TWI743929B - 具有三階層切換電路之轉換裝置及三階層切換電路之操作方法 - Google Patents

具有三階層切換電路之轉換裝置及三階層切換電路之操作方法 Download PDF

Info

Publication number
TWI743929B
TWI743929B TW109126843A TW109126843A TWI743929B TW I743929 B TWI743929 B TW I743929B TW 109126843 A TW109126843 A TW 109126843A TW 109126843 A TW109126843 A TW 109126843A TW I743929 B TWI743929 B TW I743929B
Authority
TW
Taiwan
Prior art keywords
switch unit
capacitor
terminal
voltage
control unit
Prior art date
Application number
TW109126843A
Other languages
English (en)
Other versions
TW202207609A (zh
Inventor
林鴻杰
謝奕平
黃進忠
黃弘宇
李志賢
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109126843A priority Critical patent/TWI743929B/zh
Application granted granted Critical
Publication of TWI743929B publication Critical patent/TWI743929B/zh
Publication of TW202207609A publication Critical patent/TW202207609A/zh

Links

Images

Abstract

一種具有三階層切換電路之轉換裝置包括直流轉換模組、三階層電路及控制單元,三階層電路包括橋臂組與電容組。電容組包含串聯的第一電容與第二電容。直流轉換模組具有輸出正端與輸出負端且耦接橋臂組。控制單元控制橋臂組的第二開關單元與第三開關單元的切換而使三階層電路操作於將輸出正端與輸出負端連接第一電容的第一狀態及將輸出正端與輸出負端連接第二電容的第二狀態。

Description

具有三階層切換電路之轉換裝置及三階層切換電路之操作方 法
本發明係有關一種具有三階層切換電路之轉換裝置及三階層切換電路之操作方法,尤指一種可提高電路整體功率密度的轉換裝置及操作方法。
不斷電系統(或稱UPS,即Uninterruptible Power System)是在電網異常的情況下不間斷的為電器負載設備提供後備電力,以維持電器正常運作的設備。通常情況下不斷電系統被用於維持電腦(尤其是伺服器)或交換機等關鍵性商用設備或精密儀器的不間斷運作,尤其在現今伺服器應用的領域越來越廣泛的情況下,不斷電系統的使用效能越來越受到重視。
圖1為常見不斷電系統方塊圖,其電路架構主要是使用雙總線電壓的直流轉換模組10。通常直流轉換模組10會對雙總線穩壓,因此直流轉換模組10需產生800V的電壓,來維持第一電容242和第二電容244上的電壓為800V。在第一電容242和第二電容244的後端通常為三階層或者多階層的逆變 模組30。由於共零線設計需具有中點端O,第一電容242和第二電容244必須要構成三端點的架構。輸入電壓Vin經由直流轉換模組10轉換出800V的電壓後,再由後端逆變模組30(或者直流轉換器)提供給負載300能量。由於傳統的直流轉換模組10需要提供雙總線的跨壓為800V的電壓,造成電路元件體積龐大等缺點(因需要增加元件耐壓值)。
因此,如何設計出一種具有三階層切換電路之轉換裝置及三階層切換電路之操作方法,利用控制單元控制三階層切換電路的方式將第一電容與第二電容獨立分開切換並控制,乃為本案創作人所欲行研究的一大課題。
為了解決上述問題,本發明係提供一種具有三階層切換電路之轉換裝置,以克服習知技術的問題。因此,本發明具有三階層切換電路之轉換裝置包括:直流轉換模組,包括直流輸入端與輸出端,直流輸入端接收輸入電壓,且輸出端包括輸出正端與輸出負端。三階層電路包括:橋臂組,包括串聯的第一開關單元、第二開關單元、第三開關單元及第四開關單元,第一開關單元與第二開關單元之間的第一節點耦接輸出正端,且第三開關單元與第四開關單元之間的第二節點耦接輸出負端。及電容組,包括串聯的第一電容與第二電容,第一電容的正端耦接第一開關單元,第二電容的負端耦接第四開關單元,且第一電容與第二電容之間的一中點端耦接第二開關單元與第三開關單元之間的第三節點。及控制單元,控制橋臂組操作於直流模式。其中,在直流模式,控制單元控制第二 開關單元與第三開關單元的切換而使三階層電路操作於將輸出正端與輸出負端連接第一電容的第一狀態及將輸出正端與輸出負端連接第二電容的第二狀態。
為了解決上述問題,本發明係提供一種三階層切換電路之操作方法,三階層電路包括橋臂組,且橋臂組包括串聯的第一開關單元、第二開關單元、第三開關單元及第四開關單元,第一開關單元、第二開關單元之間的第一節點耦接直流轉換模組的輸出正端,第三開關單元、第四開關單元之間的第二節點耦接直流轉換模組的輸出負端,操作方法包括下列步驟:控制橋臂組操作於直流模式。在直流模式的第一周期,控制第三開關單元導通,使直流轉換模組通過輸出正端與輸出負端對第一電容充電而維持第一電容兩端的第一電容電壓為總線電壓。在接續第一周期的第二周期中,控制第二開關單元導通,使直流轉換模組通過輸出正端與輸出負端對與第一電容串聯的第二電容充電而維持第二電容的兩端的第二電容電壓為總線電壓。操作方法更包括下列步驟:控制橋臂組操作於交流模式,將交流電壓的正半週通過第二開關單元的切換而轉換為第一電容電壓。及在交流模式,將交流電壓的負半週通過第三開關單元的切換而轉換為第二電容電壓。
本發明之主要目的及功效在於,控制單元能夠針對第一電容與第二電容獨立分開切換並控制,因此在雙總線電壓電路中,直流轉換模組僅需要分別控制第一電容與第二電容的跨壓為一總線電壓,而不需同時控制兩倍的總線電壓,因此可達成使得直流轉換模組所使用的元件的電壓應力減半,整體功率密度高且效率佳之功效。
為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與 特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。
100、100’:轉換裝置
10、10’:直流轉換模組
12:直流輸入端
14:輸出端
142:輸出正端
144:輸出負端
T:變壓器
20:三階層電路
22:橋臂組
222:第一開關單元
224:第二開關單元
226:第三開關單元
228:第四開關單元
24:電容組
242:第一電容
244:第二電容
A~C:節點
O:中點端
30:逆變模組
40:控制單元
50:功率因數校正器
52、52’:功率電路
522:交流輸入端
L:火線端
N:零線端
524:第一整流端
526:第二整流端
L1:功率電感
D1:第一二極體
D2:第二二極體
522:雙向開關
200:外部裝置
300:負載
Vin:輸入電壓
Vo:輸出電壓
Vbus:總線電壓
Vc1:第一電容電壓
Vc2:第二電容電壓
Vac:交流電壓
Ip:電流路徑
圖1為常見不斷電系統方塊圖;圖2為本發明具有三階層切換電路之轉換裝置第一實施例之電路方塊圖;圖3A為本發明控制單元控制直流轉換模組對第一電容充電之充電路徑圖;圖3B為本發明控制單元控制直流轉換模組對第二電容充電之充電路徑圖;圖4A為本發明三階層電路第一實施例之結構示意圖;圖4B為本發明三階層電路第二實施例之結構示意圖;圖5A為本發明直流轉換模組第一實施例之電路結構示意圖;圖5B為本發明直流轉換模組第二實施例之電路結構示意圖;圖6為本發明具有三階層切換電路之轉換裝置第二實施例之電路方塊圖;及圖7為本發明功率電路另一實施例之電路結構示意圖。
茲有關本發明之技術內容及詳細說明,配合圖式說明如下: 請參閱圖2為本發明具有三階層切換電路之轉換裝置第一實施例之電路方塊圖。轉換裝置100由外部裝置200(例如但不限於,電池或再生能源)接收輸入電壓Vin,且將輸入電壓Vin轉換為輸出電壓Vo對負載300供電。轉換裝置100包括直流轉換模組10、三階層電路20、逆變模組30及控制單元40,且三階層電路20耦接直流轉換模組10、逆變模組30。直流轉換模組10包括直流輸入端12與輸出端14,直流輸入端12接收輸入電壓Vin,且輸出端14包括輸出正端142與輸出負端144。輸出正端142與輸出負端144兩端的跨壓為總線電壓Vbus,直流轉換模組10通過輸出正端142與輸出負端144耦接至三階層電路20的輸入端。
三階層電路20包括橋臂組22組與電容組24,橋臂組22包括串聯的第一開關單元222、第二開關單元224、第三開關單元226及第四開關單元228,且電容組24包括串聯的第一電容242與第二電容244。第一開關單元222與第二開關單元224之間的第一節點A耦接輸出正端142,且第三開關單元226與第四開關單元228之間的第二節點B耦接輸出負端144,使得三階層電路20通過第一節點A與第二節點B接收直流轉換模組10的輸出。第一電容242的正端耦接第一開關單元222的一端,第二電容242的負端耦接第四開關單元228的一端,且第一電容242與第二電容244之間的中點端O耦接第二開關單元224與第三開關單元226之間的第三節點C。控制單元40控制橋臂組22的切換,以將輸出正端142與輸出負端144連接至電容組24而對第一電容242充電,或者對第二電容244充電。其中,第一電容242兩端的跨壓定義為第一電容電壓Vc1,且第二電容244兩端的跨壓定義為第二電容電壓Vc2。具體而言,當操作於將輸出正端142與輸出負端144連接第一電容242的第一狀態時,第一電容242可理 解為直流轉換模組10的輸出電容,直流轉換模組10控制第一電容電壓Vc1為總線電壓Vbus;當操作於將輸出正端142與輸出負端144連接第二電容244的第二狀態時,第二電容244為直流轉換模組10的輸出電容,直流轉換模組10控制第二電容電壓Vc2為總線電壓Vbus。換言之,通過橋臂組22的切換,直流轉換模組10的輸出僅為總線電壓Vbus,但可於電容組24達到雙倍總線電壓的作用。
逆變模組30為三階層逆變器(Three-Level Inverter),逆變模組30的輸入端接收第一電容電壓Vc1與第二電容電壓Vc2。控制單元40控制逆變模組30將第一電容電壓Vc1與第二電容電壓Vc2轉換為交流的輸出電壓Vo,以提供輸出電壓Vo對負載300供電,此處以中點端O連接輸出電壓Vo的零線為例。其中,在某些高壓直流應用時,當負載所需的輸出電壓Vo為直流電壓而並非為交流電壓時,逆變模組30可以由直流轉換器(圖未示)所取代。控制單元40控制直流轉換器(圖未示)將第一電容電壓Vc1與第二電容電壓Vc2轉換為直流的輸出電壓Vo,以對直流負載300供應直流電壓。值得一提,於本發明之一實施例中,逆變模組30不限定僅能以圖2的電路結構實施,舉凡具有三階層電路結構,且具有直流/交流轉換功能之逆變器皆應包含在本實施例之範疇當中。
進一步而言,由於轉換裝置100包括直流轉換模組10,因此控制單元40控制橋臂組22的操作模式至少包括直流模式。控制單元40可以為單一個控制器控制直流轉換模組10、三階層電路20及逆變模組30。或者,直流轉換模組10、三階層電路20及逆變模組30有各自的控制器,為了方便說明,這些各自的控制器在此皆以控制單元40表示,應可理解控制單元40不代表是單個控制器。在該直流模式中,直流轉換模組20將輸入電壓Vin轉換為總線電壓 Vbus,且控制單元40控制橋臂組22的切換,使直流轉換模組10的輸出正端142與直流轉換模組10的輸出負端144對該第一電容242或第二電容244充電,以分別維持第一電容電壓Vc1與第二電容244兩端的第二電容電壓Vc2。
請參閱圖3A為本發明控制單元控制直流轉換模組10對第一電容充電之充電路徑圖、圖3B為本發明控制單元控制直流轉換模組10對第二電容充電之充電路徑圖,復配合參閱圖2。直流轉換模組10的輸出正端142與輸出負端144分別耦接至橋臂組22的第一節點A與第二節點B。於圖3A中,控制單元40控制第一開關單元222與該第三開關單元226導通,且控制第二開關單元224與該第四開關單元228關斷。此時,直流轉換模組10對第一電容242充電而維持第一電容電壓Vc1的電壓值大致上等於總線電壓Vbus的電壓值(電流路徑Ip以虛線表示,其電流路徑Ip即為輸出正端142、第一開關單元222、第一電容C1、第三開關單元226回到輸出負端144)。
於圖3B中,控制單元40控制第一開關單元222與該第三開關單元226關斷,且控制第二開關單元224與該第四開關單元228導通。此時,直流轉換模組10對第二電容244充電而維持第二電容電壓Vc2的電壓值大致上等於總線電壓Vbus的電壓值(電流路徑Ip以虛線表示,其電流路徑Ip即為輸出正端142、第二開關單元224、第二電容C2、第四開關單元228回到輸出負端144)。綜上所述,本發明之主要目的及功效在於,控制單元40能夠針對第一電容242或第二電容244獨立分開切換並控制,因此能夠做到直流轉換模組10僅需要具備穩定總線電壓Vbus(例如但不限於400V)的能力,使第一電容242與第二電容244的跨壓大致上等於總線電壓Vbus(意即第一電容電壓Vc1與第二電容電壓Vc2也大致上等於400V),直流轉換模組10不需具備穩定兩倍總線電壓Vbus的 能力,使得直流轉換模組10所使用的元件的電壓應力減半,整體功率密度可以更高,效率也更好。
進一步而言,由於逆變模組30為三階層逆變器,其所提供的輸出電壓Vo正半週主要由第一電容電壓Vc1所提供,且負半週主要由第二電容電壓Vc2所提供。因此,輸出電壓Vo在正半週時,第一電容242必須要供應能量,輸出電壓Vo在負半週時,第二電容244必須要供應能量。所以橋臂組22操作在直流模式時,控制單元可控制第一開關單元222、第二開關單元224、第三開關單元226及第四開關單元228的切換頻率為市電頻率(即低頻切換,例如但不限於,在某些國家為60Hz)。在輸出電壓Vo為正半週時,直流轉換模組10對第一電容242提供能量,以補充第一電容電壓Vc1的消耗。在輸出電壓Vo為負半週時,直流轉換模組10對第二電容244提供能量,以補充第二電容電壓Vc2的消耗。值得一提,因為電容所儲存的能量與電容容值相關,於本發明之一實施中,橋臂組22操作在直流模式時,並不限定第一開關單元222、第二開關單元224、第三開關單元226及第四開關單元228的切換頻率必須為市電頻率,其可根據第一電容242與第二電容244的選擇而選擇低頻的第一頻率,例如電容值選擇較大時,第一頻率可以更低(例如但不限於1kHZ)。
請參閱圖4A為本發明三階層電路第一實施例之結構示意圖、圖4B為本發明三階層電路第二實施例之結構示意圖,復配合參閱圖2~3B。在圖4A中,第一開關單元222與第四開關單元228可以為二極體。在橋臂組22操作在直流模式,且控制單元40控制第三開關單元226導通時,由於第一開關單元222(二極體)為順偏導通,因此同樣可產生如圖3A所示的電流路徑Ip。此時,第四開關單元228(二極體)為逆偏截止。在控制單元40控制第二開關單元224導通 時,由於第四開關單元228(二極體)也為順偏導通,因此同樣可產生如圖3B所示的電流路徑Ip。此時,第一開關單元222(二極體)為逆偏截止。
在圖4B中,第一開關單元222與第四開關單元228可以為電晶體。控制單元40耦接第一開關單元222與第四開關單元228,以提供控制訊號控制第一開關單元222與第四開關單元228的導通或不導通。在橋臂組22操作在直流模式,且控制單元40控制第三開關單元226導通時,控制單元40也控制第一開關單元222導通,因此可產生如圖3A所示的電流路徑Ip。此時,控制單元40也控制第二開關單元224與第四開關單元228關斷。在控制單元40控制第二開關單元224導通時,控制單元40也控制第四開關單元228導通,因此同樣可產生如圖3B所示的電流路徑Ip。此時,控制單元40也控制第一開關單元222與第三開關單元226關斷。透過橋臂組22的切換,操作於將輸出正端142與輸出負端144連接第一電容242的第一狀態,及,操作於將輸出正端142與輸出負端144連接第二電容244的第二狀態。值得一提,關於前述連接第一電容242或連接第二電容244的”連接”,並不表示一定是藉由電氣隔離與否來達成是否”連接”的定義,如圖4A的第一開關單元222與第四開關單元228為二極體時,雖然並不能達成電氣隔離或空間隔離,但根據順偏或逆偏可以達成連接與不連接的作用。
請參閱圖5A為本發明直流轉換模組第一實施例之電路結構示意圖、圖5B為本發明直流轉換模組第二實施例之電路結構示意圖,復配合參閱圖2~3B。於圖5A中,直流轉換模組10為具有變壓器T結構的推挽式轉換器,且直流轉換模組10可以不用設置輸出穩壓電容,因為藉由橋臂組22的切換可以將直流轉換模組10的輸出連接至第一電容242或連接至第二電容244,藉此形 成一個完整的推挽式轉換器,然不以此為限定,亦可以額外設置一個輸出穩壓電容。
於圖5B中,直流轉換模組10’為具有變壓器T結構的全橋相移式轉換器,且亦可以不用設置額外的輸出穩壓電容。值得一提,於本發明之一實施例中,直流轉換模組10不限制僅能以圖5A與5B的電路結構實施,也不限制是否具有變壓器,舉凡具有直流/直流轉換功能之轉換器皆應包含在本實施例之範疇當中。優選的,直流轉換模組10為一切換式電源供應器(Switched-mode power supply),且包含至少一切換開關,且利用控制該切換開關的占空比(Duty cycle)、切換頻率或相位來達成輸出電壓的控制,此為本領技術人員熟知,故不贅述。值得注意的是,操作在直流模式時,該至少一切換開關的切換頻率相對橋臂組22的切換頻率為高頻切換,例如切換開關為50kHZ固定頻率,或操作於50kHZ到100kHZ的變頻率控制,皆高於橋臂組22的市電頻率。
請參閱圖6為本發明具有三階層切換電路之轉換裝置第二實施例之電路方塊圖,復配合參閱圖2~4B。不斷電系統應用時,可設置功率因數校正器(Power Factor Correction;PFC)用以接收交流電壓Vac,功率因數校正器包括交流輸入端與直流輸出端,交流輸入端接收交流電壓,且該直流輸出端耦接圖2~5B的電容組24。根據本發明,可進一步共用三階層電路20,以節省裝置成本與體積,以下進一步詳述。本實施例的轉換裝置100’與圖2實施例的轉換裝置100差異在於,轉換裝置100’更包括功率因數校正器50。功率因數校正器50包括功率電路52與三階層電路20,功率因數校正器50接收交流電壓Vac,且將交流電壓Vac轉換為第一電容電壓Vc1與第二電容電壓Vc2。功率電路52包括交流輸入端522、第一整流端524及第二整流端526,且交流輸入端522包括火 線端L與零線端N。功率電路52通過火線端L與零線端N接收交流電壓Vac,且零線端N耦接三階層電路20的第三節點C。第一整流端524耦接三階層電路20的第一節點A,且第二整流端526耦接三階層電路20的第二節點B。
具體而言,功率電路52包括功率電感L1、第一二極體D1及第二二極體D2,功率電感L1的一端耦接火線端L,且功率電感L1的另一端耦接第一二極體D1的陽極與第二二極體D2的陰極。第一二極體D1的陰極(即為第一整流端524)耦接第一節點A,且第二二極體D2的陽極(即為第二整流端526)耦接第二節點B。在轉換裝置100’包括功率因數校正器50而具有交流轉直流的功能時,控制單元40可選擇性地控制橋臂組22操作於直流模式或交流模式。在直流模式時,直流轉換模組10通過三階層電路20的切換而對第一電容電壓Vc1充電或對第二電容電壓Vc2充電。在交流模式時,直流轉換模組10不輸出,而交流電壓Vac通過功率電路52與三階層電路20的切換而轉換為第一電容電壓Vc1與第二電容電壓Vc2,此時三階層電路20可視為功率因數校正器的一部份,如此達成直流模式與交流模式共用橋臂組22與電容組24的目的。
進一步而言,功率電感L1、第一開關單元222及第二開關單元224可構成一組升壓轉換器,且功率電感L1、第三開關單元226及第四開關單元228可構成另一組的升壓轉換器。交流電壓Vac的正半週與負半週分別通過這兩組升壓轉換器的切換而分別轉換為第一電容電壓Vc1與第二電容電壓Vc2。意即在交流模式時,控制單元40將交流電壓Vac的正半週通過第一開關單元222與第二開關單元224的切換而轉換為第一電容電壓Vc1。在第二開關單元224導通時,其電流路徑(即功率電感L1儲能路徑)為火線端L、功率電感L1、第一二極體D1、第二開關單元224至零線端N。在第一開關單元222導通時, 其電流路徑(即功率電感L1釋能路徑)為火線端L、功率電感L1、第一二極體D1、第一開關單元222、第一電容242至零線端N。
在交流模式時,控制單元40將交流電壓Vac的負半週通過第三開關單元226與第四開關單元228的切換而轉換為第二電容電壓Vc2,其路徑與正半週時雷同,在此不再加以贅述。其中,請配合參閱圖4A、4B,第一開關單元222與第四開關單元228同樣可為主動控制的電晶體或被動式的二極體。交流電壓Vac在正半週時,控制單元40可僅控制第二開關單元224,而使被動式的第一開關單元222順偏或逆偏而(負半週亦同)。或者,交流電壓Vac在正半週時,控制單元40可互補地控制第一開關單元222與第二開關單元224的切換(負半週亦同)。其中,由於在交流模式時,交流電壓Vac是利用功率電感L1的儲能和釋能而轉換為第一電容電壓Vc1與第二電容電壓Vc2,因此控制單元40控制第一開關單元222、第二開關單元224、第三開關單元226及第四開關單元228的切換頻率為高頻切換(例如但不限於50kHZ),其切換頻率比操作於該直流模式時的切換頻率(例如但不限於市電頻率)高。在交流模式時,第一開關單元222、第二開關單元224、第三開關單元226及第四開關單元228的具體控制方法可使用本領域人員熟知的任何功率因數校正器的控制方法,本實施例主要用以說明共用橋臂組22的方式。
由於在轉換裝置100’中,功率電路52與三階層電路20構成功率因數校正器,使得轉換裝置100’的部分元件(即三階層電路20)被共用。因此,相較於傳統的不斷電系統,本發明之轉換裝置100’可以進一步減少元件數量、節省電路元件成本及提高電路功率密度之功效。
請參閱圖7為本發明功率電路另一實施例之電路結構示意圖,復配合參閱圖2~5B。本實施例的功率電路52’與圖6實施例的功率電路52差異在於,功率電路52’更包括雙向開關522。雙向開關522用以對零線端N與第三端C之間的線路進行雙向導通或關斷,在關斷時能夠完全地關斷零線端N與第三端C之間的電連接。具體而言,由於在直流模式時,電力有可能第三端C至零線端N洩漏出去的風險,或由零線端N灌入第三端C的狀況,因此使用雙向開關522對零線端N與第三端C之間的線路進行雙向導通或關斷能夠達成在三階層電路20操作於直流模式時,穩定三階層電路20的運作之功效。值得一提,於本發明之一實施例中,功率電路52不限定僅能以圖6與圖7的電路結構實施,舉凡可搭配三階層電路20進行交流/直流轉換之電路用皆應包含在本實施例之範疇當中。
惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。
100:轉換裝置
10:直流轉換模組
12:直流輸入端
14:輸出端
142:輸出正端
144:輸出負端
20:三階層電路
22:橋臂組
222:第一開關單元
224:第二開關單元
226:第三開關單元
228:第四開關單元
24:電容組
242:第一電容
244:第二電容
A~C:節點
O:中點端
30:逆變模組
40:控制單元
200:外部裝置
300:負載
Vin:輸入電壓
Vo:輸出電壓
Vbus:總線電壓
Vc1:第一電容電壓
Vc2:第二電容電壓

Claims (15)

  1. 一種具有三階層切換電路之轉換裝置,包括:一直流轉換模組,包括一直流輸入端與一輸出端,該直流輸入端接收一輸入電壓,且該輸出端包括一輸出正端與一輸出負端;一三階層電路,包括:一橋臂組,包括串聯的一第一開關單元、一第二開關單元、一第三開關單元及一第四開關單元,該第一開關單元與該第二開關單元之間的一第一節點耦接該輸出正端,且該第三開關單元與該第四開關單元之間的一第二節點耦接該輸出負端;及一電容組,包括串聯的一第一電容與一第二電容,該第一電容的一正端耦接該第一開關單元,該第二電容的一負端耦接該第四開關單元,且該第一電容與該第二電容之間的一中點端耦接該第二開關單元與該第三開關單元之間的一第三節點;及一控制單元,控制該橋臂組操作於一直流模式;其中,在該直流模式,該控制單元控制該第二開關單元與該第三開關單元的切換而使該三階層電路操作於將該輸出正端與該輸出負端連接該第一電容的一第一狀態及將該輸出正端與該輸出負端連接該第二電容的一第二狀態;其中,該第一狀態,該控制單元控制該第三開關單元導通,該直流轉換模組對該第一電容充電而維持該第一電容兩端的一第一電容電壓為一總線電壓;該第二狀態,該控制單元控制該第二開關單元導通,該直流轉換模組對該第二電容充電而維持該第二電容兩端的一第二電容電壓為該總線電壓。
  2. 如申請專利範圍第1項所述之轉換裝置,其中該直流轉換模組為一切換式電源供應器,且包含至少一切換開關。
  3. 如申請專利範圍第2項所述之轉換裝置,其中該控制單元控制該橋臂組操作於該直流模式時,該控制單元控制該第二開關單元與該第三開關單元以一第一頻率切換,且控制單元控制該至少一切換開關以高於該第一頻率的一第二頻率切換。
  4. 如申請專利範圍第1項所述之轉換裝置,其中更包括一功率因數校正器,該功率因校正器包括一交流輸入端與一直流輸出端,該交流輸入端接收一交流電壓,且該直流輸出端耦接該電容組。
  5. 如申請專利範圍第4項所述之轉換裝置,其中該功率因數校正器包括一功率電路與該三階層電路,且該功率電路包括該交流輸入端、一第一整流端及一第二整流端;該交流輸入端接收該交流電壓,且耦接該第三節點;該第一整流端耦接該第一節點,且該第二整流端耦接該第二節點。
  6. 如申請專利範圍第5項所述之轉換裝置,其中該功率電路包括:一功率電感,耦接該交流輸入端;一第一二極體,耦接該功率電感與該第一節點;及一第二二極體,耦接該功率電感與該第二節點;其中,該交流輸入端包括一火線端與一零線端,該火線端耦接該功率電感,且該零線端耦接該第三節點。
  7. 如申請專利範圍第5項所述之轉換裝置,其中該控制單元選擇性地控制該橋臂組操作於該直流模式或一交流模式;在該交流模式,該控制單元將該交流電壓的一正半週通過該第二開關單元的切換而轉換為該第一電容兩端 的一第一電容電壓;在該交流模式,該控制單元將該交流電壓的一負半週通過該第三開關單元的切換而轉換為該第二電容兩端的一第二電容電壓。
  8. 如申請專利範圍第7項所述之轉換裝置,其中該控制單元控制該橋臂組操作於該直流模式時,該控制單元控制該第二開關單元與該第三開關單元的一切換頻率為一第一頻率,且該控制單元控制該橋臂組操作於該交流模式時,該控制單元控制該切換頻率高於該第一頻率。
  9. 如申請專利範圍第8項所述之轉換裝置,其中該第一頻率為一市電頻率。
  10. 如申請專利範圍第1項所述之轉換裝置,其中該第一開關單元與該第四開關單元為一二極體。
  11. 如申請專利範圍第1項所述之轉換裝置,其中該第一開關單元與該第四開關單元為一電晶體,且該控制單元耦接該第一開關單元與該第四開關單元;在該控制單元控制該第二開關單元導通時,該控制單元控制該第一開關單元關斷,且在該控制單元控制該第三開關單元導通時,該控制單元控制該第四開關單元關斷。
  12. 一種三階層切換電路之操作方法,該三階層電路包括一橋臂組,且該橋臂組包括串聯的一第一開關單元、一第二開關單元、一第三開關單元及一第四開關單元,該第一開關單元、該第二開關單元之間的一第一節點耦接一直流轉換模組的一輸出正端,該第三開關單元、該第四開關單元之間的一第二節點耦接該直流轉換模組的一輸出負端,該操作方法包括下列步驟:控制該橋臂組操作於一直流模式; 在該直流模式的一第一周期,控制該第三開關單元導通,使該直流轉換模組通過該輸出正端與該輸出負端對一第一電容充電而維持該第一電容兩端的一第一電容電壓為一總線電壓;在接續該第一周期的一第二周期,控制該第二開關單元導通,使該直流轉換模組通過該輸出正端與該輸出負端對與該第一電容串聯的一第二電容充電而維持該第二電容兩端的一第二電容電壓為該總線電壓。
  13. 如申請專利範圍第12項所述之操作方法,該操作方法更包括下列步驟:控制該橋臂組操作於一交流模式;在該交流模式,將一交流電壓的一正半週通過該第二開關單元的切換而轉換為該第一電容電壓;及在該交流模式,將該交流電壓的一負半週通過該第三開關單元的切換而轉換為該第二電容電壓。
  14. 如申請專利範圍第13項所述之操作方法,其中在該直流模式時,該第二開關單元與該第三開關單元的一切換頻率為一市電頻率,且在該交流模式時,該切換頻率高於該市電頻率。
  15. 如申請專利範圍第12項所述之操作方法,其中在該第二開關單元導通時,控制該第一開關單元關斷,且在該第三開關單元導通時,控制該第四開關單元關斷。
TW109126843A 2020-08-07 2020-08-07 具有三階層切換電路之轉換裝置及三階層切換電路之操作方法 TWI743929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126843A TWI743929B (zh) 2020-08-07 2020-08-07 具有三階層切換電路之轉換裝置及三階層切換電路之操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126843A TWI743929B (zh) 2020-08-07 2020-08-07 具有三階層切換電路之轉換裝置及三階層切換電路之操作方法

Publications (2)

Publication Number Publication Date
TWI743929B true TWI743929B (zh) 2021-10-21
TW202207609A TW202207609A (zh) 2022-02-16

Family

ID=80782635

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126843A TWI743929B (zh) 2020-08-07 2020-08-07 具有三階層切換電路之轉換裝置及三階層切換電路之操作方法

Country Status (1)

Country Link
TW (1) TWI743929B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200635187A (en) * 2005-03-24 2006-10-01 Delta Electronics Inc Converter with power factor correction and DC-DC conversion function
TW201713020A (zh) * 2015-09-22 2017-04-01 台達電子工業股份有限公司 雙向型直流轉直流轉換器及並網逆變器系統

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200635187A (en) * 2005-03-24 2006-10-01 Delta Electronics Inc Converter with power factor correction and DC-DC conversion function
TW201713020A (zh) * 2015-09-22 2017-04-01 台達電子工業股份有限公司 雙向型直流轉直流轉換器及並網逆變器系統

Also Published As

Publication number Publication date
TW202207609A (zh) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
US7141892B2 (en) Power supply method of a line interactive UPS and the line interactive UPS
US7898110B2 (en) On-line uninterruptible power system
US10454383B1 (en) Bidirectional resonant direct current-direct current conversion circuit and uninterruptible power supply
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
WO2021232706A1 (zh) 三桥臂拓扑装置、控制方法、逆变系统及不间断电源系统
WO2016115998A1 (zh) 一种数字化双激不间断开关电源
US11515800B2 (en) Power apparatus applied in SST structure and three-phase power source system having the same
TW200402928A (en) Power converter
Daneshpajooh et al. Optimizing dual half bridge converter for full range soft switching and high efficiency
TWI743929B (zh) 具有三階層切換電路之轉換裝置及三階層切換電路之操作方法
US11601066B2 (en) Conversion apparatus with three-level switching circuit and method of operating the same
CN110729913B (zh) 一种单级式高增益五开关Boost型逆变器
TWI705650B (zh) 具無橋式功率因數修正功能之直流對直流轉換器
TWI697181B (zh) 具功率因數修正功能之直流對直流轉換器
Zhang et al. A Capacitor Fault-Tolerant Scheme for Dual-Active-Bridge DC/DC Converter
CN109104086A (zh) 一种具有功率因数修正功能的直流对直流转换器
TW201513540A (zh) 風力發電系統之並聯輸入串/並聯輸出隔離型直流/直流轉換器
US20240014744A1 (en) Method of controlling resonant push-pull converter
EP4239836A1 (en) A charger, a multiplexing current conversion circuit and an uninterruptible power supply including the same
TWI729333B (zh) 共直流電源之電源轉換器及供電裝置
TWI704747B (zh) 不斷電系統
TWI705643B (zh) 不斷電系統
US20150121101A1 (en) Power supply apparatus
US20230026740A1 (en) Multiple-Input Power Supply and Control Method