TWI745879B - Automatic driving system and automatic driving method - Google Patents

Automatic driving system and automatic driving method Download PDF

Info

Publication number
TWI745879B
TWI745879B TW109107368A TW109107368A TWI745879B TW I745879 B TWI745879 B TW I745879B TW 109107368 A TW109107368 A TW 109107368A TW 109107368 A TW109107368 A TW 109107368A TW I745879 B TWI745879 B TW I745879B
Authority
TW
Taiwan
Prior art keywords
vehicle
path
current
driving
automatic driving
Prior art date
Application number
TW109107368A
Other languages
Chinese (zh)
Other versions
TW202134091A (en
Inventor
韓春霖
柯亮宇
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW109107368A priority Critical patent/TWI745879B/en
Publication of TW202134091A publication Critical patent/TW202134091A/en
Application granted granted Critical
Publication of TWI745879B publication Critical patent/TWI745879B/en

Links

Images

Abstract

An automatic driving method for an automatic driving system disposed on a vehicle is provided. The method includes: obtaining a positioning information and moving information of the vehicle; generating, according to the positioning information, an environment information corresponding to a real world outside the vehicle, a digital map and a target location, a navigation plan; identifying, according to the positioning information, a current path node corresponding to the vehicle in a current scheduled path of the navigation plan, and a monitoring path among the current scheduled path; selecting a target driving parameter group among a plurality of driving parameter group according to a maximum velocity variation absolute value corresponding to the monitoring path of the navigation plan, so as to apply the target driving parameter group to control a movement of the vehicle.

Description

自動駕駛系統以及自動駕駛方法Autopilot system and autopilot method

本發明是有關於一種交通工具控制方法,且特別是被配置在交通工具上的自動駕駛系統以及所述自動駕駛系統所使用的自動駕駛方法。The present invention relates to a vehicle control method, and in particular to an automatic driving system configured on the vehicle and an automatic driving method used by the automatic driving system.

隨著科技的進步,為了避免人為疏失所導致的交通事故及增進交通工具本身的效能。自動駕駛技術逐漸成為一種趨勢。一般的自動駕駛,會因應當前的位置誤差、速度誤差來調整操控力道,以校正交通工具的運動。然而,在一些情況下,為了校正誤差而產生的過大的操控力道又會造成乘坐者的不適。With the advancement of technology, in order to avoid traffic accidents caused by human negligence and improve the efficiency of the vehicles themselves. Autonomous driving technology has gradually become a trend. In general automatic driving, the control force is adjusted according to the current position error and speed error to correct the movement of the vehicle. However, in some cases, the excessive control force generated in order to correct the error may cause discomfort to the occupant.

基此,如何在自動駕駛的過程中,隨著路況來取得操控力道的強度與乘坐舒適度之間的平衡為本領域人員致力發展的目標。Based on this, in the process of automatic driving, how to achieve a balance between the strength of the control force and the ride comfort along with the road conditions is the goal of the people in the field.

本發明提供一種自動駕駛系統以及所述自動駕駛系統所使用的自動駕駛方法,可根據已規劃路徑的變化來動態地選擇對應的駕駛參數組,以應用所選擇的所述駕駛參數組來控制車輛的移動。The present invention provides an automatic driving system and an automatic driving method used by the automatic driving system, which can dynamically select a corresponding driving parameter group according to changes in a planned path, so as to apply the selected driving parameter group to control a vehicle Mobile.

本發明的一實施例提供被配置在一車輛上的一種自動駕駛系統,適用於對所述車輛執行自動駕駛操作。所述系統包括駕駛單元、定位系統、慣性導航系統以及處理器。所述駕駛單元用以控制所述車輛的移動。所述定位系統用以獲得所述車輛的定位資訊。所述慣性導航系統用以獲得所述車輛的移動資訊。所述處理器電性連接至所述駕駛系統、所述定位系統、所述慣性導航系統。其中在所述自動駕駛操作中,所述處理器用以根據所述定位資訊、對應所述車輛外的真實世界的一環境資訊、一數位地圖以及一目標位置來產生一導航計畫,所述處理器用以根據所述定位資訊辨識在所述導航計畫的當前規劃路徑中對應所述車輛的當前路徑點及所述當前規劃路徑中的一監控路徑,其中所述處理器用以根據所述導航計畫中對應所述監控路徑中的一最大速度變化絕對值 來從多個駕駛參數組中選擇一目標駕駛參數組,以指示所述駕駛系統應用所述目標駕駛參數組來控制所述車輛的所述移動。An embodiment of the present invention provides an automatic driving system configured on a vehicle, which is suitable for performing automatic driving operations on the vehicle. The system includes a driving unit, a positioning system, an inertial navigation system, and a processor. The driving unit is used to control the movement of the vehicle. The positioning system is used to obtain positioning information of the vehicle. The inertial navigation system is used to obtain movement information of the vehicle. The processor is electrically connected to the driving system, the positioning system, and the inertial navigation system. Wherein in the automatic driving operation, the processor is used to generate a navigation plan based on the positioning information, an environmental information corresponding to the real world outside the vehicle, a digital map, and a target location, and the processing The device is used to identify the current path point corresponding to the vehicle in the current planning path of the navigation plan and a monitoring path in the current planning path according to the positioning information, and the processor is used to identify the current path point in the current planning path according to the navigation plan. In the picture, a target driving parameter group is selected from a plurality of driving parameter groups corresponding to the absolute value of a maximum speed change in the monitoring path, so as to instruct the driving system to apply the target driving parameter group to control all of the vehicle.述动。 Said mobile.

本發明的一實施例提供適用被配置在一車輛上的自動駕駛系統的一種自動駕駛方法。所述方法包括:獲得所述車輛的定位資訊以及移動資訊;根據所述定位資訊、對應所述車輛外的真實世界的一環境資訊、一數位地圖以及一目標位置來產生一導航計畫;根據所述定位資訊辨識在所述導航計畫的當前規劃路徑中對應所述車輛的當前路徑點及所述當前規劃路徑中的一監控路徑;根據所述導航計畫中對應所述監控路徑中的一最大速度變化絕對值 來從多個駕駛參數組中選擇一目標駕駛參數組,以應用所述目標駕駛參數組來控制所述車輛的所述移動。An embodiment of the present invention provides an automatic driving method applicable to an automatic driving system configured on a vehicle. The method includes: obtaining positioning information and movement information of the vehicle; generating a navigation plan based on the positioning information, an environmental information corresponding to the real world outside the vehicle, a digital map, and a target location; The positioning information identifies the current path point corresponding to the vehicle in the current planning path of the navigation plan and a monitoring path in the current planning path; according to the monitoring path corresponding to the monitoring path in the navigation plan A maximum speed change absolute value is used to select a target driving parameter group from a plurality of driving parameter groups, so as to apply the target driving parameter group to control the movement of the vehicle.

在本發明的一實施例中,所述導航路徑包括所述當前規劃路徑以及分別對應所述當前規劃路徑中的多個路徑點的多個規劃速度。In an embodiment of the present invention, the navigation path includes the current planning path and multiple planning speeds respectively corresponding to multiple path points in the current planning path.

在本發明的一實施例中,所述監控路徑為在所述當前規劃路徑中的所述車輛欲進入的未來路徑中的一部份,其中所述未來路徑所述部份為所述車輛在當前時間點後的一監控期間內欲移動的路徑。In an embodiment of the present invention, the monitoring path is a part of the future path that the vehicle intends to enter in the current planned path, and the part of the future path is the vehicle in the future path. The path to be moved during a monitoring period after the current time point.

在本發明的一實施例中,所述方法更包括:根據所述移動資訊辨識所述車輛的當前速度;以及根據所述當前速度來決定所述監控期間的長度,其中所述監控期間的所述長度與所述當前速度成正比。In an embodiment of the present invention, the method further includes: identifying the current speed of the vehicle according to the movement information; and determining the length of the monitoring period according to the current speed, wherein all of the monitoring period The length is proportional to the current speed.

在本發明的一實施例中,所述根據所述導航計畫中對應所述監控路徑中的所述最大速度變化絕對值 來從所述多個駕駛參數組中選擇所述目標駕駛參數組的步驟包括:更根據所述環境資訊來從所述多個駕駛參數組中選擇所述目標駕駛參數組,其中所述環境資訊至少包括下列資訊的一或多者:所述車輛當前所行駛的地面的摩擦係數;所述車輛當前所行駛的所述地面的坡度;以及所述車輛所受到的外部力量。In an embodiment of the present invention, the driving parameter group of the target driving parameter group is selected from the plurality of driving parameter groups according to the absolute value of the maximum speed change corresponding to the monitoring path in the navigation plan. The steps include: further selecting the target driving parameter set from the plurality of driving parameter sets according to the environmental information, wherein the environmental information includes at least one or more of the following information: the ground on which the vehicle is currently traveling The coefficient of friction; the slope of the ground on which the vehicle is currently traveling; and the external force experienced by the vehicle.

在本發明的一實施例中,其中在所述多個駕駛參數組各自至少包括:一位置誤差權重值;一速度誤差權重植;一加速度輸出權重值;以及一加速度變化幅度權重值。In an embodiment of the present invention, each of the plurality of driving parameter groups includes at least: a position error weight value; a speed error weight plant; an acceleration output weight value; and an acceleration change amplitude weight value.

基於上述,本發明的實施例所提供的自動駕駛系統與自動駕駛方法,可辨識在所產生的導航計畫的當前規劃路徑中對應車輛的當前路徑點及所述當前規劃路徑中的監控路徑,以根據對應所述監控路徑中的最大速度變化絕對值 來從多個駕駛參數組中選擇一目標駕駛參數組,以應用所述目標駕駛參數組來控制所述車輛的所述移動,進而可在所述車輛的操控力道的強度與乘坐舒適度之間取得平衡,而增進了所述車輛的自動駕駛效能及乘客的乘坐體驗。Based on the foregoing, the automatic driving system and the automatic driving method provided by the embodiments of the present invention can identify the current path point of the corresponding vehicle in the current planning path of the generated navigation plan and the monitoring path in the current planning path, A target driving parameter group is selected from a plurality of driving parameter groups according to the absolute value of the maximum speed change corresponding to the monitoring path, so as to apply the target driving parameter group to control the movement of the vehicle, so that the A balance is achieved between the strength of the control force of the vehicle and the ride comfort, thereby enhancing the autopilot efficiency of the vehicle and the passenger's riding experience.

圖1是根據本發明的一實施例所繪示的交通工具與自動駕駛系統的方塊示意圖。請參照圖1,具體來說,配置在車輛10的自動駕駛系統11包括處理器110、以及耦接(電性連接)至所述處理器110的定位系統120、慣性導航系統130、輸入/輸出單元140、通訊電路單元150、儲存裝置160、主記憶體170以及駕駛單元180。FIG. 1 is a block diagram of a vehicle and an automatic driving system according to an embodiment of the present invention. 1, specifically, the automatic driving system 11 configured in the vehicle 10 includes a processor 110, and a positioning system 120 coupled (electrically connected) to the processor 110, an inertial navigation system 130, and input/output The unit 140, the communication circuit unit 150, the storage device 160, the main memory 170, and the driving unit 180.

所述處理器110為具備運算能力的硬體(例如晶片組、處理器等),用以管理車輛10及自動駕駛系統11的整體運作(如,控制車輛10中其他硬體元件的運作)。在本實施例中,處理器110例如是一核心或多核心的中央處理單元(Central Processing Unit,CPU)、微處理器(micro-processor)、或是其他可程式化之處理單元(Programmable Processing Unit)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置。The processor 110 is a hardware with computing capabilities (such as a chipset, a processor, etc.), which is used to manage the overall operation of the vehicle 10 and the automatic driving system 11 (eg, control the operation of other hardware components in the vehicle 10). In this embodiment, the processor 110 is, for example, a core or multi-core central processing unit (CPU), a microprocessor (micro-processor), or other programmable processing unit (Programmable Processing Unit). ), Digital Signal Processor (DSP), Programmable Controller, Application Specific Integrated Circuits (ASIC), Programmable Logic Device (PLD) or other similar devices .

定位系統120包括用以接收來自全球定位系統的訊號(GPS訊號),以根據所接收的GPS訊號來計算車輛10當前的世界座標。The positioning system 120 includes a signal for receiving a signal (GPS signal) from a global positioning system to calculate the current world coordinates of the vehicle 10 based on the received GPS signal.

慣性導航系統130是一個使用加速計和陀螺儀來測量物體(如,車輛10)的加速度和角速度,並持續計算運動物體位置、姿態和速度的輔助導航系統。即,慣性導航系統130不需要一個外部參考系並可提供關於車輛10的移動資訊(如,速度、加速度、角速度、姿態)。在本實施例中,定位系統120(或處理器110)可提供慣性導航系統130車輛10的初始的定位資訊及速度,以讓慣性導航系統130通過對運動傳感器(如,加速計和陀螺儀)的信息進行整合計算,不斷更新當前位置、姿態、方位角、速度、角速度,進而獲得所述車輛10的移動資訊。所更新的當前位置及速度亦可整合為輔助定位資訊回傳給定位系統120。定位系統120可藉由所接收的輔助定位資訊來校正當前的定位資訊,以增強所發送至處理器110的定位資訊的精準度。此外,校正過後的定位資訊也可發送回慣性導航系統130,以修正慣性導航系統130因持續運算輔助定位資訊所導致的誤差,進而提昇輔助定位資訊的精準度。也就是說,整合定位系統120以及慣性導航系統130後,處理器110可精確地獲得車輛10當前的世界座標。The inertial navigation system 130 is an auxiliary navigation system that uses an accelerometer and a gyroscope to measure the acceleration and angular velocity of an object (for example, the vehicle 10), and continuously calculates the position, attitude, and velocity of the moving object. That is, the inertial navigation system 130 does not require an external reference frame and can provide movement information (eg, speed, acceleration, angular velocity, attitude) about the vehicle 10. In this embodiment, the positioning system 120 (or the processor 110) can provide the inertial navigation system 130 with initial positioning information and speed of the vehicle 10, so that the inertial navigation system 130 can pass through the motion sensors (such as accelerometers and gyroscopes). The information of the vehicle 10 is integrated and calculated, and the current position, attitude, azimuth angle, speed, and angular velocity are continuously updated to obtain the movement information of the vehicle 10. The updated current position and speed can also be integrated into auxiliary positioning information and sent back to the positioning system 120. The positioning system 120 can correct the current positioning information based on the received auxiliary positioning information to enhance the accuracy of the positioning information sent to the processor 110. In addition, the corrected positioning information can also be sent back to the inertial navigation system 130 to correct errors caused by the inertial navigation system 130 continuously calculating the auxiliary positioning information, thereby improving the accuracy of the auxiliary positioning information. In other words, after the positioning system 120 and the inertial navigation system 130 are integrated, the processor 110 can accurately obtain the current world coordinates of the vehicle 10.

輸入/輸出單元140例如是觸控螢幕(或整合螢幕與觸控板等輸入裝置的裝置),其用以讓使用者輸入資料或是經由輸入/輸出單元140來控制所使用者所欲執行的操作。此外,輸入/輸出單元140亦可顯示/播放資訊(如,相關於導航計畫的聲音/影像/文字資訊)。在本實施例中,使用者/乘客亦可對輸入/輸出單元140執行輸入操作/輸入指令,以設定相關於導航計畫的目的地、舒適度等其他細節資訊或指示自動駕駛系統去產生導航計畫。相關於導航計畫的數位地圖的各種形式的資訊內容可透過輸入/輸出單元140被顯示/播放。在一實施例中,所述輸入/輸出單元140也可包含喇叭與麥克風。The input/output unit 140 is, for example, a touch screen (or a device that integrates input devices such as a screen and a touchpad), which is used to allow the user to input data or to control what the user wants to perform through the input/output unit 140 operate. In addition, the input/output unit 140 can also display/play information (for example, audio/video/text information related to the navigation plan). In this embodiment, the user/passenger can also perform input operations/input commands on the input/output unit 140 to set other detailed information related to the navigation plan, such as destination, comfort level, or instruct the automatic driving system to generate navigation plan. Various forms of information content related to the digital map of the navigation plan can be displayed/played through the input/output unit 140. In an embodiment, the input/output unit 140 may also include a speaker and a microphone.

通訊電路單元150用以經由無線方式來接收通訊訊號。在本實施例中,通訊電路單元150例如是支援WiFi通訊協定、藍芽(Bluetooth)、近場通訊(Near Field Communication;NFC)、第三代通訊系統夥伴專案(3rd Generation Partnership Project;3GPP)標準、第四代通訊系統夥伴專案(4th Generation Partnership Project;4GPP)標準、第五代通訊系統夥伴專案(5th Generation Partnership Project;5GPP)標準等無線通訊電路單元。在本實施例中,通訊電路單元150可藉由無線通訊的方式,以連線至定位參考裝置20(如,藉由連線C1),進而從定位參考裝置20獲取定位參考資料D1。The communication circuit unit 150 is used for receiving communication signals via a wireless method. In this embodiment, the communication circuit unit 150 supports, for example, WiFi communication protocol, Bluetooth, Near Field Communication (NFC), and 3rd Generation Partnership Project (3GPP) standards. , The fourth generation communication system partner project (4th Generation Partnership Project; 4GPP) standard, the fifth generation communication system partner project (5th Generation Partnership Project; 5GPP) standard and other wireless communication circuit units. In this embodiment, the communication circuit unit 150 can be connected to the positioning reference device 20 (for example, via a connection C1) through wireless communication, and then obtain the positioning reference data D1 from the positioning reference device 20.

應注意的是,外部資料D1包括定位參考資料。例如,在一實施例中,定位系統120可應用即時動態定位技術(Real Time Kinematic,RTK),以根據所接收的定位參考資料D1與GPS訊號來計算車輛10的世界座標,進而提昇所獲得的所述基準世界座標的準確性。It should be noted that the external data D1 includes positioning reference data. For example, in one embodiment, the positioning system 120 may apply Real Time Kinematic (RTK) technology to calculate the world coordinates of the vehicle 10 based on the received positioning reference data D1 and GPS signals, thereby improving the obtained The accuracy of the reference world coordinates.

在一實施例中,所述外部資料D1更包括路況資訊、環境資訊以及數位地圖。例如,通訊電路單元150可從自動駕駛管理伺服器20接收相關於導航計畫的外部資料D1來強化所產生的導航計畫。又例如,在另一實施例中,所述外部資料D1更包括來自車輛10周遭的其他交通工具20的參考資訊。所述參考資訊例如是所述其他交通工具20的速度、加速度、移動方向等運動資訊。處理器110可藉由所接收的相關於其他交通工具20的運動資訊來調整當前的導航計畫,以增進所調整的導航計畫的效率及避免因其他交通工具所導致的交通意外。In one embodiment, the external data D1 further includes road condition information, environmental information, and digital maps. For example, the communication circuit unit 150 may receive external data D1 related to the navigation plan from the automatic driving management server 20 to enhance the generated navigation plan. For another example, in another embodiment, the external data D1 further includes reference information from other vehicles 20 around the vehicle 10. The reference information is, for example, motion information such as the speed, acceleration, and moving direction of the other vehicle 20. The processor 110 can adjust the current navigation plan based on the received movement information related to other vehicles 20 to improve the efficiency of the adjusted navigation plan and avoid traffic accidents caused by other vehicles.

儲存裝置160經由處理器110的指示來暫存資料,所述資料包括用以管理車輛10的系統資料,如,移動資訊、定位資訊、輔助定位資訊、慣性資訊、環境資訊、車況資訊、數位地圖,來自其他電子裝置的資料(如,外部資料D1),本揭露不限於此。除此之外,儲存裝置160還可以經由處理器110的指示來記錄一些需要長時間儲存的資料。例如,地圖資料庫、相關於自動駕駛系統11所執行的自動駕駛程序的一或多個駕駛參數組、以及用以管理車輛10的韌體或是軟體。儲存裝置160可以是任何型態的硬碟機(hard disk drive,HDD)或非揮發性記憶體儲存裝置(如,固態硬碟)。在一實施例中,儲存裝置160亦可是例如包含快閃記憶體模組的硬體。在一實施例中,處理器110可存取自動駕駛程序於主記憶體170中,執行所存取的自動駕駛程序以實現本發明的實施例所提供的自動駕駛方法。The storage device 160 temporarily stores data through the instructions of the processor 110. The data includes system data for managing the vehicle 10, such as mobile information, positioning information, auxiliary positioning information, inertial information, environmental information, vehicle condition information, and digital maps. , Data from other electronic devices (such as external data D1), this disclosure is not limited to this. In addition, the storage device 160 can also record some data that needs to be stored for a long time through the instructions of the processor 110. For example, a map database, one or more driving parameter sets related to the automatic driving program executed by the automatic driving system 11, and firmware or software used to manage the vehicle 10. The storage device 160 may be any type of hard disk drive (HDD) or non-volatile memory storage device (eg, solid state drive). In an embodiment, the storage device 160 may also be, for example, hardware including a flash memory module. In one embodiment, the processor 110 may access the automatic driving program in the main memory 170 and execute the accessed automatic driving program to implement the automatic driving method provided by the embodiment of the present invention.

主記憶體170分別用以接收處理器110的指示來暫存各種形式的資料。主記憶體170例如是任意形式的固定式或可移動式隨機存取記憶體(random access memory,RAM)或其他類似裝置、積體電路及其組合。由於主記憶體170所具有的高速存取特性,在本實施例中所進行的各種運算與操作皆可經由存取被暫存在主記憶體170中的相關資料而被加速。The main memory 170 is used to receive instructions from the processor 110 to temporarily store various forms of data. The main memory 170 is, for example, any form of fixed or removable random access memory (RAM) or other similar devices, integrated circuits, and combinations thereof. Due to the high-speed access characteristics of the main memory 170, various calculations and operations performed in this embodiment can be accelerated by accessing relevant data temporarily stored in the main memory 170.

駕駛單元180用以藉由控制駕駛單元180的機械系統與動力系統來控制車輛10的移動方向、速度與加速度,即,駕駛單元180用以控制所述車輛10的移動/運動。在一實施例中,駕駛單元180用以根據處理器110的指示來應用對應的駕駛參數組,以根據所應用的駕駛參數組來控制車輛10的運動力道。The driving unit 180 is used to control the moving direction, speed and acceleration of the vehicle 10 by controlling the mechanical system and power system of the driving unit 180, that is, the driving unit 180 is used to control the movement/movement of the vehicle 10. In an embodiment, the driving unit 180 is configured to apply a corresponding driving parameter set according to an instruction of the processor 110 to control the motion force of the vehicle 10 according to the applied driving parameter set.

圖2是根據本發明的一實施例所繪示的自動駕駛方法的流程圖。請參照圖2,在步驟S210中,處理器110可經由定位系統120與慣性導航系統130來獲得所述車輛的定位資訊以及移動資訊。Fig. 2 is a flowchart of an automatic driving method according to an embodiment of the present invention. Please refer to FIG. 2, in step S210, the processor 110 may obtain the positioning information and movement information of the vehicle through the positioning system 120 and the inertial navigation system 130.

接著,在步驟S220中,處理器110可根據所述定位資訊、對應所述車輛外的真實世界的一環境資訊、一數位地圖以及一目標位置來產生一導航計畫。具體來說,所述環境資訊至少包括下列一或多者:(1)所述車輛當前所行駛的地面的摩擦係數;(2)所述車輛當前所行駛的所述地面的坡度;(3)所述車輛所受到的外部力量;(4)對應已規劃路徑的車流狀況;(5)對應已規劃路徑的速度限制;(6)其他會影響駕駛過程的環境資訊(如,風力、氣溫、濕度、天氣、特定的建築物、收費站等等)。在本實施例中,所述車輛當前所行駛的地面的摩擦係數可利用摩擦係數感測器或摩擦力感測器來獲得。所述車輛當前所行駛的所述地面的坡度以及所述車輛所受到的外部力量可經由慣性導航系統130來提供。對應已規劃路徑的車流狀況、對應已規劃路徑的速度限制以及其他會影響駕駛過程的環境資訊可經由通訊電路單元150從所連接的伺服器20或網際網路所接收外部資料D1來獲得。Then, in step S220, the processor 110 may generate a navigation plan based on the positioning information, an environment information corresponding to the real world outside the vehicle, a digital map, and a target location. Specifically, the environmental information includes at least one or more of the following: (1) the friction coefficient of the ground on which the vehicle is currently traveling; (2) the slope of the ground on which the vehicle is currently traveling; (3) The external force received by the vehicle; (4) the traffic flow conditions corresponding to the planned route; (5) the speed limit corresponding to the planned route; (6) other environmental information that will affect the driving process (such as wind, temperature, humidity) , Weather, specific buildings, toll booths, etc.). In this embodiment, the friction coefficient of the ground on which the vehicle is currently traveling can be obtained by using a friction coefficient sensor or a friction force sensor. The gradient of the ground on which the vehicle is currently traveling and the external force received by the vehicle may be provided by the inertial navigation system 130. The traffic conditions corresponding to the planned route, the speed limit corresponding to the planned route, and other environmental information that may affect the driving process can be obtained through the communication circuit unit 150 from the external data D1 received from the connected server 20 or the Internet.

在本實施例中,對應已規劃路徑的速度限制以及其他會影響駕駛過程的環境資訊也可經由預先儲存的數位地圖來提供。所述數位地圖為關於真實世界的數位化地圖。所述數位地圖亦可經由通訊電路單元150從對應的地圖伺服器20來更新。In this embodiment, the speed limit corresponding to the planned route and other environmental information that will affect the driving process can also be provided through a pre-stored digital map. The digital map is a digital map about the real world. The digital map can also be updated from the corresponding map server 20 via the communication circuit unit 150.

所述目標位置例如是對應經由所述輸入/輸出單元140所接收的輸入內容(包含語音訊息或文字訊息)的導航目標(包含建築物、場所或生物體)的地址或世界座標。例如,使用者可經由說話來對輸入/輸出單元140下達語音指令,以設定導航目標。處理器110可識別所述語音指令中的導航目標,並且從數位地圖、網際網路或其他網路連線來查找到所述導航目標的地址或世界座標,以作為所述目標位置。The target location is, for example, the address or world coordinates of a navigation target (including a building, a place, or a living body) corresponding to the input content (including a voice message or a text message) received through the input/output unit 140. For example, the user can give a voice command to the input/output unit 140 by speaking to set a navigation target. The processor 110 can recognize the navigation target in the voice command, and find the address or world coordinates of the navigation target from a digital map, the Internet, or other network connections, as the target location.

此外,在一實施例中,所述目標位置更可被預先設定。例如,使用者可預先設定在特定期間所執行的自動駕駛行程,其包含了出發地與導航目標的詳細資訊(如,地址或世界座標)。自動駕駛系統11可根據所述自動駕駛行程,對應所述特定期間來執行自動駕駛操作,以控制所述車輛10從所述出發地行駛至所述導航目標。In addition, in an embodiment, the target position may be preset. For example, the user can pre-set the autopilot itinerary to be executed during a specific period, which contains detailed information (such as address or world coordinates) of the departure place and navigation target. The automatic driving system 11 may perform an automatic driving operation corresponding to the specific period according to the automatic driving schedule, so as to control the vehicle 10 to drive from the departure point to the navigation target.

處理器110可根據所收集到的各項資訊(如,上述的環境資訊、數位地圖、目標位置)來產生導航計畫。所述導航計畫包括一已規劃路徑,所述已規劃路徑用以指示於出發地(或車輛10的當前位置)與導航目標之間的最佳化行駛路徑。此外,所述導航計畫於所述已規劃路徑中設定了多個路徑點,以及分別對應所述多個路徑點的多個規劃速度及多個移動態樣。The processor 110 may generate a navigation plan based on various collected information (such as the aforementioned environmental information, digital map, and target location). The navigation plan includes a planned route, and the planned route is used to indicate an optimized travel route between the departure point (or the current position of the vehicle 10) and the navigation target. In addition, the navigation plan sets a plurality of path points in the planned route, and a plurality of planned speeds and a plurality of movement patterns corresponding to the plurality of path points, respectively.

圖3A是根據本發明的一實施例所繪示的導航計畫中的規劃路徑的示意圖。請參照圖3A,舉例來說,假設輸入/輸出單元140根據已產生的導航計畫來顯示一個數位地圖MAP1(包含道路RD1、RD2),所述數位地圖包含從車輛CR1(對應車輛10)的當前位置(對應當前路徑點CPP(0))與導航目標TD1之間的一已規劃路徑SP1以及已規劃路徑SP1中的多個路徑點PP(0)~PP(9)及移動態樣(如連接所述多個路徑點PP(0)~PP(9)的箭頭)。此外,如所述數位地圖MAP1所示,車輛CR1在當前路徑點CCP(0)以規劃速度60KM/H(如,數位地圖MAP1的區域R1所示)依據直行方式來行駛於道路RD1上,車輛CR2以時速40 KM/H行駛於車輛CR1的前方。Fig. 3A is a schematic diagram of a planned route in a navigation plan according to an embodiment of the present invention. Please refer to FIG. 3A. For example, suppose the input/output unit 140 displays a digital map MAP1 (including roads RD1, RD2) according to the generated navigation plan, and the digital map includes information from vehicle CR1 (corresponding to vehicle 10). A planned path SP1 between the current position (corresponding to the current path point CPP(0)) and the navigation target TD1, and multiple path points PP(0)~PP(9) in the planned path SP1 and movement patterns (such as Arrows connecting the multiple path points PP(0)~PP(9)). In addition, as shown in the digital map MAP1, the vehicle CR1 is driving on the road RD1 in a straight way at the current route point CCP(0) at a planned speed of 60KM/H (as shown in the area R1 of the digital map MAP1). CR2 is driving in front of vehicle CR1 at a speed of 40 KM/H.

圖3B是根據本發明的一實施例所繪示的導航計畫的示意圖。請參照圖3B,接續圖3A的例子,舉例來說,已產生的導航計畫可記錄(如,表T310所示)當前的已規劃路徑SP1的多個路徑點PP(0)~PP(9)與對應所述多個路徑點PP(0)~PP(9)的多個規劃速度V(0)~V(9)及移動態樣MP(0)~MP(9)。處理器110可根據車輛10的定位資訊來判定當前路徑點(如,CPP(0))對應至路徑點PP(0),並且駕駛單元180被指示於當前路徑點CCP(0),使用對應的規劃速度V(0) (如“60” (KM/H))以及移動態樣MP(0) (如,“直行”)來進行運動。Fig. 3B is a schematic diagram of a navigation plan according to an embodiment of the present invention. Please refer to Figure 3B to continue the example of Figure 3A. For example, the generated navigation plan can record (as shown in Table T310) multiple waypoints PP(0)~PP(9) of the current planned path SP1. ) And multiple planned speeds V(0)-V(9) and movement patterns MP(0)-MP(9) corresponding to the multiple path points PP(0)-PP(9). The processor 110 may determine that the current waypoint (for example, CPP(0)) corresponds to the waypoint PP(0) according to the positioning information of the vehicle 10, and the driving unit 180 is instructed at the current waypoint CCP(0), using the corresponding Plan speed V(0) (such as "60" (KM/H)) and moving pattern MP(0) (such as "straight") to move.

請再回到圖2,在步驟S230中,處理器110根據所述定位資訊辨識在一導航計畫的當前規劃路徑中對應所述車輛的當前路徑點及所述當前規劃路徑中的一監控路徑。具體來說,如圖3A、3B所示,處理器110可基於當前路徑點來辨識出監控路徑。更詳細來說,所述監控路徑為在所述當前規劃路徑中的所述車輛欲進入的未來路徑(如,圖3A中的已規劃路徑SP1中對應路徑點PP(1)~PP(9)的路徑)中的一部份,其中所述未來路徑所述部份為所述車輛在當前時間點後的一監控期間內欲移動的路徑。Please return to FIG. 2. In step S230, the processor 110 identifies the current path point corresponding to the vehicle in the current planned path of a navigation plan and a monitored path in the current planned path according to the positioning information. . Specifically, as shown in FIGS. 3A and 3B, the processor 110 may recognize the monitoring path based on the current path point. In more detail, the monitored path is the future path that the vehicle intends to enter in the current planned path (for example, the corresponding path points PP(1)~PP(9) in the planned path SP1 in FIG. 3A The part of the path), wherein the part of the future path is the path that the vehicle intends to move during a monitoring period after the current time point.

在一實施例中,所述監控路徑/監控期間與車輛10的當前速度有關。具體來說,所述處理器110根據所述移動資訊辨識所述車輛的當前速度,其中所述處理器110根據所述當前速度來決定所述監控期間MR1的長度,其中所述監控期間MR1的所述長度與所述當前速度成正比。請參照圖3B,舉例來說,在一實施例中,對應當前路徑點CPP(0)的車輛10的當前速度V(0)為“60”(KM/H),並且監控路徑MR1/監控期間MR1為對應當前速度V(0) “60”的“6(如,60/10=6)”個路徑點PP(1)~PP(6)(亦稱,監控路徑點)的路徑/期間。即,在此實施例中,對於當前速度,每10KM/H會增加一個路徑點來做為監控路徑MR1/監控期間MR1所包含的監控路徑點。如此一來,當車輛10的當前速度越高,處理器110會對越長的監控路徑/監控期間執行監控。In an embodiment, the monitoring path/monitoring period is related to the current speed of the vehicle 10. Specifically, the processor 110 recognizes the current speed of the vehicle according to the movement information, wherein the processor 110 determines the length of the monitoring period MR1 according to the current speed, wherein the length of the monitoring period MR1 is The length is proportional to the current speed. 3B, for example, in one embodiment, the current speed V(0) of the vehicle 10 corresponding to the current waypoint CPP(0) is “60” (KM/H), and the monitoring path MR1/monitoring period MR1 is the path/period of "6 (for example, 60/10=6)" path points PP(1)~PP(6) (also known as monitoring path points) corresponding to the current speed V(0) "60". That is, in this embodiment, for the current speed, one waypoint is added every 10KM/H as the monitoring path MR1/monitoring path point included in the monitoring period MR1. In this way, when the current speed of the vehicle 10 is higher, the processor 110 will perform monitoring on the longer monitoring path/monitoring period.

請再回到圖2,在步驟S240中,處理器110根據對應所述導航計畫的所述監控路徑的一最大速度變化絕對值(亦稱,速度變化率)來從多個駕駛參數組中選擇一目標駕駛參數組,以應用所述目標駕駛參數組來控制所述車輛的所述移動。Please return to FIG. 2 again. In step S240, the processor 110 selects a maximum speed change absolute value (also known as a speed change rate) corresponding to the monitored path of the navigation plan from a plurality of driving parameter groups A target driving parameter set is selected to apply the target driving parameter set to control the movement of the vehicle.

舉例來說,請參照圖3B,在監控路徑MR1中,處理器110可計算每兩個相鄰的監控路徑點的速度變化絕對值,並且處理器110從所計算的多個速度變化絕對值中辨識出最大者,以作為最大速度變化絕對值|∆V MAX|。例如,在圖3B的例子中,處理器110可計算出最大速度變化絕對值|∆V MAX|為“10”。 For example, referring to FIG. 3B, in the monitoring path MR1, the processor 110 may calculate the absolute value of the speed change of every two adjacent monitoring path points, and the processor 110 may calculate the absolute value of the speed change from the plurality of calculated absolute values of the speed change. Identify the largest one and use it as the absolute value of the maximum speed change |∆V MAX |. For example, in the example of FIG. 3B, the processor 110 may calculate the absolute value of the maximum speed change |∆V MAX | to be "10".

圖4是根據本發明的又一實施例所繪示的導航計畫的示意圖。請參照圖4,在本實施例中,導航計畫更可記錄多個駕駛參數組PG(1)~PG(4)及用以判定所述多個駕駛參數組PG(1)~PG(4)的速度變化範圍(如,表T410所示)。所述多個駕駛參數組PG(1)~PG(4)各自包括多個駕駛權重值,如,駕駛參數組PG(1)包括多個駕駛權重值W 1.1~W 1.N;駕駛參數組PG(2)包括多個駕駛權重值W 2.1~W 2.N;駕駛參數組PG(3)包括多個駕駛權重值W 3.1~W 3.N;駕駛參數組PG(4)包括多個駕駛權重值W 4.1~W 4.N。處理器110可根據所述多個速度變化範圍中來查找出包含當前所辨識出的最大速度變化絕對值|∆V MAX|來的目標速度變化範圍及對應至所述目標速度變化範圍的目標駕駛參數組。N為正整數,用以表示每個駕駛參數組中的駕駛權重值的總數量。 Fig. 4 is a schematic diagram of a navigation plan according to another embodiment of the present invention. 4, in this embodiment, the navigation plan can also record multiple driving parameter groups PG(1)~PG(4) and used to determine the multiple driving parameter groups PG(1)~PG(4) ) Speed change range (as shown in table T410). The multiple driving parameter groups PG(1) to PG(4) each include multiple driving weight values, for example, the driving parameter group PG(1) includes multiple driving weight values W 1.1 to W 1.N ; driving parameter group PG(2) includes multiple driving weight values W 2.1 ~W 2.N ; driving parameter group PG(3) includes multiple driving weight values W 3.1 ~W 3.N ; driving parameter group PG(4) includes multiple driving The weight value is W 4.1 ~ W 4.N. The processor 110 can find the target speed change range that includes the currently recognized absolute value of the maximum speed change |∆V MAX | and the target driving corresponding to the target speed change range according to the multiple speed change ranges. Parameter group. N is a positive integer and is used to represent the total number of driving weight values in each driving parameter group.

舉例來說,假設對應駕駛參數組PG(1)的速度變化範圍中的門檻值TH1為“0”且門檻值TH2為“10”; 對應駕駛參數組PG(2)的速度變化範圍中的門檻值TH3為“20”;對應駕駛參數組PG(3)的速度變化範圍中的門檻值TH4為“30”。此外,接續圖3B的例子,當前所辨識的最大速度變化絕對值|∆V MAX|為“10”。 For example, suppose that the threshold value TH1 in the speed change range of the driving parameter group PG(1) is "0" and the threshold value TH2 is "10"; it corresponds to the threshold in the speed change range of the driving parameter group PG(2) The value TH3 is "20"; the threshold value TH4 in the speed change range of the corresponding driving parameter group PG(3) is "30". In addition, following the example in Fig. 3B, the currently recognized absolute value of the maximum speed change |∆V MAX | is "10".

在此例子中,處理器110可辨識最大速度變化絕對值|∆V MAX|對應至目標駕駛參數組PG(2),並且選擇目標駕駛參數組PG(2)以指示駕駛單元180來應用目標駕駛參數組PG(2)中的多個駕駛權重值W 2.1~W 2.N來控制車輛10的移動。 In this example, the processor 110 can recognize that the absolute value of the maximum speed change |∆V MAX | corresponds to the target driving parameter group PG(2), and select the target driving parameter group PG(2) to instruct the driving unit 180 to apply the target driving The multiple driving weight values W 2.1 to W 2.N in the parameter group PG(2) are used to control the movement of the vehicle 10.

在本實施例中,一個駕駛參數組(如,駕駛參數組PG(2))所述多個駕駛權重值至少包括:包括:位置誤差權重值(如,W 2.1);速度誤差權重植(如,W 2.2);加速度輸出權重值(如,W 2.3);以及加速度變化幅度權重值(如,W 2.4)。舉例來說,處理器110可根據當前所偵測的位置誤差以及位置誤差權重值來計算對應的加速力道。 In this embodiment, the multiple driving weight values of one driving parameter group (eg, driving parameter group PG(2)) at least include: position error weight value (eg, W 2.1 ); speed error weight replanting (eg , W 2.2 ); acceleration output weight value (for example, W 2.3 ); and acceleration change amplitude weight value (for example, W 2.4 ). For example, the processor 110 may calculate the corresponding acceleration force according to the currently detected position error and the position error weight value.

所述位置誤差例如是將車輛10於當前路徑點CPP(0)的預定位置減去當前所偵測的車輛10的位置所獲得的值(如,E)。若位置誤差為正值,處理器110所計算出的加速力道為所述位置誤差乘以位置誤差權重值的積。假設位置誤差為正值(如,當前位置落後預定位置),駕駛單元180或處理器110可計算出的為正值的加速力道,並且駕駛單元180可根據此加速力道來控制車輛10產生一個正的加速度,以使落後的當前位置追上預定位置。The position error is, for example, a value (eg, E) obtained by subtracting the currently detected position of the vehicle 10 from the predetermined position of the vehicle 10 at the current waypoint CPP(0). If the position error is a positive value, the acceleration force calculated by the processor 110 is the product of the position error multiplied by the position error weight value. Assuming that the position error is a positive value (for example, the current position is behind a predetermined position), the driving unit 180 or the processor 110 can calculate a positive acceleration force, and the driving unit 180 can control the vehicle 10 to generate a positive acceleration force based on this acceleration force. The acceleration to make the backward current position catch up with the predetermined position.

值得一提的是,在本實施例中,自動駕駛系統11(處理器110)可持續地根據所獲得的定位資訊、移動資訊以及環境資訊來調整/更新導航計畫。It is worth mentioning that in this embodiment, the automatic driving system 11 (processor 110) can continuously adjust/update the navigation plan according to the obtained positioning information, movement information, and environmental information.

圖3C是根據本發明的又一實施例所繪示的導航計畫中的規劃路徑的示意圖。請參照圖3C,舉例來說,接續圖3A的例子,假設車輛CR1目前更行駛至路徑點PP(1),如所述數位地圖MAP2所示,車輛CR1在當前路徑點CCP(1)以規劃速度50KM/H(如,數位地圖MAP2的區域R2所示)依據直行方式來行駛於道路RD1上。此外,車輛CR2以時速40 KM/H行駛於車輛CR1的前方,並且(如箭頭A31所示)對應車輛CR1的自動駕駛系統11的處理器110根據所獲得的環境資訊得知車輛CR2會向右切入至已規劃路徑SP1中介於路徑點PP(4)與路徑點PP(5)之間的位置。在此例子中,處理器110會調整車輛CR1的速度(減速),以避免車輛CR1去撞擊車輛CR2。3C is a schematic diagram of a planned route in a navigation plan according to another embodiment of the present invention. Please refer to Figure 3C. For example, following the example of Figure 3A, suppose that the vehicle CR1 is currently traveling to the waypoint PP(1). As shown in the digital map MAP2, the vehicle CR1 is at the current waypoint CCP(1) to plan At a speed of 50KM/H (as shown in the area R2 of the digital map MAP2), the vehicle travels on the road RD1 in a straight-going manner. In addition, the vehicle CR2 is driving in front of the vehicle CR1 at a speed of 40 KM/H, and (as indicated by the arrow A31) the processor 110 of the automatic driving system 11 corresponding to the vehicle CR1 knows that the vehicle CR2 will turn to the right according to the obtained environmental information. Cut into the planned path SP1 between the path point PP (4) and the path point PP (5). In this example, the processor 110 will adjust the speed (deceleration) of the vehicle CR1 to prevent the vehicle CR1 from hitting the vehicle CR2.

圖3D是根據本發明的又一實施例所繪示的導航計畫的示意圖。請參照圖3D,接續圖3C的例子,舉例來說,被調整/更新的導航計畫可記錄(如,表T320所示)當前的已規劃路徑SP1的多個路徑點PP(1)~PP(9)與對應所述多個路徑點PP(1)~PP(9)的多個規劃速度V(1)~V(9)及移動態樣MP(1)~MP(9)。處理器110可根據車輛10的定位資訊來判定當前路徑點(如,CPP(1))對應至路徑點PP(1),並且駕駛單元180被指示於當前路徑點CCP(1),使用對應的規劃速度V(1) (如“50” (KM/H))以及移動態樣MP(1) (如,“直行”)來進行運動。FIG. 3D is a schematic diagram of a navigation plan according to another embodiment of the present invention. Please refer to Figure 3D to continue the example of Figure 3C. For example, the adjusted/updated navigation plan can record (as shown in Table T320) multiple waypoints PP(1)~PP of the current planned path SP1 (9) Multiple planned speeds V(1)~V(9) and movement patterns MP(1)~MP(9) corresponding to the multiple path points PP(1)~PP(9). The processor 110 may determine that the current waypoint (for example, CPP(1)) corresponds to the waypoint PP(1) according to the positioning information of the vehicle 10, and the driving unit 180 is instructed at the current waypoint CCP(1), using the corresponding Plan the speed V(1) (such as "50" (KM/H)) and the movement pattern MP(1) (such as "straight") to move.

應注意的是,目前的監控路徑MR2是基於當前速度V(1) “50”(KM/H) 所設定的,即,包含“5”個路徑點PP(2)~PP(6)的路徑。即,隨著當前速度從圖3A的60KM/H降低至圖3C的50KM/H,當前的監控路徑MR2也從包含6個路徑點PP(1)~PP(6)的路徑縮短為包含5個路徑點PP(2)~PP(6)的路徑。It should be noted that the current monitoring path MR2 is set based on the current speed V(1) "50" (KM/H), that is, a path containing "5" path points PP(2)~PP(6) . That is, as the current speed decreases from 60KM/H in Figure 3A to 50KM/H in Figure 3C, the current monitoring path MR2 is also shortened from a path containing 6 path points PP(1)~PP(6) to 5 The path of the way point PP(2)~PP(6).

此外,在圖3C、3D的例子中,處理器110將對應路徑點PP(3)的規劃速度V(3)從“50”調整為“30”,將對應路徑點PP(4)的規劃速度V(4)從“40”調整為“10”,將對應路徑點PP(5)的規劃速度V(5)從“30”調整為“20”,以更新導航計畫。In addition, in the example of Figs. 3C and 3D, the processor 110 adjusts the planned speed V(3) of the corresponding waypoint PP(3) from “50” to “30”, and adjusts the planned speed of the corresponding waypoint PP(4) V(4) is adjusted from "40" to "10", and the planned speed V(5) of the corresponding waypoint PP(5) is adjusted from "30" to "20" to update the navigation plan.

另一方面,在圖3C、3D的例子中,處理器110可計算出最大速度變化絕對值|∆V MAX|為“20”,並且處理器110可藉由導航計畫(如,表T410)來辨識出對應的目標駕駛參數組PG(3),並且指示駕駛單元180去應用目標駕駛參數組PG(3)以取代原有的目標駕駛參數組PG(2)以控制車輛10的移動。 On the other hand, in the examples of Figs. 3C and 3D, the processor 110 can calculate the absolute value of the maximum speed change |∆V MAX | To identify the corresponding target driving parameter group PG(3), and instruct the driving unit 180 to apply the target driving parameter group PG(3) to replace the original target driving parameter group PG(2) to control the movement of the vehicle 10.

值得一提的是,請參照圖4,多個駕駛參數組PG(1)~PG(4)基於所對應的多個速度變化範圍而有大小的差異。例如,駕駛參數組PG(1)小於駕駛參數組PG(2)、駕駛參數組PG(2)小於駕駛參數組PG(3)、駕駛參數組PG(3)小於駕駛參數組PG(4)。換言之,較小的駕駛參數組會包含較舒適的弱參數(較小的駕駛權重值),較大的駕駛參數組會包含較敏捷的強參數(較大的駕駛權重值)。It is worth mentioning that, referring to FIG. 4, multiple driving parameter groups PG(1) to PG(4) have different magnitudes based on the corresponding multiple speed change ranges. For example, the driving parameter group PG(1) is smaller than the driving parameter group PG(2), the driving parameter group PG(2) is smaller than the driving parameter group PG(3), and the driving parameter group PG(3) is smaller than the driving parameter group PG(4). In other words, a smaller driving parameter group will contain more comfortable weak parameters (smaller driving weight values), and a larger driving parameter group will contain more agile strong parameters (larger driving weight values).

在駕駛參數組PG(1)小於駕駛參數組PG(2)的情況下,駕駛參數組PG(1)中的第一個駕駛權重值W 1.1會小於駕駛參數組PG(2)中的第一個駕駛權重值W 2.1When the driving parameter group PG(1) is smaller than the driving parameter group PG(2), the first driving weight value W 1.1 in the driving parameter group PG(1) will be smaller than the first driving parameter group PG(2). A driving weight value W 2.1 .

基於上述的實施例,由於在圖3A、3B的例子中,駕駛單元180應用了駕駛參數組PG(2),並且在圖3C、3D的例子中,駕駛單元180應用了大於駕駛參數組PG(2)的駕駛參數組PG(3)。因此,在圖3C、3D的例子中,處理器110或駕駛單元180會應用大於原有的位置誤差權重值W 2.1的位置誤差權重值W 3.1,並且針對相同的位置誤差,在圖3C、3D的例子中,處理器110(或駕駛單元180)所計算出的加速力道將基於新的位置誤差權重值W 3.1,而大於圖3A、3B的例子的加速力道。 Based on the above-mentioned embodiment, since in the example of FIGS. 3A and 3B, the driving unit 180 applies the driving parameter group PG(2), and in the examples of FIGS. 3C and 3D, the driving unit 180 applies a greater than the driving parameter group PG( 2) The driving parameter group PG(3). Therefore, in the example of Figs. 3C and 3D, the processor 110 or the driving unit 180 will apply a position error weight value W 3.1 that is greater than the original position error weight value W 2.1 , and for the same position error, in Fig. 3C, 3D In the example, the acceleration force calculated by the processor 110 (or the driving unit 180) will be based on the new position error weight value W 3.1 , which is greater than the acceleration force in the example of FIGS. 3A and 3B.

換句話說,本發明所提供的自動駕駛系統與自動駕駛方法,可反應於辨識到監控路徑(監控期間)中的速度變化率變大(如,處理器110預測於監控期間,車輛需要較大的速度變化),而切換至較大的駕駛參數組,以使用較強的權重值來操控車輛10,進而使車輛10的整體運動較為敏捷(如,所對應產生的加速力道會較大)。In other words, the automatic driving system and the automatic driving method provided by the present invention can reflect that the speed change rate in the monitoring path (monitoring period) is recognized to increase (for example, the processor 110 predicts that the vehicle needs to be larger during the monitoring period). Speed changes), and switch to a larger driving parameter group to use a stronger weight value to control the vehicle 10, thereby making the overall movement of the vehicle 10 more agile (for example, the corresponding acceleration force will be greater).

相反地,反應於辨識到監控路徑(監控期間)中的速度變化率變小(如,處理器110預測於監控期間,車輛需要較大的速度變化),而切換至較小的駕駛參數組,以使用較弱的權重值來操控車輛10,進而使車輛10的整體運動較為舒適(如,所對應產生的加速力道會較小)。On the contrary, in response to the recognition that the speed change rate in the monitoring path (monitoring period) becomes smaller (for example, the processor 110 predicts that the vehicle needs a greater speed change during the monitoring period), and switching to a smaller driving parameter group, A weaker weight value is used to control the vehicle 10, so that the overall movement of the vehicle 10 is more comfortable (for example, the corresponding acceleration force will be smaller).

綜上所述,本發明的實施例所提供的自動駕駛系統與自動駕駛方法,可辨識在所產生的導航計畫的當前規劃路徑中對應車輛的當前路徑點及所述當前規劃路徑中的監控路徑,以根據對應所述監控路徑中的最大速度變化絕對值 來從多個駕駛參數組中選擇一目標駕駛參數組,以應用所述目標駕駛參數組來控制所述車輛的所述移動,進而可在所述車輛的操控力道的強度與乘坐舒適度之間取得平衡,而增進了所述車輛的自動駕駛效能及乘客的乘坐體驗。In summary, the automatic driving system and automatic driving method provided by the embodiments of the present invention can identify the current path point of the corresponding vehicle in the current planned path of the generated navigation plan and the monitoring in the current planned path Path, to select a target driving parameter group from a plurality of driving parameter groups according to the absolute value of the maximum speed change corresponding to the monitoring path, so as to apply the target driving parameter group to control the movement of the vehicle, and then A balance can be achieved between the strength of the vehicle's control force and the riding comfort, thereby enhancing the vehicle's automatic driving performance and passengers' riding experience.

10:交通工具/車輛 11:自動駕駛系統 GPS:全球定位系統訊號 110:處理器 120:定位系統 130:慣性導航系統 140:輸入/輸出單元 150:通訊電路單元 160:儲存裝置 170:主記憶體 180:駕駛單元 20:伺服器/其他交通工具/定位參考裝置 D1:外部資料 C1:連線 S210、S220、S230、S240:自動駕駛方法的流程步驟R1~R2:區域 RD1、RD2:道路 CR1、CR2:車輛 CPP(0)、CPP(1):當前路徑點 PP(0)~PP(9):路徑點 TD1:目的地 SP1:已規劃路徑 MAP1、MAP2:數位地圖 T310、T320、T410:表 MR1、MR2:監控路徑/監控期間 A31:箭頭 TH1~TH4:門檻值 PG(1)~PG(4):駕駛參數組 W 1.1~W 4.N:駕駛權重值 |∆V MAX|:最大速度變化絕對值 10: Vehicles/Vehicles 11: Autonomous Driving System GPS: Global Positioning System Signal 110: Processor 120: Positioning System 130: Inertial Navigation System 140: Input/Output Unit 150: Communication Circuit Unit 160: Storage Device 170: Main Memory 180: driving unit 20: server/other vehicles/positioning reference device D1: external data C1: connection S210, S220, S230, S240: process steps of automatic driving method R1~R2: area RD1, RD2: road CR1 CR2: Vehicle CPP(0), CPP(1): Current waypoint PP(0)~PP(9): Waypoint TD1: Destination SP1: Planned route MAP1, MAP2: Digital map T310, T320, T410: Table MR1, MR2: monitoring path/monitoring period A31: arrow TH1~TH4: threshold value PG(1)~PG(4): driving parameter group W 1.1 ~ W 4.N : driving weight value | ∆V MAX |: maximum speed Absolute value of change

圖1是根據本發明的一實施例所繪示的交通工具與自動駕駛系統的方塊示意圖。 圖2是根據本發明的一實施例所繪示的自動駕駛方法的流程圖。 圖3A是根據本發明的一實施例所繪示的導航計畫中的規劃路徑的示意圖。 圖3B是根據本發明的一實施例所繪示的導航計畫的示意圖。 圖3C是根據本發明的又一實施例所繪示的導航計畫中的規劃路徑的示意圖。 圖3D是根據本發明的又一實施例所繪示的導航計畫的示意圖。 圖4是根據本發明的又一實施例所繪示的導航計畫的示意圖。 FIG. 1 is a block diagram of a vehicle and an automatic driving system according to an embodiment of the present invention. Fig. 2 is a flowchart of an automatic driving method according to an embodiment of the present invention. Fig. 3A is a schematic diagram of a planned route in a navigation plan according to an embodiment of the present invention. Fig. 3B is a schematic diagram of a navigation plan according to an embodiment of the present invention. 3C is a schematic diagram of a planned route in a navigation plan according to another embodiment of the present invention. FIG. 3D is a schematic diagram of a navigation plan according to another embodiment of the present invention. Fig. 4 is a schematic diagram of a navigation plan according to another embodiment of the present invention.

S210、S220、S230、S240:自動駕駛方法的流程步驟S210, S220, S230, S240: Process steps of the automatic driving method

Claims (12)

一種自動駕駛系統,被配置在一車輛上,適用於對所述車輛執行自動駕駛操作,所述系統包括:一駕駛單元,用以控制所述車輛的移動;一定位系統,用以獲得所述車輛的定位資訊;一慣性導航系統,用以獲得所述車輛的移動資訊;以及一處理器,電性連接至所述駕駛系統、所述定位系統及所述慣性導航系統,其中在所述自動駕駛操作中,所述處理器用以根據所述定位資訊、對應所述車輛外的真實世界的一環境資訊、一數位地圖以及一目標位置來產生一導航計畫,所述處理器用以根據所述定位資訊辨識在所述導航計畫的當前規劃路徑中對應所述車輛的當前路徑點及所述當前規劃路徑中的一監控路徑,其中所述處理器用以根據對應所述導航計畫的所述監控路徑的一最大速度變化絕對值來從多個駕駛參數組中選擇一目標駕駛參數組,以指示所述駕駛系統應用所述目標駕駛參數組來控制所述車輛的所述移動。 An automatic driving system is configured on a vehicle and is suitable for performing automatic driving operations on the vehicle. The system includes: a driving unit for controlling the movement of the vehicle; and a positioning system for obtaining the Positioning information of the vehicle; an inertial navigation system for obtaining the movement information of the vehicle; and a processor electrically connected to the driving system, the positioning system, and the inertial navigation system, wherein the automatic During driving operation, the processor is used to generate a navigation plan based on the positioning information, an environmental information corresponding to the real world outside the vehicle, a digital map, and a target position, and the processor is used to generate a navigation plan based on the The positioning information identifies the current path point corresponding to the vehicle in the current planned path of the navigation plan and a monitored path in the current planned path, wherein the processor is used for identifying the current path point corresponding to the navigation plan according to the A maximum speed change absolute value of the monitoring path is used to select a target driving parameter group from a plurality of driving parameter groups, so as to instruct the driving system to apply the target driving parameter group to control the movement of the vehicle. 如請求項1所述的自動駕駛系統,其中所述導航計畫包括所述當前規劃路徑以及分別對應所述當前規劃路徑中的多個路徑點的多個規劃速度。 The automatic driving system according to claim 1, wherein the navigation plan includes the current planned route and a plurality of planned speeds respectively corresponding to a plurality of way points in the current planned route. 如請求項2所述的自動駕駛系統,其中所述監控路徑為在所述當前規劃路徑中的所述車輛欲進入的未來路徑中的一部份,其中所述未來路徑所述部份為所述車輛在當前時間點後的一監控期間內欲移動的路徑。 The automatic driving system according to claim 2, wherein the monitoring path is a part of the future path that the vehicle intends to enter in the current planned path, and the part of the future path is the part of the future path. The path that the vehicle intends to move during a monitoring period after the current time point. 如請求項3所述的自動駕駛系統,其中所述處理器根據所述移動資訊辨識所述車輛的當前速度,其中所述處理器根據所述當前速度來決定所述監控期間的長度,其中所述監控期間的所述長度與所述當前速度成正比。 The automatic driving system according to claim 3, wherein the processor recognizes the current speed of the vehicle according to the movement information, wherein the processor determines the length of the monitoring period according to the current speed, wherein The length of the monitoring period is proportional to the current speed. 如請求項4所述的自動駕駛系統,其中所述處理器更根據所述環境資訊來從所述多個駕駛參數組中選擇所述目標駕駛參數組,其中所述環境資訊至少包括下列資訊的一或多者:所述車輛當前所行駛的地面的摩擦係數;所述車輛當前所行駛的所述地面的坡度;以及所述車輛所受到的外部力量。 The automatic driving system according to claim 4, wherein the processor further selects the target driving parameter set from the plurality of driving parameter sets based on the environmental information, wherein the environmental information includes at least one of the following information One or more: the coefficient of friction of the ground on which the vehicle is currently traveling; the gradient of the ground on which the vehicle is currently traveling; and the external force received by the vehicle. 如請求項5所述的自動駕駛系統,其中在所述多個駕駛參數組各自至少包括:一位置誤差權重值;一速度誤差權重植;一加速度輸出權重值;以及一加速度變化幅度權重值。 The automatic driving system according to claim 5, wherein each of the plurality of driving parameter groups includes at least: a position error weight value; a speed error weight plant; an acceleration output weight value; and an acceleration change amplitude weight value. 一種自動駕駛方法,適用被配置在一車輛上的自動駕駛系統,所述方法包括:獲得所述車輛的定位資訊以及移動資訊;根據所述定位資訊、對應所述車輛外的真實世界的一環境資訊、一數位地圖以及一目標位置來產生一導航計畫;根據所述定位資訊辨識在所述導航計畫的當前規劃路徑中對應所述車輛的當前路徑點及所述當前規劃路徑中的一監控路徑;根據對應所述導航計畫的所述監控路徑的一最大速度變化絕對值來從多個駕駛參數組中選擇一目標駕駛參數組,以應用所述目標駕駛參數組來控制所述車輛的移動。 An automatic driving method, applicable to an automatic driving system configured on a vehicle, the method comprising: obtaining positioning information and movement information of the vehicle; according to the positioning information, corresponding to an environment in the real world outside the vehicle Information, a digital map, and a target location to generate a navigation plan; according to the positioning information, one of the current path point corresponding to the vehicle in the current planned path of the navigation plan and the current planned path is identified Monitoring path; according to a maximum speed change absolute value of the monitoring path corresponding to the navigation plan, a target driving parameter group is selected from a plurality of driving parameter groups to apply the target driving parameter group to control the vehicle Mobile. 如請求項7所述的自動駕駛方法,其中所述導航計畫包括所述當前規劃路徑以及分別對應所述當前規劃路徑中的多個路徑點的多個規劃速度。 The automatic driving method according to claim 7, wherein the navigation plan includes the current planned route and a plurality of planned speeds respectively corresponding to a plurality of way points in the current planned route. 如請求項8所述的自動駕駛方法,其中所述監控路徑為在所述當前規劃路徑中的所述車輛欲進入的未來路徑中的一部份,其中所述未來路徑所述部份為所述車輛在當前時間點後的一監控期間內欲移動的路徑。 The automatic driving method according to claim 8, wherein the monitoring path is a part of the future path that the vehicle intends to enter in the current planned path, and the part of the future path is the The path that the vehicle intends to move during a monitoring period after the current time point. 如請求項9所述的自動駕駛方法,更包括:根據所述移動資訊辨識所述車輛的當前速度;以及根據所述當前速度來決定所述監控期間的長度,其中所述監控期間的所述長度與所述當前速度成正比。 The automatic driving method according to claim 9, further comprising: recognizing the current speed of the vehicle according to the movement information; and determining the length of the monitoring period according to the current speed, wherein the monitoring period The length is proportional to the current speed. 如請求項10所述的自動駕駛方法,其中所述根據所述導航計畫中對應所述監控路徑中的所述最大速度變化絕對值來從所述多個駕駛參數組中選擇所述目標駕駛參數組的步驟包括:更根據所述環境資訊來從所述多個駕駛參數組中選擇所述目標駕駛參數組,其中所述環境資訊至少包括下列資訊的一或多者:所述車輛當前所行駛的地面的摩擦係數;所述車輛當前所行駛的所述地面的坡度;以及所述車輛所受到的外部力量。 The automatic driving method according to claim 10, wherein the target driving is selected from the plurality of driving parameter groups according to the absolute value of the maximum speed change corresponding to the monitoring path in the navigation plan The step of the parameter group includes: further selecting the target driving parameter group from the plurality of driving parameter groups according to the environmental information, wherein the environmental information includes at least one or more of the following information: The coefficient of friction of the ground on which the vehicle is traveling; the gradient of the ground on which the vehicle is currently traveling; and the external force received by the vehicle. 如請求項11所述的自動駕駛方法,其中在所述多個駕駛參數組各自至少包括:一位置誤差權重值;一速度誤差權重植;一加速度輸出權重值;以及一加速度變化幅度權重值。 The automatic driving method according to claim 11, wherein each of the plurality of driving parameter groups includes at least: a position error weight value; a speed error weight plant; an acceleration output weight value; and an acceleration change amplitude weight value.
TW109107368A 2020-03-06 2020-03-06 Automatic driving system and automatic driving method TWI745879B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109107368A TWI745879B (en) 2020-03-06 2020-03-06 Automatic driving system and automatic driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109107368A TWI745879B (en) 2020-03-06 2020-03-06 Automatic driving system and automatic driving method

Publications (2)

Publication Number Publication Date
TW202134091A TW202134091A (en) 2021-09-16
TWI745879B true TWI745879B (en) 2021-11-11

Family

ID=78777552

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109107368A TWI745879B (en) 2020-03-06 2020-03-06 Automatic driving system and automatic driving method

Country Status (1)

Country Link
TW (1) TWI745879B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122586A1 (en) * 2016-12-30 2018-07-05 同济大学 Method of controlling automated driving speed based on comfort level
CN109521761A (en) * 2017-09-18 2019-03-26 百度(美国)有限责任公司 The speed-optimization based on constraint smoothing spline for automatic driving vehicle
CN110083149A (en) * 2018-01-26 2019-08-02 百度(美国)有限责任公司 For infeed mechanism after the path of automatic driving vehicle and speed-optimization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122586A1 (en) * 2016-12-30 2018-07-05 同济大学 Method of controlling automated driving speed based on comfort level
CN109521761A (en) * 2017-09-18 2019-03-26 百度(美国)有限责任公司 The speed-optimization based on constraint smoothing spline for automatic driving vehicle
CN110083149A (en) * 2018-01-26 2019-08-02 百度(美国)有限责任公司 For infeed mechanism after the path of automatic driving vehicle and speed-optimization

Also Published As

Publication number Publication date
TW202134091A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10029698B2 (en) Adaptive passenger comfort enhancement in autonomous vehicles
US10289110B2 (en) Method to dynamically adjusting steering rates of autonomous vehicles
US9851215B2 (en) Navigation system with geographic familiarity mechanism and method of operation thereof
KR102260486B1 (en) Speed control for complete stopping of autonomous vehicles
KR102047945B1 (en) Longitudinal cascaded controller preset for autonomous vehicle control to reenter autonomous mode
US11162806B2 (en) Learning and predictive navigation system
US11584372B2 (en) Method to dynamically adjusting speed control rates of autonomous vehicles
US20120150429A1 (en) Method and arrangement relating to navigation
US11462060B2 (en) Data collection automation system
JP2011525971A (en) Navigation apparatus and method
JP2020521191A (en) Driving method along lanes without maps and positioning for autonomous driving of autonomous vehicles on highways
US11710422B2 (en) Driving analysis and instruction device
US11340613B2 (en) Communications protocols between planning and control of autonomous driving vehicle
US10421463B2 (en) Automatic steering control reference adaption to resolve understeering of autonomous driving vehicles
US20170343372A1 (en) Navigation system with vision augmentation mechanism and method of operation thereof
US11180145B2 (en) Predetermined calibration table-based vehicle control system for operating an autonomous driving vehicle
US20210188296A1 (en) Torque feedback based vehicle longitudinal automatic calibration system for autonomous driving vehicles
EP3040682A1 (en) Learning and predictive navigation system
US20210179101A1 (en) A speed control command auto-calibration system for autonomous vehicles
CN111123948B (en) Vehicle multidimensional sensing fusion control method and system and automobile
TWI745879B (en) Automatic driving system and automatic driving method
JP2019175201A (en) Sensor sharing system, sensor sharing server, method for operating sensor sharing server, sensor equipment device, and computer program for sharing sensor
WO2010113909A1 (en) Map display device and map image display method of map display device
CN111337051B (en) Method and device for calibrating forward axis of vehicle accelerometer
EP3659886B1 (en) Method to determine vehicle load of autonomous driving vehicle using predetermined load calibration tables