TWI746411B - Clock generating circuit and calibration circuit thereof - Google Patents

Clock generating circuit and calibration circuit thereof Download PDF

Info

Publication number
TWI746411B
TWI746411B TW110118698A TW110118698A TWI746411B TW I746411 B TWI746411 B TW I746411B TW 110118698 A TW110118698 A TW 110118698A TW 110118698 A TW110118698 A TW 110118698A TW I746411 B TWI746411 B TW I746411B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
parameter
coupled
frequency
Prior art date
Application number
TW110118698A
Other languages
Chinese (zh)
Other versions
TW202247609A (en
Inventor
林君豫
Original Assignee
穩脈科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 穩脈科技股份有限公司 filed Critical 穩脈科技股份有限公司
Priority to TW110118698A priority Critical patent/TWI746411B/en
Priority to CN202110844830.2A priority patent/CN115395952A/en
Application granted granted Critical
Publication of TWI746411B publication Critical patent/TWI746411B/en
Publication of TW202247609A publication Critical patent/TW202247609A/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop

Abstract

The invention related to a clock generating circuit and a calibration circuit thereof. The clock generating circuit inputs a reference clock signal generated from a reference clock circuit to an input divider and a fractional PLL circuit, thereby, the input divider generates an input dividing signal to a counter and a gain error estimator to make counter generate a counting signal in responsive to the input dividing signal and a spread signal. The gain error estimator generates a N parameter and an parameter in responsive to the counting signal and the input dividing signal, for the fractional PLL circuit generating a clock output signal. Wherein the input divider, the counter and the gain error estimator are formed as the calibration circuit to calibrate the fractional PLL generating the clock output signal.

Description

時脈產生電路及其補償電路Clock generation circuit and its compensation circuit

本發明係有關一種時脈產生電路及其補償電路,尤其是利用除頻整數參數與除頻小數參數搭配展頻訊號與參考時脈訊號進行除頻,以輸出適當的輸出時脈訊號。The present invention relates to a clock generation circuit and its compensation circuit, in particular, frequency division integer parameters and frequency division decimal parameters are combined with spread spectrum signals and reference clock signals for frequency division to output appropriate output clock signals.

現今的積體電路(IC)上皆有至少一鎖相電路(phase-lock loop,PLL),以提供積體電路上所需的各種頻率時鐘。又,現今積體電路隨著半導體製程的製程精度演進,而導致製程複雜度,積體電路之運作複雜度,且運作時的各種時脈可能不是整數倍的關係,例如,同一顆積體電路(IC)內可能需要用到66MHz,100MHz,133MHz的時脈。使用鎖相電路來產生積體電路內所需的各種頻率的時脈是最經濟的方法,也就是鎖相電路所輸出之具固定頻率之脈波訊號經過除頻的動作,使鎖相電路在固定頻率提供脈波訊號之輸出,但為了得到不同頻率之脈波訊號輸出,則需要設置多個鎖向電路,以提供多個頻率之脈波訊號輸出。如此大幅度占用電路面積,且功率消耗較高,因而發展出單一鎖相電路連結多個除頻器,以提供不同頻率之脈波訊號輸出。Today's integrated circuits (ICs) have at least one phase-lock loop (PLL) to provide various frequency clocks required by the integrated circuits. In addition, today's integrated circuits are evolving with the process accuracy of semiconductor manufacturing processes, resulting in process complexity, the operational complexity of integrated circuits, and the various clocks during operation may not be an integer multiple of the relationship, for example, the same integrated circuit (IC) may need to use 66MHz, 100MHz, 133MHz clock. It is the most economical way to use a phase-locked circuit to generate the clocks of various frequencies required in an integrated circuit. That is, the pulse signal with a fixed frequency output by the phase-locked circuit undergoes a frequency division action to make the phase-locked circuit in A fixed frequency provides pulse signal output, but in order to obtain pulse signal output of different frequencies, it is necessary to set multiple lock circuits to provide pulse signal output of multiple frequencies. As such a large circuit area is occupied and power consumption is high, a single phase-locked circuit is developed to connect multiple frequency dividers to provide pulse signal output of different frequencies.

現今許多電子電路,即使是微型電子電路,例如:IC,需要一時脈來源作為訊號的基本制動。因此在一微處理器(MCU)之電路中設計一高頻晶體振盪器是很普遍的電路設計。然而,該高頻晶體振盪器之電路設計除了提供高頻時脈訊號之餘,更需要輸入相當可觀的電流至電路中,以驅動該高頻晶體振盪器。對於電量較為敏感的應用,其因此需要使用一相對較低功率需求,甚至較低頻率的時脈來源於計時功能上。因此32.768kHz的石英晶體振盪產生器遂應此一需求而被開發出來,石英晶體振盪產生器所產生的振盪訊號,可經過石英時脈產生器內部之除頻器進行15次除頻後,而獲得1Hz的時脈訊號,1Hz即秒針每秒鐘走一下,因此,石英鐘內部的除頻器僅能進行15 次除頻,若是將32.768kHz要是換成別的頻率的振盪訊號,則振盪訊號經15次除頻後,就不是1Hz的除頻訊號,且電子時鐘所表示的時間就不準確了。32.768k=32768=2的15次方,因此可提供電子裝置用於資料傳輸並提供比較方便、精確的計時。Nowadays, many electronic circuits, even miniature electronic circuits, such as IC, need a clock source as the basic brake of the signal. Therefore, designing a high-frequency crystal oscillator in a microprocessor (MCU) circuit is a very common circuit design. However, the circuit design of the high-frequency crystal oscillator not only provides a high-frequency clock signal, but also needs to input a considerable current into the circuit to drive the high-frequency crystal oscillator. For power-sensitive applications, a relatively low power requirement is therefore required, and even lower frequency clocks are derived from the timing function. Therefore, a 32.768kHz quartz crystal oscillator was developed in response to this demand. The oscillation signal generated by the quartz crystal oscillator can be divided by 15 times by the frequency divider inside the quartz clock generator. Obtain a 1Hz clock signal, 1Hz means that the second hand moves every second, therefore, the frequency divider inside the quartz clock can only divide the frequency 15 times. If 32.768kHz is replaced with another frequency oscillation signal, the oscillation signal will pass After 15 times of frequency division, it is not a 1Hz frequency division signal, and the time indicated by the electronic clock is inaccurate. 32.768k=32768=2 to the 15th power, so it can provide electronic devices for data transmission and provide more convenient and accurate timing.

例如:嵌入式微控制器(MCU)的系統歷來依靠低頻32.768 kHz石英晶體振盪器產生低頻振盪訊號,以驅動MCU內部的振盪器進行時間保持和故障恢復功能。提出了一種具有背景校準功能的片上32.768kHz時鐘發生器,以實現良好的頻率精度。通過重複使用系統時鐘(HFXO)來間歇性地協助進行背景校準,可以實現頻率精度。但是,上述除頻方式需要設置HFXO,且除頻器即使在睡眠模式下也需要保持致能狀態,如此時脈產生電路會導致較大之功率消耗。For example: Embedded microcontroller (MCU) systems have always relied on a low-frequency 32.768 kHz quartz crystal oscillator to generate low-frequency oscillation signals to drive the internal oscillator of the MCU for time keeping and fault recovery functions. An on-chip 32.768kHz clock generator with background calibration function is proposed to achieve good frequency accuracy. By reusing the system clock (HFXO) to intermittently assist in background calibration, frequency accuracy can be achieved. However, the above frequency dividing method requires HFXO to be set, and the frequency divider needs to be kept in an enabled state even in sleep mode, so the clock generation circuit will cause greater power consumption.

基於上述之問題,本發明提供一種時脈產生電路及其補償電路,其計數器的設置,並以輸入除頻訊號結合展頻訊號,以產生計數訊號至一增益誤差電路,而產生對應之除頻整數參數與除頻小數參數至一分數鎖相電路,以讓該分數鎖相電路經由除頻整數參數與除頻小數參數之補償後產生對應之一輸出脈波訊號。藉此進而減少時脈產生電路保持在致能狀態之功率消耗。Based on the above-mentioned problems, the present invention provides a clock generation circuit and its compensation circuit. The counter is set up, and the input frequency divider signal is combined with the spread spectrum signal to generate the counting signal to a gain error circuit to generate the corresponding frequency divider. The integer parameter and the frequency-dividing decimal parameter are transferred to a fractional phase-locked circuit, so that the fractional phase-locked circuit generates a corresponding output pulse signal after the compensation of the frequency-dividing integer parameter and the frequency-dividing decimal parameter. This further reduces the power consumption of the clock generating circuit in the enabled state.

本發明之一目的,提供一種時脈產生電路,其以輸入除頻訊號結合展頻訊號,以產生計數訊號至一增益誤差電路,因而產生對應之除頻整數參數與除頻小數參數至一分數鎖相電路,以補償該分數鎖相電路而產生對應之一輸出脈波訊號。藉此進而減少時脈產生電路保持在致能狀態之功率消耗。An object of the present invention is to provide a clock generation circuit that combines an input frequency divider signal with a spread spectrum signal to generate a counting signal to a gain error circuit, thereby generating corresponding frequency division integer parameters and frequency division decimal parameters to a fraction The phase lock circuit is used to compensate the fractional phase lock circuit to generate a corresponding output pulse signal. This further reduces the power consumption of the clock generating circuit in the enabled state.

本發明揭示了一種時脈產生電路,其包含一參考時脈產生電路、一輸入除頻器、一計數器、一增益誤差電路與一分數鎖相電路。該參考時脈產生電路產生一參考時脈訊號至該輸入除頻器與該分數鎖相電路,該輸入除頻器依據該參考時脈訊號產生一輸入除頻訊號至該計數器與該增益誤差電路,該計數器藉由接收該輸入除頻訊號與一展頻訊號,以產生一計數訊號至該增益誤差電路,使該增益誤差電路接收該輸入除頻訊號與該計數訊號產生一除頻整數參數與一除頻小數參數。藉此,本發明之補償電路因未保持致能狀態,且本發明之補償電路所提供之該除頻整數參數與該除頻小數參數相當於利用參考時脈訊號所產生,因此本發明之補償電路減少功率消耗。The present invention discloses a clock generation circuit, which includes a reference clock generation circuit, an input frequency divider, a counter, a gain error circuit and a fractional phase lock circuit. The reference clock generating circuit generates a reference clock signal to the input frequency divider and the fractional phase lock circuit, and the input frequency divider generates an input frequency dividing signal to the counter and the gain error circuit according to the reference clock signal , The counter generates a counting signal to the gain error circuit by receiving the input frequency division signal and a spread signal, so that the gain error circuit receives the input frequency division signal and the counting signal to generate a frequency division integer parameter and A frequency-dividing decimal parameter. As a result, the compensation circuit of the present invention is not kept in the enabled state, and the frequency-dividing integer parameter and the frequency-dividing decimal parameter provided by the compensation circuit of the present invention are equivalent to those generated by the reference clock signal. Therefore, the compensation of the present invention The circuit reduces power consumption.

本發明提供一實施例,在於該分數鎖相電路包含一相/頻偵測器、一電荷幫浦元件、一迴路濾波器、一壓控振盪器、一輸出除頻器、一多除數除頻器與一調變器。該相/頻偵測器耦接該參考時脈產生電路與一時序控制電路,該時序控制電路產生一時序控制訊號與一致能訊號,該相/頻偵測器接收該參考時脈訊號與該時序控制訊號,以對應產生一充放電控制訊號;該電荷幫浦元件,耦接該相/頻偵測器與該時序控制電路,以接收該充放電控制訊號與該致能訊號進行充放電;該迴路濾波器耦接該電荷幫浦元件,依據該電荷幫浦元件之充放電產生一電位訊號;該壓控振盪器耦接該迴路濾波器,接收該電位訊號,以對應產生一壓控振盪訊號;該輸出除頻器,耦接該壓控振盪器,接收該壓控振盪訊號,以對應產生一輸出時脈訊號;該多除數除頻器接收該壓控振盪訊號與一加總訊號,以對應產生一回授除頻訊號至該時序控制電路,使該時序控制電路產生該時序控制訊號與該致能訊號;以及該調變器耦接該多除數除頻器與一加總單元,該調變器與該加總單元一併耦接該增益誤差電路,該調變器接收該回授除頻訊號與該除頻小數參數,以產生一調變訊號至該加總單元,該加總單元接收該除頻整數參數與該調變訊號,以產生該加總訊號至該多除數除頻器。The present invention provides an embodiment in which the fractional phase-locked circuit includes a phase/frequency detector, a charge pump element, a loop filter, a voltage-controlled oscillator, an output frequency divider, and a multi-divisor Frequency converter and a modulator. The phase/frequency detector is coupled to the reference clock generating circuit and a timing control circuit. The timing control circuit generates a timing control signal and an energy signal. The phase/frequency detector receives the reference clock signal and the timing control circuit. A timing control signal to correspondingly generate a charge and discharge control signal; the charge pump element is coupled to the phase/frequency detector and the timing control circuit to receive the charge and discharge control signal and the enable signal for charge and discharge; The loop filter is coupled to the charge pump element and generates a potential signal according to the charge and discharge of the charge pump element; the voltage-controlled oscillator is coupled to the loop filter and receives the potential signal to correspondingly generate a voltage-controlled oscillation Signal; the output frequency divider, coupled to the voltage-controlled oscillator, receives the voltage-controlled oscillation signal to correspondingly generate an output clock signal; the multi-divider frequency divider receives the voltage-controlled oscillation signal and a sum signal , To correspondingly generate a feedback frequency divider signal to the timing control circuit, so that the timing control circuit generates the timing control signal and the enable signal; and the modulator is coupled to the multi-divider frequency divider and a totalizer Unit, the modulator and the summing unit are coupled to the gain error circuit, and the modulator receives the feedback frequency division signal and the frequency division decimal parameter to generate a modulation signal to the summation unit, The summation unit receives the frequency division integer parameter and the modulation signal to generate the summation signal to the multi-divider frequency divider.

本發明提供一實施例,在於該時脈產生電路更包含一展頻時脈產生器,其耦接該計數器,以產生該展頻訊號至該計數器。The present invention provides an embodiment in which the clock generating circuit further includes a spread-spectrum clock generator, which is coupled to the counter to generate the spread-spectrum signal to the counter.

本發明提供一實施例,在於該增益誤差電路更產生一展頻致能訊號至該展頻時脈產生器,以控制該展頻時脈產生器致能。The present invention provides an embodiment in which the gain error circuit further generates a spread-spectrum enabling signal to the spread-spectrum clock generator to control the spread-spectrum clock generator to be enabled.

本發明提供一實施例,在於該補償電路更包含一溫度感測器,耦接該增益誤差電路,感測一環境溫度,以產生一溫度補償訊號至該增益誤差電路,該增益誤差電路更依據該溫度補償訊號產生該除頻小數參數與該除頻整數參數。The present invention provides an embodiment in which the compensation circuit further includes a temperature sensor coupled to the gain error circuit to sense an ambient temperature to generate a temperature compensation signal to the gain error circuit, and the gain error circuit is more based on The temperature compensation signal generates the frequency division decimal parameter and the frequency division integer parameter.

本發明提供一實施例,在於該增益誤差電路設有一對照表單元、一增益加總單元與一運算單元。該對照表單元耦接該溫度感測器,依據該溫度補償訊號產生一溫度補償參數;該增益加總單元耦接該對照表單元、該計數器與一儲存單元,該儲存單元儲存有一除頻參數,該增益加總單元接收該溫度補償參數、該除頻參數與該計數訊號而對應產生一加總運算參數;以及該運算單元,耦接該增益加總單元,以依據該加總運算參數產生該除頻小數參數與該除頻整數參數。The present invention provides an embodiment in that the gain error circuit is provided with a look-up table unit, a gain summation unit and an arithmetic unit. The look-up table unit is coupled to the temperature sensor and generates a temperature compensation parameter according to the temperature compensation signal; the gain summation unit is coupled to the look-up table unit, the counter and a storage unit, and the storage unit stores a frequency dividing parameter , The gain summation unit receives the temperature compensation parameter, the frequency division parameter, and the counting signal to generate a summation operation parameter correspondingly; and the operation unit is coupled to the gain summation unit to generate the summation parameter The frequency division decimal parameter and the frequency division integer parameter.

本發明提供一實施例,在於該增益誤差電路設有一增益加總單元與一運算單元。該增益加總單元耦接該計數器與一儲存單元,該儲存單元儲存有一除頻參數,該增益加總單元接收該溫度補償參數、該除頻參數與該計數訊號而對應產生一加總運算參數;以及該運算單元耦接該增益加總單元,以依據該加總運算參數產生該除頻小數參數與該除頻整數參數。The present invention provides an embodiment, in that the gain error circuit is provided with a gain summation unit and an arithmetic unit. The gain summation unit is coupled to the counter and a storage unit. The storage unit stores a frequency division parameter. The gain summation unit receives the temperature compensation parameter, the frequency division parameter and the counting signal to generate a summation operation parameter correspondingly And the arithmetic unit is coupled to the gain summation unit to generate the frequency division decimal parameter and the frequency division integer parameter according to the summation operation parameter.

本發明另提供一種補償電路,其產生一除頻整數參數與一除頻小數參數至一分數鎖相電路,使該分數鎖相電路依據一參考時脈訊號、該除頻小數參數與該除頻整數參數產生一輸出時脈訊號,該補償電路包含一輸入除頻器、一計數器、一增益誤差電路。該輸入除頻器依據該參考時脈訊號產生一輸入除頻訊號至該計數器與該增益誤差電路,該計數器藉由接收該輸入除頻訊號與一展頻訊號,以產生一計數訊號至該增益誤差電路,使該增益誤差電路接收該輸入除頻訊號與該計數訊號產生該除頻整數參數與該除頻小數參數。藉此,本發明之補償電路因未保持致能狀態,且本發明之補償電路所提供之該除頻整數參數與該除頻小數參數相當於利用參考時脈訊號所產生,因此本發明之補償電路減少功率消耗。The present invention also provides a compensation circuit, which generates a frequency division integer parameter and a frequency division decimal parameter to a fractional phase lock circuit, so that the fractional phase lock circuit is based on a reference clock signal, the frequency division decimal parameter and the frequency division circuit The integer parameter generates an output clock signal, and the compensation circuit includes an input frequency divider, a counter, and a gain error circuit. The input frequency divider generates an input frequency division signal to the counter and the gain error circuit according to the reference clock signal, and the counter generates a count signal to the gain by receiving the input frequency division signal and a spread frequency signal The error circuit enables the gain error circuit to receive the input frequency division signal and the count signal to generate the frequency division integer parameter and the frequency division decimal parameter. As a result, the compensation circuit of the present invention is not kept in the enabled state, and the frequency-dividing integer parameter and the frequency-dividing decimal parameter provided by the compensation circuit of the present invention are equivalent to those generated by the reference clock signal. Therefore, the compensation of the present invention The circuit reduces power consumption.

為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:In order to enable your reviewer to have a further understanding and understanding of the features of the present invention and the effects achieved, the following examples and accompanying descriptions are provided. The description is as follows:

有鑑於習知時脈產生電路中,除頻器保持致能狀態,因而增加較多之功率消耗,據此,本發明遂提出一種時脈產生電路及其補償電路,以解決習知技術所造成之除頻器保持致能而導致功率消耗較多之問題。In view of the fact that in the conventional clock generating circuit, the frequency divider remains in the enabled state, which increases the power consumption, the present invention proposes a clock generating circuit and its compensation circuit to solve the problem caused by the conventional technology. The frequency divider remains enabled, which leads to the problem of more power consumption.

以下,將進一步說明本發明揭示一種時脈產生電路所包含之特性、所搭配之結構:In the following, the characteristics and the structure of a clock generating circuit disclosed in the present invention will be further explained:

首先,請參閱第一圖,其為本發明之一實施例之時脈產生電路的方塊圖。如圖所示,本發明之時脈產生電路10包含一分數鎖相電路20與一補償電路40,補償電路40產生一除頻整數參數N與一除頻小數參數α至該分數鎖相電路20,使該分數鎖相電路20依據一參考時脈訊號f OSC、該除頻小數參數α與該除頻整數參數N產生一輸出時脈訊號f OUT。此外,時脈產生電路10更耦接一參考時脈電路12,其產生該參考時脈訊號f OSCFirst, please refer to the first figure, which is a block diagram of a clock generating circuit according to an embodiment of the present invention. As shown in the figure, the clock generating circuit 10 of the present invention includes a fractional phase lock circuit 20 and a compensation circuit 40. The compensation circuit 40 generates a frequency division integer parameter N and a frequency division fractional parameter α to the fractional phase lock circuit 20. , The fractional phase lock circuit 20 generates an output clock signal f OUT according to a reference clock signal f OSC , the frequency division decimal parameter α, and the frequency division integer parameter N. In addition, the clock generating circuit 10 is further coupled to a reference clock circuit 12, which generates the reference clock signal f OSC .

其中,該分數鎖相電路20包含一相/頻偵測器22、一電荷幫浦元件24、一迴路濾波器26、一壓控振盪器28、一輸出除頻器30、一多除數除頻器32、一時序控制電路34、一調變器36與一加總單元38。該相/頻偵測器22耦接一參考時脈產生電路12與該時序控制電路34,該電荷幫浦元件24耦接該迴路濾波器26,該迴路濾波器26耦接該壓控振盪器28,該壓控振盪器28耦接該輸出除頻器30與該多除數除頻器32,該多除數除頻器32耦接該時序控制電路34、該調變器36與該加總單元38,該調變器36與該加總單元38更耦接至該補償電路40。Wherein, the fractional phase lock circuit 20 includes a phase/frequency detector 22, a charge pump element 24, a loop filter 26, a voltage-controlled oscillator 28, an output frequency divider 30, and a multi-divider The frequency converter 32, a timing control circuit 34, a modulator 36 and an adding unit 38. The phase/frequency detector 22 is coupled to a reference clock generating circuit 12 and the timing control circuit 34, the charge pump element 24 is coupled to the loop filter 26, and the loop filter 26 is coupled to the voltage controlled oscillator 28. The voltage-controlled oscillator 28 is coupled to the output frequency divider 30 and the multi-divider frequency divider 32, and the multi-divider frequency divider 32 is coupled to the timing control circuit 34, the modulator 36 and the multiplier The total unit 38, the modulator 36 and the total unit 38 are further coupled to the compensation circuit 40.

該時序控制電路34產生一時序控制訊號T EN與一致能訊號CP EN,該相/頻偵測器22接收該參考時脈訊號f OSC與該時序控制訊號T EN,以對應產生一充放電控制訊號V PF,該電荷幫浦元件24接收該充放電控制訊號V PF與該致能訊號CP EN進行充放電,因而形成一充放電訊號V CP,特別是在該迴路濾波器26形成一電位訊號V Filter,並藉由電位訊號V Filter對該壓控振盪器28進行控制,以產生一壓控振盪訊號V VCO,分別由該輸出除頻器30與該多除數除頻器32接收壓控振盪器28所產生之該壓控振盪訊號V VCO,該輸出除頻器30依據該壓控振盪訊號V VCO產生對應之一輸出時脈訊號f OUT,而該多除數除頻器32接收該壓控振盪訊號V VCO與該加總單元38所產生之一加總訊號,以對應產生一回授除頻訊號V MMD至該時序控制電路34,使該時序控制電路34產生該時序控制訊號T EN與該致能訊號CP EN。該調變器36接收該回授除頻訊號V MMD與該除頻小數參數α,以產生一調變訊號Σ OUT至該加總單元38,該加總單元38接收該除頻整數參數N與該調變訊號Σ OUT,以產生該加總訊號SUM至該多除數除頻器32。由上述說明可知,而該多除數除頻器32至該時序控制電路34,以及該時序控制訊號T EN、該致能訊號CP EN、該回授除頻訊號V MMD與該壓控振盪訊號V VCO的訊號傳遞相當於該壓控振盪器28對該相/頻偵測器22以及該電荷幫浦元件24進行回授控制。 The timing control circuit 34 generates a timing control signal T EN and a consistent energy signal CP EN , and the phase/frequency detector 22 receives the reference clock signal f OSC and the timing control signal T EN to correspondingly generate a charge and discharge control Signal V PF , the charge pump element 24 receives the charge and discharge control signal V PF and the enable signal CP EN to charge and discharge, thereby forming a charge and discharge signal V CP , especially a potential signal in the loop filter 26 V Filter , and control the voltage-controlled oscillator 28 by the potential signal V Filter to generate a voltage-controlled oscillation signal V VCO . The output frequency divider 30 and the multi-divider frequency divider 32 receive voltage control respectively The voltage-controlled oscillation signal V VCO generated by the oscillator 28, the output frequency divider 30 generates a corresponding output clock signal f OUT according to the voltage-controlled oscillation signal V VCO , and the multi-divisor frequency divider 32 receives the The voltage-controlled oscillation signal V VCO and one of the summing signals generated by the summing unit 38 correspondingly generate a feedback frequency divider signal V MMD to the timing control circuit 34, so that the timing control circuit 34 generates the timing control signal T EN and the enabling signal CP EN . The modulator 36 receives the feedback frequency division signal V MMD and the frequency division decimal parameter α to generate a modulation signal Σ OUT to the summing unit 38, and the summing unit 38 receives the frequency division integer parameter N and The modulated signal Σ OUT is used to generate the sum signal SUM to the multi-divisor 32. It can be seen from the above description that the multi-divider frequency divider 32 to the timing control circuit 34, the timing control signal T EN , the enabling signal CP EN , the feedback frequency dividing signal V MMD and the voltage-controlled oscillation signal The signal transmission of the V VCO is equivalent to that the voltage controlled oscillator 28 performs feedback control on the phase/frequency detector 22 and the charge pump element 24.

請一併參閱第二圖,本發明之該補償電路40包含一輸入除頻器42、一計數器44與一增益誤差電路46。此外,該補償電路40外更耦接一展頻產生電路14。該輸入除頻器42耦接該參考時脈產生電路、該計數器44與該增益誤差電路46,特別該輸入除頻器42耦接至該計數器44之致能埠EN,該輸入除頻器42接收該參考時脈訊號f OSC,以對應產生一輸入除頻訊號V M;該計數器44接收該輸入除頻器42之該輸入除頻訊號V M,並接收該展頻產生電路14所產生之該展頻訊號f MO,以對應產生一計數訊號k,因而讓該增益誤差電路46接收該輸入除頻訊號V M與該計數訊號k產生該除頻整數參數N與該除頻小數參數α,以讓上述之該分數鎖相電路20依據該除頻整數參數N與該除頻小數參數α產生對應之時脈輸出訊號f OUTPlease also refer to the second figure. The compensation circuit 40 of the present invention includes an input frequency divider 42, a counter 44, and a gain error circuit 46. In addition, the compensation circuit 40 is further coupled to a spread spectrum generating circuit 14. The input frequency divider 42 is coupled to the reference clock generation circuit, the counter 44 and the gain error circuit 46. In particular, the input frequency divider 42 is coupled to the enable port EN of the counter 44, and the input frequency divider 42 The reference clock signal f OSC is received to correspondingly generate an input frequency divider signal V M ; the counter 44 receives the input frequency divider signal V M of the input frequency divider 42 and receives the spread frequency generating circuit 14 The spreading signal f MO correspondingly generates a counting signal k, so that the gain error circuit 46 receives the input frequency dividing signal V M and the counting signal k to generate the frequency division integer parameter N and the frequency division decimal parameter α, So that the aforementioned fractional phase lock circuit 20 generates a corresponding clock output signal f OUT according to the frequency-dividing integer parameter N and the frequency-dividing decimal parameter α.

詳言之,增益誤差電路46中設有一增益加總單元462、一儲存單元464與一運算單元466,該增益加總單元462耦接該計數器與一儲存單元,該儲存單元儲存有一除頻參數k 32k,該增益加總單元462接收該除頻參數k 32k與該計數訊號k而對應產生一加總運算參數Δcode,該運算單元耦接該增益加總單元462,以依據該加總運算參數Δcode產生該除頻整數參數N與該除頻小數參數α,以輸出至分數鎖相電路20。特別是輸出該除頻小數參數α至該調變器36,以及輸出該除頻整數參數N至該加總單元38。因此本實施例之該除頻整數參數N與該除頻小數參數α對應於該除頻參數k 32k與該計數訊號k。 In detail, the gain error circuit 46 is provided with a gain summation unit 462, a storage unit 464, and an arithmetic unit 466. The gain summation unit 462 is coupled to the counter and a storage unit, and the storage unit stores a frequency dividing parameter. k 32k , the gain summation unit 462 receives the frequency division parameter k 32k and the count signal k to generate a summation parameter Δcode correspondingly, and the calculation unit is coupled to the gain summation unit 462 to respond to the summation parameter Δcode generates the frequency-dividing integer parameter N and the frequency-dividing decimal parameter α to be output to the fractional phase lock circuit 20. In particular, the frequency-dividing decimal parameter α is output to the modulator 36, and the frequency-dividing integer parameter N is output to the summing unit 38. Therefore, the frequency division integer parameter N and the frequency division decimal parameter α in this embodiment correspond to the frequency division parameter k 32k and the counting signal k.

藉此可知,本發明之補償電路40藉由該除頻整數參數N與該除頻小數參數α補償該分數鎖相電路20,因而讓該分數鎖相電路20可產生對應之輸出時脈訊號f OUT,同時,展頻訊號f MO,因藉由補償電路40對分數鎖相電路20進行補償,並非展頻訊號f MO直接輸入至該分數鎖相電路20,因而讓該分數鎖相電路20可間歇操作,也就是該分數鎖相電路20不需持續保持致能狀態,因而降低較多功率消耗。以上實施例之參考時脈產生電路12與展頻時脈產生電路14外接於分數鎖相電路20與補償電路之外,更有另一實施例為參考時脈產生電路12與展頻時脈產生電路14內建於參考時脈產生電路12或展頻時脈產生電路14中。 It can be seen that the compensation circuit 40 of the present invention compensates the fractional phase lock circuit 20 by the frequency division integer parameter N and the frequency division fractional parameter α, so that the fractional phase lock circuit 20 can generate the corresponding output clock signal f OUT , meanwhile, the spread-spectrum signal f MO is compensated for the fractional phase lock circuit 20 by the compensation circuit 40, instead of the spread-spectrum signal f MO directly input to the fractional phase lock circuit 20, the fractional phase lock circuit 20 can be Intermittent operation, that is, the fractional phase lock circuit 20 does not need to be continuously enabled, thereby reducing power consumption. The reference clock generating circuit 12 and the spread-spectrum clock generating circuit 14 of the above embodiments are externally connected to the fractional phase lock circuit 20 and the compensation circuit, and another embodiment is the reference clock generating circuit 12 and the spread-spectrum clock generating circuit. The circuit 14 is built in the reference clock generating circuit 12 or the spread spectrum clock generating circuit 14.

由於時脈產生電路10除了補償電路40之外,更進一步設有參考時脈產生電路12與展頻時脈產生電路14,然而,環境溫度亦是會影響到時脈產生電路10的運作,因此更可進一步設置溫度補償機制,以彌補溫度導致之誤差。In addition to the compensation circuit 40, the clock generating circuit 10 is further provided with a reference clock generating circuit 12 and a spread spectrum clock generating circuit 14. However, the ambient temperature will also affect the operation of the clock generating circuit 10. A temperature compensation mechanism can be further set up to compensate for the temperature-induced error.

請參閱第三圖,其為本發明之另一實施例之時脈產生電路之方塊圖。其中,第一圖與第三圖之差異在於第三圖之補償電路40更進一步設有一溫度感測器48,以補全補償電路40之溫度補償機制。其中,增益誤差電路46為耦接溫度感測器48,並在該輸入除頻訊號V M與該計數訊號k未能匹配的情況下,產生一溫度致能訊號TP至該溫度感測器48,以致能該溫度感測器48,該溫度感測器48即會偵測該時脈產生電路10所在之環境(圖未示),並對應產生一溫度感測訊號TC至該增益誤差電路46,以對該除頻整數參數N與該除頻小數參數α進行溫度補償。 Please refer to FIG. 3, which is a block diagram of a clock generating circuit according to another embodiment of the present invention. The difference between the first figure and the third figure is that the compensation circuit 40 of the third figure is further provided with a temperature sensor 48 to complement the temperature compensation mechanism of the compensation circuit 40. Wherein, the gain error circuit 46 is coupled to the temperature sensor 48, and generates a temperature enable signal TP to the temperature sensor 48 when the input frequency dividing signal V M fails to match the counting signal k , So as to enable the temperature sensor 48, the temperature sensor 48 will detect the environment (not shown) in which the clock generating circuit 10 is located, and correspondingly generate a temperature sensing signal TC to the gain error circuit 46 , To perform temperature compensation on the frequency-dividing integer parameter N and the frequency-dividing decimal parameter α.

詳言之,請一併參閱第四圖,其與第二圖之差異在於第四圖之增益誤差電路46內進一步設置一對照表單元466,其耦接溫度感測器48,因而接收溫度感測訊號TC,以依據該溫度感測訊號TC查找對應之溫度補償參數K TC,並輸入至增益加總單元462,因此,本實施例之增益加總單元462更是依據溫度補償參數K TC產生該加總運算參數Δcode至運算單元466,因此本實施例之該除頻整數參數N與該除頻小數參數α更是對應於溫度補償參數K TC,以避免環境溫度過高導致之誤差影響時脈輸出訊號f OUT之準確度。 In detail, please refer to the fourth figure. The difference from the second figure is that the gain error circuit 46 of the fourth figure is further provided with a comparison table unit 466, which is coupled to the temperature sensor 48 and thus receives the temperature sensor. The measurement signal TC is used to find the corresponding temperature compensation parameter K TC according to the temperature sensing signal TC, and input to the gain summation unit 462. Therefore, the gain summation unit 462 of this embodiment is generated based on the temperature compensation parameter K TC The sum operation parameter Δcode is sent to the operation unit 466. Therefore, the frequency division integer parameter N and the frequency division decimal parameter α of this embodiment correspond to the temperature compensation parameter K TC to avoid the influence of errors caused by excessively high ambient temperature. The accuracy of the pulse output signal f OUT.

故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈  鈞局早日賜准專利,至感為禱。Therefore, the present invention is really novel, progressive, and available for industrial use. It should meet the patent application requirements of my country's patent law. Undoubtedly, I filed an invention patent application in accordance with the law. I pray that the Bureau will grant the patent as soon as possible.

惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。However, the above are only the preferred embodiments of the present invention, and are not used to limit the scope of implementation of the present invention. For example, the shapes, structures, features and spirits described in the scope of the patent application of the present invention are equally changed and modified. , Should be included in the scope of patent application of the present invention.

10:時脈產生電路 12:參考 時脈產生電路 14:展頻時脈產生電路 20:分數鎖相電路 22:相/頻偵測器 24:電荷幫浦元件 26:迴路濾波器 28:壓控振盪器 30:輸出除頻器 32:多除數除頻器 34:時序控制電路 36:調變器 38:加總單元 40:補償電路 42:輸入除頻器 44:計數器 46:增益誤差電路 462:增益加總單元 464:儲存單元 466:運算單元 468:對照表單元 48:溫度感測器 α:除頻小數參數 Σ:out調變訊號 CP EN:致能訊號 f IN:輸入脈波訊號 f OUT:輸出脈波訊號 f MO:展頻訊號 k:計數訊號 k 32k:除頻參數 k TC:溫度補償參數 N:除頻整數參數 SUM:加總訊號 TC:溫度感測訊號 T EN:時序控制訊號 V PF:充放電控制訊號 V CP:充放電訊號 V Filter:電位訊號 V VCO:壓控振盪訊號 V M:輸入除頻訊號 V MMD:回授除頻訊號10: Clock generation circuit 12: Reference clock generation circuit 14: Spread-spectrum clock generation circuit 20: Fractional phase lock circuit 22: Phase/frequency detector 24: Charge pump component 26: Loop filter 28: Voltage control Oscillator 30: output frequency divider 32: multiple divisor frequency divider 34: timing control circuit 36: modulator 38: summing unit 40: compensation circuit 42: input frequency divider 44: counter 46: gain error circuit 462 : Gain summation unit 464: Storage unit 466: Operation unit 468: Comparison table unit 48: Temperature sensor α: Divider decimal parameter Σ: Out modulation signal CP EN : Enable signal f IN : Input pulse signal f OUT : output pulse signal f MO : spread spectrum signal k: counting signal k 32k : frequency division parameter k TC : temperature compensation parameter N: frequency division integer parameter SUM: sum signal TC: temperature sensing signal T EN : timing control Signal V PF : Charge and discharge control signal V CP : Charge and discharge signal V Filter : Potential signal V VCO : Voltage-controlled oscillation signal V M : Input frequency elimination signal V MMD : Feedback frequency elimination signal

第一圖:其為本發明之一實施例之時脈產生電路之方塊圖; 第二圖:其為本發明之一實施例之補償電路之細部電路的方塊圖; 第三圖:其為本發明之另一實施例之時脈產生電路之方塊圖;以及 第四圖:其為本發明之另一實施例之補償電路之細部電路的方塊圖。 Figure 1: It is a block diagram of a clock generating circuit according to an embodiment of the present invention; Figure 2: It is a block diagram of the detailed circuit of the compensation circuit according to an embodiment of the present invention; Figure 3: It is a block diagram of a clock generating circuit according to another embodiment of the present invention; and Figure 4: It is a block diagram of the detailed circuit of the compensation circuit of another embodiment of the present invention.

10:時脈產生電路 10: Clock generation circuit

12:參考時脈電路 12: Reference clock circuit

14:展頻時脈電路 14: Spread spectrum clock circuit

20:分數鎖相電路 20: Fractional phase lock circuit

22:相/頻偵測器 22: Phase/frequency detector

24:電荷幫浦元件 24: Charge pump component

26:迴路濾波器 26: Loop filter

28:壓控振盪器 28: Voltage Controlled Oscillator

30:輸出除頻器 30: Output divider

32:多除數除頻器 32: Multi-divisor frequency divider

34:時序控制電路 34: timing control circuit

36:積分-微分調變電路 36: Integral-differential modulation circuit

38:加總單元 38: Sum unit

40:補償電路 40: Compensation circuit

42:輸入除頻器 42: Input frequency divider

44:計數器 44: counter

46:增益誤差電路 46: gain error circuit

fOSC:參考時脈訊號 f OSC : Reference clock signal

fMO:展頻訊號 f MO : Spread spectrum signal

fOUT:時脈輸出訊號 f OUT : Clock output signal

CPEN:電荷致能訊號 CP EN : Charge-enable signal

TEN:致能訊號 T EN : Enabling signal

VPF:偵測訊號 V PF : Detection signal

VFilter:濾波訊號 V Filter : Filter the signal

VCO:壓控訊號 VCO: voltage control signal

VMMD:回授除頻訊號 V MMD : feedback frequency elimination signal

SUM:加總訊號 SUM: Sum signal

Σout:調變訊號 Σout: Modulation signal

Claims (11)

一種時脈產生電路,其包含: 一參考時脈產生電路,產生一參考時脈訊號; 一輸入除頻器,耦接該參考時脈產生電路,接收該參考時脈訊號,以產生一輸入除頻訊號; 一計數器,耦接該輸入除頻器,接收該輸入除頻訊號,並接收一展頻訊號,以對應產生一計數訊號; 一增益誤差電路,耦接該輸入除頻器與該計數器,接收該輸入除頻訊號與該計數訊號產生一除頻整數參數與一除頻小數參數;以及 一分數鎖相電路,耦接該參考時脈產生電路與該增益誤差電路,接收該參考時脈訊號、該除頻整數參數與該除頻小數參數,對應產生一時脈輸出訊號。 A clock generation circuit, which includes: A reference clock generating circuit to generate a reference clock signal; An input frequency divider, coupled to the reference clock generating circuit, receives the reference clock signal to generate an input frequency divider signal; A counter, coupled to the input frequency divider, receives the input frequency divider signal, and receives a spread spectrum signal to correspondingly generate a counting signal; A gain error circuit, coupled to the input frequency divider and the counter, receives the input frequency division signal and the count signal to generate a frequency division integer parameter and a frequency division decimal parameter; and A fractional phase lock circuit is coupled to the reference clock generation circuit and the gain error circuit, receives the reference clock signal, the frequency division integer parameter and the frequency division decimal parameter, and generates a clock output signal correspondingly. 如請求項1所述之時脈產生電路,其中該分數鎖相電路包含: 一相/頻偵測器,耦接該參考時脈產生電路與一時序控制電路,該時序控制電路產生一時序控制訊號與一致能訊號,該相/頻偵測器接收該參考時脈訊號與該時序控制訊號,以對應產生一充放電控制訊號; 一電荷幫浦元件,耦接該相/頻偵測器與該時序控制電路,以接收該充放電控制訊號與該致能訊號進行充放電; 一迴路濾波器,耦接該電荷幫浦元件,依據該電荷幫浦元件之充放電產生一電位訊號; 一壓控振盪器,耦接該迴路濾波器,接收該電位訊號,以對應產生一壓控振盪訊號; 一輸出除頻器,耦接該壓控振盪器,接收該壓控振盪訊號,以對應產生一輸出時脈訊號; 一多除數除頻器,接收該壓控振盪訊號與一加總訊號,以對應產生一回授除頻訊號至該時序控制電路,使該時序控制電路產生該時序控制訊號與該致能訊號;以及 一調變器,耦接該多除數除頻器與一加總單元,該調變器與該加總單元一併耦接該增益誤差電路,該調變器接收該回授除頻訊號與該除頻小數參數,以產生一調變訊號至該加總單元,該加總單元接收該除頻整數參數與該調變訊號,以產生該加總訊號至該多除數除頻器。 The clock generating circuit according to claim 1, wherein the fractional phase lock circuit includes: A phase/frequency detector, coupled to the reference clock generation circuit and a timing control circuit, the timing control circuit generates a timing control signal and an energy signal, the phase/frequency detector receives the reference clock signal and The timing control signal is used to correspondingly generate a charge and discharge control signal; A charge pump element coupled to the phase/frequency detector and the timing control circuit to receive the charge and discharge control signal and the enable signal for charge and discharge; A loop filter, coupled to the charge pump element, generates a potential signal according to the charge and discharge of the charge pump element; A voltage-controlled oscillator, coupled to the loop filter, receives the potential signal to correspondingly generate a voltage-controlled oscillation signal; An output frequency divider, coupled to the voltage-controlled oscillator, receives the voltage-controlled oscillation signal, and correspondingly generates an output clock signal; A multi-divisor frequency divider receives the voltage-controlled oscillation signal and a sum signal to correspondingly generate a feedback frequency divider signal to the timing control circuit, so that the timing control circuit generates the timing control signal and the enable signal ;as well as A modulator, coupled to the multi-divisor frequency divider and an summing unit, the modulator and the summing unit are coupled to the gain error circuit, the modulator receives the feedback frequency divider signal and The frequency-dividing decimal parameter generates a modulation signal to the summing unit, and the summing unit receives the frequency-dividing integer parameter and the modulation signal to generate the sum signal to the multi-divider frequency divider. 如請求項1所述之時脈產生電路,更包含一展頻時脈產生器,其耦接該計數器,以產生該展頻訊號至該計數器。The clock generating circuit described in claim 1 further includes a spread-spectrum clock generator, which is coupled to the counter to generate the spread-spectrum signal to the counter. 如請求項3所述之時脈產生電路,其中該增益誤差電路更產生一展頻致能訊號至該展頻時脈產生器,以控制該展頻時脈產生器致能。The clock generating circuit according to claim 3, wherein the gain error circuit further generates a spread-spectrum enabling signal to the spread-spectrum clock generator to control the spread-spectrum clock generator to be enabled. 如請求項1所述之時脈產生電路,其中該補償電路更包含一溫度感測器,耦接該增益誤差電路,感測一環境溫度,以產生一溫度補償訊號至該增益誤差電路,該增益誤差電路更依據該溫度補償訊號產生該除頻小數參數與該除頻整數參數。The clock generation circuit of claim 1, wherein the compensation circuit further includes a temperature sensor coupled to the gain error circuit to sense an ambient temperature to generate a temperature compensation signal to the gain error circuit, the The gain error circuit further generates the frequency division decimal parameter and the frequency division integer parameter according to the temperature compensation signal. 如請求項5所述之時脈產生電路,其中該增益誤差電路設有: 一對照表單元,耦接該溫度感測器,依據該溫度補償訊號產生一溫度補償參數; 一增益加總單元,耦接該對照表單元、該計數器與一儲存單元,該儲存單元儲存有一除頻參數,該增益加總單元接收該溫度補償參數、該除頻參數與該計數訊號而對應產生一加總運算參數;以及 一運算單元,耦接該增益加總單元,依據該加總運算參數產生該除頻小數參數與該除頻整數參數。 The clock generating circuit according to claim 5, wherein the gain error circuit is provided with: A comparison table unit, coupled to the temperature sensor, to generate a temperature compensation parameter according to the temperature compensation signal; A gain summation unit, coupled to the comparison table unit, the counter, and a storage unit, the storage unit stores a frequency division parameter, and the gain summation unit receives the temperature compensation parameter, the frequency division parameter and the counting signal corresponding to each other Generate a summation operation parameter; and An arithmetic unit, coupled to the gain summation unit, generates the frequency division decimal parameter and the frequency division integer parameter according to the summation operation parameter. 如請求項1所述之時脈產生電路,其中該增益誤差電路設有: 一增益加總單元,耦接該計數器與一儲存單元,該儲存單元儲存有一除頻參數,該增益加總單元接收該除頻參數與該計數訊號而對應產生一加總運算參數;以及 一運算單元,耦接該增益加總單元,依據該加總運算參數產生該除頻小數參數與該除頻整數參數。 The clock generating circuit according to claim 1, wherein the gain error circuit is provided with: A gain summation unit coupled to the counter and a storage unit, the storage unit stores a frequency division parameter, and the gain summation unit receives the frequency division parameter and the counting signal and generates a sum operation parameter correspondingly; and An arithmetic unit, coupled to the gain summation unit, generates the frequency division decimal parameter and the frequency division integer parameter according to the summation operation parameter. 一種補償電路,其產生一除頻整數參數與一除頻小數參數至一分數鎖相電路,使該分數鎖相電路依據一參考時脈訊號、該除頻小數參數與該除頻整數參數產生一輸出時脈訊號,該補償電路包含: 一輸入除頻器,接收該參考時脈訊號,以產生一輸入除頻訊號; 一計數器,接收該輸入除頻訊號與一展頻訊號,以對應產生一計數訊號; 以及 一增益誤差電路,接收該輸入除頻訊號與該計數訊號,以對應產生該除頻整數參數與該除頻小數參數。 A compensation circuit generates a frequency division integer parameter and a frequency division decimal parameter to a fractional phase lock circuit, so that the fractional phase lock circuit generates a frequency division integer parameter based on a reference clock signal, the frequency division decimal parameter and the frequency division integer parameter Output clock signal, the compensation circuit includes: An input frequency divider that receives the reference clock signal to generate an input frequency divider signal; A counter receiving the input frequency divider signal and a spread spectrum signal to correspondingly generate a counting signal; and A gain error circuit receives the input frequency division signal and the count signal to generate the frequency division integer parameter and the frequency division decimal parameter correspondingly. 如請求項8所述之補償電路,其中該補償電路更耦接一展頻時脈產生器,該展頻時脈產生器產生該展頻訊號至該計數器。The compensation circuit according to claim 8, wherein the compensation circuit is further coupled to a spread-spectrum clock generator, and the spread-spectrum clock generator generates the spread-spectrum signal to the counter. 如請求項8所述之補償電路,其中該補償電路更耦接一溫度感測器,該溫度感測器感測一環境溫度並產生一溫度補償訊號至脈訊號至該增益誤差電路,該增益誤差電路更依據該溫度補償訊號產生該除頻小數參數與該除頻整數參數。The compensation circuit according to claim 8, wherein the compensation circuit is further coupled to a temperature sensor, the temperature sensor senses an ambient temperature and generates a temperature compensation signal to the pulse signal to the gain error circuit, the gain The error circuit further generates the frequency division decimal parameter and the frequency division integer parameter according to the temperature compensation signal. 如請求項8所述之補償電路,其中該分數鎖相電路包含: 一相/頻偵測器,耦接一參考時脈產生電路與一時序控制電路,接收該參考時脈產生電路之該參考時脈訊號與該時序控制電路之一時序控制訊號,以對應產生一充放電控制訊號; 一電荷幫浦元件,耦接該相/頻偵測器,以接收該充放電控制訊號與一致能訊號進行充放電; 一迴路濾波器,耦接該電荷幫浦元件,依據該電荷幫浦元件之充放電產生一電位訊號; 一壓控振盪器,耦接該迴路濾波器,接收該電位訊號,以對應產生一壓控振盪訊號; 一輸出除頻器,耦接該壓控振盪器,接收該壓控振盪訊號,以對應產生一輸出時脈訊號; 一多除數除頻器,接收該壓控振盪訊號與一加總訊號,以對應產生一回授除頻訊號,該時序控制電路依據該回授除頻訊號產生該時序控制訊號至該相/頻偵測器並產生該致能訊號至該電荷幫浦元件;以及 一調變器,耦接該多除數除頻器與一加總單元,該調變器與該加總單元一併耦接該增益誤差電路,該調變器接收該回授除頻訊號與該除頻小數參數,以產生一調變訊號至該加總單元,該加總單元接收該除頻整數參數與該調變訊號,以產生該加總訊號至該多除數除頻器。 The compensation circuit according to claim 8, wherein the fractional phase lock circuit includes: A phase/frequency detector, coupled to a reference clock generation circuit and a timing control circuit, receives the reference clock signal of the reference clock generation circuit and a timing control signal of the timing control circuit to generate a corresponding Charge and discharge control signal; A charge pump element, coupled to the phase/frequency detector, to receive the charge and discharge control signal and the uniform energy signal for charge and discharge; A loop filter, coupled to the charge pump element, generates a potential signal according to the charge and discharge of the charge pump element; A voltage-controlled oscillator, coupled to the loop filter, receives the potential signal to correspondingly generate a voltage-controlled oscillation signal; An output frequency divider, coupled to the voltage-controlled oscillator, receives the voltage-controlled oscillation signal, and correspondingly generates an output clock signal; A multi-divisor frequency divider receives the voltage-controlled oscillation signal and a sum signal to correspondingly generate a feedback frequency divider signal, and the timing control circuit generates the timing control signal to the phase according to the feedback frequency divider signal. Frequency detector and generate the enabling signal to the charge pump element; and A modulator, coupled to the multi-divisor frequency divider and an summing unit, the modulator and the summing unit are coupled to the gain error circuit, the modulator receives the feedback frequency divider signal and The frequency-dividing decimal parameter generates a modulation signal to the summing unit, and the summing unit receives the frequency-dividing integer parameter and the modulation signal to generate the sum signal to the multi-divider frequency divider.
TW110118698A 2021-05-24 2021-05-24 Clock generating circuit and calibration circuit thereof TWI746411B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110118698A TWI746411B (en) 2021-05-24 2021-05-24 Clock generating circuit and calibration circuit thereof
CN202110844830.2A CN115395952A (en) 2021-05-24 2021-07-26 Clock generation circuit and compensation circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110118698A TWI746411B (en) 2021-05-24 2021-05-24 Clock generating circuit and calibration circuit thereof

Publications (2)

Publication Number Publication Date
TWI746411B true TWI746411B (en) 2021-11-11
TW202247609A TW202247609A (en) 2022-12-01

Family

ID=79907958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118698A TWI746411B (en) 2021-05-24 2021-05-24 Clock generating circuit and calibration circuit thereof

Country Status (2)

Country Link
CN (1) CN115395952A (en)
TW (1) TWI746411B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515553B1 (en) * 1999-09-10 2003-02-04 Conexant Systems Inc. Delta-sigma based dual-port modulation scheme and calibration techniques for similar modulation schemes
US20050008113A1 (en) * 2003-07-09 2005-01-13 Masaru Kokubo Spread spectrum clock generator and integrated circuit device using the spread spectrum clock generators
US20060176933A1 (en) * 2005-01-14 2006-08-10 Renesas Technology Corp. Clock generating method and clock generating circuit
US7327172B2 (en) * 2005-06-27 2008-02-05 Lsi Corporation Integrated clock generator with programmable spread spectrum using standard PLL circuitry
US7389095B1 (en) * 2005-01-24 2008-06-17 Nvidia Corporation Variable frequency clock generator for synchronizing data rates between clock domains in radio frequency wireless communication systems
TW200849828A (en) * 2007-06-08 2008-12-16 Faraday Tech Corp Spread spectrum clock generator with low jitter
US7561652B2 (en) * 2003-04-22 2009-07-14 Paul Kevin Hall High frequency spread spectrum clock generation
TWI351820B (en) * 2007-03-27 2011-11-01 Mstar Semiconductor Inc Clock generator, method for generating clock signa
CN104378108A (en) * 2014-12-04 2015-02-25 龙迅半导体科技(合肥)有限公司 Clock signal outputting method and circuit
TW201701127A (en) * 2015-06-22 2017-01-01 矽創電子股份有限公司 Frequency selecting module and related computing device and frequency selecting method
US20170093459A1 (en) * 2015-09-24 2017-03-30 Semiconductor Components Industries, Llc Calibration for spread spectrum clock generator and method therefor
US20180183397A1 (en) * 2016-12-23 2018-06-28 Macdonald, Dettwiler And Associates Corporation Calibration system and method for optimizing leakage performance of a multi-port amplifier
US20210083681A1 (en) * 2018-07-10 2021-03-18 Mitsubishi Electric Corporation Phase-locked loop circuit

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515553B1 (en) * 1999-09-10 2003-02-04 Conexant Systems Inc. Delta-sigma based dual-port modulation scheme and calibration techniques for similar modulation schemes
US7561652B2 (en) * 2003-04-22 2009-07-14 Paul Kevin Hall High frequency spread spectrum clock generation
US20050008113A1 (en) * 2003-07-09 2005-01-13 Masaru Kokubo Spread spectrum clock generator and integrated circuit device using the spread spectrum clock generators
US20060176933A1 (en) * 2005-01-14 2006-08-10 Renesas Technology Corp. Clock generating method and clock generating circuit
US7389095B1 (en) * 2005-01-24 2008-06-17 Nvidia Corporation Variable frequency clock generator for synchronizing data rates between clock domains in radio frequency wireless communication systems
US7327172B2 (en) * 2005-06-27 2008-02-05 Lsi Corporation Integrated clock generator with programmable spread spectrum using standard PLL circuitry
TWI351820B (en) * 2007-03-27 2011-11-01 Mstar Semiconductor Inc Clock generator, method for generating clock signa
TW200849828A (en) * 2007-06-08 2008-12-16 Faraday Tech Corp Spread spectrum clock generator with low jitter
CN104378108A (en) * 2014-12-04 2015-02-25 龙迅半导体科技(合肥)有限公司 Clock signal outputting method and circuit
TW201701127A (en) * 2015-06-22 2017-01-01 矽創電子股份有限公司 Frequency selecting module and related computing device and frequency selecting method
US20170093459A1 (en) * 2015-09-24 2017-03-30 Semiconductor Components Industries, Llc Calibration for spread spectrum clock generator and method therefor
US20180183397A1 (en) * 2016-12-23 2018-06-28 Macdonald, Dettwiler And Associates Corporation Calibration system and method for optimizing leakage performance of a multi-port amplifier
US20210083681A1 (en) * 2018-07-10 2021-03-18 Mitsubishi Electric Corporation Phase-locked loop circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Integrated Device Technology, Inc. "Spread Spectrum Clocking on VersaClock III" Application Note AN-000, 2009年8月31日公開文件, https://www.renesas.com/us/en/document/apn/spread-spectrum-clocking-versaclock-iii *

Also Published As

Publication number Publication date
CN115395952A (en) 2022-11-25
TW202247609A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US8049569B1 (en) Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
US8461885B2 (en) Hybrid digital-analog phase locked loops
US8581671B2 (en) Oscillation device
US10268164B2 (en) Circuit device, physical quantity measurement device, electronic apparatus, and vehicle
US20080018369A1 (en) Phase locked loop (PLL) method and architecture
US6977536B2 (en) Clock multiplier
TW201507361A (en) Frequency-locked loop circuit and semiconductor integrated circuit
US11101806B2 (en) Frequency regulator and frequency regulating method thereof, and electronic device
CN113031428B (en) Real-time clock device and electronic apparatus
KR20180129760A (en) Hybrid RC / Crystal Oscillator
JP2001036405A (en) Atomic oscillator
JP2000174615A (en) Method and device for automatically correcting internal clock frequency of integrated circuit
US6876236B2 (en) Clock multiplier circuit
US11201588B2 (en) Oscillator and electronic apparatus
TWI746411B (en) Clock generating circuit and calibration circuit thereof
JP2001127598A (en) Frequency multiplying circuit
KR102435183B1 (en) Frequency Locked Loops, Electronic Devices, and Frequency Generation Methods
JP2003204260A (en) Temperature compensated high frequency oscillator and communication equipment
Wong et al. A 6-GHz self-oscillating spread-spectrum clock generator
Pandit et al. Design and implementation of PLL frequency synthesizer using PE3336 IC for IRS applications
JP4036114B2 (en) Clock generation circuit
JP7415535B2 (en) Oscillators and electronic equipment
US11967962B2 (en) Oscillation system including frequency-locked loop logic circuit and operating method thereof
JP2021097354A (en) Oscillator and electronic apparatus
Cochet et al. Clock Generation and Distribution for Low-Power Digital Systems