TWI742175B - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
TWI742175B
TWI742175B TW106134591A TW106134591A TWI742175B TW I742175 B TWI742175 B TW I742175B TW 106134591 A TW106134591 A TW 106134591A TW 106134591 A TW106134591 A TW 106134591A TW I742175 B TWI742175 B TW I742175B
Authority
TW
Taiwan
Prior art keywords
layer
type semiconductor
light
current conducting
semiconductor layer
Prior art date
Application number
TW106134591A
Other languages
Chinese (zh)
Other versions
TW201818570A (en
Inventor
黃逸儒
許聖宗
郭祐禎
沈志銘
莊東霖
黃琮訓
黃靖恩
Original Assignee
新世紀光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新世紀光電股份有限公司 filed Critical 新世紀光電股份有限公司
Publication of TW201818570A publication Critical patent/TW201818570A/en
Application granted granted Critical
Publication of TWI742175B publication Critical patent/TWI742175B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Abstract

A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first metal layer, a first current conducting layer, a first connection layer and a second current conducting layer is provided. The emitting layer is located between the first-type semiconductor layer and the second-type semiconductor layer. The first metal layer is located on and electrically connected to the first-type semiconductor layer. The first metal layer is located between the first current conducting layer and the first-type semiconductor layer. The first current conducting layer is located between the first connection layer and the first metal layer. The first current conducting layer is connected to the first-type semiconductor layer by the first current conducting layer and the first metal layer. The first connection layer has through holes overlapped with the first metal layer. The second current conducting layer is electrically connected to the second-type semiconductor layer.

Description

發光二極體Light-emitting diode

本發明是有關於一種半導體元件,且特別是有關於一種發光二極體。The present invention relates to a semiconductor device, and particularly relates to a light emitting diode.

一般而言,發光二極體包括應用於垂直式封裝及覆晶式封裝的發光二極體。應用於覆晶式封裝的發光二極體包括第一型半導體層、發光層、第二型半導體層、第一金屬層、第二金屬層、第一絕緣層、第一電流傳導層、第二電流傳導層、第二絕緣層、第一接合層及第二接合層。第一型半導體層具有第一部分及第二部分。發光層配置於第一型半導體層的第一部分上。第一型半導體層的第二部分由第一部分向外延伸而凸出於發光層的面積之外。第二型半導體層配置於發光層上。第一金屬層配置於第一型半導體層的第二部分上且與第一型半導體層電性連接。第二金屬層配置於第二型半導體層上且與第二型半導體層電性連接。第一絕緣層覆蓋第一金屬層及第二金屬層,且具有分別暴露第一金屬層及第二金屬層的多個貫穿開口。第一電流傳導層及第二電流傳導層配置於第一絕緣層上且填入第一絕緣層的多個貫穿開口,以分別和第一金屬層及第二金屬層電性連接。第二絕緣層覆蓋第一電流傳導層及第二電流傳導層且具有分別與第一電流傳導層及第二電流傳導層重疊的多個貫穿開口。第一接合層及第二接合層配置於第二絕緣層上且填入多個貫穿開口,以分別與第一電流傳導層及第二電流傳導層電性連接。第一接合層及第二接合層用以共晶接合至外部的電路板。然而,在共晶接合的過程中,接合材料(例如:錫膏)易從第二絕緣層與第一接合層的界面及/或第二絕緣層與第二接合層的界面滲入發光二極體內部,進而造成短路問題。Generally speaking, light-emitting diodes include light-emitting diodes used in vertical packaging and flip-chip packaging. The light-emitting diodes used in flip-chip packaging include a first type semiconductor layer, a light emitting layer, a second type semiconductor layer, a first metal layer, a second metal layer, a first insulating layer, a first current conducting layer, and a second type semiconductor layer. The current conducting layer, the second insulating layer, the first bonding layer and the second bonding layer. The first type semiconductor layer has a first part and a second part. The light-emitting layer is disposed on the first part of the first-type semiconductor layer. The second part of the first-type semiconductor layer extends outward from the first part and protrudes out of the area of the light-emitting layer. The second-type semiconductor layer is disposed on the light-emitting layer. The first metal layer is disposed on the second part of the first type semiconductor layer and is electrically connected to the first type semiconductor layer. The second metal layer is disposed on the second-type semiconductor layer and is electrically connected to the second-type semiconductor layer. The first insulating layer covers the first metal layer and the second metal layer, and has a plurality of through openings respectively exposing the first metal layer and the second metal layer. The first current conduction layer and the second current conduction layer are disposed on the first insulating layer and filled in a plurality of through openings of the first insulating layer to be electrically connected to the first metal layer and the second metal layer, respectively. The second insulating layer covers the first current conduction layer and the second current conduction layer and has a plurality of through openings respectively overlapped with the first current conduction layer and the second current conduction layer. The first bonding layer and the second bonding layer are disposed on the second insulating layer and filled with a plurality of through openings to be electrically connected to the first current conducting layer and the second current conducting layer, respectively. The first bonding layer and the second bonding layer are used for eutectic bonding to an external circuit board. However, during the eutectic bonding process, the bonding material (for example: solder paste) easily penetrates into the light-emitting diode from the interface between the second insulating layer and the first bonding layer and/or the interface between the second insulating layer and the second bonding layer Part, which in turn causes a short circuit problem.

本發明提供一種發光二極體,具有良好的性能。The invention provides a light-emitting diode with good performance.

本發明的一種發光二極體,包括第一型半導體層、發光層、第二型半導體層、第一金屬層、第一電流傳導層、第一接合層及第二電流傳導層。發光層位於第一型半導體層與第二型半導體層之間。第一金屬層位於第一型半導體層上且與第一型半導體層電性連接。第一金屬層位於第一電流傳導層與第一型半導體層之間。第一電流傳導層位於第一接合層與第一金屬層之間。第一接合層藉由第一電流傳導層及第一金屬層與第一型半導體層電性連接。第一接合層具有與第一金屬層重疊的貫穿開口。第二電流傳導層與第二型半導體層電性連接。A light emitting diode of the present invention includes a first type semiconductor layer, a light emitting layer, a second type semiconductor layer, a first metal layer, a first current conducting layer, a first bonding layer and a second current conducting layer. The light emitting layer is located between the first type semiconductor layer and the second type semiconductor layer. The first metal layer is located on the first type semiconductor layer and is electrically connected to the first type semiconductor layer. The first metal layer is located between the first current conducting layer and the first type semiconductor layer. The first current conducting layer is located between the first bonding layer and the first metal layer. The first bonding layer is electrically connected to the first type semiconductor layer through the first current conducting layer and the first metal layer. The first bonding layer has a through opening overlapping with the first metal layer. The second current conducting layer is electrically connected to the second type semiconductor layer.

本發明的另一種發光二極體,包括第一型半導體層、發光層、第二型半導體層、布拉格反射結構、第一金屬層、第一電流傳導層、第一絕緣層、第一接合層以及第二電流傳導層。發光層位於第一型半導體層與第二型半導體層之間。布拉格反射結構配置於第二型半導體層上且與發光層重疊。第一金屬層位於第一型半導體層上且與第一型半導體層電性連接。布拉格反射結構具有貫穿開口,而第一金屬層位於布拉格反射結構的貫穿開口中。第一電流傳導層配置於布拉格反射結構上且填入布拉格反射結構的貫穿開口,以和第一金屬層電性連接。第一絕緣層配置於第一電流傳導層上且具有貫穿開口。第一接合層配置於第一絕緣層上,且填入第一絕緣層的貫穿開口以和第一電流傳導層電性連接。布拉格反射結構的貫穿開口與第一絕緣層的貫穿開口錯位而不相重疊。第二電流傳導層與第二型半導體層電性連接。Another light emitting diode of the present invention includes a first type semiconductor layer, a light emitting layer, a second type semiconductor layer, a Bragg reflective structure, a first metal layer, a first current conducting layer, a first insulating layer, and a first bonding layer And the second current conducting layer. The light emitting layer is located between the first type semiconductor layer and the second type semiconductor layer. The Bragg reflection structure is disposed on the second-type semiconductor layer and overlaps the light-emitting layer. The first metal layer is located on the first type semiconductor layer and is electrically connected to the first type semiconductor layer. The Bragg reflection structure has a through opening, and the first metal layer is located in the through opening of the Bragg reflection structure. The first current conducting layer is disposed on the Bragg reflection structure and fills the through opening of the Bragg reflection structure to be electrically connected to the first metal layer. The first insulating layer is disposed on the first current conducting layer and has a through opening. The first bonding layer is disposed on the first insulating layer, and fills the through opening of the first insulating layer to be electrically connected to the first current conducting layer. The through opening of the Bragg reflection structure is misaligned with the through opening of the first insulating layer without overlapping. The second current conducting layer is electrically connected to the second type semiconductor layer.

在本發明的一實施例中,上述的發光二極體更包括第一絕緣層,位於第一電流傳導層與第一金屬層之間且具有多個貫穿開口,其中第一電流傳導層填入第一絕緣層的貫穿開口以電性接觸於第一金屬層,第一絕緣層之貫穿開口的面積小於第一接合層之貫穿開口的面積,且第一絕緣層之貫穿開口位於第一接合層之貫穿開口的面積之內。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a first insulating layer located between the first current conducting layer and the first metal layer and having a plurality of through openings, wherein the first current conducting layer is filled with The through opening of the first insulating layer is in electrical contact with the first metal layer, the area of the through opening of the first insulating layer is smaller than the area of the through opening of the first bonding layer, and the through opening of the first insulating layer is located in the first bonding layer It penetrates within the area of the opening.

在本發明的一實施例中,上述的第一接合層的面積小於第一電流傳導層的面積,且第一接合層位於第一電流傳導層的面積以內。In an embodiment of the present invention, the area of the aforementioned first bonding layer is smaller than the area of the first current conducting layer, and the first bonding layer is located within the area of the first current conducting layer.

在本發明的一實施例中,上述的發光二極體更包括第二金屬層及第二接合層。第二金屬層位於第二型半導體層上且與第二型半導體層電性連接。第二電流傳導層位於第二接合層與第二金屬層之間。第二接合層藉由第二電流傳導層及第二金屬層與第二型半導體層電性連接。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a second metal layer and a second bonding layer. The second metal layer is located on the second type semiconductor layer and is electrically connected to the second type semiconductor layer. The second current conducting layer is located between the second bonding layer and the second metal layer. The second bonding layer is electrically connected to the second type semiconductor layer through the second current conducting layer and the second metal layer.

在本發明的一實施例中,上述的第二接合層具有多個貫穿開口,第二接合層的貫穿開口與第二金屬層重疊。In an embodiment of the present invention, the aforementioned second bonding layer has a plurality of through openings, and the through openings of the second bonding layer overlap with the second metal layer.

在本發明的一實施例中,上述的發光二極體,更包括第一絕緣層,位於第二電流傳導層與第二金屬層之間且具有多個貫穿開口,其中第二電流傳導層填入第一絕緣層的貫穿開口以電性接觸於第二金屬層,第一絕緣層之貫穿開口的面積小於第二接合層之貫穿開口的面積,且第一絕緣層之貫穿開口位於第二接合層之貫穿開口的面積之內。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a first insulating layer located between the second current conducting layer and the second metal layer and having a plurality of through openings, wherein the second current conducting layer is filled with The through opening into the first insulating layer is electrically connected to the second metal layer, the area of the through opening of the first insulating layer is smaller than the area of the through opening of the second bonding layer, and the through opening of the first insulating layer is located in the second bonding layer. Within the area of the layer through the opening.

在本發明的一實施例中,上述的第一金屬層包括焊部及指部。焊部與第一電流傳導層電性接觸。指部由焊部延伸至第一電流傳導層外,其中指部與第二接合層重疊。In an embodiment of the present invention, the aforementioned first metal layer includes a welding portion and a finger portion. The welding part is in electrical contact with the first current conducting layer. The finger extends from the welded portion to the outside of the first current conducting layer, wherein the finger overlaps with the second bonding layer.

在本發明的一實施例中,上述的第一金屬層包括焊部及指部。焊部與第一電流傳導層電性接觸。指部由焊部延伸至第一電流傳導層外,其中第二接合層具有缺口,指部延伸至第二接合層的缺口的面積內。In an embodiment of the present invention, the aforementioned first metal layer includes a welding portion and a finger portion. The welding part is in electrical contact with the first current conducting layer. The finger extends from the welding portion to the outside of the first current conducting layer, wherein the second bonding layer has a gap, and the finger extends to the area of the gap of the second bonding layer.

在本發明的一實施例中,上述的第一型半導體層包括第一部分及第二部分。發光層疊置於第一部分上。第二部分由第一部分向外延伸而凸出於發光層的面積之外。第一型半導體層的第二部分具有第一表面、相對於第一表面的第二表面以及連接於第一表面與第二表面之間的側壁。發光二極體更包括第一絕緣層,覆蓋第一型半導體層之第二部分的側壁。In an embodiment of the present invention, the above-mentioned first type semiconductor layer includes a first part and a second part. The light-emitting layer is placed on the first part. The second part extends outward from the first part and protrudes out of the area of the light-emitting layer. The second part of the first-type semiconductor layer has a first surface, a second surface opposite to the first surface, and a sidewall connected between the first surface and the second surface. The light emitting diode further includes a first insulating layer covering the sidewall of the second part of the first type semiconductor layer.

在本發明的一實施例中,上述的第一絕緣層更覆蓋第二型半導體層以及第一型半導體層之第二部分的第一表面,發光二極體更包括布拉格反射結構,設置於第一絕緣層上且與發光層重疊。In an embodiment of the present invention, the above-mentioned first insulating layer further covers the second-type semiconductor layer and the first surface of the second portion of the first-type semiconductor layer, and the light emitting diode further includes a Bragg reflective structure, which is disposed on the first surface. On an insulating layer and overlapping with the light-emitting layer.

在本發明的一實施例中,上述的布拉格反射結構覆蓋第一型半導體層之第二部分的側壁。In an embodiment of the present invention, the above-mentioned Bragg reflection structure covers the sidewall of the second part of the first-type semiconductor layer.

在本發明的一實施例中,上述的發光二極體更包括第二絕緣層。布拉格反射結構位於第一絕緣層與第二絕緣層之間,而第二絕緣層覆蓋第一型半導體層之第二部分的側壁。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a second insulating layer. The Bragg reflection structure is located between the first insulating layer and the second insulating layer, and the second insulating layer covers the sidewall of the second part of the first type semiconductor layer.

在本發明的一實施例中,上述的發光二極體更包括第三絕緣層,覆蓋第一電流傳導層。第一接合層配置於第三絕緣層上,而第三絕緣層覆蓋第一型半導體層之第二部分的側壁。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a third insulating layer covering the first current conducting layer. The first bonding layer is disposed on the third insulating layer, and the third insulating layer covers the sidewall of the second part of the first type semiconductor layer.

在本發明的一實施例中,上述的發光層具有第一表面、第二表面以及側壁。第二型半導體層配置於發光層的第一表面上,第二表面相對於第一表面,側壁連接於第一表面與第二表面之間。發光二極體更包括布拉格反射結構。第一電流傳導層與第二電流傳導層皆位於布拉格反射結構的相同一側。布拉格反射結構包括多個第一折射層以及多個第二折射層,交替堆疊,其中各第一折射層的折射率異於各第二折射層的折射率,而多個第一折射層及多個第二折射層的疊構覆蓋發光層的側壁。In an embodiment of the present invention, the above-mentioned light-emitting layer has a first surface, a second surface and sidewalls. The second type semiconductor layer is disposed on the first surface of the light emitting layer, the second surface is opposite to the first surface, and the sidewall is connected between the first surface and the second surface. The light-emitting diode further includes a Bragg reflection structure. The first current conducting layer and the second current conducting layer are both located on the same side of the Bragg reflective structure. The Bragg reflection structure includes multiple first refraction layers and multiple second refraction layers, alternately stacked, wherein the refractive index of each first refraction layer is different from the refractive index of each second refraction layer, and the multiple first refraction layers and multiple The stacked structure of the second refraction layer covers the sidewall of the light-emitting layer.

在本發明的一實施例中,上述的發光二極體更包括布拉格反射結構。第一電流傳導層與第二電流傳導層皆位於布拉格反射結構的相同一側。布拉格反射結構包括多個第一折射層以及多個第二折射層,交替堆疊,其中各第一折射層的折射率異於各第二折射層的折射率,且布拉格反射結構之邊緣區的第一折射層及第二折射層的堆疊密度高於布拉格反射結構之內部區的第一折射層及第二折射層的堆疊密度。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a Bragg reflection structure. The first current conducting layer and the second current conducting layer are both located on the same side of the Bragg reflective structure. The Bragg reflection structure includes a plurality of first refraction layers and a plurality of second refraction layers, alternately stacked, wherein the refractive index of each first refraction layer is different from the refractive index of each second refraction layer, and the first refraction layer in the edge region of the Bragg reflection structure The stacking density of the first refractive layer and the second refractive layer is higher than the stacking density of the first refractive layer and the second refractive layer in the inner region of the Bragg reflective structure.

在本發明的一實施例中,上述的發光二極體更包括布拉格反射結構及反射結構。第一電流傳導層與第二電流傳導層皆位於布拉格反射結構的相同一側。反射結構位於布拉格反射結構與第一電流傳導層之間以及布拉格反射結構與第二電流傳導層之間,其中反射結構電性隔離於第一電流傳導層與第二電流傳導層。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a Bragg reflection structure and a reflection structure. The first current conducting layer and the second current conducting layer are both located on the same side of the Bragg reflective structure. The reflective structure is located between the Bragg reflective structure and the first current conducting layer and between the Bragg reflective structure and the second current conducting layer, wherein the reflective structure is electrically isolated from the first current conducting layer and the second current conducting layer.

在本發明的一實施例中,上述的發光二極體更包括第一絕緣層以及第二絕緣層。第一絕緣層覆蓋布拉格反射結構,其中反射結構配置於第一絕緣層上。第二絕緣層覆蓋反射結構,其中第一接合層配置於第二絕緣層上。反射結構主要的功能是反射,雖然反射結構可包括導電材料,但反射結構可不作為傳輸驅動發光二極體之電訊號的導電路徑。反射結構投影於發光二極體的面積小於或等於布拉格反射結構於發光二極體的面積。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a first insulating layer and a second insulating layer. The first insulating layer covers the Bragg reflective structure, wherein the reflective structure is disposed on the first insulating layer. The second insulating layer covers the reflective structure, and the first bonding layer is disposed on the second insulating layer. The main function of the reflective structure is reflection. Although the reflective structure may include conductive materials, the reflective structure may not serve as a conductive path for transmitting electrical signals for driving the light-emitting diodes. The area of the reflective structure projected on the light-emitting diode is less than or equal to the area of the Bragg reflective structure on the light-emitting diode.

在本發明的一實施例中,上述的反射結構直接配置於布拉格反射結構上而與布拉格反射結構接觸,發光二極體更包括第一絕緣層。第一絕緣層覆蓋反射結構,其中第一接合層配置於第一絕緣層上。In an embodiment of the present invention, the above-mentioned reflective structure is directly disposed on the Bragg reflective structure to be in contact with the Bragg reflective structure, and the light emitting diode further includes a first insulating layer. The first insulating layer covers the reflective structure, and the first bonding layer is disposed on the first insulating layer.

在本發明的一實施例中,上述的發光二極體,更包括導電層,配置於第二型半導體層上,其中第二電流傳導層藉由導電層與第二型半導體層電性連接,導電層包括多個導電區塊,而第一金屬層隔開多個導電區塊。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a conductive layer disposed on the second type semiconductor layer, wherein the second current conducting layer is electrically connected to the second type semiconductor layer through the conductive layer, The conductive layer includes a plurality of conductive blocks, and the first metal layer separates the plurality of conductive blocks.

在本發明的一實施例中,上述的導電區塊具有間隙,而第一金屬層位於間隙的面積之內。In an embodiment of the present invention, the aforementioned conductive block has a gap, and the first metal layer is located within the area of the gap.

在本發明的一實施例中,上述的第一金屬層包括多個焊部及多個指部。多個焊部與第一電流傳導層電性接觸。多個指部由焊部延伸至第一電流傳導層外,其中導電層的各導電區塊位於相鄰之第一金屬層的多個指部之間。In an embodiment of the present invention, the above-mentioned first metal layer includes a plurality of welding portions and a plurality of fingers. The plurality of welding parts are in electrical contact with the first current conducting layer. The plurality of fingers extend from the welding portion to the outside of the first current conducting layer, wherein each conductive block of the conductive layer is located between the plurality of fingers of the adjacent first metal layer.

在本發明的一實施例中,上述的發光二極體更包括第一絕緣層及第二絕緣層。第一絕緣層覆蓋布拉格反射結構,其中反射結構配置於第一絕緣層上。第二絕緣層覆蓋反射結構,其中第一接合層配置於第二絕緣層上。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a first insulating layer and a second insulating layer. The first insulating layer covers the Bragg reflective structure, wherein the reflective structure is disposed on the first insulating layer. The second insulating layer covers the reflective structure, and the first bonding layer is disposed on the second insulating layer.

在本發明的一實施例中,上述的反射結構直接配置於布拉格反射結構上而與布拉格反射結構接觸。發光二極體更包括第一絕緣層,覆蓋反射結構,其中第一接合層配置於第一絕緣層上。In an embodiment of the present invention, the above-mentioned reflective structure is directly disposed on the Bragg reflective structure to be in contact with the Bragg reflective structure. The light emitting diode further includes a first insulating layer covering the reflective structure, wherein the first bonding layer is disposed on the first insulating layer.

在本發明的一實施例中,上述的發光二極體,更包括導電層,配置於第二型半導體層上,其中第二電流傳導層藉由導電層與第二型半導體層電性連接,導電層包括多個導電區塊,而第一金屬層隔開多個導電區塊。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a conductive layer disposed on the second type semiconductor layer, wherein the second current conducting layer is electrically connected to the second type semiconductor layer through the conductive layer, The conductive layer includes a plurality of conductive blocks, and the first metal layer separates the plurality of conductive blocks.

在本發明的一實施例中,上述的多個導電區塊具有間隙,而第一金屬層位於間隙的面積之內。In an embodiment of the present invention, the aforementioned plurality of conductive blocks have gaps, and the first metal layer is located within the area of the gaps.

在本發明的一實施例中,上述的第一金屬層包括多個焊部及多個指部。多個焊部與第一電流傳導層電性接觸。多個指部由焊部延伸至第一電流傳導層外,其中導電層的各導電區塊位於相鄰之第一金屬層的多個指部之間。In an embodiment of the present invention, the above-mentioned first metal layer includes a plurality of welding portions and a plurality of fingers. The plurality of welding parts are in electrical contact with the first current conducting layer. The plurality of fingers extend from the welding portion to the outside of the first current conducting layer, wherein each conductive block of the conductive layer is located between the plurality of fingers of the adjacent first metal layer.

在本發明的一實施例中,上述的第二金屬層包括多個焊部及多個指部。多個焊部與第二電流傳導層電性接觸。指部由焊部延伸至第二電流傳導層外,其中導電層之各導電區塊的面積內設有第二金屬層的至少一指部。In an embodiment of the present invention, the above-mentioned second metal layer includes a plurality of welding portions and a plurality of fingers. The plurality of welding parts are in electrical contact with the second current conducting layer. The fingers extend from the welding portion to the outside of the second current conducting layer, wherein at least one finger of the second metal layer is provided in the area of each conductive block of the conductive layer.

在本發明的一實施例中,上述的多個導電區塊彼此分離。In an embodiment of the present invention, the above-mentioned plurality of conductive blocks are separated from each other.

在本發明的一實施例中,上述的多個導電區塊彼此部分地連接。In an embodiment of the present invention, the above-mentioned plurality of conductive blocks are partially connected to each other.

在本發明的一實施例中,上述的發光二極體更包括第一絕緣層及凸塊。第一絕緣層覆蓋第二型半導體層,其中第一電流傳導層及第二電流傳導層配置於第一絕緣層上。凸塊配置於第二型半導體層上的部分第一絕緣層上。凸塊與第一電流傳導層及第二電流傳導層錯位,且凸塊的延展性高於第一絕緣層的延展性。凸塊可包括導電或絕緣材料,但凸塊可不作為傳輸驅動發光二極體之電訊號的導電路徑。凸塊投影於發光二極體的面積小於或等於凸塊投影於發光二極體的面積。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a first insulating layer and bumps. The first insulating layer covers the second type semiconductor layer, wherein the first current conducting layer and the second current conducting layer are disposed on the first insulating layer. The bumps are arranged on a part of the first insulating layer on the second-type semiconductor layer. The bump is misaligned with the first current conducting layer and the second current conducting layer, and the ductility of the bump is higher than that of the first insulating layer. The bumps may include conductive or insulating materials, but the bumps may not serve as conductive paths for transmitting electrical signals for driving the light-emitting diodes. The projected area of the bump on the light-emitting diode is less than or equal to the projected area of the bump on the light-emitting diode.

在本發明的一實施例中,上述的發光二極體,更包括布拉格反射結構,其中第一電流傳導層與第二電流傳導層皆位於布拉格反射結構的相同一側,而凸塊配置於第二型半導體層、布拉格反射結構及第一絕緣層的疊構上。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a Bragg reflective structure, wherein the first current conducting layer and the second current conducting layer are both located on the same side of the Bragg reflective structure, and the bumps are arranged on the first On the stacked structure of the second type semiconductor layer, the Bragg reflective structure and the first insulating layer.

在本發明的一實施例中,上述的第一電流傳導層與第二電流傳導層之間存在一間隙,而凸塊位於間隙的面積之內。In an embodiment of the present invention, there is a gap between the first current conducting layer and the second current conducting layer, and the bump is located within the area of the gap.

在本發明的一實施例中,上述的凸塊、第一電流傳導層及第二電流傳導層屬於同一膜層。In an embodiment of the present invention, the above-mentioned bumps, the first current conducting layer, and the second current conducting layer belong to the same film layer.

在本發明的一實施例中,上述的發光二極體,更包括第二接合層,其中第二電流傳導層位於第二接合層與第二型半導體層之間,第二接合層藉由第二電流傳導層與第二型半導體層電性連接,凸塊與第一接合層及第二接合層錯位。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a second bonding layer, wherein the second current conducting layer is located between the second bonding layer and the second type semiconductor layer, and the second bonding layer is formed by the second bonding layer. The two current conducting layers are electrically connected with the second type semiconductor layer, and the bumps are misaligned with the first bonding layer and the second bonding layer.

在本發明的一實施例中,上述的第一接合層與第二接合層之間存在一間隙,而凸塊位於間隙的面積之內。In an embodiment of the present invention, there is a gap between the above-mentioned first bonding layer and the second bonding layer, and the bump is located within the area of the gap.

在本發明的一實施例中,上述的凸塊、第一接合層及第二接合層屬於同一膜層。In an embodiment of the present invention, the above-mentioned bumps, the first bonding layer, and the second bonding layer belong to the same film layer.

在本發明的一實施例中,上述的凸塊、第一接合層及第二電流傳導層電性隔離。In an embodiment of the present invention, the above-mentioned bumps, the first bonding layer, and the second current conducting layer are electrically isolated.

在本發明的一實施例中,上述的凸塊與發光二極體的質量中心線重疊。In an embodiment of the present invention, the above-mentioned bump overlaps the mass center line of the light-emitting diode.

在本發明的一實施例中,上述的第一金屬層包括焊部及指部。焊部與第一電流傳導層電性接觸。指部由焊部延伸至第一電流傳導層外。焊部的寬度大於指部的寬度且焊部的寬度是漸變的。In an embodiment of the present invention, the aforementioned first metal layer includes a welding portion and a finger portion. The welding part is in electrical contact with the first current conducting layer. The finger extends from the welding part to the outside of the first current conducting layer. The width of the weld is greater than the width of the finger and the width of the weld is gradual.

在本發明的一實施例中,上述的發光二極體更包括第二金屬層,位於第二電流傳導層與第二型半導體層之間,第二電流傳導層藉由第二金屬層與第二型半導體層電性連接。第二金屬層包括焊部及指部。焊部與第二電流傳導層電性接觸。指部由焊部延伸至第二電流傳導層外,其中焊部的寬度大於指部的寬度且焊部的寬度是漸變的。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a second metal layer located between the second current conducting layer and the second type semiconductor layer, and the second current conducting layer is formed by the second metal layer and the first The type 2 semiconductor layer is electrically connected. The second metal layer includes welding parts and fingers. The welding part is in electrical contact with the second current conducting layer. The finger extends from the weld to the outside of the second current conducting layer, wherein the width of the weld is greater than the width of the finger and the width of the weld is gradual.

在本發明的一實施例中,上述的焊部的寬度由靠近指部的一側先漸增再漸減。In an embodiment of the present invention, the width of the aforementioned welding portion gradually increases and then gradually decreases from the side close to the finger portion.

本發明提供另一種發光二極體,包括第一型半導體層、發光層、第二型半導體層、布拉格反射結構、第一金屬層、第一電流傳導層、第一絕緣層、第一接合層以及第二電流傳導層。發光層位於第一型半導體層與第二型半導體層之間。布拉格反射結構配置於第二型半導體層上且與發光層重疊。第一金屬層位於第一型半導體層上且與第一型半導體層電性連接,其中布拉格反射結構具有貫穿開口,而第一金屬層位於布拉格反射結構的貫穿開口中。第一電流傳導層配置於布拉格反射結構上且填入布拉格反射結構的貫穿開口,以和第一金屬層電性連接。第一絕緣層配置於第一電流傳導層上且具有貫穿開口。第一接合層配置於第一絕緣層上,且填入第一絕緣層的貫穿開口以和第一電流傳導層電性連接,其中布拉格反射結構的貫穿開口與第一絕緣層的貫穿開口錯位而不相重疊。第二電流傳導層與第二型半導體層電性連接。The present invention provides another light emitting diode, including a first type semiconductor layer, a light emitting layer, a second type semiconductor layer, a Bragg reflective structure, a first metal layer, a first current conducting layer, a first insulating layer, and a first bonding layer And the second current conducting layer. The light emitting layer is located between the first type semiconductor layer and the second type semiconductor layer. The Bragg reflection structure is disposed on the second-type semiconductor layer and overlaps the light-emitting layer. The first metal layer is located on the first type semiconductor layer and is electrically connected to the first type semiconductor layer, wherein the Bragg reflective structure has a through opening, and the first metal layer is located in the through opening of the Bragg reflective structure. The first current conducting layer is disposed on the Bragg reflection structure and fills the through opening of the Bragg reflection structure to be electrically connected to the first metal layer. The first insulating layer is disposed on the first current conducting layer and has a through opening. The first bonding layer is disposed on the first insulating layer, and fills the through opening of the first insulating layer to be electrically connected to the first current conducting layer, wherein the through opening of the Bragg reflective structure is misaligned with the through opening of the first insulating layer. Do not overlap. The second current conducting layer is electrically connected to the second type semiconductor layer.

在本發明的一實施例中,上述的第一絕緣層之貫穿開口的寬度大於布拉格反射結構之貫穿開口的寬度。In an embodiment of the present invention, the width of the through opening of the above-mentioned first insulating layer is greater than the width of the through opening of the Bragg reflective structure.

在本發明的一實施例中,上述的發光二極體,更包括第二金屬層,位於第二型半導體層上且與第二型半導體層電性連接,其中布拉格反射結構具有另一貫穿開口,至少部分之第二金屬層位於布拉格反射結構的另一貫穿開口中,而第二電流傳導層配置於布拉格反射結構上且填入布拉格反射結構的另一貫穿開口以和第二金屬層電性連接。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a second metal layer located on the second type semiconductor layer and electrically connected to the second type semiconductor layer, wherein the Bragg reflective structure has another through opening , At least part of the second metal layer is located in another through opening of the Bragg reflective structure, and the second current conducting layer is disposed on the Bragg reflective structure and fills the other through opening of the Bragg reflective structure to be electrically connected to the second metal layer connect.

在本發明的一實施例中,上述的第一絕緣層配置於第二電流傳導層上且具有另一貫穿開口,發光二極體更包括第二接合層,配置於第一絕緣層上,且填入第一絕緣層的另一貫穿開口以和第二電流傳導層電性連接,其中布拉格反射結構的另一貫穿開口與第一絕緣層的另一貫穿開口錯位而不相重疊。In an embodiment of the present invention, the above-mentioned first insulating layer is disposed on the second current conducting layer and has another through opening, and the light emitting diode further includes a second bonding layer disposed on the first insulating layer, and The other through opening of the first insulating layer is filled to be electrically connected to the second current conducting layer, wherein the other through opening of the Bragg reflective structure is misaligned with the other through opening of the first insulating layer without overlapping.

在本發明的一實施例中,上述的第一絕緣層之另一貫穿開口的寬度大於布拉格反射結構之另一貫穿開口的寬度。In an embodiment of the present invention, the width of the other through opening of the aforementioned first insulating layer is greater than the width of the other through opening of the Bragg reflective structure.

在本發明的一實施例中,上述的第一電流傳導層包括多個導電部,彼此分離,其中第二電流傳導層具有多個缺口,而第一電流傳導層之導電部設置於第二電流傳導層的缺口的面積以內。In an embodiment of the present invention, the above-mentioned first current conduction layer includes a plurality of conductive parts separated from each other, wherein the second current conduction layer has a plurality of gaps, and the conductive part of the first current conduction layer is disposed on the second current conduction layer. Within the area of the gap of the conductive layer.

在本發明的一實施例中,上述的第一金屬層包括彼此隔開的多個焊部,各導電部與多個焊部電性接觸。In an embodiment of the present invention, the above-mentioned first metal layer includes a plurality of welding parts spaced apart from each other, and each conductive part is in electrical contact with the plurality of welding parts.

在本發明的一實施例中,上述的發光二極體更包括第二接合層。第二接合層配置於第一絕緣層上,且填入第一絕緣層的另一貫穿開口以和第二電流傳導層電性連接,其中各導電部具有位於第一接合層與第二接合層之間的中段部。In an embodiment of the present invention, the above-mentioned light emitting diode further includes a second bonding layer. The second bonding layer is disposed on the first insulating layer, and is filled into another through opening of the first insulating layer to be electrically connected to the second current conducting layer, wherein each conductive part has a position located between the first bonding layer and the second bonding layer The middle section between.

在本發明的一實施例中,上述的導電部之中段部的寬度大於另一中段部的寬度。In an embodiment of the present invention, the width of the middle section of the aforementioned conductive part is greater than the width of the other middle section.

本發明之一實施例的發光二極體的製造方法,包括下列步驟:於成長基板上形成多個發光單元,其中每一發光單元包括第一型半導體層、第二型半導體層以及位於第一型半導體層與第二型半導體層之間的發光層,成長基板具有凹槽,每一發光單元之第一型半導體層的側壁與凹槽的邊緣切齊;於發光單元及成長基板的凹槽上形成第一絕緣層,其中第一絕緣層覆蓋每一發光單元的第一型半導體層的側壁且具有多個第一貫穿開口以及多個第二貫穿開口;形成多個第一電流傳導層以及多個第二電流傳導層,分別填入第一貫穿開口以及第二貫穿開口,以分別電性連接發光單元的多個第一型半導體層以及多個第二型半導體層;以及沿著成長基板的凹槽分離成長基板,以形成多個發光二極體。A method of manufacturing a light emitting diode according to an embodiment of the present invention includes the following steps: forming a plurality of light emitting units on a growth substrate, wherein each light emitting unit includes a first type semiconductor layer, a second type semiconductor layer, and a first type semiconductor layer. For the light-emitting layer between the second-type semiconductor layer and the second-type semiconductor layer, the growth substrate has a groove, and the sidewall of the first-type semiconductor layer of each light-emitting unit is aligned with the edge of the groove; the groove between the light-emitting unit and the growth substrate A first insulating layer is formed thereon, wherein the first insulating layer covers the sidewall of the first type semiconductor layer of each light-emitting unit and has a plurality of first through openings and a plurality of second through openings; forming a plurality of first current conducting layers and A plurality of second current conducting layers are respectively filled into the first through opening and the second through opening to electrically connect the plurality of first-type semiconductor layers and the plurality of second-type semiconductor layers of the light-emitting unit; and along the growth substrate The groove separates the growth substrate to form a plurality of light-emitting diodes.

在本發明的一實施例中,上述於成長基板上形成發光單元的方法包括:於成長基板上依序形成第一型半導體材料層、發光材料層以及第二型半導體材料層;圖案化第一型半導體材料層、發光材料層以及第二型半導體材料層,以形成具有第一部分及第二部分的第一型半導體材料層、第二型半導體層以及發光層,其中第一部分與發光層重疊,第二部分由第一部分向外延伸而凸出於發光層的面積之外;以及切割第一型半導體材料層的第二部分以及成長基板,以形成第一型半導體層的側壁以及成長基板的凹槽。In an embodiment of the present invention, the above-mentioned method of forming a light-emitting unit on a growth substrate includes: sequentially forming a first-type semiconductor material layer, a light-emitting material layer, and a second-type semiconductor material layer on the growth substrate; Type semiconductor material layer, light emitting material layer and second type semiconductor material layer to form a first type semiconductor material layer, a second type semiconductor layer and a light emitting layer having a first part and a second part, wherein the first part overlaps the light emitting layer, The second part extends outward from the first part to protrude beyond the area of the light-emitting layer; and the second part of the first-type semiconductor material layer and the growth substrate are cut to form the sidewalls of the first-type semiconductor layer and the recesses of the growth substrate groove.

在本發明的一實施例中,上述於成長基板上形成發光單元的方法更包括:形成一第一犧牲層,以覆蓋具有第一部分及第二部分的第一型半導體材料層、第二型半導體層及發光層,其中切割第一型半導體材料層的第二部分及成長基板時,更切割第一犧牲層。In an embodiment of the present invention, the above-mentioned method of forming a light-emitting unit on a growth substrate further includes: forming a first sacrificial layer to cover the first-type semiconductor material layer and the second-type semiconductor layer having the first part and the second part. The first sacrificial layer is also cut when cutting the second part of the first-type semiconductor material layer and the growth substrate.

在本發明的一實施例中,上述於成長基板上形成發光單元的方法包括:於成長基板上依序形成第一型半導體材料層、發光材料層、第二型半導體材料層以及第一犧牲材料層;圖案化第二型半導體材料層、發光材料層以及第一犧牲材料層,以形成第二型半導體層、發光層以及第一犧牲層,其中第一型半導體材料層具有與發光層重疊的一第一部分以及由第一部分向外延伸而凸出於發光層的面積之外的第二部分;以及形成第二犧牲層,以覆蓋第一犧牲層以及第一型半導體材料層的第二部分。In an embodiment of the present invention, the method of forming a light-emitting unit on a growth substrate includes: sequentially forming a first-type semiconductor material layer, a light-emitting material layer, a second-type semiconductor material layer, and a first sacrificial material on the growth substrate Layer; patterning the second type semiconductor material layer, the light emitting material layer and the first sacrificial material layer to form the second type semiconductor layer, the light emitting layer and the first sacrificial layer, wherein the first type semiconductor material layer has an overlap with the light emitting layer A first part and a second part extending outward from the first part and protruding beyond the area of the light-emitting layer; and forming a second sacrificial layer to cover the first sacrificial layer and the second part of the first-type semiconductor material layer.

在本發明的一實施例中,上述切割第一型半導體材料層的第二部分及成長基板時,更切割第二犧牲層。In an embodiment of the present invention, when cutting the second portion of the first-type semiconductor material layer and the growth substrate, the second sacrificial layer is further cut.

基於上述,本發明一實施例的發光二極體包括第一型半導體層、第二型半導體層、位於第一型半導體層與第二型半導體層之間的發光層、位於第一型半導體層上且與第一型半導體層電性連接的第一金屬層、第一電流傳導層、第一接合層以及與第二型半導體層電性連接的第二電流傳導層。特別是,第一接合層具有多個貫穿開口,第一接合層的貫穿開口與第一金屬層重疊。換言之,第一接合層與第一金屬層錯位,而第一接合層與第一金屬層之間存在一段路徑。藉此,第一接合層在用以與外部電路板接合的過程中,接合材料(例如:錫膏)不易完全地流過所述路徑而造成短路問題,故發光二極體的性能佳。Based on the above, the light emitting diode of an embodiment of the present invention includes a first type semiconductor layer, a second type semiconductor layer, a light emitting layer located between the first type semiconductor layer and the second type semiconductor layer, and the first type semiconductor layer A first metal layer, a first current conducting layer, a first bonding layer, and a second current conducting layer electrically connected to the second type semiconductor layer. In particular, the first bonding layer has a plurality of through openings, and the through openings of the first bonding layer overlap with the first metal layer. In other words, the first bonding layer and the first metal layer are misaligned, and there is a path between the first bonding layer and the first metal layer. Thereby, when the first bonding layer is used for bonding with the external circuit board, the bonding material (for example, solder paste) is not easy to completely flow through the path to cause a short circuit problem, so the performance of the light emitting diode is good.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於圖式中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, and examples of the exemplary embodiments are illustrated in the drawings. Whenever possible, the same component symbols are used in the drawings and descriptions to indicate the same or similar parts.

圖1A繪示為本發明的一實施例的發光二極體的剖面圖。請參照圖1A,具體而言,圖1A所繪示的是水平式發光二極體,且是一種可以應用於打線封裝的發光二極體。發光二極體100包括第一型半導體層110、發光層120、第二型半導體層130、第一電流傳導層140、第二電流傳導層150以及布拉格反射結構160。在本實施例中的第一型半導體層110與第二型半導體層130的其中一者為N型半導體層(例如為n-GaN),另一者為P型半導體層(例如為p-GaN)。發光層120位於第一型半導體層110與第二型半導體層130之間,且發光層120用以發出一光束L,其中光束L的發光波長範圍具有至少一峰值波長。第一電流傳導層140電性連接第一型半導體層110。第二電流傳導層150電性連接第二型半導體層130。第一型半導體層110、發光層120與第二型半導體層130皆位於布拉格反射結構160的相同一側。布拉格反射結構160在至少涵蓋0.8X nm至1.8X nm的一反射波長範圍的反射率為90%以上,其中在至少涵蓋0.9X nm至1.6X nm的一反射波長範圍的反射率為95%以上,其中X為發光波長範圍的峰值波長。FIG. 1A is a cross-sectional view of a light emitting diode according to an embodiment of the invention. Please refer to FIG. 1A. Specifically, FIG. 1A shows a horizontal light-emitting diode, which is a type of light-emitting diode that can be applied to a wire-bonding package. The light emitting diode 100 includes a first type semiconductor layer 110, a light emitting layer 120, a second type semiconductor layer 130, a first current conducting layer 140, a second current conducting layer 150, and a Bragg reflection structure 160. In this embodiment, one of the first-type semiconductor layer 110 and the second-type semiconductor layer 130 is an N-type semiconductor layer (for example, n-GaN), and the other is a P-type semiconductor layer (for example, p-GaN). ). The light-emitting layer 120 is located between the first-type semiconductor layer 110 and the second-type semiconductor layer 130, and the light-emitting layer 120 is used to emit a light beam L, wherein the light-emitting wavelength range of the light beam L has at least one peak wavelength. The first current conducting layer 140 is electrically connected to the first type semiconductor layer 110. The second current conducting layer 150 is electrically connected to the second type semiconductor layer 130. The first type semiconductor layer 110, the light emitting layer 120 and the second type semiconductor layer 130 are all located on the same side of the Bragg reflective structure 160. The reflectance of the Bragg reflective structure 160 in a reflection wavelength range covering at least 0.8X nm to 1.8X nm is over 90%, and the reflectance in a reflection wavelength range covering at least 0.9X nm to 1.6X nm is over 95% , Where X is the peak wavelength of the emission wavelength range.

在一實施例中,發光層120可以為量子井結構(Quantum Well, QW)。在其他實施例中,發光層120可以為多重量子井結構(Multiple Quantum Well, MQW),其中多重量子井結構包括以重複的方式交替設置的多個量子井層(Well)和多個量子阻障層(Barrier)。此外,發光層120的組成材料包括能夠發出的峰值波長落在320nm至430nm中(紫外光)、430nm至500nm中(藍光)、或是500nm至550nm中(綠光)等發光波長範圍的光束L的化合物半導體組成,發光層120的組成變化或是結構設計可以改變光束L的發光波長範圍,本發明並不以此為限。In an embodiment, the light-emitting layer 120 may be a quantum well (QW) structure. In other embodiments, the light-emitting layer 120 may be a multiple quantum well structure (Multiple Quantum Well, MQW), wherein the multiple quantum well structure includes multiple quantum well layers (Well) and multiple quantum barriers alternately arranged in a repetitive manner. Layer (Barrier). In addition, the constituent material of the light-emitting layer 120 includes a light beam L that can emit a peak wavelength falling in the light-emitting wavelength range of 320 nm to 430 nm (ultraviolet light), 430 nm to 500 nm (blue light), or 500 nm to 550 nm (green light). The composition of the compound semiconductor, the composition change or the structural design of the light-emitting layer 120 can change the light-emitting wavelength range of the light beam L, and the present invention is not limited thereto.

詳細來說,在本實施例中,第一型半導體層110具有一第一部分P1以及一第二部分P2。發光層120疊置於第一部分P1上。第二部分P2由第一部分P1向外延伸而凸出於發光層120的面積之外以與第一電流傳導層140電性連接。第一型半導體層110具有一第一表面111以及相對於第一表面111的一第二表面112。發光層120、第二型半導體層130、第一電流傳導層140與第二電流傳導層150都位於第一型半導體層110的第一表面111。布拉格反射結構160則位於第一型半導體層110的第二表面112。In detail, in this embodiment, the first type semiconductor layer 110 has a first portion P1 and a second portion P2. The light emitting layer 120 is stacked on the first portion P1. The second portion P2 extends outward from the first portion P1 and protrudes out of the area of the light-emitting layer 120 to be electrically connected to the first current conducting layer 140. The first type semiconductor layer 110 has a first surface 111 and a second surface 112 opposite to the first surface 111. The light emitting layer 120, the second type semiconductor layer 130, the first current conducting layer 140 and the second current conducting layer 150 are all located on the first surface 111 of the first type semiconductor layer 110. The Bragg reflective structure 160 is located on the second surface 112 of the first type semiconductor layer 110.

具體而言,本實施例的發光二極體100更包括一成長基板170。成長基板170具有一第一表面171以及相對於第一表面171的一第二表面172,其中成長基板170的材質例如是C-Plane、R-Plane或A-Plane之藍寶石基板(Sapphire)或其它的透明材質。此外,晶格常數接近於第一型半導體層110之單晶化合物亦適於做為成長基板170之材質。本實施例的第一型半導體層110、發光層120與第二型半導體層130依序成長且疊置於成長基板170的第一表面171。布拉格反射結構160則配置於成長基板170的第二表面172。在其他的實施例中,發光二極體100可以不具有成長基板170,而布拉格反射結構160可以配置於第一型半導體層110的第二表面112。Specifically, the light emitting diode 100 of this embodiment further includes a growth substrate 170. The growth substrate 170 has a first surface 171 and a second surface 172 opposite to the first surface 171. The material of the growth substrate 170 is, for example, C-Plane, R-Plane or A-Plane sapphire substrate (Sapphire) or others Transparent material. In addition, a single crystal compound with a lattice constant close to that of the first-type semiconductor layer 110 is also suitable as a material for the growth substrate 170. The first-type semiconductor layer 110, the light-emitting layer 120 and the second-type semiconductor layer 130 of this embodiment are grown in sequence and stacked on the first surface 171 of the growth substrate 170. The Bragg reflective structure 160 is disposed on the second surface 172 of the growth substrate 170. In other embodiments, the light emitting diode 100 may not have the growth substrate 170, and the Bragg reflective structure 160 may be disposed on the second surface 112 of the first type semiconductor layer 110.

一般而言,發光層120所發出的光束L會朝各種方向發出,例如光束L1與光束L2由發光層120朝向不同方向發出。不過,發光二極體100的設計為以光束L1的發光方向為主要發光方向時,光束L2可能無法被利用到而限制的發光效率。因此,在本實施例中,布拉格反射結構160係用以將朝下方前進的光束L2反射,並將光束L2導引往成長基板170的上方射出,也就是構成反射光束L2’。如此,發光層120所發出的光線,可以有效地朝向預定的發光方向發出而具有良好的發光效率。Generally speaking, the light beam L emitted by the light-emitting layer 120 is emitted in various directions, for example, the light beam L1 and the light beam L2 are emitted from the light-emitting layer 120 in different directions. However, when the light-emitting diode 100 is designed to use the light-emitting direction of the light beam L1 as the main light-emitting direction, the light beam L2 may not be able to be used to limit the luminous efficiency. Therefore, in this embodiment, the Bragg reflection structure 160 is used to reflect the light beam L2 traveling downward and guide the light beam L2 to be emitted above the growth substrate 170, that is, to form a reflected light beam L2'. In this way, the light emitted by the light-emitting layer 120 can be effectively emitted toward the predetermined light-emitting direction and has good light-emitting efficiency.

具體而言,布拉格反射結構160主要由至少一主堆疊層區、至少一過渡堆疊層區以及至少一修補堆疊層區所組合而成,其中主堆疊層區, 過渡堆疊層區以及修補堆疊層區各別包括多個第一折射層162以及多個第二折射層164,這些第一折射層162與這些第二折射層164交替堆疊。各第一折射層162的折射率異於各第二折射層164的折射率。其中過渡堆疊層區可位於相鄰二主堆疊層區之間,以增加相鄰二主堆疊層區之反射率,修補堆疊層區至少位於主堆疊層區之一側,以增加於主堆疊層區之反射率,另外進一步增加布拉格反射結構之反射率之結構,其中過渡堆疊層區可位於相鄰二修補堆疊層區之間,且主堆疊層區位於補堆疊層區以及相鄰二修補堆疊層區位於過渡堆疊層區之二側之間,以進一步增加於相鄰二主堆疊層區之反射率。以換言之,布拉格反射結構160係由這些第一折射層162以及第二折射層164交替排列組成週期結構、部分週期結構、漸變增加結構或漸變減少結構,也就是說,布拉格反射結構160中至少一相鄰的兩個層會是有一者為第一折射層162另一者為第二折射層164。在一實施例中,這些第一折射層162以及第二折射層164各自的厚度與材質可布拉格反射結構160的反射波長範圍有關。其中這些主堆疊層區、過渡堆疊層區或修補堆疊層區之結構由第一折射層162以及第二折射層164交替排列組成,可具有相同週期結構、不同週期性結構、漸變增加結構或漸變減少結構組成,主堆疊層區之週期結構、部分週期結構、漸變增加結構或漸變減少結構之組層數大於過渡堆疊層區或修補堆疊層區之週期結構、部分週期結構、漸變增加結構或漸變減少結構之組層數,過渡堆疊層區至少包含相鄰二主堆疊層區所包含的一材質,其材質可為一相同材料或相同折射材料。另外,這些第一折射層162以及這些第二折射層164的厚度可以彼此相同或是不同。Specifically, the Bragg reflective structure 160 is mainly composed of at least one main stacked layer area, at least one transition stacked layer area, and at least one repair stacked layer area, wherein the main stacked layer area, the transition stacked layer area, and the repair stacked layer area Each includes a plurality of first refraction layers 162 and a plurality of second refraction layers 164, and the first refraction layers 162 and the second refraction layers 164 are alternately stacked. The refractive index of each first refractive layer 162 is different from the refractive index of each second refractive layer 164. The transitional stacked layer area can be located between two adjacent main stacked layer areas to increase the reflectivity of the two adjacent main stacked layer areas. The repaired stacked layer area is located at least on one side of the main stacked layer area to increase the main stacked layer area. The reflectivity of the region, and the structure to further increase the reflectivity of the Bragg reflection structure, wherein the transition stack region can be located between two adjacent repair stack regions, and the main stack region is located in the complement stack region and the adjacent two repair stacks The layer region is located between the two sides of the transitional stacked layer region to further increase the reflectivity of the adjacent two main stacked layer regions. In other words, the Bragg reflective structure 160 is composed of the first refraction layer 162 and the second refraction layer 164 alternately arranged to form a periodic structure, a partial periodic structure, a gradually increasing structure or a gradually decreasing structure, that is, at least one of the Bragg reflective structures 160 Two adjacent layers will have one being the first refractive layer 162 and the other being the second refractive layer 164. In an embodiment, the thickness of each of the first refraction layer 162 and the second refraction layer 164 is related to the reflection wavelength range of the material Bragg reflective structure 160. The structure of the main stacked layer area, the transition stacked layer area or the repair stacked layer area is composed of the first refraction layer 162 and the second refraction layer 164 alternately arranged, and may have the same periodic structure, different periodic structures, gradually increasing structures or gradual changes. Reduce the structure composition. The periodic structure, partial periodic structure, gradual increase structure or gradual decrease structure of the main stacked layer area is larger than the periodic structure, partial periodic structure, gradual increase structure or gradual change of the transition stacked layer area or the repaired stacked layer area To reduce the number of layers of the structure, the transitional stacked layer region includes at least one material contained in the two adjacent main stacked layer regions, and the material can be the same material or the same refractive material. In addition, the thicknesses of the first refraction layers 162 and the second refraction layers 164 may be the same or different from each other.

本實施例的第一折射層162的材料包括五氧化二鉭(Ta2O5)、二氧化鋯(ZrO2)、五氧化二鈮(Nb2O5)、氧化鉿 (HfO2)、二氧化鈦(TiO2)或上述之組合。另一方面,第二折射層164的材料包括二氧化矽(SiO2)。通過選擇第一折射層162以及第二折射層164的材料,可使光束L2被第一折射層162以及第二折射層164吸收的機率下降,以增加光束L2被反射的機率,因而可以提高發光二極體100的發光效率及亮度。特別的是,在本實施例中,布拉格反射結構160對於不同反射波長範圍具有良好的反射率(95%以上),使得發光二極體100合適於應用在需要發出不同發光波長範圍的發光裝置中。具體來說,若將彼此緊鄰的一層第一折射層162與一層第二折射層164視為一個堆疊層組時,應用於發光二極體100的布拉格反射結構160可以包括4個以上至100個以下或更多的堆疊層組。並且,疊層組的數量可以依據所需要的反射性質而調整,本發明並不以此為限,舉例來說,可以採用30至50個堆疊層組來構成布拉格反射結構160。The material of the first refraction layer 162 in this embodiment includes tantalum pentoxide (Ta2O5), zirconium dioxide (ZrO2), niobium pentoxide (Nb2O5), hafnium oxide (HfO2), titanium dioxide (TiO2) or a combination thereof. On the other hand, the material of the second refractive layer 164 includes silicon dioxide (SiO2). By selecting the materials of the first refraction layer 162 and the second refraction layer 164, the probability of the light beam L2 being absorbed by the first refraction layer 162 and the second refraction layer 164 can be reduced, so as to increase the probability of the light beam L2 being reflected, thereby improving light emission. The luminous efficiency and brightness of the diode 100. In particular, in this embodiment, the Bragg reflective structure 160 has good reflectivity (above 95%) for different reflection wavelength ranges, making the light-emitting diode 100 suitable for use in light-emitting devices that need to emit different light-emitting wavelength ranges. . Specifically, if the first refraction layer 162 and the second refraction layer 164 next to each other are regarded as a stacked layer group, the Bragg reflection structure 160 applied to the light emitting diode 100 may include more than 4 to 100. The following or more stacked layer groups. In addition, the number of stacked layer groups can be adjusted according to the required reflection properties, and the present invention is not limited to this. For example, 30 to 50 stacked layer groups can be used to form the Bragg reflection structure 160.

若發光二極體100提供的光束L為紫外光,則發光波長範圍的峰值波長可以落在320 nm至430 nm中。此時,布拉格反射結構160中的第一折射層162的材料可選擇含有鉭(Ta)元素的材料如五氧化二鉭(Ta2O5),而第二折射層164的材料可選擇二氧化矽(SiO2),但不以此為限。舉例而言,當發光波長範圍的峰值波長為400 nm,本實施例可以藉由折射層的材質、厚度與疊層組數目的調整使得布拉格反射結構160在至少涵蓋320 nm(0.8倍的峰值波長)至720nm(1.8倍的峰值波長)的反射波長範圍中都可以提供90%以上的反射率。此外,在其他較佳實施例中,當發光波長範圍的峰值波長為400 nm,其中布拉格反射結構160在至少涵蓋360 nm (0.9倍的峰值波長)至560 nm(1.4倍的峰值波長)的反射波長範圍中都可以提供95%以上的反射率。If the light beam L provided by the light emitting diode 100 is ultraviolet light, the peak wavelength of the light emitting wavelength range may fall in the range of 320 nm to 430 nm. At this time, the material of the first refraction layer 162 in the Bragg reflective structure 160 may be a material containing tantalum (Ta), such as tantalum pentoxide (Ta2O5), and the material of the second refraction layer 164 may be silicon dioxide (SiO2). ), but not limited to this. For example, when the peak wavelength of the light-emitting wavelength range is 400 nm, this embodiment can adjust the material, thickness, and number of the refraction layer so that the Bragg reflection structure 160 covers at least 320 nm (0.8 times the peak wavelength). ) To 720nm (1.8 times the peak wavelength) reflection wavelength range can provide more than 90% reflectivity. In addition, in other preferred embodiments, when the peak wavelength of the emission wavelength range is 400 nm, the Bragg reflection structure 160 covers at least 360 nm (0.9 times the peak wavelength) to 560 nm (1.4 times the peak wavelength) reflection Can provide more than 95% reflectivity in the wavelength range.

圖1B為本發明另一實施例的布拉格反射結構的反射頻譜圖,其中圖1B的橫軸為波長而縱軸為比反射率,且比反射率是指布拉格反射結構的反射率相較於鋁金屬層的反射率。在一實施例中,具有圖1B的反射頻譜的布拉格反射結構是由Ta2O5作為第一折射層而SiO2作為第二反射層。並且,布拉格反射結構中第一折射層與第二折射層各自都為30層,且第一折射層與第二折射層重複的交替堆疊而構成布拉格反射結構。由圖1B可知,相較於鋁金屬層而言,布拉格反射結構在大約350nm至450nm的波長範圍都具有高於100%的比反射率。如此一來,具有這種布拉格反射結構的發光晶片可應用於紫外光發光裝置,而提升紫外光發光裝置的光取出效率。1B is a reflection spectrum diagram of a Bragg reflection structure according to another embodiment of the present invention, wherein the horizontal axis of FIG. 1B is the wavelength and the vertical axis is the specific reflectance, and the specific reflectance means that the reflectance of the Bragg reflection structure is compared with that of aluminum. The reflectivity of the metal layer. In one embodiment, the Bragg reflection structure with the reflection spectrum of FIG. 1B uses Ta2O5 as the first refraction layer and SiO2 as the second reflection layer. In addition, each of the first refraction layer and the second refraction layer in the Bragg reflection structure has 30 layers, and the first refraction layer and the second refraction layer are repeatedly and alternately stacked to form the Bragg reflection structure. It can be seen from FIG. 1B that, compared with the aluminum metal layer, the Bragg reflective structure has a specific reflectivity higher than 100% in the wavelength range of about 350 nm to 450 nm. In this way, the light-emitting chip with the Bragg reflection structure can be applied to the ultraviolet light emitting device, and the light extraction efficiency of the ultraviolet light emitting device is improved.

繼續參照圖1A,若發光二極體100提供的光束L為藍光,則發光波長範圍的峰值波長可以落在420 nm至500 nm中。此時,布拉格反射結構160中的第一折射層162的材料可選擇含有鈦(Ti) 元素的材料如二氧化鈦(TiO2),而第二折射層164的材料可選擇二氧化矽(SiO2),但不以此為限。舉例而言,當發光波長範圍的峰值波長為450 nm,本實施例可以藉由折射層的材質、厚度與疊層組數目的調整使得布拉格反射結構160在至少涵蓋360 nm(0.8倍的峰值波長)至810 nm(1.8倍的峰值波長)的反射波長範圍中都可以提供90%以上的反射率。此外,在其他實施例中,當發光波長範圍的峰值波長為450 nm,布拉格反射結構160在涵蓋405nm (約0.9倍峰值波長)至720 nm(約1.6倍峰值波長)的反射波長範圍中都可以提供95%以上的反射率。Continuing to refer to FIG. 1A, if the light beam L provided by the light-emitting diode 100 is blue, the peak wavelength of the light-emitting wavelength range may fall in the range of 420 nm to 500 nm. At this time, the material of the first refraction layer 162 in the Bragg reflective structure 160 may be a material containing titanium (Ti), such as titanium dioxide (TiO2), and the material of the second refraction layer 164 may be silicon dioxide (SiO2), but Not limited to this. For example, when the peak wavelength of the light-emitting wavelength range is 450 nm, in this embodiment, the material, thickness, and number of laminated groups of the refractive layer can be adjusted so that the Bragg reflection structure 160 covers at least 360 nm (0.8 times the peak wavelength). ) To 810 nm (1.8 times the peak wavelength) reflection wavelength range can provide more than 90% reflectivity. In addition, in other embodiments, when the peak wavelength of the emission wavelength range is 450 nm, the Bragg reflection structure 160 can be in the reflection wavelength range covering 405 nm (approximately 0.9 times the peak wavelength) to 720 nm (approximately 1.6 times the peak wavelength). Provide more than 95% reflectivity.

若發光二極體100提供的光束L為藍光,並藉由不同的封裝型式中含有波長轉換結構如螢光粉,則發光二極體100提供的光束L為藍光經由波長轉換結構激發出另一激發波長的峰值波長,其另一激發波長的峰值波長大於發光二極體100提供的光束L的峰值波長,使得光束至少包含一個以上的峰值波長,且發光波長及激發波長範圍的峰值波長可以落在400 nm至700 nm中。此時,布拉格反射結構160中的第一折射層162的材料可選擇含有鈦(Ti) 元素的材料如二氧化鈦(TiO2),而第二折射層164的材料可選擇二氧化矽(SiO2),但不以此為限。If the light beam L provided by the light emitting diode 100 is blue light, and a wavelength conversion structure such as phosphor is contained in different packaging types, the light beam L provided by the light emitting diode 100 is blue light to excite another light through the wavelength conversion structure. The peak wavelength of the excitation wavelength, the peak wavelength of the other excitation wavelength is greater than the peak wavelength of the light beam L provided by the light emitting diode 100, so that the light beam contains at least one peak wavelength, and the peak wavelength of the emission wavelength and the excitation wavelength range can fall In 400 nm to 700 nm. At this time, the material of the first refraction layer 162 in the Bragg reflective structure 160 may be a material containing titanium (Ti), such as titanium dioxide (TiO2), and the material of the second refraction layer 164 may be silicon dioxide (SiO2), but Not limited to this.

舉例而言,當至少一發光波長範圍的峰值波長為445nm及激發波長的峰值波長為580nm,或另可包含一激發波長的峰值波長為620nm,本實施例可以藉由折射層的材質、厚度與疊層組數目的調整使得布拉格反射結構160在至少涵蓋356nm(0.8倍發光波長的峰值波長)至801 nm(1.8倍發光波長的峰值波長)的反射波長範圍中都可以提供90%以上的反射率。此外,在其他實施例中,當發光波長範圍的峰值波長為445 nm,布拉格反射結構160在涵蓋400.5nm (約0.9倍發光波長的峰值波長)至712 nm(約1.6倍發光波長的峰值波長)的反射波長範圍中都可以提供95%以上的反射率。For example, when the peak wavelength of at least one emission wavelength range is 445nm and the peak wavelength of the excitation wavelength is 580nm, or another excitation wavelength can be included with the peak wavelength of 620nm, this embodiment can be determined by the material, thickness and The adjustment of the number of laminated groups enables the Bragg reflective structure 160 to provide more than 90% reflectivity in the reflection wavelength range of at least 356nm (0.8 times the peak wavelength of the emission wavelength) to 801 nm (1.8 times the peak wavelength of the emission wavelength). . In addition, in other embodiments, when the peak wavelength of the emission wavelength range is 445 nm, the Bragg reflection structure 160 covers 400.5 nm (approximately 0.9 times the peak wavelength of the emission wavelength) to 712 nm (approximately 1.6 times the peak wavelength of the emission wavelength). Can provide more than 95% reflectance in the reflection wavelength range.

若發光二極體100提供的光束L為綠光,則發光波長範圍的峰值波長可以落在500 nm至550 nm中。此時,布拉格反射結構160中的第一折射層162的材料可選擇含有鈦(Ti) 元素的材料如二氧化鈦(TiO2),而第二折射層164的材料可選擇二氧化矽(SiO2),但不以此為限。舉例而言,當發光波長範圍的峰值波長為525 nm,本實施例可以藉由折射層的材質、厚度與疊層組數目的調整使得布拉格反射結構160在至少涵蓋420 nm(0.8倍的峰值波長)至997.5 nm(1.9倍的峰值波長)的反射波長範圍中都可以提供90%以上的反射率。此外,在其他實施例中,當發光波長範圍的峰值波長為525 nm,布拉格反射結構160在涵蓋472.5nm (約0.9倍峰值波長)至840 nm(約1.6倍峰值波長)的反射波長範圍中都可以提供95%以上的反射率。If the light beam L provided by the light emitting diode 100 is green light, the peak wavelength of the light emitting wavelength range may fall in the range of 500 nm to 550 nm. At this time, the material of the first refraction layer 162 in the Bragg reflective structure 160 may be a material containing titanium (Ti), such as titanium dioxide (TiO2), and the material of the second refraction layer 164 may be silicon dioxide (SiO2), but Not limited to this. For example, when the peak wavelength of the light-emitting wavelength range is 525 nm, in this embodiment, the material, thickness, and number of laminated groups of the refractive layer can be adjusted so that the Bragg reflection structure 160 covers at least 420 nm (0.8 times the peak wavelength). ) To 997.5 nm (1.9 times the peak wavelength) reflection wavelength range can provide more than 90% reflectivity. In addition, in other embodiments, when the peak wavelength of the emission wavelength range is 525 nm, the Bragg reflection structure 160 covers the reflection wavelength range of 472.5 nm (approximately 0.9 times the peak wavelength) to 840 nm (approximately 1.6 times the peak wavelength). Can provide more than 95% reflectivity.

圖1C為本發明另一實施例的布拉格反射結構的反射頻譜圖,其中圖1C的橫軸為波長而縱軸為反射率。在一實施例中,具有圖1C的反射頻譜的布拉格反射結構是由TiO2作為第一折射層而SiO2作為第二反射層。並且,布拉格反射結構中第一折射層與第二折射層各自都為24層,且第一折射層與第二折射層重複的交替堆疊而構成布拉格反射結構。由圖1C可知,這種布拉格反射結構的反射頻譜中,400nm至700nm的波長範圍都具有約90%以上的反射率,甚至在400nm到600nm的波長範圍都維持在接近100%。由於布拉格反射結構的反射頻譜在較廣的波長範圍都維持有高反射率,這樣的布拉格反射結構,在較大的視角下也可提供較廣的波長範圍的反射效果。FIG. 1C is a reflection spectrum diagram of a Bragg reflection structure according to another embodiment of the present invention, wherein the horizontal axis of FIG. 1C is the wavelength and the vertical axis is the reflectivity. In one embodiment, the Bragg reflection structure with the reflection spectrum of FIG. 1C uses TiO2 as the first refraction layer and SiO2 as the second reflection layer. In addition, each of the first refraction layer and the second refraction layer in the Bragg reflection structure has 24 layers, and the first refraction layer and the second refraction layer are repeatedly and alternately stacked to form the Bragg reflection structure. It can be seen from FIG. 1C that in the reflection spectrum of this Bragg reflection structure, the wavelength range from 400 nm to 700 nm has a reflectivity of more than 90%, and even the wavelength range from 400 nm to 600 nm is maintained at close to 100%. Since the reflection spectrum of the Bragg reflection structure maintains high reflectivity in a wide wavelength range, such a Bragg reflection structure can also provide a reflection effect in a wider wavelength range under a larger viewing angle.

布拉格反射結構的反射頻譜在略低於400nm且接近400nm的波長範圍仍具有高反射率,並且布拉格反射結構的反射頻譜在略高於700nm的波長範圍仍具有高反射率,甚至大致在接近800nm的波長範圍仍具有不錯的反射率。如此一來,具有這種布拉格反射結構的發光晶片可應用於可見光發光裝置,而提升可見發光裝置的光取出效率。此外,由圖1C可知,布拉格反射結構在較長的波長範圍,例如800nm到900nm,甚至900nm以上,都具有低於40%的反射率。如此,具有布拉格反射結構的發光晶片在雷射切割與批片的可製程性都可以獲得提升。The reflection spectrum of the Bragg reflection structure still has high reflectivity in the wavelength range slightly below 400nm and close to 400nm, and the reflection spectrum of the Bragg reflection structure still has high reflectivity in the wavelength range slightly higher than 700nm, even roughly at the wavelength range close to 800nm The wavelength range still has good reflectivity. In this way, the light-emitting chip with the Bragg reflection structure can be applied to a visible light-emitting device, thereby improving the light extraction efficiency of the visible light-emitting device. In addition, it can be seen from FIG. 1C that the Bragg reflection structure has a reflectivity of less than 40% in a longer wavelength range, such as 800 nm to 900 nm, or even above 900 nm. In this way, the manufacturability of the light-emitting chip with the Bragg reflection structure in both laser cutting and batching can be improved.

在此實施例中,當具有上述布拉格反射結構的發光晶片應用於發光裝置時,發光晶片中發光層的發光波長可以僅涵蓋可見光波長範圍的一部份。另外,發光裝置中可以更包括有螢光粉,而螢光粉的激發光波長可以涵蓋可見光波長範圍的另一部份。舉例來說,發光層的發光波長可以是藍光或是綠光,而螢光粉的激發光波長可以是黃光、綠光或是紅光等。如此,發光裝置藉由發光晶片與螢光粉的配置可以發出白光,並且發光晶片中的布拉格反射結構可以有效率地反射白光所涵蓋的波長範圍。換言之,發光晶片中,發光層的發光波長與布拉格反射結構的反射波長可以僅有部分重疊,不需要彼此一致。當然,發光晶片中,發光層的發光波長與布拉格反射結構的反射波長也可設計成彼此對應,例如都是落在藍光波長範圍、都落在綠光波長範圍或是都落在紅光波長範圍。In this embodiment, when the light-emitting chip with the above Bragg reflection structure is applied to the light-emitting device, the light-emitting wavelength of the light-emitting layer in the light-emitting chip may only cover a part of the visible light wavelength range. In addition, the light-emitting device may further include phosphor, and the excitation light wavelength of the phosphor may cover another part of the visible light wavelength range. For example, the emission wavelength of the light emitting layer can be blue or green light, and the excitation light wavelength of the phosphor can be yellow light, green light, or red light. In this way, the light-emitting device can emit white light through the arrangement of the light-emitting chip and the phosphor, and the Bragg reflection structure in the light-emitting chip can efficiently reflect the wavelength range covered by the white light. In other words, in the light-emitting chip, the light-emitting wavelength of the light-emitting layer and the reflection wavelength of the Bragg reflective structure may only partially overlap, and do not need to be consistent with each other. Of course, in the light-emitting chip, the light-emitting wavelength of the light-emitting layer and the reflection wavelength of the Bragg reflection structure can also be designed to correspond to each other, for example, both fall in the blue wavelength range, both fall in the green wavelength range, or both fall in the red wavelength range. .

在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。It must be noted here that the following embodiments use the element numbers and part of the content of the foregoing embodiments, wherein the same numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted parts, reference may be made to the foregoing embodiments, and the following embodiments will not be repeated.

圖2繪示為本發明的另一實施例的發光二極體的剖面圖。請參照圖2,圖2所繪示的發光二極體100’是一種可以應用於覆晶式封裝的發光二極體。本實施例的發光二極體100’類似於圖1A的發光二極體晶片100,其主要的差異例如是在於:布拉格反射結構160’位於第二電流傳導層150與第二型半導體層130之間,且布拉格反射結構160’具有多個貫穿開口166。換言之,第一型半導體層110、發光層120、第二型半導體層130以及布拉格反射結構160’在本實施例中是依序疊置於成長基板170的第一表面171。並且,第二電流傳導層150填入這些貫穿開口166以電性連接第二型半導體層130。FIG. 2 is a cross-sectional view of a light emitting diode according to another embodiment of the invention. Please refer to FIG. 2. The light-emitting diode 100' shown in FIG. 2 is a light-emitting diode that can be applied to flip-chip packaging. The light-emitting diode 100' of this embodiment is similar to the light-emitting diode wafer 100 of FIG. The Bragg reflective structure 160' has a plurality of through openings 166. In other words, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, and the Bragg reflective structure 160' are sequentially stacked on the first surface 171 of the growth substrate 170 in this embodiment. In addition, the second current conducting layer 150 fills the through openings 166 to electrically connect to the second type semiconductor layer 130.

具體而言,在本實施例中,發光二極體100’更包括一導電層101以及多個絕緣圖案103,其中絕緣圖案103更可彼此不相連接。導電層101配置於布拉格反射結構160’以及第二型半導體層130之間,且填入這些貫穿開口166的第二電流傳導層150可以接觸導電層101而藉由導電層101電性連接於第二型半導體層130。導電層101的材料例如是氧化銦錫(indium tin oxide, ITO)或是其他具有電流分散作用且可允許光線穿過的材料,例如透明金屬、原子堆疊層等。Specifically, in this embodiment, the light emitting diode 100' further includes a conductive layer 101 and a plurality of insulating patterns 103, wherein the insulating patterns 103 may not be connected to each other. The conductive layer 101 is disposed between the Bragg reflective structure 160' and the second-type semiconductor layer 130, and the second current conducting layer 150 filled with the through openings 166 can contact the conductive layer 101 and electrically connect to the first conductive layer 101 through the conductive layer 101. Type 2 semiconductor layer 130. The material of the conductive layer 101 is, for example, indium tin oxide (ITO) or other materials that have a current dispersion effect and can allow light to pass through, such as transparent metal, atomic stacking layer, etc.

另一方面,這些絕緣圖案103配置於導電層101以及第二型半導體層130之間,且部分絕緣圖案103對應配置於這些貫穿開口166而使得導電層101在絕緣圖案103的面積之外接觸於第二型半導體層130。進一步來說,這些絕緣圖案103的材料例如是二氧化矽(silicon dioxide, SiO2)或是其他具有電流阻擋作用的材料。導電層101與絕緣圖案103的設置用以使傳遞於發光層130中的電流均勻分散,可避免電流集中於發光層120的某些部位,這使得發光層120的發光區域較為均勻的分布。因此,上述的配置使得發光二極體100’的發光均勻度較佳。On the other hand, these insulating patterns 103 are disposed between the conductive layer 101 and the second-type semiconductor layer 130, and part of the insulating patterns 103 are correspondingly disposed in the through openings 166 so that the conductive layer 101 contacts with the conductive layer 101 outside the area of the insulating pattern 103. The second type semiconductor layer 130. Furthermore, the material of the insulating patterns 103 is, for example, silicon dioxide (SiO2) or other materials with a current blocking effect. The conductive layer 101 and the insulating pattern 103 are arranged to uniformly disperse the current transmitted in the light-emitting layer 130, which can prevent the current from being concentrated in certain parts of the light-emitting layer 120, which makes the light-emitting area of the light-emitting layer 120 more evenly distributed. Therefore, the above configuration makes the light emission uniformity of the light emitting diode 100' better.

在本實施例中,由於發光二極體100’係為覆晶式發光二極體,因此在第二電流傳導層150上可進一步配置一絕緣層105以及一接合層107。絕緣層105具有一貫穿開口O1,且接合層107填入貫穿開口O1以使接合層107電性連接第二電流傳導層150。為了在覆晶接合過程中與外部的基板電性連接與物理性連接,接合層107以及第一電流傳導層140的材料例如是金 (Au)、金/錫合金(Au/Sn)或是其他可以應用於共晶接合的導電材料。在此,第一電流傳導層140可以直接用於共晶接合,不過本發明不以此為限。在其他的實施例中,第一電流傳導層140與第二電流傳導層150可以由相同的材料構成,而且第一電流傳導層140上方可以額外設置有用以共晶接合的接合層。絕緣層150的材料例如是二氧化矽(SiO2)、二氧化鈦(TiO2)或其它適當材料。In this embodiment, since the light-emitting diode 100' is a flip-chip light-emitting diode, an insulating layer 105 and a bonding layer 107 can be further disposed on the second current conducting layer 150. The insulating layer 105 has a through opening O1, and the bonding layer 107 fills the through opening O1 so that the bonding layer 107 is electrically connected to the second current conducting layer 150. In order to electrically and physically connect with the external substrate during the flip chip bonding process, the materials of the bonding layer 107 and the first current conducting layer 140 are, for example, gold (Au), gold/tin alloy (Au/Sn) or other materials. Can be applied to conductive materials for eutectic bonding. Here, the first current conducting layer 140 can be directly used for eutectic bonding, but the present invention is not limited to this. In other embodiments, the first current conducting layer 140 and the second current conducting layer 150 may be made of the same material, and a bonding layer for eutectic bonding may be additionally provided on the first current conducting layer 140. The material of the insulating layer 150 is, for example, silicon dioxide (SiO2), titanium dioxide (TiO2) or other suitable materials.

在本實施例中,布拉格反射結構160’的具體設計與材質可以相同於前述實施例的布拉格反射結構160’。因此,布拉格反射結構160’在短波長範圍的反射率具有良好的表現,而使得發光二極體100’同樣的也合適於應用在需要發出短波長範圍的發光裝置中。In this embodiment, the specific design and material of the Bragg reflection structure 160' can be the same as the Bragg reflection structure 160' of the previous embodiment. Therefore, the Bragg reflective structure 160' has a good reflectivity in the short wavelength range, and the light emitting diode 100' is also suitable for application in light emitting devices that need to emit a short wavelength range.

圖3繪示為本發明的另一實施例的發光二極體的剖面圖。請參照圖3,圖3所繪示的是另一種可以應用於覆晶式封裝的發光二極體。本實施例的發光二極體200’類似於圖2的發光二極體100’,其主要的差異例如是在於:布拉格反射結構260’位於第二電流傳導層150與第二型半導體層130之間,且布拉格反射結構260’具有位於第二電流傳導層150與第二型半導體層130之間的多個貫穿開口166以及位於第一電流傳導層140與第一型半導體層110之間的多個貫穿開口167。換言之,第一型半導體層110、發光層120、第二型半導體層130以及布拉格反射結構260’在本實施例中是依序疊置於成長基板170的第一表面171。並且,第二電流傳導層150填入這些貫穿開口166以電性連接第二型半導體層130以及第一電流傳導層140填入這些貫穿開口167以電性連接第一型半導體層110。圖3中雖僅繪示一個貫穿開口167,但在具體實施時,貫穿開口167的數量可以依據實際設計而調整。FIG. 3 is a cross-sectional view of a light emitting diode according to another embodiment of the invention. Please refer to FIG. 3. FIG. 3 shows another light-emitting diode that can be applied to flip-chip packaging. The light-emitting diode 200' of this embodiment is similar to the light-emitting diode 100' of FIG. The Bragg reflective structure 260' has a plurality of through openings 166 between the second current conducting layer 150 and the second type semiconductor layer 130, and a plurality of through openings 166 between the first current conducting layer 140 and the first type semiconductor layer 110. A piercing opening 167. In other words, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, and the Bragg reflective structure 260' are sequentially stacked on the first surface 171 of the growth substrate 170 in this embodiment. In addition, the second current conducting layer 150 fills the through openings 166 to electrically connect the second type semiconductor layer 130 and the first current conducting layer 140 fills the through openings 167 to electrically connect to the first type semiconductor layer 110. Although only one through opening 167 is shown in FIG. 3, in specific implementation, the number of through openings 167 can be adjusted according to the actual design.

具體而言,在本實施例中,發光二極體200’更包括一導電層101以及多個絕緣圖案103,其中絕緣圖案103可彼此不相連接。導電層101配置於布拉格反射結構260’以及第二型半導體層130之間,且填入這些貫穿開口166的第二電流傳導層150可以接觸導電層101而藉由導電層101電性連接於第二型半導體層130。導電層101的材料例如是氧化銦錫(indium tin oxide, ITO)或是其他具有電流分散作用且可允許光線穿過的材料。Specifically, in this embodiment, the light emitting diode 200' further includes a conductive layer 101 and a plurality of insulating patterns 103, wherein the insulating patterns 103 may not be connected to each other. The conductive layer 101 is disposed between the Bragg reflective structure 260' and the second type semiconductor layer 130, and the second current conduction layer 150 filled with the through openings 166 can contact the conductive layer 101 and be electrically connected to the first through the conductive layer 101 Type 2 semiconductor layer 130. The material of the conductive layer 101 is, for example, indium tin oxide (ITO) or other materials that have a current dispersion effect and can allow light to pass through.

另一方面,這些絕緣圖案103配置於導電層101以及第二型半導體層130之間,且部分絕緣圖案103對應配置於這些貫穿開口166所在位置而使得導電層101在絕緣圖案103的面積之外接觸於第二型半導體層130。進一步來說,這些絕緣圖案103的材料例如是二氧化矽(silicon dioxide, SiO2)或是其他具有電流阻擋作用的材料。導電層101與絕緣圖案103的設置用以使傳遞於發光層130中的電流均勻分散,可避免電流集中於發光層120的某些部位,這使得發光層120的發光區域較為均勻的分布。因此,上述的配置使得發光二極體200’的發光均勻度較佳。On the other hand, the insulating patterns 103 are disposed between the conductive layer 101 and the second-type semiconductor layer 130, and part of the insulating patterns 103 are correspondingly disposed at the positions of the through openings 166 so that the conductive layer 101 is outside the area of the insulating pattern 103 It is in contact with the second type semiconductor layer 130. Furthermore, the material of the insulating patterns 103 is, for example, silicon dioxide (SiO2) or other materials with a current blocking effect. The conductive layer 101 and the insulating pattern 103 are arranged to uniformly disperse the current transmitted in the light-emitting layer 130, which can prevent the current from being concentrated in certain parts of the light-emitting layer 120, which makes the light-emitting area of the light-emitting layer 120 more evenly distributed. Therefore, the above configuration makes the light emission uniformity of the light emitting diode 200' better.

另外,在本實施例中,發光二極體200’更包括位於第一電流傳導層140與第一型半導體層110之間的至少一第一金屬層180以及位於第二電流傳導層150與第二型半導體層130之間的至少一第二金屬層190,且部分布拉格反射結構260’位於第一金屬層180或第二金屬層190上。換言之,第一型半導體層110、發光層120、第二型半導體層130以及布拉格反射結構260’在本實施例中是依序疊置於成長基板170的第一表面171。並且,第一電流傳導層140填入這些貫穿開口167以電性連接第一金屬層180及第一型半導體層110以及第二電流傳導層150填入這些貫穿開口166以電性連接第二金屬層190及第二型半導體層130。In addition, in this embodiment, the light-emitting diode 200' further includes at least one first metal layer 180 located between the first current conducting layer 140 and the first type semiconductor layer 110, and at least one first metal layer 180 located between the second current conducting layer 150 and the second current conducting layer 150. At least one second metal layer 190 between the second type semiconductor layers 130 and a part of the Bragg reflective structure 260 ′ are located on the first metal layer 180 or the second metal layer 190. In other words, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, and the Bragg reflective structure 260' are sequentially stacked on the first surface 171 of the growth substrate 170 in this embodiment. Moreover, the first current conducting layer 140 fills the through openings 167 to electrically connect the first metal layer 180 with the first type semiconductor layer 110 and the second current conducting layer 150 fills the through openings 166 to electrically connect to the second metal. Layer 190 and the second type semiconductor layer 130.

在本實施例中,另一方面,發光二極體200’更包括一第一絕緣層105a以及一第二絕緣層105b。第一絕緣層105a配置於第一型半導體層110上、第二型半導體層130上以及第一型半導體層110、發光層120與第二型半導體層130的側壁上,且第一絕緣層105a更可配置於部分第一金屬層180上、部分第二金屬層190上以及導電層101上,其中至少部分布拉格反射結構260’位於第一絕緣層105a以及第二絕緣層105b之間。再者,第二絕緣層105b可配置於布拉格反射結構260’上。換言之,第一型半導體層110、發光層120、第二型半導體層130以及布拉格反射結構260’在本實施例中是依序疊置於成長基板170的第一表面171,並且,這些貫穿開口166貫穿第二絕緣層105b、布拉格反射結構260’以及第一絕緣層105a以供第二電流傳導層150填入這些貫穿開口166且電性連接第二金屬層190及第二型半導體層130。相似地,這些貫穿開口167貫穿第二絕緣層105b、布拉格反射結構260’以及第一絕緣層105a以供第一電流傳導層140填入這些貫穿開口167且電性連接第一金屬層180及第一型半導體層110。第一絕緣層105a與第二絕緣層105b的材料例如是二氧化矽(silicon dioxide, SiO2)、二氧化鈦(TiO2)或其材質可為一相同材料或相同折射材料。另外,第一絕緣層105a與第二絕緣層105b的材料更可包含布拉格反射結構260’所包含的一材質。In this embodiment, on the other hand, the light emitting diode 200' further includes a first insulating layer 105a and a second insulating layer 105b. The first insulating layer 105a is disposed on the first type semiconductor layer 110, the second type semiconductor layer 130, and the sidewalls of the first type semiconductor layer 110, the light emitting layer 120, and the second type semiconductor layer 130, and the first insulating layer 105a It can be further configured on a portion of the first metal layer 180, a portion of the second metal layer 190, and on the conductive layer 101, wherein at least a portion of the Bragg reflective structure 260' is located between the first insulating layer 105a and the second insulating layer 105b. Furthermore, the second insulating layer 105b may be disposed on the Bragg reflective structure 260'. In other words, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, and the Bragg reflective structure 260' are sequentially stacked on the first surface 171 of the growth substrate 170 in this embodiment, and these pass through openings 166 penetrates the second insulating layer 105b, the Bragg reflective structure 260', and the first insulating layer 105a for the second current conducting layer 150 to fill the through openings 166 and electrically connect the second metal layer 190 and the second type semiconductor layer 130. Similarly, the through openings 167 penetrate through the second insulating layer 105b, the Bragg reflective structure 260', and the first insulating layer 105a for the first current conducting layer 140 to fill the through openings 167 and electrically connect the first metal layer 180 and the first insulating layer. A type semiconductor layer 110. The material of the first insulating layer 105a and the second insulating layer 105b is, for example, silicon dioxide (SiO2), titanium dioxide (TiO2) or the same material or the same refractive material. In addition, the material of the first insulating layer 105a and the second insulating layer 105b may further include a material included in the Bragg reflective structure 260'.

在本實施例中,為了在覆晶接合過程中與外部的基板電性連接與物理性連接,第一電流傳導層140與第二電流傳導層150的材料例如是金/錫合金(Au/Sn)或是其他可以應用於共晶接合的導電材料。在此,第一電流傳導層140與第二電流傳導層150可以直接用於共晶接合,不過本發明不以此為限。在其他的實施例中,第一電流傳導層140與第二電流傳導層150可以由相同的材料構成。In this embodiment, in order to electrically and physically connect with the external substrate during the flip chip bonding process, the materials of the first current conducting layer 140 and the second current conducting layer 150 are, for example, gold/tin alloy (Au/Sn ) Or other conductive materials that can be applied to eutectic bonding. Here, the first current conducting layer 140 and the second current conducting layer 150 can be directly used for eutectic bonding, but the invention is not limited to this. In other embodiments, the first current conducting layer 140 and the second current conducting layer 150 may be made of the same material.

圖4繪示為本發明的再一實施例的發光二極體的剖面圖。請參照圖4,圖4所繪示是再一種可以應用於覆晶式封裝的發光二極體。本實施例的發光二極體300’類似於圖3的發光二極體200’,其主要的差異例如是在於:發光二極體300’更包括一第一絕緣層105a以及一第二絕緣層105b且布拉格反射結構360’配置於第一絕緣層105a與第二絕緣層105b之間,其中第一絕緣層105a以及第二絕緣層105b可部分重疊且彼此相接觸。第一絕緣層105a配置於第一型半導體層110上、第二型半導體層130上以及第一型半導體層110、發光層120與第二型半導體層130的側壁上,且第一絕緣層105a更可配置於部分第一金屬層180上、部分第二金屬層190上以及導電層101上,其中布拉格反射結構360’位於第一絕緣層105a以及一第二絕緣層105b之間。再者,第二絕緣層105b可配置於布拉格反射結構360’上、第一絕緣層105a上、部分第一金屬層180上以及部分第二金屬層190上,其中第二絕緣層105b更可包覆布拉格反射結構360’。換言之,第一型半導體層110、發光層120、第二型半導體層130以及布拉格反射結構360’在本實施例中是依序疊置於成長基板170的第一表面171。並且,這些貫穿開口166貫穿第二絕緣層105b以及第一絕緣層105a以供第二電流傳導層150填入這些貫穿開口166且電性連接第二金屬層190及第二型半導體層130。相似地,這些貫穿開口167貫穿第二絕緣層105b以及第一絕緣層105a以供第一電流傳導層140填入這些貫穿開口167且電性連接第一金屬層180及第一型半導體層110。第一絕緣層105a與第二絕緣層105b的材料例如是二氧化矽(silicon dioxide, SiO2)或其材質可為一相同材料或相同折射材料。另外,第一絕緣層105a或第二絕緣層105b的材料更可包含布拉格反射結構360’所包含的一材質。4 is a cross-sectional view of a light emitting diode according to still another embodiment of the invention. Please refer to FIG. 4. FIG. 4 shows another light-emitting diode that can be applied to flip-chip packaging. The light-emitting diode 300' of this embodiment is similar to the light-emitting diode 200' of FIG. 3. The main difference is, for example, the light-emitting diode 300' further includes a first insulating layer 105a and a second insulating layer. 105b and the Bragg reflective structure 360' are disposed between the first insulating layer 105a and the second insulating layer 105b, wherein the first insulating layer 105a and the second insulating layer 105b may partially overlap and contact each other. The first insulating layer 105a is disposed on the first type semiconductor layer 110, the second type semiconductor layer 130, and the sidewalls of the first type semiconductor layer 110, the light emitting layer 120, and the second type semiconductor layer 130, and the first insulating layer 105a It can be further configured on a portion of the first metal layer 180, a portion of the second metal layer 190, and on the conductive layer 101, wherein the Bragg reflective structure 360' is located between the first insulating layer 105a and a second insulating layer 105b. Furthermore, the second insulating layer 105b can be disposed on the Bragg reflective structure 360', on the first insulating layer 105a, on a part of the first metal layer 180, and on a part of the second metal layer 190, wherein the second insulating layer 105b can further include Covering Bragg reflection structure 360'. In other words, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, and the Bragg reflective structure 360' are sequentially stacked on the first surface 171 of the growth substrate 170 in this embodiment. In addition, the through openings 166 penetrate the second insulating layer 105b and the first insulating layer 105a for the second current conducting layer 150 to fill the through openings 166 and electrically connect the second metal layer 190 and the second type semiconductor layer 130. Similarly, the through openings 167 penetrate the second insulating layer 105b and the first insulating layer 105a for the first current conducting layer 140 to fill the through openings 167 and electrically connect the first metal layer 180 and the first type semiconductor layer 110. The material of the first insulating layer 105a and the second insulating layer 105b is, for example, silicon dioxide (SiO2) or the material can be the same material or the same refractive material. In addition, the material of the first insulating layer 105a or the second insulating layer 105b may further include a material included in the Bragg reflective structure 360'.

圖5繪示為本發明的又一實施例的發光二極體的剖面圖。請參照圖5,圖5所繪示是又一種可以應用於覆晶式封裝的發光二極體。本實施例的發光二極體400’類似於圖4的發光二極體晶片300’,其主要的差異例如是在於:第一金屬層180包括一焊部180a與一指部180b,並且第二金屬層190包括一焊部190a與一指部190b,其中第一絕緣層105a以及一第二絕緣層105b可部分重疊並且彼此接觸。第一絕緣層105a配置於第一型半導體層110上、第二型半導體層130上以及第一型半導體層110、發光層120與第二型半導體層130的側壁上。另外,第一絕緣層105a配置於部分第一金屬層180上、部分第二金屬層190上以及導電層101上,且第一絕緣層105配置於部分第一金屬層180之焊部180a上以及第一金屬層180之指部180a上。部分布拉格反射結構360’位於第一絕緣層105a以及一第二絕緣層105b之間。再者,第二絕緣層105b可配置於布拉格反射結構360’上、第一絕緣層105a上、部分第一金屬層180上以及部分第二金屬層190上,其中第二絕緣層105b更可包覆布拉格反射結構360’且第二絕緣層105b配置於部分第一金屬層180之焊部180a上以及第一金屬層180之指部180a上。換言之,第一型半導體層110、發光層120、第二型半導體層130以及布拉格反射結構360’在本實施例中是依序疊置於成長基板170的第一表面171,並且,這些貫穿開口166貫穿第二絕緣層105b以及第一絕緣層105a以供第二電流傳導層150填入這些貫穿開口166且電性連接第二金屬層190之焊部190a及第二型半導體層130。這些貫穿開口167貫穿第二絕緣層105b以及第一絕緣層105a以供第一電流傳導層140填入這些貫穿開口167且電性連接第一金屬層180之焊部180a及第一型半導體層110。第一絕緣層105a與第二絕緣層105b的材料例如是二氧化矽(silicon dioxide, SiO2)或其材質可為一相同材料或相同折射材料。另外,第一絕緣層105a或第二絕緣層105b的材料更可包含布拉格反射結構360’所包含的一材質。FIG. 5 is a cross-sectional view of a light emitting diode according to another embodiment of the invention. Please refer to FIG. 5. FIG. 5 shows another light-emitting diode that can be applied to flip-chip packaging. The light-emitting diode 400' of this embodiment is similar to the light-emitting diode chip 300' of FIG. The metal layer 190 includes a welding portion 190a and a finger portion 190b, wherein the first insulating layer 105a and the second insulating layer 105b may partially overlap and contact each other. The first insulating layer 105 a is disposed on the first type semiconductor layer 110, the second type semiconductor layer 130, and the sidewalls of the first type semiconductor layer 110, the light emitting layer 120 and the second type semiconductor layer 130. In addition, the first insulating layer 105a is disposed on a portion of the first metal layer 180, a portion of the second metal layer 190, and on the conductive layer 101, and the first insulating layer 105 is disposed on a portion of the welding portion 180a of the first metal layer 180 and On the finger 180a of the first metal layer 180. The partial Bragg reflective structure 360' is located between the first insulating layer 105a and a second insulating layer 105b. Furthermore, the second insulating layer 105b can be disposed on the Bragg reflective structure 360', on the first insulating layer 105a, on a part of the first metal layer 180, and on a part of the second metal layer 190, wherein the second insulating layer 105b can further include The Bragg reflective structure 360 ′ is covered and the second insulating layer 105 b is disposed on a part of the welding portion 180 a of the first metal layer 180 and on the finger portion 180 a of the first metal layer 180. In other words, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, and the Bragg reflective structure 360' are sequentially stacked on the first surface 171 of the growth substrate 170 in this embodiment, and these pass through openings 166 penetrates the second insulating layer 105b and the first insulating layer 105a for the second current conducting layer 150 to fill the through openings 166 and electrically connect the soldering portion 190a of the second metal layer 190 and the second type semiconductor layer 130. The through openings 167 penetrate through the second insulating layer 105b and the first insulating layer 105a for the first current conducting layer 140 to fill the through openings 167 and electrically connect the welding portion 180a of the first metal layer 180 and the first type semiconductor layer 110 . The material of the first insulating layer 105a and the second insulating layer 105b is, for example, silicon dioxide (SiO2) or the material can be the same material or the same refractive material. In addition, the material of the first insulating layer 105a or the second insulating layer 105b may further include a material included in the Bragg reflective structure 360'.

圖6為本發明一實施例的金屬層的剖面示意圖。請參照圖6,金屬層M具有頂表面MT、底表面MB與側表面MS,其中側表面MS與底表面MB構成一夾角Θ,且夾角Θ可以小於60度,或是小於45度。舉例而言,夾角Θ可以為30度至45度。金屬層M可以應用於前述實施例的第一金屬層180與第二金屬層190至少一者當中。FIG. 6 is a schematic cross-sectional view of a metal layer according to an embodiment of the invention. 6, the metal layer M has a top surface MT, a bottom surface MB, and a side surface MS. The side surface MS and the bottom surface MB form an included angle Θ, and the included angle Θ can be less than 60 degrees or less than 45 degrees. For example, the included angle θ may be 30 degrees to 45 degrees. The metal layer M may be applied to at least one of the first metal layer 180 and the second metal layer 190 of the foregoing embodiment.

具體來說,金屬層M應用於圖3的第一金屬層180時,貫穿開口166的面積可以設置為落在頂表面MT的面積上,而側表面MS可以至少局部地被第一絕緣層105a覆蓋。此時,因為側表面MS與底表面MB構成的夾角Θ可以小於60度,第一絕緣層105a可以確實地覆蓋在側表面MS上。換言之,第一絕緣層105a覆蓋部分金屬層M的批覆效果良好。相似地,金屬層M應用於圖3的第二金屬層190或是應用於圖4至圖5的第一金屬層180與第二金屬層190至少一者時也可提供類似的效果。Specifically, when the metal layer M is applied to the first metal layer 180 of FIG. 3, the area of the through opening 166 may be set to fall on the area of the top surface MT, and the side surface MS may be at least partially covered by the first insulating layer 105a. cover. At this time, because the included angle θ formed by the side surface MS and the bottom surface MB can be less than 60 degrees, the first insulating layer 105a can surely cover the side surface MS. In other words, the coating effect of the first insulating layer 105a covering part of the metal layer M is good. Similarly, the metal layer M can also provide similar effects when applied to the second metal layer 190 of FIG. 3 or applied to at least one of the first metal layer 180 and the second metal layer 190 of FIGS. 4 to 5.

圖7為本發明一實施例的發光二極體的上視示意圖。圖8為對應於圖7的線A-B的剖面示意圖。圖9為對應於圖7的線B-C的剖面示意圖。圖10為對應於圖7的線C-D的剖面示意圖。圖11為對應於圖7的線E-F的剖面示意圖。圖12為對應於圖7的線G-H的剖面示意圖。在本實施例中,發光二極體500大致上包括導電層101、絕緣圖案103、第一型半導體層110、發光層120、第二型半導體層130、第一電流傳導層140、第二電流傳導層150、布拉格反射結構560’、成長基板170、第一金屬層180與第二金屬層190。這些構件有一部份在圖7中未繪示出來,而是呈現於線A-B、B-C、C-D、E-F或G-H所對應的剖面圖中。FIG. 7 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 8 is a schematic cross-sectional view corresponding to the line A-B in Fig. 7. Fig. 9 is a schematic cross-sectional view corresponding to the line B-C in Fig. 7. Fig. 10 is a schematic cross-sectional view corresponding to the line C-D in Fig. 7. Fig. 11 is a schematic cross-sectional view corresponding to the line E-F in Fig. 7. Fig. 12 is a schematic cross-sectional view corresponding to the line G-H in Fig. 7. In this embodiment, the light emitting diode 500 roughly includes a conductive layer 101, an insulating pattern 103, a first type semiconductor layer 110, a light emitting layer 120, a second type semiconductor layer 130, a first current conducting layer 140, and a second current conducting layer 140. The conductive layer 150, the Bragg reflective structure 560', the growth substrate 170, the first metal layer 180 and the second metal layer 190. Some of these components are not shown in FIG. 7, but are shown in the cross-sectional view corresponding to the line A-B, B-C, C-D, E-F, or G-H.

由圖7可知,發光二極體500的第一電流傳導層140與第二電流傳導層150彼此相對設置,且彼此分離。第一電流傳導層140大致為矩形且第一電流傳導層140在面向第二電流傳導層150之側邊S140具有多個缺口N140。缺口N140由側邊S140向第一電流傳導層140內部延伸,但不貫穿第一電流傳導層140。第二電流傳導層150大致也為矩形,且第二電流傳導層150在面向第一電流傳導層140之側邊S150具有多個缺口N150。缺口N150由側邊S150向第二電流傳導層150內部延伸,但不貫穿第二電流傳導層150。第一電流傳導層140與第二電流傳導層150的材料例如是金(Au)、金/錫合金(Au/Sn)或是其他可以應用於共晶接合的導電材料。在其他的實施例中,第一電流傳導層140與第二電流傳導層150可以由相同的材料構成,而且第一電流傳導層140與第二電流傳導層150上方可以額外設置有用以共晶接合的接合層。It can be seen from FIG. 7 that the first current conducting layer 140 and the second current conducting layer 150 of the light emitting diode 500 are disposed opposite to each other and separated from each other. The first current conducting layer 140 is approximately rectangular and the first current conducting layer 140 has a plurality of notches N140 on the side S140 facing the second current conducting layer 150. The notch N140 extends from the side S140 to the inside of the first current conducting layer 140, but does not penetrate the first current conducting layer 140. The second current conducting layer 150 is also approximately rectangular, and the second current conducting layer 150 has a plurality of notches N150 on the side S150 facing the first current conducting layer 140. The notch N150 extends from the side S150 to the inside of the second current conduction layer 150, but does not penetrate the second current conduction layer 150. The materials of the first current conducting layer 140 and the second current conducting layer 150 are, for example, gold (Au), gold/tin alloy (Au/Sn), or other conductive materials that can be applied to eutectic bonding. In other embodiments, the first current conduction layer 140 and the second current conduction layer 150 may be made of the same material, and the first current conduction layer 140 and the second current conduction layer 150 may be additionally provided for eutectic bonding.的连接层。 The bonding layer.

在本實施例中,第一金屬層180的焊部180a重疊於第一電流傳導層140,且第一金屬層180的指部180b由焊部180a朝向第二電流傳導層190延伸並具體地延伸到第二電流傳導層150的缺口N150中。由圖7可知,指部180b與第二電流傳導層150在布局面積上彼此互不重疊。第二金屬層190的焊部190a重疊於第二電流傳導層150,且第二金屬層190的指部190b由焊部190a朝向第一電流傳導層180延伸並具體地延伸到第一電流傳導層140的缺口N140中。In this embodiment, the welding portion 180a of the first metal layer 180 overlaps the first current conducting layer 140, and the finger portion 180b of the first metal layer 180 extends from the welding portion 180a toward the second current conducting layer 190 and specifically extends Into the gap N150 of the second current conducting layer 150. It can be seen from FIG. 7 that the finger portion 180b and the second current conducting layer 150 do not overlap each other in the layout area. The welding portion 190a of the second metal layer 190 overlaps the second current conducting layer 150, and the finger portion 190b of the second metal layer 190 extends from the welding portion 190a toward the first current conducting layer 180 and specifically to the first current conducting layer. 140 in the gap N140.

由圖7可知,指部190b與第一電流傳導層140在布局面積上彼此互不重疊。導電層101的輪廓圍繞第一金屬層180而不與第一金屬層180重疊。絕緣圖案103則對應於第二金屬層190設置,且絕緣圖案103的輪廓大致與第二金屬層190的輪廓相仿。另外,布拉格反射結構560’的輪廓則對應地暴露出第一金屬層180的焊部180a與第二金屬層190的焊部190a。也就是說,第一金屬層180的焊部180a與第二金屬層190的焊部190a不與布拉格反射結構560’重疊,這可供第一金屬層180的焊部180a實體上與電性上連接第一電流傳導層140且供第二金屬層190的焊部190a實體上與電性上連接第二電流傳導層150。不過,第一金屬層180的指部180b與第二金屬層190的指部190b可與布拉格反射結構560’重疊。It can be seen from FIG. 7 that the finger portion 190b and the first current conducting layer 140 do not overlap each other in the layout area. The contour of the conductive layer 101 surrounds the first metal layer 180 without overlapping with the first metal layer 180. The insulating pattern 103 is disposed corresponding to the second metal layer 190, and the contour of the insulating pattern 103 is substantially similar to the contour of the second metal layer 190. In addition, the outline of the Bragg reflective structure 560' exposes the welding portion 180a of the first metal layer 180 and the welding portion 190a of the second metal layer 190 correspondingly. In other words, the welding portion 180a of the first metal layer 180 and the welding portion 190a of the second metal layer 190 do not overlap with the Bragg reflective structure 560', which allows the welding portion 180a of the first metal layer 180 to be physically and electrically The first current conducting layer 140 is connected and the welding portion 190 a of the second metal layer 190 is physically and electrically connected to the second current conducting layer 150. However, the fingers 180b of the first metal layer 180 and the fingers 190b of the second metal layer 190 may overlap the Bragg reflective structure 560'.

由圖7與圖8可知,發光二極體500中,第一型半導體層110、發光層120、第二型半導體層130、導電層101、布拉格反射結構560’與第二電流傳導層150依序堆疊於成長基板170上。第一型半導體層110、發光層120與第二型半導體層130的堆疊結構中,發光層120與第二型半導體層130會局部被移除且導電層101也對應地在此區域斷開而使得第一型半導體層110露出。第一金屬層180則配置於露出的第一型半導體層110上。在圖8中所繪示的第一金屬層180為指部180b,並且指部180b對應地位在第二電流傳導層150的缺口N150中因而不與第二電流傳導層150重疊。此外,布拉格反射結構560’重疊於指部180b。It can be seen from FIGS. 7 and 8 that in the light emitting diode 500, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, the conductive layer 101, the Bragg reflective structure 560', and the second current conducting layer 150 are in accordance with The sequence is stacked on the growth substrate 170. In the stack structure of the first type semiconductor layer 110, the light emitting layer 120, and the second type semiconductor layer 130, the light emitting layer 120 and the second type semiconductor layer 130 are partially removed and the conductive layer 101 is correspondingly disconnected in this area. The first type semiconductor layer 110 is exposed. The first metal layer 180 is disposed on the exposed first type semiconductor layer 110. The first metal layer 180 depicted in FIG. 8 is a finger 180b, and the finger 180b corresponds to the position in the gap N150 of the second current conducting layer 150 and therefore does not overlap with the second current conducting layer 150. In addition, the Bragg reflection structure 560' overlaps the finger 180b.

由圖7與圖9可知,在第一電流傳導層140的側邊S140與第二電流傳導層150的側邊S150之間,第一型半導體層110、發光層120、第二型半導體層130、導電層101與布拉格反射結構560’都連續地分布,且這些構件依序堆疊於成長基板170上。It can be seen from FIGS. 7 and 9 that between the side S140 of the first current conducting layer 140 and the side S150 of the second current conducting layer 150, the first type semiconductor layer 110, the light emitting layer 120, and the second type semiconductor layer 130 The conductive layer 101 and the Bragg reflective structure 560' are continuously distributed, and these components are sequentially stacked on the growth substrate 170.

由圖7與圖10可知,在第一電流傳導層140的缺口N140處,第一型半導體層110、發光層120、第二型半導體層130、絕緣圖案103、導電層101、第二金屬層190與布拉格反射結構560’ 依序堆疊於成長基板170上。絕緣圖案103的輪廓對應於第二金屬層190的輪廓且兩者彼此重疊。具體來說,圖10中的第二金屬層190為第二金屬層190的指部190b,並且指部190b對應地位在第一電流傳導層140的缺口N140中因而不與第一電流傳導層140重疊。此外,布拉格反射結構560’重疊於指部190b。It can be seen from FIGS. 7 and 10 that at the gap N140 of the first current conducting layer 140, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, the insulating pattern 103, the conductive layer 101, and the second metal layer 190 and the Bragg reflective structure 560' are stacked on the growth substrate 170 in sequence. The contour of the insulating pattern 103 corresponds to the contour of the second metal layer 190 and the two overlap each other. Specifically, the second metal layer 190 in FIG. 10 is the finger portion 190b of the second metal layer 190, and the finger portion 190b corresponds to the position in the gap N140 of the first current conducting layer 140, and thus is not connected to the first current conducting layer 140. overlapping. In addition, the Bragg reflection structure 560' overlaps the finger 190b.

由圖7與圖11可知,發光二極體500中,第一型半導體層110、發光層120、第二型半導體層130、導電層101、布拉格反射結構560’與第二電流傳導層150依序堆疊於成長基板170上。第一型半導體層110、發光層120與第二型半導體層130的堆疊結構中,發光層120與第二型半導體層130會局部被移除且導電層101與布拉格反射結構560’也對應地在此區域斷開而使得第一型半導體層110露出。第一金屬層180則配置於露出的第一型半導體層110上,且第一電流傳導層140填入導電層101與布拉格反射結構560’的斷開出而實體上與電性上連接第一金屬層180。在圖11中呈現出第一金屬層180的焊部180a。因此,由圖8與圖11可知,第一金屬層180的焊部180a直接接觸且電性連接第一電流傳導層,而第一金屬層180的指部180b則重疊於布拉格反射結構560’並且不予任何電流傳導層重疊。It can be seen from FIGS. 7 and 11 that in the light emitting diode 500, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, the conductive layer 101, the Bragg reflective structure 560' and the second current conducting layer 150 are in accordance with The sequence is stacked on the growth substrate 170. In the stacked structure of the first-type semiconductor layer 110, the light-emitting layer 120, and the second-type semiconductor layer 130, the light-emitting layer 120 and the second-type semiconductor layer 130 are partially removed, and the conductive layer 101 and the Bragg reflective structure 560' are also correspondingly removed. The disconnection in this area exposes the first type semiconductor layer 110. The first metal layer 180 is disposed on the exposed first-type semiconductor layer 110, and the first current conducting layer 140 is filled in the conductive layer 101 and the Bragg reflective structure 560' is disconnected to physically and electrically connect the first Metal layer 180. The welding portion 180a of the first metal layer 180 is shown in FIG. 11. Therefore, it can be seen from FIGS. 8 and 11 that the welding portion 180a of the first metal layer 180 directly contacts and is electrically connected to the first current conducting layer, and the finger portion 180b of the first metal layer 180 overlaps the Bragg reflective structure 560' and Do not allow any current conducting layers to overlap.

由圖7與圖12可知,在第二電流傳導層150所在面積中,第一型半導體層110、發光層120、第二型半導體層130、絕緣圖案103、導電層101、第二金屬層190與布拉格反射結構560’ 依序堆疊於成長基板170上。絕緣圖案103的輪廓對應於第二金屬層190的輪廓且兩者彼此重疊。具體來說,在圖12中,第二金屬層190的焊部190a重疊於第二電流傳導層150並且布拉格反射結構560’在對應於焊部190a的區域斷開,使得第二金屬層190的焊部190a實體上與電性上連接第二電流傳導層150。也就是說,第二金屬層190的焊部190a不與布拉格反射結構560’重疊。相較之下,在圖10中,第二金屬層190的指部190b則會與布拉格反射結構560’重疊,不過第二金屬層190的指部190b並不重疊於任何電流傳導層。7 and 12, in the area where the second current conducting layer 150 is located, the first type semiconductor layer 110, the light emitting layer 120, the second type semiconductor layer 130, the insulating pattern 103, the conductive layer 101, and the second metal layer 190 And the Bragg reflective structure 560 ′ are sequentially stacked on the growth substrate 170. The contour of the insulating pattern 103 corresponds to the contour of the second metal layer 190 and the two overlap each other. Specifically, in FIG. 12, the welding portion 190a of the second metal layer 190 overlaps the second current conducting layer 150 and the Bragg reflective structure 560' is disconnected in the region corresponding to the welding portion 190a, so that the welding portion 190a of the second metal layer 190 The welding portion 190a is physically and electrically connected to the second current conducting layer 150. That is, the welding portion 190a of the second metal layer 190 does not overlap with the Bragg reflective structure 560'. In contrast, in FIG. 10, the fingers 190b of the second metal layer 190 overlap with the Bragg reflective structure 560', but the fingers 190b of the second metal layer 190 do not overlap any current conducting layer.

由圖7至圖12可知,第一金屬層180與第二金屬層190中都包括重疊於布拉格反射結構560’的一部分以及未重疊於布拉格反射結構560’的另一部分。重疊於布拉格反射結構560’的部分金屬層(180或190)都不會重疊於電流傳導層。如此一來,發光二極體500可以具有較為均勻的厚度,而有助於提高將發光二極體500接合至其他構件時的良率。另外,在圖7至圖12中,布拉格反射結構560’的上下兩側可以額外設置有如圖4或5中的第一絕緣層105a與第二絕緣層105b,而不需限定為布拉格反射結構560’直接接觸導電層101、第一電流傳導層140、第二電流傳導層150、第一金屬層180(指部180a)與第二金屬層190(指部190a)。此外,第一金屬層180與第二金屬層190的剖面結構可以如圖6所示而具有傾斜的側壁MS。It can be seen from FIGS. 7 to 12 that both the first metal layer 180 and the second metal layer 190 include a part overlapping the Bragg reflective structure 560' and another part not overlapping the Bragg reflective structure 560'. Part of the metal layer (180 or 190) overlapping the Bragg reflective structure 560' will not overlap the current conducting layer. In this way, the light-emitting diode 500 can have a relatively uniform thickness, which helps to improve the yield when the light-emitting diode 500 is joined to other components. In addition, in FIGS. 7 to 12, the upper and lower sides of the Bragg reflective structure 560' may be additionally provided with a first insulating layer 105a and a second insulating layer 105b as shown in FIG. 4 or 5, instead of being limited to the Bragg reflective structure 560 'Directly contact the conductive layer 101, the first current conducting layer 140, the second current conducting layer 150, the first metal layer 180 (finger 180a) and the second metal layer 190 (finger 190a). In addition, the cross-sectional structure of the first metal layer 180 and the second metal layer 190 may have inclined sidewalls MS as shown in FIG. 6.

圖13為本發明一實施例的布拉格反射結構的剖面示意圖。請參照圖13,布拉格反射結構DBR1設置於第一絕緣層I1與第二絕緣層I2之間。布拉格反射結構DBR1包括多個第一折射層12以及多個第二折射層14,且第一折射層12與這些第二折射層14交替堆疊。各第一折射層12的折射率異於各第二折射層14的折射率。在本實施例中,越接近第二絕緣層I2,第一折射層12與第二折射層14的厚度越小。也就是說,第一折射層12與第二折射層14堆疊密度呈現為越接近第二絕緣層I2越密,而越接近第一絕緣層I1越疏。如此一來,布拉格反射結構DBR1為折射層密度由第一絕緣層I1向第二絕緣層I2漸變增加的結構。FIG. 13 is a schematic cross-sectional view of a Bragg reflection structure according to an embodiment of the present invention. Referring to FIG. 13, the Bragg reflective structure DBR1 is disposed between the first insulating layer I1 and the second insulating layer I2. The Bragg reflection structure DBR1 includes a plurality of first refraction layers 12 and a plurality of second refraction layers 14, and the first refraction layers 12 and the second refraction layers 14 are alternately stacked. The refractive index of each first refractive layer 12 is different from the refractive index of each second refractive layer 14. In this embodiment, the closer to the second insulating layer I2, the smaller the thickness of the first refraction layer 12 and the second refraction layer 14 are. That is to say, the stack density of the first refraction layer 12 and the second refraction layer 14 appears to be denser as they are closer to the second insulating layer I2, and sparse as they are closer to the first insulating layer I1. In this way, the Bragg reflective structure DBR1 is a structure in which the refractive layer density gradually increases from the first insulating layer I1 to the second insulating layer I2.

本實施例的第一折射層12的材料包括五氧化二鉭(Ta2O5)、二氧化鋯(ZrO2)、五氧化二鈮(Nb2O5)、氧化鉿 (HfO2)、二氧化鈦(TiO2)或上述之組合。另一方面,第二折射層14的材料包括二氧化矽(SiO2)。在本實施例中,第一絕緣層I1與第二絕緣層I2的材料也可以為二氧化矽,不過第二折射層14、第一絕緣層I1與第二絕緣層I2的材料都是二氧化矽時,第二折射層14的結晶度與緻密性相較於小於第一絕緣層I1與第二絕緣層I2。第一折射層12與第二折射層14的材質以及厚度都可以調整布拉格反射結構DBR1的反射波長範圍。因此,本實施例的布拉格反射結構DBR1採用厚度上梯度變化的第一折射層12與第二折射層14,可讓布拉格反射結構DBR1具有較廣的反射波長範圍而合適應用於需要廣波長範圍的發光效果的終端產品中。The material of the first refraction layer 12 in this embodiment includes tantalum pentoxide (Ta2O5), zirconium dioxide (ZrO2), niobium pentoxide (Nb2O5), hafnium oxide (HfO2), titanium dioxide (TiO2) or a combination thereof. On the other hand, the material of the second refractive layer 14 includes silicon dioxide (SiO2). In this embodiment, the material of the first insulating layer I1 and the second insulating layer I2 can also be silicon dioxide, but the materials of the second refractive layer 14, the first insulating layer I1 and the second insulating layer I2 are all silicon dioxide. In the case of silicon, the crystallinity and compactness of the second refractive layer 14 are smaller than those of the first insulating layer I1 and the second insulating layer I2. The material and thickness of the first refraction layer 12 and the second refraction layer 14 can adjust the reflection wavelength range of the Bragg reflection structure DBR1. Therefore, the Bragg reflection structure DBR1 of this embodiment adopts the first refraction layer 12 and the second refraction layer 14 with a gradient in thickness, which allows the Bragg reflection structure DBR1 to have a wider reflection wavelength range and is suitable for applications that require a wide wavelength range. In the end product of luminous effect.

舉例來說,以二氧化鈦(TiO2)製作第一折射層12且二氧化矽(SiO2)製作第二折射層14,則折射層的厚度呈現梯度變化的布拉格反射結構DBR1可應用於可見光發光裝置中。以五氧化二鉭(Ta2O5)製作第一折射層12且二氧化矽(SiO2)製作第二折射層14,則折射層的厚度呈現梯度變化的布拉格反射結構DBR1可應用於紫外光發光裝置中。不過,上述材質與發光裝置的應用方式僅是舉例說明之用,實際上布拉格反射結構DBR1採用其他材質製作時,可以依據其呈現的反射波長範圍來調整應用方式。For example, if the first refractive layer 12 is made of titanium dioxide (TiO2) and the second refractive layer 14 is made of silicon dioxide (SiO2), the Bragg reflection structure DBR1 with a gradient change in the thickness of the refractive layer can be applied to a visible light emitting device. The first refraction layer 12 is made of tantalum pentoxide (Ta2O5) and the second refraction layer 14 is made of silicon dioxide (SiO2). Then, the Bragg reflection structure DBR1 with a gradient change in the thickness of the refraction layer can be applied to an ultraviolet light emitting device. However, the above-mentioned materials and the application of the light-emitting device are for illustrative purposes only. In fact, when the Bragg reflector structure DBR1 is made of other materials, the application can be adjusted according to the reflection wavelength range it presents.

圖14為本發明另一實施例的布拉格反射結構的剖面示意圖。請參照圖14,布拉格反射結構DBR2設置於第一絕緣層I1與第二絕緣層I2之間。布拉格反射結構DBR1包括多個第一折射層22以及多個第二折射層24,且第一折射層22與第二折射層24交替堆疊。各第一折射層22的折射率異於各第二折射層24的折射率。在本實施例中,越接近第二絕緣層I2,第一折射層22與第二折射層24的厚度越大。也就是說,第一折射層22與第二折射層24堆疊密度呈現為越接近第二絕緣層I2越疏,而越接近第一絕緣層I1越密。如此一來,布拉格反射結構DBR2為折射層密度由第一絕緣層I1向第二絕緣層I2漸變減少的結構。FIG. 14 is a schematic cross-sectional view of a Bragg reflection structure according to another embodiment of the present invention. Referring to FIG. 14, the Bragg reflective structure DBR2 is disposed between the first insulating layer I1 and the second insulating layer I2. The Bragg reflective structure DBR1 includes a plurality of first refraction layers 22 and a plurality of second refraction layers 24, and the first refraction layers 22 and the second refraction layers 24 are alternately stacked. The refractive index of each first refractive layer 22 is different from the refractive index of each second refractive layer 24. In this embodiment, the closer to the second insulating layer I2, the greater the thickness of the first refraction layer 22 and the second refraction layer 24. In other words, the stack density of the first refraction layer 22 and the second refraction layer 24 appears to be sparser the closer to the second insulating layer I2, and denser the closer to the first insulating layer I1. In this way, the Bragg reflection structure DBR2 is a structure in which the refractive layer density gradually decreases from the first insulating layer I1 to the second insulating layer I2.

第一折射層22與第二折射層24的材質以及厚度都可以調整布拉格反射結構DBR2的反射波長範圍。第一折射層22的材料包括五氧化二鉭(Ta2O5)、二氧化鋯(ZrO2)、五氧化二鈮(Nb2O5)、氧化鉿 (HfO2)、二氧化鈦(TiO2)或上述之組合。另一方面,第二折射層24的材料包括二氧化矽(SiO2)。The material and thickness of the first refraction layer 22 and the second refraction layer 24 can adjust the reflection wavelength range of the Bragg reflection structure DBR2. The material of the first refraction layer 22 includes tantalum pentoxide (Ta2O5), zirconium dioxide (ZrO2), niobium pentoxide (Nb2O5), hafnium oxide (HfO2), titanium dioxide (TiO2) or a combination thereof. On the other hand, the material of the second refractive layer 24 includes silicon dioxide (SiO2).

圖15為本發明再一實施例的布拉格反射結構的剖面示意圖。請參照圖15,布拉格反射結構DBR3包括主堆疊層B1、B2、過渡堆疊層C1與修補堆疊層D1、D2。主堆疊層B1是由第一折射層B12與折射率不同於第一折射層B12的第二折射層B14反覆交替堆疊而成。主堆疊層B2是由第一折射層B22與折射率不同於第一折射層B22的第二折射層B24反覆交替堆疊而成。過渡堆疊層C1是由第三折射層C12與折射率不同於第三折射層C12的第四折射層C14反覆交替堆疊而成。修補堆疊層D1是由第五折射層D12與折射率不同於第五折射層D12的第六折射層D14反覆交替堆疊而成。修補堆疊層D2是由第五折射層D22與折射率不同於第五折射層D22的第六折射層D24反覆交替堆疊而成。15 is a schematic cross-sectional view of a Bragg reflection structure according to still another embodiment of the present invention. Please refer to FIG. 15, the Bragg reflective structure DBR3 includes a main stack layer B1, B2, a transition stack layer C1, and a repair stack layer D1, D2. The main stack layer B1 is formed by alternately stacking the first refraction layer B12 and the second refraction layer B14 having a refractive index different from that of the first refraction layer B12. The main stack layer B2 is formed by alternately stacking the first refraction layer B22 and the second refraction layer B24 having a refractive index different from that of the first refraction layer B22. The transition stack layer C1 is formed by alternately stacking the third refractive layer C12 and the fourth refractive layer C14 with a refractive index different from the third refractive layer C12. The repair stacked layer D1 is formed by alternately stacking a fifth refractive layer D12 and a sixth refractive layer D14 with a refractive index different from that of the fifth refractive layer D12. The repair stacked layer D2 is formed by alternately stacking a fifth refractive layer D22 and a sixth refractive layer D24 having a refractive index different from that of the fifth refractive layer D22.

在本實施例中,在同一個布拉格反射結構DBR3中的第一折射層B12與B22、第三折射層C12與第五折射層D12與D22可以是相同材料也可以為不同材料,其材料可包括五氧化二鉭(Ta2O5)、二氧化鋯(ZrO2)、五氧化二鈮(Nb2O5)、氧化鉿 (HfO2)、二氧化鈦(TiO2)或上述之組合。在同一個布拉格反射結構DBR3中的第二折射層B14與B24、第四折射層C14、第六折射層D14與D24可以是相同材料也可以為不同材料,其材料可包括二氧化矽。In this embodiment, the first refraction layer B12 and B22, the third refraction layer C12 and the fifth refraction layer D12 and D22 in the same Bragg reflection structure DBR3 may be the same material or different materials, and the materials may include Tantalum pentoxide (Ta2O5), zirconium dioxide (ZrO2), niobium pentoxide (Nb2O5), hafnium oxide (HfO2), titanium dioxide (TiO2) or a combination of the above. The second refraction layers B14 and B24, the fourth refraction layer C14, and the sixth refraction layers D14 and D24 in the same Bragg reflection structure DBR3 may be the same material or different materials, and the material may include silicon dioxide.

此外,在主堆疊層B1中,各第一折射層B12具有等同的第一厚度T1且第二折射層B14具有等同的第一厚度T1。在主堆疊層B2中,各第一折射層B22具有等同的第一厚度T2且第二折射層B24具有等同的第一厚度T2。並且,第一厚度T1與第二厚度T2不同。也就是說,單一個主堆疊層B1或B2為具有等週期堆疊之折射層,但不同主堆疊層的折射層堆疊週期不同。如此一來,藉由數個主堆疊層B1、B2堆疊在一起,布拉格反射結構DBR3可以提供廣的反射長範圍。In addition, in the main stacked layer B1, each first refraction layer B12 has the same first thickness T1 and the second refraction layer B14 has the same first thickness T1. In the main stacked layer B2, each first refraction layer B22 has the same first thickness T2 and the second refraction layer B24 has the same first thickness T2. Also, the first thickness T1 is different from the second thickness T2. That is to say, a single main stack layer B1 or B2 is a refractive layer with an equal period stack, but the stack period of the refractive layer of different main stack layers is different. In this way, by stacking several main stacked layers B1 and B2 together, the Bragg reflection structure DBR3 can provide a wide range of reflection length.

主堆疊層B1與主堆疊層B2之間的過渡堆疊層C1中,第三折射層C12與第四折射層C14具有第三厚度T3。第三厚度T3可以是第一厚度T1與第二厚度T2的平均值。換言之,T3=1/2(T1+T2)。不過,第三折射層C12與第四折射層C14的厚度也可以分別介於第一厚度T1與第二厚度T2之間。In the transition stacked layer C1 between the main stacked layer B1 and the main stacked layer B2, the third refractive layer C12 and the fourth refractive layer C14 have a third thickness T3. The third thickness T3 may be an average value of the first thickness T1 and the second thickness T2. In other words, T3=1/2(T1+T2). However, the thickness of the third refraction layer C12 and the fourth refraction layer C14 may also be between the first thickness T1 and the second thickness T2, respectively.

另外,修補堆疊層D1中第五折射層D12與第六折射層D14的厚度可以是越接近主堆疊層B1越接近第一厚度T1。修補堆疊層D2中第五折射層D22與第六折射層D24的厚度可以是越接近主堆疊層B2則越接近第二厚度T2。也就是說,修補堆疊層D1與修補堆疊層D2是折射層厚度漸變的堆疊結構。並且,修補堆疊層D1的組成材料可相關於主堆疊層B1而修補堆疊層D2的組成材料可相關於主堆疊層B2。In addition, the thickness of the fifth refraction layer D12 and the sixth refraction layer D14 in the repair stack layer D1 may be closer to the main stack layer B1, the closer to the first thickness T1. The thicknesses of the fifth refraction layer D22 and the sixth refraction layer D24 in the repair stack layer D2 may be closer to the second thickness T2 as they are closer to the main stack layer B2. In other words, the repair stacked layer D1 and the repair stacked layer D2 are stacked structures in which the thickness of the refractive layer is gradually changed. Also, the constituent material of the repair stack layer D1 may be related to the main stack layer B1 and the constituent material of the repair stack layer D2 may be related to the main stack layer B2.

圖16為本發明又一實施例的布拉格反射結構的剖面示意圖。請參照圖16,布拉格反射結構DBR4相似於前述的布拉格反射結構DBR3,不過布拉格反射結構DBR4更包括修補堆疊層D3與修補堆疊層D4。修補堆疊層D3位於過渡堆疊層C1與主堆疊層B1之間,而修補堆疊層D4位於過渡堆疊層C1與主堆疊層B2之間。修補堆疊層D3中折射層的厚度可以是越接近主堆疊層B1越接近第一厚度T1。修補堆疊層D4中折射層的厚度可以是越接近主堆疊層B2則越接近第二厚度T2。並且,修補堆疊層D3的組成材料可相關於主堆疊層B1而修補堆疊層D4的組成材料可相關於主堆疊層B2。FIG. 16 is a schematic cross-sectional view of a Bragg reflection structure according to another embodiment of the present invention. Referring to FIG. 16, the Bragg reflection structure DBR4 is similar to the aforementioned Bragg reflection structure DBR3, but the Bragg reflection structure DBR4 further includes a repair stack layer D3 and a repair stack layer D4. The repair stack layer D3 is located between the transition stack layer C1 and the main stack layer B1, and the repair stack layer D4 is located between the transition stack layer C1 and the main stack layer B2. The thickness of the refractive layer in the repair stacked layer D3 may be closer to the first thickness T1 as the closer the main stacked layer B1 is. The thickness of the refractive layer in the repair stack layer D4 may be closer to the second thickness T2 as it is closer to the main stack layer B2. Also, the constituent material of the repair stack layer D3 may be related to the main stack layer B1 and the constituent material of the repair stack layer D4 may be related to the main stack layer B2.

圖13至圖16的布拉格反射結構DBR1~DBR4可以應用至圖1、2、3、4、5、7中的發光二極體的任一者中。也就是說,前述實施例中所記載的任何一個布拉格反射結構都可以採用圖13至圖16的布拉格反射結構DBR1~DBR4的任一者來實現。在布拉格反射結構具有折射層厚度漸變的堆疊結構或是具有數個不同厚度的折射層堆疊的結構下,布拉格反射結構可以提供較廣的反射波長範圍。The Bragg reflection structures DBR1 to DBR4 of FIGS. 13 to 16 can be applied to any of the light-emitting diodes in FIGS. 1, 2, 3, 4, 5, and 7. That is to say, any of the Bragg reflection structures described in the foregoing embodiments can be implemented by using any one of the Bragg reflection structures DBR1 to DBR4 in FIGS. 13 to 16. When the Bragg reflective structure has a stacked structure with a gradual refractive layer thickness or a stack of multiple refractive layers with different thicknesses, the Bragg reflective structure can provide a wider reflection wavelength range.

圖17為本發明一實施例的發光二極體的上視示意圖。圖18為對應於圖17的線A-B的剖面示意圖。圖19為對應於圖17的線C-D的剖面示意圖。請參照圖17、圖18及圖19,其繪示一種覆晶式封裝的發光二極體600。請參照圖17、圖18及圖19,發光二極體600包括第一型半導體層110、發光層120、第二型半導體層130、第一金屬層180、第二金屬層190、第一電流傳導層140、第二電流傳導層150、第一接合層108及第二接合層109。發光層120位於第一型半導體層110與第二型半導體層130之間。第一金屬層180位於第一型半導體層110上且與第一型半導體層110電性連接。第一金屬層180位於第一電流傳導層140與第一型半導體層110之間。第一電流傳導層140藉由第一金屬層180電性連接第一型半導體層110。第一電流傳導層140位於第一接合層108與第一金屬層180之間。第一接合層108藉由第一電流傳導層140及第一金屬層180電性連接第一型半導體層110。第二金屬層190位於第二型半導體層130上且與第二型半導體層130電性連接。第二金屬層190位於第二電流傳導層150與第二型半導體層130之間。第二電流傳導層150藉由第二金屬層190電性連接第二型半導體層130。第二電流傳導層150位於第二接合層109與第二金屬層190之間。第二接合層109藉由第二電流傳導層150及第二金屬層190電性連接第二型半導體層130。相似於前述部分實施例,發光二極體600還包括第二絕緣層105b、布拉格反射結構360’、絕緣圖案103、絕緣層113。FIG. 17 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 18 is a schematic cross-sectional view corresponding to the line A-B in Fig. 17. Fig. 19 is a schematic cross-sectional view corresponding to the line C-D in Fig. 17. Please refer to FIG. 17, FIG. 18, and FIG. 19, which illustrate a flip-chip package light emitting diode 600. Referring to FIGS. 17, 18 and 19, the light emitting diode 600 includes a first type semiconductor layer 110, a light emitting layer 120, a second type semiconductor layer 130, a first metal layer 180, a second metal layer 190, and a first current The conductive layer 140, the second current conductive layer 150, the first bonding layer 108 and the second bonding layer 109. The light emitting layer 120 is located between the first type semiconductor layer 110 and the second type semiconductor layer 130. The first metal layer 180 is located on the first type semiconductor layer 110 and is electrically connected to the first type semiconductor layer 110. The first metal layer 180 is located between the first current conducting layer 140 and the first type semiconductor layer 110. The first current conducting layer 140 is electrically connected to the first type semiconductor layer 110 through the first metal layer 180. The first current conducting layer 140 is located between the first bonding layer 108 and the first metal layer 180. The first bonding layer 108 is electrically connected to the first type semiconductor layer 110 through the first current conducting layer 140 and the first metal layer 180. The second metal layer 190 is located on the second type semiconductor layer 130 and is electrically connected to the second type semiconductor layer 130. The second metal layer 190 is located between the second current conducting layer 150 and the second type semiconductor layer 130. The second current conducting layer 150 is electrically connected to the second type semiconductor layer 130 through the second metal layer 190. The second current conducting layer 150 is located between the second bonding layer 109 and the second metal layer 190. The second bonding layer 109 is electrically connected to the second type semiconductor layer 130 through the second current conducting layer 150 and the second metal layer 190. Similar to some of the foregoing embodiments, the light emitting diode 600 further includes a second insulating layer 105b, a Bragg reflective structure 360', an insulating pattern 103, and an insulating layer 113.

值得注意的是,第一接合層108具有多個貫穿開口108a。由俯視視角來看(如圖17所示),第一金屬層180與第一接合層108的第一貫穿開口108a重疊。換言之,第一金屬層180的實體部分相對於第一接合層108的實體部分錯位。第一金屬層180的實體部分的面積與第一接合層108的實體部分的面積可選擇性地不重疊。舉例而言,在本實施例中,第一金屬層180包括與第一電流傳導層140重疊的焊部180a以及由焊部180a朝向第二電流傳導層150延伸的指部180b。本實施例中,第二絕緣層105b配置於第一電流傳導層140與第一金屬層180之間,且第二絕緣層105b具有與焊部180a重疊的貫穿開口105ba。第一電流傳導層140填入第二絕緣層105b的貫穿開口105ba,以電性接觸於第一金屬層180的焊部180a。更進一步地說,第二絕緣層105b之貫穿開口105ba的面積小於第一金屬層180之焊部180a的面積且位於第一金屬層180之焊部180a的面積以內,第一金屬層180之焊部180a的面積小於布拉格反射結構360’之貫穿開口166的面積且位於布拉格反射結構360’之貫穿開口166的面積以內,布拉格反射結構360’之貫穿開口166的面積小於第一接合層108之第一貫穿開口108a的面積且位於第一接合層108之第一貫穿開口108a的面積以內(未繪示)。It is worth noting that the first bonding layer 108 has a plurality of through openings 108a. From a top-view perspective (as shown in FIG. 17 ), the first metal layer 180 overlaps the first through opening 108 a of the first bonding layer 108. In other words, the physical part of the first metal layer 180 is misaligned with respect to the physical part of the first bonding layer 108. The area of the physical part of the first metal layer 180 and the area of the physical part of the first bonding layer 108 may selectively not overlap. For example, in this embodiment, the first metal layer 180 includes a welding part 180 a overlapping the first current conducting layer 140 and a finger 180 b extending from the welding part 180 a toward the second current conducting layer 150. In this embodiment, the second insulating layer 105b is disposed between the first current conducting layer 140 and the first metal layer 180, and the second insulating layer 105b has a through opening 105ba overlapping the welding portion 180a. The first current conducting layer 140 fills the through opening 105ba of the second insulating layer 105b to electrically contact the welding portion 180a of the first metal layer 180. Furthermore, the area of the through opening 105ba of the second insulating layer 105b is smaller than the area of the welding portion 180a of the first metal layer 180 and is located within the area of the welding portion 180a of the first metal layer 180. The area of the portion 180a is smaller than the area of the through opening 166 of the Bragg reflective structure 360' and is located within the area of the through opening 166 of the Bragg reflective structure 360'. The area of the through opening 166 of the Bragg reflective structure 360' is smaller than that of the first bonding layer 108 An area of the through opening 108a is located within the area of the first through opening 108a of the first bonding layer 108 (not shown).

類似地,第二接合層109具有多個第二貫穿開口109a。由俯視視角來看(如圖17所示),第二金屬層190與第二接合層109的多個第二貫穿開口109a重疊。換言之,第二金屬層190的實體部分與第二接合層109的實體部分錯位。第二金屬層190的實體部分的面積與第二接合層109的實體部分的面積可選擇性的不重疊。舉例而言,在本實施例中,第二金屬層190包括與第二電流傳導層150重疊的焊部190a以及由焊部190a朝向第一電流傳導層140延伸的指部190b。第二絕緣層105b具有與第二金屬層190之焊部190a重疊的貫穿開口105bb。第二電流傳導層150填入第二絕緣層105b的貫穿開口105bb,以電性接觸於第二金屬層190的焊部190a。更進一步地說,第二絕緣層105b之貫穿開口105bb的面積小於第二金屬層190之焊部190a的面積且位於第二金屬層190之焊部190a的面積以內,第二金屬層190之焊部190a的面積小於於布拉格反射結構360’之貫穿開口166的面積且位於布拉格反射結構360’之貫穿開口166的面積以內,布拉格反射結構360’之貫穿開口166的面積小於第二接合層109之第二貫穿開口109a的面積且位於第二接合層109之第一貫穿開口109a的面積以內(未繪示)。Similarly, the second bonding layer 109 has a plurality of second through openings 109a. From a top view (as shown in FIG. 17), the second metal layer 190 overlaps the plurality of second through openings 109a of the second bonding layer 109. In other words, the physical part of the second metal layer 190 is misaligned with the physical part of the second bonding layer 109. The area of the physical part of the second metal layer 190 and the area of the physical part of the second bonding layer 109 may selectively not overlap. For example, in this embodiment, the second metal layer 190 includes a welding portion 190 a overlapping the second current conducting layer 150 and a finger portion 190 b extending from the welding portion 190 a toward the first current conducting layer 140. The second insulating layer 105b has a through opening 105bb overlapping the welding portion 190a of the second metal layer 190. The second current conducting layer 150 fills the through opening 105bb of the second insulating layer 105b to electrically contact the welding portion 190a of the second metal layer 190. Furthermore, the area of the penetrating opening 105bb of the second insulating layer 105b is smaller than the area of the welding portion 190a of the second metal layer 190 and is located within the area of the welding portion 190a of the second metal layer 190. The welding of the second metal layer 190 The area of the portion 190a is smaller than the area of the through opening 166 of the Bragg reflective structure 360' and is located within the area of the through opening 166 of the Bragg reflective structure 360'. The area of the through opening 166 of the Bragg reflective structure 360' is smaller than that of the second bonding layer 109 The area of the second through opening 109a is located within the area of the first through opening 109a of the second bonding layer 109 (not shown).

第一接合層108及第二接合層109用以在覆晶接合過程中與外部電路板(未繪示)電性連接。由於第一接合層108的實體部分與第一金屬層180的實體部分錯位、第二接合層109的實體部分與第二金屬層190的實體部分錯位(意即,第一接合層108與第一金屬層180之間存在一段電流傳導路徑S1、第二接合層109與第二金屬層190之間存在一段電流傳導路徑S2),因此,在覆晶接合過程中,接合材料(例如:錫膏或金錫共晶)不易完全地流過路徑S1及/或路徑S2,而造成短路問題。The first bonding layer 108 and the second bonding layer 109 are used to electrically connect with an external circuit board (not shown) during the flip chip bonding process. Since the physical part of the first bonding layer 108 is misaligned with the physical part of the first metal layer 180, the physical part of the second bonding layer 109 is misaligned with the physical part of the second metal layer 190 (that is, the first bonding layer 108 and the first There is a current conduction path S1 between the metal layers 180 and a current conduction path S2 between the second bonding layer 109 and the second metal layer 190. Therefore, during the flip chip bonding process, bonding materials (such as solder paste or Au-tin eutectic) is not easy to completely flow through path S1 and/or path S2, causing short circuit problems.

第一電流傳導層140與第二電流傳導層150之間存在間距G1,以彼此電性隔離。詳言之,在本實施例中,第一電流傳導層140具有相對的內邊緣140a與外邊緣140b,內邊緣140a較外邊緣140b靠近第二電流傳導層150;第二電流傳導層150具有相對的內邊緣150a與外邊緣150b,內邊緣150a較外邊緣150b靠近第一電流傳導層140;第一電流傳導層140與第二電流傳導層150之間的間距G1可指第一電流傳導層140的內邊緣140a與第二電流傳導層150的內邊緣150a之間的距離。There is a gap G1 between the first current conducting layer 140 and the second current conducting layer 150 to be electrically isolated from each other. In detail, in this embodiment, the first current conducting layer 140 has opposite inner edges 140a and outer edges 140b. The inner edge 140a is closer to the second current conducting layer 150 than the outer edge 140b; the second current conducting layer 150 has opposite The inner edge 150a and the outer edge 150b of the inner edge 150a are closer to the first current conducting layer 140 than the outer edge 150b; the distance G1 between the first current conducting layer 140 and the second current conducting layer 150 may refer to the first current conducting layer 140 The distance between the inner edge 140a of the second current conducting layer 150 and the inner edge 150a of the second current conducting layer 150.

第一接合層108與第二接合層109之間存在間距G2,以彼此電性隔離。詳言之,在本實施例中,第一接合層108具有相對的內邊緣108b及外邊緣108c,內邊緣108b較外邊緣108c靠近第二接合層109;第二接合層109具有相對的內邊緣109b與外邊緣109c,內邊緣109b較外邊緣109c靠近第一接合層108;第一接合層108與第二接合層109的間距G2可指第一接合層108的內邊緣108b與第二接合層109的內邊緣109b之間的距離。There is a gap G2 between the first bonding layer 108 and the second bonding layer 109 to be electrically isolated from each other. In detail, in this embodiment, the first bonding layer 108 has opposite inner edges 108b and outer edges 108c, the inner edge 108b is closer to the second bonding layer 109 than the outer edge 108c; the second bonding layer 109 has opposite inner edges 109b and the outer edge 109c, the inner edge 109b is closer to the first bonding layer 108 than the outer edge 109c; the distance G2 between the first bonding layer 108 and the second bonding layer 109 can refer to the inner edge 108b of the first bonding layer 108 and the second bonding layer The distance between the inner edges 109b of 109.

值得注意的是,在本實施例中,第一接合層108與第二接合層109之間的間距G2大於第一電流傳導層140與第二電流傳導層150之間的間距G1。此外,第一接合層108的外邊緣108c與第一電流傳導層140的外邊緣140b之間存在間距G3,第二接合層109的外邊緣109c與第二電流傳導層150的外邊緣150b之間存在間距G4。換言之,如圖17所示,在本實施例中,第一接合層108的面積小於第一電流傳導層140的面積,且第一接合層108位於第一電流傳導層140的面積以內;第二接合層109的面積小於第二電流傳導層150的面積,且第二接合層109位於第二電流傳導層150的面積以內。藉此,在覆晶接合過程中,接合材料(例如:錫膏)不易由第一接合層108溢至第一電流傳導層140外,且不易由第二接合層109溢至第二電流傳導層150外,進而避免短路問題。It is worth noting that in this embodiment, the gap G2 between the first bonding layer 108 and the second bonding layer 109 is greater than the gap G1 between the first current conducting layer 140 and the second current conducting layer 150. In addition, there is a gap G3 between the outer edge 108c of the first bonding layer 108 and the outer edge 140b of the first current conducting layer 140, and between the outer edge 109c of the second bonding layer 109 and the outer edge 150b of the second current conducting layer 150 There is a gap G4. In other words, as shown in FIG. 17, in this embodiment, the area of the first bonding layer 108 is smaller than the area of the first current conducting layer 140, and the first bonding layer 108 is located within the area of the first current conducting layer 140; The area of the bonding layer 109 is smaller than the area of the second current conducting layer 150, and the second bonding layer 109 is located within the area of the second current conducting layer 150. Therefore, during the flip chip bonding process, the bonding material (such as solder paste) is not easy to overflow from the first bonding layer 108 to the outside of the first current conducting layer 140, and it is not easy to overflow from the second bonding layer 109 to the second current conducting layer. 150 to avoid short circuit problems.

舉例而言,在本實施例中,第一金屬層180、第二金屬層190、第一電流傳導層140與第二電流傳導層150中至少一者可包括相堆疊的歐姆接觸層、反射層、阻擋堆疊層及連接層;歐姆接觸層例如包括鉻(Cr)、鈦(Ti)或其組合,反射層例如包括鋁(Al)、鋁合金(Alloy Al)、鋁銅合金(Alloy Al/Cu)、銀(Ag)、鉑(Pt)或其組合,阻擋堆疊層例如包括鈦(Ti)、鎳(Ni)、鋁(Al)、金(Au)、鉑(Pt)或其組合,連接層例如包括鈦(Ti)、鎳(Ni)、鋁(Al)、金(Au)、鉑(Pt)或其組合。舉例而言,在本實施例中,第一接合層108與第二接合層109中至少一者可包括相堆疊的反射層、阻擋堆疊層及焊接層;反射層的材料例如是鋁(Al)、鋁合金 (Alloy Al)、鋁銅合金(Alloy Al/Cu)、鈦(Ti)、鎳(Ni)、鉑(Pt)或其組合,阻擋堆疊層的材料例如是鈦(Ti)、鎳(Ni)、鋁(Al)、金(Au)、鉑(Pt)或其組合,焊接層的材料例如是金(Au)、錫(Sn)、金錫合金、錫合金、錫銀銅合金或其組合。For example, in this embodiment, at least one of the first metal layer 180, the second metal layer 190, the first current conduction layer 140, and the second current conduction layer 150 may include stacked ohmic contact layers and reflective layers. , Barrier stacking layer and connection layer; the ohmic contact layer, for example, includes chromium (Cr), titanium (Ti) or a combination thereof, and the reflective layer, for example, includes aluminum (Al), aluminum alloy (Alloy Al), aluminum copper alloy (Alloy Al/Cu) ), silver (Ag), platinum (Pt) or a combination thereof, the barrier stack layer includes, for example, titanium (Ti), nickel (Ni), aluminum (Al), gold (Au), platinum (Pt) or a combination thereof, and the connection layer For example, it includes titanium (Ti), nickel (Ni), aluminum (Al), gold (Au), platinum (Pt), or a combination thereof. For example, in this embodiment, at least one of the first bonding layer 108 and the second bonding layer 109 may include a reflective layer, a barrier stack layer, and a soldering layer that are stacked; the material of the reflective layer is, for example, aluminum (Al). , Aluminum alloy (Alloy Al), aluminum-copper alloy (Alloy Al/Cu), titanium (Ti), nickel (Ni), platinum (Pt) or a combination thereof, the material for blocking the stacked layer is, for example, titanium (Ti), nickel ( Ni), aluminum (Al), gold (Au), platinum (Pt) or a combination thereof, the material of the solder layer is, for example, gold (Au), tin (Sn), gold-tin alloy, tin alloy, tin-silver-copper alloy or its combination combination.

請參照圖17及圖19,在本實施例中,第一金屬層180的指部180b可被布拉格反射結構360’覆蓋,且延伸至第二電流傳導層150及第二接合層109下方而與第二電流傳導層150及第二接合層109部分重疊。然而,本發明不限於此,在其他實施例中,第一金屬層180的指部180b也可不與第二接合層109重疊,以下以圖20及圖21為例說明之。Referring to FIGS. 17 and 19, in this embodiment, the fingers 180b of the first metal layer 180 can be covered by the Bragg reflective structure 360', and extend below the second current conducting layer 150 and the second bonding layer 109 to be in contact with The second current conducting layer 150 and the second bonding layer 109 partially overlap. However, the present invention is not limited to this. In other embodiments, the fingers 180b of the first metal layer 180 may not overlap with the second bonding layer 109. The following uses FIGS. 20 and 21 as examples.

圖20為本發明另一實施例的發光二極體的上視示意圖。圖21為對應於圖20的線C’-D’的剖面示意圖。請參照圖20及圖21,其繪示一種可以應用於覆晶式封裝的發光二極體600’。本實施例的發光二極體600’類似於前述的發光二極體600,兩者主要的差異在於:發光二極體600’之第二接合層109的內邊緣109b具有缺口109d,缺口109d由內邊緣109b向第二接合層109的內部延伸,但不貫穿第二接合層109,第一金屬層180的指部180b可延伸至缺口109d的面積內,而不與第二接合層109重疊。簡言之,在本實施例中,第一金屬層180的指部180b與第二接合層109可錯位設置。在覆晶接合過程中,接合材料(例如:錫膏或金錫共晶)與第二接合層109接合時,因第二接合層109的實體部分與第一金屬層180的實體部分錯位設置,使接合材料與第二接合層109反應接合時,不會接觸到第一金屬層180而造成短路問題。FIG. 20 is a schematic top view of a light emitting diode according to another embodiment of the invention. Fig. 21 is a schematic cross-sectional view corresponding to the line C'-D' of Fig. 20. Please refer to FIG. 20 and FIG. 21, which illustrate a light emitting diode 600' that can be applied to flip-chip packaging. The light-emitting diode 600' of this embodiment is similar to the aforementioned light-emitting diode 600. The main difference between the two is: the inner edge 109b of the second bonding layer 109 of the light-emitting diode 600' has a gap 109d, and the gap 109d is formed by The inner edge 109b extends to the inside of the second bonding layer 109 but does not penetrate the second bonding layer 109. The fingers 180b of the first metal layer 180 can extend into the area of the gap 109d without overlapping with the second bonding layer 109. In short, in this embodiment, the fingers 180b of the first metal layer 180 and the second bonding layer 109 can be arranged in a staggered manner. In the flip chip bonding process, when the bonding material (for example: solder paste or Au-Sn eutectic) is bonded to the second bonding layer 109, the physical part of the second bonding layer 109 and the physical part of the first metal layer 180 are arranged in a misaligned manner. When the bonding material is reactively bonded to the second bonding layer 109, the first metal layer 180 will not be contacted, which may cause a short circuit problem.

圖22為本發明一實施例之發光二極體的製造流程示意圖。請參照圖22,舉例而言,在本實施例中,發光二極體700(標示於圖24B)的製造流程包括:於成長基板上形成多個發光單元,其中每一發光單元包括第一型半導體層、第二型半導體層以及位於第一型半導體層與第二型半導體層之間的發光層,成長基板具有凹槽,每一發光單元之第一型半導體層的側壁與凹槽的邊緣切齊(步驟T110);在第二型半導體層上形成絕緣圖案(步驟T120);形成導電層,以覆蓋絕緣圖案及第二型半導體層(步驟T130);形成第一金屬層及第二金屬層,以分別和第一型半導體層及第二型半導體層電性連接(步驟T140);形成第一絕緣層,以覆蓋第一金屬層、第二金屬層、發光單元以及成長基板的凹槽(步驟T150);在第一絕緣層上形成布拉格反射結構,其中布拉格反射結構與發光層重疊(步驟T160);形成第二絕緣層,以覆蓋布拉格反射結構及第一絕緣層,其中第一絕緣層及第二絕緣層具有暴露第一金屬層及第二金屬層的多個貫穿開口(步驟T170);形成第一電流傳導層及第二電流傳導層,第一電流傳導層及第二電流傳導層填入第一絕緣層及第二絕緣層的多個貫穿開口,以分別和第一型半導體層及第二型半導體層電性連接(步驟T180);在第一電流傳導層及第二電流傳導層上形成絕緣層,絕緣層具有暴露第一電流傳導層及第二電流傳導層的多個貫穿開口(步驟T190);形成第一接合層及第二接合層,第一接合層及第二接合層填入絕緣層的貫穿開口以分別與第一電流傳導層及第二電流傳導層電性連接(步驟T200);沿著成長基板的凹槽分離成長基板,以形成多個發光二極體(步驟T210)。圖23A至圖24B為本發明一實施例之發光二極體的製造方法的剖面示意圖對應於圖22之發光二極體的製造流程示意圖。以下透過圖22與圖23A至圖24B的搭配說明本發明一實施例之發光二極體700(標示於圖24B)的製造方法。FIG. 22 is a schematic diagram of a manufacturing process of a light-emitting diode according to an embodiment of the present invention. Please refer to FIG. 22. For example, in this embodiment, the manufacturing process of the light-emitting diode 700 (labeled in FIG. 24B) includes: forming a plurality of light-emitting units on a growth substrate, wherein each light-emitting unit includes a first type The semiconductor layer, the second type semiconductor layer, and the light emitting layer located between the first type semiconductor layer and the second type semiconductor layer, the growth substrate has a groove, and the sidewalls of the first type semiconductor layer of each light emitting unit and the edge of the groove Slicing (step T110); forming an insulating pattern on the second type semiconductor layer (step T120); forming a conductive layer to cover the insulating pattern and the second type semiconductor layer (step T130); forming a first metal layer and a second metal Layer to be electrically connected to the first type semiconductor layer and the second type semiconductor layer respectively (step T140); forming a first insulating layer to cover the first metal layer, the second metal layer, the light-emitting unit and the groove of the growth substrate (Step T150); forming a Bragg reflective structure on the first insulating layer, wherein the Bragg reflective structure overlaps the light-emitting layer (step T160); forming a second insulating layer to cover the Bragg reflective structure and the first insulating layer, wherein the first insulating layer The layer and the second insulating layer have a plurality of through openings exposing the first metal layer and the second metal layer (step T170); forming a first current conducting layer and a second current conducting layer, the first current conducting layer and the second current conducting layer The layer fills the multiple through openings of the first insulating layer and the second insulating layer to be electrically connected to the first type semiconductor layer and the second type semiconductor layer respectively (step T180); An insulating layer is formed on the conductive layer, and the insulating layer has a plurality of through openings exposing the first current conductive layer and the second current conductive layer (step T190); the first bonding layer and the second bonding layer are formed, and the first bonding layer and the second bonding layer are formed. The bonding layer is filled into the through openings of the insulating layer to be electrically connected to the first current conducting layer and the second current conducting layer respectively (step T200); the growth substrate is separated along the groove of the growth substrate to form a plurality of light emitting diodes (Step T210). 23A to 24B are schematic cross-sectional views of a method of manufacturing a light-emitting diode according to an embodiment of the present invention, corresponding to the schematic view of the manufacturing process of the light-emitting diode of FIG. 22. The manufacturing method of the light-emitting diode 700 (labeled in FIG. 24B) according to an embodiment of the present invention will be described below through the combination of FIG. 22 and FIG. 23A to FIG. 24B.

請參照圖22,首先,進行步驟T110,即於成長基板上形成多個發光單元,其中每一發光單元包括第一型半導體層、第二型半導體層以及位於第一型半導體層與第二型半導體層之間的發光層,成長基板具有凹槽,每一發光單元之第一型半導體層的側壁與凹槽的邊緣切齊。在本實施例中,圖22的步驟T110可對應圖23A至圖23G,以下利用圖23A至圖23G舉例說明完成步驟T110之一種可能實施的方法。Please refer to FIG. 22. First, step T110 is performed, that is, a plurality of light-emitting units are formed on the growth substrate. Each light-emitting unit includes a first-type semiconductor layer, a second-type semiconductor layer, The light-emitting layer between the semiconductor layers, the growth substrate has a groove, and the sidewall of the first-type semiconductor layer of each light-emitting unit is aligned with the edge of the groove. In this embodiment, step T110 in FIG. 22 may correspond to FIGS. 23A to 23G. The following uses FIGS. 23A to 23G to illustrate a possible implementation method for completing step T110.

請參照圖23A,在本實施例中,首先,可於成長基板170上形成第一型半導體材料層110’,在第一型半導體材料層110’上形成發光材料層120’,在發光材料層120’上形成第二型半導體材料層130’。請參照圖23B,接著,在第一型半導體材料層110’、發光材料層120’及第二型半導體材料層130’的堆疊結構上形成圖案化光阻PR1。舉例而言,在本實施例中,可使用黃光微影工序形成圖案化光阻PR1,但本發明不以此為限。請參照圖23C,接著,以圖案化光阻PR1為遮罩,圖案化第二型半導體材料層130’、發光材料層120’及第一型半導體材料層110’,以形成第二型半導體層130、發光層120及具有第一部分P1及第二部分P2的第一型半導體材料層110’,其中發光層120疊置於第一型半導體材料層110’的第一部分P1上,第二部分P2由第一部分P1向外延伸而凸出於發光層120的面積之外。第二部分P2的厚度可以小於第一部分P1的厚度。舉例而言,在本實施例中,可使用乾式蝕刻工序形成第二型半導體層130、發光層120及具有第一部分P1及第二部分P2的第一型半導體材料層110’,但本發明不以此為限。請參照圖23D,接著,去除圖案化光阻PR1。Referring to FIG. 23A, in this embodiment, first, a first-type semiconductor material layer 110' may be formed on the growth substrate 170, and a light-emitting material layer 120' may be formed on the first-type semiconductor material layer 110'. A second-type semiconductor material layer 130' is formed on 120'. Referring to FIG. 23B, next, a patterned photoresist PR1 is formed on the stacked structure of the first type semiconductor material layer 110', the light emitting material layer 120', and the second type semiconductor material layer 130'. For example, in this embodiment, the patterned photoresist PR1 can be formed using the yellow light lithography process, but the invention is not limited to this. Please refer to FIG. 23C. Next, using the patterned photoresist PR1 as a mask, the second-type semiconductor material layer 130', the luminescent material layer 120', and the first-type semiconductor material layer 110' are patterned to form a second-type semiconductor layer 130. The light-emitting layer 120 and the first-type semiconductor material layer 110' having a first portion P1 and a second portion P2, wherein the light-emitting layer 120 is stacked on the first portion P1 of the first-type semiconductor material layer 110', and the second portion P2 The first portion P1 extends outward and protrudes out of the area of the light-emitting layer 120. The thickness of the second portion P2 may be smaller than the thickness of the first portion P1. For example, in this embodiment, a dry etching process can be used to form the second type semiconductor layer 130, the light emitting layer 120, and the first type semiconductor material layer 110' having the first portion P1 and the second portion P2, but the present invention does not Limited by this. Please refer to FIG. 23D, and then, remove the patterned photoresist PR1.

請參照圖23E,接著,形成第一犧牲層210,以覆蓋第二型半導體層120、發光層130及第一型半導體材料層110。請參照圖23E及圖23F,接著,如圖23F所示,對成長基板170、第一型半導體材料層110’的第二部分P2以及位於第二部分P2上的第一犧牲層210進行切割製程,以形成切割痕Q。切割痕Q貫穿位於部分的第一犧牲層210及第一型半導體材料層110’的第二部分P2,以將第一犧牲層210分離為多個第一犧牲圖案212並且將第一型半導體材料層110’分離為多個第一型半導體層110。多個第一型半導體層110與其上之多個發光層120及多個第二型半導體層130可構成多個發光單元U。每一發光單元U包括第一型半導體層110、第二型半導體層130以及位於第一型半導體層110與第二型半導體層130之間的發光層120。值得注意的是,在切割痕Q定義出多個發光單元U的第一型半導體層110的同時,切割痕Q還延伸到成長基板170,而於成長基板170上形成未貫穿成長基板170之凹槽173。由於成長基板170與第一型半導材料層110’是於同一工序中被切割,因此每一發光單元U之第一型半導體層110的側壁110a會與成長基板170之凹槽173的邊緣切齊。第一型半導體層110具有相對的第一表面111及第二表面112,發光層120及第二型半導體層130配置於第一表面112上,而側壁110a連接於第一表面111與第二表面112之間。Please refer to FIG. 23E. Next, a first sacrificial layer 210 is formed to cover the second-type semiconductor layer 120, the light-emitting layer 130, and the first-type semiconductor material layer 110. Please refer to FIGS. 23E and 23F, and then, as shown in FIG. 23F, the growth substrate 170, the second portion P2 of the first type semiconductor material layer 110', and the first sacrificial layer 210 located on the second portion P2 are subjected to a cutting process , To form a cutting mark Q. The dicing mark Q penetrates a portion of the first sacrificial layer 210 and the second portion P2 of the first type semiconductor material layer 110' to separate the first sacrificial layer 210 into a plurality of first sacrificial patterns 212 and to separate the first type semiconductor material The layer 110 ′ is separated into a plurality of first-type semiconductor layers 110. The plurality of first-type semiconductor layers 110, the plurality of light-emitting layers 120 and the plurality of second-type semiconductor layers 130 thereon may constitute a plurality of light-emitting units U. Each light emitting unit U includes a first type semiconductor layer 110, a second type semiconductor layer 130, and a light emitting layer 120 located between the first type semiconductor layer 110 and the second type semiconductor layer 130. It is worth noting that while the cut mark Q defines the first type semiconductor layer 110 of the plurality of light emitting units U, the cut mark Q also extends to the growth substrate 170, and a recess that does not penetrate the growth substrate 170 is formed on the growth substrate 170.槽173. Since the growth substrate 170 and the first-type semiconductor material layer 110' are cut in the same process, the sidewall 110a of the first-type semiconductor layer 110 of each light-emitting unit U is cut with the edge of the groove 173 of the growth substrate 170 together. The first type semiconductor layer 110 has a first surface 111 and a second surface 112 opposite to each other. The light emitting layer 120 and the second type semiconductor layer 130 are disposed on the first surface 112, and the sidewall 110a is connected to the first surface 111 and the second surface Between 112.

請參照圖23G,接著,去除第一犧牲圖案212,於此便完成了圖22之步驟T110。值得一提的是,在形成多個發光單元U之第一型半導體層110的過程中(即前述之切割製程中),如圖23E所示,第一犧牲層210覆蓋第一型半導體材料層110’的第二部分P2、第二型半導體層130及發光層120的側壁120a,因此發光單元U在其形成過程中不易受損傷(例如:遭粒子污染)而產生缺陷,有助於後續形成之發光二極體的發光效率。Please refer to FIG. 23G. Next, the first sacrificial pattern 212 is removed, and step T110 of FIG. 22 is completed. It is worth mentioning that in the process of forming the first-type semiconductor layer 110 of the plurality of light-emitting units U (that is, during the aforementioned cutting process), as shown in FIG. 23E, the first sacrificial layer 210 covers the first-type semiconductor material layer. The second portion P2 of 110', the second type semiconductor layer 130, and the sidewall 120a of the light-emitting layer 120, so the light-emitting unit U is not easily damaged (for example, contaminated by particles) and defects during its formation, which is helpful for subsequent formation The luminous efficiency of the light-emitting diode.

請參照圖22,接著,進行步驟T120,即在第二型半導體層上形成絕緣圖案。在本實施例中,圖22的步驟T120可對應圖23H至圖23K,以下利用圖23H至圖23K舉例說明完成步驟T120的一種可能實施的方法。Please refer to FIG. 22. Next, step T120 is performed, that is, an insulating pattern is formed on the second-type semiconductor layer. In this embodiment, step T120 in FIG. 22 may correspond to FIG. 23H to FIG. 23K. The following uses FIG. 23H to FIG. 23K to illustrate a possible implementation method for completing step T120.

請參照圖23H,在本實施例中,可在發光單元U上形成絕緣材料層103’。舉例而言,可使用蒸鍍、濺鍍或電漿輔助化學氣相沉積形成絕緣材料層103’,但本發明不以此為限。請參照圖23I,接著,在位於第二型半導體層130上的絕緣材料層103’上形成圖案化光阻PR2。Referring to FIG. 23H, in this embodiment, an insulating material layer 103' may be formed on the light-emitting unit U. For example, evaporation, sputtering, or plasma-assisted chemical vapor deposition may be used to form the insulating material layer 103', but the present invention is not limited thereto. Please refer to FIG. 23I. Next, a patterned photoresist PR2 is formed on the insulating material layer 103' on the second-type semiconductor layer 130.

請參照圖23J,接著,以圖案化光阻PR2為遮罩,將絕緣材料層103’圖案化,以形成絕緣圖案103。舉例而言,可使用溼式或乾式蝕刻絕緣材料層103’,以形成絕緣圖案103,但本發明不以此為限。請參照圖23K,接著,去除圖案化光阻PR2,於此便完成了圖22之步驟T120。需說明的是,圖23H至圖23K僅使是用以舉例說明完成步驟T120的一種可實施的方法,本發明不以此為限,在其他實施例中,也可使用其他可行的方法,例如:剝離製程(lift-off process)。具體來說,在發光單元U上形成圖案化光阻PR2作為遮罩後,再使用蒸鍍、濺鍍或電漿輔助化學氣相沉積等方式形成絕緣材料層103’,其順應地覆蓋圖案化光阻PR2。接著進行剝離製程(lift-off process),請參照圖23K,去除圖案化光阻PR2,以在去除圖案化光阻PR2的同時將覆蓋其上的絕緣材料層103’移除而完成步驟T120,於此便不再逐一繪示及說明。Please refer to FIG. 23J. Next, using the patterned photoresist PR2 as a mask, the insulating material layer 103' is patterned to form an insulating pattern 103. For example, wet or dry etching of the insulating material layer 103' can be used to form the insulating pattern 103, but the invention is not limited to this. Please refer to FIG. 23K. Then, the patterned photoresist PR2 is removed, and step T120 of FIG. 22 is completed. It should be noted that FIGS. 23H to 23K are only used to illustrate an implementable method for completing step T120, and the present invention is not limited to this. In other embodiments, other feasible methods may also be used, such as : Lift-off process. Specifically, after forming the patterned photoresist PR2 as a mask on the light-emitting unit U, the insulating material layer 103' is formed by evaporation, sputtering, or plasma-assisted chemical vapor deposition. Photoresist PR2. Next, a lift-off process is performed. Please refer to FIG. 23K to remove the patterned photoresist PR2, so as to remove the insulating material layer 103' covering it while removing the patterned photoresist PR2 to complete step T120. It will not be illustrated and explained one by one here.

請參照圖22及圖23L,接著,進行步驟T130,即在第二型半導體層130上形成導電層101,以覆蓋絕緣圖案103。在本實施例中,導電層101更覆蓋未被絕緣圖案130覆蓋之部分第二型半導體層130,以和第二型半導體層130電性接觸。請參照圖22及圖23M,接著,進行步驟T140,即形成第一金屬層180及第二金屬層190,以分別和第一型半導體層110及第二型半導體層130電性連接。詳言之,在本實施例中,可於第一型半導體層110的第一部分P1上形成第一金屬層180,第一金屬層180可直接電性接觸於第一型半導體層110;可於位在第二型半導體層130上之導電層101上形成第二金屬層190,第二金屬層190可透過導電層101與第二型半導體130電性連接。Please refer to FIG. 22 and FIG. 23L. Then, step T130 is performed, that is, a conductive layer 101 is formed on the second-type semiconductor layer 130 to cover the insulating pattern 103. In this embodiment, the conductive layer 101 further covers a part of the second-type semiconductor layer 130 that is not covered by the insulating pattern 130 so as to be in electrical contact with the second-type semiconductor layer 130. Please refer to FIG. 22 and FIG. 23M. Then, step T140 is performed, that is, the first metal layer 180 and the second metal layer 190 are formed to be electrically connected to the first type semiconductor layer 110 and the second type semiconductor layer 130, respectively. In detail, in this embodiment, the first metal layer 180 may be formed on the first portion P1 of the first type semiconductor layer 110, and the first metal layer 180 may directly electrically contact the first type semiconductor layer 110; A second metal layer 190 is formed on the conductive layer 101 on the second type semiconductor layer 130, and the second metal layer 190 can be electrically connected to the second type semiconductor 130 through the conductive layer 101.

請參照圖22及圖23N,接著,進行步驟T150,即形成第一絕緣層105a,以覆蓋第一金屬層180、第二金屬層190、發光單元U以及成長基板170的凹槽173。舉例而言,在本實施例中,可使用蒸鍍、濺鍍或電漿輔助化學氣相沉積形成第一絕緣層105a,但本發明不以此為限。在本實施例中,第一絕緣層105a可全面性覆蓋成長基板170及其上的構件。值得注意的是,透過成長基板170之凹槽173的設計,第一絕緣層105a還能覆蓋第一型半導體層110的側壁110a。藉此,第一型半導體層110的側壁110a不易於後續發光二極體之製程及/或共晶接合製程中與不當的構件電性連接而發生短路問題。Please refer to FIG. 22 and FIG. 23N. Then, step T150 is performed, that is, the first insulating layer 105a is formed to cover the first metal layer 180, the second metal layer 190, the light-emitting unit U, and the groove 173 of the growth substrate 170. For example, in this embodiment, evaporation, sputtering, or plasma-assisted chemical vapor deposition may be used to form the first insulating layer 105a, but the invention is not limited thereto. In this embodiment, the first insulating layer 105a can fully cover the growth substrate 170 and the components thereon. It is worth noting that through the design of the groove 173 of the growth substrate 170, the first insulating layer 105a can also cover the sidewall 110a of the first type semiconductor layer 110. Thereby, the sidewall 110a of the first-type semiconductor layer 110 is not prone to be electrically connected to improper components in the subsequent light-emitting diode manufacturing process and/or eutectic bonding process, resulting in a short circuit problem.

請參照圖22,接著,進行步驟T160,即在第一絕緣層上形成布拉格反射結構,其中布拉格反射結構與發光層重疊。在本實施例中,圖22的步驟T160可對應圖23O至圖23R,以下利用圖23O至圖23R舉例說明完成步驟T160的一種可能實施的方法。Please refer to FIG. 22. Next, step T160 is performed, that is, a Bragg reflection structure is formed on the first insulating layer, where the Bragg reflection structure overlaps the light-emitting layer. In this embodiment, step T160 in FIG. 22 may correspond to FIGS. 23O to 23R. The following uses FIGS. 23O to 23R to illustrate a possible implementation method for completing step T160.

請參照圖23O,在第一絕緣層105a上形成犧牲層220。在本實施例中,犧牲層220例如是光阻層,但本發明不以此限。請參照圖23O及圖23P,接著,將犧牲層220圖案化,以形成犧牲圖案222。在本實施例中,圖案化犧牲層220的製程可包括微影及蝕刻製程且犧牲圖案222可具有倒梯形結構,但本發明不限於此。圖25為圖23Q之局部R1的放大示意圖。請參照圖23Q及圖25,接著,在犧牲圖案222以及未被犧牲圖案222覆蓋的第一絕緣層105a上形成交替堆疊的多個第一折射材料層162’(繪於圖25)及多個第二折射材料層164’(繪於圖25)。多個第一折射材料層162’及多個第二折射材料層164’可視為布拉格反射材料堆疊層360’’(繪於圖25)。Referring to FIG. 23O, a sacrificial layer 220 is formed on the first insulating layer 105a. In this embodiment, the sacrificial layer 220 is, for example, a photoresist layer, but the invention is not limited thereto. Please refer to FIGS. 23O and 23P. Then, the sacrificial layer 220 is patterned to form a sacrificial pattern 222. In this embodiment, the process of patterning the sacrificial layer 220 may include lithography and etching processes, and the sacrificial pattern 222 may have an inverted trapezoidal structure, but the invention is not limited thereto. Fig. 25 is an enlarged schematic diagram of part R1 of Fig. 23Q. Please refer to FIGS. 23Q and 25. Next, a plurality of first refractive material layers 162' (shown in FIG. 25) and a plurality of alternately stacked layers are formed on the sacrificial pattern 222 and the first insulating layer 105a not covered by the sacrificial pattern 222 The second refractive material layer 164' (drawn in FIG. 25). The plurality of first refractive material layers 162' and the plurality of second refractive material layers 164' can be regarded as the Bragg reflective material stacked layer 360'' (shown in FIG. 25).

圖26為圖23R之局部R2的放大示意圖。請參照圖23Q、圖23R、圖25及圖26,接著,去除犧牲圖案222。在去除犧牲圖案222時,形成於犧牲圖案222上的部分第一折射材料層162’及部分第二折射材料層164’會一併被去除,形成在第一絕緣層105a上的部分第一折射材料層162’及部分第二折射材料層164’會被保留。藉此,多個第一折射材料層162’以及多個第二折射材料層164’可被圖案化,而形成多個第一折射層162及多個第二折射層164堆疊而成的圖案化結構(即布拉格反射結構360’)。Fig. 26 is an enlarged schematic view of part R2 of Fig. 23R. Please refer to FIG. 23Q, FIG. 23R, FIG. 25, and FIG. 26, and then, the sacrificial pattern 222 is removed. When the sacrificial pattern 222 is removed, part of the first refractive material layer 162' and part of the second refractive material layer 164' formed on the sacrificial pattern 222 will be removed together, and part of the first refractive material layer formed on the first insulating layer 105a The material layer 162' and part of the second refractive material layer 164' will be retained. In this way, the plurality of first refractive material layers 162' and the plurality of second refractive material layers 164' can be patterned to form a patterned pattern formed by stacking a plurality of first refractive layers 162 and a plurality of second refractive layers 164 Structure (i.e. Bragg reflection structure 360').

第一絕緣層105b的厚度T4遠大於布拉格反射結構360’之一層第一折射層162的厚度T5或一層第二折射層164的厚度T6。舉例而言,30×T5≦T4,30×T6≦T4,但本發明不以此為限。簡言之,在本實施例中,係使用剝離製程(lift-off process)將多個第一折射材料層162’及多個第二折射材料層164’的堆疊結構圖案化,以形成布拉格反射結構360’。然而,本發明不限於此,在其他實施例中,也可使用其它適當方法(例如:微影及蝕刻製程)形成布拉格反射結構360’。The thickness T4 of the first insulating layer 105b is much larger than the thickness T5 of the first refraction layer 162 of one of the Bragg reflective structures 360' or the thickness T6 of the second refraction layer 164 of one layer. For example, 30×T5≦T4 and 30×T6≦T4, but the invention is not limited thereto. In short, in this embodiment, a lift-off process is used to pattern the stacked structure of the plurality of first refractive material layers 162' and the plurality of second refractive material layers 164' to form the Bragg reflection. Structure 360'. However, the present invention is not limited to this. In other embodiments, other appropriate methods (such as lithography and etching processes) may also be used to form the Bragg reflective structure 360'.

請參照圖26,在本實施例中,由於是使用剝離製程形成布拉格反射結構360’,因此,每一折射層會包覆下一折射層。舉例而言,第一個第一折射層162包覆第一絕緣層105a、第二型半導體層130及發光層120,第一個第二折射層164包覆第一個第一折射層162,第二個第一折射層162包覆第一個第二折射層164,以此類推。此外,由於利用剝離製程形成之布拉格反射結構360’,在垂直於成長基板170之第一表面171的法線方向z上,布拉格反射結構360’之邊緣區360’-1的折射層堆疊密度會高於布拉格反射結構360’之內部區360’-2的折射層堆疊密度。Please refer to FIG. 26. In this embodiment, since the Bragg reflection structure 360' is formed by a lift-off process, each refractive layer covers the next refractive layer. For example, the first first refraction layer 162 covers the first insulating layer 105a, the second type semiconductor layer 130 and the light emitting layer 120, and the first second refraction layer 164 covers the first first refraction layer 162. The second first refraction layer 162 covers the first second refraction layer 164, and so on. In addition, due to the Bragg reflective structure 360' formed by the lift-off process, in the normal direction z perpendicular to the first surface 171 of the growth substrate 170, the refractive layer stack density of the edge region 360'-1 of the Bragg reflective structure 360' will be The stacking density of the refractive layer is higher than that of the inner region 360'-2 of the Bragg reflective structure 360'.

發光層120具有側壁120a、第一表面120b以及第二表面120c,第二型半導體層130配置於發光層120的第一表面120b上,第二表面120c相對於第一表面120b,側壁120a連接於第一表面120b與第二表面120c之間。由於布拉格反射結構360’的每一折射層被下一折射層包覆,因此不僅發光層120的第一表面120b上方存在多個第一折射層162及多個第二折射層164所形成的疊構,發光層120的側壁120a的側邊方向上也存在多個第一折射層162及多個第二折射層164所形成的疊構。藉此,布拉格反射結構360’不僅能反射由發光層120沿正向(例如:與方向z平行的方向)發出的光束L3,還能反射由發光層120沿側向(例如:傾斜於方向z的方向)發出的光束L4,進而提升後續形成之發光二極體的光提取效率能提升。The light emitting layer 120 has sidewalls 120a, a first surface 120b, and a second surface 120c. The second type semiconductor layer 130 is disposed on the first surface 120b of the light emitting layer 120. The second surface 120c is opposite to the first surface 120b, and the sidewall 120a is connected to Between the first surface 120b and the second surface 120c. Since each refraction layer of the Bragg reflective structure 360' is covered by the next refraction layer, not only is there a stack of multiple first refraction layers 162 and multiple second refraction layers 164 above the first surface 120b of the light-emitting layer 120 Structure, the sidewall 120a of the light-emitting layer 120 also has a stacked structure formed by a plurality of first refraction layers 162 and a plurality of second refraction layers 164. Thereby, the Bragg reflection structure 360' can not only reflect the light beam L3 emitted by the light-emitting layer 120 in the forward direction (for example, the direction parallel to the direction z), but also reflect the light beam L3 emitted by the light-emitting layer 120 in the lateral direction (for example: inclined to the direction z). The direction of the light beam L4), and then the light extraction efficiency of the subsequently formed light-emitting diode can be improved.

此外,如圖23R所示,布拉格反射結構360’也可選擇性地填入成長基板170之凹槽173。如此一來,第一型半導體層110的側壁110a不但被第一絕緣層105a覆蓋,還會被絕緣的布拉格反射結構360’覆蓋,而更一步降低第一型半導體層110的側壁110a於後續發光二極體之製程及/或共晶接合製程中與不當構件電性連接而發生短度的機率。In addition, as shown in FIG. 23R, the Bragg reflective structure 360' can also be selectively filled in the groove 173 of the growth substrate 170. In this way, the sidewall 110a of the first type semiconductor layer 110 is not only covered by the first insulating layer 105a, but also covered by the insulating Bragg reflective structure 360', and further reduces the sidewall 110a of the first type semiconductor layer 110 for subsequent light emission. There is a chance that the diode is electrically connected to improper components during the manufacturing process and/or the eutectic bonding process, resulting in a short-term probability.

請參照圖22,接著,進行步驟T170,即形成第二絕緣層,以覆蓋布拉格反射結構及第一絕緣層,其中第一絕緣層及第二絕緣層具有暴露第一金屬層及第二金屬層的多個貫穿開口。在本實施例中,圖22的步驟T170可對應圖23S至圖23V,以下利用圖23S至圖23V舉例說明完成步驟T170之一種可能實施的方法。Please refer to FIG. 22. Next, proceed to step T170, which is to form a second insulating layer to cover the Bragg reflective structure and the first insulating layer, wherein the first insulating layer and the second insulating layer have exposed first and second metal layers Of multiple through openings. In this embodiment, step T170 in FIG. 22 may correspond to FIG. 23S to FIG. 23V. The following uses FIG. 23S to FIG. 23V to illustrate a possible implementation method of completing step T170.

請參照圖23S,在第一絕緣層105a及布拉格反射結構360’上形成絕緣材料層105b’。請參照圖23T,接著,在絕緣材料層105b’上形成圖案化光阻PR3。請參照圖23T及圖23U,接著,以圖案化光阻PR3為遮罩,利用乾式或溼式蝕刻圖案化絕緣材料層105b’,以形成第二絕緣層105b。第二絕緣層105b具有分別暴露第一金屬層180及第二金屬層190的多個貫穿開口105ba、105bb。在圖案化絕緣材料層105b’以形成第二絕緣層105b時,更可以圖案化光阻PR3為遮罩,圖案化第一絕緣層105a,以使第一絕緣層105a具有分別暴露第一金屬層180及第二金屬層190的多個貫穿開口105aa、105ab。請參照圖23V,接著,去除圖案化光阻PR3,於此便完成了步驟T170。Referring to FIG. 23S, an insulating material layer 105b' is formed on the first insulating layer 105a and the Bragg reflective structure 360'. Please refer to FIG. 23T. Next, a patterned photoresist PR3 is formed on the insulating material layer 105b'. Please refer to FIG. 23T and FIG. 23U. Then, using the patterned photoresist PR3 as a mask, dry or wet etching is used to pattern the insulating material layer 105b' to form the second insulating layer 105b. The second insulating layer 105b has a plurality of through openings 105ba and 105bb exposing the first metal layer 180 and the second metal layer 190, respectively. When the insulating material layer 105b' is patterned to form the second insulating layer 105b, the photoresist PR3 can be patterned as a mask, and the first insulating layer 105a is patterned so that the first insulating layer 105a has the first metal layer exposed separately The through openings 105aa and 105ab of 180 and the second metal layer 190 are formed. Please refer to FIG. 23V. Then, the patterned photoresist PR3 is removed, and step T170 is completed here.

圖27為圖23V之局部R3的放大示意圖。請參照圖27,在本實施例中,第一金屬層180可具有相堆疊的歐姆接觸層182、反射層184及連接層186,其中歐姆接觸層182電性接觸於第一型半導體層110,且反射層184位於歐姆接觸層182與連接層186之間。圖中雖未繪示,但第二金屬層190也可具有相堆疊的歐姆接觸層、反射層及連接層,且第二金屬層190的歐姆接觸層電性接觸於第二型半導體層130。在執行圖23U的步驟,於第一絕緣層105a及第二絕緣層105b蝕刻出貫穿開口105aa、105ba(及貫穿開口105ab、105bb)時,由於反射層184受到連接層186的保護,因此反射層184不易損傷。藉此,第一金屬層180(及第二金屬層190)不但能發揮分散電流的作用更具有良好的反射功能,進而提升後續形成之發光二極體的光提取效率。Fig. 27 is an enlarged schematic view of part R3 of Fig. 23V. Please refer to FIG. 27. In this embodiment, the first metal layer 180 may have an ohmic contact layer 182, a reflective layer 184, and a connection layer 186 stacked, wherein the ohmic contact layer 182 is in electrical contact with the first type semiconductor layer 110. And the reflective layer 184 is located between the ohmic contact layer 182 and the connection layer 186. Although not shown in the figure, the second metal layer 190 may also have an ohmic contact layer, a reflective layer, and a connection layer stacked together, and the ohmic contact layer of the second metal layer 190 is in electrical contact with the second type semiconductor layer 130. When performing the step of FIG. 23U, when the through openings 105aa, 105ba (and through openings 105ab, 105bb) are etched in the first insulating layer 105a and the second insulating layer 105b, the reflective layer 184 is protected by the connecting layer 186, so the reflective layer 184 is not easy to damage. Thereby, the first metal layer 180 (and the second metal layer 190) can not only play a role of dispersing current, but also have a good reflection function, thereby improving the light extraction efficiency of the subsequently formed light-emitting diode.

請參照圖22及圖23W,接著,進行步驟T180,即形成第一電流傳導層140及第二電流傳導層150,其中第一電流傳導層140及第二電流傳導層150填入第一絕緣層105a及第二絕緣層105b的多個貫穿開口105aa、105ba、105ab、105ba,以分別和第一型半導體層110及第二型半導體層120電性連接。詳言之,在本實施例中,第一電流傳導層140可透過第一金屬層180與第一型半導體層110電性連接,第二電流傳導層150可透過第二金屬層190及導電層101與第二型半導體層130電性連接。與圖27之第一金屬層180類似,在本實施例中,第一電流傳導層140及第二電流傳導層150也可具有相堆疊的歐姆接觸層、反射層、阻擋堆疊層及連接層(未繪示),第一電流傳導層140及第二電流傳導層150也具有良好的反射作用,也可稱做第一反射層及第二反射層。其中該歐姆接觸層可因考量反射層之反射率調整歐姆接觸層之厚度範圍可為0~50nm。Please refer to FIG. 22 and FIG. 23W, and then proceed to step T180, that is, forming a first current conducting layer 140 and a second current conducting layer 150, wherein the first current conducting layer 140 and the second current conducting layer 150 are filled with the first insulating layer The multiple through openings 105aa, 105ba, 105ab, and 105ba of 105a and the second insulating layer 105b are electrically connected to the first type semiconductor layer 110 and the second type semiconductor layer 120, respectively. In detail, in this embodiment, the first current conducting layer 140 can be electrically connected to the first type semiconductor layer 110 through the first metal layer 180, and the second current conducting layer 150 can be through the second metal layer 190 and the conductive layer. 101 is electrically connected to the second type semiconductor layer 130. Similar to the first metal layer 180 in FIG. 27, in this embodiment, the first current conducting layer 140 and the second current conducting layer 150 may also have an ohmic contact layer, a reflective layer, a blocking stack layer, and a connecting layer ( (Not shown), the first current conducting layer 140 and the second current conducting layer 150 also have a good reflection effect, and can also be referred to as a first reflective layer and a second reflective layer. The thickness of the ohmic contact layer can be adjusted in the range of 0-50 nm due to the reflectivity of the reflective layer.

請參照圖22,接著,進行步驟T190,即在第一電流傳導層及第二電流傳導層上形成絕緣層,絕緣層具有暴露第一電流傳導層及第二電流傳導層的多個貫穿開口。在本實施例中,圖22的步驟T190可對應圖23X至圖23Z,以下利用圖23X至圖23Z舉例說明完成步驟T190之其中一種可能的方法。Please refer to FIG. 22. Next, step T190 is performed, that is, an insulating layer is formed on the first current conducting layer and the second current conducting layer, and the insulating layer has a plurality of through openings exposing the first current conducting layer and the second current conducting layer. In this embodiment, step T190 in FIG. 22 may correspond to FIG. 23X to FIG. 23Z. The following uses FIG. 23X to FIG. 23Z to illustrate one possible method of completing step T190.

請參照圖23X,在第一電流傳導層140、第二電流傳導層150及部分第二絕緣層105b上形成絕緣材料層113’。請參照圖23Y,接著,使用黃光微影製程在絕緣材料層113’上形成圖案化光阻層PR4。請參照圖23Z,接著,以圖案化光阻層PR4為遮罩,使用乾式或溼式蝕刻圖案化絕緣材料層113’,以形成絕緣層113。絕緣層113具有暴露第一電流傳導層140及第二電流傳導層150的多個貫穿開口113a、113b。在本實施例中,絕緣層113也可填入成長基板170之凹槽173且覆蓋第一型半導體層110的側壁110a。於此,便完成了步驟T190。Referring to FIG. 23X, an insulating material layer 113' is formed on the first current conducting layer 140, the second current conducting layer 150, and a portion of the second insulating layer 105b. Please refer to FIG. 23Y. Next, a patterned photoresist layer PR4 is formed on the insulating material layer 113' using a yellow photolithography process. Please refer to FIG. 23Z. Next, using the patterned photoresist layer PR4 as a mask, dry or wet etching is used to pattern the insulating material layer 113' to form the insulating layer 113. The insulating layer 113 has a plurality of through openings 113 a and 113 b exposing the first current conducting layer 140 and the second current conducting layer 150. In this embodiment, the insulating layer 113 can also be filled into the groove 173 of the growth substrate 170 and cover the sidewall 110 a of the first-type semiconductor layer 110. At this point, step T190 is completed.

請參照圖22,接著,進行步驟T200,即形成第一接合層及第二接合層,第一接合層及第二接合層填入絕緣層的貫穿開口以分別與第一電流傳導層及第二電流傳導層電性連接。在本實施例中,圖22的步驟T200可對應圖24A至圖24B,以下利用圖24A至圖24B舉例說明完成步驟T200之其中一種可能的方法。Please refer to FIG. 22, and then proceed to step T200, that is, the first bonding layer and the second bonding layer are formed. The current conducting layer is electrically connected. In this embodiment, step T200 in FIG. 22 may correspond to FIGS. 24A to 24B. The following uses FIGS. 24A to 24B to illustrate one possible method of completing step T200.

請參照圖24A,在本實施例中,可以圖案化光阻層PR4為遮罩,利用蒸鍍或濺鍍方式將導電材料填入絕緣層113的貫穿開口113a、113b以形成第一接合層108及第二接合層109。第一接合層108及第二接合層109分別與第一電流傳導層140及第二電流傳導層150電性連接。請參照圖24B,接著,移除圖案化光阻PR4,於此,便完成了步驟T200。移除圖案化光阻PR4之後,圖案化光阻PR4所在處使得第二接合層109具有多個第二貫穿開口109a且第一接合層108具有多個貫穿開口108a。Please refer to FIG. 24A. In this embodiment, the photoresist layer PR4 can be patterned as a mask, and conductive materials are filled into the through openings 113a, 113b of the insulating layer 113 by evaporation or sputtering to form the first bonding layer 108 And the second bonding layer 109. The first bonding layer 108 and the second bonding layer 109 are electrically connected to the first current conducting layer 140 and the second current conducting layer 150, respectively. Please refer to FIG. 24B. Next, the patterned photoresist PR4 is removed. Here, step T200 is completed. After the patterned photoresist PR4 is removed, the position of the patterned photoresist PR4 is such that the second bonding layer 109 has a plurality of second through openings 109a and the first bonding layer 108 has a plurality of through openings 108a.

請參照圖22及圖24C,接著,進行步驟T210,即沿著成長基板170的凹槽173分離成長基板170,以形成多個獨立的發光二極體700。舉例而言,在本實施例中,可沿著成長基板170的凹槽173使成長基板170和成長基板170之凹槽173內的第一絕緣層105a、布拉格反射結構360’、第二絕緣層105b及絕緣層113斷開,進而形成多個獨立的發光二極體700。舉例而言,在本實施例中,可利用雷射或刀輪切割分離成長基板170,但本發明不以此為限,在其他實施例中,也可使用其他適當方法分離成長基板170,以形成多個獨立的發光二極體700。在本實施例中,個別的發光二極體700的上視視角的結構可以類似於圖17的發光二極體600,於此不再贅述。Please refer to FIGS. 22 and 24C. Then, step T210 is performed, that is, the growth substrate 170 is separated along the groove 173 of the growth substrate 170 to form a plurality of independent light-emitting diodes 700. For example, in this embodiment, the growth substrate 170 and the first insulating layer 105a, the Bragg reflective structure 360', and the second insulating layer in the groove 173 of the growth substrate 170 can be made along the groove 173 of the growth substrate 170 105b and the insulating layer 113 are disconnected, thereby forming a plurality of independent light emitting diodes 700. For example, in this embodiment, a laser or a cutter wheel can be used to cut and separate the growth substrate 170, but the present invention is not limited to this. In other embodiments, other appropriate methods can also be used to separate the growth substrate 170. A plurality of independent light emitting diodes 700 are formed. In this embodiment, the upper viewing angle structure of the individual light-emitting diode 700 may be similar to the light-emitting diode 600 of FIG. 17, and will not be repeated here.

圖28為本發明另一實施例之發光二極體的製造流程示意圖。圖28之發光二極體的製造流程類似於圖22之發光二極體的製造流程,兩者主要的差異在於,圖28之發光二極體的製造流程更多了步驟T172及步驟T174。圖29A至圖29G為本發明另一實施例之發光二極體之部分製造方法的剖面示意圖。圖29A至圖29G對應圖28之步驟T172、S174及T180。在本實施例中,圖28之步驟T172之前的步驟T110至T170可參照圖23A至圖23S及其說明,步驟T180之後的步驟T190至S210可參照圖23X至圖24C及其說明,本領域具有通常知識者根據圖28及圖29A至圖29G及後續說明應能完成以圖28之製造流程製作的發光二極體,於此便不再重複說明相同或相似的步驟。FIG. 28 is a schematic diagram of a manufacturing process of a light emitting diode according to another embodiment of the present invention. The manufacturing process of the light-emitting diode of FIG. 28 is similar to the manufacturing process of the light-emitting diode of FIG. 22. The main difference between the two is that the manufacturing process of the light-emitting diode of FIG. 28 has more steps T172 and T174. 29A to 29G are schematic cross-sectional views of a part of a manufacturing method of a light-emitting diode according to another embodiment of the present invention. Figures 29A to 29G correspond to steps T172, S174, and T180 of Figure 28. In this embodiment, steps T110 to T170 before step T172 in FIG. 28 can refer to Figures 23A to 23S and their descriptions, and steps T190 to S210 after step T180 can refer to Figures 23X to 24C and their descriptions. The art has Generally, the knowledgeable person should be able to complete the light-emitting diode manufactured by the manufacturing process of FIG. 28 according to FIG. 28 and FIG. 29A to FIG. 29G and the subsequent description, and the same or similar steps will not be repeated here.

請參照圖28及圖29A至圖29B,在完成步驟T170(即形成第二絕緣層105b)後,可進行步驟T172,即在第二絕緣層上形成與布拉格反射結構重疊的反射結構。請參照圖28,舉例而言,在本實施例中,可於第二絕緣層105b上形成圖案化光阻PR5,圖案化光阻PR5覆蓋第一金屬層180及第二金屬層190上的第二絕緣層105b而未覆蓋布拉格反射結構360’上的第二絕緣層105b;接著,在圖案化光阻PR5及未被圖案化光阻PR5覆蓋的第二絕緣層105b上形成反射材料層192’。請參照圖29A及圖29B,接著,移除圖案化光阻PR5及其上的部分反射材料層192’,以形成反射結構192。在本實施例中,反射結構192包括配置於第二絕緣層105b上的反射層以及配置於反射層上的氧化層(或稱,黏著層)。反射結構之反射層的材料例如包括鋁(Al)、鋁合金(Alloy Al)、鋁銅合金(Alloy Al/Cu)、鈦(Ti)、鎳(Ni)、 鉑(Pt)或其組合。反射結構之氧化層的材料例如包括鈦(Ti)、鎳(Ni)、鉻(Cr)、金(Au)、鉑(Pt)或其組合或絕緣材料例如是二氧化矽(SiO2)或二氧化鈦(TiO2)。反射結構192利用本身之反射層的材料特性來反光。反射結構192可將穿過布拉格反射結構360’的光束反射,進而更進一步提升後續形成之發光二極體的光提取效率。由圖29B可知,反射結構192投影於成長基板170之面積小於或等於布拉格反射結構360’投影於成長基板170之面積。反射結構192設置在布拉格反射結構360’及第二絕緣層105b上,其中第二絕緣層105b覆蓋發光單元之第一型半導體層110、第二型半導體層130以及第一型半導體層110、第二型半導體層130及發光層120的側壁,布拉格反射結構360’覆蓋發光單元之第一型半導體層110、第二型半導體層130以及第一型半導體層110、第二型半導體層130及發光層120的側壁,反射結構192覆蓋發光單元之第一型半導體層110、第二型半導體層130以及第一型半導體層110、第二型半導體層130及發光層120的側壁(未繪示)。Referring to FIGS. 28 and 29A to 29B, after step T170 (ie forming the second insulating layer 105b) is completed, step T172 may be performed, that is, forming a reflective structure overlapping the Bragg reflective structure on the second insulating layer. Referring to FIG. 28, for example, in this embodiment, a patterned photoresist PR5 may be formed on the second insulating layer 105b, and the patterned photoresist PR5 covers the first metal layer 180 and the second metal layer 190. The second insulating layer 105b does not cover the second insulating layer 105b on the Bragg reflective structure 360'; then, a reflective material layer 192' is formed on the patterned photoresist PR5 and the second insulating layer 105b not covered by the patterned photoresist PR5 . Please refer to FIGS. 29A and 29B. Then, the patterned photoresist PR5 and the partially reflective material layer 192' thereon are removed to form a reflective structure 192. In this embodiment, the reflective structure 192 includes a reflective layer disposed on the second insulating layer 105b and an oxide layer (or, an adhesive layer) disposed on the reflective layer. The material of the reflective layer of the reflective structure includes, for example, aluminum (Al), aluminum alloy (Alloy Al), aluminum-copper alloy (Alloy Al/Cu), titanium (Ti), nickel (Ni), platinum (Pt), or a combination thereof. The material of the oxide layer of the reflective structure includes, for example, titanium (Ti), nickel (Ni), chromium (Cr), gold (Au), platinum (Pt) or a combination thereof, or the insulating material is, for example, silicon dioxide (SiO2) or titanium dioxide ( TiO2). The reflective structure 192 uses the material properties of the reflective layer to reflect light. The reflective structure 192 can reflect the light beam passing through the Bragg reflective structure 360', thereby further improving the light extraction efficiency of the subsequently formed light-emitting diode. It can be seen from FIG. 29B that the projected area of the reflective structure 192 on the growth substrate 170 is less than or equal to the projected area of the Bragg reflective structure 360' on the growth substrate 170. The reflective structure 192 is disposed on the Bragg reflective structure 360' and the second insulating layer 105b, wherein the second insulating layer 105b covers the first type semiconductor layer 110, the second type semiconductor layer 130, the first type semiconductor layer 110, the second type semiconductor layer 110, and the second type semiconductor layer 110 of the light emitting unit. The sidewalls of the second type semiconductor layer 130 and the light emitting layer 120, the Bragg reflective structure 360' covers the first type semiconductor layer 110, the second type semiconductor layer 130, the first type semiconductor layer 110, the second type semiconductor layer 130 and the light emitting unit of the light emitting unit The sidewalls of the layer 120, the reflective structure 192 covers the sidewalls of the first type semiconductor layer 110, the second type semiconductor layer 130, the first type semiconductor layer 110, the second type semiconductor layer 130, and the light emitting layer 120 of the light emitting unit (not shown) .

請參照圖28及圖29C,接著,進行步驟T172,即形成絕緣層114,以覆蓋反射結構192及第二絕緣層105b。絕緣層114電性隔離反射結構192與發光二極體的其它導電構件(例如後續形成的第一電流傳導層140及第二電流傳導層150)。在本實施例中,反射結構192主要的功能是反射,雖然反射結構192可包括導電材料,但反射結構192可不作為傳輸驅動發光二極體之電訊號的導電路徑。Please refer to FIGS. 28 and 29C, and then proceed to step T172, that is, forming an insulating layer 114 to cover the reflective structure 192 and the second insulating layer 105b. The insulating layer 114 electrically isolates the reflective structure 192 from other conductive members of the light emitting diode (for example, the first current conducting layer 140 and the second current conducting layer 150 formed later). In this embodiment, the main function of the reflective structure 192 is reflection. Although the reflective structure 192 may include conductive materials, the reflective structure 192 may not serve as a conductive path for transmitting electrical signals for driving the light-emitting diodes.

請參照圖28及圖29D至圖29G,接著,進行步驟T180,即形成第一電流傳導層140及第二電流傳導層150,使第一電流傳導層140及第二電流傳導層150分別和第一型半導體層110及第二型半導體層130電性連接。請參照圖29D,在本實施例中,可於絕緣層114上形成圖案化光阻PR6,其至少暴露出對應於第一金屬層180與第二金屬層190上方的部分絕緣層114。請參照圖29E,接著,以圖案化光阻PR6為遮罩,將絕緣層114、第二絕緣層105b及第一絕緣層105a圖案化,以形成貫穿絕緣層114、第二絕緣層105b及第一絕緣層105a且暴露第一金屬層180及第二金屬層190的多個貫穿開口114a、114b、105ba、105bb、105aa、105bb。請參照圖29F及圖29G,接著,移除圖案化光阻PR6,並且於絕緣層114上形成第一電流傳導層140及第二電流傳導層150,第一電流傳導層140及第二電流傳導層150填入多個貫穿開口114a、114b、105ba、105bb、105aa、105bb,以透過第一金屬層180及第二金屬層190分別與第一型半導體層110及第二型半導體層120電性連接。Please refer to FIGS. 28 and 29D to 29G, and then proceed to step T180, that is, the first current conducting layer 140 and the second current conducting layer 150 are formed so that the first current conducting layer 140 and the second current conducting layer 150 are respectively The first-type semiconductor layer 110 and the second-type semiconductor layer 130 are electrically connected. Referring to FIG. 29D, in this embodiment, a patterned photoresist PR6 may be formed on the insulating layer 114, which exposes at least a portion of the insulating layer 114 corresponding to the first metal layer 180 and the second metal layer 190. Please refer to FIG. 29E. Next, using the patterned photoresist PR6 as a mask, the insulating layer 114, the second insulating layer 105b, and the first insulating layer 105a are patterned to form the penetrating insulating layer 114, the second insulating layer 105b, and the first insulating layer. An insulating layer 105a exposes a plurality of through openings 114a, 114b, 105ba, 105bb, 105aa, 105bb of the first metal layer 180 and the second metal layer 190. Please refer to FIGS. 29F and 29G, then, remove the patterned photoresist PR6, and form a first current conducting layer 140 and a second current conducting layer 150 on the insulating layer 114, the first current conducting layer 140 and the second current conducting layer The layer 150 is filled with a plurality of through openings 114a, 114b, 105ba, 105bb, 105aa, 105bb so as to pass through the first metal layer 180 and the second metal layer 190 to be electrically connected to the first type semiconductor layer 110 and the second type semiconductor layer 120, respectively. connect.

圖30為本發明又一實施例之發光二極體的製造流程示意圖。圖30之發光二極體的製造流程類似於圖22之發光二極體的製造流程,兩者主要的差異在於,圖30之發光二極體的製造流程少了步驟T170,而多了步驟T176及步驟T178。圖31A至圖31H為本發明又一實施例之發光二極體之部分製造方法的剖面示意圖。圖31A至圖31H對應圖30之步驟T176、T178及T180。在本實施例中,圖30之步驟T176之前的步驟T110至T160可參照圖23A至圖23R及其說明,步驟T180之後的步驟T190至T210可參照圖23X至圖24C及其說明,本領域具有通常知識者根據圖30及圖31A至圖31H及後續說明應能完成以圖30所示之製造流程製作的發光二極體,於此便不再重複說明相同或相似的步驟。FIG. 30 is a schematic diagram of a manufacturing process of a light-emitting diode according to another embodiment of the present invention. The manufacturing process of the light-emitting diode of FIG. 30 is similar to the manufacturing process of the light-emitting diode of FIG. 22. The main difference between the two is that the manufacturing process of the light-emitting diode of FIG. And step T178. 31A to 31H are schematic cross-sectional views of a part of a manufacturing method of a light-emitting diode according to another embodiment of the present invention. FIGS. 31A to 31H correspond to steps T176, T178, and T180 of FIG. 30. In this embodiment, steps T110 to T160 before step T176 in FIG. 30 can refer to Figures 23A to 23R and their descriptions, and steps T190 to T210 after step T180 can refer to Figures 23X to 24C and their descriptions. The art has Generally, the knowledgeable person should be able to complete the light-emitting diode manufactured by the manufacturing process shown in FIG. 30 according to FIG. 30 and FIG. 31A to FIG. 31H and the subsequent description, and the same or similar steps will not be repeated here.

請參照圖30及圖31A至圖31C,在步驟T160(即形成布拉格反射結構360’)後,可進行步驟T176,即在布拉格反射結構360’上形成反射結構192。請參照圖31A,舉例而言,可在第一絕緣層105a上形成圖案化光阻PR5。在本實施例中,圖案化光阻PR5可覆蓋未被布拉格反射結構360’覆蓋之部分第一絕緣層105a,而暴露布拉格反射結構360’。請參照圖31B,接著,可使用蒸鍍、濺鍍或其他適當方式,形成反射材料層192’,反射材料層192’覆蓋圖案化光阻PR5及布拉格反射結構360’。請參照圖31C,接著,移除圖案化光阻PR5。移除圖案化光阻PR5時,圖案化光阻層PR5上的部分反射材料層192’會一併被去除,布拉格反射結構360’上的部分反射材料層192’會被保留,而形成反射結構192。反射結構192可直接設置於布拉格反射結構360’上,而與布拉格反射結構360’接觸。Referring to FIGS. 30 and 31A to 31C, after step T160 (that is, forming the Bragg reflection structure 360'), step T176 may be performed, that is, the reflection structure 192 is formed on the Bragg reflection structure 360'. Referring to FIG. 31A, for example, a patterned photoresist PR5 can be formed on the first insulating layer 105a. In this embodiment, the patterned photoresist PR5 can cover a portion of the first insulating layer 105a that is not covered by the Bragg reflective structure 360', while exposing the Bragg reflective structure 360'. Please refer to FIG. 31B. Next, evaporation, sputtering, or other appropriate methods may be used to form a reflective material layer 192', which covers the patterned photoresist PR5 and the Bragg reflective structure 360'. Please refer to FIG. 31C, and then remove the patterned photoresist PR5. When the patterned photoresist PR5 is removed, the partially reflective material layer 192' on the patterned photoresist layer PR5 will be removed at the same time, and the partially reflective material layer 192' on the Bragg reflective structure 360' will be retained to form a reflective structure 192. The reflective structure 192 can be directly disposed on the Bragg reflective structure 360' and in contact with the Bragg reflective structure 360'.

請參照圖30及圖31D,接著,可進行步驟T178,即形成絕緣層114,以覆蓋反射結構192及布拉格反射結構360’。在本實施例中,絕緣層114更覆蓋未被布拉格反射結構360’覆蓋的部分第一絕緣層105a。請參照圖30及圖31E至圖31H,接著,可進行步驟T180,即形成第一電流傳導層140及第二電流傳導層150,第一電流傳導層140及第二電流傳導層150分別和第一型半導體層110及第二型半導體層130電性連接。請參照圖31E,舉例而言,可於絕緣層114上形成圖案化光阻PR6。請參照圖31F,接著,以圖案化光阻PR6為遮罩,圖案化絕緣層114及第一絕緣層105a,以形成貫穿絕緣層114及第一絕緣層105a且暴露第一金屬層180及第二金屬層190的多個貫穿開口114a、114b、105aa、105ab。請參照圖31G及圖31H,接著,移除圖案化光阻PR6,並於絕緣層114上形成第一電流傳導層140及第二電流傳導層150,第一電流傳導層140及第二電流傳導層150填入多個貫穿開口114a、114b、105aa、105ab,以分別與第一型半導體層110及第二型半導體層120電性連接。Please refer to FIG. 30 and FIG. 31D. Then, step T178 may be performed, that is, an insulating layer 114 is formed to cover the reflective structure 192 and the Bragg reflective structure 360'. In this embodiment, the insulating layer 114 further covers a part of the first insulating layer 105a that is not covered by the Bragg reflective structure 360'. Please refer to FIG. 30 and FIGS. 31E to 31H. Then, step T180 may be performed, that is, the first current conduction layer 140 and the second current conduction layer 150 are formed. The first current conduction layer 140 and the second current conduction layer 150 are respectively The first-type semiconductor layer 110 and the second-type semiconductor layer 130 are electrically connected. Referring to FIG. 31E, for example, a patterned photoresist PR6 can be formed on the insulating layer 114. 31F, then, using the patterned photoresist PR6 as a mask, the insulating layer 114 and the first insulating layer 105a are patterned to form the penetrating insulating layer 114 and the first insulating layer 105a and exposing the first metal layer 180 and the first metal layer 180 and the first insulating layer 105a. A plurality of through openings 114a, 114b, 105aa, 105ab of the second metal layer 190. Please refer to FIG. 31G and FIG. 31H. Then, the patterned photoresist PR6 is removed, and a first current conduction layer 140 and a second current conduction layer 150, a first current conduction layer 140 and a second current conduction layer are formed on the insulating layer 114 The layer 150 is filled with a plurality of through openings 114a, 114b, 105aa, 105ab to be electrically connected to the first type semiconductor layer 110 and the second type semiconductor layer 120, respectively.

圖32A至圖32G為本發明再一實施例之發光二極體的部分製造流程剖面示意圖。圖32A至圖32G示出實現圖22、圖28或圖23之完成步驟T110的另一種可能的實施方法。圖32A至圖32G所示之完成步驟T110的方法與圖23A至圖23G所示之完成步驟T110的方法類似,兩者主要的差異在於,圖23A至圖23G所示之完成步驟T110的過程中係形成一個犧牲層,而圖32A至圖32G所示之完成步驟T110的過程中係形成兩個犧牲層。以下配合圖32A至圖32G舉例說明之。32A to 32G are schematic cross-sectional views of a part of the manufacturing process of a light-emitting diode according to still another embodiment of the present invention. 32A to 32G show another possible implementation method for implementing the completion step T110 of FIG. 22, FIG. 28, or FIG. 23. The method of completing step T110 shown in FIGS. 32A to 32G is similar to the method of completing step T110 shown in FIGS. 23A to 23G. The main difference between the two is that in the process of completing step T110 shown in FIGS. 23A to 23G One sacrificial layer is formed, and two sacrificial layers are formed in the process of completing step T110 shown in FIGS. 32A to 32G. The following is an example in conjunction with FIGS. 32A to 32G.

請參照圖32A,於成長基板170上形成第一型半導體材料層110’。接著,於第一型半導體材料層110’上形成發光材料層120’。接著,於發光材料層120’上形成第二型半導體材料層130’。接著,於第二型半導體材料層130’上形成第一犧牲材料層210’。請參照圖32A及圖32B,接著,在第一犧牲材料層210’上形成圖案化光阻PR7。接著,以圖案化光阻PR7為遮罩,蝕刻第一犧牲材料層210’,以形成第一犧牲圖案層210,其中第一犧牲圖案層210暴露部分的第二型半導體材料層130’。Referring to FIG. 32A, a first type semiconductor material layer 110' is formed on the growth substrate 170. Next, a luminescent material layer 120' is formed on the first type semiconductor material layer 110'. Next, a second-type semiconductor material layer 130' is formed on the luminescent material layer 120'. Next, a first sacrificial material layer 210' is formed on the second type semiconductor material layer 130'. Please refer to FIGS. 32A and 32B. Next, a patterned photoresist PR7 is formed on the first sacrificial material layer 210'. Then, using the patterned photoresist PR7 as a mask, the first sacrificial material layer 210' is etched to form a first sacrificial patterned layer 210, wherein the first sacrificial patterned layer 210 exposes a portion of the second-type semiconductor material layer 130'.

請參照圖32C,接著,繼續以圖案化光阻PR7為遮罩,蝕刻第二型半導體材料層130’、發光材料層120’以及第一型半導體材料層110’,以形成第二型半導體層130、發光層120以及具有第一部分P1及第二部分P2之第一型半導體材料層110’。請參照圖32D,接著,移除圖案化光阻PR7,而保留第一犧牲圖案層210。第一犧牲圖案層210覆蓋第二型半導體層130,而未覆蓋第一型半導體材料層110’之第二部分P2。請參照圖32E,接著,形成第二犧牲材料層230’,以全面性覆蓋第一犧牲圖案層210及第一型半導材料層110’的第二部分P2。Please refer to FIG. 32C, and then continue to use the patterned photoresist PR7 as a mask to etch the second type semiconductor material layer 130', the luminescent material layer 120' and the first type semiconductor material layer 110' to form the second type semiconductor layer 130, the light-emitting layer 120, and the first-type semiconductor material layer 110' having a first portion P1 and a second portion P2. Please refer to FIG. 32D. Next, the patterned photoresist PR7 is removed, and the first sacrificial pattern layer 210 is retained. The first sacrificial pattern layer 210 covers the second type semiconductor layer 130, but does not cover the second portion P2 of the first type semiconductor material layer 110'. Referring to FIG. 32E, next, a second sacrificial material layer 230' is formed to completely cover the first sacrificial pattern layer 210 and the second portion P2 of the first-type semiconductor material layer 110'.

請參照圖32E及圖32F,接著,對第二犧牲材料層230’、第一型半導體材料層110’及成長基板170進行切割製程,以形成切割痕Q。切割痕Q貫穿第二犧牲材料層230’及第一型半導體材料層110’,以形成多個發光單元U及其上的多個第二犧牲圖案層230。各個發光單元U為第一型半導體層110、發光層120及第二型半導體層130堆疊的結構。值得注意的是,切割痕Q還延伸至成長基板170,而於成長基板170上形成未貫穿成長基板170之凹槽173。也就是說,成長基板170於凹槽173處的厚度較薄,於其他處的厚度較厚。由於成長基板170與第一型半導材料層110’是於同一工序中被切割,因此每一發光單元U之第一型半導體層110的側壁110a會與凹槽173的邊緣切齊。Please refer to FIGS. 32E and 32F. Next, a cutting process is performed on the second sacrificial material layer 230', the first type semiconductor material layer 110', and the growth substrate 170 to form a cutting mark Q. The cutting mark Q penetrates the second sacrificial material layer 230' and the first type semiconductor material layer 110' to form a plurality of light emitting units U and a plurality of second sacrificial pattern layers 230 thereon. Each light-emitting unit U has a stacked structure in which the first-type semiconductor layer 110, the light-emitting layer 120, and the second-type semiconductor layer 130 are stacked. It is worth noting that the cutting mark Q also extends to the growth substrate 170, and a groove 173 that does not penetrate the growth substrate 170 is formed on the growth substrate 170. In other words, the thickness of the growth substrate 170 is thinner at the groove 173 and thicker at other places. Since the growth substrate 170 and the first-type semiconductor material layer 110' are cut in the same process, the sidewall 110a of the first-type semiconductor layer 110 of each light-emitting unit U will be aligned with the edge of the groove 173.

請參照圖32G,接著,去除第一犧牲圖案層210及第二犧牲圖案層230,於此便完成了步驟T110。值得一提的是,在形成多個發光單元U之多個第一型半導體層110的過程中(即前述之切割製程中),第一犧牲圖案層210及第二犧牲材料層230’覆蓋發光單元U,因此發光單元U不易受損傷(例如:被粒子污染),而有助於後續形成之發光二極體的發光效率。Referring to FIG. 32G, then, the first sacrificial pattern layer 210 and the second sacrificial pattern layer 230 are removed, and step T110 is completed here. It is worth mentioning that in the process of forming the plurality of first-type semiconductor layers 110 of the plurality of light-emitting units U (that is, during the aforementioned cutting process), the first sacrificial pattern layer 210 and the second sacrificial material layer 230' cover the light emitting Unit U, so the light-emitting unit U is not susceptible to damage (for example: polluted by particles), and contributes to the luminous efficiency of the subsequently formed light-emitting diode.

圖33為本發明一實施例的發光二極體的上視示意圖。圖34為對應於圖33的線A1-B1的剖面示意圖。圖35為對應於圖33的線E-F的剖面示意圖。圖36為對應於圖33的線G-H的剖面示意圖。圖37為圖33之發光二極體的導電層、第一金屬層及第二金屬層的上視示意圖。請參照圖33至圖36,其繪示一種可以應用於覆晶式封裝的發光二極體600-1。本實施例的發光二極體600-1類似於前述的發光二極體600,兩者主要的差異在於:發光二極體600-1的導電層101-1與發光二極體600的導電層101具有不同的輪廓。以下主要說明此差異,兩者相同或相似處請參照前述說明。FIG. 33 is a schematic top view of a light emitting diode according to an embodiment of the invention. FIG. 34 is a schematic cross-sectional view corresponding to the line A1-B1 of FIG. 33. FIG. Fig. 35 is a schematic cross-sectional view corresponding to the line E-F in Fig. 33. Fig. 36 is a schematic cross-sectional view corresponding to the line G-H in Fig. 33. FIG. 37 is a schematic top view of the conductive layer, the first metal layer, and the second metal layer of the light-emitting diode of FIG. 33. FIG. Please refer to FIGS. 33 to 36, which illustrate a light emitting diode 600-1 that can be applied to flip-chip packaging. The light-emitting diode 600-1 of this embodiment is similar to the aforementioned light-emitting diode 600. The main difference between the two is: the conductive layer 101-1 of the light-emitting diode 600-1 and the conductive layer of the light-emitting diode 600 101 has different contours. The following mainly explains this difference, please refer to the above description for the same or similarities between the two.

請參照圖33至圖36,導電層101-1位於第二型半導體層130上且與第二型半導體層130電性連接。第二電流傳導層150藉由導電層101-1與第二型半導體層130電性連接。請參照圖33及圖37,與發光二極體600不同的是,本實施例的導電層101-1包括多個導電區塊101a,第一金屬層180位於這些導電區塊101a相隔開的區域中。更進一步地說,在本實施例中,多個導電區塊101a可彼此分離;意即,導電層101-1可斷開成多個導電區塊101a,而多個導電區塊101a彼此不直接地連接。Referring to FIGS. 33 to 36, the conductive layer 101-1 is located on the second type semiconductor layer 130 and is electrically connected to the second type semiconductor layer 130. The second current conducting layer 150 is electrically connected to the second type semiconductor layer 130 through the conductive layer 101-1. Please refer to FIG. 33 and FIG. 37. Unlike the light emitting diode 600, the conductive layer 101-1 of this embodiment includes a plurality of conductive regions 101a, and the first metal layer 180 is located in a region separated from the conductive regions 101a. middle. Furthermore, in this embodiment, the plurality of conductive blocks 101a can be separated from each other; that is, the conductive layer 101-1 can be broken into a plurality of conductive blocks 101a, and the plurality of conductive blocks 101a are not directly connected to each other.地连接。 Ground connection.

請參照圖33至圖37,舉例而言,在本實施例中,相鄰兩導電區塊101a之間的間隙101aa可設有第一型半導體層110之第二部分P2及其上之第一金屬層180。更進一步地說,在本實施例中,第一金屬層180的指部180b及焊部180a位於相鄰兩導電區塊101a之間的間隙101aa內。在本實施例中,多個間隙101aa可選擇性地排列為多條直線,而將導電層101-1劃分近似於矩形的多個導電區塊101-1。然而,本發明不以此為限,在其它實施例中,多個間隙101aa也可以其他適當方式排列,導電層101-1的多個導電區塊101-1也可呈其它適當形狀。Please refer to FIGS. 33 to 37. For example, in this embodiment, the gap 101aa between two adjacent conductive blocks 101a may be provided with the second portion P2 of the first type semiconductor layer 110 and the first portion P2 thereon. Metal layer 180. Furthermore, in this embodiment, the finger 180b and the welding part 180a of the first metal layer 180 are located in the gap 101aa between two adjacent conductive blocks 101a. In this embodiment, the plurality of gaps 101aa may be selectively arranged as a plurality of straight lines, and the conductive layer 101-1 is divided into a plurality of rectangular conductive blocks 101-1. However, the present invention is not limited to this. In other embodiments, the plurality of gaps 101aa may also be arranged in other suitable ways, and the plurality of conductive blocks 101-1 of the conductive layer 101-1 may also have other suitable shapes.

請參照圖33及圖37,在本實施例中,導電層101-1之同一導電區塊101a可重疊且電性連接於第二金屬層190之多個焊部190a及至少一指部190b。第二金屬層190中的多個焊部190a大致集中分布於一側而第一金屬層180中的多個焊部180a大致集中分布於一側大致集中分布於另一側。第二金屬層190中的指部190b由其中一個焊部190a朝向焊部180a較集中的那一側延伸,且第一金屬層180中的指部180b由其中一個焊部180a朝向焊部190a較集中的那一側延伸。利用導電層101-1之彼此分離的多個導電區塊101a,電流能更均勻地分散在發光二極體600-1中,進而提升發光二極體600-1的發光效率。Please refer to FIGS. 33 and 37. In this embodiment, the same conductive block 101a of the conductive layer 101-1 can overlap and be electrically connected to the plurality of solder portions 190a and at least one finger portion 190b of the second metal layer 190. The plurality of welding portions 190a in the second metal layer 190 are generally concentrated on one side, and the plurality of welding portions 180a in the first metal layer 180 are generally concentrated on one side and generally concentrated on the other side. The finger portion 190b in the second metal layer 190 extends from one of the welding portions 190a toward the side where the welding portion 180a is more concentrated, and the finger portion 180b in the first metal layer 180 extends from one of the welding portions 180a toward the welding portion 190a. Extend the concentrated side. By using the plurality of conductive blocks 101a separated from each other of the conductive layer 101-1, the current can be more uniformly dispersed in the light emitting diode 600-1, thereby improving the luminous efficiency of the light emitting diode 600-1.

圖38為本發明一實施例的發光二極體的上視示意圖。圖39為對應於圖38的線L-M的剖面示意圖。圖40為圖38之發光二極體的導電層、第一金屬層及第二金屬層的上視示意圖。FIG. 38 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 39 is a schematic cross-sectional view corresponding to the line L-M in Fig. 38. 40 is a schematic top view of the conductive layer, the first metal layer, and the second metal layer of the light emitting diode of FIG. 38.

請參照圖38及圖39,其繪示一種可以應用於覆晶式封裝的發光二極體600-2。本實施例的發光二極體600-2類似於前述的發光二極體600-1,兩者主要的差異在於:發光二極體600-2的導電層101-2與發光二極體600-1的導電層101-1不同。以下主要說明此差異,兩者相同或相似處請參照前述說明。Please refer to FIGS. 38 and 39, which illustrate a light-emitting diode 600-2 that can be applied to flip-chip packaging. The light-emitting diode 600-2 of this embodiment is similar to the aforementioned light-emitting diode 600-1, and the main difference between the two is: the conductive layer 101-2 of the light-emitting diode 600-2 and the light-emitting diode 600- The conductive layer 101-1 of 1 is different. The following mainly explains this difference, please refer to the above description for the same or similarities between the two.

請參照圖38至圖40,導電層101-2位於第二型半導體層130上且與第二型半導體層130電性連接。第二電流傳導層150藉由導電層101-2與第二型半導體層130電性連接。請參照圖38及圖40,導電層101-2包括多個導電區塊101a-2,與發光二極體600-1不同的是,發光二極體600-2之導電層101-2的多個導電區塊101a-2不會完全斷開,而部分地相連接。舉例而言,相鄰之兩導電區塊101a-2在與第一金屬層180之指部180b相鄰處斷開,而在第一金屬層180之相鄰兩焊部180a之間(例如圖38的線L-M處)互相連接。Referring to FIGS. 38 to 40, the conductive layer 101-2 is located on the second type semiconductor layer 130 and is electrically connected to the second type semiconductor layer 130. The second current conducting layer 150 is electrically connected to the second type semiconductor layer 130 through the conductive layer 101-2. Referring to FIGS. 38 and 40, the conductive layer 101-2 includes a plurality of conductive blocks 101a-2. Unlike the light-emitting diode 600-1, the conductive layer 101-2 of the light-emitting diode 600-2 has more conductive layers 101a-2. The conductive blocks 101a-2 will not be completely disconnected, but will be partially connected. For example, two adjacent conductive blocks 101a-2 are cut off adjacent to the finger portion 180b of the first metal layer 180, and between two adjacent welding portions 180a of the first metal layer 180 (for example, as shown in FIG. 38 at line LM) are connected to each other.

圖41為本發明一實施例的發光二極體的上視示意圖。圖42為對應於圖41的線I-J的剖面示意圖。請參照圖41及圖42,其繪示一種可以應用於覆晶式封裝的發光二極體600-3。本實施例的發光二極體600-3類似於前述的發光二極體600,兩者主要的差異在於:發光二極體600-3還包括凸塊106。以下主要說明此差異,兩者相同或相似處請參照前述說明。FIG. 41 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 42 is a schematic cross-sectional view corresponding to the line I-J in Fig. 41. Please refer to FIG. 41 and FIG. 42, which illustrate a light emitting diode 600-3 that can be applied to a flip-chip package. The light-emitting diode 600-3 of this embodiment is similar to the aforementioned light-emitting diode 600, and the main difference between the two is that the light-emitting diode 600-3 also includes a bump 106. The following mainly explains this difference, please refer to the above description for the same or similarities between the two.

請參照圖41及圖42,本實施例的發光二極體600-3除了圖18之發光二極體600所具備的構件外還包括凸塊106。凸塊106設置於第二絕緣層105b上。在本實施例中,第二型半導體層130較第一型半導體層110遠離成長基板170,而凸塊106可設置於第二型半導體層130上方之部分的第二絕緣層105b上。更進一步地說,布拉格反射結構360’設置於第二型半導體層130與第二絕緣層105b之間,而凸塊106可設置於布拉格反射結構360’及第二絕緣層105b的堆疊結構上。舉例而言,在本實施例中,凸塊106可直接設置於第二絕緣層105b上,絕緣層113可覆蓋凸塊106。凸塊106與第一電流傳導層140及/或第二電流傳導層150可屬於同一膜層。然而,本發明不限於此,在其他實施例中,凸塊106也可直接於其它適當位置及/或屬於其它適當膜層,以下將於後續段落配合其他圖示舉例說明之。Referring to FIGS. 41 and 42, the light-emitting diode 600-3 of this embodiment includes the bumps 106 in addition to the components of the light-emitting diode 600 of FIG. 18. The bump 106 is disposed on the second insulating layer 105b. In this embodiment, the second-type semiconductor layer 130 is farther away from the growth substrate 170 than the first-type semiconductor layer 110, and the bumps 106 can be disposed on the second insulating layer 105b above the second-type semiconductor layer 130. Furthermore, the Bragg reflective structure 360' is disposed between the second type semiconductor layer 130 and the second insulating layer 105b, and the bump 106 can be disposed on the stacked structure of the Bragg reflective structure 360' and the second insulating layer 105b. For example, in this embodiment, the bump 106 can be directly disposed on the second insulating layer 105 b, and the insulating layer 113 can cover the bump 106. The bump 106 and the first current conducting layer 140 and/or the second current conducting layer 150 may belong to the same film layer. However, the present invention is not limited to this. In other embodiments, the bumps 106 may also be directly located at other appropriate positions and/or belong to other appropriate film layers, which will be illustrated in the following paragraphs with other illustrations as examples.

請參照圖41及圖42,在本實施例中,凸塊106與第一電流傳導層140、第二電流傳導層150、第一接合層108及第二接合層109彼此錯位,也就是說這些構件的面積彼此不相重疊。凸塊106位於第一電流傳導層140與第二電流傳導層150之間的間隙的面積之內,且位於第一接合層108與第二接合層109之間的間隙的面積之內。Please refer to FIGS. 41 and 42, in this embodiment, the bump 106 and the first current conducting layer 140, the second current conducting layer 150, the first bonding layer 108, and the second bonding layer 109 are misaligned with each other, that is, these The areas of the components do not overlap with each other. The bump 106 is located within the area of the gap between the first current conducting layer 140 and the second current conducting layer 150 and within the area of the gap between the first bonding layer 108 and the second bonding layer 109.

一般而言,發光二極體600-3在共晶接合至外部電路板前,會先將發光二極體600-3會設置於承載膜(例如:藍膜;未繪示)上。當發光二極體600-3設置於承載膜上時,發光二極體600-3的第一接合層108及第二接合層109在下,發光二極體600-3的發光單元U在上,而凸塊106較發光單元U接近承載膜。欲將承載膜上的發光二極體600-3共晶接合至外部電路板時,需自承載膜上提取發光二極體600-3,此時,通常會利用設置在承載膜下方之提取機構(例如:頂針,未繪示)抵頂承載膜及其上之發光二極體600-3。在設置有凸塊106的情形下,頂針可以抵頂於凸塊106,以助提取機構提取發光二極體600-3。基於穩定抵頂發光二極體600-3的考量,凸塊106可與發光二極體600-3的質量中心線及/或幾何中心線重疊,但本發明不以此為限。由於凸塊106的延展性高(例如:高於絕緣層113及/或第二絕緣層105b的延展性),因此提取機構抵頂凸塊106時,凸塊106不易碎裂而能保護其與成長基板170之間的構件(例如:第二絕緣層105b、布拉格反射結構360’、導電層101、第二型半導體層130、發光層120、第一型半導體層110等)。藉此,發光二極體600-3在提取過程中不易過度受損而可保有較好的製程良率。此外,由於凸塊106與發光二極體600-3的其它構件(例如:第一電流傳導層140、第二電流傳導層150、第一接合層108及第二接合層109)電性隔離,因此即便凸塊106因提取機構之抵頂而受損,發光二極體600-3的電氣特性也不受影響。Generally speaking, before the eutectic bonding of the light-emitting diode 600-3 to the external circuit board, the light-emitting diode 600-3 will be placed on the carrier film (for example, blue film; not shown). When the light-emitting diode 600-3 is disposed on the carrier film, the first bonding layer 108 and the second bonding layer 109 of the light-emitting diode 600-3 are on the bottom, and the light-emitting unit U of the light-emitting diode 600-3 is on the top. The bump 106 is closer to the carrier film than the light-emitting unit U. When eutectic bonding the light-emitting diode 600-3 on the carrier film to an external circuit board, the light-emitting diode 600-3 needs to be extracted from the carrier film. In this case, an extraction mechanism arranged under the carrier film is usually used (For example: thimble, not shown), press against the supporting film and the light-emitting diode 600-3 on it. In the case where the bump 106 is provided, the thimble can abut against the bump 106 to assist the extraction mechanism to extract the light-emitting diode 600-3. Based on the consideration of stably resisting the light-emitting diode 600-3, the bump 106 may overlap the mass center line and/or the geometric center line of the light-emitting diode 600-3, but the present invention is not limited thereto. Due to the high ductility of the bump 106 (for example, higher ductility than the insulating layer 113 and/or the second insulating layer 105b), when the extraction mechanism is pressed against the bump 106, the bump 106 is not easily broken and can protect it and The components between the growth substrates 170 (for example: the second insulating layer 105b, the Bragg reflective structure 360', the conductive layer 101, the second type semiconductor layer 130, the light emitting layer 120, the first type semiconductor layer 110, etc.). In this way, the light-emitting diode 600-3 is not easily damaged excessively during the extraction process, and a good process yield can be maintained. In addition, because the bump 106 is electrically isolated from other components of the light emitting diode 600-3 (for example, the first current conducting layer 140, the second current conducting layer 150, the first bonding layer 108, and the second bonding layer 109), Therefore, even if the bump 106 is damaged due to the topping of the extraction mechanism, the electrical characteristics of the light-emitting diode 600-3 are not affected.

請參照圖41及圖42,在本實施例中,第二電流傳導層150在成長基板170上的投影面積可大於或等於第二接合層109在成長基板170上的投影面積;第一電流傳導層140在成長基板170上的投影面積可大於或等於第一接合層108在成長基板170上的投影面積,但本發明不以此為限。在本實施例中,凸塊106在成長基板170上的投影可位於第一電流傳導層140在成長基板170上的投影與第二電流傳導層150在成長基板170上的投影之間,且不與第一電流傳導層140及第二電流傳導層150重疊。Please refer to FIGS. 41 and 42, in this embodiment, the projected area of the second current conducting layer 150 on the growth substrate 170 may be greater than or equal to the projected area of the second bonding layer 109 on the growth substrate 170; the first current conduction The projected area of the layer 140 on the growth substrate 170 may be greater than or equal to the projected area of the first bonding layer 108 on the growth substrate 170, but the present invention is not limited thereto. In this embodiment, the projection of the bump 106 on the growth substrate 170 may be located between the projection of the first current conducting layer 140 on the growth substrate 170 and the projection of the second current conducting layer 150 on the growth substrate 170, and not It overlaps with the first current conducting layer 140 and the second current conducting layer 150.

請參照圖41,發光二極體600-3與前述發光二極體600不同的另一處是,第一金屬層180包括至少一焊部180a-1,其與其中一個指部180b連接,而發光二極體600-3之焊部180a的形狀與發光二極體600之焊部180a-1的形狀不同。詳言之,在本實施例中,第一金屬層180之焊部180a-1的寬度W1是漸變的。舉例而言,焊部180a-1的寬度W1大於指部180b的寬度W,且焊部180a-1的寬度W1可由靠近對應之指部180b的一側先漸增然後再漸減。類似地,在本實施例中,第二金屬層190包括至少一焊部190a-1,其與指部190b-1或190b-2連接,而發光二極體600-3之焊部190a-1的形狀與發光二極體600之焊部190a-1的形狀不同。詳言之,在本實施例中,第二金屬層190之焊部190a-1的寬度W2是漸變的。舉例而言,焊部190a-1的寬度W2大於指部190b-1、190b-2的寬度W’,且焊部190a-1的寬度W2可由靠近對應之指部190b-1、190b-2的一側先漸增然後再漸減。Please refer to FIG. 41, another difference between the light-emitting diode 600-3 and the aforementioned light-emitting diode 600 is that the first metal layer 180 includes at least one welding portion 180a-1, which is connected to one of the fingers 180b, and The shape of the welding portion 180a of the light-emitting diode 600-3 is different from the shape of the welding portion 180a-1 of the light-emitting diode 600. In detail, in this embodiment, the width W1 of the welding portion 180a-1 of the first metal layer 180 is gradual. For example, the width W1 of the welding portion 180a-1 is greater than the width W of the finger 180b, and the width W1 of the welding portion 180a-1 can be increased first and then decreased gradually from the side close to the corresponding finger 180b. Similarly, in this embodiment, the second metal layer 190 includes at least one welding portion 190a-1, which is connected to the finger portion 190b-1 or 190b-2, and the welding portion 190a-1 of the light-emitting diode 600-3 The shape of is different from the shape of the welding portion 190a-1 of the light-emitting diode 600. In detail, in this embodiment, the width W2 of the welding portion 190a-1 of the second metal layer 190 is gradual. For example, the width W2 of the welding portion 190a-1 is greater than the width W'of the fingers 190b-1 and 190b-2, and the width W2 of the welding portion 190a-1 can be closer to the corresponding fingers 190b-1, 190b-2 One side increases first and then decreases gradually.

請參照圖41,發光二極體600-3與前述發光二極體600不同的另一處是,發光二極體600-3之第二金屬層190的至少一指部190b-2的形狀與發光二極體600之第二金屬層190的指部190b的形狀不同。舉例而言,在本實施例中,第二金屬層190包括多個指部190b-1及多個指部190b-2。指部190b-1可呈直線狀。指部190b-2包括直線子部190b-21及彎曲子部190b-22,其中指部190b-2之直線子部190b-21連接於對應之焊部190a-1與彎曲子部190b-22之間。指部190b-1設置於相鄰的兩個指部190b-2之間,這兩個相鄰的指部190b-2之彎曲子部190b-22彎向指部190b-1之遠離焊部190a-1的一端。與同一指部190b-1相鄰兩指部190b-2的彎曲子部190b-22的彎曲方向相反。此外,在本實施例中,第二型半導體層130可圖案化成圍繞第一金屬層180,也就是說,第一金屬層180位於第二型半導體層130被移除的區域中。由於第一金屬層180位設置觸發光層120也會被移除,第一金屬層180的面積可小於或等於第二金屬層190的面積,以獲得充分的發光面積。不過,隨不同製造需求,第一金屬層180與第二金屬層190的面積可以不以上述關係為限。Please refer to FIG. 41, another difference between the light-emitting diode 600-3 and the aforementioned light-emitting diode 600 is that the shape of at least one finger portion 190b-2 of the second metal layer 190 of the light-emitting diode 600-3 and The shapes of the fingers 190b of the second metal layer 190 of the light emitting diode 600 are different. For example, in this embodiment, the second metal layer 190 includes a plurality of fingers 190b-1 and a plurality of fingers 190b-2. The finger 190b-1 may be linear. The finger portion 190b-2 includes a straight portion 190b-21 and a curved portion 190b-22, wherein the straight portion 190b-21 of the finger portion 190b-2 is connected to the corresponding welding portion 190a-1 and the curved portion 190b-22 between. The finger portion 190b-1 is arranged between two adjacent finger portions 190b-2, and the curved sub-portions 190b-22 of the two adjacent finger portions 190b-2 are bent toward the finger portion 190b-1 away from the welding portion 190a -1 end. The bending directions of the bending sub-parts 190b-22 of the two finger parts 190b-2 adjacent to the same finger part 190b-1 are opposite. In addition, in this embodiment, the second-type semiconductor layer 130 may be patterned to surround the first metal layer 180, that is, the first metal layer 180 is located in a region where the second-type semiconductor layer 130 is removed. Since the first metal layer 180 is provided with the trigger light layer 120 also removed, the area of the first metal layer 180 may be smaller than or equal to the area of the second metal layer 190 to obtain a sufficient light emitting area. However, with different manufacturing requirements, the areas of the first metal layer 180 and the second metal layer 190 may not be limited by the above relationship.

圖43為本發明一實施例的發光二極體的上視示意圖。圖44為對應於圖43的線I1-J1的剖面示意圖。請參照圖43及圖44,其繪示一種可以應用於覆晶式封裝的發光二極體600-4。本實施例的發光二極體600-4類似於前述的發光二極體600-3,兩者主要的差異在於:發光二極體600-4之凸塊106’所屬的膜層與發光二極體600-3之凸塊106所屬的膜層不同。詳言之,在本實施例中,凸塊106’、第一接合層108及第二接合層109可屬於同一膜層。凸塊106’可配置於覆蓋第一電流傳導層140及第二電流傳導層150的第二絕緣層105b上。兩者相同或相似處請參照前述說明,於此便不再重述。FIG. 43 is a schematic top view of a light emitting diode according to an embodiment of the invention. FIG. 44 is a schematic cross-sectional view corresponding to the line I1-J1 of FIG. 43. FIG. Please refer to FIG. 43 and FIG. 44, which illustrate a light-emitting diode 600-4 that can be applied to flip-chip packaging. The light-emitting diode 600-4 of this embodiment is similar to the aforementioned light-emitting diode 600-3, and the main difference between the two is: the film layer of the bump 106' of the light-emitting diode 600-4 and the light-emitting diode The film layer of the bump 106 of the body 600-3 is different. In detail, in this embodiment, the bumps 106', the first bonding layer 108, and the second bonding layer 109 may belong to the same film layer. The bump 106' may be disposed on the second insulating layer 105b covering the first current conducting layer 140 and the second current conducting layer 150. Please refer to the foregoing description for the same or similarities of the two, and will not repeat them here.

圖45為本發明一實施例的發光二極體的上視示意圖。圖46為對應於圖45的線P-P’的剖面示意圖。圖47為對應於圖45的線K-K’的剖面示意圖。圖48為對應於圖45的線N-N’的剖面示意圖。圖49為對應於圖45的線L-L’的剖面示意圖。圖50為對應於圖45的線M-M’的剖面示意圖。請參照圖45至圖50,本實施例之發光二極體600-5與前述之發光二極體600類似,發光二極體600-5與發光二極體600不同的處是,發光二極體600-5之第一電流傳導層140-5及第二電流傳導層150-5的形狀與發光二極體600之第一電流傳導層140及第二電流傳導層150的形狀不同。請參照圖45,詳言之,在本實施例中,第一電流傳導層140-5包括彼此分離的多個導電部142,第二電流傳導層150-5具有多個缺口152,而第一電流傳導層140-5之多個導電部142設置於第二電流傳導層150-5的多個缺口152的面積以內。FIG. 45 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 46 is a schematic cross-sectional view corresponding to the line P-P' in Fig. 45. Fig. 47 is a schematic cross-sectional view corresponding to the line K-K' in Fig. 45. Fig. 48 is a schematic cross-sectional view corresponding to the line N-N' in Fig. 45. Fig. 49 is a schematic cross-sectional view corresponding to the line L-L' in Fig. 45. Fig. 50 is a schematic cross-sectional view corresponding to the line M-M' in Fig. 45. Please refer to FIGS. 45 to 50, the light-emitting diode 600-5 of this embodiment is similar to the aforementioned light-emitting diode 600. The difference between the light-emitting diode 600-5 and the light-emitting diode 600 is that the light-emitting diode The shape of the first current conducting layer 140-5 and the second current conducting layer 150-5 of the body 600-5 is different from the shape of the first current conducting layer 140 and the second current conducting layer 150 of the light emitting diode 600. Please refer to FIG. 45. In detail, in this embodiment, the first current conducting layer 140-5 includes a plurality of conductive portions 142 separated from each other, the second current conducting layer 150-5 has a plurality of notches 152, and the first The plurality of conductive portions 142 of the current conducting layer 140-5 are arranged within the area of the plurality of notches 152 of the second current conducting layer 150-5.

另外,在本實施例中,由上視圖來看,第一金屬層180的每一個焊部180a可被第二金屬層190的多個焊部190a圍繞。單一焊部180a與最近之第二金屬層190的不同焊部190a之間的距離K1、K2可相等或不相等。舉例而言,在本實施例中,第一金屬層180的一個焊部180a可被第二金屬層190之六個焊部190a圍繞,所述第二金屬層190之六個焊部190a可排列成一個六角形HX。然而,本發明不限於此。在其它實施例中,圍繞第一金屬層180之同一焊部180a的第二金屬層190的多個焊部190a也可排列成其他適當形狀。舉例而言,在另一實施例中,如圖55,第一金屬層180的一個焊部180a也可被第二金屬層190之四個焊部190a圍繞,所述第二金屬層190之四個焊部190a可排列成四角形TR;在又一實施例中,如圖56,第一金屬層180的一個焊部180a也可被第二金屬層190之八個焊部190a圍繞,所述第二金屬層190之八個焊部190a可排列成八角形OC。In addition, in this embodiment, from the top view, each welding portion 180 a of the first metal layer 180 may be surrounded by a plurality of welding portions 190 a of the second metal layer 190. The distances K1, K2 between the single welding portion 180a and the nearest different welding portion 190a of the second metal layer 190 may be equal or unequal. For example, in this embodiment, one welding portion 180a of the first metal layer 180 can be surrounded by six welding portions 190a of the second metal layer 190, and the six welding portions 190a of the second metal layer 190 can be arranged Into a hexagonal HX. However, the present invention is not limited to this. In other embodiments, the plurality of welding portions 190a of the second metal layer 190 surrounding the same welding portion 180a of the first metal layer 180 can also be arranged in other suitable shapes. For example, in another embodiment, as shown in FIG. 55, one welding portion 180a of the first metal layer 180 may also be surrounded by four welding portions 190a of the second metal layer 190. The fourth of the second metal layer 190 The welding portions 190a can be arranged in a quadrangular TR; in another embodiment, as shown in FIG. 56, one welding portion 180a of the first metal layer 180 can also be surrounded by eight welding portions 190a of the second metal layer 190. The eight welding portions 190a of the two metal layers 190 can be arranged in an octagonal shape OC.

請參照圖45及圖46,第二接合層109可具有實心的圖案而不具有位於內部的貫穿開口。第二接合層109可填入絕緣層113的貫穿開口113b以電性接觸於第二電流傳導層150-5,第二電流傳導層150-5可填入布拉格反射結構360’的貫穿開口166以電性連接至位在貫穿開口166內的第二金屬層190的焊部190a,第二金屬層190的焊部190a配置於第二型半導體層130上且可藉由導電層101與第二型半導體層130電性連接。簡言之,第二接合層109可藉由第二電流傳導層150-5、第二金屬層190的焊部190a及導電層101與第二型半導體層130電性連接。Please refer to FIGS. 45 and 46, the second bonding layer 109 may have a solid pattern without a through opening located inside. The second bonding layer 109 can fill the through opening 113b of the insulating layer 113 to electrically contact the second current conducting layer 150-5, and the second current conducting layer 150-5 can fill the through opening 166 of the Bragg reflective structure 360'. It is electrically connected to the welding portion 190a of the second metal layer 190 located in the through opening 166. The welding portion 190a of the second metal layer 190 is disposed on the second type semiconductor layer 130 and can be connected to the second type semiconductor layer 130 through the conductive layer 101. The semiconductor layer 130 is electrically connected. In short, the second bonding layer 109 can be electrically connected to the second-type semiconductor layer 130 through the second current conducting layer 150-5, the welding portion 190a of the second metal layer 190, and the conductive layer 101.

在本實施例中,絕緣層113的貫穿開口113b與布拉格反射結構360’的貫穿開口166可錯位設置,而由上視圖來看不相重疊。此外,被第二接合層109覆蓋之絕緣層113的貫穿開口113b在方向y上具有寬度W5,布拉格反射結構360’的貫穿開口166在方向y上具有寬度W6,而W5>W6。In this embodiment, the through opening 113b of the insulating layer 113 and the through opening 166 of the Bragg reflective structure 360' can be arranged in a staggered manner, but they do not overlap as seen from the top view. In addition, the through opening 113b of the insulating layer 113 covered by the second bonding layer 109 has a width W5 in the direction y, and the through opening 166 of the Bragg reflective structure 360' has a width W6 in the direction y, and W5>W6.

請參照圖45及圖47,在本實施例中,第一接合層108可具有實心的圖案而不具有位於內部的貫穿開口。第一電流傳導層140-5之導電部142在方向y上延伸,且被第一接合層108覆蓋之絕緣層113的貫穿開口113a在方向y上具有寬度W3。布拉格反射結構360’的貫穿開口166在方向y上具有寬度W4,而W3>W4。Please refer to FIGS. 45 and 47. In this embodiment, the first bonding layer 108 may have a solid pattern without a through opening located inside. The conductive portion 142 of the first current conducting layer 140-5 extends in the direction y, and the through opening 113a of the insulating layer 113 covered by the first bonding layer 108 has a width W3 in the direction y. The through opening 166 of the Bragg reflective structure 360' has a width W4 in the direction y, and W3>W4.

請參照圖45、圖47及圖49、50,第一接合層108可填入絕緣層113的貫穿開口113a以電性接觸於第一電流傳導層140-5的導電部142,第一電流傳導層140-5之導電部142可填入布拉格反射結構360’的貫穿開口166以電性連接至位在貫穿開口166內的第一金屬層180的焊部180a。焊部180a配置於第一型半導體層110上且與第一型半導體層110電性連接。簡言之,第一接合層108可藉由第一電流傳導層140-5之導電部142及第一金屬層180的焊部180a與第一型半導體層110電性連接。此外,在本實施例中,絕緣層113的貫穿開口113a與布拉格反射結構360’的貫穿開口166可錯位,而由上視圖來看不相重疊。Referring to FIGS. 45, 47 and 49, 50, the first bonding layer 108 can fill the through opening 113a of the insulating layer 113 to electrically contact the conductive portion 142 of the first current conducting layer 140-5, and the first current conducting The conductive portion 142 of the layer 140-5 can be filled into the through opening 166 of the Bragg reflective structure 360 ′ to be electrically connected to the welding portion 180 a of the first metal layer 180 located in the through opening 166. The welding portion 180 a is disposed on the first-type semiconductor layer 110 and is electrically connected to the first-type semiconductor layer 110. In short, the first bonding layer 108 can be electrically connected to the first type semiconductor layer 110 through the conductive portion 142 of the first current conducting layer 140-5 and the welding portion 180 a of the first metal layer 180. In addition, in this embodiment, the through opening 113a of the insulating layer 113 and the through opening 166 of the Bragg reflective structure 360' can be misaligned, but they do not overlap as seen from the top view.

請參照圖45及圖48,在本實施例中,第一電流傳導層140-5的多個導電部142在方向x上排列且各自具有平行於y方向的延長方向。每一導電部142具有位於第一接合層108與第二接合層109之間的中段部142a,其例如為每一導電部142不重疊於第一接合層108與第二接合層109的部分。至少一導電部142之中段部142a(或稱寬子部)在方向x上的寬度為變動的。舉例而言,圖45的發光二極體600-5包括三個導電部142,其中位於中間的導電部142的中段部142a的寬度W7可由中央向第一接合層108及第二接合層109漸減。其他導電部142的中段部142a在方向x上則可具有一致的寬度W8,而且寬度W7的最寬處>寬度W8。Referring to FIGS. 45 and 48, in this embodiment, the plurality of conductive portions 142 of the first current conducting layer 140-5 are arranged in the direction x and each has an extension direction parallel to the y direction. Each conductive portion 142 has a middle portion 142 a located between the first bonding layer 108 and the second bonding layer 109, which is, for example, a portion where each conductive portion 142 does not overlap the first bonding layer 108 and the second bonding layer 109. The width of the middle segment 142a (or the wide sub-part) of the at least one conductive portion 142 in the direction x is variable. For example, the light-emitting diode 600-5 of FIG. 45 includes three conductive portions 142, wherein the width W7 of the middle portion 142a of the conductive portion 142 located in the middle may gradually decrease from the center toward the first bonding layer 108 and the second bonding layer 109 . The middle portion 142a of the other conductive portions 142 may have a uniform width W8 in the direction x, and the widest part of the width W7 is greater than the width W8.

圖51為本發明一實施例的發光二極體的剖面示意圖。圖51可為對應於圖45的線P-P’之另一實施方式。圖51的發光二極體600-6與圖46的發光二極體600-5類似,兩者的差異在於,圖51的發光二極體600-6還包括第二絕緣層105b,第二絕緣層105b位於第一電流傳導層140-5與布拉格反射結構360’之間以及第二電流傳導層150-5與布拉格反射結構360’之間。第二絕緣層105b具有貫穿開口105ba及貫穿開口150bb。第二絕緣層105b可填入布拉格反射結構360’的貫穿開口166。第一電流傳導層140-5填入貫穿開口166內的第二絕緣層105b的貫穿開口105ba而與第一金屬層180電性連接。第二電流傳導層150-5填入貫穿開口166內的第二絕緣層105b的貫穿開口105bb而與第二金屬層190電性連接。FIG. 51 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention. FIG. 51 may be another embodiment corresponding to the line P-P' in FIG. 45. The light-emitting diode 600-6 of FIG. 51 is similar to the light-emitting diode 600-5 of FIG. 46. The difference between the two is that the light-emitting diode 600-6 of FIG. 51 also includes a second insulating layer 105b. The layer 105b is located between the first current conducting layer 140-5 and the Bragg reflective structure 360' and between the second current conducting layer 150-5 and the Bragg reflective structure 360'. The second insulating layer 105b has a through opening 105ba and a through opening 150bb. The second insulating layer 105b can fill the through opening 166 of the Bragg reflective structure 360'. The first current conducting layer 140-5 fills the through opening 105 ba of the second insulating layer 105 b in the through opening 166 and is electrically connected to the first metal layer 180. The second current conducting layer 150-5 fills the through opening 105bb of the second insulating layer 105b in the through opening 166 and is electrically connected to the second metal layer 190.

圖52為本發明一實施例的發光二極體的剖面示意圖。圖52可為對應於圖45的線P-P’之再一實施方式。圖52的發光二極體600-7與圖51的發光二極體600-6類似,兩者的差異在於,圖52的發光二極體600-7可省略第一金屬層180及第二金屬層190的設置,第一電流傳導層140-5可填入第二絕緣層105b的貫穿開口105ba而直接電性接觸於第一型半導體層110,第二電流傳導層150-5可填入第二絕緣層105b的貫穿開口105bb而直接電性接觸於第二型半導體層130上的導電層101。FIG. 52 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention. FIG. 52 may be another embodiment corresponding to the line P-P' in FIG. 45. The light-emitting diode 600-7 of FIG. 52 is similar to the light-emitting diode 600-6 of FIG. 51. The difference between the two is that the light-emitting diode 600-7 of FIG. 52 can omit the first metal layer 180 and the second metal. With the arrangement of the layer 190, the first current conducting layer 140-5 can be filled in the through opening 105ba of the second insulating layer 105b to directly electrically contact the first type semiconductor layer 110, and the second current conducting layer 150-5 can be filled in the first type semiconductor layer 110. The penetrating opening 105bb of the two insulating layers 105b directly electrically contacts the conductive layer 101 on the second-type semiconductor layer 130.

圖53為本發明一實施例的發光二極體的上視面示意圖。圖54為對應於圖53的線N1-N1’的剖面示意圖。請參照圖53及圖54,本實施例之發光二極體600-8與前述之發光二極體600-6類似,兩者的差異在於,發光二極體600-8之導電層101-8具有多個缺口101aa。第一金屬層180之多個焊部180a位於導電層101-8之缺口101aa的面積內。導電層101-8包括多個導電區塊101a-8,第一金屬層180位於多個導電區塊101a-8相隔開來的缺口101aa面積中。發光二極體600-8之導電層101-8的多個導電區塊101a-8可不完全斷開,而部分地相連接。在本實施例中,導電層101-8的每一缺口101aa大致上位於第一電流傳導層140-5之導電部142的正下方,但本發明不以此為限。FIG. 53 is a schematic top view of a light emitting diode according to an embodiment of the invention. FIG. 54 is a schematic cross-sectional view corresponding to the line N1-N1' of FIG. 53. FIG. Please refer to FIGS. 53 and 54, the light-emitting diode 600-8 of this embodiment is similar to the aforementioned light-emitting diode 600-6, and the difference between the two is that the conductive layer 101-8 of the light-emitting diode 600-8 There are multiple gaps 101aa. The plurality of welding portions 180a of the first metal layer 180 are located in the area of the gap 101aa of the conductive layer 101-8. The conductive layer 101-8 includes a plurality of conductive blocks 101a-8, and the first metal layer 180 is located in the area of the gap 101aa separated by the plurality of conductive blocks 101a-8. The plurality of conductive blocks 101a-8 of the conductive layer 101-8 of the light emitting diode 600-8 may not be completely disconnected, but partially connected. In this embodiment, each notch 101aa of the conductive layer 101-8 is substantially located directly below the conductive portion 142 of the first current conducting layer 140-5, but the invention is not limited to this.

綜上所述,本發明一實施例的發光二極體包括第一型半導體層、第二型半導體層、位於第一型半導體層與第二型半導體層之間的發光層。並且,發光二極體還包括位於半導體層上且與半導體層電性連接的金屬層、電流傳導層與接合層墊。金屬層位於電流傳導層與半導體層之間。電流傳導層位於接合層與金屬層之間。接合層藉由電流傳導層及金屬層與半導體層電性連接。特別是,接合層的圖案並非實心的而是具有多個貫穿開口,且接合層的貫穿開口與金屬層重疊。換言之,接合層的實體面積與金屬層的實體面積錯位,而接合層與金屬層之間存在一段路徑。藉此,接合層在用以與外部電路板接合的過程中,接合材料(例如:錫膏)不易完全地流過所述路徑而造成短路問題。In summary, the light emitting diode of an embodiment of the present invention includes a first type semiconductor layer, a second type semiconductor layer, and a light emitting layer located between the first type semiconductor layer and the second type semiconductor layer. In addition, the light emitting diode further includes a metal layer located on the semiconductor layer and electrically connected to the semiconductor layer, a current conducting layer, and a bonding layer pad. The metal layer is located between the current conducting layer and the semiconductor layer. The current conducting layer is located between the bonding layer and the metal layer. The bonding layer is electrically connected to the semiconductor layer through the current conducting layer and the metal layer. In particular, the pattern of the bonding layer is not solid but has a plurality of through openings, and the through openings of the bonding layer overlap with the metal layer. In other words, the physical area of the bonding layer is misaligned with the physical area of the metal layer, and there is a path between the bonding layer and the metal layer. In this way, when the bonding layer is used for bonding with the external circuit board, the bonding material (for example, solder paste) is not easy to completely flow through the path, causing a short circuit problem.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

12、22、162、 B12、B22‧‧‧第一折射層14、24、164、B14、B24‧‧‧第二折射層100、100’、200’、300’、400’、500、600、600’、600-1、600-2、600-3、600-4、600-5、600-6、600-7、600-8‧‧‧發光二極體101、101-1、101-2、101-8‧‧‧導電層101a、101a-2、101a-8‧‧‧導電區塊101aa‧‧‧間隙103‧‧‧絕緣圖案103’‧‧‧絕緣材料層105、113、114‧‧‧絕緣層105a、I1‧‧‧第一絕緣層105b、I2‧‧‧第二絕緣層105b’、113’‧‧‧絕緣材料層106、106’‧‧‧凸塊107‧‧‧接合層108‧‧‧第一接合層109‧‧‧第二接合層110‧‧‧第一型半導體層110a、120a、103c‧‧‧側壁110’‧‧‧第一型半導體材料層111、120b‧‧‧第一表面112、120c‧‧‧第二表面120‧‧‧發光層120’‧‧‧發光材料層130‧‧‧第二型半導體層130’‧‧‧第二型半導體材料層140、140-5‧‧‧第一電流傳導層140a、150a、108b、109b‧‧‧內邊緣140b、150b、108c、109c‧‧‧外邊緣142‧‧‧導電部142a‧‧‧中段部150、150-5‧‧‧第二電流傳導層152‧‧‧缺口160、160’、260’、360’、560’、DBR1、DBR2、DBR3、DBR4‧‧‧布拉格反射結構162’‧‧‧第一折射材料層164’‧‧‧第二折射材料層166、167、O1、105aa、105ab 、105ba、105bb、108a、109a、113a、113b、114a、114b‧‧‧貫穿開口170‧‧‧成長基板171‧‧‧第一表面172‧‧‧第二表面173‧‧‧凹槽180‧‧‧第一金屬層180a、180a-1、190a、190a-1‧‧‧焊部180b、190b、190b-1、190b-2‧‧‧指部190b-21‧‧‧直線子部190b-22‧‧‧彎曲子部182‧‧‧歐姆接觸層184‧‧‧反射層186‧‧‧連接層190‧‧‧第二金屬層192‧‧‧反射結構192’’‧‧‧反射材料層210‧‧‧第一犧牲層210’‧‧‧第一犧牲材料層212‧‧‧第一犧牲圖案220‧‧‧犧牲層222‧‧‧犧牲圖案360’’‧‧‧布拉格反射材料堆疊層360’-1‧‧‧邊緣區360’-2‧‧‧內部區B1、B2‧‧‧主堆疊層C1‧‧‧過渡堆疊層C12‧‧‧第三折射層C14‧‧‧第四折射層D1、D2、D3、D4‧‧‧修補堆疊層D12、D22‧‧‧第五折射層D14、D24‧‧‧第六折射層G1、G2、G3、G4‧‧‧間距HX‧‧‧六角形L、L1、L2、L2’、L3、L4‧‧‧光束M‧‧‧金屬層MT‧‧‧頂表面MB‧‧‧底表面MS‧‧‧側表面N140、N150‧‧‧缺口OC‧‧‧八角形P1‧‧‧第一部分P2‧‧‧第二部分PR1、PR2、PR3、PR4、PR5、PR6‧‧‧圖案化光阻Q‧‧‧切割痕R‧‧‧局部S1、S2‧‧‧電流傳導路徑S140、S150‧‧‧側邊T1‧‧‧第一厚度T2‧‧‧第二厚度T3‧‧‧第三厚度T4、T5、T6‧‧‧厚度T110~T210‧‧‧步驟TR‧‧‧四角形W、W’、W1、W2、W3、W4、W5、W6、W7、W8‧‧‧寬度U‧‧‧發光單元x、y‧‧‧方向Θ‧‧‧夾角12, 22, 162, B12, B22‧‧‧First refraction layer 14, 24,164, B14, B24‧‧‧Second refraction layer 100, 100', 200', 300', 400', 500, 600, 600', 600-1, 600-2, 600-3, 600-4, 600-5, 600-6, 600-7, 600-8‧‧‧LED 101, 101-1, 101-2 ,101-8‧‧‧Conductive layer 101a, 101a-2, 101a-8‧‧‧Conductive block 101aa‧‧‧Gap 103‧‧‧Insulation pattern 103'‧‧‧Insulating material layer 105,113,114‧‧ ‧Insulation layer 105a, I1‧‧‧First insulation layer 105b, I2‧‧‧Second insulation layer 105b', 113'‧‧‧Insulation material layer 106, 106'‧‧‧Bump 107‧‧‧Joint layer 108 ‧‧‧First bonding layer 109‧‧‧Second bonding layer 110‧‧‧First type semiconductor layer 110a, 120a, 103c‧‧‧Sidewall 110'‧‧‧First type semiconductor material layer 111, 120b‧‧‧ First surface 112, 120c‧‧‧Second surface 120‧‧‧Light emitting layer 120'‧‧‧Light emitting material layer 130‧‧‧Second type semiconductor layer 130'‧‧‧Second type semiconductor material layer 140,140- 5‧‧‧First current conducting layer 140a, 150a, 108b, 109b‧‧‧Inner edge 140b, 150b, 108c, 109c‧‧‧Outer edge 142‧‧‧ Conductive part 142a‧‧‧Middle part 150, 150-5 ‧‧‧Second current conducting layer 152‧‧‧Notch 160, 160', 260', 360', 560', DBR1, DBR2, DBR3, DBR4‧‧‧Bragg reflection structure 162'‧‧‧First refractive material layer 164'‧‧‧Second refractive material layer 166, 167, O1, 105aa, 105ab, 105ba, 105bb, 108a, 109a, 113a, 113b, 114a, 114b‧‧‧ Through opening 170‧‧‧Growth substrate 171‧‧‧ The first surface 172‧‧‧The second surface 173‧‧‧The groove 180‧‧‧The first metal layer 180a, 180a-1, 190a, 190a-1‧‧‧The welding part 180b, 190b, 190b-1, 190b- 2‧‧‧Finger part 190b-21‧‧‧Straight line part 190b-22‧‧‧Bent part 182‧‧‧Ohm contact layer 184‧‧‧Reflective layer 186‧‧‧Connecting layer 190‧‧‧Second metal Layer 192‧‧‧Reflective structure 192``‧‧‧Reflective material layer 210‧‧‧First sacrificial layer 210'‧‧‧First sacrificial material layer 212‧‧‧First sacrificial pattern 220‧‧‧Sacrificial layer 222‧ ‧‧Sacrifice Pattern 360''‧‧‧Pile of Reflective Materials in Prague Stack 360'-1‧‧‧Edge zone 360'-2‧‧‧Internal zone B1, B2‧‧‧Main stack C1‧‧‧Transition stack C12‧‧‧Third refractive layer C14‧‧‧Fourth Refractive layers D1, D2, D3, D4‧‧‧Repair stacked layers D12, D22‧‧‧Fifth refraction layer D14, D24‧‧‧Sixth refraction layer G1, G2, G3, G4‧‧‧Pitch HX‧‧‧ Hexagonal L, L1, L2, L2', L3, L4‧‧‧Beam M‧‧‧Metal layer MT‧‧‧Top surface MB‧‧‧Bottom surface MS‧‧‧Side surface N140, N150‧‧‧Notch OC Octagonal P1 ‧‧‧Current conduction path S140, S150‧‧‧Side T1‧‧‧First thickness T2‧‧‧Second thickness T3‧‧‧Third thickness T4, T5, T6‧‧‧Thickness T110~T210‧‧‧ Step TR‧‧‧Quadrangle W, W', W1, W2, W3, W4, W5, W6, W7, W8‧‧‧Width U‧‧‧Light-emitting unit x, y‧‧‧Included angle

圖1A繪示為本發明一實施例的發光二極體的剖面圖。 圖1B為本發明一實施例的布拉格反射結構的反射頻譜圖。 圖1C為本發明一實施例的布拉格反射結構的反射頻譜圖。 圖2繪示為本發明另一實施例的發光二極體的剖面圖。 圖3繪示為本發明的另一實施例的發光二極體的剖面圖。 圖4繪示為本發明的再一實施例的發光二極體的剖面圖。 圖5繪示為本發明的又一實施例的發光二極體的剖面圖。 圖6為本發明一實施例的金屬層的剖面示意圖。 圖7為本發明一實施例的發光二極體的上視示意圖。 圖8為對應於圖7的線A-B的剖面示意圖。 圖9為對應於圖7的線B-C的剖面示意圖。 圖10為對應於圖7的線C-D的剖面示意圖。 圖11為對應於圖7的線E-F的剖面示意圖。 圖12為對應於圖7的線G-H的剖面示意圖。 圖13為本發明一實施例的布拉格反射結構的剖面示意圖。 圖14為本發明另一實施例的布拉格反射結構的剖面示意圖。 圖15為本發明再一實施例的布拉格反射結構的剖面示意圖。 圖16為本發明又一實施例的布拉格反射結構的剖面示意圖。 圖17為本發明一實施例的發光二極體的上視示意圖。 圖18為對應於圖17的線A-B的剖面示意圖。 圖19為對應於圖17的線C-D的剖面示意圖。 圖20為本發明另一實施例的發光二極體的上視示意圖。 圖21為對應於圖20的線C’-D’的剖面示意圖。 圖22為本發明一實施例之發光二極體的製造流程示意圖。 圖23A至圖24B為本發明一實施例之發光二極體的製造方法的剖面示意圖。 圖25為圖23Q之局部R1的放大示意圖。 圖26為圖23R之局部R2的放大示意圖。 圖27為圖23V之局部R3的放大示意圖。 圖28為本發明另一實施例之發光二極體的製造流程示意圖。 圖29A至圖29G為本發明另一實施例之發光二極體之部分製造方法的剖面示意圖。 圖30為本發明又一實施例之發光二極體的製造流程示意圖。 圖31A至圖31H為本發明又一實施例之發光二極體之部分製造方法的剖面示意圖。 圖32A至圖32G為本發明再一實施例之發光二極體的部分製造流程剖面示意圖。 圖33為本發明一實施例的發光二極體的上視示意圖。 圖34為對應於圖33的線A1-B1的剖面示意圖。 圖35為對應於圖33的線E-F的剖面示意圖。 圖36為對應於圖33的線G-H的剖面示意圖。 圖37為圖33之發光二極體的導電層、第一金屬層及第二金屬層的上視示意圖。 圖38為本發明一實施例的發光二極體的上視示意圖。 圖39為對應於圖38的線L-M的剖面示意圖。 圖40為圖38之發光二極體的導電層、第一金屬層及第二金屬層的上視示意圖。 圖41為本發明一實施例的發光二極體的上視示意圖。 圖42為對應於圖41的線I-J的剖面示意圖。 圖43為本發明一實施例的發光二極體的上視示意圖。 圖44為對應於圖43的線I1-J1的剖面示意圖。 圖45為本發明一實施例的發光二極體的上視示意圖。 圖46為對應於圖45的線P-P’的剖面示意圖。 圖47為對應於圖45的線K-K’的剖面示意圖。 圖48為對應於圖45的線N-N’的剖面示意圖。 圖49為對應於圖45的線L-L’的剖面示意圖。 圖50為對應於圖45的線M-M’的剖面示意圖。 圖51為本發明一實施例的發光二極體的剖面示意圖。 圖52為本發明一實施例的發光二極體的剖面示意圖。 圖53為本發明一實施例的發光二極體的上視面示意圖。 圖54為對應於圖53的線N1-N1’的剖面示意圖。 圖55為圖45的發光二極體中第一金屬層的焊部與第二金屬層的焊部的排列的一種實施方式。 圖56為圖45的發光二極體中第一金屬層的焊部與第二金屬層的焊部的排列的另一種實施方式。FIG. 1A is a cross-sectional view of a light emitting diode according to an embodiment of the invention. FIG. 1B is a reflection spectrum diagram of a Bragg reflection structure according to an embodiment of the present invention. FIG. 1C is a reflection spectrum diagram of a Bragg reflection structure according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a light emitting diode according to another embodiment of the invention. FIG. 3 is a cross-sectional view of a light emitting diode according to another embodiment of the invention. 4 is a cross-sectional view of a light emitting diode according to still another embodiment of the invention. FIG. 5 is a cross-sectional view of a light emitting diode according to another embodiment of the invention. FIG. 6 is a schematic cross-sectional view of a metal layer according to an embodiment of the invention. FIG. 7 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 8 is a schematic cross-sectional view corresponding to the line A-B in Fig. 7. Fig. 9 is a schematic cross-sectional view corresponding to the line B-C in Fig. 7. Fig. 10 is a schematic cross-sectional view corresponding to the line C-D in Fig. 7. Fig. 11 is a schematic cross-sectional view corresponding to the line E-F in Fig. 7. Fig. 12 is a schematic cross-sectional view corresponding to the line G-H in Fig. 7. FIG. 13 is a schematic cross-sectional view of a Bragg reflection structure according to an embodiment of the present invention. FIG. 14 is a schematic cross-sectional view of a Bragg reflection structure according to another embodiment of the present invention. 15 is a schematic cross-sectional view of a Bragg reflection structure according to still another embodiment of the present invention. FIG. 16 is a schematic cross-sectional view of a Bragg reflection structure according to another embodiment of the present invention. FIG. 17 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 18 is a schematic cross-sectional view corresponding to the line A-B in Fig. 17. Fig. 19 is a schematic cross-sectional view corresponding to the line C-D in Fig. 17. FIG. 20 is a schematic top view of a light emitting diode according to another embodiment of the invention. Fig. 21 is a schematic cross-sectional view corresponding to the line C'-D' of Fig. 20. FIG. 22 is a schematic diagram of a manufacturing process of a light-emitting diode according to an embodiment of the present invention. 23A to 24B are schematic cross-sectional views of a method of manufacturing a light-emitting diode according to an embodiment of the invention. Fig. 25 is an enlarged schematic diagram of part R1 of Fig. 23Q. Fig. 26 is an enlarged schematic view of part R2 of Fig. 23R. Fig. 27 is an enlarged schematic view of part R3 of Fig. 23V. FIG. 28 is a schematic diagram of a manufacturing process of a light emitting diode according to another embodiment of the present invention. 29A to 29G are schematic cross-sectional views of a part of a manufacturing method of a light-emitting diode according to another embodiment of the present invention. FIG. 30 is a schematic diagram of a manufacturing process of a light-emitting diode according to another embodiment of the present invention. 31A to 31H are schematic cross-sectional views of a part of a manufacturing method of a light-emitting diode according to another embodiment of the present invention. 32A to 32G are schematic cross-sectional views of a part of the manufacturing process of a light-emitting diode according to still another embodiment of the present invention. FIG. 33 is a schematic top view of a light emitting diode according to an embodiment of the invention. FIG. 34 is a schematic cross-sectional view corresponding to the line A1-B1 of FIG. 33. FIG. Fig. 35 is a schematic cross-sectional view corresponding to the line E-F in Fig. 33. Fig. 36 is a schematic cross-sectional view corresponding to the line G-H in Fig. 33. FIG. 37 is a schematic top view of the conductive layer, the first metal layer, and the second metal layer of the light-emitting diode of FIG. 33. FIG. FIG. 38 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 39 is a schematic cross-sectional view corresponding to the line L-M in Fig. 38. 40 is a schematic top view of the conductive layer, the first metal layer, and the second metal layer of the light emitting diode of FIG. 38. FIG. 41 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 42 is a schematic cross-sectional view corresponding to the line I-J in Fig. 41. FIG. 43 is a schematic top view of a light emitting diode according to an embodiment of the invention. FIG. 44 is a schematic cross-sectional view corresponding to the line I1-J1 of FIG. 43. FIG. FIG. 45 is a schematic top view of a light emitting diode according to an embodiment of the invention. Fig. 46 is a schematic cross-sectional view corresponding to the line P-P' in Fig. 45. Fig. 47 is a schematic cross-sectional view corresponding to the line K-K' in Fig. 45. Fig. 48 is a schematic cross-sectional view corresponding to the line N-N' in Fig. 45. Fig. 49 is a schematic cross-sectional view corresponding to the line L-L' in Fig. 45. Fig. 50 is a schematic cross-sectional view corresponding to the line M-M' in Fig. 45. FIG. 51 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention. FIG. 52 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention. FIG. 53 is a schematic top view of a light emitting diode according to an embodiment of the invention. FIG. 54 is a schematic cross-sectional view corresponding to the line N1-N1' of FIG. 53. FIG. FIG. 55 is an embodiment of the arrangement of the welding portion of the first metal layer and the welding portion of the second metal layer in the light-emitting diode of FIG. 45. FIG. 56 is another embodiment of the arrangement of the welding part of the first metal layer and the welding part of the second metal layer in the light-emitting diode of FIG. 45.

600‧‧‧發光二極體 600‧‧‧Light Emitting Diode

101‧‧‧導電層 101‧‧‧Conductive layer

103‧‧‧絕緣圖案 103‧‧‧Insulation pattern

105b‧‧‧第二絕緣層 105b‧‧‧Second insulating layer

108‧‧‧第一接合層 108‧‧‧First bonding layer

109‧‧‧第二接合層 109‧‧‧Second bonding layer

110‧‧‧第一型半導體層 110‧‧‧Type 1 semiconductor layer

111‧‧‧第一表面 111‧‧‧First Surface

112‧‧‧第二表面 112‧‧‧Second Surface

120‧‧‧發光層 120‧‧‧Light-emitting layer

130‧‧‧第二型半導體層 130‧‧‧Second type semiconductor layer

140‧‧‧第一電流傳導層 140‧‧‧First current conducting layer

150‧‧‧第二電流傳導層 150‧‧‧Second current conducting layer

360’‧‧‧布拉格反射結構 360’‧‧‧Bragg reflection structure

166、105ba、105bb、108a、109a、113a、113b‧‧‧貫穿開口 166, 105ba, 105bb, 108a, 109a, 113a, 113b‧‧‧through opening

170‧‧‧成長基板 170‧‧‧Growth substrate

171‧‧‧第一表面 171‧‧‧First surface

172‧‧‧第二表面 172‧‧‧Second Surface

180‧‧‧第一金屬層 180‧‧‧First metal layer

180a‧‧‧焊部 180a‧‧‧welding section

190‧‧‧第二金屬層 190‧‧‧Second metal layer

190a‧‧‧焊部 190a‧‧‧Welding Department

G1、G2、G3、G4‧‧‧間距 G1, G2, G3, G4‧‧‧Pitch

P1‧‧‧第一部分 P1‧‧‧Part One

P2‧‧‧第二部分 P2‧‧‧Part Two

S1、S2‧‧‧路徑 S1, S2‧‧‧path

Claims (4)

一種發光二極體的製造方法,包括:於一成長基板上形成多個發光單元,其中每一發光單元包括一第一型半導體層、一第二型半導體層以及位於該第一型半導體層與該第二型半導體層之間的一發光層,該成長基板具有一凹槽,每一該發光單元之該第一型半導體層的一側壁與該凹槽的邊緣切齊,其中於該成長基板上形成該些發光單元的方法包括:於該成長基板上依序形成一第一型半導體材料層、一發光材料層以及一第二型半導體材料層;圖案化該第一型半導體材料層、該發光材料層以及該第二型半導體材料層,以形成具有一第一部分及一第二部分的該第一型半導體層、該第二型半導體層以及該發光層,其中該第一型半導體層的該第一部分與該發光層重疊,該第一型半導體層的該第二部分由該第一部分向外延伸而凸出於該發光層的面積之外;以及切割該第一型半導體層的該第二部分以及該成長基板,以形成該第一型半導體層的該側壁以及該成長基板的該凹槽;於該些發光單元及該成長基板的該凹槽上形成一第一絕緣層,其中該第一絕緣層覆蓋每一該發光單元的該第一型半導體層的該側壁且具有多個第一貫穿開口以及多個第二貫穿開口;形成多個第一電流傳導層以及多個第二電流傳導層,分別填入該些第一貫穿開口以及該些第二貫穿開口,以分別電性連接該 些發光單元的多個第一型半導體層以及多個第二型半導體層;以及沿著該成長基板的該凹槽分離該成長基板,以形成多個發光二極體。 A method for manufacturing a light-emitting diode includes: forming a plurality of light-emitting units on a growth substrate, wherein each light-emitting unit includes a first-type semiconductor layer, a second-type semiconductor layer, and the first-type semiconductor layer and A light-emitting layer between the second-type semiconductor layers, the growth substrate has a groove, and a sidewall of the first-type semiconductor layer of each light-emitting unit is aligned with the edge of the groove, wherein the growth substrate The method for forming the light-emitting units includes: sequentially forming a first-type semiconductor material layer, a light-emitting material layer, and a second-type semiconductor material layer on the growth substrate; patterning the first-type semiconductor material layer, the The light emitting material layer and the second type semiconductor material layer to form the first type semiconductor layer, the second type semiconductor layer and the light emitting layer having a first part and a second part, wherein the first type semiconductor layer has a The first portion overlaps the light-emitting layer, the second portion of the first-type semiconductor layer extends outward from the first portion to protrude beyond the area of the light-emitting layer; and the second portion of the first-type semiconductor layer is cut Two parts and the growth substrate to form the sidewall of the first-type semiconductor layer and the groove of the growth substrate; a first insulating layer is formed on the light-emitting units and the groove of the growth substrate, wherein the The first insulating layer covers the sidewall of the first-type semiconductor layer of each light-emitting unit and has a plurality of first through openings and a plurality of second through openings; forming a plurality of first current conducting layers and a plurality of second currents The conductive layer is respectively filled into the first through openings and the second through openings to electrically connect the A plurality of first-type semiconductor layers and a plurality of second-type semiconductor layers of the light-emitting units; and the growth substrate is separated along the groove of the growth substrate to form a plurality of light-emitting diodes. 如申請專利範圍第1項所述的發光二極體的製造方法,其中於該成長基板上形成該些發光單元的方法更包括:形成一第一犧牲層,以覆蓋具有該第一部分及該第二部分的該第一型半導體層、該第二型半導體層以及該發光層;其中,切割該第一型半導體層的該第二部分及該成長基板時,更切割該第一犧牲層。 The method for manufacturing a light-emitting diode as described in claim 1, wherein the method of forming the light-emitting units on the growth substrate further includes: forming a first sacrificial layer to cover the first part and the first part Two parts of the first type semiconductor layer, the second type semiconductor layer and the light emitting layer; wherein, when the second part of the first type semiconductor layer and the growth substrate are cut, the first sacrificial layer is also cut. 一種發光二極體的製造方法,包括:於一成長基板上形成多個發光單元,其中每一發光單元包括一第一型半導體層、一第二型半導體層以及位於該第一型半導體層與該第二型半導體層之間的一發光層,該成長基板具有一凹槽,每一該發光單元之該第一型半導體層的一側壁與該凹槽的邊緣切齊,其中於該成長基板上形成該些發光單元的方法包括:於該成長基板上依序形成一第一型半導體材料層、一發光材料層、一第二型半導體材料層以及一第一犧牲材料層;圖案化該第一型半導體材料層、該第二型半導體材料層、該發光材料層以及該第一犧牲材料層,以形成該第一型半導體層、該第二型半導體層、該發光層以及該第一犧牲層,其中該第一型半導體材料層具有與該發光層重疊的一第一部 分以及由該第一部分向外延伸而凸出於該發光層的面積之外的一第二部分;以及形成一第二犧牲層,以覆蓋該第一犧牲層以及該第一型半導體層的該第二部分;於該些發光單元及該成長基板的該凹槽上形成一第一絕緣層,其中該第一絕緣層覆蓋每一該發光單元的該第一型半導體層的該側壁且具有多個第一貫穿開口以及多個第二貫穿開口;形成多個第一電流傳導層以及多個第二電流傳導層,分別填入該些第一貫穿開口以及該些第二貫穿開口,以分別電性連接該些發光單元的多個第一型半導體層以及多個第二型半導體層;以及沿著該成長基板的該凹槽分離該成長基板,以形成多個發光二極體。 A method for manufacturing a light-emitting diode includes: forming a plurality of light-emitting units on a growth substrate, wherein each light-emitting unit includes a first-type semiconductor layer, a second-type semiconductor layer, and the first-type semiconductor layer and A light-emitting layer between the second-type semiconductor layers, the growth substrate has a groove, and a sidewall of the first-type semiconductor layer of each light-emitting unit is aligned with the edge of the groove, wherein the growth substrate The method for forming the light-emitting units includes: sequentially forming a first-type semiconductor material layer, a light-emitting material layer, a second-type semiconductor material layer, and a first sacrificial material layer on the growth substrate; A first-type semiconductor material layer, the second-type semiconductor material layer, the light-emitting material layer, and the first sacrificial material layer to form the first-type semiconductor layer, the second-type semiconductor layer, the light-emitting layer, and the first sacrificial material layer Layer, wherein the first-type semiconductor material layer has a first portion overlapping with the light-emitting layer And a second portion extending outward from the first portion and protruding beyond the area of the light-emitting layer; and forming a second sacrificial layer to cover the first sacrificial layer and the first type semiconductor layer The second part; a first insulating layer is formed on the grooves of the light-emitting units and the growth substrate, wherein the first insulating layer covers the sidewall of the first-type semiconductor layer of each light-emitting unit and has multiple A first through opening and a plurality of second through openings; forming a plurality of first current conducting layers and a plurality of second current conducting layers, respectively filling the first through openings and the second through openings to respectively A plurality of first-type semiconductor layers and a plurality of second-type semiconductor layers of the light-emitting units are sexually connected; and the growth substrate is separated along the groove of the growth substrate to form a plurality of light-emitting diodes. 如申請專利範圍第3項所述的發光二極體的製造方法,其中於該成長基板上形成該些發光單元的方法更包括:切割該第一型半導體層的該第二部分、該第一犧牲層、該第二犧牲層及該成長基板,以形成該第一型半導體層的該側壁以及該成長基板的該凹槽。 The method for manufacturing a light-emitting diode as described in claim 3, wherein the method of forming the light-emitting units on the growth substrate further includes: cutting the second part of the first-type semiconductor layer, the first A sacrificial layer, the second sacrificial layer, and the growth substrate to form the sidewall of the first-type semiconductor layer and the groove of the growth substrate.
TW106134591A 2016-10-07 2017-10-06 Light emitting diode TWI742175B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662405257P 2016-10-07 2016-10-07
US62/405,257 2016-10-07

Publications (2)

Publication Number Publication Date
TW201818570A TW201818570A (en) 2018-05-16
TWI742175B true TWI742175B (en) 2021-10-11

Family

ID=61898729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134591A TWI742175B (en) 2016-10-07 2017-10-06 Light emitting diode

Country Status (2)

Country Link
CN (2) CN111933766A (en)
TW (1) TWI742175B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342488B2 (en) 2018-08-03 2022-05-24 Genesis Photonics Inc. Light emitting diode chip and light emitting diode device
CN109860366A (en) * 2018-12-28 2019-06-07 映瑞光电科技(上海)有限公司 Flip LED chips
CN109728140A (en) * 2018-12-28 2019-05-07 映瑞光电科技(上海)有限公司 A kind of high pressure flip LED chips and forming method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114969A1 (en) * 2009-11-13 2011-05-19 Seoul Opto Device Co., Ltd. Light emitting diode chip having distributed bragg reflector, method of fabricating the same, and light emitting diode package having distributed bragg reflector
US20140361327A1 (en) * 2011-09-15 2014-12-11 Seoul Viosys Co., Ltd. Light emitting diode and method of manufacturing the same
US20160247974A1 (en) * 2015-02-17 2016-08-25 Genesis Photonics Inc. Light emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400214A (en) * 2013-10-11 2018-08-14 世迈克琉明有限公司 Semiconductor light-emitting elements
TWI548123B (en) * 2014-12-03 2016-09-01 隆達電子股份有限公司 Light emitting diode structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114969A1 (en) * 2009-11-13 2011-05-19 Seoul Opto Device Co., Ltd. Light emitting diode chip having distributed bragg reflector, method of fabricating the same, and light emitting diode package having distributed bragg reflector
US20140361327A1 (en) * 2011-09-15 2014-12-11 Seoul Viosys Co., Ltd. Light emitting diode and method of manufacturing the same
US20160247974A1 (en) * 2015-02-17 2016-08-25 Genesis Photonics Inc. Light emitting diode

Also Published As

Publication number Publication date
TW201818570A (en) 2018-05-16
CN107919420A (en) 2018-04-17
CN111933766A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
US10749075B2 (en) Semiconductor light-emitting device
US10403608B2 (en) Light-emitting diode (LED) device for realizing multi-colors
TWI762866B (en) Light emitting diode
US11508877B2 (en) Red light emitting diode and manufacturing method thereof
US10985295B2 (en) Light-emitting device
CN110600593B (en) Light emitting diode
KR102389242B1 (en) Light-emitting device
US7998767B2 (en) Method for manufacturing a facet extraction LED
US20130134867A1 (en) Light emitting diode with improved light extraction efficiency
TWI742175B (en) Light emitting diode
US20180130926A1 (en) Light emitting diode
US11894491B2 (en) Semiconductor light-emitting device
US20200274027A1 (en) Light emitting diode and manufacturing method thereof
CN110323310B (en) Light emitting diode
TW202105770A (en) Light emitting diode and manufacturing method thereof
US20210375980A1 (en) Light emitting device and display apparatus having the same
TWI809311B (en) Light-emitting device
CN111584690A (en) Light emitting diode and method for manufacturing the same
CN213071133U (en) Light emitting element for display and display device
US20240136472A1 (en) Semiconductor light-emitting device
US20220037570A1 (en) Light emitting device and display apparatus having the same
TW202339311A (en) Light-emitting device