TWI743744B - Beamforming device, calibration method and calibration system for the same - Google Patents
Beamforming device, calibration method and calibration system for the same Download PDFInfo
- Publication number
- TWI743744B TWI743744B TW109112579A TW109112579A TWI743744B TW I743744 B TWI743744 B TW I743744B TW 109112579 A TW109112579 A TW 109112579A TW 109112579 A TW109112579 A TW 109112579A TW I743744 B TWI743744 B TW I743744B
- Authority
- TW
- Taiwan
- Prior art keywords
- codebook
- antenna
- angle
- phases
- reference angle
- Prior art date
Links
Images
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radio Transmission System (AREA)
- Measurement Of Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
相關申請案Related applications
本發明係主張美國專利臨時申請案第62/851,111號(申請日:2019年5月22日)之優先權,該申請案之完整內容納入為本發明專利說明書的一部分以供參照。The present invention claims the priority of U.S. Provisional Application No. 62/851,111 (filing date: May 22, 2019), the complete content of which is incorporated into this invention patent specification for reference.
本發明涉及一種波束成型裝置、用於其之校正方法及校正系統,特別是涉及一種可修正天線模組之間的相位差的波束成型裝置、用於其之校正方法及校正系統。The present invention relates to a beamforming device, a correction method and a correction system used for the beamforming device, and more particularly to a beamforming device capable of correcting the phase difference between antenna modules, a correction method and a correction system used for the beamforming device.
在毫米波通訊領域中,與波束成型裝置的天線模組相關的路徑損耗遠遠大於運作頻率較低的同類設備。波束成形技術通常用於增加通信範圍,最常見的架構是一個基頻模組控制多個天線模組。在高頻應用中,由於波長較小,使得在製造時難以滿足設備需求。例如,在運作頻率60GHz下,其波長只有5mm左右。這意味著,每當發生0.1mm的路徑變化,將在天線模組之間造成36度的相位差。In the field of millimeter wave communications, the path loss associated with the antenna module of the beamforming device is far greater than that of similar devices with lower operating frequencies. Beamforming technology is usually used to increase the communication range. The most common architecture is that one baseband module controls multiple antenna modules. In high-frequency applications, due to the small wavelength, it is difficult to meet the equipment requirements during manufacturing. For example, at an operating frequency of 60 GHz, its wavelength is only about 5 mm. This means that whenever a path change of 0.1mm occurs, a phase difference of 36 degrees will be caused between the antenna modules.
當天線模組之間產生相位差時,該相位差將在波束成形期間導致較低的等效全向輻射功率(equivalent isotropically radiated power, EIRP),更甚至導致不良的旁瓣電平(Side-lobe Level, SLL),進而使實際上運作產生的波束成型的場型與理想上的波束成型的場型之間產生偏差。When there is a phase difference between the antenna modules, the phase difference will result in lower equivalent isotropically radiated power (EIRP) during beamforming, and even lead to poor sidelobe levels (Side- lobe Level, SLL), which in turn causes a deviation between the actual beamforming field pattern and the ideal beamforming field pattern.
故,通過校正的方式來修正波束成型模組的天線模組之間的相位差,來克服上述的缺陷,已成為該項事業所欲解決的重要課題之一。Therefore, correcting the phase difference between the antenna modules of the beamforming module by means of correction to overcome the above-mentioned shortcomings has become one of the important issues to be solved by this business.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種可修正天線模組之間的相位差的波束成型裝置、用於其之校正方法及校正系統。The technical problem to be solved by the present invention is to provide a beamforming device capable of correcting the phase difference between antenna modules, a correction method and a correction system for the beamforming device that can correct the phase difference between the antenna modules in view of the shortcomings of the prior art.
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種用於波束成型裝置的校正方法,用於包括處理器、記憶單元、基頻電路及多個天線模組的波束成型裝置,多個所述天線模組包括參考天線模組及至少一校正天線模組,且多個所述天線模組各包括多個天線單元及對應於多個所述天線單元的多個相移器及多個放大器,所述校正方法包括:配置所述記憶單元儲存一第一參考編碼本、一第二參考編碼本及一第三參考編碼本,其中所述第一參考編碼本用於控制所述參考天線模組的多個所述天線單元的多個相移器及多個放大器,且所述第一參考編碼本具有一第一基準角度,所述第二參考編碼本具有一第二基準角度,所述第三參考編碼具有一第三基準角度;以及對所述至少一校正天線模組執行一測試程序,其包括下列步驟:配置所述基頻電路依據一預定目標場型,以所述第一參考編碼本中對應於所述預定目標場型的多筆控制資料控制所述參考天線模組,且分別以所述第一參考編碼本、所述第二參考編碼本及所述第三參考編碼本中對應於所述預定目標場型的多筆控制資料控制所述至少一校正天線模組,以產生多個測試訊號;配置一接收器接收多個所述測試訊號;配置所述計算裝置處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標場型的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果;及配置所述計算裝置依據多個所述測試結果中具有最大等效全向輻射功率以選擇並設定所述第一參考編碼本、所述第二參考編碼本及所述第三參考編碼本之其中之一為所述校正天線模組進行收發訊號時所使用的至少一預定編碼本。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a calibration method for a beamforming device, which is used in a beamforming device including a processor, a memory unit, a baseband circuit, and multiple antenna modules. , The plurality of antenna modules includes a reference antenna module and at least one calibration antenna module, and each of the plurality of antenna modules includes a plurality of antenna elements and a plurality of phase shifters corresponding to the plurality of antenna elements And a plurality of amplifiers, the calibration method includes: configuring the memory unit to store a first reference codebook, a second reference codebook, and a third reference codebook, wherein the first reference codebook is used to control the The multiple phase shifters and multiple amplifiers of the multiple antenna units of the reference antenna module, and the first reference codebook has a first reference angle, and the second reference codebook has a second reference Angle, the third reference code has a third reference angle; and performing a test procedure on the at least one calibration antenna module includes the following steps: configuring the baseband circuit according to a predetermined target field pattern to The multiple control data corresponding to the predetermined target field type in the first reference codebook control the reference antenna module, and the first reference codebook, the second reference codebook, and the first reference codebook are used to control the reference antenna module. The multiple control data corresponding to the predetermined target field pattern in the three reference codebooks control the at least one calibration antenna module to generate multiple test signals; configure a receiver to receive multiple test signals; configure the The computing device processes a plurality of the test signals to calculate equivalent isotropically radiated power (EIRP) of the plurality of test signals in the predetermined target field type, and generates a plurality of test results; and The calculation device is configured to select and set one of the first reference codebook, the second reference codebook, and the third reference codebook according to the maximum equivalent isotropic radiation power among the multiple test results One is at least one predetermined codebook used by the calibration antenna module to transmit and receive signals.
為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種用於波束成型裝置的校正系統,其包括計算裝置、波束成型裝置、接收器以及測量裝置。波束成型裝置連接於所述計算裝置,所述波束成型裝置包括處理器、記憶單元、基頻電路及多個天線模組。多個天線模組,包括一參考天線模組及至少一校正天線模組,且多個所述天線模組各包括多個天線單元及對應於多個所述天線單元的多個相移器及多個放大器。其中,所述基頻電路經配置以將一第一參考編碼本、一第二參考編碼本及一第三參考編碼本儲存至一記憶單元,所述第一參考編碼本用於控制所述參考天線模組的多個所述天線單元的多個相移器及多個放大器,且所述第一參考編碼本具有一第一基準角度,所述第二參考編碼本具有一第二基準角度,所述第三參考編碼具有一第三基準角度。其中,所述計算裝置經配置以對所述至少一校正天線模組執行一測試程序,其包括下列步驟:配置所述基頻電路依據一預定目標場型,以所述第一參考編碼本中對應於所述預定目標場型的多筆控制資料控制所述參考天線模組,且分別以所述第一參考編碼本、所述第二參考編碼本及所述第三參考編碼本中對應於所述預定目標場型的多筆控制資料控制所述至少一校正天線模組,以產生多個測試訊號;配置一接收器接收多個所述測試訊號;配置所述計算裝置處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標場型的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果;及配置所述計算裝置依據多個所述測試結果中具有最大等效全向輻射功率以選擇並設定所述第一參考編碼本、所述第二參考編碼本及所述第三參考編碼本之其中之一為所述校正天線模組進行收發訊號時所使用的至少一預定編碼本。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a correction system for a beamforming device, which includes a computing device, a beamforming device, a receiver, and a measuring device. The beamforming device is connected to the computing device, and the beamforming device includes a processor, a memory unit, a baseband circuit, and a plurality of antenna modules. A plurality of antenna modules includes a reference antenna module and at least one calibration antenna module, and each of the plurality of antenna modules includes a plurality of antenna elements and a plurality of phase shifters corresponding to the plurality of antenna elements, and Multiple amplifiers. Wherein, the baseband circuit is configured to store a first reference codebook, a second reference codebook, and a third reference codebook in a memory unit, and the first reference codebook is used to control the reference A plurality of phase shifters and a plurality of amplifiers of a plurality of the antenna units of the antenna module, and the first reference codebook has a first reference angle, and the second reference codebook has a second reference angle, The third reference code has a third reference angle. Wherein, the computing device is configured to perform a test procedure on the at least one calibration antenna module, which includes the following steps: configuring the baseband circuit according to a predetermined target field pattern, using the first reference codebook Multiple pieces of control data corresponding to the predetermined target field type control the reference antenna module, and respectively use the first reference codebook, the second reference codebook, and the third reference codebook corresponding to The multiple pieces of control data of the predetermined target field type control the at least one calibration antenna module to generate multiple test signals; configure a receiver to receive multiple test signals; configure the computing device to process multiple test signals Test signals to calculate equivalent isotropically radiated power (EIRP) of a plurality of the test signals in the predetermined target field type, and generate a plurality of test results; and configure the calculation device according to multiple The test results have the maximum equivalent isotropic radiation power to select and set one of the first reference codebook, the second reference codebook, and the third reference codebook as the calibration antenna At least one predetermined codebook used by the module to send and receive signals.
為了解決上述的技術問題,本發明所採用的另外再一技術方案是提供一種波束成型裝置,其包括處理器、記憶單元、基頻電路及多個天線模組。基頻電路電性連接所述處理器及所述記憶單元。多個天線模組各包括多個天線單元及對應於多個所述天線單元的多個相移器及多個放大器。其中,所述記憶單元儲存有多個參考編碼本及指示資料,其中,所述多個參考編碼本分別具有一基準角度且彼此不同,而指示資料用於使所述多個天線模組進行收發訊號時,分別從多個所述參考編碼本指定一預定編碼本,以控制多個所述天線模組。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a beamforming device, which includes a processor, a memory unit, a baseband circuit, and a plurality of antenna modules. The baseband circuit is electrically connected to the processor and the memory unit. Each of the multiple antenna modules includes multiple antenna units and multiple phase shifters and multiple amplifiers corresponding to the multiple antenna units. Wherein, the memory unit stores a plurality of reference codebooks and instruction data, wherein each of the reference codebooks has a reference angle and is different from each other, and the instruction data is used to enable the plurality of antenna modules to transmit and receive When the signal is signaled, a predetermined codebook is designated from a plurality of the reference codebooks to control the plurality of antenna modules.
本發明的其中一有益效果在於,本發明所提供的波束成型裝置、用於其之校正方法及校正系統,使用不同相位且用於單一天線模組的參考編碼本選擇來進行相移器校正後,可有效地將相位精密度由相移器支援的精密度進一步依據多個參考編碼本對應的基準角度來進行提昇,並且可降低預先儲存的編碼本數量與校正時間。One of the beneficial effects of the present invention is that the beamforming device, the correction method and the correction system provided by the present invention use different phases and the reference codebook for a single antenna module to perform phase shifter correction. , The phase precision supported by the phase shifter can be effectively improved based on the reference angles corresponding to multiple reference codebooks, and the number of pre-stored codebooks and the correction time can be reduced.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings about the present invention. However, the provided drawings are only for reference and description, and are not used to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“波束成型裝置、用於其之校正方法及校正系統”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a specific embodiment to illustrate the implementation of the "beamforming device, correction method and correction system" disclosed in the present invention. Those skilled in the art can understand the advantages of the present invention from the content disclosed in this specification. And effect. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to actual dimensions, and are stated in advance. The following embodiments will further describe the related technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.
圖1為本發明實施例的用於波束成型裝置的校正系統的方塊圖。參閱圖1所示,本發明第一實施例提供一種用於波束成型裝置的校正系統1,其包括波束成型裝置10、計算裝置12及接收器14。Fig. 1 is a block diagram of a correction system for a beamforming device according to an embodiment of the present invention. Referring to FIG. 1, the first embodiment of the present invention provides a correction system 1 for a beamforming device, which includes a
波束成型裝置10可包括處理器100、記憶單元102、基頻電路104及多個天線模組106-1、106-2…106-M。可進一步參照圖2,圖2為本發明實施例的波束成型裝置的架構示意圖。如圖2所示,天線模組106-1、106-2…106-M各自包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。例如,天線模組106-1可包括天線單元AT11、AT12…AT1N,以及分別對應於天線單元AT11、AT12…AT1N的相移器PS11、PS12…PS1N以及放大器電路AP11、AP12…AP1N。相移器PS11、PS12…PS1N可對於個別天線單元AT11、AT12…AT1N設定不同的移動相位,而放大器電路AP11、AP12…AP1N可各自包括多個放大器,以放大經相移器PS11、PS12…PS1N移相後的訊號,而不以圖2所示的數量為限,藉此達到想要的波束成型。The
此外,處理器100可例如為是微控制器(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP),其用於從記憶單元102中取得稱為編碼本(codebook)的控制資料,以將對應的相位及放大器參數分配給天線單元AT11、AT12…AT1N,而基頻電路104可例如為基頻處理器,其基於上述分配的相位及放大器參數控制天線模組106-1、106-2…106-M。In addition, the
天線模組106-1亦可包括數位類比轉換器(Digital to Analog Converter,DAC),以將來自基頻電路104的基頻數位訊號轉換為類比射頻訊號。類似的,天線模組106-2可包括天線單元AT21、AT22…AT2N,以及分別對應於天線單元AT21、AT22…AT2N的相移器PS21、PS22…PS2N以及放大器電路AP21、AP22…AP2N。The antenna module 106-1 may also include a digital to analog converter (DAC) to convert the base frequency digital signal from the
如圖2所示的波束成型裝置10包括多個天線模組106-1、106-2…106-M,而天線模組106-1、106-2…106-M中由於製程偏移,可能存在許多誤差。當波束成型裝置10存在這些硬體誤差時,有可能因為硬體的增益及相位誤差,而造成合成波束的主要傳遞方向產生偏移、往錯誤方向傳輸、或造成波束能量衰減,如此將難以達到正確的波束成型。例如,當設計用於天線模組106-1的編碼本時,預設基頻電路104加上天線模組106-1本身的相位差θ1為定值,而天線模組106-2的架構與天線模組106-1相同,理論上,基頻電路104加上天線模組106-2本身的相位差θ2應與相位差θ1相同,然而,實際上,不同的射頻積體電路會帶來不可預測的相位偏差,若採用相同的編碼本進行控制,可能則會直接影響到波束成型的EIRP最大值的角度與SLL。考慮硬體誤差所造成的影響,需要採用本發明的用於波束成型裝置的校正系統與校正方法。The
一般而言,在圖1的架構下,通過同步控制該些天線模組106-1、106-2、…、106-M來進行波束成型時,可提高系統增益。在設計用於上述天線模組106-1、106-2、…、106-M的編碼本時,可進一步利用對應的相移器(例如相移器PS11、PS12…PS1N及相移器PS21、PS22…PS2N)來調整不同天線模組之間的相位偏差。Generally speaking, under the architecture of FIG. 1, when beamforming is performed by synchronously controlling the antenna modules 106-1, 106-2,..., 106-M, the system gain can be improved. When designing the codebook for the above-mentioned antenna modules 106-1, 106-2,..., 106-M, the corresponding phase shifters (such as phase shifters PS11, PS12...PS1N and phase shifters PS21, PS22...PS2N) to adjust the phase deviation between different antenna modules.
然而,上述的校正精密度仍難以滿足現今運作在毫米波等級下的波束成型模組的精密度需求。為此,本發明進一步以上述方式為基礎,提供了用於波束成型裝置的校正方法。在本發明中,天線模組106-1、106-2…106-M可包括參考天線模組及至少一校正天線模組,例如,可將天線模組106-1設定為參考天線模組,則天線模組106-2…106-M則設定為校正天線模組。However, the aforementioned calibration precision is still difficult to meet the precision requirements of beamforming modules currently operating at the millimeter wave level. To this end, the present invention further provides a correction method for the beamforming device based on the above-mentioned method. In the present invention, the antenna modules 106-1, 106-2...106-M may include a reference antenna module and at least one calibration antenna module. For example, the antenna module 106-1 may be set as a reference antenna module, Then the antenna modules 106-2...106-M are set as calibration antenna modules.
在本實施例中,計算裝置12可以是微控制器(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、特殊應用積體電路(application specific integrated circuit,ASIC)、數位邏輯電路、行動運算裝置、電腦等可提供運算能力的電子裝置。在一實施例中,計算裝置12可以是電腦,經配置以與接收器14電性連接,以從接收器14取得需要的資訊。In this embodiment, the
接收器14例如是喇叭天線(horn antenna)、無線基站、或行動裝置,波束成型裝置10與接收器14可通過無線訊號傳輸進行通訊。接收器20例如可包括功率感測器(power sensor),用以檢測來自波束成型裝置10的無線訊號強度。接收器20可量測波束成型裝置10在不同角度的訊號強度。The
以下請參照圖3,其為本發明實施例的用於波束成型裝置的校正方法的流程圖。參閱圖3所示,本發明實施例提供一種用於波束成型裝置的校正方法,其適用於前述實施例的校正系統1,且至少包括下列幾個步驟:Please refer to FIG. 3 below, which is a flowchart of a calibration method for a beamforming device according to an embodiment of the present invention. Referring to FIG. 3, an embodiment of the present invention provides a calibration method for a beamforming device, which is applicable to the calibration system 1 of the foregoing embodiment, and includes at least the following steps:
步驟S100:配置基頻電路104以將第一參考編碼本REF1、第二參考編碼本REF2及第三參考編碼本REF3儲存至記憶單元。其中,第一參考編碼本REF1用於控制參考天線模組的多個所述天線單元的多個相移器及多個放大器。其中,第一參考編碼本REF1包括多筆參考控制資料,以多個目標場型進行劃分,且多筆參考控制資料用於設定參考天線模組的多個天線單元及分別對應於多個天線單元的多個相移器及多個放大器。Step S100: Configure the
舉例而言,第一參考編碼本REF1可如下表1所示:For example, the first reference codebook REF1 can be as shown in Table 1 below:
表1
在第一參考編碼本REF1中,多筆參考控制資料包括用於設定參考天線模組的多個天線單元的多個相移器參考參數及多個放大器參考參數,且多個相移器參考參數對應多個參考相位,且多個放大器參考參數對應用於指示多個所述放大器的開關狀態的多個開關狀態代碼(例如開啟以1代表,關閉以0代表)。如表1所示,第一參考編碼本REF1可包括用於場型1至場型L的多筆參考控制資料,場型1至場型L為指向不同角度的輻射場型。各筆控制資料包括對應於天線單元1、天線單元2至天線單元N的相移器的相位及放大器的開啟或關閉的參數。其中,相移器可例如為2位元的相移器,可切換相位分別為0度、90度、180度、270度,即可作為上述的參考相位,但本發明不以此為限。In the first reference codebook REF1, multiple reference control data include multiple phase shifter reference parameters and multiple amplifier reference parameters for setting multiple antenna units of the reference antenna module, and multiple phase shifter reference parameters Corresponding to multiple reference phases, and multiple amplifier reference parameters corresponding to multiple switch state codes used to indicate the switch states of multiple amplifiers (for example, turn on is represented by 1 and turn off is represented by 0). As shown in Table 1, the first reference codebook REF1 may include multiple reference control data for field type 1 to field type L. Field type 1 to field type L are radiation field types directed at different angles. Each control data includes the phase of the phase shifter corresponding to the antenna unit 1, the antenna unit 2 to the antenna unit N, and the parameters for turning on or off the amplifier. Wherein, the phase shifter may be, for example, a 2-bit phase shifter, and the switchable phases are 0 degrees, 90 degrees, 180 degrees, and 270 degrees respectively, which can be used as the aforementioned reference phases, but the present invention is not limited thereto.
其中,以每個天線模組具有6個天線單元為例,第一參考編碼本REF1的產生方式可參照圖4、圖5A、圖5B及圖5C,圖4為本發明實施例的用於產生參考編碼本的方式的流程圖,圖5A至5C為本發明實施例的用於產生第一參考編碼本的多個相位的示意圖。Among them, taking each antenna module with 6 antenna units as an example, the first reference codebook REF1 generation method can refer to Figure 4, Figure 5A, Figure 5B and Figure 5C, Figure 4 is used to generate the embodiment of the present invention The flowchart of the manner of referring to the codebook, FIGS. 5A to 5C are schematic diagrams of multiple phases used to generate the first reference codebook according to an embodiment of the present invention.
如圖4所示,用於波束成型裝置的校正方法,更包括:As shown in Figure 4, the correction method used for the beamforming device further includes:
步驟S1000:取得初始編碼本。初始編碼本具有參考天線模組的多個天線單元的多個天線相位。Step S1000: Obtain an initial codebook. The initial codebook has multiple antenna phases of multiple antenna elements of the reference antenna module.
如圖5A所示,舉例而言,設定天線模組106-1為參考天線模組,同時設定場型1,例如於場型1(假設為0度角,即波束成型裝置10或接收器14之間的角度)時測量的電場資訊,可測得圖5A所示的天線模組106-1的天線單元AT11、AT12、AT13、AT14、AT15及AT16的初始相位分別為80、223、145、113、283、119度,接著,針對其他角度,可通過旋轉波束成型裝置10或接收器14以改變兩者之間的角度,通過相同方式產生其他場型下的初始角度,藉此獲得初始編碼本。As shown in FIG. 5A, for example, the antenna module 106-1 is set as the reference antenna module, and the field type 1 is set at the same time, for example, the field type 1 (assuming a 0 degree angle, that is, the
步驟S1001:以多個天線相位的其中之一作為參考天線相位,並將多個天線相位依據參考天線相位進行調整,以產生多個調整天線相位。Step S1001: Use one of the multiple antenna phases as a reference antenna phase, and adjust the multiple antenna phases according to the reference antenna phase to generate multiple adjusted antenna phases.
其中,若以天線單元AT11產生的訊號最強,可以天線單元AT11為基準,將天線單元AT12、AT13、AT14、AT15及AT16的初始相位223、145、113、283、119度分別平移-80度,使天線單元AT12、AT13、AT14、AT15及AT16的相位變為143、65、33、203、39度,如圖5B所示。初始編碼本具有由相移器支援的精密度位元數決定的初始精密度。Among them, if the signal generated by the antenna unit AT11 is the strongest, the antenna unit AT11 can be used as the reference, and the initial phases of the antenna units AT12, AT13, AT14, AT15, and AT16 can be shifted by -80 degrees respectively by 223, 145, 113, 283, and 119 degrees. The phases of the antenna elements AT12, AT13, AT14, AT15, and AT16 are changed to 143, 65, 33, 203, and 39 degrees, as shown in FIG. 5B. The initial codebook has an initial precision determined by the number of precision bits supported by the phase shifter.
步驟S1002:基於第一基準角度、第二基準角度及第三基準角度,分別以多個相移器參數調整多個調整天線相位,使多個調整天線相位位於基於第一基準角度、第二基準角度及第三基準角度的預定相位範圍內,且與第一基準角度、第二基準角度及第三基準角度之間的差值最小化,同時產生多個待測天線相位。Step S1002: Based on the first reference angle, the second reference angle, and the third reference angle, the phases of the multiple adjustment antennas are adjusted with multiple phase shifter parameters respectively, so that the phases of the multiple adjustment antennas are located based on the first reference angle and the second reference angle. The angle and the third reference angle are within a predetermined phase range, and the difference between the first reference angle, the second reference angle, and the third reference angle is minimized, and multiple antenna phases to be tested are generated at the same time.
詳細而言,可通過調整對應天線單元AT12、AT13、AT14、AT15及AT16的相移器,使天線單元AT12、AT13、AT14、AT15及AT16的相位基於一相位基準值,例如0度來進行調整。由於天線模組106-1之射頻電路具有內建精密度為2位元的相移器PS11~PS1N,可進行360/22 =90度之進行最小化以達成相位匹配,在本實施例中,第一基準角度設定為0度,以分別以180度、270度、0度、180及0度的相移器參數調整天線單元AT12、AT13、AT14、AT15及AT16的相位,得到323度、337度、33度、383度及39度,由於相位係以360度為循環,因此等同得到-37度、-25度、33度、23度及39度的相位,亦即最接近第一基準角度,即0度。此時,得到第一參考編碼本REF於場型1(0度角)的預定場型下,對應於天線單元AT12、AT13、AT14、AT15及AT16的相移器參數分別為180度、270度、0度、180及0度。而其他場型可以類似方式進行調整,藉此產生第一參考編碼本REF1。In detail, by adjusting the phase shifters corresponding to the antenna units AT12, AT13, AT14, AT15, and AT16, the phases of the antenna units AT12, AT13, AT14, AT15, and AT16 can be adjusted based on a phase reference value, such as 0 degrees. . Since the radio frequency circuit of the antenna module 106-1 has a built-in phase shifter PS11~PS1N with a precision of 2 bits, it can be minimized by 360/2 2 =90 degrees to achieve phase matching. In this embodiment , The first reference angle is set to 0 degrees, and the phases of the antenna units AT12, AT13, AT14, AT15, and AT16 are adjusted with the phase shifter parameters of 180 degrees, 270 degrees, 0 degrees, 180 and 0 degrees, respectively, to obtain 323 degrees, 337 degrees, 33 degrees, 383 degrees, and 39 degrees. Since the phase is cycled by 360 degrees, phases of -37 degrees, -25 degrees, 33 degrees, 23 degrees, and 39 degrees are obtained, which is the closest to the first reference. The angle is 0 degrees. At this time, the first reference codebook REF is obtained in the predetermined field type of field type 1 (0 degree angle), and the phase shifter parameters corresponding to the antenna units AT12, AT13, AT14, AT15 and AT16 are respectively 180 degrees and 270 degrees. , 0 degrees, 180 and 0 degrees. Other field types can be adjusted in a similar manner to generate the first reference codebook REF1.
在上述實施例中,第一參考編碼本REF1可直接用於控制參考天線模組(亦即,天線模組106-1)進行收發訊號,接下來,則需要產生用於校正天線模組的天線模組106-2、…、106-M的第一參考編碼本REF1、第二參考編碼本REF2及第三參考編碼本REF3。In the above embodiment, the first reference codebook REF1 can be directly used to control the reference antenna module (that is, the antenna module 106-1) to send and receive signals. Next, an antenna for calibrating the antenna module needs to be generated. The first reference codebook REF1, the second reference codebook REF2, and the third reference codebook REF3 of the modules 106-2,...,106-M.
需要說明的是,第一參考編碼本REF1具有第一基準角度,第二參考編碼本REF2具有第二基準角度,而第三參考編碼本REF3具有第三基準角度。此處,所謂第一基準角度可回溯至圖4B及圖4C,由圖4B至圖4C的過程中,已經調整對應天線單元AT12、AT13、AT14、AT15及AT16的相移器,使天線單元AT12、AT13、AT14、AT15及AT16的相位基於一相位基準值,例如0度,而第一參考編碼本REF1對應的此相位基準值(0度)即是第一基準角度。而在一些實施例中,第二基準角度及第三基準角度可分別與第一基準角度相差一預定角度,例如,45度,因此,第二基準角度及第三基準角度可分別為45度及-45度。It should be noted that the first reference codebook REF1 has a first reference angle, the second reference codebook REF2 has a second reference angle, and the third reference codebook REF3 has a third reference angle. Here, the so-called first reference angle can be traced back to Fig. 4B and Fig. 4C. During the process from Fig. 4B to Fig. 4C, the phase shifters corresponding to the antenna units AT12, AT13, AT14, AT15, and AT16 have been adjusted so that the antenna unit AT12 The phases of AT13, AT14, AT15, and AT16 are based on a phase reference value, such as 0 degrees, and the phase reference value (0 degrees) corresponding to the first reference codebook REF1 is the first reference angle. In some embodiments, the second reference angle and the third reference angle may be different from the first reference angle by a predetermined angle, for example, 45 degrees. Therefore, the second reference angle and the third reference angle may be 45 degrees and respectively. -45 degree.
因此,對於校正天線模組,利用與上述圖5A至圖5C相同的流程,來產生具有第二基準角度的第二參考編碼本REF2。Therefore, for the calibration antenna module, the same process as the above-mentioned FIG. 5A to FIG. 5C is used to generate the second reference codebook REF2 with the second reference angle.
可參照圖6A、圖6B及圖6C,圖6A至6C為本發明實施例的用於產生第二參考編碼本的多個相位的示意圖。如圖6A、圖6B及圖6C所示,舉例而言,設定場型1,例如於0度角時測量的電場資訊,可利用圖5A測得所示的天線模組106-1的天線單元AT11、AT12、AT13、AT14、AT15及AT16的初始相位平移-80度後的相位作為天線模組106-2的天線單元AT21、AT22、AT23、AT24、AT25及AT26的初始相位,分別為0、143、65、33、203、39度。接著,通過調整對應天線單元AT21、AT22、AT23、AT24、AT25及AT26的相移器,使天線單元AT21、AT22、AT23、AT24、AT25及AT26的相位基於另一相位基準值(即是第二基準角度),例如45度,由於天線模組106-2之射頻電路具有內建精密度為2位元的相移器PS21~PS2N,可進行360/22 =90度之進行最小化以達成相位匹配,亦即,分別以0度、270度、0度、0度、180度及0度的相移器參數調整天線單元AT21、AT22、AT23、AT24、AT25及AT26的相位,得到0度、413度、65度、33度、383度及39度,由於相位係以360度為循環,因此等同得到0度、53度、65度、33度、23度及39度的相位,亦即最接近第二基準角度,即45度。此時,得到第二參考編碼本REF2於0度角的預定場型下,對應於天線單元AT21、AT22、AT23、AT24、AT25及AT26的相移器參數分別為0度、270度、0度、0度、180度及0度。其中,通過相移器調整後相位0度、53度、65度、33度、23度及39度分別與45度之間具有最小相位差。Refer to FIGS. 6A, 6B, and 6C. FIGS. 6A to 6C are schematic diagrams of multiple phases used to generate a second reference codebook according to an embodiment of the present invention. As shown in FIGS. 6A, 6B, and 6C, for example, to set the field type 1, such as the electric field information measured at an angle of 0 degrees, the antenna unit of the antenna module 106-1 shown in FIG. 5A can be used to measure The initial phases of AT11, AT12, AT13, AT14, AT15, and AT16 are shifted by -80 degrees as the initial phases of the antenna elements AT21, AT22, AT23, AT24, AT25, and AT26 of the antenna module 106-2, which are 0, 143, 65, 33, 203, 39 degrees. Then, by adjusting the phase shifters corresponding to the antenna units AT21, AT22, AT23, AT24, AT25, and AT26, the phases of the antenna units AT21, AT22, AT23, AT24, AT25, and AT26 are based on another phase reference value (that is, the second phase shifter). Reference angle), such as 45 degrees. Since the RF circuit of the antenna module 106-2 has a built-in phase shifter PS21~PS2N with a precision of 2 bits, it can be minimized by 360/2 2 =90 degrees. Phase matching, that is, adjusting the phase of the antenna units AT21, AT22, AT23, AT24, AT25 and AT26 with phase shifter parameters of 0 degree, 270 degree, 0 degree, 0 degree, 180 degree and 0 degree respectively to obtain 0 degree , 413 degrees, 65 degrees, 33 degrees, 383 degrees, and 39 degrees. Since the phase cycle is 360 degrees, the phases of 0 degrees, 53 degrees, 65 degrees, 33 degrees, 23 degrees, and 39 degrees are obtained equivalently, that is, The closest to the second reference angle, which is 45 degrees. At this time, the second reference codebook REF2 is obtained in a predetermined field pattern at an angle of 0 degrees, and the phase shifter parameters corresponding to the antenna units AT21, AT22, AT23, AT24, AT25, and AT26 are 0 degrees, 270 degrees, and 0 degrees, respectively. , 0 degrees, 180 degrees and 0 degrees. Among them, the phase adjusted by the phase shifter has the smallest phase difference between 0 degrees, 53 degrees, 65 degrees, 33 degrees, 23 degrees, and 39 degrees, and 45 degrees, respectively.
接著,針對其他角度,由於初始編碼本中已經通過旋轉波束成型裝置10或接收器14產生其他場型下的相位,可將該些相位分別相對於第二基準角度(45度)以類似方式最小化,藉此獲得第二參考編碼本REF2。Then, for other angles, since the
類似的方式亦可用於產生具有第三基準角度的第三參考編碼本REF3。可參照圖7A、圖7B及圖7C,圖7A至圖7C為本發明實施例的用於產生第三參考編碼本的多個相位的示意圖。如圖7A、圖7B及圖7C所示,舉例而言,設定場型1,例如於0度角時測量的電場資訊,可利用圖4A測得所示的天線模組106-1的天線單元AT11、AT12、AT13、AT14、AT15及AT16的初始相位平移-80度後的相位作為天線模組106-2的天線單元AT21、AT22、AT23、AT24、AT25及AT26的初始相位,分別為0、143、65、33、203、39度。接著,通過調整對應天線單元AT21、AT22、AT23、AT24、AT25及AT26的相移器,使天線單元AT21、AT22、AT23、AT24、AT25及AT26的相位基於另一相位基準值(即是第三基準角度),例如-45度,由於天線模組106-2之射頻電路具有內建精密度為2位元的相移器PS21~PS2N,可進行360/22 =90度之進行最小化以達成相位匹配,亦即,分別以0度、180度、270度、270度、90度及270度的相移器參數調整天線單元AT21、AT22、AT23、AT24、AT25及AT26的相位,得到0度、323度、335度、303度、293度及309度,由於相位係以360度為循環,因此等同得到0度、-37度、-25度、-57度、-67度及-51度的相位。此時,得到第三參考編碼本REF3於0度角的預定場型下,對應於天線單元AT21、AT22、AT23、AT24、AT25及AT26的相移器參數分別為0度、180度、270度、270度、90度及270度。其中,通過相移器調整後相位0度、-37度、-25度、-57度、-67度及-51度分別與-45度之間具有最小相位差。A similar approach can also be used to generate a third reference codebook REF3 with a third reference angle. Refer to FIGS. 7A, 7B, and 7C. FIGS. 7A to 7C are schematic diagrams of multiple phases used to generate a third reference codebook according to an embodiment of the present invention. As shown in Fig. 7A, Fig. 7B and Fig. 7C, for example, setting the field pattern 1, such as the electric field information measured at an angle of 0 degrees, can be used to measure the antenna unit of the antenna module 106-1 shown in Fig. 4A The initial phases of AT11, AT12, AT13, AT14, AT15, and AT16 are shifted by -80 degrees as the initial phases of the antenna elements AT21, AT22, AT23, AT24, AT25, and AT26 of the antenna module 106-2, which are 0, 143, 65, 33, 203, 39 degrees. Then, by adjusting the phase shifters corresponding to the antenna units AT21, AT22, AT23, AT24, AT25, and AT26, the phases of the antenna units AT21, AT22, AT23, AT24, AT25, and AT26 are based on another phase reference value (that is, the third Reference angle), such as -45 degrees. Since the RF circuit of the antenna module 106-2 has a built-in phase shifter PS21~PS2N with a precision of 2 bits, it can be minimized by 360/2 2 =90 degrees. Achieve phase matching, that is, adjust the phases of the antenna units AT21, AT22, AT23, AT24, AT25 and AT26 with phase shifter parameters of 0 degrees, 180 degrees, 270 degrees, 270 degrees, 90 degrees, and 270 degrees to obtain 0 Degrees, 323 degrees, 335 degrees, 303 degrees, 293 degrees, and 309 degrees. Since the phase cycle is 360 degrees, it is equivalent to 0 degrees, -37 degrees, -25 degrees, -57 degrees, -67 degrees and -51 Degree phase. At this time, the third reference codebook REF3 is obtained in a predetermined field pattern with an angle of 0 degrees, and the phase shifter parameters corresponding to the antenna units AT21, AT22, AT23, AT24, AT25, and AT26 are 0 degrees, 180 degrees, and 270 degrees, respectively. , 270 degrees, 90 degrees and 270 degrees. Among them, the phase adjusted by the phase shifter has the smallest phase difference between 0 degrees, -37 degrees, -25 degrees, -57 degrees, -67 degrees, and -51 degrees, and -45 degrees, respectively.
接著,針對其他角度,由於初始編碼本中已經通過旋轉波束成型裝置10或接收器14產生其他場型下的相位,可將該些相位分別相對於第三基準角度(-45度)以類似方式最小化,藉此獲得第三參考編碼本REF3。Then, for other angles, since the
在替代實施例中,第一基準角度、第二基準角度及第三基準角度不限於上述實施例所述的0、45度及-45度,亦可為0、30度及-30度。In an alternative embodiment, the first reference angle, the second reference angle, and the third reference angle are not limited to the 0, 45 degrees, and -45 degrees described in the foregoing embodiment, and may also be 0, 30 degrees, and -30 degrees.
步驟S1003:依據多個待測天線相位產生第一參考編碼本、第二參考編碼本及第三參考編碼本。Step S1003: Generate a first reference codebook, a second reference codebook, and a third reference codebook according to the phases of the multiple antennas to be tested.
回到本發明的校正方法,進入步驟S101:對所述至少一校正天線模組執行一測試程序。此處,測試程序包括下列步驟。Returning to the calibration method of the present invention, proceed to step S101: perform a test procedure on the at least one calibration antenna module. Here, the test procedure includes the following steps.
步驟S102:配置基頻電路依據一預定目標場型,以第一參考編碼本中對應於預定目標場型的多筆控制資料控制參考天線模組,且分別以第一參考編碼本、第二參考編碼本及第三參考編碼本中對應於預定目標場型的多筆控制資料控制校正天線模組,以產生多個測試訊號。Step S102: Configure the baseband circuit according to a predetermined target field type, control the reference antenna module with multiple control data corresponding to the predetermined target field type in the first reference codebook, and use the first reference codebook and the second reference codebook respectively. The multiple control data corresponding to the predetermined target field pattern in the codebook and the third reference codebook control the calibration antenna module to generate multiple test signals.
步驟S103:配置接收器14接收多個測試訊號。Step S103: Configure the
步驟S104:配置計算裝置12處理多個測試訊號,以分別計算多個測試訊號於預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果。Step S104: Configure the
步驟S105:配置計算裝置12依據多個測試結果,將具有最大等效全向輻射功率的編碼本設定為校正天線模組進行收發訊號時所使用的預定編碼本。例如,在對天線模組106-2校正時,以第一參考編碼本REF1可獲得最大等效全向輻射功率,代表天線模組106-2依據第一參考編碼本REF1與天線模組106-1同時進行訊號收發時具有最小的相位差,換言之,可藉此消除天線模組106-1及106-2之間的硬體誤差。因此,可將第一參考編碼本REF1設定為天線模組106-2進行收發訊號時所使用的預定編碼本。Step S105: The
接著,可進一步配置計算裝置12基於上述步驟產生指示資料INS並儲存於記憶單元102,以在波束成型裝置10於多個預定目標場型進行收發訊號時,使基頻電路104依據預定目標場型進行收發訊號時,從第一參考編碼本REF1、第二參考編碼本REF2及第三參考編碼本REF3中取得對應的預定編碼本,以控制天線模組106-1至106-M。Then, the
因此,在應用了本發明的用於波束成型裝置的校正方法後,可進一步提供如圖1所示的波束成型裝置10,其包括處理器100、記憶單元102、基頻電路104及多個天線模組106-1至106-M。記憶單元102儲存有第一參考編碼本REF1、第二參考編碼本REF2、第三參考編碼本REF3及指示資料INS,第一參考編碼本REF1、第二參考編碼本REF2、第三參考編碼本REF3各包括以多個目標場型進行劃分的多筆控制資料,且第一參考編碼本REF1、第二參考編碼本REF2、第三參考編碼本REF3分別具有一基準角度(亦即如上述實施例所述的0度、45度及-45度)且彼此不同。Therefore, after applying the calibration method for a beamforming device of the present invention, a
指示資料INS則是用於使天線模組106-1至106-M進行收發訊號時,分別從多個參考編碼本指定一預定編碼本,以控制多個所述天線模組。The instruction data INS is used to allow the antenna modules 106-1 to 106-M to transmit and receive signals, respectively, to designate a predetermined codebook from multiple reference codebooks to control the multiple antenna modules.
在特定實施例中,當波束成型裝置10的系統初始化時,其處理器100可自動從記憶單元102讀取指示資料INS,並將指示資料INS指示的預定編碼本進行重組,以產生完整版本的編碼本,以供基頻電路104控制天線模組106-1至106-M進行訊號收發時可直接使用。In a specific embodiment, when the system of the
[實施例的有益效果][Beneficial effects of the embodiment]
本發明的其中一有益效果在於,本發明所提供的波束成型裝置、用於其之校正方法及校正系統,可依據單一天線模組的初始編碼本產生可適用於多個天線模組且具有不同基準角度的參考編碼本,並經由測試等效全向輻射功率來進行相移器校正,可有效地將相位精密度由相移器支援的精密度進一步依據多個參考編碼本對應的基準角度來進行提昇,並且可降低預先儲存的編碼本數量與校正時間。One of the beneficial effects of the present invention is that the beamforming device, the calibration method and the calibration system provided by the present invention can be generated based on the initial codebook of a single antenna module, which is applicable to multiple antenna modules and has different characteristics. The reference codebook of the reference angle, and the phase shifter correction is performed by testing the equivalent isotropic radiation power, which can effectively change the phase precision supported by the phase shifter to the reference angle corresponding to multiple reference codebooks. Upgrade, and can reduce the number of pre-stored codebooks and correction time.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content disclosed above is only the preferred and feasible embodiments of the present invention, and does not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made using the description and schematic content of the present invention are included in the application of the present invention. Within the scope of the patent.
1:波束成型裝置的校正系統 10:波束成型裝置 12:計算裝置 14:接收器 100:處理器 102:記憶單元 104:基頻電路 106-1、106-2…106-M:天線模組 AT11、AT12、AT13、AT14、AT15、AT16、…、AT1N、AT21、AT22、AT23、AT24、AT25、AT26、…、AT2N:天線單元 PS11、PS12…PS1N、PS21、PS22…PS2N:相移器 AP11、AP12…AP1N、AP21、AP22…AP2N:放大器電路 θ2:相位差 θ1:相位差 REF1:第一參考編碼本 REF2:第二參考編碼本 REF3:第三參考編碼本 INS:指示資料 1: Correction system of beamforming device 10: Beamforming device 12: Computing device 14: receiver 100: processor 102: memory unit 104: Fundamental frequency circuit 106-1, 106-2...106-M: Antenna Module AT11, AT12, AT13, AT14, AT15, AT16,..., AT1N, AT21, AT22, AT23, AT24, AT25, AT26,..., AT2N: antenna unit PS11, PS12...PS1N, PS21, PS22...PS2N: Phase shifter AP11, AP12...AP1N, AP21, AP22...AP2N: amplifier circuit θ2: Phase difference θ1: Phase difference REF1: The first reference codebook REF2: The second reference codebook REF3: The third reference codebook INS: instruction data
圖1為本發明實施例的用於波束成型裝置的校正系統的方塊圖。Fig. 1 is a block diagram of a correction system for a beamforming device according to an embodiment of the present invention.
圖2為本發明實施例的波束成型裝置的架構示意圖。FIG. 2 is a schematic structural diagram of a beamforming apparatus according to an embodiment of the present invention.
圖3為本發明實施例的用於波束成型裝置的校正方法的流程圖。FIG. 3 is a flowchart of a correction method for a beamforming device according to an embodiment of the present invention.
圖4為本發明實施例的用於產生參考編碼本的方式的流程圖。Fig. 4 is a flowchart of a method for generating a reference codebook according to an embodiment of the present invention.
圖5A至5C為本發明實施例的用於產生第一參考編碼本的多個相位的示意圖。5A to 5C are schematic diagrams of multiple phases used to generate a first reference codebook according to an embodiment of the present invention.
圖6A至6C為本發明實施例的用於產生第二參考編碼本的多個相位的示意圖。6A to 6C are schematic diagrams of multiple phases used to generate a second reference codebook according to an embodiment of the present invention.
圖7A至圖7C為本發明實施例的用於產生第三參考編碼本的多個相位的示意圖。7A to 7C are schematic diagrams of multiple phases used to generate a third reference codebook according to an embodiment of the present invention.
1:波束成型裝置的校正系統 1: Correction system of beamforming device
10:波束成型裝置 10: Beamforming device
12:計算裝置 12: Computing device
14:接收器 14: receiver
100:處理器 100: processor
102:記憶單元 102: memory unit
104:基頻電路 104: Fundamental frequency circuit
106-1、106-2…106-M:天線模組 106-1, 106-2...106-M: Antenna Module
REF1:第一參考編碼本 REF1: The first reference codebook
REF2:第二參考編碼本 REF2: The second reference codebook
REF3:第三參考編碼本 REF3: The third reference codebook
INS:指示資料 INS: instruction data
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/876,157 US11329376B2 (en) | 2019-05-22 | 2020-05-18 | Beamforming device, calibration method and calibration system for the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962851111P | 2019-05-22 | 2019-05-22 | |
US62/851,111 | 2019-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202044789A TW202044789A (en) | 2020-12-01 |
TWI743744B true TWI743744B (en) | 2021-10-21 |
Family
ID=74668211
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112569A TWI773982B (en) | 2019-05-22 | 2020-04-15 | Beamforming device, calibration method and calibration system for the same |
TW109112579A TWI743744B (en) | 2019-05-22 | 2020-04-15 | Beamforming device, calibration method and calibration system for the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112569A TWI773982B (en) | 2019-05-22 | 2020-04-15 | Beamforming device, calibration method and calibration system for the same |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI773982B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101675599A (en) * | 2007-02-06 | 2010-03-17 | 三星电子株式会社 | Codebook generating method and apparatus for generating a codebook for multi-polarized multiple-input multiple-output (mimo) systems |
TWI435558B (en) * | 2007-03-21 | 2014-04-21 | Broadcom Corp | Method and system for adaptive allocation of feedback resources for cqi and transmit pre-coding |
CN104919716A (en) * | 2013-02-15 | 2015-09-16 | 英特尔公司 | Methods for energy-efficient unicast and multicast transmission in a wireless communication system |
WO2016172652A1 (en) * | 2015-04-24 | 2016-10-27 | Skylark Wireless, Llc | Control channel design for many-antenna mu-mimo systems |
US20190036578A1 (en) * | 2015-10-07 | 2019-01-31 | Nokia Solutions And Networks Oy | Techniques to reduce radiated power for mimo wireless systems |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3597101B2 (en) * | 2000-02-21 | 2004-12-02 | 埼玉日本電気株式会社 | Receiver circuit and adaptive array antenna system |
DE112017006442T5 (en) * | 2016-12-21 | 2019-09-19 | Intel Corporation | WIRELESS COMMUNICATION TECHNOLOGY, DEVICES AND METHOD |
CN106935975A (en) * | 2017-03-14 | 2017-07-07 | 重庆大学 | A kind of heavy caliber broadband reception phased array antenna |
-
2020
- 2020-04-15 TW TW109112569A patent/TWI773982B/en active
- 2020-04-15 TW TW109112579A patent/TWI743744B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101675599A (en) * | 2007-02-06 | 2010-03-17 | 三星电子株式会社 | Codebook generating method and apparatus for generating a codebook for multi-polarized multiple-input multiple-output (mimo) systems |
TWI435558B (en) * | 2007-03-21 | 2014-04-21 | Broadcom Corp | Method and system for adaptive allocation of feedback resources for cqi and transmit pre-coding |
CN104919716A (en) * | 2013-02-15 | 2015-09-16 | 英特尔公司 | Methods for energy-efficient unicast and multicast transmission in a wireless communication system |
WO2016172652A1 (en) * | 2015-04-24 | 2016-10-27 | Skylark Wireless, Llc | Control channel design for many-antenna mu-mimo systems |
US20190036578A1 (en) * | 2015-10-07 | 2019-01-31 | Nokia Solutions And Networks Oy | Techniques to reduce radiated power for mimo wireless systems |
Also Published As
Publication number | Publication date |
---|---|
TWI773982B (en) | 2022-08-11 |
TW202044789A (en) | 2020-12-01 |
TW202044788A (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11411311B2 (en) | System and method for measuring a plurality of RF signal paths | |
US11811147B2 (en) | Method for calibrating phased array antenna and related apparatus | |
KR102457109B1 (en) | Apparatus and method for calibrating phased array antenna | |
CN108886391B (en) | Method and apparatus for line-of-sight antenna array | |
US11843177B2 (en) | Antenna apparatus and related device | |
US20170077613A1 (en) | Active array calibration | |
CN113904693A (en) | Phased array amplifier linearization | |
CN111193114B (en) | Antenna device and method for correcting antenna device | |
US20200235826A1 (en) | Method and device for enabling testing of a communication node | |
US11129167B2 (en) | Calibrating an array antenna | |
JP2016528794A (en) | Techniques for operating phased array antennas in millimeter wave radio modules. | |
JP2001177458A (en) | Adaptive array antenna transmitter-receiver and its calibration method | |
US11239552B2 (en) | Beamforming device, calibration method and calibration system for the same | |
CN113872645B (en) | Method for realizing reciprocity calibration of MIMO channel simulator | |
TWI743744B (en) | Beamforming device, calibration method and calibration system for the same | |
US11329376B2 (en) | Beamforming device, calibration method and calibration system for the same | |
Eisenbeis et al. | Beam Pattern Optimization Method for Subarray‐Based Hybrid Beamforming Systems | |
EP3614572B1 (en) | Method and apparatus for detecting beam | |
KR102449587B1 (en) | Apparatus and method for calibrating phased array antenna | |
KR102409690B1 (en) | Method and apparatus for measuring chareteristic of radio frequency chain | |
US20230344529A1 (en) | Antenna calibration method and system | |
US20230403065A1 (en) | Communication using a dual polarized antenna array | |
JP2022120520A (en) | Method for updating array antenna calibration lut | |
EP3917019A1 (en) | Self-configuring radio frequency systems | |
CN114365428A (en) | Beam forming method and device |