TWI743972B - 快閃式類比數位轉換器與校正方法 - Google Patents

快閃式類比數位轉換器與校正方法 Download PDF

Info

Publication number
TWI743972B
TWI743972B TW109129851A TW109129851A TWI743972B TW I743972 B TWI743972 B TW I743972B TW 109129851 A TW109129851 A TW 109129851A TW 109129851 A TW109129851 A TW 109129851A TW I743972 B TWI743972 B TW I743972B
Authority
TW
Taiwan
Prior art keywords
voltage
signal
input signal
reference voltage
signals
Prior art date
Application number
TW109129851A
Other languages
English (en)
Other versions
TW202211634A (zh
Inventor
黃詩雄
吳盈澂
吳健銘
劉凱尹
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW109129851A priority Critical patent/TWI743972B/zh
Priority to CN202110041891.5A priority patent/CN114124090A/zh
Priority to US17/333,063 priority patent/US11418206B2/en
Application granted granted Critical
Publication of TWI743972B publication Critical patent/TWI743972B/zh
Publication of TW202211634A publication Critical patent/TW202211634A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1023Offset correction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

快閃式類比數位轉換器包含多個雙差動比較器電路以及校正電路。每一雙差動比較器電路比較第一輸入訊號與第一組參考電壓中之一對應者,並比較第二輸入訊號與第二組參考電壓中之一對應者,以產生多個第一訊號中之一對應者。校正電路在測試模式下輸出第一測試訊號為第一輸入訊號,輸出第二測試訊號為第二輸入訊號,並根據該些第一訊號之分佈性校正第一輸入訊號與第二輸入訊號中每一者的共模位準或校正第一組參考電壓中之至少一第一參考電壓以及第二組參考電壓中之至少一第二參考電壓。

Description

快閃式類比數位轉換器與校正方法
本案是關於快閃式類比數位轉換器,尤其是關於快閃式類比數位轉換器與其藉由觀察多個數位碼來校正系統性偏移的校正方法。
在現有技術中,快閃式類比數位轉換器中的所有比較器電路皆具有相同電路結構。若系統性偏移(systematic offset)存在,這些比較器電路可能無法正確地操作於預設的工作區域,進而導致快閃式類比數位轉換器的操作失效。
於一些實施例中,快閃式類比數位轉換器包含多個雙差動比較器電路以及校正電路。每一雙差動比較器電路比較第一輸入訊號與第一組參考電壓中之一對應者,並比較第二輸入訊號與第二組參考電壓中之一對應者,以產生多個第一訊號中之對應者。校正電路在測試模式下輸出第一測試訊號為第一輸入訊號,輸出第二測試訊號為第二輸入訊號,並根據該些第一訊號之分佈 性校正第一輸入訊號與第二輸入訊號中每一者的共模位準或校正第一組參考電壓中之至少一第一參考電壓以及第二組參考電壓中之至少一第二參考電壓。
於一些實施例中,校正方法用於校正快閃式類比數位轉換器,並包含下列操作:輸出第一測試訊號為第一輸入訊號,並輸出第二測試訊號為第二輸入訊號,其中快閃式類比數位轉換器包含多個雙差動比較器電路,該些雙差動比較器電路中每一者比較第一輸入訊號與第一組參考電壓中之對應者,並比較第二輸入訊號與第二組參考電壓中之對應者,以產生多個第一訊號中之一對應者;以及根據該些第一訊號之分佈性校正第一輸入訊號與第二輸入訊號中每一者的共模位準或校正第一組參考電壓中之至少一第一參考電壓以及第二組參考電壓中之至少一第二參考電壓。
有關本案的特徵、實作與功效,茲配合圖式作較佳實施例詳細說明如下。
100:快閃式類比數位轉換器
120:參考電壓產生電路
140:編碼器電路
160:比較器電路系統
162,162-1,162-2,162-n:雙差動放大器電路
164:閂鎖器電路
180:校正電路
EN:致能訊號
RX,RY,R1,R2:電阻
S1,S2,S1+,S1-:訊號
SD:數位訊號
SIN+,SIN-,SIN:輸入訊號
ST1,ST2:測試訊號
VC1:控制訊號
VRN,VRP:電壓
Vx1~Vxm,Vy1~Vym,Vx,Vy:參考電壓
201,202:電流源電路
GND:地電壓
M1~M8:電晶體
VB1:偏壓訊號
VDD:電源電壓
VOS:偏移電壓
V1~V6,V2',V3',V5',V6':訊號成分
ΔVREF:預設參考電壓範圍
400:校正方法
S410,S420:操作
〔圖1〕為根據本案一些實施例繪製一種快閃式類比數位轉換器的示意圖;〔圖2A〕為根據本案一些實施例繪製圖1中雙差動放大器電路的示意圖;〔圖2B〕為根據本案一些實施例繪製圖2A中雙差動放大器電路受系統性偏移影響之概念示意圖;〔圖2C〕為根據本案一些實施例繪製圖2A中的雙差動放大器電路經校正後的示意圖; 〔圖2D〕為根據本案一些實施例繪製圖2A中的雙差動放大器電路經校正後的示意圖;〔圖3〕為根據本案一些實施例繪示圖1的校正電路之操作概念的示意圖;以及〔圖4〕為根據本案一些實施例繪製的一種校正方法的流程圖。
本文所使用的所有詞彙具有其通常的意涵。上述之詞彙在普遍常用之字典中之定義,在本案的內容中包含任一於此討論的詞彙之使用例子僅為示例,不應限制到本案之範圍與意涵。同樣地,本案亦不僅以於此說明書所示出的各種實施例為限。
關於本文中所使用之『耦接』或『連接』,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。如本文所用,用語『電路系統(circuitry)』可為由至少一電路(circuit)所形成的單一系統,且用語『電路』可為由至少一個電晶體與/或至少一個主被動元件按一定方式連接以處理訊號的裝置。
如本文所用,用語『與/或』包含了列出的關聯項目中的一個或多個的任何組合。在本文中,使用第一、第二與第三等等之詞彙,是用於描述並辨別各個元件。因此,在本文中的第一元件也可被稱為第二元件,而不脫離本案的本意。為易於理解,於各圖式中的類似元件將被指定為相同標號。
圖1為根據本案一些實施例繪製一種快閃式(flash)類比數位轉換器100的示意圖。快閃式類比數位轉換器100可轉換輸入訊號SIN為對應的數位訊號SD,其中輸入訊號SIN為輸入訊號SIN+與輸入訊號SIN-之間的差值。
快閃式類比數位轉換器100包含參考電壓產生電路120、編碼器電路140、比較器電路系統160以及校正電路180。參考電壓產生電路120根據電壓VRP以及電壓VRN產生第一組參考電壓Vx1~Vxm以及第二組參考電壓Vy1~Vym。例如,參考電壓產生電路120包含多個電阻RX以及多個電阻RY。多個電阻RX操作為電壓分壓器電路,以根據電壓VRP以及電壓VRN產生第一組參考電壓Vx1~Vxm。參考電壓Vx1為在第一組參考電壓Vx1~Vxm中最接近電壓VRP的電壓,且參考電壓Vxm為在第一組參考電壓Vx1~Vxm中最接近電壓VRN的電壓。
類似地,多個電阻RY操作為電壓分壓器電路,以根據電壓VRN以及電壓VRP產生第二組參考電壓Vy1~Vym。參考電壓Vy1為在第二組參考電壓Vy1~Vym中最接近電壓VRN的電壓,且參考電壓Vym為在第二組參考電壓Vy1~Vym中最接近電壓VRP的電壓。
上述關於參考電壓產生電路120的實施方式用於示例,且本案並不以此為限。各種類型的參考電壓產生電路120皆為本案所涵蓋的範圍。
編碼器電路140根據多個訊號S2產生數位訊號SD。例如,編碼器電路140可編碼多個訊號S2以產生數位訊號SD。於一些實施例中,多個訊號S2為溫度計碼,且數位訊號SD為二位元碼。於一些實施例中,編碼器電路140可由一或多個邏輯電路實施。
比較器電路系統160將輸入訊號SIN分別與第一組參考電壓Vx1~Vxm以及第二組參考電壓Vy1~Vym進行比較,以產生多個訊號S2。於此實施例中,比較器電路系統160包含多個雙差動(double-differential)比較器電路,其中每一個雙差動比較電路包含一個雙差動放大器電路162以及一個閂鎖器(latch)電路164。
多個雙差動放大器電路162中每一者比較輸入訊號SIN+與第一組參考電壓Vx1~Vxm中之一對應者,並比較輸入訊號SIN-與第二組參考電壓Vy1~Vym中之一對應者,以產生多個訊號S1中之一對應者。訊號S1可為雙差動放大器電路162的兩個輸出端之間的電壓差。以第一個雙差動放大器電路162(標示為162-1)為例,雙差動放大器電路162-1比較輸入訊號SIN+與參考電壓Vx1,並比較輸入訊號SIN-與參考電壓Vy1,以產生多個訊號S1中之第一者。依此類推,最後一個雙差動放大器電路162(標示為162-2)比較SIN+與參考電壓Vxm,並比較輸入訊號SIN-與參考電壓Vym,以產生多個訊號S1中之最後一者。
多個閂鎖器電路164根據多個訊號S1產生多個訊號S2。於一些實施例中,閂鎖器電路164為具有正回授的電路,其將對應的訊號S1拉升至軌對軌(rail-to-rail)的位準,以產生對應的訊號S2
校正電路180對比較器電路系統160進行測試,以校正至少一個比較器電路的一系統性偏移(systematic offset)。校正電路180響應於致能訊號EN進入測試模式。在測試模式下,校正電路180輸出測試訊號ST1為輸入訊號SIN+,並輸出測試訊號ST2為輸入訊號SIN-。響應於測試訊號ST1與測試訊號ST2,多個雙差動比較器電路產生多個訊號S2。校正電路180可根據此些訊號S2的分佈性校正輸入訊號SIN+與輸入訊號SIN-中每一者的共模位準,或是校正第一組參考電壓Vx1~Vxm中之至少一第一參考電壓以及第二組參考電壓Vy1~Vym中之至少一第二參考電壓。於一些實施例中,校正電路180計算多個訊號S2的標準差,以決定該些多個訊號S2的分佈性。於一些實施例中,校正電路180計算多個訊號S2為第一邏輯值的最大個數,以決定該些多個訊號S2的分佈性。關於此處之細節將於後參照圖3進一步說明。
於一些實施例中,校正電路180可輸出控制訊號VC1以校正前述的共模位準、至少一第一參考電壓與/或至少一第二參考電壓。舉例來說,如圖1所示,多個電阻RX與多個電阻RY為可變電阻,校正電路180可輸出控制訊號VC1調整多個電阻RX與/或多個電阻RY中至少一者的阻值,以校正至少一第一參考電壓與/或至少一第二參考電壓。於一些實施例中,快閃式類比數位轉換器100更包含電壓調節器電路(未示出),其可根據控制訊號VC1產生偏移電壓(例如為圖2C中的偏移電壓VOS)以校正該共模位準。或者,於其他實施例中,該電壓調節器電路為一低壓差穩壓器(low-dropout regulator)電路,其可根據控制訊號VC1調整電壓VRN與電壓VRP,以校正至少一第一參考電壓與/或至少一第二參考電壓。於一些實施例中,若輸入訊號SIN+以及輸入訊號SIN-為來自快閃式類比數位轉換器100的一前級電路(未示出)之輸出端,校正電路180可傳輸控制訊號VC1至該前級電路,以調整前級電路的輸出端之共模位準。於一些實施例中,校正電路180可根據數位訊號SD決定多個訊號S2的標準差。
於一些實施例中,校正電路180可由數位訊號處理電路實施。於一些實施例中,校正電路180可為快閃式類比數位轉換器100中之一前景式(foreground)校正電路。於一些實施例中,校正電路180可為快閃式類比數位轉換器100外部的一輔助設計系統,其可用於在快閃式類比數位轉換器100的製造過程中對比較器電路系統160進行校正。
上述關於快閃式類比數位轉換器100的設置方式用於示例,且本案並不以此為限。於一些實施例中,比較器電路系統160可包含內插網路(未示出),其可執行內插運算以產生多個訊號S2。於一些實施例中,該內插網路可為主動式網路(例如為一或多級放大器)或可為被動式網路(例如為電阻性網 路)。各種可使用雙差動比較器電路的快閃式類比數位轉換器皆為本案所涵蓋的範圍。
圖2A為根據本案一些實施例繪製圖1中的雙差動放大器電路162的示意圖。雙差動放大器電路162包含電流源電路201、電流源電路202、多個電晶體M1~M8以及多個電阻R1~R2。電流源電路201偏壓多個電晶體M1~M4。電流源電路201的第一端耦接至電晶體M1與電晶體M2兩者的第二端(例如為源極),且電流源電路201的第二端接收地電壓GND。電晶體M1的第一端(例如為汲極)耦接至電晶體M3的第二端,且電晶體M1的控制端(例如為閘極)接收第一組參考電壓Vx1~Vxm中之一對應者(標記為Vx)。電晶體M3的第一端耦接至電阻R2的第二端以產生訊號S1+,且電晶體M3的控制端接收偏壓訊號VB1。電阻R2的第一端接收電源電壓VDD。電晶體M2的第一端耦接至電晶體M4的第二端,且電晶體M2的控制端接收輸入訊號SIN+。電晶體M4的第一端耦接至電阻R1的第二端以產生訊號S1-,且電晶體M4的控制端接收偏壓訊號VB1。電阻R1的第一端接收電源電壓VDD。
電流源電路202的第一端耦接至電晶體M5與電晶體M6兩者的第二端,且電流源電路202的第二端接收地電壓GND。電晶體M5的第一端耦接至電晶體M7的第二端,且電晶體M5的控制端接收輸入訊號SIN-。電晶體M7的第一端耦接至電阻R2的第二端以產生訊號S1+,且電晶體M7的控制端接收偏壓訊號VB1。電晶體M6的第一端耦接至電晶體M8的第二端,且電晶體M6的控制端接收第二組參考電壓Vy1~Vym中之一對應者(標記為Vy)。電晶體M8的第一端耦接至電阻R1的第二端以產生訊號S1-,且電晶體M8的控制端接收偏壓訊號VB1
多個電晶體M1~M2操作為第一輸入對電路,且多個電晶體M5~M6操作為第二輸入對電路。多個電晶體M1~M2以及多個電晶體M5~M6中每一者的寬長比(aspect ratio)彼此相同。如此,多個電晶體M1~M2以及多個電晶體M5~M6中每一者理論上會具有相同的轉導值。藉由電路分析,可得知訊號S1可表示為下式:
Figure 109129851-A0305-02-0010-2
其中,gm為前述的轉導值,R為電阻R1與電阻R2中每一者的阻值,且訊號S1+與訊號S1-之間的差值為圖1的訊號S1
圖2B為根據本案一些實施例繪製圖2A中雙差動放大器電路162受系統性偏移影響之概念示意圖。若圖2A中的雙差動放大器電路162為圖1中的雙差動放大器電路162-1,參考電壓Vx為參考電壓Vx1(例如為0.75伏特),且參考電壓Vy為參考電壓Vy1(例如為0.25伏特)。
於情形1中,圖2A中的輸入訊號SIN+以及輸入訊號SIN-中每一者具有0.5伏特的預設共模位準以及0.2499伏特的訊號擺幅。由圖2A可知,訊號S1-為響應於輸入訊號SIN+以及參考電壓Vy1而來。依據電路分析(例如為重疊定理),可得知訊號S1-為訊號成分V1以及訊號成分V2的總和V5,其中訊號成分V1為根據參考電壓Vy1所產生的電壓,且訊號成分V2為根據輸入訊號SIN+所產生的電壓。於情形1中,參考電壓Vy1(0.25伏特)低於輸入訊號SIN+(0.7499伏特)。於此條件下,參考電壓Vy1在電阻R1上產生的第一電壓降小於輸入訊號SIN+在電阻R1上產生的第二電壓降。因此,訊號成分V1的位準(即電源電壓VDD減去第一電壓降)高於訊號成分V2的位準(即電源電壓VDD減去第二電壓降)。
類似地,訊號S1+可為訊號成分V3以及訊號成分V4的總和V6,其中訊號成分V3為根據輸入訊號SIN-所產生的電壓,且訊號成分V4為根據參考電壓Vx1所產生的電壓。於情形1中,參考電壓Vx1(0.75伏特)高於輸入訊號SIN-(0.2501伏特)。於此條件下,參考電壓Vx1在電阻R2上產生的第三電壓降高於輸入訊號SIN-在電阻R2上產生的第四電壓降。因此,訊號成分V3的位準(即電源電壓VDD減去第四電壓降)高於訊號成分V4的位準(即電源電壓VDD減去第三電壓降)。如此,在情形1中,訊號S1-的共模位準(即總和V5)可實質上相同於訊號S1+的共模位準(即總和V6)。
若雙差動放大器電路162-1出現系統性偏移,可等效視為輸入訊號SIN+以及輸入訊號SIN-中每一者的共模位準出現偏移。例如,於情形2中,圖2A中的輸入訊號SIN+以及輸入訊號SIN-中每一者的共模位準由0.5伏特偏離至0.6伏特。相較於情形1,輸入訊號SIN+提高至0.8499伏特。由於此位準過高,電晶體M2的第一端上之電壓會受限於電晶體M4。如此,電晶體M2會誤操作於非預設的工作區域(例如為線性區),使得電晶體M2之轉導值降低。於此條件下,電晶體M2響應於輸入訊號SIN+產生的電流會變低。因此,第二電壓降也變低。如此一來,訊號成分V2將提高至訊號成分V2'。參考電壓Vx1於情形1~2中皆為0.75伏特,故訊號成分V1的位準保持不變。據此,訊號S1-於情形2的共模位準(即訊號成分V1與訊號成分V2'之總和V5')將高於訊號S1-於情形1的共模位準(即總和V5)。
相較於情形1,輸入訊號SIN-提高至0.3501伏特。於此條件下,電晶體M5響應於此輸入訊號SIN-所產生的電流變高。因此,第四電壓降也變高。如此一來,訊號成分V3將降低至訊號成分V3'。參考電壓Vy1於情形1~2中 皆為0.25伏特,故訊號成分V4的位準保持不變。據此,訊號S1+於情形2的共模位準(即訊號成分V3'與訊號成分V4之總和V6')將低於訊號S1+於情形1的共模位準(即總和V6)。換言之,於情形2中,訊號S1+的共模位準(即總和V6')不同於訊號S1-的共模位準(即總和V5'),其中訊號S1+與訊號S1-之間的差值即為系統性偏移,其可能導致對應的比較器電路操作失效。
圖2C為根據本案一些實施例繪製圖2A中的雙差動放大器電路162經校正後的示意圖。為了校正偏移,於此例中,電晶體M2的控制端被施加+0.01伏特的偏移電壓VOS,且電晶體M5的控制端被施加-0.01伏特的偏移電壓VOS。於一實驗例中,藉由施加偏移電壓VOS,先前情形2的偏移可以有效地被消除,以避免比較器電路操作失效。
圖2D為根據本案一些實施例繪製圖2A中的雙差動放大器電路162經校正後的示意圖。在圖2C的例子中,校正電路180是透過調整訊號成分V2'以及訊號成分V3'的位準來校正系統性偏移。如圖2B所示,訊號成分S1-的共模位準(即總和V5')關聯於訊號成分V1以及訊號成分V2',且訊號成分S1+的共模位準(即總和V6')關聯於訊號成分V3'以及訊號成分V4。因此,校正電路180亦可透過調整訊號成分V1與訊號成分V4來校正偏移。於此例中,電晶體M1的控制端被施加-0.01伏特的偏移電壓VOS,且電晶體M6的控制端被施加+0.01伏特的偏移電壓VOS。於此條件下,訊號成分V1的位準將變低,且訊號成分V4的位準將變高。如此,可以有效地消除偏移,以避免比較器電路操作失效。應可理解,根據圖2C以及圖2D,為了降低偏移,同一輸入對電路中的不同電晶體將被施加不同極性的偏移電壓VOS
上述說明是以接收參考電壓Vx1以及參考電壓Vy1的雙差動放大器電路162-1為例。參考電壓Vx1與參考電壓Vy1在多個輸入對電路上分別形成兩個極端的偏壓條件。相較於其他雙差動放大器電路162(例如為圖1中的162-n),雙差動放大器電路162-1中的多個輸入對電路較容易受到系統性偏移的影響。類似地,於一些實施例中,圖1中接收參考電壓Vxm以及參考電壓Vym的雙差動放大器電路162-2亦容易受到系統性偏移的影響。因此,於一些實施例中,校正電路180所校正的至少一第一參考電壓可包含(但不限於)參考電壓Vx1或參考電壓Vxm中至少一者,且校正電路180所校正的至少一第二參考電壓可包含(但不限於)參考電壓Vy1或參考電壓Vym中至少一者。
上述關於雙差動放大器電路162的設置方式用於示例,且本案並不以此為限。應當理解,上述說明限於圖2A所示的電路架構。在不同的電路架構與/或電路設定(例如電晶體尺寸、實際偏壓條件)下,系統性偏移的成因可能會有所不同。
圖3為根據本案一些實施例繪示圖1的校正電路180之操作概念的示意圖。於此例中,校正電路180可分析多個訊號S2,以偵測系統性偏移。若比較器電路系統160包含16個比較器電路,比較器電路系統160將產生16個訊號S2。例如,第16個訊號S2來自雙差動放大器電路162-1與對應的閂鎖器電路164,且第1個訊號S2來自雙差動放大器電路162-2與對應的閂鎖器電路164。
若系統性偏移不存在,電晶體M2與/或電晶體M5的轉導值為預定值。於此條件下,輸入訊號SIN+與輸入訊號SIN-之間的差值(後稱ΔV)範圍經過電晶體M2與電晶體M5處理後應相應於預設參考電壓範圍ΔVREF,其中預設參考電壓範圍ΔVREF可由第一組參考電壓Vx1~Vxm(或第二組參考電壓Vy1 ~Vym)中之兩者決定。於此例中,在預定的訊號擺幅下,共有12個比較器電路會響應於輸入訊號SIN產生具有第一邏輯值(例如為邏輯值1)的多個訊號S2(假設為第3~14個訊號S2)。換言之,在理想情形下,共有12個訊號S2對應至預設參考電壓範圍ΔVREF。
然而,若系統性偏移使得電晶體M2與/或電晶體M5的轉導值降低,差值ΔV經過電晶體M2與電晶體M5處理後會小於預設參考電壓範圍ΔVREF。在相同的訊號擺幅下,部分的比較器電路會判定輸入訊號SIN小於參考電壓Vx與參考電壓Vy之間的差值,而固定輸出具有第二邏輯值(例如為邏輯值0)的訊號S2(例如為第1~3個訊號S2以及第14~16個訊號S2)。在此情形下,僅有10個訊號S2對應至預設參考電壓範圍ΔVREF。
換個方式解釋,由於該些比較器電路是判定輸入訊號SIN小於參考電壓Vx與參考電壓Vy之間的差值才會輸出具有第二邏輯值的訊號S2,故可視為該些比較器電路所接收的參考電壓Vx與/或參考電壓Vy因系統性偏移的影響而等效地變大(相較於理想情形)。上述現象可稱為『參考電壓外擴』。於此情形下,可以觀察到對應於預設參考電壓範圍ΔVREF的多個訊號S2具第一邏輯值之最大個數變少(相當於多個訊號S2的分佈性降低)。另一方面,校正電路180可統計並計算這些具第一邏輯值之訊號S2對應標號的標準差。若標準差變低,表示多個訊號S2的分佈性降低,故可視為出現『參考電壓外擴』。校正電路180可輸出控制訊號VC1來調整輸入訊號SIN+與輸入訊號SIN-的共模位準(如圖2C所示),以校正此偏移。或者,校正電路180可輸出控制訊號VC1來調整產生第3~14個訊號S2的比較器電路中每一者所接收的參考電壓Vx以及參考電壓Vy(如圖2D所示),以校正此偏移。
於另一情形,若系統性偏移使得電晶體M2與/或電晶體M5的轉導值變大,差值ΔV經過電晶體M2與電晶體M5處理後會大於預設參考電壓範圍ΔVREF。在相同的訊號擺幅下,會有更多的比較器電路會認為輸入訊號SIN大於參考電壓Vx與參考電壓Vy之間的差值,而輸出具有特定邏輯值(例如為邏輯值1)的訊號S2(例如為第2~15個訊號S2)。在此情形下,將有14個訊號S2對應至預設參考電壓範圍ΔVREF。
換個方式解釋,由於該些比較器電路是判定輸入訊號SIN大於參考電壓Vx與參考電壓Vy之間的差值才會輸出具有特定邏輯值的訊號S2,故可等效地視為該些比較器電路所接收的參考電壓Vx與/或參考電壓Vy因系統性偏移變小(相較於理想情形)。上述現象可稱為『參考電壓內縮』。於此情形下,可以觀察到對應於預設參考電壓範圍ΔVREF的多個訊號S2具第一邏輯值之最大個數變多(相當於多個訊號S2的分佈性變大)。另一方面,校正電路180可統計並計算這些具有第一邏輯值的多個訊號S2對應標號的標準差。若標準差變高,表示多個訊號S2的分佈性變大,故可視為出現『參考電壓內縮』。同樣地,校正電路180可調整輸入訊號SIN+與輸入訊號SIN-的共模位準(如圖2C所示),或是調整產生第2~15個訊號S2的比較器電路中每一者的所接收的參考電壓Vx以及參考電壓Vy(如圖2D所示),以校正此偏移。
應當理解,上述偵測系統性偏移的方式是透過觀察比較器電路系統160所輸出的多個訊號S2。因此,此種偵測方式可不受限於雙差動放大器電路162的內部電路結構,故可涵蓋多種產生系統性偏移的可能成因。
下表為根據一實驗例所整理之模擬結果:
Figure 109129851-A0305-02-0016-1
表中的系統性偏移相當於圖2A中輸入訊號SIN+與輸入訊號SIN-中每一者的共模位準上的偏移。於一些實施例中,校正電路180可將具有預設共模位準(即系統性偏移為0毫伏特)的測試訊號ST1以及測試訊號ST2分別輸出為輸入訊號SIN+與輸入訊號SIN-。響應於此測試訊號ST1以及測試訊號ST2,比較器電路系統160產生多個訊號S2。校正電路180可計算此些訊號S2的標準差,並記錄此標準差(其對應於預設共模位準)為多個訊號S2之分布性的預設值。
接著,校正電路180可加入系統性偏移至測試訊號ST1以及測試訊號ST2的共模位準,並將測試訊號ST1以及測試訊號ST2分別輸出為輸入訊號SIN+與輸入訊號SIN-。基於同樣操作,校正電路180可計算此些訊號S2的當前標準差。校正電路180可比較當前標準差與先前記錄的預設值,並在當前標準差不同於預設值時調整共模位準或是至少一第一參考電壓與至少一第二參考電壓。
例如,如上表所示,在未加入系統性偏移(即0毫伏特)時,多個訊號S2之分布性的預設值為4.4。當加入+100毫伏特的偏移電壓後,多個訊號S2的標準差為4。由於當前的分佈性(即4)小於預設值(即4.4),校正電路180可確認比較器電路系統160中的部分雙差動放大器電路162受到『參考電壓外擴』的影響。
或者,若加入偏移電壓後,多個訊號S2的標準差大於預設值(即4.4),校正電路180可確認比較器電路系統160中的部分雙差動放大器電路162受到『參考電壓內縮』的影響。
於一些實施例中,測試訊號ST1與測試訊號ST2可為具有預定共模位準與預定訊號擺幅的訊號。於一些實施例中,測試訊號ST1與測試訊號ST2可為直流訊號。校正電路180可依序輸出具有不同直流位準的多個測試訊號ST1與測試訊號ST2,以分析多個訊號S2的分佈性。
上述用具第一邏輯值之多個訊號S2的最大個數或標準差來決定訊號S2的分佈性的例子僅用於示例,且本案並不為限。各種可反映訊號S2的分佈性之統計指標皆為本案所涵蓋的範圍。
圖4為根據本案一些實施例繪製的一種校正方法400的流程圖。於一些實施例中,校正方法400可由(但不限於)圖1的校正電路180執行。
於操作S410,輸出第一測試訊號為第一輸入訊號,並輸出第二測試訊號為第二輸入訊號,其中快閃式轉換器包含多個雙差動比較器電路,該些雙差動比較器電路中每一者比較第一輸入訊號與第一組參考電壓中之一對應者,並比較第二輸入訊號與第二組參考電壓中之一對應者以產生多個第一訊號中之一對應者。
於操作S420,根據多個第一訊號的一分佈性校正第一輸入訊號與第二輸入訊號中每一者的共模位準,或校正第一組參考電壓中之至少一第一參考電壓以及第二組參考電壓中之至少一第二參考電壓。
上述校正方法400的多個操作之說明可參考前述多個實施例,故於此不再贅述。上述多個操作僅為示例,並非限定需依照此示例中的順序執行。在不違背本案的各實施例的操作方式與範圍下,在校正方法400下的各種操作當可適當地增加、替換、省略或以不同順序執行。或者,在校正方法400下的一或多個操作可以是同時或部分同時執行。
綜上所述,本案一些實施例中的快閃式類比數位轉換器與校正方法可藉由分析多個訊號的分佈性來觀察比較器電路系統是否出現系統性偏移,並校正此系統性偏移以提升整體操作的可靠度。
雖然本案之實施例如上所述,然而該些實施例並非用來限定本案,本技術領域具有通常知識者可依據本案之明示或隱含之內容對本案之技術特徵施以變化,凡此種種變化均可能屬於本案所尋求之專利保護範疇,換言之,本案之專利保護範圍須視本說明書之申請專利範圍所界定者為準。
100:快閃式類比數位轉換器
120:參考電壓產生電路
140:編碼器電路
160:比較器電路系統
162,162-1,162-2,162-n:雙差動放大器電路
164:閂鎖器電路
180:校正電路
EN:致能訊號
RX,RY:電阻
S1,S2:訊號
SD:數位訊號
SIN+,SIN-,SIN:輸入訊號
ST1,ST2:測試訊號
VC1:控制訊號
VRN,VRP:電壓
Vx1~Vxm,Vy1~Vym:參考電壓

Claims (10)

  1. 一種快閃式類比數位轉換器,包含:複數個雙差動(double-differential)比較器電路,其中該些雙差動比較器電路中每一者用以比較一第一輸入訊號與一第一組參考電壓中之一對應者,並比較一第二輸入訊號與一第二組參考電壓中之一對應者,以產生複數個第一訊號中之一對應者;以及一校正電路,用以在一測試模式下輸出一第一測試訊號為該第一輸入訊號,輸出一第二測試訊號為該第二輸入訊號,並根據該些第一訊號計算用於反映該些第一訊號之一分佈性的一統計指標,並根據該統計指標校正該第一輸入訊號與該第二輸入訊號中每一者的一共模位準或校正該第一組參考電壓中之至少一第一參考電壓以及該第二組參考電壓中之至少一第二參考電壓。
  2. 如請求項1之快閃式類比數位轉換器,其中該校正電路更用以比較該分佈性與一預設值,以調整該共模位準或是調整該至少一第一參考電壓與該至少一第二參考電壓。
  3. 如請求項2之快閃式類比數位轉換器,其中該校正電路用以輸出具有一預設共模位準之該第一測試訊號與該第二測試訊號,並紀錄對應於該預設共模位準的該分佈性為該預設值。
  4. 如請求項1之快閃式類比數位轉換器,其中該校正電路用以計算該些第一訊號之一標準差,以決定該分佈性,且該標準差為該統計指標。
  5. 如請求項1之快閃式類比數位轉換器,更包含: 一參考電壓產生電路,用以根據一第一電壓與一第二電壓產生該第一組參考電壓與該第二組參考電壓。
  6. 如請求項5之快閃式類比數位轉換器,其中該至少一第一參考電壓包含一第三電壓或一第四電壓中至少一者,該第三電壓為該第一組參考電壓中最接近於該第一電壓的一電壓,且該第四電壓為該第一組參考電壓中最接近於該第二電壓的一電壓。
  7. 如請求項5之快閃式類比數位轉換器,其中該至少一第二參考電壓包含一第三電壓或一第四電壓中至少一者,該第三電壓為該第二組參考電壓中最接近於該第一電壓的一電壓,且該第四電壓為該第二組參考電壓中最接近於該第二電壓的一電壓。
  8. 一種校正方法,其用於校正一快閃式類比數位轉換器,該校正方法包含:輸出一第一測試訊號為一第一輸入訊號,並輸出一第二測試訊號為一第二輸入訊號,其中該快閃式類比數位轉換器包含複數個雙差動(double-differential)比較器電路,該些雙差動比較器電路中每一者用以比較該第一輸入訊號與一第一組參考電壓中之一對應者,並比較該第二輸入訊號與一第二組參考電壓中之一對應者,以產生複數個第一訊號中之一對應者;以及根據該些第一訊號計算用於反映該些第一訊號之一分佈性的一統計指標,並根據該統計指標校正該第一輸入訊號與該第二輸入訊號中每一者的一共模位準或校正該第一組參考電壓中之至少一第一參考電壓以及該第二組參考電壓中之至少一第二參考電壓。
  9. 如請求項8之校正方法,其中根據該些第一訊號計算用於反映該些第一訊號之該分佈性的該統計指標,並根據該統計指標校正該共模位準或校正該至少一第一參考電壓以及該至少一第二參考電壓包含:計算該些第一訊號之一標準差,以決定該分佈性,其中該標準差為該統計指標。
  10. 如請求項8之校正方法,其中根據該些第一訊號計算用於反映該些第一訊號之該分佈性的該統計指標,並根據該統計指標校正該共模位準或校正該至少一第一參考電壓以及該至少一第二參考電壓包含:比較該分佈性與一預設值;以及當該分佈性不同於該預設值,調整該共模位準或是調整該至少一第一參考電壓與該至少一第二參考電壓。
TW109129851A 2020-09-01 2020-09-01 快閃式類比數位轉換器與校正方法 TWI743972B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109129851A TWI743972B (zh) 2020-09-01 2020-09-01 快閃式類比數位轉換器與校正方法
CN202110041891.5A CN114124090A (zh) 2020-09-01 2021-01-13 快闪式模拟数字转换器与校正方法
US17/333,063 US11418206B2 (en) 2020-09-01 2021-05-28 Flash analog to digital converter and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129851A TWI743972B (zh) 2020-09-01 2020-09-01 快閃式類比數位轉換器與校正方法

Publications (2)

Publication Number Publication Date
TWI743972B true TWI743972B (zh) 2021-10-21
TW202211634A TW202211634A (zh) 2022-03-16

Family

ID=80359109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129851A TWI743972B (zh) 2020-09-01 2020-09-01 快閃式類比數位轉換器與校正方法

Country Status (3)

Country Link
US (1) US11418206B2 (zh)
CN (1) CN114124090A (zh)
TW (1) TWI743972B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743948B (zh) * 2020-08-17 2021-10-21 瑞昱半導體股份有限公司 快閃式類比數位轉換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030063020A1 (en) * 2001-10-01 2003-04-03 Masenas Charles J. Method and circuit for dynamic calibration of flash analog to digital converters
US6570523B1 (en) * 2002-02-13 2003-05-27 Intersil Americas Inc. Analog to digital converter using subranging and interpolation
US20030184459A1 (en) * 2000-02-04 2003-10-02 Bernhard Engl Devices and methods for calibrating amplifier stages and for compensating for errors in amplifier stages of series-connected components
TWI335730B (en) * 2007-08-07 2011-01-01 Himax Tech Ltd Analog-to-digital converter
TWI452846B (zh) * 2010-12-16 2014-09-11 Univ Nat Cheng Kung 分段式類比數位轉換器及其方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223047B2 (en) * 2009-08-11 2012-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. ADC calibration
US8350737B2 (en) * 2011-01-12 2013-01-08 International Business Machines Corporation Flash analog to digital converter with method and system for dynamic calibration
JP5597660B2 (ja) * 2012-03-05 2014-10-01 株式会社東芝 Ad変換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030184459A1 (en) * 2000-02-04 2003-10-02 Bernhard Engl Devices and methods for calibrating amplifier stages and for compensating for errors in amplifier stages of series-connected components
US20030063020A1 (en) * 2001-10-01 2003-04-03 Masenas Charles J. Method and circuit for dynamic calibration of flash analog to digital converters
US6570523B1 (en) * 2002-02-13 2003-05-27 Intersil Americas Inc. Analog to digital converter using subranging and interpolation
TWI335730B (en) * 2007-08-07 2011-01-01 Himax Tech Ltd Analog-to-digital converter
TWI452846B (zh) * 2010-12-16 2014-09-11 Univ Nat Cheng Kung 分段式類比數位轉換器及其方法

Also Published As

Publication number Publication date
US11418206B2 (en) 2022-08-16
US20220069831A1 (en) 2022-03-03
CN114124090A (zh) 2022-03-01
TW202211634A (zh) 2022-03-16

Similar Documents

Publication Publication Date Title
US8026761B2 (en) Instrumentation amplifier calibration method, system and apparatus
CN104820456B (zh) 电流源校准跟踪温度和偏置电流
CN102043081A (zh) 使用单片检测电阻器准确地测量电流的方法和装置
US9354644B2 (en) Apparatus and method of temperature drift compensation
US8415979B2 (en) Differential driver with calibration circuit and related calibration method
US11621683B2 (en) Current sensing circuitry
US9941852B1 (en) Operation amplifiers with offset cancellation
TWI743972B (zh) 快閃式類比數位轉換器與校正方法
CN113655265A (zh) 用于电流检测的集成电路、电流检测电路及其校准方法
US20030001627A1 (en) Differential voltage magnitude comparator
CN112187214A (zh) Fpga的io阻抗校准电路及其方法
TWI694678B (zh) 比較器及類比數位轉換電路
CN115833761A (zh) 用可修调电流源对运算放大器失调电压修调校准的方法
CN116400130A (zh) 一种输出电流信号的电压采样电路
US11831287B2 (en) Common mode correction using ADC in analog probe based receiver
US20230291373A1 (en) Techniques to externally control amplifier gain
US10006958B2 (en) Semiconductor device and method of inspecting a semiconductor device
JP7363657B2 (ja) 過電圧判定回路
US11249504B2 (en) Current generation circuit
US7345536B2 (en) Amplifier circuit and control method thereof
US9817034B2 (en) Measuring device
US7332958B2 (en) Analog-differential-circuit test device
US7649394B2 (en) Latch circuit
US9608570B1 (en) Amplifier calibration methods and circuits
TWI743948B (zh) 快閃式類比數位轉換器