabricating the same