TW202044788A - Beamforming device, calibration method and calibration system for the same - Google Patents

Beamforming device, calibration method and calibration system for the same Download PDF

Info

Publication number
TW202044788A
TW202044788A TW109112569A TW109112569A TW202044788A TW 202044788 A TW202044788 A TW 202044788A TW 109112569 A TW109112569 A TW 109112569A TW 109112569 A TW109112569 A TW 109112569A TW 202044788 A TW202044788 A TW 202044788A
Authority
TW
Taiwan
Prior art keywords
correction
codebook
predetermined
antenna
degrees
Prior art date
Application number
TW109112569A
Other languages
Chinese (zh)
Other versions
TWI773982B (en
Inventor
許智閔
吳庭羽
張惟善
吳嘉娟
Original Assignee
啟碁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 啟碁科技股份有限公司 filed Critical 啟碁科技股份有限公司
Priority to US16/876,158 priority Critical patent/US11239552B2/en
Publication of TW202044788A publication Critical patent/TW202044788A/en
Application granted granted Critical
Publication of TWI773982B publication Critical patent/TWI773982B/en

Links

Images

Abstract

A beamforming device, a calibration method and a calibration system for the same are provided. The beamforming device includes a processor, a memory unit, a base band circuit, and a plurality of antenna modules. Each of the plurality of antenna modules includes a plurality of antenna units, and a plurality of phase shifters and a plurality of amplifiers respectively corresponding to the plurality of antenna units. The memory unit stores a reference codebook, a plurality of calibration codebooks, and instruction data. Each of the plurality of calibration codebooks includes a plurality of calibration control data divided by a plurality of target patterns, and the plurality of calibration codebooks differ from the reference codebook with a plurality of predetermined phase differences different from each other. The instruction data is used to instruct the baseband circuit to use one codebook of the reference codebook and the plurality of calibration codebooks when transmitting and receiving signals in a plurality of predetermined target fields.

Description

波束成型裝置、用於其之校正方法及校正系統Beamforming device, correction method and correction system used therefor

相關申請案Related applications

本發明係主張美國專利臨時申請案第62/851,111號(申請日:2019年5月22日)之優先權,該申請案之完整內容納入為本發明專利說明書的一部分以供參照。The present invention is to claim the priority of U.S. Provisional Application No. 62/851,111 (filing date: May 22, 2019), the complete content of which is incorporated into this invention patent specification for reference.

本發明涉及一種波束成型裝置、用於其之校正方法及校正系統,特別是涉及一種可修正天線模組之間的相位差的波束成型裝置、用於其之校正方法及校正系統。The present invention relates to a beamforming device, a correction method and a correction system used for the same, and more particularly to a beamforming device capable of correcting the phase difference between antenna modules, a correction method and a correction system used for the beamforming device.

在毫米波通訊領域中,與波束成型裝置的天線模組相關的路徑損耗遠遠大於運作頻率較低的同類設備。波束成形技術通常用於增加通信範圍,最常見的架構是一個基頻模組控制多個天線模組。在高頻應用中,由於波長較小,使得在製造時難以滿足設備需求。例如,在運作頻率60GHz下,其波長只有5mm左右。這意味著,每當發生0.1mm的路徑變化,將在天線模組之間造成36度的相位差。In the field of millimeter wave communications, the path loss associated with the antenna module of the beamforming device is far greater than similar devices with lower operating frequencies. Beamforming technology is usually used to increase the communication range. The most common architecture is that one baseband module controls multiple antenna modules. In high-frequency applications, due to the small wavelength, it is difficult to meet device requirements during manufacturing. For example, at an operating frequency of 60 GHz, its wavelength is only about 5 mm. This means that whenever a path change of 0.1mm occurs, a phase difference of 36 degrees will be caused between the antenna modules.

當天線模組之間產生相位差時,該相位差將在波束成形期間導致較低的等效全向輻射功率(equivalent isotropically radiated power, EIRP),更甚至導致不良的旁瓣電平(Side-lobe Level, SLL),進而使實際上運作產生的波束成型的場型與理想上的波束成型的場型之間產生偏差。When there is a phase difference between the antenna modules, the phase difference will result in a lower equivalent isotropically radiated power (EIRP) during beamforming, and even lead to a bad side lobe level (Side- lobe Level, SLL), which in turn causes a deviation between the actual beamforming field pattern and the ideal beamforming field pattern.

故,通過校正的方式來修正波束成型裝置的天線模組之間的相位差,來克服上述的缺陷,已成為該項事業所欲解決的重要課題之一。Therefore, correcting the phase difference between the antenna modules of the beamforming device by means of correction to overcome the above-mentioned defects has become one of the important issues to be solved by this business.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種可修正天線模組之間的相位差的波束成型裝置、用於其之校正方法及校正系統。The technical problem to be solved by the present invention is to provide a beamforming device capable of correcting the phase difference between antenna modules, a correction method and a correction system for the beamforming device, which can correct the phase difference between the antenna modules, in view of the disadvantages of the prior art.

為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種用於波束成型裝置的校正方法,用於包括一處理器、一記憶單元、一基頻電路及多個天線模組的一波束成型裝置,所述校正方法包括:儲存一參考編碼本(codebook)於該記憶單元,其中所述參考編碼本包括多筆參考控制資料,以多個目標場型進行劃分,且多筆所述參考控制資料用於設定各所述天線模組的多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器;依據所述參考編碼本及多個預定相位差產生多個校正編碼本,並儲存於所述記憶單元,其中多個所述預定相位差彼此不同,且多個所述校正編碼本各包括以多個所述目標場型進行劃分的多筆校正控制資料;選定一預定目標場型,並配置所述基頻電路依據所述預定目標場型,以多個所述校正編碼本中對應於所述預定目標場型的多筆所述校正控制資料分別控制多個所述天線模組,以產生多個測試訊號;配置一接收器接收多個所述測試訊號;配置所述計算裝置處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果;以及配置所述計算裝置依據多個所述測試結果,將具有最大等效全向輻射功率的所述校正編碼本設定為所述波束成型裝置於所述預定目標場型進行收發訊號時所使用的一預定編碼本。In order to solve the above-mentioned technical problems, one of the technical solutions adopted by the present invention is to provide a calibration method for a beamforming device, which is used for a device including a processor, a memory unit, a baseband circuit and multiple antenna modules. A beamforming device, the correction method includes: storing a reference codebook (codebook) in the memory unit, wherein the reference codebook includes multiple reference control data, divided by multiple target field types, and multiple records The reference control data is used to set multiple antenna units of each antenna module and multiple phase shifters and multiple amplifiers respectively corresponding to the multiple antenna units; according to the reference codebook and multiple predetermined phases The difference generates a plurality of correction codebooks and is stored in the memory unit, wherein the plurality of predetermined phase differences are different from each other, and each of the plurality of correction codebooks includes a plurality of pens divided by a plurality of the target field types Correction control data; select a predetermined target field type, and configure the baseband circuit according to the predetermined target field type to use a plurality of the correction control codes corresponding to the predetermined target field type in the correction codebook The data respectively control a plurality of the antenna modules to generate a plurality of test signals; configure a receiver to receive a plurality of the test signals; configure the computing device to process a plurality of the test signals to calculate a plurality of the test signals respectively Test the equivalent isotropically radiated power (EIRP) of the test signal in the predetermined target area, and generate multiple test results; and configure the computing device to have the largest equivalent based on the multiple test results The corrected codebook of omnidirectional radiation power is set as a predetermined codebook used by the beamforming device when transmitting and receiving signals in the predetermined target field pattern.

為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種用於波束成型裝置的校正系統,其包括計算裝置、波束成型裝置及接收器。波束成型裝置,連接於計算裝置,波束成型裝置包括處理器、記憶單元、基頻電路及多個天線模組。多個天線模組各包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。其中,計算裝置經配置以將一參考編碼本(codebook)儲存於所述記憶單元,所述參考編碼本包括多筆參考控制資料,以多個目標場型進行劃分,且多筆所述參考控制資料用於設定各所述天線模組的多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。其中,計算裝置依據所述參考編碼本及多個預定相位差產生多個校正編碼本,並儲存於所述記憶單元,其中多個所述預定相位差彼此不同,且多個所述校正編碼本各包括以多個所述目標場型進行劃分的多筆校正控制資料。其中,基頻電路經配置以依據所選定的預定目標區域,以多個所述校正編碼本中對應於所述預定目標區域的多筆所述校正控制資料分別控制多個所述天線模組,以產生多個測試訊號。其中,接收器經配置以接收多個所述測試訊號。其中,計算裝置經配置以處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果。其中,計算裝置經配置以依據多個所述測試結果,將具有最大等效全向輻射功率的所述校正編碼本設定為所述波束成型裝置於所述預定目標場型進行收發訊號時所使用的預定編碼本。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a correction system for a beamforming device, which includes a computing device, a beamforming device and a receiver. The beamforming device is connected to the computing device. The beamforming device includes a processor, a memory unit, a baseband circuit, and multiple antenna modules. Each of the multiple antenna modules includes multiple antenna units and multiple phase shifters and multiple amplifiers respectively corresponding to the multiple antenna units. Wherein, the computing device is configured to store a reference codebook (codebook) in the memory unit, the reference codebook includes a plurality of reference control data, divided by a plurality of target field types, and a plurality of the reference control The data is used to set multiple antenna units of each antenna module and multiple phase shifters and multiple amplifiers respectively corresponding to the multiple antenna units. Wherein, the computing device generates a plurality of correction codebooks according to the reference codebook and a plurality of predetermined phase differences, and stores them in the memory unit, wherein the plurality of predetermined phase differences are different from each other, and a plurality of the correction codebooks Each includes a plurality of correction control data divided by a plurality of the target field types. Wherein, the baseband circuit is configured to control a plurality of the antenna modules with a plurality of the correction control data corresponding to the predetermined target area in a plurality of the correction codebooks according to the selected predetermined target area, To generate multiple test signals. Wherein, the receiver is configured to receive a plurality of the test signals. Wherein, the computing device is configured to process a plurality of the test signals to respectively calculate the Equivalent isotropically radiated power (EIRP) of the plurality of test signals in the predetermined target area, and generate a plurality of Test Results. Wherein, the computing device is configured to set the corrected codebook having the maximum equivalent isotropic radiation power as the beamforming device used when the predetermined target field pattern is used for transmitting and receiving signals according to a plurality of the test results The predetermined codebook.

為了解決上述的技術問題,本發明所採用的另外再一技術方案是提供一種波束成型裝置,其包括處理器、記憶單元、基頻電路及多個天線模組。多個天線模組各包括多個天線單元,以及分別對應於多個天線單元的多個相移器及多個放大器。其中,記憶單元儲存有一參考編碼本、多個校正編碼本及指示資料,多個校正編碼本各包括以多個目標場型進行劃分的多筆校正控制資料,且多個校正編碼本與參考編碼本分別相差彼此不同的多個預定相位差。指示資料用於指示基頻電路於多個預定目標場型進行收發訊號時所分別使用的多個校正編碼本中的多個預定編碼本。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a beamforming device, which includes a processor, a memory unit, a baseband circuit, and a plurality of antenna modules. Each of the multiple antenna modules includes multiple antenna units, and multiple phase shifters and multiple amplifiers respectively corresponding to the multiple antenna units. The memory unit stores a reference codebook, multiple correction codebooks, and instruction data, each of the multiple correction codebooks includes multiple correction control data divided by multiple target field types, and multiple correction codebooks and reference codes The phases are different from each other by a plurality of predetermined phase differences. The instruction data is used for instructing a plurality of predetermined codebooks of a plurality of correction codebooks respectively used by the baseband circuit when transmitting and receiving signals in a plurality of predetermined target field types.

本發明的其中一有益效果在於,本發明所提供的波束成型裝置、用於其之校正方法及校正系統,可依據多個預定相位差及參考編碼本,產生對應於多個天線模組的多個校正編碼本,並通過測試結果設定波束成型裝置進行訊號收發時使用的預定編碼本,當實際上運作產生的波束成型的場型與理想上的波束成型的場型之間因天線模組之間的誤差而產生偏差時,可通過校正來重新將輻射場型定向到所需方向,使總體性能與原始設計規格相匹配。One of the beneficial effects of the present invention is that the beamforming device, the correction method and the correction system used in the present invention can generate multiple antenna modules corresponding to multiple antenna modules based on multiple predetermined phase differences and reference codebooks. A codebook is corrected, and the predetermined codebook used by the beamforming device for signal transmission and reception is set through the test results. When the actual beamforming field pattern generated by the operation and the ideal beamforming field pattern are due to the difference between the antenna module When the deviation is caused by the error between the two, the radiation field can be re-oriented to the required direction through correction, so that the overall performance matches the original design specifications.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings about the present invention. However, the provided drawings are only for reference and description, and are not used to limit the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“波束成型裝置、用於其之校正方法及校正系統”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a specific embodiment to illustrate the implementation of the "beamforming device, correction method and correction system" disclosed in the present invention. Those skilled in the art can understand the advantages of the present invention from the content disclosed in this specification. And effect. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to actual dimensions, and are stated in advance. The following embodiments will further describe the related technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.

圖1為本發明實施例的用於波束成型裝置的校正系統的方塊圖。參閱圖1所示,本發明第一實施例提供一種用於波束成型裝置的校正系統1,其包括波束成型裝置10、計算裝置12及接收器14。Fig. 1 is a block diagram of a correction system for a beamforming device according to an embodiment of the present invention. Referring to FIG. 1, the first embodiment of the present invention provides a correction system 1 for a beamforming device, which includes a beamforming device 10, a computing device 12 and a receiver 14.

波束成型裝置10可包括處理器100、記憶單元102、基頻電路104及多個天線模組106-1、106-2…106-M。可進一步參照圖2,圖2為本發明實施例的波束成型裝置的架構示意圖。如圖2所示,天線模組106-1、106-2…106-M各自包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。例如,天線模組106-1可包括天線單元AT11、AT12…AT1N,以及分別對應於天線單元AT11、AT12…AT1N的相移器PS11、PS12…PS1N以及放大器電路AP11、AP12…AP1N。相移器PS11、PS12…PS1N可對於個別天線單元AT11、AT12…AT1N設定不同的移動相位,而放大器電路AP11、AP12…AP1N可各自包括多個放大器,以放大經相移器PS11、PS12…PS1N移相後的訊號,而不以圖2所示的數量為限,藉此達到想要的波束成型。The beamforming device 10 may include a processor 100, a memory unit 102, a baseband circuit 104, and a plurality of antenna modules 106-1, 106-2...106-M. Further reference may be made to FIG. 2, which is a schematic structural diagram of a beamforming apparatus according to an embodiment of the present invention. As shown in FIG. 2, the antenna modules 106-1, 106-2...106-M each include a plurality of antenna units and a plurality of phase shifters and a plurality of amplifiers respectively corresponding to the plurality of antenna units. For example, the antenna module 106-1 may include antenna units AT11, AT12...AT1N, and phase shifters PS11, PS12...PS1N and amplifier circuits AP11, AP12...AP1N respectively corresponding to the antenna units AT11, AT12...AT1N. The phase shifters PS11, PS12...PS1N can set different mobile phases for individual antenna units AT11, AT12...AT1N, and the amplifier circuits AP11, AP12...AP1N can each include multiple amplifiers to amplify the phase shifters PS11, PS12...PS1N The phase-shifted signal is not limited to the number shown in Figure 2 to achieve the desired beamforming.

此外,處理器100可例如為是微控制器(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP),其用於從記憶單元102中取得稱為編碼本(codebook)的控制資料,以將對應的相位及放大器參數分配給天線單元AT11、AT12…AT1N,而基頻電路104可例如為基頻處理器,其基於上述分配的相位及放大器參數控制天線模組106-1、106-2…106-M。In addition, the processor 100 may be, for example, a microcontroller (microcontroller), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), which is used to obtain a codebook (codebook) from the memory unit 102. ) To assign the corresponding phase and amplifier parameters to the antenna units AT11, AT12...AT1N, and the baseband circuit 104 may be, for example, a baseband processor, which controls the antenna module 106 based on the above assigned phase and amplifier parameters -1, 106-2...106-M.

天線模組106-1亦可包括射頻電路,射頻電路包含數位類比轉換器(Digital to Analog Converter,DAC),以將來自基頻電路104的基頻數位訊號轉換為類比射頻訊號。類似的,天線模組106-2可包括天線單元AT21、AT22…AT2N,以及分別對應於天線單元AT21、AT22…AT2N的相移器PS21、PS22…PS2N以及放大器電路AP21、AP22…AP2N。The antenna module 106-1 may also include a radio frequency circuit. The radio frequency circuit includes a digital to analog converter (DAC) to convert the base frequency digital signal from the base frequency circuit 104 into an analog radio frequency signal. Similarly, the antenna module 106-2 may include antenna units AT21, AT22...AT2N, and phase shifters PS21, PS22...PS2N and amplifier circuits AP21, AP22...AP2N corresponding to the antenna units AT21, AT22...AT2N, respectively.

如圖2所示的波束成型裝置10包括多個天線模組106-1、106-2…106-M,而天線模組106-1、106-2…106-M中由於製程偏移,可能存在許多誤差。當波束成型裝置10存在這些硬體誤差時,有可能因為硬體的增益及相位誤差,而造成合成波束的主要傳遞方向產生偏移、往錯誤方向傳輸、或造成波束能量衰減,如此將難以達到正確的波束成型。例如,當設計用於天線模組106-1的編碼本時,預設基頻電路104加上天線模組106-1本身的相位差θ1為定值,而天線模組106-2的架構與天線模組106-1相同,理論上,基頻電路104加上天線模組106-2本身的相位差θ2應與相位差θ1相同,然而,實際上,不同的射頻電路會帶來不可預測的相位偏差,若採用相同的編碼本進行控制,可能則會直接影響到波束成型的EIRP最大值的角度與SLL。考慮硬體誤差所造成的影響,需要採用本發明的用於波束成型裝置的校正系統與校正方法。The beamforming device 10 shown in FIG. 2 includes multiple antenna modules 106-1, 106-2...106-M, and the antenna modules 106-1, 106-2...106-M may There are many errors. When the beamforming device 10 has these hardware errors, it is possible that the main transmission direction of the composite beam may be shifted, transmitted in the wrong direction, or the beam energy may be attenuated due to the gain and phase errors of the hardware, which will be difficult to achieve. Correct beamforming. For example, when designing the codebook for the antenna module 106-1, the phase difference θ1 of the baseband circuit 104 plus the antenna module 106-1 itself is preset to be a fixed value, and the structure of the antenna module 106-2 is The antenna module 106-1 is the same. Theoretically, the phase difference θ2 of the baseband circuit 104 plus the antenna module 106-2 itself should be the same as the phase difference θ1. However, in fact, different radio frequency circuits will cause unpredictable The phase deviation, if the same codebook is used for control, may directly affect the angle and SLL of the maximum EIRP of beamforming. Considering the influence caused by hardware errors, it is necessary to adopt the correction system and correction method for the beamforming device of the present invention.

在本實施例中,計算裝置12可以是微控制器(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、特殊應用積體電路(application specific integrated circuit,ASIC)、數位邏輯電路、行動運算裝置、電腦等可提供運算能力的電子裝置。在一實施例中,計算裝置12可以是電腦,經配置以與接收器14電性連接,以從接收器14取得需要的資訊。In this embodiment, the computing device 12 may be a microcontroller (microcontroller), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), or an application specific integrated circuit (ASIC). , Digital logic circuits, mobile computing devices, computers and other electronic devices that can provide computing capabilities. In one embodiment, the computing device 12 may be a computer, which is configured to be electrically connected to the receiver 14 to obtain required information from the receiver 14.

接收器14例如是喇叭天線(horn antenna)、無線基站、或行動裝置,波束成型裝置10與接收器14可通過無線訊號傳輸進行通訊。接收器14例如可包括功率感測器(power sensor),用以檢測來自波束成型裝置10的無線訊號強度。接收器20可量測波束成型裝置10在不同角度的訊號強度。The receiver 14 is, for example, a horn antenna, a wireless base station, or a mobile device. The beamforming device 10 and the receiver 14 can communicate through wireless signal transmission. The receiver 14 may include, for example, a power sensor for detecting the strength of the wireless signal from the beamforming device 10. The receiver 20 can measure the signal strength of the beamforming device 10 at different angles.

以下請參照圖3,其為本發明實施例的用於波束成型裝置的校正方法的流程圖。參閱圖3所示,本發明實施例提供一種用於波束成型裝置的校正方法,其適用於前述實施例的校正系統1,且至少包括下列幾個步驟:Please refer to FIG. 3 below, which is a flowchart of a calibration method for a beamforming device according to an embodiment of the present invention. Referring to FIG. 3, an embodiment of the present invention provides a calibration method for a beamforming device, which is applicable to the calibration system 1 of the foregoing embodiment, and includes at least the following steps:

步驟S100:配置計算裝置儲存參考編碼本(codebook)REF於記憶單元。其中,參考編碼本REF包括多筆參考控制資料,以多個目標場型進行劃分,且多筆參考控制資料用於設定各天線模組的多個天線單元及分別對應於多個天線單元的多個相移器及多個放大器。Step S100: Configure the computing device to store a reference codebook (codebook) REF in the memory unit. Among them, the reference codebook REF includes multiple reference control data, divided by multiple target field types, and multiple reference control data are used to set multiple antenna elements of each antenna module and multiple antenna elements corresponding to the multiple antenna elements. A phase shifter and multiple amplifiers.

以兩個天線模組為例,參考編碼本REF可如下表1所示:Taking two antenna modules as an example, the reference codebook REF can be as shown in Table 1:

表1 參考編碼本   天線單元1 天線單元2 …… 天線單元2N 場型1 相位 0度 90度 180度 放大器 場型2 相位 0度 90度 180度 放大器 …… 場型L 相位 0度 90度 …… 180度 放大器 Table 1 Reference codebook Antenna unit 1 Antenna unit 2 ... Antenna unit 2N Field Type 1 Phase 0 degree 90 degrees 180 degree Amplifier open open turn off Field Type 2 Phase 0 degree 90 degrees 180 degree Amplifier open open turn off ... Field Type L Phase 0 degree 90 degrees ... 180 degree Amplifier open open turn off

在參考編碼本REF中,多筆參考控制資料各包括用於設定各天線模組的多個相移器參考參數及多個放大器參考參數,且多個相移器參考參數對應多個參考相位,且多個放大器參考參數對應用於指示多個所述放大器的開關狀態的多個開關狀態代碼(例如開啟以1代表,關閉以0代表)。如表1所示,參考編碼本REF可包括用於場型1至場型L的多筆參考控制資料,場型1至場型L為指向不同角度的輻射場型。例如以兩個天線模組106-1及106-2為例,共包括天線單元AT11、天線單元AT12至天線單元AT2N(如圖2所示),且各筆控制資料包括對應於天線單元AT11、天線單元AT12至天線單元AT2N的相移器的相位及放大器的開啟或關閉的參數。其中,相移器可例如為2位元的相移器,可切換相位分別為0度、90度、180度、270度,即可作為上述的參考相位,但本發明不以此為限。In the reference codebook REF, each of the multiple reference control data includes multiple phase shifter reference parameters and multiple amplifier reference parameters for setting each antenna module, and multiple phase shifter reference parameters correspond to multiple reference phases. And the multiple amplifier reference parameters correspond to multiple switch state codes used to indicate the switch states of the multiple amplifiers (for example, turn on is represented by 1 and turn off is represented by 0). As shown in Table 1, the reference codebook REF can include multiple reference control data for field type 1 to field type L, and field type 1 to field type L are radiation field types pointing at different angles. For example, take two antenna modules 106-1 and 106-2 as an example, including antenna unit AT11, antenna unit AT12 to antenna unit AT2N (as shown in Figure 2), and each control data includes corresponding antenna unit AT11, The phase of the phase shifter from the antenna unit AT12 to the antenna unit AT2N and the parameters for turning on or off the amplifier. Wherein, the phase shifter may be, for example, a 2-bit phase shifter, and the switchable phases are 0 degrees, 90 degrees, 180 degrees, and 270 degrees respectively, which can be used as the above-mentioned reference phases, but the present invention is not limited thereto.

其中,以兩個天線模組106-1、106-2為例,且每個天線模組具有四個天線單元,例如天線模組106-1包括天線單元AT11、AT12、AT13及AT14,且天線模組106-2則包括AT21、AT22、AT23及AT24。參考編碼本REF的產生方式可參照圖4A、圖4B及圖4C,圖4A至4C為本發明實施例的用於產生參考編碼本的多個相位的示意圖。如圖4A、圖4B及圖4C所示,舉例而言,設定場型1,例如0度角時量測的電場資訊,可測得圖4A所示的天線模組106-1的天線單元AT11、AT12、AT13及AT14的初始相位分別為90、95、-180、30度,其中又以天線單元AT14產生的訊號增益最強,故以天線單元AT14為基準,將天線單元AT11、AT12、AT13及AT14的初始相位90、95、-180、30度分別平移-30度,使天線單元AT11、AT12、AT13及AT14的相位變為60、65、-210、0度,如圖4B所示。而在參考編碼本REF中,天線單元AT21、AT22、AT23及AT24係沿用平移後的相位,分別為60、65、-210、0度。Among them, two antenna modules 106-1 and 106-2 are taken as an example, and each antenna module has four antenna elements. For example, the antenna module 106-1 includes antenna elements AT11, AT12, AT13, and AT14, and the antenna Module 106-2 includes AT21, AT22, AT23 and AT24. The manner of generating the reference codebook REF can refer to FIGS. 4A, 4B, and 4C. FIGS. 4A to 4C are schematic diagrams of multiple phases used to generate the reference codebook according to an embodiment of the present invention. As shown in FIGS. 4A, 4B, and 4C, for example, by setting the field type 1, such as the electric field information measured at an angle of 0 degrees, the antenna unit AT11 of the antenna module 106-1 shown in FIG. 4A can be measured. The initial phases of, AT12, AT13, and AT14 are 90, 95, -180, and 30 degrees respectively. Among them, the signal gain generated by the antenna unit AT14 is the strongest. Therefore, the antenna unit AT14 is used as the reference, and the antenna units AT11, AT12, AT13 and The initial phases of 90, 95, -180, and 30 degrees of AT14 are respectively shifted by -30 degrees, so that the phases of antenna units AT11, AT12, AT13 and AT14 become 60, 65, -210, and 0 degrees, as shown in FIG. 4B. In the reference codebook REF, the antenna units AT21, AT22, AT23, and AT24 follow the shifted phases, which are 60, 65, -210, and 0 degrees, respectively.

接著,通過調整對應天線單元AT11、AT12、AT13及AT14的相移器,使天線單元AT11、AT12、AT13及AT14的相位基於一相位基準值,例如0度進行最小化。需要說明的是,由於天線模組之射頻電路具有內建精密度為2位元的相移器PS11~PS2N,可進行360/22 度(即90度)之最小化相位匹配,亦即,分別以270度、270度、180度及0度的相移器參數調整天線單元AT11、AT12、AT13及AT14的相位,得到-30度、-25度、-30度及0度。此時,得到參考編碼本REF於場型1,即0度角的場型下,用於控制天線模組106-1的天線單元AT11、AT12、AT13及AT14的相移器參數分別為270度、270度、180度及0度。此外,天線單元AT21、AT22、AT23及AT24以相同方式平移-30度及對0度進行最小化後,同樣獲得分別為-30度、-25度、-30度及0度的相位,且對應的相移器參數亦分別為270度、270度、180度及0度。Next, by adjusting the phase shifters corresponding to the antenna units AT11, AT12, AT13, and AT14, the phases of the antenna units AT11, AT12, AT13, and AT14 are minimized based on a phase reference value, such as 0 degrees. It should be noted that because the RF circuit of the antenna module has a built-in phase shifter PS11~PS2N with a precision of 2 bits, it can perform 360/2 2 degrees (ie 90 degrees) minimized phase matching, that is, Adjust the phases of the antenna units AT11, AT12, AT13, and AT14 with the phase shifter parameters of 270 degrees, 270 degrees, 180 degrees, and 0 degrees to obtain -30 degrees, -25 degrees, -30 degrees, and 0 degrees. At this time, the reference codebook REF is obtained in field type 1, which is a field type of 0 degrees, and the phase shifter parameters used to control the antenna units AT11, AT12, AT13 and AT14 of the antenna module 106-1 are 270 degrees respectively , 270 degrees, 180 degrees and 0 degrees. In addition, after the antenna units AT21, AT22, AT23, and AT24 are shifted by -30 degrees in the same way and 0 degrees are minimized, the phases of -30 degrees, -25 degrees, -30 degrees and 0 degrees are also obtained, and corresponding The phase shifter parameters are also 270 degrees, 270 degrees, 180 degrees and 0 degrees.

接著,針對其他角度,即場型2~場型L,可通過旋轉波束成型裝置10或接收器14,通過相同方式產生其他場型下的相移器參數,藉此獲得參考編碼本REF。Then, for other angles, that is, field type 2 to field type L, the rotating beamforming device 10 or the receiver 14 can be used to generate the phase shifter parameters in other field types in the same manner, thereby obtaining the reference codebook REF.

回到本發明的校正方法,進入步驟S101:配置計算裝置依據參考編碼本REF及多個預定相位差產生多個校正編碼本CAL,並儲存於記憶單元。其中,多個預定相位差彼此不同,且多個校正編碼本CAL各包括以多個所述目標場型進行劃分的多筆校正控制資料。Returning to the calibration method of the present invention, proceed to step S101: the configuration computing device generates a plurality of calibration codebooks CAL according to the reference codebook REF and a plurality of predetermined phase differences, and stores them in the memory unit. Wherein, the plurality of predetermined phase differences are different from each other, and each of the plurality of correction codebooks CAL includes a plurality of correction control data divided by a plurality of the target field types.

以兩個天線模組為例,校正編碼本CAL可如下表2所示,包括多筆校正控制資料。校正控制資料各包括用於設定各天線模組的多個相移器校正參數及多個放大器校正參數。Taking two antenna modules as an example, the calibration codebook CAL can be shown in Table 2 below, including multiple calibration control data. Each of the calibration control data includes a plurality of phase shifter calibration parameters and a plurality of amplifier calibration parameters for setting each antenna module.

表2: 校正編碼本1   天線單元1 天線單元2 …… 天線單元2N 場型1 相位 0度 90度 180度 放大器 場型2 相位 0度 90度 180度 放大器 …… 場型L 相位 0度 90度 …… 180度 放大器 Table 2: Correction codebook 1 Antenna unit 1 Antenna unit 2 ... Antenna unit 2N Field Type 1 Phase 0 degree 90 degrees 180 degree Amplifier open open turn off Field Type 2 Phase 0 degree 90 degrees 180 degree Amplifier open open turn off ... Field Type L Phase 0 degree 90 degrees ... 180 degree Amplifier open open turn off

舉例而言,對於天線模組106-1及106-2而言,多個校正編碼本CAL係用於消除天線模組106-1及106-2之間的相位誤差。可進一步參考圖5A、5B及5C,圖5A、5B及5C為本發明實施例的用於產生其中一個校正編碼本的多個相位的示意圖。For example, for the antenna modules 106-1 and 106-2, multiple calibration codebooks CAL are used to eliminate the phase error between the antenna modules 106-1 and 106-2. Further reference may be made to FIGS. 5A, 5B, and 5C. FIGS. 5A, 5B, and 5C are schematic diagrams of multiple phases used to generate one of the correction codebooks according to an embodiment of the present invention.

在本實施例中,同樣以兩個天線模組106-1及106-2為例進行說明,且每個天線模組仍具有四個天線單元。由於在產生參考編碼本REF的過程中,已將天線單元AT11、AT12、AT13及AT14的初始相位差90、95、-180、30度分別平移-30度,使天線單元AT11、AT12、AT13及AT14的相位變為60、65、-210、0度。而在產生用於天線模組106-2的校正編碼本CAL時,如圖5A所示,天線單元AT11、AT12、AT13及AT14可直接沿用圖4C中對0度進行最小化後的結果,即-30度、-25度、-30度及0度的相位。In this embodiment, two antenna modules 106-1 and 106-2 are also taken as an example for description, and each antenna module still has four antenna elements. In the process of generating the reference codebook REF, the initial phase differences of the antenna units AT11, AT12, AT13 and AT14 have been shifted by 90, 95, -180, and 30 degrees respectively by -30 degrees, so that the antenna units AT11, AT12, AT13 and The phase of AT14 becomes 60, 65, -210, 0 degrees. When generating the correction codebook CAL for the antenna module 106-2, as shown in Figure 5A, the antenna units AT11, AT12, AT13, and AT14 can directly use the result of minimizing 0 degrees in Figure 4C, namely -30 degree, -25 degree, -30 degree and 0 degree phase.

在本步驟中,已經描述過依據預定相位差產生校正編碼本CAL。詳細而言,多個預定相位差的範圍可在0度至360度之間,且多個預定相位差係由360度除以一測試數量來決定,且校正編碼本CAL的數量對應於測試數量。例如,可將360度除以數量為36的測試數量,可從0度至360度,每隔10度為一區間,獲得多個預定相位差分別為0、10、….、350度。而測試數量取決於所能接受的測試時間,本發明不以此為限。In this step, it has been described that the correction codebook CAL is generated based on the predetermined phase difference. In detail, the range of multiple predetermined phase differences can be between 0 degrees and 360 degrees, and the multiple predetermined phase differences are determined by dividing 360 degrees by a test quantity, and the number of correction codebooks CAL corresponds to the test quantity . For example, you can divide 360 degrees by the number of tests with 36 degrees, from 0 degrees to 360 degrees, every 10 degrees is an interval, to obtain multiple predetermined phase differences of 0, 10,..., 350 degrees, respectively. The number of tests depends on the acceptable test time, and the present invention is not limited thereto.

接著,可基於預定相位差,例如90度,以及參考相位產生多個相移器校正參數。以圖5B為例,當預定相位差為90度,則將天線單元AT21、AT22、AT23及AT24的相位60、65、-210、0度分別加上預定相位差90度,而天線單元AT11、AT12、AT13及AT14的相位差維持不變,獲得如圖5B所示的相位150、155、-120、90度。Then, a plurality of phase shifter correction parameters can be generated based on a predetermined phase difference, such as 90 degrees, and a reference phase. Taking Figure 5B as an example, when the predetermined phase difference is 90 degrees, the phases 60, 65, -210, and 0 degrees of the antenna units AT21, AT22, AT23, and AT24 are respectively added to the predetermined phase difference of 90 degrees, and the antenna units AT11, The phase difference of AT12, AT13 and AT14 remains unchanged, and the phases of 150, 155, -120, and 90 degrees as shown in FIG. 5B are obtained.

接著,通過調整對應天線單元AT21、AT22、AT23及AT24的相移器,使天線單元AT21、AT22、AT23及AT24的相位差相對於0度,進行用於預定相位差90度之最小化相位匹配。與參考編碼本REF不同的,此時需要分別以180度、180度、90度及270度的相移器參數調整天線單元AT21、AT22、AT23及AT24的相位差,得到330度、335度、-30度及360度。其中,由於相位係以360度為一週期,相位差330度即是-30度,相位差335度則是-25度,相位差360度則是0度,相對於0度均為最小化結果。此時,得到校正編碼本CAL於場型1,即0度角的相移器參數分別為180度、180度、90度及270度。接著,針對其他角度,可通過旋轉波束成型裝置10或接收器14,通過相同方式產生其他場型下的相移器參數,藉此獲得其中一個校正編碼本CAL。Next, by adjusting the phase shifters corresponding to the antenna units AT21, AT22, AT23, and AT24, the phase difference of the antenna units AT21, AT22, AT23, and AT24 is relative to 0 degrees, and the phase matching is performed to minimize the predetermined phase difference of 90 degrees. . Different from the reference codebook REF, the phase shifter parameters of 180 degrees, 180 degrees, 90 degrees, and 270 degrees need to be used to adjust the phase differences of the antenna units AT21, AT22, AT23, and AT24 to obtain 330 degrees, 335 degrees, -30 degrees and 360 degrees. Among them, since the phase is 360 degrees as a cycle, the phase difference of 330 degrees is -30 degrees, the phase difference of 335 degrees is -25 degrees, and the phase difference of 360 degrees is 0 degrees, which are all minimized results relative to 0 degrees. . At this time, the corrected codebook CAL is obtained in field type 1, that is, the phase shifter parameters of the 0 degree angle are 180 degrees, 180 degrees, 90 degrees and 270 degrees, respectively. Then, for other angles, the rotating beamforming device 10 or the receiver 14 can be used to generate the phase shifter parameters in other field types in the same manner, thereby obtaining one of the correction codebooks CAL.

以此類推,可依據多個預定相位差分別為10、….、350度,產生對應於預定相位差分別為10、….、350度的36個校正編碼本CAL,並且,可針對所有的天線模組106-2至106-M執行上述流程,以分別產生對應天線模組106-2至106-M的多個校正編碼本CAL。其中,對於預定相位差0度,可直接採用參考編碼本REF。By analogy, based on multiple predetermined phase differences of 10,..., 350 degrees, 36 correction codebooks CAL corresponding to the predetermined phase differences of 10,..., 350 degrees can be generated, and can be used for all The antenna modules 106-2 to 106-M execute the above process to generate a plurality of calibration codebooks CAL corresponding to the antenna modules 106-2 to 106-M, respectively. Among them, for the predetermined phase difference of 0 degrees, the reference codebook REF can be directly used.

步驟S102:選定預定目標場型,例如:0度角,並配置基頻電路依據預定目標場型,以參考編碼本REF或多個校正編碼本CAL中對應於預定目標場型的多筆校正控制資料分別控制多個天線模組,以產生多個測試訊號。Step S102: Select a predetermined target field type, for example: 0 degree angle, and configure the baseband circuit according to the predetermined target field type to refer to the codebook REF or the multiple correction control corresponding to the predetermined target field type in the multiple correction codebooks CAL The data respectively control multiple antenna modules to generate multiple test signals.

步驟S103:配置接收器14接收多個測試訊號。Step S103: Configure the receiver 14 to receive multiple test signals.

步驟S104:配置計算裝置12處理多個測試訊號,以分別計算多個測試訊號於預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果。其中,可參考圖6,其為本發明實施例的測試結果中,EIRP對多個預定相位差的作圖。Step S104: Configure the computing device 12 to process a plurality of test signals to respectively calculate Equivalent isotropically radiated power (EIRP) of the plurality of test signals in a predetermined target area, and generate a plurality of test results. Among them, refer to FIG. 6, which is a plot of EIRP against multiple predetermined phase differences in the test result of the embodiment of the present invention.

步驟S105:配置計算裝置12依據多個測試結果,將具有最大等效全向輻射功率的參考編碼本REF或校正編碼本CAL設定為波束成型裝置於預定目標場型進行收發訊號時所使用的預定編碼本。例如,如圖6所示,在預定相位差為240度時,採用的校正編碼本CAL可獲得最大等效全向輻射功率,因此,可將經過預定相位差240度調整後的該校正編碼本CAL設定為波束成型裝置於預定目標場型進行收發訊號時所使用的預定編碼本;在此,可搭配圖2來說明,天線模組106-1與天線模組106-2兩者之間可能相差240度左右,即θ1與θ2之間的相位差。而透過本發明的校正方法,可以找到用來補償此240度相位差的校正編碼本CAL。特別說明的是,若校正編碼本CAL的數量愈多,即預定相位差的數量愈多,則校正的精確度會愈高。Step S105: The configuration computing device 12 sets the reference codebook REF or the correction codebook CAL with the maximum equivalent isotropic radiation power as the preset used by the beamforming device when transmitting and receiving signals in a predetermined target field based on the multiple test results Codebook. For example, as shown in Figure 6, when the predetermined phase difference is 240 degrees, the adopted correction codebook CAL can obtain the maximum equivalent isotropic radiation power. Therefore, the corrected codebook after the predetermined phase difference 240 degrees can be adjusted CAL is set as the predetermined codebook used by the beamforming device to transmit and receive signals in a predetermined target field; here, it can be illustrated with Figure 2 that the antenna module 106-1 and the antenna module 106-2 may be connected The phase difference is about 240 degrees, that is, the phase difference between θ1 and θ2. Through the correction method of the present invention, a correction codebook CAL can be found to compensate for the 240 degree phase difference. In particular, if the number of correction codebooks CAL is greater, that is, the number of predetermined phase differences is greater, the accuracy of the correction will be higher.

較佳的,可配置計算裝置12基於上述步驟產生指示資料INS並儲存於記憶單元102,在波束成型裝置10於多個預定目標場型進行收發訊號時,依據指示資料INS指示使用多個校正編碼本CAL中,能夠獲得最大等效全向輻射功率的校正編碼本CAL進行收發訊號。Preferably, the configurable computing device 12 generates the instruction data INS based on the above steps and stores it in the memory unit 102. When the beamforming device 10 transmits and receives signals in a plurality of predetermined target field patterns, a plurality of correction codes are used according to the instruction data INS. In this CAL, the correction codebook CAL that can obtain the maximum equivalent isotropic radiated power is used to send and receive signals.

請進一步參閱圖7A、7B,其分別為應用本發明的用於波束成型裝置的校正方法前後的性能量測圖,如圖所示,原始設計規格為針對預定場型在0度具有EIRP最大值的場型。然而,在應用本發明的用於波束成型裝置的校正方法前,波束成型裝置的輻射場型的主瓣偏移預定場型,並非在0度具有EIRP最大值。而在應用了本發明的用於波束成型裝置的校正方法後,可重定向到所需方向,使總體性能與原始設計規格相匹配。Please further refer to Figures 7A and 7B, which are respectively the performance measurement diagrams before and after the application of the correction method for the beamforming device of the present invention. As shown in the figure, the original design specification is for the predetermined field pattern to have the maximum EIRP at 0 degrees The field type. However, before applying the correction method for a beamforming device of the present invention, the main lobe of the radiation field pattern of the beamforming device deviates from the predetermined field pattern, and does not have the maximum EIRP at 0 degrees. After applying the correction method for the beamforming device of the present invention, it can be redirected to the required direction, so that the overall performance matches the original design specifications.

換言之,在應用了本發明的用於波束成型裝置的校正方法後,可進一步提供如圖1所示的波束成型裝置10,其包括處理器100、記憶單元102、基頻電路104及多個天線模組106-1~106-M。記憶單元102儲存有參考編碼本REF、多個校正編碼本CAL及指示資料INS,多個校正編碼本CAL各包括以多個目標場型進行劃分的多筆校正控制資料,且多個校正編碼本CAL與參考編碼本REF分別相差彼此不同的多個預定相位差。指示資料INS用於指示基頻電路於多個預定目標場型進行收發訊號時使用多個校正編碼本CAL中的其中之一。In other words, after applying the calibration method for a beamforming device of the present invention, a beamforming device 10 as shown in FIG. 1 can be further provided, which includes a processor 100, a memory unit 102, a baseband circuit 104, and multiple antennas. Module 106-1~106-M. The memory unit 102 stores a reference codebook REF, a plurality of correction codebooks CAL, and instruction data INS. The multiple correction codebooks CAL each include multiple correction control data divided by multiple target field types, and multiple correction codebooks The CAL and the reference codebook REF are different from each other by a plurality of predetermined phase differences, respectively. The instruction data INS is used to instruct the baseband circuit to use one of the multiple correction codebooks CAL when transmitting and receiving signals in multiple predetermined target fields.

在替代實施例中,可參照圖8A、8B及8C,圖8A為本發明實施例的基頻電路、可調相移器及天線模組的硬體架構示意圖,圖8B及8C為本發明實施例的可調相移器的示意圖。如圖8A所示,可調相移器108-1、108-2…108-M可進一步分別設置於天線模組106-1、106-2…106-M與基頻電路104之間,可調相移器108-1、108-2…108-M可分別為數位相移器或機械式相移器等,將被添加到用於相位調整的設計中。須注意的是,可調相移器108-1、108-2…108-M的分辨率取決於可調相移器的規格。In alternative embodiments, refer to Figures 8A, 8B and 8C. Figure 8A is a schematic diagram of the hardware architecture of the baseband circuit, adjustable phase shifter and antenna module according to an embodiment of the present invention. Figures 8B and 8C are implementations of the present invention. Schematic diagram of an example of an adjustable phase shifter. As shown in FIG. 8A, the adjustable phase shifters 108-1, 108-2...108-M can be further arranged between the antenna modules 106-1, 106-2...106-M and the baseband circuit 104, respectively. The phase shifters 108-1, 108-2...108-M can be digital phase shifters or mechanical phase shifters, respectively, and will be added to the design for phase adjustment. It should be noted that the resolution of the adjustable phase shifters 108-1, 108-2...108-M depends on the specifications of the adjustable phase shifters.

可調相移器108-1、108-2…108-M如圖8B所示,可設置多個單埠雙切開關SPDT在多個相位延遲線路(例如,0、30、60、120度)、輸入端In及輸出端Out之間,或如圖8C設置多個單埠四切開關SP4T在多個相位延遲線路(例如,0、30、60、120度) 、輸入端In及輸出端Out之間,且該些單埠雙切開關SPDT及該些單埠四切開關SP4T可由基頻電路104所控制,其控制原理類似於前述實施例,控制該些該些單埠雙切開關SPDT及該些單埠四切開關SP4T以針對天線模組106-1、106-2…106-M,在多個預定場型下產生多個預定相位差,並以計算單元12及接收器14進行檢測,以找出具有最大EIRP的預定相位差,並設定此相位差為波束成型裝置10進行訊號收發時使用的配置,藉此減少不同天線模組之間因製程導致的相位差。在部份實施例中,可調分辨率將是360度/n,其中n是對應於前述測試數量的正整數,並且n越大,則分辨率越高。The adjustable phase shifters 108-1, 108-2...108-M are shown in Figure 8B, and multiple single-port double-cut switches SPDT can be set on multiple phase delay lines (for example, 0, 30, 60, 120 degrees) , Between the input terminal In and the output terminal Out, or as shown in Figure 8C, set up multiple single-port four-way switches SP4T in multiple phase delay lines (for example, 0, 30, 60, 120 degrees), the input terminal In and the output terminal Out Between, and the single-port dual-switch SPDT and the single-port four-switch SP4T can be controlled by the baseband circuit 104. The control principle is similar to the previous embodiment, and the single-port dual-switch SPDT and the single These single-port four-cut switches SP4T are designed to generate multiple predetermined phase differences under multiple predetermined field patterns for the antenna modules 106-1, 106-2...106-M, which are detected by the calculation unit 12 and the receiver 14. In order to find the predetermined phase difference with the largest EIRP, and set this phase difference as the configuration used when the beamforming device 10 performs signal transmission and reception, thereby reducing the phase difference between different antenna modules due to the manufacturing process. In some embodiments, the adjustable resolution will be 360 degrees/n, where n is a positive integer corresponding to the aforementioned number of tests, and the larger the n, the higher the resolution.

因此,除了採用軟體的方式實現本發明提供的波束成型裝置、用於其之校正方法及校正系統,亦可採用硬體的方式實現,本發明不以此為限。Therefore, in addition to using software to implement the beamforming device, the calibration method and the calibration system provided by the present invention, it can also be implemented in hardware, and the present invention is not limited to this.

[實施例的有益效果][Beneficial effects of the embodiment]

本發明的其中一有益效果在於,本發明所提供的波束成型裝置、用於其之校正方法及校正系統,可依據多個預定相位差及參考編碼本,產生對應於多個天線模組的多個校正編碼本,並通過測試結果設定波束成型裝置進行訊號收發時使用的預定編碼本,當實際上運作產生的波束成型的場型與理想上的波束成型的場型之間因天線模組之間的誤差而產生偏差時,可通過校正來重新將輻射場型定向到所需方向,使總體性能與原始設計規格相匹配。One of the beneficial effects of the present invention is that the beamforming device, the correction method and the correction system used in the present invention can generate multiple antenna modules corresponding to multiple antenna modules based on multiple predetermined phase differences and reference codebooks. A codebook is corrected, and the predetermined codebook used by the beamforming device for signal transmission and reception is set through the test results. When the actual beamforming field pattern generated by the operation and the ideal beamforming field pattern are due to the difference between the antenna module When the deviation is caused by the error between the two, the radiation field can be re-oriented to the required direction through correction, so that the overall performance matches the original design specifications.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content disclosed above is only a preferred and feasible embodiment of the present invention, and does not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made using the description and schematic content of the present invention are included in the application of the present invention. Within the scope of the patent.

1:波束成型裝置的校正系統 10:波束成型裝置 12:計算裝置 14:接收器 100:處理器 102:記憶單元 104:基頻電路 106-1、106-2…106-M:天線模組 AT11、AT12、AT13、AT14…AT1N、AT21、AT22、AT23、AT24…AT2N:天線單元 PS11、PS12…PS1N、PS21、PS22…PS2N:相移器 AP11、AP12…AP1N、AP21、AP22…AP2N:放大器電路 θ2:相位差 θ1:相位差 REF:參考編碼本 CAL:校正編碼本 108-1、108-2…108-M:可調相移器 SPDT:單埠雙切開關 SP4T:單埠四切開關 In:輸入端 INS:指示資料 Out:輸出端 1: Correction system of beamforming device 10: Beamforming device 12: Computing device 14: receiver 100: processor 102: memory unit 104: baseband circuit 106-1, 106-2...106-M: Antenna Module AT11, AT12, AT13, AT14...AT1N, AT21, AT22, AT23, AT24...AT2N: antenna unit PS11, PS12...PS1N, PS21, PS22...PS2N: Phase shifter AP11, AP12...AP1N, AP21, AP22...AP2N: amplifier circuit θ2: Phase difference θ1: Phase difference REF: reference codebook CAL: Calibration codebook 108-1, 108-2...108-M: Adjustable phase shifter SPDT: Single port double switch SP4T: Four-way switch In: input INS: Instructions Out: output

圖1為本發明實施例的用於波束成型裝置的校正系統的方塊圖。Fig. 1 is a block diagram of a correction system for a beamforming device according to an embodiment of the present invention.

圖2為本發明實施例的波束成型裝置的架構示意圖。FIG. 2 is a schematic structural diagram of a beamforming apparatus according to an embodiment of the present invention.

圖3為本發明實施例的用於波束成型裝置的校正方法的流程圖。Fig. 3 is a flowchart of a correction method for a beamforming device according to an embodiment of the present invention.

圖4A至4C為本發明實施例的用於產生參考編碼本的多個相位的示意圖。4A to 4C are schematic diagrams of multiple phases used to generate a reference codebook according to an embodiment of the present invention.

圖5A至5C為本發明實施例的用於產生其中一個校正編碼本的多個相位的示意圖。5A to 5C are schematic diagrams of multiple phases used to generate one of the correction codebooks according to an embodiment of the present invention.

圖6為本發明實施例的測試結果中,EIRP對多個預定相位差的作圖。Fig. 6 is a plot of EIRP against multiple predetermined phase differences in the test result of the embodiment of the present invention.

圖7A及7B分別為應用本發明的用於波束成型裝置的校正方法前後的性能量測圖。7A and 7B are respectively performance measurement diagrams before and after applying the calibration method for beamforming device of the present invention.

圖8A為本發明實施例的基頻電路、可調相移器及天線模組的硬體架構示意圖。8A is a schematic diagram of the hardware architecture of the baseband circuit, the adjustable phase shifter, and the antenna module according to an embodiment of the present invention.

圖8B及8C為本發明實施例的可調相移器的示意圖。8B and 8C are schematic diagrams of an adjustable phase shifter according to an embodiment of the present invention.

1:波束成型裝置的校正系統 1: Correction system of beamforming device

10:波束成型裝置 10: Beamforming device

12:計算裝置 12: Computing device

14:接收器 14: receiver

100:處理器 100: processor

102:記憶單元 102: memory unit

104:基頻電路 104: baseband circuit

106-1、106-2…106-M:天線模組 106-1, 106-2...106-M: Antenna Module

REF:參考編碼本 REF: reference codebook

CAL:校正編碼本 CAL: Calibration codebook

INS:指示資料 INS: Instructions

Claims (11)

一種用於波束成型裝置的校正方法,用於包括一處理器、一記憶單元、一基頻電路及多個天線模組的一波束成型裝置,所述校正方法包括: 儲存一參考編碼本(codebook)於該記憶單元,其中所述參考編碼本包括多筆參考控制資料,以多個目標場型進行劃分,且多筆所述參考控制資料用於設定各所述天線模組的多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器; 依據所述參考編碼本及多個預定相位差產生多個校正編碼本,並儲存於所述記憶單元,其中多個所述預定相位差彼此不同,且多個所述校正編碼本各包括以多個所述目標場型進行劃分的多筆校正控制資料; 選定一預定目標場型,並配置所述基頻電路依據所述預定目標場型,以所述參考編碼本及多個所述校正編碼本中對應於所述預定目標場型的多筆所述校正控制資料分別控制多個所述天線模組,以產生多個測試訊號; 配置一接收器接收多個所述測試訊號; 配置所述計算裝置處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果;以及 配置所述計算裝置依據多個所述測試結果,將具有最大等效全向輻射功率的所述參考編碼本或所述校正編碼本設定為所述波束成型裝置於所述預定目標場型進行收發訊號時所使用的一預定編碼本。A correction method for a beamforming device, used for a beamforming device including a processor, a memory unit, a baseband circuit, and multiple antenna modules, the correction method includes: A reference codebook (codebook) is stored in the memory unit, wherein the reference codebook includes multiple reference control data, divided by multiple target field types, and multiple reference control data are used to set each antenna Multiple antenna units of the module and multiple phase shifters and multiple amplifiers respectively corresponding to the multiple antenna units; A plurality of correction codebooks are generated according to the reference codebook and a plurality of predetermined phase differences, and stored in the memory unit, wherein the plurality of predetermined phase differences are different from each other, and each of the plurality of correction codebooks includes Multiple pieces of correction control data divided into the target field type; A predetermined target field type is selected, and the baseband circuit is configured to use the reference codebook and the plurality of correction codebooks corresponding to the predetermined target field type according to the predetermined target field type. The calibration control data respectively controls a plurality of the antenna modules to generate a plurality of test signals; Configuring a receiver to receive a plurality of said test signals; The calculation device is configured to process a plurality of the test signals to respectively calculate the Equivalent isotropically radiated power (EIRP) of the plurality of test signals in the predetermined target area, and generate a plurality of test results ;as well as The calculation device is configured to set the reference codebook or the corrected codebook with the maximum equivalent isotropic radiation power according to the multiple test results as the beamforming device for transmitting and receiving in the predetermined target field pattern A predetermined codebook used for the signal. 如請求項1所述的用於波束成型裝置的校正方法,其中多筆所述參考控制資料各包括用於設定各所述天線模組的多個相移器參考參數及多個放大器參考參數,且多個所述相移器參考參數對應多個參考相位,且多個所述放大器參考參數對應用於指示多個所述放大器的開關狀態的多個開關狀態代碼; 其中多筆所述校正控制資料各包括用於設定各所述天線模組的多個相移器校正參數及多個放大器校正參數; 其中依據所述參考編碼本及多個預定相位差產生多個校正編碼本的步驟更包括基於多個所述預定相位差及多個所述參考相位產生多個所述相移器校正參數。The calibration method for a beamforming device according to claim 1, wherein each of the multiple pieces of reference control data includes multiple phase shifter reference parameters and multiple amplifier reference parameters for setting each of the antenna modules, And a plurality of the phase shifter reference parameters correspond to a plurality of reference phases, and a plurality of the amplifier reference parameters correspond to a plurality of switch state codes used to indicate the switch states of a plurality of the amplifiers; Wherein each of the plurality of calibration control data includes a plurality of phase shifter calibration parameters and a plurality of amplifier calibration parameters for setting each of the antenna modules; The step of generating multiple corrected codebooks based on the reference codebook and multiple predetermined phase differences further includes generating multiple correction parameters of the phase shifter based on multiple predetermined phase differences and multiple reference phases. 如請求項2所述的用於波束成型裝置的校正方法,其中多個所述預定相位差的範圍係在0度至360度之間,且多個所述預定相位差係由360度除以一測試數量來決定,且所述校正編碼本的數量對應於所述測試數量。The correction method for a beamforming device according to claim 2, wherein the range of the plurality of predetermined phase differences is between 0 degrees and 360 degrees, and the plurality of predetermined phase differences are divided by 360 degrees A test quantity is determined, and the quantity of the correction codebook corresponds to the test quantity. 如請求項2所述的用於波束成型裝置的校正方法,更包括: 將多個所述參考相位分別加上所述預定相位差後,基於一相位基準值進行最小化以產生多個所述相移器校正參數。The correction method for a beamforming device as described in claim 2, further including: After adding the predetermined phase difference to a plurality of the reference phases respectively, minimization is performed based on a phase reference value to generate a plurality of phase shifter correction parameters. 如請求項1所述的用於波束成型裝置的校正方法,其中多筆參考控制資料的數量對應於多個所述天線模組的多個所述天線單元的總數量。The correction method for a beamforming device according to claim 1, wherein the number of the multiple reference control data corresponds to the total number of the multiple antenna units of the multiple antenna modules. 一種用於波束成型裝置的校正系統,其包括: 一計算裝置; 一波束成型裝置,連接於所述計算裝置,所述波束成型裝置包括: 一處理器; 一記憶單元; 一基頻電路;及 多個天線模組,各包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器;以及 一接收器; 其中所述計算裝置經配置以將一參考編碼本(codebook)儲存於所述記憶單元,其中所述參考編碼本包括多筆參考控制資料,以多個目標場型進行劃分,且多筆所述參考控制資料用於設定各所述天線模組的多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器; 其中所述計算裝置依據所述參考編碼本及多個預定相位差產生多個校正編碼本,並儲存於所述記憶單元,其中多個所述預定相位差彼此不同,且多個所述校正編碼本各包括以多個所述目標場型進行劃分的多筆校正控制資料; 其中所述基頻電路經配置以依據所選定的一預定目標區域,以所述參考編碼本及多個所述校正編碼本中對應於所述預定目標區域的多筆所述校正控制資料分別控制多個所述天線模組,以產生多個測試訊號; 其中所述接收器經配置以接收多個所述測試訊號; 其中所述計算裝置經配置以處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power, EIRP),並產生多個測試結果; 其中所述計算裝置經配置以依據多個所述測試結果,將具有最大等效全向輻射功率的所述參考編碼本或所述校正編碼本設定為所述波束成型裝置於所述預定目標場型進行收發訊號時所使用的一預定編碼本。A correction system for a beamforming device, which includes: A computing device; A beamforming device connected to the computing device, the beamforming device comprising: A processor A memory unit; A baseband circuit; and A plurality of antenna modules, each including a plurality of antenna units and a plurality of phase shifters and a plurality of amplifiers corresponding to the plurality of antenna units; and A receiver Wherein the computing device is configured to store a reference codebook (codebook) in the memory unit, wherein the reference codebook includes a plurality of reference control data, divided by a plurality of target field types, and a plurality of the The reference control data is used to set multiple antenna units of each antenna module and multiple phase shifters and multiple amplifiers respectively corresponding to the multiple antenna units; The calculation device generates a plurality of correction codebooks according to the reference codebook and a plurality of predetermined phase differences, and stores them in the memory unit, wherein the plurality of predetermined phase differences are different from each other, and a plurality of the correction codes Each book includes multiple correction control data divided by multiple target field types; Wherein the baseband circuit is configured to control a plurality of correction control data corresponding to the predetermined target area in the reference codebook and the plurality of correction codebooks according to a predetermined target area selected A plurality of said antenna modules to generate a plurality of test signals; Wherein the receiver is configured to receive a plurality of the test signals; The computing device is configured to process a plurality of the test signals to respectively calculate Equivalent isotropically radiated power (EIRP) of the plurality of test signals in the predetermined target area, and generate a plurality of Test results; The calculation device is configured to set the reference codebook or the corrected codebook with the largest equivalent isotropic radiation power as the beamforming device in the predetermined target field according to a plurality of the test results A predetermined codebook used when sending and receiving signals. 如請求項6所述的用於波束成型裝置的校正系統,其中多筆所述參考控制資料各包括用於設定各所述天線模組的多個相移器參考參數及多個放大器參考參數,且多個所述相移器參考參數對應多個參考相位,且多個所述放大器參考參數對應用於指示多個所述放大器的開關狀態的多個開關狀態代碼; 其中多筆所述校正控制資料各包括用於設定各所述天線模組的多個相移器校正參數及多個放大器校正參數; 其中所述計算裝置經配置以基於多個所述預定相位差及多個所述參考相位產生多個所述相移器校正參數。The calibration system for a beamforming device according to claim 6, wherein the multiple pieces of reference control data each include multiple phase shifter reference parameters and multiple amplifier reference parameters for setting each of the antenna modules, And a plurality of the phase shifter reference parameters correspond to a plurality of reference phases, and a plurality of the amplifier reference parameters correspond to a plurality of switch state codes used to indicate the switch states of a plurality of the amplifiers; Wherein each of the plurality of calibration control data includes a plurality of phase shifter calibration parameters and a plurality of amplifier calibration parameters for setting each of the antenna modules; Wherein the computing device is configured to generate a plurality of the phase shifter correction parameters based on a plurality of the predetermined phase differences and a plurality of the reference phases. 如請求項7所述的用於波束成型裝置的校正系統,其中多個所述預定相位差的範圍係在0度至360度之間,且多個所述預定相位差係由360度除以一測試數量來決定,且所述校正編碼本的數量對應於所述測試數量。The correction system for a beamforming device according to claim 7, wherein the range of the plurality of predetermined phase differences is between 0 degrees and 360 degrees, and the plurality of predetermined phase differences are divided by 360 degrees A test quantity is determined, and the quantity of the correction codebook corresponds to the test quantity. 如請求項7所述的用於波束成型裝置的校正系統,其中所述計算裝置經配置以將多個所述參考相位分別加上所述預定相位差後,基於一相位基準值進行最小化以產生多個所述相移器校正參數。The correction system for a beamforming device according to claim 7, wherein the calculation device is configured to add a plurality of the reference phases to the predetermined phase difference, and then to minimize it based on a phase reference value. A plurality of correction parameters of the phase shifter are generated. 如請求項6所述的用於波束成型裝置的校正系統,其中多筆參考控制資料的數量對應於多個所述天線模組的多個所述天線單元的總數量。The correction system for a beamforming device according to claim 6, wherein the number of the multiple reference control data corresponds to the total number of the multiple antenna units of the multiple antenna modules. 一種波束成型裝置,其包括: 一處理器; 一記憶單元; 一基頻電路;以及 多個天線模組,各包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器; 其中所述記憶單元儲存有: 一參考編碼本及多個校正編碼本,多個所述校正編碼本各包括以多個目標場型進行劃分的多筆校正控制資料,且多個所述校正編碼本與所述參考編碼本分別相差彼此不同的多個預定相位差; 一指示資料,用於指示所述波束成型裝置於多個預定目標場型進行收發訊號時使用所述參考編碼本及多個所述校正編碼本中的其中之一。A beamforming device includes: A processor A memory unit; A baseband circuit; and A plurality of antenna modules, each including a plurality of antenna units and a plurality of phase shifters and a plurality of amplifiers respectively corresponding to the plurality of antenna units; The memory unit stores: A reference codebook and multiple corrected codebooks, each of the multiple corrected codebooks includes multiple pieces of correction control data divided by multiple target field types, and the multiple corrected codebooks and the reference codebooks are respectively A plurality of predetermined phase differences that are different from each other; An instruction data for instructing the beamforming device to use one of the reference codebook and the correction codebook when transmitting and receiving signals in a plurality of predetermined target fields.
TW109112569A 2019-05-22 2020-04-15 Beamforming device, calibration method and calibration system for the same TWI773982B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/876,158 US11239552B2 (en) 2019-05-22 2020-05-18 Beamforming device, calibration method and calibration system for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962851111P 2019-05-22 2019-05-22
US62/851,111 2019-05-22

Publications (2)

Publication Number Publication Date
TW202044788A true TW202044788A (en) 2020-12-01
TWI773982B TWI773982B (en) 2022-08-11

Family

ID=74668211

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109112579A TWI743744B (en) 2019-05-22 2020-04-15 Beamforming device, calibration method and calibration system for the same
TW109112569A TWI773982B (en) 2019-05-22 2020-04-15 Beamforming device, calibration method and calibration system for the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109112579A TWI743744B (en) 2019-05-22 2020-04-15 Beamforming device, calibration method and calibration system for the same

Country Status (1)

Country Link
TW (2) TWI743744B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597101B2 (en) * 2000-02-21 2004-12-02 埼玉日本電気株式会社 Receiver circuit and adaptive array antenna system
KR20080073624A (en) * 2007-02-06 2008-08-11 삼성전자주식회사 Codebook generating method for multi-polarized mimo system and device of enabling the method
US8086242B2 (en) * 2007-03-21 2011-12-27 Broadcom Corporation Method and system for adaptive allocation of feedback resources for CQI and transmit pre-coding
US9225396B2 (en) * 2013-02-15 2015-12-29 Intel Corporation Apparatus, system and method of transmit power control for wireless communication
KR102374623B1 (en) * 2015-04-24 2022-03-15 스카이라크 더블유엘 홀딩스, 엘엘씨 Control Channel Design for Multiple Antenna MU-MIMO Systems
US20190036578A1 (en) * 2015-10-07 2019-01-31 Nokia Solutions And Networks Oy Techniques to reduce radiated power for mimo wireless systems
DE112017006442T5 (en) * 2016-12-21 2019-09-19 Intel Corporation WIRELESS COMMUNICATION TECHNOLOGY, DEVICES AND METHOD
CN106935975A (en) * 2017-03-14 2017-07-07 重庆大学 A kind of heavy caliber broadband reception phased array antenna

Also Published As

Publication number Publication date
TW202044789A (en) 2020-12-01
TWI743744B (en) 2021-10-21
TWI773982B (en) 2022-08-11

Similar Documents

Publication Publication Date Title
US11811147B2 (en) Method for calibrating phased array antenna and related apparatus
CN109756282B (en) Phased array amplifier linearization
CN108880703B (en) Active antenna calibration
JP5933471B2 (en) Phased array transmitter
EP3591857B1 (en) Antenna system, signal processing system and signal processing method
JP5815448B2 (en) Phased array transmitter
KR102457109B1 (en) Apparatus and method for calibrating phased array antenna
WO2012095056A2 (en) Antenna system
JP6580561B2 (en) Techniques for operating phased array antennas in millimeter wave radio modules.
US8730104B2 (en) Programmable wide-band radio frequency feed network
EP3675280B1 (en) Switched-beam communication node
WO2013113677A1 (en) Combined power transmission
CN112154604A (en) Antenna controller for an antenna with a linear power amplifier
US11128331B2 (en) Methods and systems for utilizing ultra-efficiency low noise configurations for phased array antennas
JP2001177458A (en) Adaptive array antenna transmitter-receiver and its calibration method
US11239552B2 (en) Beamforming device, calibration method and calibration system for the same
TWI773982B (en) Beamforming device, calibration method and calibration system for the same
JP6532017B2 (en) Phased array transmitter
WO2017070825A1 (en) Reflector antenna and antenna alignment method
US11329376B2 (en) Beamforming device, calibration method and calibration system for the same
JP5735863B2 (en) Wireless communication apparatus, transmission method, and program
US20230253704A1 (en) Beamforming Method and Apparatus
CN117375673A (en) Correction device and correction method