TWI741781B - Nitride epitaxial wafer and method for manufacturing the same - Google Patents

Nitride epitaxial wafer and method for manufacturing the same Download PDF

Info

Publication number
TWI741781B
TWI741781B TW109130505A TW109130505A TWI741781B TW I741781 B TWI741781 B TW I741781B TW 109130505 A TW109130505 A TW 109130505A TW 109130505 A TW109130505 A TW 109130505A TW I741781 B TWI741781 B TW I741781B
Authority
TW
Taiwan
Prior art keywords
layer
nitride
gallium nitride
epitaxial wafer
lattice mismatch
Prior art date
Application number
TW109130505A
Other languages
Chinese (zh)
Other versions
TW202211466A (en
Inventor
曾頎堯
李文中
鄭樵陽
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW109130505A priority Critical patent/TWI741781B/en
Application granted granted Critical
Publication of TWI741781B publication Critical patent/TWI741781B/en
Publication of TW202211466A publication Critical patent/TW202211466A/en

Links

Images

Abstract

This invention discloses a nitride epitaxial wafer with low lattice mismatch and low leakage current and method for manufacturing the same, which includes a substrate, an initial nucleation layer, a lattice mismatch modulation layer, at least one aluminum indium gallium nitride buffer layer, a high resistance layer, an intrinsic gallium nitride layer, an electron supply layer, and a cover layer. This invention uses indium nitride as the material of the initial nucleation layer, combined with the lattice mismatch modulation layer formed by aluminum indium nitride, thereby reducing the occurrence of lattice mismatch; and the initial nucleation layer further has at least one stack formed by the P-type indium nitride layer and the N-type indium nitride layer in the structure, the depletion region between the P-type indium nitride layer and the N-type indium nitride layer can block leakage current from the substrate.

Description

氮化物磊晶片及其製造方法 Nitride epitaxy wafer and its manufacturing method

本發明涉及一種氮化物磊晶片,且特別涉及一種低晶格失配低漏電流的氮化物磊晶片及其製造方法。 The invention relates to a nitride epitaxial wafer, and particularly relates to a nitride epitaxial wafer with low lattice mismatch and low leakage current and a manufacturing method thereof.

在晶片的製造過程中,當在矽基板上成長氮化鎵時,由於鎵與矽基板會相互反應,導致鎵對矽基板會產生金屬回熔的現象,而為了克服這個現象,需要先在矽基板上成長氮化鋁,以防止直接成長氮化鎵時鎵原子影響矽基板的效能。 During the wafer manufacturing process, when gallium nitride is grown on the silicon substrate, the gallium and the silicon substrate will react with each other, resulting in the phenomenon of gallium melting back to the silicon substrate. In order to overcome this phenomenon, the silicon Aluminum nitride is grown on the substrate to prevent gallium atoms from affecting the performance of the silicon substrate when gallium nitride is directly grown.

然而,使用氮化鋁雖然可以防止使用氮化鎵時鎵原子產生的金屬回熔現象,但是氮化鋁與矽基板之間具有較大的晶格失配問題。 However, although the use of aluminum nitride can prevent the metal reflow phenomenon caused by gallium atoms when using gallium nitride, there is a large lattice mismatch between aluminum nitride and the silicon substrate.

此外,在操作具有氮化物磊晶片之電子元件時,基板產生的漏電流會經成核層流至元件操作區域,而降低了元件操作時的性能。 In addition, when operating an electronic device with a nitride epitaxial wafer, the leakage current generated by the substrate will flow to the device operation area through the nucleation layer, which reduces the performance of the device during operation.

因此,為了解決上述先前技術的問題,本發明之目的就是提供一種低晶格失配低漏電流的氮化物磊晶片及其製造方法,係以氮化銦取代氮化鋁 作為初始成核層的材料,並結合以氮化鋁銦形成的晶格失配調變層,以改善晶格失配的情形。 Therefore, in order to solve the above-mentioned problems of the prior art, the object of the present invention is to provide a nitride epitaxial wafer with low lattice mismatch and low leakage current and a method for manufacturing the same, in which indium nitride is substituted for aluminum nitride As the material of the initial nucleation layer, combined with the lattice mismatch modulation layer formed of aluminum indium nitride to improve the lattice mismatch.

基於上述目的,本發明提供一種氮化物磊晶片,包含:基底基板;初始成核層,設置在基底基板上;晶格失配調變層,設置在初始成核層上;至少一氮化鋁銦鎵緩衝層,設置在晶格失配調變層上;高阻層,設置在至少一氮化鋁銦鎵緩衝層上;本質氮化鎵層,設置在高阻層上;電子提供層,設置在本質氮化鎵層上;以及覆蓋層,設置在電子提供層上。 Based on the above objective, the present invention provides a nitride epitaxial wafer, comprising: a base substrate; an initial nucleation layer, which is arranged on the base substrate; a lattice mismatch modulation layer, which is arranged on the initial nucleation layer; and at least one aluminum nitride The indium gallium buffer layer is arranged on the lattice mismatch modulation layer; the high resistance layer is arranged on at least one aluminum indium gallium nitride buffer layer; the intrinsic gallium nitride layer is arranged on the high resistance layer; the electron supply layer, It is arranged on the intrinsic gallium nitride layer; and the covering layer is arranged on the electron supply layer.

較佳的,基底基板可以為矽基板、氮化鋁基板、鑽石基板、碳化矽基板、氧化鎵基板、氮化硼基板、或矽晶絕緣體基板。 Preferably, the base substrate may be a silicon substrate, an aluminum nitride substrate, a diamond substrate, a silicon carbide substrate, a gallium oxide substrate, a boron nitride substrate, or a silicon crystal insulator substrate.

較佳的,初始成核層可以為氮化銦層。 Preferably, the initial nucleation layer may be an indium nitride layer.

較佳的,初始成核層可以具有一P型氮化銦層及一N型氮化銦層堆疊而形成的結構,並且P型氮化銦層與N型氮化銦層之間形成有空乏區以阻擋漏電流通過。 Preferably, the initial nucleation layer may have a structure formed by stacking a P-type indium nitride layer and an N-type indium nitride layer, and a void is formed between the P-type indium nitride layer and the N-type indium nitride layer. Zone to block leakage current through.

較佳的,初始成核層可以具有以P型氮化銦層及N型氮化銦層作為堆疊組,並重複堆疊複數組堆疊組而形成的結構,並且P型氮化銦層與N型氮化銦層之間形成有空乏區以阻擋漏電流通過。 Preferably, the initial nucleation layer may have a structure in which a P-type indium nitride layer and an N-type indium nitride layer are used as stacked groups, and a plurality of stacked groups are repeatedly stacked, and the P-type indium nitride layer and the N-type indium nitride layer are stacked. A depletion region is formed between the indium nitride layers to prevent leakage current from passing through.

較佳的,P型氮化銦層可以為鎂摻雜,且鎂濃度為1E16~1E23atoms/cm3,N型氮化銦層可以為矽摻雜,且矽濃度為1E16~1E21atoms/cm3Preferably, the P-type indium nitride layer can be doped with magnesium, and the magnesium concentration is 1E16~1E23 atoms/cm 3 , and the N-type indium nitride layer can be doped with silicon, and the silicon concentration is 1E16~1E21 atoms/cm 3 .

較佳的,晶格失配調變層(AlfIn1-fN)之鋁含量可以沿成長方向逐漸增加,且0≦f<1。 Preferably, the aluminum content of the lattice mismatch modulation layer (Al f In 1-f N) can gradually increase along the growth direction, and 0≦f<1.

較佳的,至少一氮化鋁銦鎵緩衝層可以包含第一氮化鋁銦鎵緩衝層、第二氮化鋁銦鎵緩衝層、及第三氮化鋁銦鎵緩衝層,並且第一 氮化鋁銦鎵緩衝層的化學組成可以為IngAleGa1-e-gN,且0.75≦e<1、0<g≦0.25;第二氮化鋁銦鎵緩衝層的化學組成可以為InhAldGa1-d-hN,且0.5≦d≦0.75、0.25<h<0.5;以及第三氮化鋁銦鎵緩衝層的化學組成可以為IniAlcGa1-c-iN,且0.3≦c≦0.5、0.5<i<0.7。 Preferably, the at least one aluminum indium gallium nitride buffer layer may include a first aluminum indium gallium nitride buffer layer, a second aluminum indium gallium nitride buffer layer, and a third aluminum indium gallium nitride buffer layer, and the first nitrogen The chemical composition of the aluminum indium gallium buffer layer may be In g Al e Ga 1-eg N, and 0.75≦e<1, 0<g≦0.25; the chemical composition of the second aluminum indium gallium nitride buffer layer may be In h Al d Ga 1-dh N, and 0.5≦d≦0.75, 0.25<h<0.5; and the chemical composition of the third aluminum indium gallium nitride buffer layer may be In i Al c Ga 1-ci N, and 0.3≦c ≦0.5, 0.5<i<0.7.

較佳的,第一氮化鋁銦鎵緩衝層、第二氮化鋁銦鎵緩衝層、及第三氮化鋁銦鎵緩衝層分別可以為無摻雜,或者為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合。 Preferably, the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer may be undoped, or be doped with carbon or iron, respectively. , And at least one of magnesium doping and combinations thereof.

較佳的,當第一氮化鋁銦鎵緩衝層、第二氮化鋁銦鎵緩衝層、及第三氮化鋁銦鎵緩衝層為碳摻雜時,碳濃度介於1E16~1E21atoms/cm3;當第一氮化鋁銦鎵緩衝層、第二氮化鋁銦鎵緩衝層、及第三氮化鋁銦鎵緩衝層為鐵摻雜時,鐵濃度介於1E16~1E20atoms/cm3;當第一氮化鋁銦鎵緩衝層、第二氮化鋁銦鎵緩衝層、及第三氮化鋁銦鎵緩衝層為鎂摻雜時,鎂濃度介於1E16~1E20atoms/cm3Preferably, when the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are doped with carbon, the carbon concentration is between 1E16~1E21 atoms/cm 3 ; When the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are doped with iron, the iron concentration is between 1E16~1E20 atoms/cm 3 ; When the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are doped with magnesium, the magnesium concentration is between 1E16-1E20 atoms/cm 3 .

較佳的,高阻層的化學組成可以為InjAlbGa1-b-jN,且0≦b≦0.1、0<j≦0.9,並且高阻層可以為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合。 Preferably, the chemical composition of the high resistance layer can be In j Al b Ga 1-bj N, and 0≦b≦0.1, 0<j≦0.9, and the high resistance layer can be carbon doped, iron doped, and Magnesium is doped with at least one of them and a combination thereof.

較佳的,當高阻層為碳摻雜時,碳濃度介於1E16~1E21atoms/cm3;當高阻層為鐵摻雜時,鐵濃度介於1E16~1E20atoms/cm3;當高阻層為鎂摻雜時,鎂濃度介於1E16~1E20atoms/cm3Preferably, when the high resistance layer is doped with carbon, the carbon concentration is between 1E16~1E21 atoms/cm 3 ; when the high resistance layer is doped with iron, the iron concentration is between 1E16~1E20 atoms/cm 3 ; when the high resistance layer is doped In the case of magnesium doping, the magnesium concentration is between 1E16~1E20 atoms/cm 3 .

較佳的,電子提供層的化學組成可以為InxAlyGa1-x-yN,且0≦y≦0.3、0≦x≦0.3。 Preferably, the chemical composition of the electron supply layer may be In x Al y Ga 1-xy N, and 0≦y≦0.3, 0≦x≦0.3.

較佳的,覆蓋層的化學組成可以為AlzGa1-zN,且0≦z≦0.3,並且覆蓋層可以為無摻雜或P型摻雜,當覆蓋層為P型摻雜時,其摻雜元素為鎂,且鎂濃度介於1E16~1E23atoms/cm3Preferably, the chemical composition of the covering layer may be Al z Ga 1-z N, and 0≦z≦0.3, and the covering layer may be undoped or P-type doped. When the covering layer is P-type doped, The doping element is magnesium, and the magnesium concentration is between 1E16~1E23 atoms/cm 3 .

較佳的,初始成核層與晶格失配調變層之間可以進一步設有缺陷阻障層,且缺陷阻障層可以為氮化矽或氮化鎂。 Preferably, a defect barrier layer may be further provided between the initial nucleation layer and the lattice mismatch modulation layer, and the defect barrier layer may be silicon nitride or magnesium nitride.

較佳的,在所述氮化物磊晶片中,可以具有以初始成核層與缺陷阻障層或者以缺陷阻障層與晶格失配調變層作為堆疊組,並且重複堆疊複數組堆疊組以形成的結構。 Preferably, in the nitride epitaxy wafer, there may be an initial nucleation layer and a defect barrier layer or a defect barrier layer and a lattice mismatch modulation layer as a stack group, and multiple stack groups are repeatedly stacked To form the structure.

基於上述目的,本發明進一步提供一種氮化物磊晶片的製造方法,包含以下步驟。 Based on the above objective, the present invention further provides a method for manufacturing a nitride epitaxial wafer, which includes the following steps.

(1)提供基底基板。 (1) Provide a base substrate.

(2)形成初始成核層於基底基板。 (2) Form an initial nucleation layer on the base substrate.

(3)形成晶格失配調變層於初始成核層上。 (3) A lattice mismatch modulation layer is formed on the initial nucleation layer.

(4)形成至少一氮化鋁銦鎵緩衝層於晶格失配調變層上。 (4) At least one aluminum indium gallium nitride buffer layer is formed on the lattice mismatch modulation layer.

(5)形成高阻層於至少一氮化鋁銦鎵緩衝層上。 (5) A high resistance layer is formed on at least one aluminum indium gallium nitride buffer layer.

(6)形成本質氮化鎵層於高阻層上。 (6) An essential gallium nitride layer is formed on the high resistance layer.

(7)形成電子提供層於本質氮化鎵層上。 (7) An electron supply layer is formed on the intrinsic gallium nitride layer.

(8)形成覆蓋層於電子提供層上。 (8) A covering layer is formed on the electron supply layer.

較佳的,基底基板為矽基板、氮化鋁基板、鑽石基板、碳化矽基板、氧化鎵基板、氮化硼基板、或矽晶絕緣體基板。 Preferably, the base substrate is a silicon substrate, an aluminum nitride substrate, a diamond substrate, a silicon carbide substrate, a gallium oxide substrate, a boron nitride substrate, or a silicon crystal insulator substrate.

較佳的,在基底基板上形成初始成核層的步驟可以進一步包含以下步驟:第一步驟,其成長溫度為500~550℃,並且以第一V/III比成長氮化銦;第二步驟,其成長溫度為700~750℃,並且以第二V/III比成長氮化銦;以及第三步驟,其成長溫度為500~550℃,並且以第三 V/III比成長氮化銦,並且第一V/III比及第三V/III比的範圍為0.5~50,且第二V/III比的範圍為500~3000。 Preferably, the step of forming the initial nucleation layer on the base substrate may further include the following steps: the first step, the growth temperature is 500-550°C, and the indium nitride is grown at the first V/III ratio; the second step , The growth temperature is 700~750°C, and indium nitride is grown with the second V/III ratio; and the third step, the growth temperature is 500~550°C, and the third The V/III ratio grows indium nitride, and the range of the first V/III ratio and the third V/III ratio is 0.5-50, and the range of the second V/III ratio is 500-3000.

較佳的,形成初始成核層的步驟中可以進一步包含堆疊一P型氮化銦層及一N型氮化銦層以形成初始成核層的步驟,或者以P型氮化銦層及N型氮化銦層作為堆疊組,並重複堆疊複數組堆疊組以形成初始成核層的步驟。 Preferably, the step of forming the initial nucleation layer may further include a step of stacking a P-type indium nitride layer and an N-type indium nitride layer to form the initial nucleation layer, or a P-type indium nitride layer and N The type indium nitride layer is used as a stacked group, and the step of stacking a plurality of stacked groups to form an initial nucleation layer is repeated.

較佳的,在初始成核層上形成晶格失配調變層的步驟中,其成長溫度可以自500~550度隨時間漸增至900~1100度,並且形成晶格失配調變層之鋁含量可以沿其成長方向逐漸增加。 Preferably, in the step of forming the lattice mismatch modulation layer on the initial nucleation layer, the growth temperature can gradually increase from 500 to 550 degrees to 900 to 1100 degrees over time, and the lattice mismatch modulation layer is formed The aluminum content can gradually increase along its growth direction.

較佳地,在初始成核層上形成晶格失配調變層的步驟中,其成長溫度具有升溫斜率,且升溫斜率可以為30~100℃/分鐘 Preferably, in the step of forming the lattice mismatch modulation layer on the initial nucleation layer, the growth temperature has a temperature rise slope, and the temperature rise slope can be 30-100°C/min

較佳的,氮化物磊晶片的製造方法可以進一步包含在初始成核層與晶格失配調變層之間形成缺陷阻障層的步驟,缺陷阻障層為氮化矽或氮化鎂。 Preferably, the manufacturing method of the nitride epitaxial wafer may further include a step of forming a defect barrier layer between the initial nucleation layer and the lattice mismatch modulation layer, and the defect barrier layer is silicon nitride or magnesium nitride.

較佳的,氮化物磊晶片的製造方法可以進一步包含以初始成核層與缺陷阻障層或者以缺陷阻障層與晶格失配調變層作為堆疊組,並且重複堆疊複數組堆疊組的步驟。 Preferably, the method for manufacturing a nitride epitaxial wafer may further include a stacking group of an initial nucleation layer and a defect barrier layer or a defect barrier layer and a lattice mismatch modulation layer, and repeatedly stacking a plurality of stacked groups step.

較佳的,形成各層的方法包含化學氣相沉積或者物理氣相沉積。 Preferably, the method for forming each layer includes chemical vapor deposition or physical vapor deposition.

承上所述,本發明之氮化物磊晶片及其製造方法係透過以氮化銦作為初始成核層的材料,並結合以氮化鋁銦形成的晶格失配調變層,而得以改善晶格失配的情形。並且,透過初始成核層之堆疊P型氮化銦層及N型氮化銦層的結構,使P型氮化銦層及N型氮化銦層之間的空乏區 可以防止基板產生的漏電流流入元件操作區域,進而防止元件操作時的性能降低,使本發明之氮化物磊晶片具有低晶格失配及低漏電流的效果。 As mentioned above, the nitride epitaxial wafer and its manufacturing method of the present invention are improved by using indium nitride as the material of the initial nucleation layer and combining with the lattice mismatch modulation layer formed by aluminum indium nitride. The case of lattice mismatch. Moreover, through the structure of stacking the P-type indium nitride layer and the N-type indium nitride layer of the initial nucleation layer, the depletion region between the P-type indium nitride layer and the N-type indium nitride layer The leakage current generated by the substrate can be prevented from flowing into the device operation area, thereby preventing performance degradation during device operation, so that the nitride epitaxial wafer of the present invention has the effects of low lattice mismatch and low leakage current.

此外,本發明透過控制製程中的溫度及各元素的含量比,以提升各層的晶體品質,並進一步減少各層之間晶格失配的情形。並且,本發明在初始成核層與晶格失配調變層之間設有缺陷阻障層,以藉由缺陷阻障層防止初始成核層的缺陷往上延伸,進而避免初始成核層的缺陷影響晶格失配調變層的晶體品質。 In addition, the present invention improves the crystal quality of each layer by controlling the temperature and the content ratio of each element in the process, and further reduces the lattice mismatch between the layers. Moreover, in the present invention, a defect barrier layer is provided between the initial nucleation layer and the lattice mismatch modulation layer to prevent the defects of the initial nucleation layer from extending upward through the defect barrier layer, thereby avoiding the initial nucleation layer The defects affect the crystal quality of the lattice mismatch modulation layer.

100,101,102:氮化物磊晶片 100, 101, 102: Nitride epitaxy wafer

1:基底基板 1: base substrate

2:初始成核層 2: Initial nucleation layer

21:P型氮化銦層 21: P-type indium nitride layer

22:N型氮化銦層 22: N-type indium nitride layer

3:晶格失配調變層 3: Lattice mismatch modulation layer

4:氮化鋁銦鎵緩衝層 4: Aluminum indium gallium nitride buffer layer

41:第一氮化鋁銦鎵緩衝層 41: The first aluminum indium gallium nitride buffer layer

42:第二氮化鋁銦鎵緩衝層 42: The second aluminum indium gallium nitride buffer layer

43:第三氮化鋁銦鎵緩衝層 43: The third aluminum indium gallium nitride buffer layer

5:高阻層 5: High resistance layer

6:本質氮化鎵層 6: Essential GaN layer

7:電子提供層 7: Electronic provision layer

8:覆蓋層 8: Covering layer

9:缺陷阻障層 9: Defect barrier layer

S1,S2,S21,S22,S23,S24,S25,S3,S4,S5,S6,S7,S8,S9:步驟 S1, S2, S21, S22, S23, S24, S25, S3, S4, S5, S6, S7, S8, S9: steps

為了更清楚地說明本發明的技術方案,下面將對實施例中所需要使用的圖式作簡單地介紹;第1圖為根據本發明一實施例的氮化物磊晶片的示意圖;第2圖為根據本發明一實施例的氮化物磊晶片中初始成核層的示意圖;第3圖為根據本發明一實施例的氮化物磊晶片製造方法的流程圖;第4A圖為根據本發明一實施例的氮化物磊晶片製造方法中的步驟S2的詳細流程圖;第4B圖為根據本發明一實施例的氮化物磊晶片製造方法中的步驟S2的另一實施方式的詳細流程圖;第5圖為根據本發明另一實施例的具有初始成核層/缺陷阻障層重複堆疊結構的氮化物磊晶片的示意圖;第6圖為根據本發明再另一實施例的具有缺陷阻障層/晶格失配調變層重複堆疊結構的氮化物磊晶片的示意圖。 In order to explain the technical solution of the present invention more clearly, the following will briefly introduce the drawings that need to be used in the embodiments; Figure 1 is a schematic diagram of a nitride epitaxial wafer according to an embodiment of the present invention; Figure 2 is A schematic diagram of an initial nucleation layer in a nitride epitaxial wafer according to an embodiment of the present invention; FIG. 3 is a flowchart of a method for manufacturing a nitride epitaxial wafer according to an embodiment of the present invention; FIG. 4A is an embodiment according to the present invention The detailed flowchart of step S2 in the method of manufacturing an epitaxial nitride wafer; FIG. 4B is a detailed flowchart of another embodiment of step S2 in the method of manufacturing an epitaxial nitride wafer according to an embodiment of the present invention; FIG. 5 It is a schematic diagram of a nitride epitaxial wafer with a repeated stack structure of an initial nucleation layer/defect barrier layer according to another embodiment of the present invention; FIG. 6 is a diagram of a defect barrier layer/crystal according to still another embodiment of the present invention A schematic diagram of a nitride epitaxial wafer with a repeated stacked structure of lattice mismatch modulation layers.

在下文中將結合附圖對本發明進行進一步的詳細說明。這些附圖均為簡化的示意圖,僅以示意方式說明本發明的基本結構,並且為了清楚起見而誇大了元件的比例及尺寸,因此並不作為對本發明的限定。 Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. These drawings are simplified schematic diagrams, which merely illustrate the basic structure of the present invention in a schematic manner, and exaggerate the proportions and sizes of elements for clarity, and therefore are not intended to limit the present invention.

請一併參閱第1圖及第2圖所示,第1圖為根據本發明一實施例的氮化物磊晶片的示意圖;第2圖為根據本發明一實施例的氮化物磊晶片中初始成核層的示意圖。 Please refer to FIG. 1 and FIG. 2. FIG. 1 is a schematic diagram of an epitaxial nitride wafer according to an embodiment of the present invention; FIG. 2 is an initial formation of an epitaxial nitride wafer according to an embodiment of the present invention. Schematic diagram of the nuclear layer.

如第1圖所示,本發明係提供一種低晶格失配低漏電流的氮化物磊晶片100,其包含:基底基板1;設置在基底基板1上的初始成核層2;設置在初始成核層2上的晶格失配調變層3;設置在晶格失配調變層3上的第一氮化鋁銦鎵緩衝層41;設置在第一氮化鋁銦鎵緩衝層41上的第二氮化鋁銦鎵緩衝層42;設置在第二氮化鋁銦鎵緩衝層42上的第三氮化鋁銦鎵緩衝層43;設置在第三氮化鋁銦鎵緩衝層43上的高阻層5;設置在高阻層5上的本質氮化鎵層6;設置在本質氮化鎵層6上的電子提供層7;以及設置在電子提供層7上的覆蓋層8。 As shown in Figure 1, the present invention provides a nitride epitaxial wafer 100 with low lattice mismatch and low leakage current, which includes: a base substrate 1; an initial nucleation layer 2 provided on the base substrate 1; The lattice mismatch modulation layer 3 on the nucleation layer 2; the first aluminum indium gallium nitride buffer layer 41 disposed on the lattice mismatch modulation layer 3; the first aluminum indium gallium nitride buffer layer 41 disposed on the lattice mismatch modulation layer 3 The second aluminum indium gallium nitride buffer layer 42 on the upper part; the third aluminum indium gallium nitride buffer layer 43 arranged on the second aluminum indium gallium nitride buffer layer 42; the third aluminum indium gallium nitride buffer layer 43 arranged on the third aluminum indium gallium nitride buffer layer 43 The high resistance layer 5 on the high resistance layer 5; the intrinsic gallium nitride layer 6 provided on the high resistance layer 5; the electron supply layer 7 provided on the intrinsic gallium nitride layer 6; and the cover layer 8 provided on the electron supply layer 7.

在本實施例中,基底基板1為矽基板,但本發明不限定於此,例如在其他實施例中,可以使用氮化鋁基板、鑽石基板、碳化矽基板、氧化鎵基板、氮化硼基板、或矽晶絕緣體基板等其他種類的基板作為基底基板。 In this embodiment, the base substrate 1 is a silicon substrate, but the present invention is not limited to this. For example, in other embodiments, an aluminum nitride substrate, a diamond substrate, a silicon carbide substrate, a gallium oxide substrate, and a boron nitride substrate can be used. , Or other types of substrates such as silicon insulator substrates as base substrates.

初始成核層2為氮化銦層,其設置在基底基板1上,且其總厚度介於3~50nm。值得一提的是,如第2圖所繪示,初始成核層2可以具有一P型氮化銦層21及一N型氮化銦層22堆疊以形成的結構,或者 可以具有以P型氮化銦層21及N型氮化銦層22作為堆疊組,並重複堆疊複數組堆疊組以形成的結構。在初始成核層2中,P型氮化銦層21與N型氮化銦層22之間形成有空乏區,空乏區可以阻擋在操作元件時基底基板產生的漏電流通過,以防止漏電流造成元件的性能降低。 The initial nucleation layer 2 is an indium nitride layer, which is disposed on the base substrate 1 and has a total thickness of 3-50 nm. It is worth mentioning that, as shown in FIG. 2, the initial nucleation layer 2 may have a structure in which a P-type indium nitride layer 21 and an N-type indium nitride layer 22 are stacked to form a structure, or It may have a structure in which a P-type indium nitride layer 21 and an N-type indium nitride layer 22 are used as a stack group, and a plurality of stack groups are repeatedly stacked to form a structure. In the initial nucleation layer 2, a depletion region is formed between the P-type indium nitride layer 21 and the N-type indium nitride layer 22. The depletion region can block the leakage current generated by the base substrate when the device is operated to prevent leakage current. Cause the performance of the component to decrease.

在本實施例中,係重複堆疊五組上述堆疊組(P型氮化銦層/N型氮化銦層)以形成初始成核層2,但本發明不限定於此,在其他實施例中,上述堆疊組可以重複堆疊的組數介於1~10組。並且,在本實施例中,是先形成P型氮化銦層21後再形成N型氮化銦層22,然而在其他實施例中,可以先形成N型氮化銦層22後再形成P型氮化銦層21。也就是說,P型氮化銦層21及N型氮化銦層22僅需交替形成,其形成的先後順序並不影響初始成核層2的形成。 In this embodiment, five sets of the above-mentioned stacks (P-type indium nitride layer/N-type indium nitride layer) are repeatedly stacked to form the initial nucleation layer 2, but the present invention is not limited to this, in other embodiments , The number of stacking groups that can be repeatedly stacked is between 1 and 10 groups. Moreover, in this embodiment, the P-type indium nitride layer 21 is formed first and then the N-type indium nitride layer 22 is formed. However, in other embodiments, the N-type indium nitride layer 22 may be formed first and then the P-type indium nitride layer 22 is formed. -Type indium nitride layer 21. In other words, the P-type indium nitride layer 21 and the N-type indium nitride layer 22 only need to be alternately formed, and the order of their formation does not affect the formation of the initial nucleation layer 2.

進一步地,在本實施例中,P型氮化銦層21為鎂摻雜,且鎂濃度為1E16~1E23atoms/cm3,N型氮化銦層22為矽摻雜,且矽濃度為1E16~1E21atoms/cm3Further, in this embodiment, the P-type indium nitride layer 21 is doped with magnesium, and the magnesium concentration is 1E16~1E23 atoms/cm 3 , and the N-type indium nitride layer 22 is doped with silicon, and the silicon concentration is 1E16~ 1E21atoms/cm 3 .

復請參照第1圖,以接續說明所述之低晶格失配低漏電流的氮化物磊晶片100的結構。其中,晶格失配調變層3設置在初始成核層2上,且晶格失配調變層3(AlfIn1-fN)之鋁含量沿成長方向逐漸增加,且0≦f<1。進一步地,透過調整形成晶格失配調變層3時的鋁含量,可以使晶格失配調變層3在成長結束時之晶格常數匹配於第一氮化鋁銦鎵緩衝層41,以減少晶格失配的情形發生。此外,晶格失配調變層3的厚度介於10~500nm。 Please refer to FIG. 1 again to continue the description of the structure of the nitride epitaxial wafer 100 with low lattice mismatch and low leakage current. Wherein, the lattice mismatch modulation layer 3 is disposed on the initial nucleation layer 2, and the aluminum content of the lattice mismatch modulation layer 3 (Al f In 1-f N) gradually increases along the growth direction, and 0≦f <1. Further, by adjusting the aluminum content when forming the lattice mismatch modulation layer 3, the lattice constant of the lattice mismatch modulation layer 3 at the end of the growth can be matched to the first aluminum indium gallium nitride buffer layer 41. To reduce the occurrence of lattice mismatch. In addition, the thickness of the lattice mismatch modulation layer 3 is between 10 nm and 500 nm.

值得一提的是,在初始成核層2與晶格失配調變層3之間可以進一步設置缺陷阻障層9,且其厚度介於2~20nm。在本實施例中,使用氮化矽作為缺陷阻障層9,但本發明不限定於此,在其他實施例中可 以使用氮化鎂作為缺陷阻障層9。缺陷阻障層9係用以阻擋初始成核層2之缺陷向上延伸,以防止初始成核層2之缺陷影響晶格失配調變層3之晶體品質。在本實施例中,僅在初始成核層2與晶格失配調變層3之間設有一層缺陷阻障層9,但本發明不限定於此,在其他實施例中可以設有複數層缺陷阻障層,或者不設置缺陷阻障層。關於缺陷阻障層的其他實施方式將在下文中的其他實施例進行詳細說明。 It is worth mentioning that a defect barrier layer 9 can be further provided between the initial nucleation layer 2 and the lattice mismatch modulation layer 3, and the thickness of the defect barrier layer 9 is between 2-20 nm. In this embodiment, silicon nitride is used as the defect barrier layer 9, but the present invention is not limited to this. In other embodiments, Magnesium nitride is used as the defect barrier layer 9. The defect barrier layer 9 is used to block the defects of the initial nucleation layer 2 from extending upward, so as to prevent the defects of the initial nucleation layer 2 from affecting the crystal quality of the lattice mismatch modulation layer 3. In this embodiment, only a defect barrier layer 9 is provided between the initial nucleation layer 2 and the lattice mismatch modulation layer 3. However, the present invention is not limited to this. In other embodiments, a plurality of defects may be provided. Layer defect barrier layer, or no defect barrier layer. Other implementations of the defect barrier layer will be described in detail in other embodiments below.

在晶格失配調變層3上可以設置有至少一氮化鋁銦鎵緩衝層4。在本實施例中,設置有三層氮化鋁銦鎵緩衝層4,其分別為第一氮化鋁銦鎵緩衝層41、第二氮化鋁銦鎵緩衝層42、及第三氮化鋁銦鎵緩衝層43,但本發明不限定於此,在其他實施例中可以根據使用者的需求或者考量製程成本,進而增加或減少氮化鋁銦鎵緩衝層4的數量。具體來說,第一氮化鋁銦鎵緩衝層41設置在晶格失配調變層3上,第二氮化鋁銦鎵緩衝層42設置在第一氮化鋁銦鎵緩衝層41上,並且第三氮化鋁銦鎵緩衝層43設置在第二氮化鋁銦鎵緩衝層42上。進一步地,第一氮化鋁銦鎵緩衝層41的化學組成為IngAleGa1-e-gN,且0.75≦e<1、0<g≦0.25;第二氮化鋁銦鎵緩衝層42的化學組成為InhAldGa1-d-hN,且0.5≦d≦0.75、0.25<h<0.5;以及第三氮化鋁銦鎵緩衝層43的化學組成為IniAlcGa1-c-iN,且0.3≦c≦0.5、0.5<i<0.7,也就是說,各氮化鋁銦鎵緩衝層4之鋁含量依序減少。 At least one aluminum indium gallium nitride buffer layer 4 may be provided on the lattice mismatch modulation layer 3. In this embodiment, three aluminum indium gallium nitride buffer layers 4 are provided, which are the first aluminum indium gallium nitride buffer layer 41, the second aluminum indium gallium nitride buffer layer 42, and the third aluminum indium gallium nitride buffer layer. The gallium buffer layer 43, but the present invention is not limited thereto. In other embodiments, the number of the aluminum indium gallium nitride buffer layer 4 can be increased or decreased according to the needs of the user or considering the process cost. Specifically, the first aluminum indium gallium nitride buffer layer 41 is disposed on the lattice mismatch modulation layer 3, and the second aluminum indium gallium nitride buffer layer 42 is disposed on the first aluminum indium gallium nitride buffer layer 41, And the third aluminum indium gallium nitride buffer layer 43 is disposed on the second aluminum indium gallium nitride buffer layer 42. Further, the chemical composition of the first aluminum indium gallium nitride buffer layer 41 is In g Al e Ga 1-eg N, and 0.75≦e<1, 0<g≦0.25; the second aluminum indium gallium nitride buffer layer 42 The chemical composition of In h Al d Ga 1-dh N, and 0.5≦d≦0.75, 0.25<h<0.5; and the chemical composition of the third aluminum indium gallium nitride buffer layer 43 is In i Al c Ga 1-ci N, and 0.3≦c≦0.5, 0.5<i<0.7, that is, the aluminum content of each aluminum indium gallium nitride buffer layer 4 decreases sequentially.

此外,第一氮化鋁銦鎵緩衝層41、第二氮化鋁銦鎵緩衝層42、及第三氮化鋁銦鎵緩衝層43分別可以為無摻雜,或者為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合。也就是說,各氮化鋁銦鎵緩衝層4分別可以摻雜單一元素,例如碳、鐵、或鎂,或者可以同時摻雜兩種元素,例如碳與鐵、碳與鎂、或鐵與鎂同時摻雜,再或者可以同時摻雜碳、鐵、及鎂三種元素。 In addition, the first aluminum indium gallium nitride buffer layer 41, the second aluminum indium gallium nitride buffer layer 42, and the third aluminum indium gallium nitride buffer layer 43 may be undoped, or carbon-doped, iron-doped, respectively. At least one of doping, and magnesium doping, and combinations thereof. That is, each aluminum indium gallium nitride buffer layer 4 can be doped with a single element, such as carbon, iron, or magnesium, or can be doped with two elements, such as carbon and iron, carbon and magnesium, or iron and magnesium. Doping at the same time, or can be doped at the same time three elements of carbon, iron, and magnesium.

進一步地,當第一氮化鋁銦鎵緩衝層41、第二氮化鋁銦鎵緩衝層42、及第三氮化鋁銦鎵緩衝層43為碳摻雜時,碳濃度介於1E16~1E21atoms/cm3;當第一氮化鋁銦鎵緩衝層41、第二氮化鋁銦鎵緩衝層42、及第三氮化鋁銦鎵緩衝層43為鐵摻雜時,鐵濃度介於1E16~1E20atoms/cm3;當第一氮化鋁銦鎵緩衝層41、第二氮化鋁銦鎵緩衝層42、及第三氮化鋁銦鎵緩衝層43為鎂摻雜時,鎂濃度介於1E16~1E20atoms/cm3。並且,各氮化鋁銦鎵緩衝層4的厚度介於50~1000nm。 Further, when the first aluminum indium gallium nitride buffer layer 41, the second aluminum indium gallium nitride buffer layer 42, and the third aluminum indium gallium nitride buffer layer 43 are doped with carbon, the carbon concentration is between 1E16~1E21 atoms. /cm 3 ; when the first aluminum indium gallium nitride buffer layer 41, the second aluminum indium gallium nitride buffer layer 42, and the third aluminum indium gallium nitride buffer layer 43 are doped with iron, the iron concentration is between 1E16~ 1E20 atoms/cm 3 ; when the first aluminum indium gallium nitride buffer layer 41, the second aluminum indium gallium nitride buffer layer 42, and the third aluminum indium gallium nitride buffer layer 43 are doped with magnesium, the magnesium concentration is between 1E16 ~1E20atoms/cm 3 . In addition, the thickness of each aluminum indium gallium nitride buffer layer 4 is between 50 nm and 1000 nm.

高阻層5設置在第三氮化鋁銦鎵緩衝層43上,高阻層5的化學組成為InjAlbGa1-b-jN,且0≦b≦0.1、0<j≦0.9,其鋁含量比較第三氮化鋁銦鎵緩衝層43低。並且,高阻層5可以為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合,也就是說,高阻層5可以摻雜單一元素,例如碳、鐵、或鎂,或者可以同時摻雜兩種元素,例如碳與鐵、碳與鎂、或鐵與鎂同時摻雜,再或者可以同時摻雜碳、鐵、及鎂三種元素。 The high resistance layer 5 is disposed on the third aluminum indium gallium nitride buffer layer 43, and the chemical composition of the high resistance layer 5 is In j Al b Ga 1-bj N, and 0≦b≦0.1, 0<j≦0.9, which The aluminum content is lower than that of the third aluminum indium gallium nitride buffer layer 43. In addition, the high-resistance layer 5 may be at least one of carbon doping, iron doping, and magnesium doping and combinations thereof, that is, the high-resistance layer 5 may be doped with a single element, such as carbon, iron, or magnesium, Alternatively, two elements can be doped at the same time, for example, carbon and iron, carbon and magnesium, or iron and magnesium can be doped at the same time, or three elements of carbon, iron, and magnesium can be doped at the same time.

並且,當高阻層5為碳摻雜時,碳濃度介於1E16~1E21atoms/cm3;當高阻層5為鐵摻雜時,鐵濃度介於1E16~1E20atoms/cm3;當高阻層5為鎂摻雜時,鎂濃度介於1E16~1E20atoms/cm3。此外,高阻層5的厚度介於500~3000nm。 Moreover, when the high resistance layer 5 is doped with carbon, the carbon concentration is between 1E16~1E21 atoms/cm 3 ; when the high resistance layer 5 is doped with iron, the iron concentration is between 1E16~1E20 atoms/cm 3 ; When 5 is doped with magnesium, the magnesium concentration is between 1E16~1E20 atoms/cm 3 . In addition, the thickness of the high resistance layer 5 is between 500 nm and 3000 nm.

本質氮化鎵層6設置在高阻層5上,其由氮化鎵組成,且不摻雜有其他元素,並且本質氮化鎵層6厚度介於50~800nm。 The essential gallium nitride layer 6 is disposed on the high resistance layer 5, which is composed of gallium nitride and is not doped with other elements, and the thickness of the essential gallium nitride layer 6 is between 50-800 nm.

電子提供層7設置在本質氮化鎵層6上,電子提供層7的化學組成為InxAlyGa1-x-yN,且0≦y≦0.3、0≦x≦0.3。並且,電子提供層7厚度介於8~30nm。 The electron supply layer 7 is disposed on the intrinsic gallium nitride layer 6, and the chemical composition of the electron supply layer 7 is In x Al y Ga 1-xy N, and 0≦y≦0.3, 0≦x≦0.3. In addition, the thickness of the electron supply layer 7 is between 8 and 30 nm.

覆蓋層8設置在電子提供層7上,覆蓋層8的化學組成為AlzGa1-zN,且0≦z≦0.3,並且覆蓋層8可以為無摻雜或P型摻雜。當覆 蓋層8為P型摻雜時,其摻雜元素為鎂,且鎂濃度介於1E16~1E23atoms/cm3,並且厚度介於10~200nm。此外,當覆蓋層8為無摻雜時,其厚度介於0.5~20nm,且覆蓋層8(AlzGa1-zN)的最佳含量為z=0。 The covering layer 8 is disposed on the electron supply layer 7, and the chemical composition of the covering layer 8 is Al z Ga 1-z N, and 0≦z≦0.3, and the covering layer 8 may be undoped or P-type doped. When the covering layer 8 is P-type doped, the doping element is magnesium, the magnesium concentration is between 1E16-1E23 atoms/cm 3 , and the thickness is between 10-200 nm. In addition, when the covering layer 8 is undoped, its thickness is between 0.5 and 20 nm, and the optimum content of the covering layer 8 (Al z Ga 1-z N) is z=0.

請參閱第3圖、第4A圖、及第4B圖,第3圖為根據本發明一實施例的氮化物磊晶片製造方法的流程圖;第4A圖為根據本發明一實施例的氮化物磊晶片製造方法中的步驟S2的詳細流程圖;第4B圖為根據本發明一實施例的氮化物磊晶片製造方法中的步驟S2的另一實施方式的詳細流程圖。 Please refer to FIG. 3, FIG. 4A, and FIG. 4B. FIG. 3 is a flowchart of a method for manufacturing a nitride epitaxy wafer according to an embodiment of the present invention; FIG. 4A is a nitride epitaxy according to an embodiment of the present invention The detailed flowchart of step S2 in the wafer manufacturing method; FIG. 4B is a detailed flowchart of another implementation of step S2 in the method for manufacturing an epitaxial nitride wafer according to an embodiment of the present invention.

在下文中,將參照第3圖說明根據例示性實施例的氮化物磊晶片的製造方法。其包含:步驟S1,提供基底基板;步驟S2,形成初始成核層於基底基板;步驟S3,形成缺陷阻障層於初始成核層上;步驟S4,形成晶格失配調變層於缺陷阻障層上;步驟S5,形成至少一氮化鋁銦鎵緩衝層於晶格失配調變層上;步驟S6,形成高阻層於至少一氮化鋁銦鎵緩衝層上;步驟S7,形成本質氮化鎵層於高阻層上;步驟S8,形成電子提供層於本質氮化鎵層上;步驟S9,形成覆蓋層於電子提供層上。 Hereinafter, a method of manufacturing a nitride epitaxial wafer according to an exemplary embodiment will be described with reference to FIG. 3. It includes: step S1, providing a base substrate; step S2, forming an initial nucleation layer on the base substrate; step S3, forming a defect barrier layer on the initial nucleation layer; step S4, forming a lattice mismatch modulation layer on the defect On the barrier layer; step S5, forming at least one aluminum indium gallium nitride buffer layer on the lattice mismatch modulation layer; step S6, forming a high resistance layer on the at least one aluminum indium gallium nitride buffer layer; step S7, An essential gallium nitride layer is formed on the high resistance layer; step S8, an electron supply layer is formed on the essential gallium nitride layer; step S9, a covering layer is formed on the electron supply layer.

參照第3圖,首先,提供基底基板(如步驟S1所示),在本實施例中使用矽基板作為基底基板,但本發明不限定於此,在其他實施例種可以使用氮化鋁基板、鑽石基板、碳化矽基板、氧化鎵基板、氮化硼基板、或矽晶絕緣體基板等其他種類的基板作為基底基板。 Referring to Figure 3, first, a base substrate is provided (as shown in step S1). In this embodiment, a silicon substrate is used as the base substrate, but the present invention is not limited to this. In other embodiments, an aluminum nitride substrate, Diamond substrates, silicon carbide substrates, gallium oxide substrates, boron nitride substrates, or silicon crystal insulator substrates and other types of substrates are used as base substrates.

接下來,在基底基板上形成初始成核層(如步驟S2所示),且形成初始成核層的步驟S2可以進一步包含以下三個步驟:第一步驟,在基底基板上利用有機金屬化學氣相沉積法(MOCVD,Metal Organic Chemical-Vapor Deposition)成長氮化銦,其成長溫度設定在500~550℃, 並且以較低的第一V/III比成長氮化銦,其中第一V/III比介於0.5~50,上述的製程條件有助於氮化銦的形成,在第一步驟中形成的氮化銦厚度為1~10nm;第二步驟,同樣利用MOCVD以在第一步驟形成之氮化銦上接續成長氮化銦,其成長溫度提升至700~750℃,並且以較高的第二V/III比成長氮化銦,其中第二V/III比介於500~3000之間,在第二步驟中的高成長溫度係用以對第一步驟中形成的氮化銦進行合金處理以提升其晶體品質,而高V/III比可以減緩其成長速度,以使在第二步驟中成長之氮化銦可以維持經合金處理之氮化銦的晶體品質,且在第二步驟中形成的氮化銦厚度為1~5nm;第三步驟,同樣利用MOCVD以在第二步驟形成之氮化銦上接續成長氮化銦,其成長溫度設定在500~550℃,並且以較低的第三V/III比成長氮化銦,其中第三V/III比介於0.5~50,第三步驟係基於在第二步驟中所成長之具有較好的晶體品質的氮化銦層,以持續增加其厚度,進而達到釋放晶格失配的效果,且在第三步驟中形成的氮化銦厚度為1~35nm。因此,初始成核層總厚度為3~50nm。 Next, an initial nucleation layer is formed on the base substrate (as shown in step S2), and the step S2 of forming the initial nucleation layer may further include the following three steps: The first step is to use an organometallic chemical gas on the base substrate. The phase deposition method (MOCVD, Metal Organic Chemical-Vapor Deposition) grows indium nitride, and its growth temperature is set at 500~550℃, In addition, indium nitride is grown with a lower first V/III ratio, where the first V/III ratio is between 0.5 and 50. The above-mentioned process conditions facilitate the formation of indium nitride, and the nitrogen formed in the first step The thickness of indium is 1~10nm; in the second step, MOCVD is also used to grow indium nitride on the indium nitride formed in the first step. The growth temperature is increased to 700~750℃, and the second V /III ratio grows indium nitride, where the second V/III ratio is between 500 and 3000. The high growth temperature in the second step is used to alloy the indium nitride formed in the first step to improve Its crystal quality, and the high V/III ratio can slow down its growth rate, so that the indium nitride grown in the second step can maintain the crystal quality of the alloyed indium nitride, and the nitrogen formed in the second step The thickness of indium is 1~5nm; in the third step, MOCVD is also used to successively grow indium nitride on the indium nitride formed in the second step. The growth temperature is set at 500~550°C and the third V /III ratio grows indium nitride, where the third V/III ratio is between 0.5~50. The third step is based on the indium nitride layer with better crystal quality grown in the second step to continuously increase its In addition, the thickness of the indium nitride is 1~35nm. Therefore, the total thickness of the initial nucleation layer is 3-50nm.

請一併參閱第4A圖及第4B圖,在形成初始成核層的步驟中可以進一步包含以P型氮化銦層及N型氮化銦層作為堆疊組,並重複堆疊複數組堆疊組,以形成如第2圖所繪示的具有複數層P型氮化銦層21及複數層N型氮化銦層22的初始成核層2的步驟(如第4A圖所示);或者僅堆疊一層P型氮化銦層及一層N型氮化銦層以形成初始成核層的步驟(如第4B圖所示)。進一步地,在本實施例中,P型氮化銦層為鎂摻雜,且N型氮化銦層為矽摻雜。並且,P型氮化銦層與N型氮化銦層之間形成有空乏區,空乏區可以阻擋在操作元件時基底基板產生的漏電流通過,以防止漏電流造成元件的性能降低。 Please refer to FIGS. 4A and 4B together. The step of forming the initial nucleation layer may further include using a P-type indium nitride layer and an N-type indium nitride layer as a stack group, and repeatedly stacking a plurality of stack groups, To form the initial nucleation layer 2 with a plurality of P-type indium nitride layers 21 and a plurality of N-type indium nitride layers 22 as shown in FIG. 2 (as shown in FIG. 4A); or just stack A P-type indium nitride layer and an N-type indium nitride layer to form an initial nucleation layer (as shown in Figure 4B). Further, in this embodiment, the P-type indium nitride layer is doped with magnesium, and the N-type indium nitride layer is doped with silicon. In addition, a depletion region is formed between the P-type indium nitride layer and the N-type indium nitride layer. The depletion region can block the leakage current generated by the base substrate when the device is operated, so as to prevent the leakage current from degrading the performance of the device.

參照第4A圖,具體來說,在形成初始成核層的步驟中,可以先在基底基板上形成P型氮化銦層(如步驟S21所示),並在P型氮化銦 層上形成N型氮化銦層(如步驟S22所示),再接續在N型氮化銦層上形成P型氮化銦層(如步驟S23所示),並再接續在P型氮化銦層上形成N型氮化銦層(如步驟S24所示),並且可以根據需求重複執行步驟S23及步驟S24,以重複堆疊P型氮化銦層及N型氮化銦層,且重複堆疊的組數可以為1~10組。此外,在其他實施例中,P型氮化銦層及N型氮化銦層僅需交替形成,其形成的先後順序並不影響初始成核層2的形成。也就是說,雖然在本實施例中先形成P型氮化銦層後再形成N型氮化銦層,但是在其他實施例中,可以先形成N型氮化銦層後再形成P型氮化銦層。 Referring to Figure 4A, specifically, in the step of forming the initial nucleation layer, a P-type indium nitride layer can be formed on the base substrate (as shown in step S21), and the P-type indium nitride layer An N-type indium nitride layer is formed on the N-type indium nitride layer (as shown in step S22), and then a P-type indium nitride layer is formed on the N-type indium nitride layer (as shown in step S23). An N-type indium nitride layer is formed on the indium layer (as shown in step S24), and step S23 and step S24 can be repeatedly performed as required to repeatedly stack a P-type indium nitride layer and an N-type indium nitride layer, and the stacking is repeated The number of groups can be 1~10 groups. In addition, in other embodiments, the P-type indium nitride layer and the N-type indium nitride layer only need to be alternately formed, and the order of their formation does not affect the formation of the initial nucleation layer 2. In other words, although the P-type indium nitride layer is formed first and then the N-type indium nitride layer is formed in this embodiment, in other embodiments, the N-type indium nitride layer may be formed first and then the P-type nitride layer is formed. Indium layer.

此外,在形成初始成核層的步驟中,也可以如第4B圖所示,在基底基板上形成P型氮化銦層(如步驟S21所示),並在P型氮化銦層上形成N型氮化銦層(如步驟S22所示),即結束形成初始成核層的步驟,僅形成具有一層P型氮化銦層及一層N型氮化銦層的初始成核層。 In addition, in the step of forming the initial nucleation layer, as shown in FIG. 4B, a P-type indium nitride layer may be formed on the base substrate (as shown in step S21), and formed on the P-type indium nitride layer The N-type indium nitride layer (as shown in step S22), that is, the step of forming the initial nucleation layer is completed, and only the initial nucleation layer having a P-type indium nitride layer and an N-type indium nitride layer is formed.

復請參照第3圖,以接續說明氮化物磊晶片的製造方法。在基底基板上形成初始成核層後,接續利用MOCVD在初始成核層上形成缺陷阻障層(如步驟S3所示),缺陷阻障層為氮化矽或氮化鎂,且其厚度介於2~20nm。缺陷阻障層係用以阻擋初始成核層之缺陷向上延伸,以防止其影響晶格失配調變層之晶體品質。 Please refer to Figure 3 again to continue the description of the manufacturing method of the nitride epitaxial wafer. After the initial nucleation layer is formed on the base substrate, MOCVD is then used to form a defect barrier layer on the initial nucleation layer (as shown in step S3). The defect barrier layer is silicon nitride or magnesium nitride, and its thickness is between In 2~20nm. The defect barrier layer is used to prevent the defects of the initial nucleation layer from extending upward to prevent them from affecting the crystal quality of the lattice mismatch modulation layer.

值得一提的是,在其他實施例中,可以不設置缺陷阻障層,而直接在初始成核層上形成晶格失配調變層。或者,可以設有複數層缺陷阻障層。關於缺陷阻障層的其他實施方式將在下文中的其他實施例中進行詳細說明。 It is worth mentioning that in other embodiments, the defect barrier layer may not be provided, and the lattice mismatch modulation layer may be directly formed on the initial nucleation layer. Alternatively, a plurality of defect barrier layers may be provided. Other implementations of the defect barrier layer will be described in detail in other embodiments below.

在形成缺陷阻障層後,接續利用MOCVD在缺陷阻障層上形成晶格失配調變層(如步驟S4所示)。此外,在不形成有缺陷阻障層的實施例中,可以直接在初始成核層上形成晶格失配調變層。在步驟S4中, 晶格失配調變層(AlfIn1-fN)的成長溫度自500~550度隨時間漸增至900~1100度,並且形成晶格失配調變層之鋁含量可以沿其成長方向逐漸增加,且0≦f<1。進一步地,透過調整形成晶格失配調變層時的鋁含量,可以使晶格失配調變層在成長結束時之晶格常數匹配於氮化鋁銦鎵緩衝層,以減少晶格失配的情形發生。此外,晶格失配調變層的厚度介於10~500nm。 After the defect barrier layer is formed, MOCVD is then used to form a lattice mismatch modulation layer on the defect barrier layer (as shown in step S4). In addition, in embodiments where the defective barrier layer is not formed, the lattice mismatch modulation layer may be directly formed on the initial nucleation layer. In step S4, the growth temperature of the lattice mismatch modulation layer (Al f In 1-f N) gradually increases from 500 to 550 degrees to 900 to 1100 degrees over time, and the aluminum of the lattice mismatch modulation layer is formed The content can gradually increase along its growth direction, and 0≦f<1. Further, by adjusting the aluminum content when forming the lattice mismatch modulation layer, the lattice constant of the lattice mismatch modulation layer at the end of the growth can be matched with the aluminum indium gallium nitride buffer layer to reduce the lattice mismatch. The situation happened. In addition, the thickness of the lattice mismatch modulation layer is between 10 nm and 500 nm.

值得一提的是,在缺陷阻障層上形成晶格失配調變層的步驟S4中,在提升晶格失配調變層(AlfIn1-fN)的成長溫度時,成長溫度可以具有特定的升溫斜率。具體來說,升溫斜率可以為30~100℃/分鐘,且成長溫度依照此升溫斜率自500~550度隨時間漸增至900~1100度。 It is worth mentioning that in the step S4 of forming the lattice mismatch modulation layer on the defect barrier layer, when the growth temperature of the lattice mismatch modulation layer (Al f In 1-f N) is increased, the growth temperature is It can have a specific ramp rate. Specifically, the heating slope can be 30-100° C./min, and the growth temperature gradually increases from 500 to 550 degrees to 900 to 1100 degrees over time according to the heating slope.

在形成晶格失配調變層後,接續利用MOCVD在晶格失配調變層上形成至少一氮化鋁銦鎵緩衝層(如步驟S5所示)。在步驟S5中,各氮化鋁銦鎵緩衝層的成長溫度介於950~1300度,且可以根據需求形成至少一層氮化鋁銦鎵緩衝層。此外,各氮化鋁銦鎵緩衝層之鋁含量可以不同,例如各氮化鋁銦鎵緩衝層之鋁含量可以沿成長方向逐漸減少。並且,各氮化鋁銦鎵緩衝層可以為無摻雜,或者為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合,且各氮化鋁銦鎵緩衝層的厚度介於50~1000nm。 After the lattice mismatch modulation layer is formed, MOCVD is then used to form at least one aluminum indium gallium nitride buffer layer on the lattice mismatch modulation layer (as shown in step S5). In step S5, the growth temperature of each aluminum indium gallium nitride buffer layer is between 950 and 1300 degrees, and at least one aluminum indium gallium nitride buffer layer can be formed as required. In addition, the aluminum content of each aluminum indium gallium nitride buffer layer may be different, for example, the aluminum content of each aluminum indium gallium nitride buffer layer may gradually decrease along the growth direction. Moreover, each aluminum indium gallium nitride buffer layer may be undoped, or at least one of carbon doping, iron doping, and magnesium doping and a combination thereof, and the thickness of each aluminum indium gallium nitride buffer layer is between At 50~1000nm.

在形成至少一氮化鋁銦鎵緩衝層後,接續利用MOCVD在至少一氮化鋁銦鎵緩衝層上形成高阻層(如步驟S6所示),高阻層的化學組成為InjAlbGa1-b-jN,且0≦b≦0.1、0<j≦0.9。在步驟S6中,高阻層的成長溫度介於950~1300度,且形成在最上層之氮化鋁銦鎵緩衝層上。此外,高阻層可以為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合,且高阻層的厚度介於500~3000nm。 After forming at least one aluminum indium gallium nitride buffer layer, MOCVD is then used to form a high resistance layer on the at least one aluminum indium gallium nitride buffer layer (as shown in step S6), and the chemical composition of the high resistance layer is In j Al b Ga 1-bj N, and 0≦b≦0.1, 0<j≦0.9. In step S6, the growth temperature of the high resistance layer is between 950 and 1300 degrees and is formed on the uppermost aluminum indium gallium nitride buffer layer. In addition, the high resistance layer may be at least one of carbon doping, iron doping, and magnesium doping and a combination thereof, and the thickness of the high resistance layer is 500-3000 nm.

在形成高阻層後,接續利用MOCVD在高阻層上形成本質 氮化鎵層(如步驟S7所示)。在步驟S7中,本質氮化鎵層的成長溫度介於950~1300度,且形成在高阻層上。此外,本質氮化鎵層厚度介於50~800nm。 After forming the high-resistance layer, continue to use MOCVD to form the essence on the high-resistance layer Gallium nitride layer (as shown in step S7). In step S7, the growth temperature of the intrinsic gallium nitride layer is between 950 and 1300 degrees and is formed on the high resistance layer. In addition, the thickness of the intrinsic GaN layer is between 50 and 800 nm.

在形成本質氮化鎵層後,接續利用MOCVD在本質氮化鎵層上形成電子提供層(如步驟S8所示),電子提供層的化學組成為InxAlyGa1-x-yN,且0≦y≦0.3、0≦x≦0.3。在步驟S8中,電子提供層的成長溫度介於950~1300度,且形成在本質氮化鎵層上。此外,電子提供層厚度介於8~30nm。 After the essential gallium nitride layer is formed, an electron supply layer is subsequently formed on the essential gallium nitride layer by MOCVD (as shown in step S8). The chemical composition of the electron supply layer is In x Al y Ga 1-xy N, and 0 ≦y≦0.3, 0≦x≦0.3. In step S8, the growth temperature of the electron supply layer is between 950 and 1300 degrees and is formed on the intrinsic gallium nitride layer. In addition, the thickness of the electron supply layer ranges from 8 to 30 nm.

在形成電子提供層後,接續利用MOCVD在電子提供層上形成覆蓋層(如步驟S9所示),覆蓋層的化學組成為AlzGa1-zN,且0≦z≦0.3。在步驟S9中,覆蓋層的成長溫度介於950~1300度,且形成在電子提供層上。此外,覆蓋層可以為無摻雜或P型摻雜,當覆蓋層為無摻雜時,其厚度介於0.5~20nm;當覆蓋層為P型摻雜時,其摻雜元素為鎂,並且其厚度介於10~200nm。 After the electron supply layer is formed, a cover layer is subsequently formed on the electron supply layer by MOCVD (as shown in step S9), the chemical composition of the cover layer is Al z Ga 1-z N, and 0≦z≦0.3. In step S9, the growth temperature of the covering layer is between 950 and 1300 degrees and is formed on the electron supply layer. In addition, the cover layer can be undoped or P-type doped. When the cover layer is undoped, its thickness is between 0.5 and 20 nm; when the cover layer is P-type doped, its doping element is magnesium, and Its thickness is between 10 and 200 nm.

進一步地,雖然在上述的各步驟中,皆使用有機金屬化學氣相沉積法,但在其他實施例中,可以使用其他種類的化學氣相沉積製程或者物理氣相沉積製程以達到相同的效果,例如使用電漿增強化學氣相沉積(PECVD,Plasma Enhanced Chemical Vapor Deposition)、混合物理化學氣相沉積(HPCVD,Hybrid Physical Chemical Vapor Deposition)、真空蒸鍍沉積(Vacuum Evaporation Deposition)、及濺鍍沉積(Sputter Deposition)等,但本發明不限定於此。 Furthermore, although the metal-organic chemical vapor deposition method is used in the above steps, in other embodiments, other types of chemical vapor deposition process or physical vapor deposition process can be used to achieve the same effect. For example, the use of plasma enhanced chemical vapor deposition (PECVD, Plasma Enhanced Chemical Vapor Deposition), hybrid physical chemical vapor deposition (HPCVD, Hybrid Physical Chemical Vapor Deposition), vacuum evaporation deposition (Vacuum Evaporation Deposition), and sputtering deposition ( Sputter Deposition) etc., but the present invention is not limited to this.

請參閱第5圖,其為根據本發明另一實施例的具有初始成核層/缺陷阻障層重複堆疊結構的氮化物磊晶片的示意圖。 Please refer to FIG. 5, which is a schematic diagram of a nitride epitaxial wafer with a repeated stack structure of an initial nucleation layer/defect barrier layer according to another embodiment of the present invention.

如圖所示,根據本發明另一實施例的氮化物磊晶片101具有與第一實施例中的氮化物磊晶片100類似的構造。然而,在本實施例中,以超晶格方式重複堆疊初始成核層2及缺陷阻障層9,以透過複數層缺陷阻障層9進一步阻擋初始成核層2的缺陷往上延伸,進而避免其影響晶格失配調變層3的晶體品質。具體來說,先在基底基板1上利用MOCVD形成初始成核層2,並且在初始成核層2上同樣利用MOCVD形成缺陷阻障層9,在本實施例中,重複形成初始成核層2及缺陷阻障層9,以堆疊五組初始成核層/缺陷阻障層於基底基板1上,但本發明不限定於此。例如,在其他實施例中,可以重複堆疊2~10組初始成核層/缺陷阻障層。在重複堆疊複數組初始成核層/缺陷阻障層後,接續在缺陷阻障層9上形成晶格失配調變層3、至少一氮化鋁銦鎵緩衝層4、高阻層5、本質氮化鎵層6、電子提供層7、及覆蓋層8等結構,以形成低晶格失配低漏電流的氮化物磊晶片101。此外,在本實施例中,使用氮化矽作為缺陷阻障層9,但本發明不限定於此,在其他實施例中可以使用氮化鎂作為缺陷阻障層。 As shown in the figure, an epitaxial nitride wafer 101 according to another embodiment of the present invention has a similar structure to that of the epitaxial nitride wafer 100 in the first embodiment. However, in this embodiment, the initial nucleation layer 2 and the defect barrier layer 9 are repeatedly stacked in a superlattice manner to further block the defects of the initial nucleation layer 2 from extending upward through the plurality of defect barrier layers 9 It is avoided to affect the crystal quality of the lattice mismatch modulation layer 3. Specifically, the initial nucleation layer 2 is formed by MOCVD on the base substrate 1, and the defect barrier layer 9 is also formed on the initial nucleation layer 2 by MOCVD. In this embodiment, the initial nucleation layer 2 is repeatedly formed. And the defect barrier layer 9 to stack five sets of initial nucleation layer/defect barrier layer on the base substrate 1, but the present invention is not limited to this. For example, in other embodiments, 2-10 sets of initial nucleation layer/defect barrier layer may be stacked repeatedly. After repeatedly stacking a plurality of initial nucleation layers/defect barrier layers, a lattice mismatch modulation layer 3, at least one aluminum indium gallium nitride buffer layer 4, and a high resistance layer 5 are successively formed on the defect barrier layer 9. The intrinsic gallium nitride layer 6, the electron supply layer 7, and the cover layer 8 are structured to form a nitride epitaxial wafer 101 with low lattice mismatch and low leakage current. In addition, in this embodiment, silicon nitride is used as the defect barrier layer 9, but the present invention is not limited to this. In other embodiments, magnesium nitride may be used as the defect barrier layer.

請參閱第6圖,其為根據本發明再另一實施例的具有缺陷阻障層/晶格失配調變層重複堆疊結構的氮化物磊晶片的示意圖。 Please refer to FIG. 6, which is a schematic diagram of a nitride epitaxial wafer with a repeated stack structure of defect barrier layer/lattice mismatch modulation layer according to still another embodiment of the present invention.

如圖所示,根據本發明再另一實施例的氮化物磊晶片102具有與第一實施例中的氮化物磊晶片100類似的構造。然而,在本實施例中,以超晶格方式重複堆疊缺陷阻障層9及晶格失配調變層3,以透過複數層缺陷阻障層9進一步阻擋初始成核層2的缺陷往上延伸,進而避免其影響晶格失配調變層3的晶體品質。具體來說,在基底基板1上利用MOCVD形成初始成核層2,且在初始成核層2上利用MOCVD形成缺陷阻障層9,並且在缺陷阻障層9上同樣利用MOCVD形成晶格失配調變層3,在本實施例中,重複形成缺陷阻障層9及晶格失配調變 層3,以堆疊五組缺陷阻障層/晶格失配調變層於初始成核層2上,但本發明不限定於此。例如,在其他實施例中,可以重複堆疊2~10組缺陷阻障層/晶格失配調變層。在重複堆疊複數組缺陷阻障層/晶格失配調變層後,接續在缺陷阻障層9上形成至少一氮化鋁銦鎵緩衝層4、高阻層5、本質氮化鎵層6、電子提供層7、及覆蓋層8等結構,以形成低晶格失配低漏電流的氮化物磊晶片102。此外,在本實施例中,使用氮化矽作為缺陷阻障層9,但本發明不限定於此,在其他實施例中可以使用氮化鎂作為缺陷阻障層。 As shown in the figure, an epitaxial nitride wafer 102 according to still another embodiment of the present invention has a similar structure to that of the epitaxial nitride wafer 100 in the first embodiment. However, in this embodiment, the defect barrier layer 9 and the lattice mismatch modulation layer 3 are repeatedly stacked in a superlattice manner, so as to further block the defects of the initial nucleation layer 2 through the plurality of defect barrier layers 9 Extension, thereby avoiding its influence on the crystal quality of the lattice mismatch modulation layer 3. Specifically, MOCVD is used to form the initial nucleation layer 2 on the base substrate 1, and MOCVD is used to form the defect barrier layer 9 on the initial nucleation layer 2, and MOCVD is also used to form the lattice defect on the defect barrier layer 9. The configuration modulation layer 3, in this embodiment, the defect barrier layer 9 and the lattice mismatch modulation are repeatedly formed Layer 3 is to stack five groups of defect barrier layers/lattice mismatch modulation layers on the initial nucleation layer 2, but the present invention is not limited to this. For example, in other embodiments, 2-10 sets of defect barrier layers/lattice mismatch modulation layers can be stacked repeatedly. After repeatedly stacking a plurality of defect barrier layers/lattice mismatch modulation layers, at least one aluminum indium gallium nitride buffer layer 4, high resistance layer 5, and intrinsic gallium nitride layer 6 are successively formed on the defect barrier layer 9 , The electron supply layer 7, and the cover layer 8, to form a nitride epitaxial wafer 102 with low lattice mismatch and low leakage current. In addition, in this embodiment, silicon nitride is used as the defect barrier layer 9, but the present invention is not limited to this. In other embodiments, magnesium nitride may be used as the defect barrier layer.

綜上所述,本發明提供一種低晶格失配低漏電流的氮化物磊晶片及其製造方法,係以氮化銦取代氮化鋁作為初始成核層的材料,並結合以氮化鋁銦形成的晶格失配調變層,以改善晶格失配的情形。並且,初始成核層具有堆疊P型氮化銦層及N型氮化銦層以形成的結構,P型氮化銦層及N型氮化銦層之間的空乏區可以防止基板產生的漏電流流入元件操作區域,進而防止元件操作時的性能降低。 In summary, the present invention provides a nitride epitaxial wafer with low lattice mismatch and low leakage current and a method for manufacturing the same. Indium nitride is used instead of aluminum nitride as the material for the initial nucleation layer, combined with aluminum nitride The lattice mismatch modulating layer formed by indium can improve the situation of lattice mismatch. In addition, the initial nucleation layer has a structure formed by stacking a P-type indium nitride layer and an N-type indium nitride layer. The depletion region between the P-type indium nitride layer and the N-type indium nitride layer can prevent leakage from the substrate. Current flows into the operating area of the component, thereby preventing performance degradation during component operation.

此外,本發明更進一步透過控制製程中的溫度及各元素的含量比,以提升各層的晶體品質,並減少各層之間晶格失配的情形。並且,透過在初始成核層與晶格失配調變層之間設置缺陷阻障層,可以透過缺陷阻障層防止初始成核層的缺陷往上延伸,進而避免初始成核層的缺陷影響晶格失配調變層的晶體品質。 In addition, the present invention further improves the crystal quality of each layer and reduces the lattice mismatch between the layers by controlling the temperature and the content ratio of each element in the process. In addition, by providing a defect barrier layer between the initial nucleation layer and the lattice mismatch modulation layer, the defect barrier layer can prevent the defects of the initial nucleation layer from extending upward, thereby avoiding the effect of the defects of the initial nucleation layer Lattice mismatch modulates the crystal quality of the layer.

本發明已參照例示性實施例進行說明,本領域具有通常知識者可以理解的是,在不脫離申請專利範圍所定義之本發明概念與範疇的清況下,可以對其進行形式與細節上之各種變更及等效佈置,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been described with reference to exemplary embodiments. Those with ordinary knowledge in the art can understand that, without departing from the concept and scope of the present invention defined by the scope of the patent application, it can be described in form and detail. Various changes and equivalent arrangements, therefore, the scope of protection of the present invention shall be subject to those defined by the attached patent scope.

100:氮化物磊晶片 100: Nitride epitaxy wafer

1:基底基板 1: base substrate

2:初始成核層 2: Initial nucleation layer

3:晶格失配調變層 3: Lattice mismatch modulation layer

4:氮化鋁銦鎵緩衝層 4: Aluminum indium gallium nitride buffer layer

41:第一氮化鋁銦鎵緩衝層 41: The first aluminum indium gallium nitride buffer layer

42:第二氮化鋁銦鎵緩衝層 42: The second aluminum indium gallium nitride buffer layer

43:第三氮化鋁銦鎵緩衝層 43: The third aluminum indium gallium nitride buffer layer

5:高阻層 5: High resistance layer

6:本質氮化鎵層 6: Essential GaN layer

7:電子提供層 7: Electronic provision layer

8:覆蓋層 8: Covering layer

9:缺陷阻障層 9: Defect barrier layer

Claims (23)

一種氮化物磊晶片,包含:一基底基板;一初始成核層,設置在該基底基板上;一晶格失配調變層,設置在該初始成核層上;至少一氮化鋁銦鎵緩衝層,設置在該晶格失配調變層上;一高阻層,設置在該至少一氮化鋁銦鎵緩衝層上;一本質氮化鎵層,設置在該高阻層上;一電子提供層,設置在該本質氮化鎵層上;以及一覆蓋層,設置在該電子提供層上;其中該初始成核層與該晶格失配調變層之間進一步設有一缺陷阻障層,且該缺陷阻障層為氮化矽或氮化鎂;其中該初始成核層與該缺陷阻障層或者以該缺陷阻障層與該晶格失配調變層作為一堆疊組,並且重複堆疊2至10組該堆疊組以形成的結構。 A nitride epitaxial wafer, comprising: a base substrate; an initial nucleation layer arranged on the base substrate; a lattice mismatch modulation layer arranged on the initial nucleation layer; at least one aluminum indium gallium nitride A buffer layer arranged on the lattice mismatch modulation layer; a high resistance layer arranged on the at least one aluminum indium gallium nitride buffer layer; an intrinsic gallium nitride layer arranged on the high resistance layer; An electron supply layer is provided on the intrinsic gallium nitride layer; and a covering layer is provided on the electron supply layer; wherein a defect barrier is further provided between the initial nucleation layer and the lattice mismatch modulation layer Layer, and the defect barrier layer is silicon nitride or magnesium nitride; wherein the initial nucleation layer and the defect barrier layer or the defect barrier layer and the lattice mismatch modulation layer are used as a stack group, And repeat the stacking of 2 to 10 sets of the stack to form a structure. 如請求項1所述之氮化物磊晶片,其中該基底基板為矽基板、氮化鋁基板、鑽石基板、碳化矽基板、氧化鎵基板、氮化硼基板或矽晶絕緣體基板。 The nitride epitaxial wafer according to claim 1, wherein the base substrate is a silicon substrate, an aluminum nitride substrate, a diamond substrate, a silicon carbide substrate, a gallium oxide substrate, a boron nitride substrate, or a silicon crystal insulator substrate. 如請求項1所述之氮化物磊晶片,其中該初始成核層為氮化銦層。 The nitride epitaxial wafer according to claim 1, wherein the initial nucleation layer is an indium nitride layer. 如請求項3所述之氮化物磊晶片,其中該初始成核層具有一P型氮化銦層及一N型氮化銦層堆疊而形成的結構,並且該P 型氮化銦層與該N型氮化銦層之間形成有空乏區以阻擋漏電流通過。 The nitride epitaxial wafer according to claim 3, wherein the initial nucleation layer has a structure formed by stacking a P-type indium nitride layer and an N-type indium nitride layer, and the P A depletion region is formed between the N-type indium nitride layer and the N-type indium nitride layer to prevent leakage current from passing through. 如請求項3所述之氮化物磊晶片,其中該初始成核層具有以一P型氮化銦層及一N型氮化銦層作為一堆疊組,並重複堆疊複數組該堆疊組而形成的結構,並且該P型氮化銦層與該N型氮化銦層之間形成有空乏區以阻擋漏電流通過。 The nitride epitaxial wafer according to claim 3, wherein the initial nucleation layer has a P-type indium nitride layer and an N-type indium nitride layer as a stack group, and multiple groups of the stack group are repeatedly stacked to form A depletion region is formed between the P-type indium nitride layer and the N-type indium nitride layer to prevent leakage current from passing through. 如請求項5所述之氮化物磊晶片,其中該P型氮化銦層為鎂摻雜,且鎂濃度為1E16~1E23atoms/cm3,該N型氮化銦層為矽摻雜,且矽濃度為1E16~1E21atoms/cm3The nitride epitaxial wafer according to claim 5, wherein the P-type indium nitride layer is doped with magnesium, and the magnesium concentration is 1E16~1E23 atoms/cm 3 , the N-type indium nitride layer is doped with silicon, and The concentration is 1E16~1E21atoms/cm 3 . 如請求項1所述之氮化物磊晶片,其中該晶格失配調變層(AlfIn1-fN)之鋁含量沿成長方向逐漸增加,且0≦f<1。 The nitride epitaxial wafer according to claim 1, wherein the aluminum content of the lattice mismatch modulation layer (Al f In 1-f N) gradually increases along the growth direction, and 0≦f<1. 如請求項1所述之氮化物磊晶片,其中該至少一氮化鋁銦鎵緩衝層包含一第一氮化鋁銦鎵緩衝層、一第二氮化鋁銦鎵緩衝層、及一第三氮化鋁銦鎵緩衝層,並且該第一氮化鋁銦鎵緩衝層的化學組成為IngAleGa1-e-gN,且0.75≦e<1、0<g≦0.25;該第二氮化鋁銦鎵緩衝層的化學組成為InhAldGa1-d-hN,且0.5≦d≦0.75、0.25<h<0.5;以及該第三氮化鋁銦鎵緩衝層的化學組成為IniAlcGa1-c-iN,且0.3≦c≦0.5、0.5<i<0.7。 The nitride epitaxial wafer according to claim 1, wherein the at least one aluminum indium gallium nitride buffer layer includes a first aluminum indium gallium nitride buffer layer, a second aluminum indium gallium nitride buffer layer, and a third Aluminum indium gallium nitride buffer layer, and the chemical composition of the first aluminum indium gallium nitride buffer layer is In g Al e Ga 1-eg N, and 0.75≦e<1, 0<g≦0.25; the second nitrogen The chemical composition of the aluminum indium gallium buffer layer is In h Al d Ga 1-dh N, and 0.5≦d≦0.75, 0.25<h<0.5; and the chemical composition of the third aluminum indium gallium nitride buffer layer is In i Al c Ga 1-ci N, and 0.3≦c≦0.5, 0.5<i<0.7. 如請求項8所述之氮化物磊晶片,其中該第一氮化鋁銦鎵緩衝層、該第二氮化鋁銦鎵緩衝層、及該第三氮化鋁銦鎵緩衝層分別為無摻雜,或者為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合。 The nitride epitaxial wafer according to claim 8, wherein the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are respectively undoped Doped, or at least one of carbon doping, iron doping, and magnesium doping, and a combination thereof. 如請求項9所述之氮化物磊晶片,其中當該第一氮化鋁銦鎵緩衝層、該第二氮化鋁銦鎵緩衝層、及該第三氮化鋁銦鎵緩衝 層為碳摻雜時,碳濃度介於1E16~1E21atoms/cm3;當該第一氮化鋁銦鎵緩衝層、該第二氮化鋁銦鎵緩衝層、及該第三氮化鋁銦鎵緩衝層為鐵摻雜時,鐵濃度介於1E16~1E20atoms/cm3;當該第一氮化鋁銦鎵緩衝層、該第二氮化鋁銦鎵緩衝層、及該第三氮化鋁銦鎵緩衝層為鎂摻雜時,鎂濃度介於1E16~1E20atoms/cm3The nitride epitaxial wafer according to claim 9, wherein when the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are carbon-doped When miscellaneous, the carbon concentration is between 1E16~1E21 atoms/cm 3 ; when the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are made of iron When doped, the iron concentration is between 1E16~1E20 atoms/cm 3 ; when the first aluminum indium gallium nitride buffer layer, the second aluminum indium gallium nitride buffer layer, and the third aluminum indium gallium nitride buffer layer are When magnesium is doped, the magnesium concentration is between 1E16~1E20 atoms/cm 3 . 如請求項1所述之氮化物磊晶片,其中該高阻層的化學組成為InjAlbGa1-b-jN,且0≦b≦0.1、0<j≦0.9,並且該高阻層為碳摻雜、鐵摻雜、及鎂摻雜其中至少一者及其組合。 The nitride epitaxial wafer according to claim 1, wherein the chemical composition of the high resistance layer is In j Al b Ga 1-bj N, and 0≦b≦0.1, 0<j≦0.9, and the high resistance layer is At least one of carbon doping, iron doping, and magnesium doping and combinations thereof. 如請求項11所述之氮化物磊晶片,其中當該高阻層為碳摻雜時,碳濃度介於1E16~1E21atoms/cm3;當該高阻層為鐵摻雜時,鐵濃度介於1E16~1E20atoms/cm3;當該高阻層為鎂摻雜時,鎂濃度介於1E16~1E20atoms/cm3The nitride epitaxial wafer according to claim 11, wherein when the high resistance layer is doped with carbon, the carbon concentration is between 1E16~1E21 atoms/cm 3 ; when the high resistance layer is doped with iron, the concentration of iron is between 1E16 ~ 1E20atoms / cm 3; when the high resistance layer is doped with magnesium, a magnesium concentration of between 1E16 ~ 1E20atoms / cm 3. 如請求項1所述之氮化物磊晶片,其中該電子提供層的化學組成為InxAlyGa1-x-yN,且0≦y≦0.3、0≦x≦0.3。 The nitride epitaxial wafer according to claim 1, wherein the chemical composition of the electron supply layer is In x Al y Ga 1-xy N, and 0≦y≦0.3, 0≦x≦0.3. 如請求項1所述之氮化物磊晶片,其中該覆蓋層的化學組成為AlzGa1-zN,且0≦z≦0.3,並且該覆蓋層為無摻雜或P型摻雜,當該覆蓋層為P型摻雜時,其摻雜元素為鎂,且鎂濃度介於1E16~1E23atoms/cm3The nitride epitaxial wafer according to claim 1, wherein the chemical composition of the covering layer is Al z Ga 1-z N, and 0≦z≦0.3, and the covering layer is undoped or P-type doped, when When the covering layer is P-type doped, the doping element is magnesium, and the magnesium concentration is between 1E16~1E23 atoms/cm 3 . 一種氮化物磊晶片的製造方法,包含以下步驟:提供一基底基板;形成一初始成核層於該基底基板上形成一晶格失配調變層於該初始成核層上; 形成一缺陷阻障層於該初始成核層與該晶格失配調變層之間,且該缺陷阻障層為氮化矽或氮化鎂;形成至少一氮化鋁銦鎵緩衝層於該晶格失配調變層上;形成一高阻層於該至少一氮化鋁銦鎵緩衝層上;形成一本質氮化鎵層於該高阻層上;形成一電子提供層於該本質氮化鎵層上;以及形成一覆蓋層於該電子提供層上;其中該初始成核層與該缺陷阻障層或者以該缺陷阻障層與該晶格失配調變層作為一堆疊組,並且重複堆疊2至10組該堆疊組以形成的結構。 A method for manufacturing a nitride epitaxial wafer includes the following steps: providing a base substrate; forming an initial nucleation layer on the base substrate and forming a lattice mismatch modulation layer on the initial nucleation layer; A defect barrier layer is formed between the initial nucleation layer and the lattice mismatch modulation layer, and the defect barrier layer is silicon nitride or magnesium nitride; and at least one aluminum indium gallium nitride buffer layer is formed on On the lattice mismatch modulation layer; forming a high-resistance layer on the at least one aluminum indium gallium nitride buffer layer; forming an intrinsic gallium nitride layer on the high-resistance layer; forming an electron supply layer on the intrinsic On the gallium nitride layer; and forming a cover layer on the electron supply layer; wherein the initial nucleation layer and the defect barrier layer or the defect barrier layer and the lattice mismatch modulation layer are used as a stack , And repeatedly stack 2 to 10 sets of the stack to form a structure. 如請求項15所述之氮化物磊晶片的製造方法,其中該基底基板為矽基板、氮化鋁基板、鑽石基板、碳化矽基板、氧化鎵基板、氮化硼基板、或矽晶絕緣體基板。 The method for manufacturing a nitride epitaxial wafer according to claim 15, wherein the base substrate is a silicon substrate, an aluminum nitride substrate, a diamond substrate, a silicon carbide substrate, a gallium oxide substrate, a boron nitride substrate, or a silicon crystal insulator substrate. 如請求項15所述之氮化物磊晶片的製造方法,其中在該基底基板上形成該初始成核層的步驟進一步包含以下步驟:第一步驟,其成長溫度為500~550℃,並且以第一V/III比成長氮化銦;第二步驟,其成長溫度為700~750℃,並且以第二V/III比成長氮化銦;以及第三步驟,其成長溫度為500~550℃,並且以第三V/III比成長氮化銦,並且第一V/III比及第三V/III比的範圍為0.5~50,且第二V/III比的範圍為500~3000。 The method for manufacturing a nitride epitaxial wafer according to claim 15, wherein the step of forming the initial nucleation layer on the base substrate further includes the following steps: the first step, the growth temperature is 500-550°C, and the first step is A V/III ratio grows indium nitride; the second step, the growth temperature is 700~750℃, and the second V/III ratio grows indium nitride; and the third step, the growth temperature is 500~550℃, In addition, indium nitride is grown at the third V/III ratio, and the range of the first V/III ratio and the third V/III ratio is 0.5-50, and the range of the second V/III ratio is 500-3000. 如請求項15所述之氮化物磊晶片的製造方法,其中形成該初始成核層的步驟中進一步包含堆疊一P型氮化銦層及一N型氮化銦層以形成該初始成核層的步驟,或者以該P型氮化銦 層及該N型氮化銦層作為一堆疊組,並重複堆疊複數組該堆疊組以形成該初始成核層的步驟。 The method for manufacturing a nitride epitaxial wafer according to claim 15, wherein the step of forming the initial nucleation layer further includes stacking a P-type indium nitride layer and an N-type indium nitride layer to form the initial nucleation layer Steps, or take the p-type indium nitride The layer and the N-type indium nitride layer are used as a stacked group, and the step of stacking a plurality of the stacked groups to form the initial nucleation layer is repeated. 如請求項15所述之氮化物磊晶片的製造方法,其中在該初始成核層上形成該晶格失配調變層的步驟中,其成長溫度自500~550度隨時間漸增至900~1100度,並且形成該晶格失配調變層之鋁含量沿其成長方向逐漸增加。 The method for manufacturing a nitride epitaxial wafer according to claim 15, wherein in the step of forming the lattice mismatch modulation layer on the initial nucleation layer, the growth temperature is gradually increased from 500 to 550 degrees to 900 with time ~1100 degrees, and the aluminum content forming the lattice mismatch modulation layer gradually increases along its growth direction. 如請求項19所述之氮化物磊晶片的製造方法,其中在該初始成核層上形成該晶格失配調變層的步驟中,其成長溫度具有一升溫斜率,且該升溫斜率為30~100℃/分鐘。 The method for manufacturing a nitride epitaxial wafer according to claim 19, wherein in the step of forming the lattice mismatch modulation layer on the initial nucleation layer, the growth temperature has a temperature rise slope, and the temperature rise slope is 30 ~100°C/minute. 如請求項15所述之氮化物磊晶片的製造方法,其進一步包含在該初始成核層與該晶格失配調變層之間形成一缺陷阻障層的步驟,該缺陷阻障層為氮化矽或氮化鎂。 The method for manufacturing a nitride epitaxial wafer according to claim 15, further comprising a step of forming a defect barrier layer between the initial nucleation layer and the lattice mismatch modulation layer, the defect barrier layer being Silicon nitride or magnesium nitride. 如請求項21所述之氮化物磊晶片的製造方法,其進一步包含以該初始成核層與該缺陷阻障層或者以該缺陷阻障層與該晶格失配調變層作為一堆疊組,並且重複堆疊複數組該堆疊組的步驟。 The method for manufacturing a nitride epitaxial wafer according to claim 21, further comprising using the initial nucleation layer and the defect barrier layer or the defect barrier layer and the lattice mismatch modulation layer as a stack set , And repeat the steps of stacking a complex group of the stacking group. 如請求項15所述之氮化物磊晶片的製造方法,其中形成各層的方法包含化學氣相沉積或者物理氣相沉積。 The method for manufacturing a nitride epitaxial wafer according to claim 15, wherein the method of forming each layer includes chemical vapor deposition or physical vapor deposition.
TW109130505A 2020-09-04 2020-09-04 Nitride epitaxial wafer and method for manufacturing the same TWI741781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109130505A TWI741781B (en) 2020-09-04 2020-09-04 Nitride epitaxial wafer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109130505A TWI741781B (en) 2020-09-04 2020-09-04 Nitride epitaxial wafer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI741781B true TWI741781B (en) 2021-10-01
TW202211466A TW202211466A (en) 2022-03-16

Family

ID=80782412

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109130505A TWI741781B (en) 2020-09-04 2020-09-04 Nitride epitaxial wafer and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI741781B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115954378A (en) * 2023-03-15 2023-04-11 江西兆驰半导体有限公司 Gallium nitride power device and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW584903B (en) * 2001-06-06 2004-04-21 United Epitaxy Co Ltd Epitaxial growth of nitride semiconductor device
TW201232776A (en) * 2010-12-20 2012-08-01 Triquint Semiconductor Inc High electron mobility transistor with indium gallium nitride layer
US20120322245A1 (en) * 2011-06-15 2012-12-20 Mitsubishi Electric Corporation Method of manufacturing nitride semiconductor device
US20150243841A1 (en) * 2014-02-22 2015-08-27 Sensor Electronic Technology, Inc. Semiconductor Structure with Stress-Reducing Buffer Structure
US20170365701A1 (en) * 2016-06-16 2017-12-21 Infineon Technologies Americas Corp. Charge Trapping Prevention III-Nitride Transistor
US20180366572A1 (en) * 2017-06-20 2018-12-20 Sciocs Company Limited Nitride semiconductor epitaxial substrate and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW584903B (en) * 2001-06-06 2004-04-21 United Epitaxy Co Ltd Epitaxial growth of nitride semiconductor device
TW201232776A (en) * 2010-12-20 2012-08-01 Triquint Semiconductor Inc High electron mobility transistor with indium gallium nitride layer
US20120322245A1 (en) * 2011-06-15 2012-12-20 Mitsubishi Electric Corporation Method of manufacturing nitride semiconductor device
US20150243841A1 (en) * 2014-02-22 2015-08-27 Sensor Electronic Technology, Inc. Semiconductor Structure with Stress-Reducing Buffer Structure
US20170365701A1 (en) * 2016-06-16 2017-12-21 Infineon Technologies Americas Corp. Charge Trapping Prevention III-Nitride Transistor
US20180366572A1 (en) * 2017-06-20 2018-12-20 Sciocs Company Limited Nitride semiconductor epitaxial substrate and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115954378A (en) * 2023-03-15 2023-04-11 江西兆驰半导体有限公司 Gallium nitride power device and preparation method thereof

Also Published As

Publication number Publication date
TW202211466A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP5426007B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP5818853B2 (en) Vertical nitride semiconductor device using n-type aluminum nitride single crystal substrate
JP5543711B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device
US9324908B2 (en) Nitride semiconductor light-emitting element
US7459326B2 (en) Method for producing and epitaxial substrate for compound semiconductor light-emitting device
US7749785B2 (en) Manufacturing method of group III nitride semiconductor light-emitting device
KR100830482B1 (en) Compound semiconductor and compound semiconductor device using the same
EP1492158A2 (en) GaN substrate and method of fabricating the same, nitride semiconductor device and method of fabricating the same
JPWO2005015618A1 (en) Nitride semiconductor growth substrate
CN107331745A (en) A kind of epitaxial wafer of light emitting diode and preparation method thereof
JP2006332258A (en) Nitride semiconductor device and its manufacturing method
JP2019110344A (en) Nitride semiconductor device and nitride semiconductor substrate
JP2013008938A (en) Nitride semiconductor substrate and method of manufacturing the same
TWI741781B (en) Nitride epitaxial wafer and method for manufacturing the same
JP2006004970A (en) Manufacturing method of nitride semiconductor film
JP2007088252A5 (en)
JP2015216311A (en) Semiconductor substrate, method for manufacturing semiconductor substrate, and semiconductor device
JP2018092985A (en) Semiconductor substrate manufacturing method
US20120217536A1 (en) Nitride based light emitting device with excellent crystallinity and brightness and method of manufacturing the same
TWI767425B (en) Nitride epitaxial wafer and method for manufacturing the same
TWI773090B (en) Wafer having improved breakdown voltage and method for manufacturing the same
CN105552176B (en) A kind of preparation method with electronic blocking Yu the epitaxial structure of hole adjustment layer
JP2014216474A (en) Nitride semiconductor substrate
TWI763272B (en) Enhancement mode transistor and method for manufacturing the same
WO2022176412A1 (en) Nitride semiconductor epitaxial substrate, a method for producing same, and nitride semiconductor device