TWI741838B - 用於光纖陀螺儀之數位類比轉換器 - Google Patents

用於光纖陀螺儀之數位類比轉換器 Download PDF

Info

Publication number
TWI741838B
TWI741838B TW109135935A TW109135935A TWI741838B TW I741838 B TWI741838 B TW I741838B TW 109135935 A TW109135935 A TW 109135935A TW 109135935 A TW109135935 A TW 109135935A TW I741838 B TWI741838 B TW I741838B
Authority
TW
Taiwan
Prior art keywords
digital
analog converter
fiber optic
signal
signals
Prior art date
Application number
TW109135935A
Other languages
English (en)
Other versions
TW202218344A (zh
Inventor
王朝欽
劉欣澄
邱逸仁
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW109135935A priority Critical patent/TWI741838B/zh
Priority to US17/084,863 priority patent/US11196440B1/en
Application granted granted Critical
Publication of TWI741838B publication Critical patent/TWI741838B/zh
Publication of TW202218344A publication Critical patent/TW202218344A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
    • H03M1/0665Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching using data dependent selection of the elements, e.g. data weighted averaging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
    • H03M1/0673Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching using random selection of the elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • G01C19/662Ring laser gyrometers details signal readout; dither compensators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/723Heterodyning fibre optic gyrometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一種數位類比轉換器,用以解決習知數位類比轉換器的製程漂移而導致電流源誤差的問題。係包含:一隨機單元,產生一亂數訊號;數個編碼單元,耦合連接該隨機單元,各該編碼單元依據該亂數訊號將數個數位訊號轉換為數個旋轉訊號;數個控制單元,一對一耦合連接該數個編碼單元,各該控制單元將該數個旋轉訊號轉換為數個邏輯訊號;一電流源陣列,耦合連接該數個控制單元,該電流源陣列依據該數個邏輯訊號產生一總電流;及一輸出負載,電性連接該電流源陣列,該總電流通過該輸出負載,在該輸出負載的兩端形成一類比電壓訊號。

Description

用於光纖陀螺儀之數位類比轉換器
本發明係關於一種訊號轉換裝置,尤其是一種提升轉換結果之線性度及精確度的用於光纖陀螺儀之數位類比轉換器。
光纖陀螺儀(Fiber Optic Gyroscope, FOG)係透過光纖傳輸原理及光的干涉特性做旋轉感測,相較於傳統的機械陀螺儀基於慣性運動及角動量守恆以維持及感測方向,光纖陀螺儀不需要運動組件而不受加速度及衝擊干擾,係可以提升轉動感測的精確度及可靠度,且光纖陀螺儀的光波導元件及訊號處理單元可以整合於單一晶片,係具有節省成本及耗能的作用,且透過微型化可以廣泛應用於國防、航空、無人載具等領域的導航定位系統。
上述習知的光纖陀螺儀的感測結果係由光偵測器接收光強度訊號,再透過訊號處理單元將離散時間的數位訊號(Digital Signal),轉換為能夠被辨識的連續類比訊號(Analog Signal)。隨著積體電路上的元件尺寸不斷微型化,在製造過程中容易發生製程漂移(Process Variation)現象,係導致數位轉類比電路的轉換結果不匹配而產生誤差,習知的數位類比轉換器係無法配合運用於高精確度的光纖陀螺儀。
有鑑於此,習知的用於光纖陀螺儀之數位類比轉換器確實仍有加以改善之必要。
為解決上述問題,本發明的目的是提供一種用於光纖陀螺儀之數位類比轉換器,係可以提高動態性能及抗雜訊能力。
本發明的次一目的是提供一種用於光纖陀螺儀之數位類比轉換器,係可以提升訊號處理速度及降低功耗。
本發明的又一目的是提供一種用於光纖陀螺儀之數位類比轉換器,係可以降低製程漂移所導致的轉換誤差。
本發明全文所記載的元件及構件使用「一」或「一個」之量詞,僅是為了方便使用且提供本發明範圍的通常意義;於本發明中應被解讀為包括一個或至少一個,且單一的概念也包括複數的情況,除非其明顯意指其他意思。
本發明的用於光纖陀螺儀之數位類比轉換器,包含:一隨機單元,產生一亂數訊號;數個編碼單元,耦合連接該隨機單元,各該編碼單元接收該亂數訊號及數個數位訊號,各該編碼單元依據該亂數訊號將該數個數位訊號轉換為數個旋轉訊號;數個控制單元,一對一耦合連接該數個編碼單元,各該控制單元接收該數個旋轉訊號,並透過一時脈訊號,將該數個旋轉訊號轉換為數個邏輯訊號;一電流源陣列,耦合連接該數個控制單元,該電流源陣列依據該數個邏輯訊號產生一總電流;及一輸出負載,電性連接該電流源陣列,該總電流通過該輸出負載,在該輸出負載的兩端形成一類比電壓訊號。
據此,本發明的用於光纖陀螺儀之數位類比轉換器,藉由該隨機單元及各該編碼單元,產生近似真亂數的偽隨機序列,在轉換數位訊號時,係可以隨機選取不同的電流源而降低電流源不匹配的問題,以提高轉換過程的動態性能及線性度,係具有提高抗雜訊能力及轉換精確度的功效。
其中,該隨機單元係由線性取樣與保持電路及非線性決定電路所組成的真亂數生成器。如此,該隨機單元係可以輸出無法被預測的序列,係具有降低亂數訊號在一定週期內的重複性的功效。
其中,各該編碼單元係由一選擇部接收該亂數訊號,並產生隨機序列予一切換部,該切換部接收該數個數位訊號。如此,該編碼單元係可以隨機轉換該數個數位訊號,係具有達到亂數效果及提高訊號產生效率的功效。
其中,該選擇部是偽亂數生成器,且該切換部是旋轉器。如此,該選擇部及該切換部係可以快速且近似亂數地旋轉訊號,係具有提升轉換效率的功效。
其中,各該控制單元具有數個邏輯閘,該數個旋轉訊號分別輸入該數個邏輯閘,該時脈訊號控制各該邏輯閘,透過各該邏輯閘產生該數個邏輯訊號。如此,該控制單元係可以降低訊號的的延遲與面積,係具有提升處理速度及減少功耗的功效。
其中,該電流源陣列具有數個驅動開關及數個電流迴路,該數個驅動開關耦合連接該數個控制單元,該數個電流迴路一對一電性連接該數個驅動開關,該數個電流迴路並聯且匯集所有輸出電流為該總電流。如此,各該電流迴路的輸出電流互不干擾,係具有降低電流源不匹配情形的功效。
其中,各該控制單元耦合連接複數個該驅動開關,且對應的複數個該電流迴路組成一子陣列。如此,該子陣列的數量係可以對應輸入的位元數,避免電流源陣列疊接過量的迴路,係具有降低晶片佈局難度及電路散熱的功效。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:
請參照第1圖所示,其係本發明用於光纖陀螺儀之數位類比轉換器的較佳實施例,係包含一隨機單元1、數個編碼單元2、數個控制單元3、一電流源陣列4及一輸出負載5,該隨機單元1耦合連接各該編碼單元2,該數個編碼單元2一對一耦合連接該數個控制單元3,該數個控制單元3耦合連接該電流源陣列4,該電流源陣列4電性連接該輸出負載5。
該隨機單元1可以是真亂數生成器(True Random Number Generator, TRNG),係由線性取樣與保持電路(Linear Track and Hold Circuit, LTH)及非線性決定電路(Nonlinear Discrimination Function, ND)所構成的迴路,係以兩個時序反相且不重疊的定時器訊號啟動該隨機單元1,並產生一亂數訊號S。
請參照第2圖所示,各該編碼單元2是動態元件匹配(Dynamic Element Matching, DEM)編碼器,係由一選擇部21接收該亂數訊號S並產生隨機序列予一切換部22,又,該切換部22接收數個數位訊號D,使各該編碼單元2依據該亂數訊號S將該數個數位訊號D轉換為數個旋轉訊號W。該選擇部21可以是偽亂數生成器(Pseudo Random Number Generator, PRNG),將該亂數訊號S做為初始值,以產生近似真隨機數的偽隨機序列,具有達到亂數效果及提高訊號產生效率的作用;該切換部22可以是旋轉器(Rotator),包含數個多路復用器(Multiplexer, MUX),係可以依據偽隨機序列隨機旋轉各該數位訊號D;該數個數位訊號D可以是光纖陀螺儀的感測結果。在本實施例中,該數位類比轉換器具有四個該編碼單元2,且各該編碼單元2可以同時接收三個該數位訊號D,該數位類比轉換器係可以處理十二位元的資料型態,惟,本發明不以此為限。
請參照第1圖所示,各該控制單元3是動態元件匹配及全差分電流歸零(Return To Zero, RTZ)邏輯控制器,各該控制單元3可以由數個邏輯閘分別接收該數個旋轉訊號W,並由一時脈訊號C控制各該邏輯閘,將該數個旋轉訊號W轉換為數個邏輯訊號L,係可以降低訊號的的延遲與面積,具有提升處理速度及減少功耗的作用。
該電流源陣列4係由數個驅動開關41耦合連接該數個控制單元3,該數個驅動開關41一對一電性連接數個電流迴路42,使各該驅動開關41依據該邏輯訊號L控制各該電流迴路42輸出電流,藉由並聯該數個電流迴路42,係可以使各該電流迴路42的輸出電流互不干擾,並匯集所有輸出電流為一總電流。在本實施例中,各該控制單元3藉由耦合連接複數個該驅動開關41,係可以控制對應的複數個該電流迴路42並組成一子陣列,該數位類比轉換器具有四個該控制單元3,而形成四個該子陣列,惟,本發明不以此為限。
該輸出負載5電性連接該電流源陣列4,使該總電流通過該輸出負載5,在該輸出負載5的兩端形成一類比電壓訊號A。
本發明的用於光纖陀螺儀之數位類比轉換器係可以耦合連接光纖陀螺儀的光偵測器(Photo Detector),藉由提供高無雜散動態範圍(Spur-Free Dynamic Range, SFDR)的訊號處理,提升光纖陀螺儀的抗雜訊能力。數位轉類比的訊號處理過程,首先,由該光偵測器感測代表轉動狀態的干涉現象,並將干涉現象轉換為電子信號型態的該數個數位訊號D;該數個編碼單元2分別接收該數個數位訊號D及該亂數訊號S,並將該亂數訊號S作為改變種子(Seed)以隨機轉換該數個數位訊號D為不同的該數個旋轉訊號W,係可以提高動態特性參數(Dynamic Parameter)而降低轉換過程的不匹配情形。
由亂數決定的該數個旋轉訊號W透過該數個控制單元3轉換為該數個邏輯訊號L,及該數個驅動開關41依據該數個邏輯訊號L選取不同的該數個電流迴路42,係可以在光纖陀螺儀的轉動狀態改變而產生該數個數位訊號D時,隨機選擇不同的數個該電流迴路42導通並輸出電流,由匯集之該總電流產生該類比電壓訊號A,以提高數位轉類比之動態性能,及降低其不匹配情形。
綜上所述,本發明的用於光纖陀螺儀之數位類比轉換器,藉由該隨機單元及各該編碼單元,產生近似真亂數的偽隨機序列,在轉換數位訊號時,係可以隨機選取不同的電流源而降低電流源不匹配的問題,以提高轉換過程的動態性能及線性度,係具有提高抗雜訊能力及轉換精確度的功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
1:隨機單元 2:編碼單元 21:選擇部 22:切換部 3:控制單元 4:電流源陣列 41:驅動開關 42:電流迴路 5:輸出負載 S:亂數訊號 D:數位訊號 W:旋轉訊號 C:時脈訊號 L:數位訊號 A:類比電壓訊號
[第1圖] 本發明較佳實施例的裝置迴路圖。 [第2圖] 如第1圖所示的局部迴路放大圖。
1:隨機單元
2:編碼單元
3:控制單元
4:電流源陣列
41:驅動開關
42:電流迴路
5:輸出負載
S:亂數訊號
D:數位訊號
W:旋轉訊號
C:時脈訊號
L:數位訊號
A:類比電壓訊號

Claims (7)

  1. 一種用於光纖陀螺儀之數位類比轉換器,包含: 一隨機單元,產生一亂數訊號; 數個編碼單元,耦合連接該隨機單元,各該編碼單元接收該亂數訊號及數個數位訊號,各該編碼單元依據該亂數訊號將該數個數位訊號轉換為數個旋轉訊號; 數個控制單元,一對一耦合連接該數個編碼單元,各該控制單元接收該數個旋轉訊號,並透過一時脈訊號,將該數個旋轉訊號轉換為數個邏輯訊號; 一電流源陣列,耦合連接該數個控制單元,該電流源陣列依據該數個邏輯訊號產生一總電流;及 一輸出負載,電性連接該電流源陣列,該總電流通過該輸出負載,在該輸出負載的兩端形成一類比電壓訊號。
  2. 如請求項1之用於光纖陀螺儀之數位類比轉換器,其中,該隨機單元係由線性取樣與保持電路及非線性決定電路所組成的真亂數生成器。
  3. 如請求項1之用於光纖陀螺儀之數位類比轉換器,其中,各該編碼單元係由一選擇部接收該亂數訊號,並產生隨機序列予一切換部,該切換部接收該數個數位訊號。
  4. 如請求項3之用於光纖陀螺儀之數位類比轉換器,其中,該選擇部是偽亂數生成器,且該切換部是旋轉器。
  5. 如請求項1之用於光纖陀螺儀之數位類比轉換器,其中,各該控制單元具有數個邏輯閘,該數個旋轉訊號分別輸入該數個邏輯閘,該時脈訊號控制各該邏輯閘,透過各該邏輯閘產生該數個邏輯訊號。
  6. 如請求項1之用於光纖陀螺儀之數位類比轉換器,其中,該電流源陣列具有數個驅動開關及數個電流迴路,該數個驅動開關耦合連接該數個控制單元,該數個電流迴路一對一電性連接該數個驅動開關,該數個電流迴路並聯且匯集所有輸出電流為該總電流。
  7. 如請求項6之用於光纖陀螺儀之數位類比轉換器,其中,各該控制單元耦合連接複數個該驅動開關,且對應的複數個該電流迴路組成一子陣列。
TW109135935A 2020-10-16 2020-10-16 用於光纖陀螺儀之數位類比轉換器 TWI741838B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109135935A TWI741838B (zh) 2020-10-16 2020-10-16 用於光纖陀螺儀之數位類比轉換器
US17/084,863 US11196440B1 (en) 2020-10-16 2020-10-30 Digital to analog converter for fiber optic gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109135935A TWI741838B (zh) 2020-10-16 2020-10-16 用於光纖陀螺儀之數位類比轉換器

Publications (2)

Publication Number Publication Date
TWI741838B true TWI741838B (zh) 2021-10-01
TW202218344A TW202218344A (zh) 2022-05-01

Family

ID=78818757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109135935A TWI741838B (zh) 2020-10-16 2020-10-16 用於光纖陀螺儀之數位類比轉換器

Country Status (2)

Country Link
US (1) US11196440B1 (zh)
TW (1) TWI741838B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW376987U (en) * 1998-05-08 1999-12-11 Xian-De Ceng Precision fiber interferometer and sensor
WO2015102871A1 (en) * 2013-12-30 2015-07-09 Google Inc. Sigma-delta analog-to-digital converter
US20200225428A1 (en) * 2017-07-20 2020-07-16 Carol Y. Scarlett One-to-many optical fiber array structures and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473182B1 (en) * 2000-07-27 2002-10-29 Northrup Grumman Corporation Automatic gain control of a closed loop fiber optic gyroscope using non-linear control laws
US6703956B1 (en) * 2003-01-08 2004-03-09 Agilent Technologies, Inc. Technique for improved linearity of high-precision, low-current digital-to-analog converters
TWI481202B (zh) * 2011-09-09 2015-04-11 Univ Nat Cheng Kung 數位至類比轉換器及其操作方法
US9344104B1 (en) * 2013-05-18 2016-05-17 S9Estre, Llc Digital to analog converter and analog to digital converter calibration techniques
US8872687B1 (en) * 2013-09-12 2014-10-28 National Cheng Kung University Digital to analog converting method and converter insensitive to code-dependent distortions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW376987U (en) * 1998-05-08 1999-12-11 Xian-De Ceng Precision fiber interferometer and sensor
WO2015102871A1 (en) * 2013-12-30 2015-07-09 Google Inc. Sigma-delta analog-to-digital converter
US20200225428A1 (en) * 2017-07-20 2020-07-16 Carol Y. Scarlett One-to-many optical fiber array structures and methods

Also Published As

Publication number Publication date
US11196440B1 (en) 2021-12-07
TW202218344A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
TWI446149B (zh) 風扇轉速控制裝置
JPH0641853B2 (ja) 多回転式絶対値エンコ−ダ
TWI741838B (zh) 用於光纖陀螺儀之數位類比轉換器
WO2008043231A1 (fr) Détecteur rotatif pseudo-aléatoire dégradé
US9900021B1 (en) Method and apparatus for digital modification and/or modulation of optical signals
US20120006976A1 (en) High Resolution, High Speed, Miniaturized Optical Encoder
WO2019107085A1 (ja) 固体撮像装置、撮像システム
CN111224666B (zh) 光学编码器及其内插电路与运作方法
CA2238294A1 (en) Pn sequence generator with bidirectional shift register and eulerian-graph feedback circuit
JP4672542B2 (ja) 光電式エンコーダおよび電子機器
RU2807001C1 (ru) Оптоэлектронный преобразователь кода
JP3112792B2 (ja) アナログ・ディジタル変換器
WO2020047297A1 (en) Optical encoder systems and methods
JP7042777B2 (ja) 多重ビット光コンピューティングシステム
Wang Fully Digitalized Optoelectronic Angular Position Sensor and Its Application in Real-Time Gait Recognition
RU2248092C1 (ru) Система преобразования углового перемещения антенны рлс
SU1751856A1 (ru) Преобразователь кодов
RU2519523C1 (ru) Аналого-цифровой преобразователь
SU1386992A1 (ru) Оптоэлектронный сумматор
SU1354213A1 (ru) Устройство дл параллельного суммировани длительностей импульсов
TW201123738A (en) Sample and hold circuit and method for eliminateing offset voltage of analog signal
SU1197084A1 (ru) Преобразователь код-напр жение
US3696404A (en) Analog-to-digital converter
SU957437A1 (ru) Оптоэлектронный модуль
Gao et al. A Driver ASIC for Scientific CCD Detectors Using 180nm Technology