TWI741376B - 叢發傳輸方法及裝置 - Google Patents

叢發傳輸方法及裝置 Download PDF

Info

Publication number
TWI741376B
TWI741376B TW108134811A TW108134811A TWI741376B TW I741376 B TWI741376 B TW I741376B TW 108134811 A TW108134811 A TW 108134811A TW 108134811 A TW108134811 A TW 108134811A TW I741376 B TWI741376 B TW I741376B
Authority
TW
Taiwan
Prior art keywords
search space
wtru
monitoring
dci
pdcch
Prior art date
Application number
TW108134811A
Other languages
English (en)
Other versions
TW202021399A (zh
Inventor
李汶宜
艾爾登 貝拉
愛辛 哈格海爾特
博寇威斯 珍妮特A 史騰
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202021399A publication Critical patent/TW202021399A/zh
Application granted granted Critical
Publication of TWI741376B publication Critical patent/TWI741376B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

提供了用於叢發傳輸的方法及裝置。一種無線傳輸/接收單元(WTRU)被配置為接收用於週期性搜尋空間(P-SS)以及半持久性搜尋空間(SP-SS)的配置資訊。該配置資訊可以包括該P-SS的監視週期以及該SP-SS的監視週期。該P-SS可以與該SP-SS相關聯。該WTRU被配置為以該P-SS的該週期來監視該P-SS。該WTRU被配置為在該P-SS的時槽中的第一實體下鏈控制通道(PDCCH)中接收第一訊息。該第一訊息可以表明對相關聯的SP-SS的啟動。該WTRU被配置為使用該SP-SS的該週期來監視該SP-SS。該WTRU被配置為在該SP-SS的時槽中的第二PDCCH中接收第二訊息。

Description

叢發傳輸方法及裝置
相關申請案的交叉引用
本申請案主張2018年9月26日申請的美國臨時申請案No. 62/736,874的權益,其內容藉由引用而被併入本文。
無線傳輸/接收單元(WTRU)可以監視一組實體下鏈控制通道(PDCCH)候選或者可以被指派一組實體下鏈控制通道(PDCCH)候選來監視。在PDCCH的盲偵測期間,可以監視一組PDCCH候選。搜尋空間或一組搜尋空間可以是或者可以包括該一組PDCCH候選,例如,以利用盲偵測進行監視。當WTRU具有不頻繁出現的資料訊務時,搜尋空間可以被配置有長週期以減少PDCCH監視時間,從而減少WTRU的電池消耗。然而,當叢發資料到達緩衝器時,搜尋空間的長週期會增加WTRU活動時間,這可能需要實體下鏈共用控制通道(PDSCH)或實體上鏈共用控制通道(PUSCH)的多次傳輸來完成傳輸。由於上鏈傳輸頻寬可能基於WTRU覆蓋等級而被進一步限制,因此對於上鏈叢發訊務而言,較長的活動時間可能變得更重要。
提供了用於叢發傳輸的方法及裝置。在一個實施例中,無線傳輸/接收單元(WTRU)被配置為接收用於週期性搜尋空間(P-SS)以及半持久性搜尋空間(SP-SS)的配置資訊。該配置資訊可以包括該P-SS的監視週期以及該SP-SS的監視週期。該P-SS可以與該SP-SS相關聯。該WTRU被配置為以該P-SS的該週期來監視該P-SS。該WTRU被配置為在該P-SS的控制通道中接收訊息。該訊息可以表明相關聯的SP-SS的啟動。該WTRU被配置為使用該SP-SS的該週期來監視該SP-SS。該WTRU被配置為在該SP-SS的時槽中的實體下鏈共用通道中接收訊息。該監視週期可以表明時槽重複。該配置資訊可以包括監視偏移以及監視映射。該WTRU可以發送支援SP-SS的能力的指示。該WTRU被配置為基於SP-SS停用確定來停止監視該SP-SS。該WTRU被配置為在該P-SS中以該P-SS的該週期進行監視。該WTRU被配置為在該P-SS的控制通道中接收訊息。該訊息可以包括該P-SS的更新後的週期。該WTRU被配置為利用該更新後的週期來監視該P-SS。
在一個實施例中,WTRU被配置為在週期性搜尋空間(P-SS)中的實體下鏈控制通道(PDCCH)中接收第一下鏈控制資訊(DCI)。該第一DCI可以表明用於第一非週期性搜尋空間(A-SS)的排程配置。該WTRU被配置為基於該第一DCI排程配置以在該第一A-SS中進行監視。該WTRU被配置為在該第一A-SS中的PDCCH中接收第二DCI。該第二DCI表明用於第二A-SS的排程配置。該WTRU被配置為基於該第二DCI排程配置以在該第二A-SS中進行監視。該WTRU被配置為在該第二A-SS的PDCCH中接收第三DCI。該第三DCI可以包括用於複數A-SS的排程配置。
圖1A是示出了可以實施所揭露的一個或複數實施例的範例性通信系統100的圖式。該通信系統100可以是為複數無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅利葉轉換擴展OFDM(ZT-UW-DTS-S-OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN) 104、核心網路(CN) 106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任何數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d(其任一者都可以被稱為站(STA))可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動訂戶單元、基於定用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備及應用(例如遠端手術)、工業設備及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任何一者可被可交換地稱為UE。
該通信系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b的每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線地介接來促使其存取一個或複數通信網路(例如CN 106、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點B、例如g節點B(gNB)的下一代節點B、新無線電(NR)節點B、站點控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b的每一者都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104的一部分,並且該RAN 104還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一或複數載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,一個收發器都應於胞元的每一個扇區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用複數收發器。例如,波束成形可以用於在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)地面無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速上鏈(UL)封包存取(HSUPA)。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施可以使用NR建立空中介面116的無線電技術,例如NR無線電存取。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取以及NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術、及/或向/從多種類型的基地台(例如eNB以及gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)、以及GSM EDGE(GERAN)等等的無線電技術。
圖1A中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促成例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b以及WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以具有與網際網路110的直接連接。因此,基地台114b不需要經由CN 106來存取網際網路110。
RAN 104可以與CN 106進行通信,該CN 106可以是被配置為向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的流通量需求、潛時需求、容錯需求、可靠性需求、資料流通量需求、以及行動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104及/或CN 106可以直接或間接地與其他RAN 進行通信,該其他RAN 104使用了與RAN 104相同的RAT或不同的RAT。例如,除了與使用NR無線電技術的RAN 104連接之外,CN 106還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際網路協定(TCP/IP)網際網路協定族中的TCP、使用者資料報協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通信網路。例如,網路112可以包括與一個或複數RAN連接的另一個CN,其中該一個或複數RAN可以與RAN 104使用相同RAT或不同RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了範例性WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的其他任何功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118以及收發器120描述為單獨元件,然而應該瞭解,處理器118以及收發器120也可以一起集成在一電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如基地台114a)或接收來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在另實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116來傳輸及接收無線信號的兩個或複數傳輸/接收元件122(例如複數天線)。
收發器120可被配置為對傳輸/接收元件122要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括使WTRU 102能經由多種RAT(例如NR以及IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或複數乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或複數附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或複數軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或複數感測器。該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、手勢感測器、生物測定感測器、濕度感測器等。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置,一些或所有信號(例如與用於UL(例如針對傳輸)以及DL(例如針對接收)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳輸及接收一些或所有信號(例如與用於UL(例如針對傳輸)或DL(例如針對接收)的特定子訊框相關聯)的半雙工無線電裝置。
圖1C是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術以與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包括在空中介面116上與WTRU 102a、102b、102c通信的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用複數天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c每一者都可以關聯於一個特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以經由X2介面進行通信。
圖1C所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(PGW)166。雖然前述元件都被描述為是CN 106的一部分,然而應該瞭解,這些元件中的任一元件都可以由CN操作者之外的實體擁有及/或操作。
MME 162可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由及轉發使用者資料封包至WTRU 102a、102b、102c/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在eNB間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如PSTN 108)的存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對該其他網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。
雖然在圖1A至圖1D中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端可以使用(例如暫時或永久性)與通信網路的有線通信介面。
在典型實施例中,該其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)、以及與該AP相關聯的一個或複數站(STA)。該AP可以存取或是介接到分散式系統(DS)、或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如其中源STA可以向AP發送訊務、並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。使用獨立BSS(IBSS)模式的WLAN不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(Ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20 MHz的頻寬)或是動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,可以實施具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。
高流通量(HT)STA可以使用40 MHz寬的通道來進行通信(例如藉由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道進行結合來形成40 MHz寬的通道)。
超高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分為兩個流。在每一個流上可以單獨執行反向快速傅利葉轉換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af以及802.11ah支援1GHz以下的操作模式。相較於802.11n以及802.11ac的通道操作頻寬及載波,在802.11af以及802.11ah中使用的通道操作頻寬及載波減小。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz以及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz以及16 MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(MTC),例如巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
可以支援複數通道以及通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包括了可被指定為主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP以及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的可用頻帶保持空閒並且可供使用,也可以認為所有可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是從902 MHz到928 MHz。在韓國,可用頻帶是從917.5 MHz到923.5 MHz。在日本,可用頻帶是從916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。
圖1D是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以在空中介面116上使用NR無線電技術以與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的gNB。gNB 180a、180b、180c每一者都可以包括一個或複數收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以使用波束成形以向及/或從gNB 180a、180b、180c傳輸及/或接收信號。因此,gNB 180a可以使用複數天線以向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送複數分量載波(未顯示)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a以及gNB 180b(及/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集相關聯的傳輸以與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理以基本上同時地與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或流通量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c每一者都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、DC、實施NR與E-UTRA之間的互通、路由使用者平面資料至去往使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取以及行動性管理功能(AMF)182a、182b等等。如圖1D所示,gNB 180a、180b、180c彼此可以經由Xn介面通信。
圖1D所示的CN 106可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然前述元件都被描述了CN 106的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN操作者之外的實體擁有及/或操作。
AMF 182a、182b可以經由N2介面被連接到RAN 104中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同協定資料單元(PDU)對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止非存取層(NAS)傳訊、以及行動性管理等等。AMF 182a、182b可以使用網路截割,以基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面被連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面被連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理以及分配UE IP位址、管理PDU對話、控制策略實施以及QoS、以及提供DL資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面被連接RAN 104中的gNB 180a、180b、180c的一者或多者,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由以及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取DL封包、以及提供行動性錨定等等。
CN 106可以促進與其他網路的通信。例如,CN 106可以包括或者可以與充當CN 106與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,這其中可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b介接的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並經由UPF 184a、184b而連接到本地資料網路(DN)185a、185b。
鑒於圖1A至圖1D以及圖1A至圖1D的對應描述,在這裡對照以下的一項或多項描述的一個或複數或所有功能可以由一個或複數仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN185 a-b及/或這裡描述的一個或複數其他任何裝置。這些仿真裝置可以是被配置為仿真這裡描述的一個或複數或所有功能的一個或複數裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或模擬網路及/或WTRU功能。
仿真裝置可被設計為在實驗室環境及/或操作者網路環境中實施其他裝置的一項或多項測試。例如,該一個或複數仿真裝置可以在被完全或部分作為有線及/或無線通信網路一部分實施及/或部署的同時執行一個或複數或所有功能,以測試通信網路內的其他裝置。該一個或複數仿真裝置可以在被暫時作為有線及/或無線通信網路的一部分實施/部署的同時執行一個或複數或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通信來執行測試。
一個或複數仿真裝置可以在未被作為有線及/或無線通信網路一部分實施/部署的同時執行包括所有功能的一個或複數功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通信網路的測試場景中使用,以實施一個或複數元件的測試。該一個或複數仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一個或複數天線)的無線通信來傳輸及/或接收資料。
圖2示出了不連續接收(DRX)的範例。DRX可以用於電池節省。DRX可以具有開啟(ON)持續時間以及關閉(OFF)持續時間的循環(cycle),其可以是重複或週期性重複。在DRX期間,WTRU可以不監視下鏈(DL)控制通道(例如PDCCH)。在無線資源控制(RRC)連接模式中,WTRU可以使用連接模式DRX(C-DRX)。WTRU可以在ON持續時間週期期間監視所配置的PDCCH,並且WTRU可以在OFF持續時間期間休眠或不監視。PDCCH在這裡被用作DL控制通道的非限制性範例,然而,可以使用任何其它類型的DL控制通道。DRX循環可以是短DRX循環或長DRX循環。WTRU可以在使用短DRX循環以及長DRX循環之間切換。
DRX不活動計時器可以確定或者可以用於確定PDCCH時機之後的時間,在該PDCCH時機中,成功解碼的PDCCH表明UL或DL使用者資料傳輸,例如初始資料傳輸。該時間可以是TTI持續時間的形式。DRX不活動計時器可以用於確定何時進入OFF持續時間。
PDCCH時機可以是可以包含PDCCH的時段,例如符號、一組符號、時槽或子訊框。DRX ON持續時間可以是DRX循環開始處的持續時間。ON持續時間計時器可以確定或者可以被用於確定可能需要由WTRU監視或解碼的PDCCH時機的數量。例如,要監視或解碼的PDCCH時機可以在從DRX循環喚醒之後或者在DRX循環的開始處。該PDCCH時機可以是連續複數的PDCCH時機。該PDCCH時機可以是非連續的PDCCH時機。
DRX重傳計時器可以確定或者可以被用於確定當WTRU可以預期重傳時要監視的PDCCH時機的數量。DRX重傳計時器可以確定或者可以被用於確定直到可以接收到DL重傳的最大持續時間或者直到可以接收到針對UL重傳的許可的最大持續時間。
DRX短循環可以是在不活動計時器期滿之後WTRU進入的第一DRX循環。WTRU可以處於短DRX循環中,直到DRX短循環計時器期滿。當該DRX短循環計時器期滿時,WTRU可以使用長DRX循環。DRX短循環計時器可以確定或者可以被用於確定在DRX不活動計時器已經期滿之後WTRU可以遵循短DRX循環的連續子訊框的數量。
在OFF持續時間期間,WTRU可以不在被配置為測量及/或報告週期性通道狀態資訊(CSI)的子訊框中測量或報告CSI。
WTRU可能或者可能需要在活動時間期間監視PDCCH或PDCCH時機。活動時間可以在ON持續時間期間出現、或者可以在OFF持續時間期間出現。該活動時間可以在ON持續時間期間開始、並在OFF持續時間期間繼續。術語活動時間以及DRX循環的活動時間在這裡可以互換使用。
活動時間可以包括DRX計時器(例如,ON持續時間計時器、不活動計時器、DL重傳計時器、UL重傳計時器或隨機存取爭用解決計時器)運行時的時間。活動時間可以包括例如在PUCCH上發送排程請求的時間並且該活動時間待決(pending)。活動時間可以包括:在成功接收針對MAC實體未在基於爭用的隨機存取前導碼中選擇的隨機存取前導碼的隨機存取回應之後,尚未接收到表明被定址到WTRU的MAC實體的胞元無線電網路臨時識別符(C-RNTI)的新傳輸的PDCCH的時間。
DRX計時器可以是與DRX相關聯的計時器。一個或複數DRX計時器可以與DRX相關聯。DRX計時器的範例可以包括但不限於DRX ON持續時間計時器(例如,drx-onDurationTimer)、DRX不活動計時器(例如,drx-InactivityTimer)、DRX DL重傳計時器(例如,drx-RetransmissionTimerDL)、DRX UL重傳計時器(例如,drx-RetransmissionTimerUL)、用於UL的DRX混合自動重複請求往返計時器(HARQ RTT)計時器(例如,drx-HARQ-RTT-TimerUL)以及用於DL的DRX HARQ RTT計時器(例如,drx-HARQ-RTT-TimerDL)。
DRX不活動計時器可以是PDCCH時機之後的持續時間,在該PDCCH時機中,PDCCH表明針對MAC實體的初始上鏈或下鏈使用者資料傳輸。DRX DL重傳計時器可以是直到接收到下鏈重傳為止的最大持續時間。每個下鏈HARQ過程可以與DRX DL重傳計時器相關聯。DRX UL重傳計時器可以是直到接收到針對上鏈重傳的許可為止的最大持續時間。每個上鏈HARQ過程可以與DRX UL重傳計時器相關聯。用於上鏈的DRX HARQ RTT計時器可以是在WTRU或MAC實體期望上鏈HARQ重傳許可之前的最小持續時間。每個上鏈HARQ過程可以與用於上鏈的DRX HARQ RTT計時器相關聯。用於下鏈的DRX HARQ RTT計時器可以是在WTRU或MAC實體期望用於HARQ重傳的下鏈指派之前的最小持續時間。每個下鏈HARQ過程可以與用於該下鏈的DRX HARQ RTT計時器相關聯。
圖3示出了具有DRX操作的喚醒信號(WUS)以及進入休眠(GOS)的範例。WUS可以與DRX操作一起使用。GOS可以與DRX操作一起使用。在系統或網路中,可以使用WUS或GOS。WUS以及GOS這兩者都可以被使用。WUS/GOS可以與一個或更複數DRX循環相關聯。WUS/GOS可以在相關聯的時間之前或者在相關聯的DRX循環的一部分之前被傳輸及/或接收。如果WTRU接收到WUS,則WTRU可以在一個或複數DRX循環中的ON持續時間中監視PDCCH。如果WTRU接收到GOS,則WTRU可以在一個或複數DRX循環的ON持續時間中跳過對PDCCH的監視、並且可以停留在休眠模式(例如深度休眠)。
在例如用於5G無線系統的3GPP新無線電(NR)的系統中,可以對PDCCH以及實體下鏈共用通道(PDSCH)採用新的結構及設計。基於時槽以及基於非時槽的傳輸以及不同的監視速率可以用於PDCCH。
資源元素組(REG)可以是PDCCH的最小構建塊。REG可以由在時間上的一個OFDM符號上的12個資源元素(RE)以及在頻率上的一個資源塊(RB)組成。在REG中,九個RE可以用於控制資訊,並且三個RE可以用於解調參考信號(DMRS)。在時間或頻率上相鄰的複數REG(例如,2、3或6)可以形成REG束(bundle),該REG束可以與相同的預編碼器一起使用,並且它們的DMRS可以一起用於通道估計。六個REG(例如,以1、2或3個REG束的格式)可以形成一個控制通道元素(CCE),其可以是最小可能的PDCCH。PDCCH可以由一個或複數CCE(例如,1、2、4、8或16個CCE)組成。PDCCH的CCE的數量可以被稱為其聚合等級(AL)。
REG束的映射可以使用交錯或非交錯。在非交錯映射中,連續的REG束(例如,在頻率上相鄰)可以形成CCE,並且在頻率上相鄰的CCE可以形成PDCCH。在交錯映射中,在被映射到CCE之前,REG可以被交錯或置換,這可能導致一個CCE中的非相鄰REG束以及一個PDCCH中的非相鄰CCE。
控制資源集(CORESET)可以由下列中的至少其一配置或者可以包括下列中的至少其一:i)頻率指派(例如,作為六個RB的大塊),ii)時間長度(例如,1-3個OFDM符號),iii)REG束的類型,以及iv)從REG束到CCE的映射的類型,其可以使用交錯或非交錯。在頻寬部分BWP)中,可以有多達N(例如3)個CORESET。例如,在四個可能的頻寬部分中,可以有12個CORESET。
WTRU可以監視一組PDCCH候選或者可以被指派監視一組PDCCH候選。在PDCCH的盲偵測期間,可以監視一組PDCCH候選。搜尋空間或用於複數聚合等級的一組搜尋空間可以是或者可以包括要例如利用盲偵測來監視的一組PDCCH候選。搜尋空間或一組搜尋空間可以藉由下列中的至少其一來配置:i)相關聯的CORESET,ii)針對每個聚合等級或每個聚合等級內的候選的數量,以及iii)一組監視時機。該監視時機可以包括以下中的一者或多者:監視週期(例如,按照時槽)、監視偏移以及監視模式(例如,與時槽內的符號的可能模式對應的14位元)。
在NR中,搜尋空間可以被配置有長週期以減少PDCCH監視時間,當WTRU具有不頻繁出現的資料訊務(例如叢發訊務)時,這對於降低WTRU電池消耗是有益的。然而,如圖4所示,當叢發資料到達緩衝器時,搜尋空間的長週期會增加WTRU活動時間,這可能需要複數PDSCH或PUSCH傳輸來完成傳輸。由於上鏈傳輸頻寬可能基於WTRU覆蓋等級而被進一步限制,因此對於上鏈叢發訊務,較長的活動時間可能變得更重要。
WTRU可以被配置為具有CORESET及其相關聯的一個或複數搜尋空間。CORESET配置可以包括以下中的一者或多者:頻域資源(例如,用於該CORESET的一組資源塊)、OFDM符號的數量、REG束大小、CCE到REG映射類型、以及搜尋空間配置,其可以包括以下中的一者或多者:相關聯的CORESET資訊(例如,CORESET-id)、監視時槽週期、每PDCCH聚合等級的解碼候選的數量、以及時槽內的監視符號。
術語搜尋空間、PDCCH搜尋空間以及PDCCH監視時機在這裡可以是可交換的。PDCCH監視時機可以被認為是WTRU可以監視一個或複數搜尋空間的時間實例(例如時槽、子訊框及符號)。術語搜尋空間的週期、搜尋空間的監視週期、PDCCH監視週期、搜尋空間的工作週期、搜尋空間的監視間隙、PDCCH監視循環、PDCCH監視時機循環、週期以及搜尋空間監視時機循環在此可以互換。
當WTRU監視搜尋空間時,WTRU可以嘗試解碼該搜尋空間中的一個或複數PDCCH候選。每個PDCCH候選可以包括一個或複數CCE,並且PDCCH候選的CCE的數量可以被稱為聚合等級(AL)。術語PDCCH候選、PDCCH解碼候選、PDCCH盲解碼候選、解碼候選以及盲解碼候選在本文中可互換使用。
可以使用一個或複數搜尋空間類型。每個搜尋空間類型可以具有不同的時間行為。例如,第一搜尋空間類型可以是週期性搜尋空間(P-SS),並且,一旦該搜尋空間被配置,WTRU可以週期性地監視該搜尋空間,例如每s個時槽監視一次。第二搜尋空間類型可以是半持久性搜尋空間(SP-SS),並且,當SP-SS處於活動狀態時,WTRU可以監視該SP-SS。第三搜尋空間類型可以是非週期性搜尋空間(A-SS),並且WTRU可以在一個或複數時間實例中監視A-SS,這可以被動態表明。
可以基於針對搜尋空間的RRC配置中的指示來確定搜尋空間類型。該搜尋空間類型可基於可在搜尋空間中監視的相關聯的DCI格式或DCI類型來確定。該DCI格式或DCI類型可以基於訊務類型(例如,eMBB、URLLC或mMTC)來確定。該搜尋空間類型可以基於操作模式(例如,正常模式、省電模式)來確定。例如,正常模式可以與P-SS相關聯,而省電模式可以與SP-SS或A-SS相關聯。
搜尋空間類型可以用於下鏈許可及/或上鏈許可。下鏈許可可以用於排程PDSCH,並且上鏈許可可以用於排程PUSCH。PDSCH以及PUSCH是通道的非限制性範例,並且在本文描述的範例中可以彼此替換。
當WTRU可能需要在相同時槽中監視一個或複數搜尋空間類型,並且盲解碼候選的數量及/或用於通道估計的CCE的數量大於臨界值時,WTRU可以基於搜尋空間時域特性(例如,週期性的、半持久性的以及非週期性的)來對搜尋空間進行優先序排序、並且可以跳過監視較低優先序的搜尋空間。A-SS在WTRU特定的搜尋空間內可以是最高優先序。SP-SS可以具有比P-SS更高的優先序。公共搜尋空間可以具有比WTRU特定搜尋空間更高的優先序。如果一個或複數搜尋空間是相同類型的搜尋空間或者具有相同的時域特性,則較低的搜尋空間識別碼可以具有較高的優先序。
藉由使用SP-SS而使PDCCH監視適應訊務需求(例如叢發訊務),可以在活動時間期間降低WTRU功率消耗。SP-SS可以與動態搜尋空間啟動/停用、及/或搜尋空間監視週期的動態指示一起使用。當WTRU被配置有某一傳輸模式(例如,功率節省模式或叢發傳輸模式)時,可以使用SP-SS。
圖5示出了用於支援具有長P-SS的叢發訊務的SP-SS的範例。在圖5中,P-SS被配置有4時槽週期,例如,如時槽s、時槽s+4、時槽s+8以及時槽s+12所示。WTRU可以在P-SS中針對PDCCH進行監視(例如每4個時槽)。gNB可具有叢發資料以發送到WTRU。可以啟動SP-SS。SP-SS可以經由相關聯的P-SS而被啟動。WTRU可以基於該SP-SS啟動而在時槽s+5中監視SP-SS。如圖5所示,該SP-SS的週期可以被配置為1個時槽,WTRU可以在時槽s+5開始監視SP-SS,並且此後每1個時槽監視一次。該P-SS以及SP-SS可以在時間上重疊,例如在時槽s+8處。例如在時槽s+10,可以停用SP-SS,並且WTRU可以停止監視SP-SS。WTRU可以基於4時槽週期來監視P-SS,例如在時槽s+12處。可以利用新的週期來更新該PS-SS監視週期,例如在時槽s+12中利用2時槽週期進行更新。WTRU可以例如在時槽s+14、s+16等中以更新後的週期來監視該P-SS。
圖6示出了使用SP-SS來支援叢發訊務的範例。WTRU可以接收一個或複數搜尋空間的配置資訊(610)。該配置資訊可以包括搜尋空間的監視週期。該監視週期可以表明時槽或時槽重複。該配置資訊可以包括監視偏移。該配置資訊可以包括監視模式。WTRU可以接收用於多種類型的搜尋空間的配置資訊。例如,WTRU可以接收用於P-SS以及SP-SS的配置資訊。SP-SS可以與一個或複數P-SS相關聯。P-SS的一個或複數搜尋空間配置可以在相關聯的SP-SS中被使用或重用。可以啟動SP-SS的相關聯的P-SS的配置可以用於監視該SP-SS、並且可以包括DCI配置、格式、內容(例如,TCI狀態的存在):聚合等級;每聚合等級的PDCCH候選的數量、符號的數量、或時槽內的監視符號。SP-SS可以被配置有用於P-SS的配置資訊的子集。可以基於相關聯的P-SS來確定可能不在該配置資訊的子集中的P-SS的配置資訊。WTRU可以從gNB接收該配置資訊。WTRU可以經由無線電資源控制(RRC)傳訊或RRC訊息接收該配置資訊。
WTRU可以發送其支援SP-SS的能力的指示。WTRU可以將該指示發送給gNB。在一個範例中,如果WTRU具有接收用於SP-SS的啟動/停用信號的能力,則WTRU可以支援SP-SS。在一個範例中,如果WTRU具有支援功率節省模式的能力,則WTRU可以支援SP-SS。gNB可在WTRU不發送指示下具有關於該WTRU支援SP-SS的能力的知識。gNB可從預先配置或基於WTRU類別來獲知WTRU是否支援SP-SS。
WTRU可以在所配置的P-SS中針對控制通道(例如PDCCH)進行監視(620)。該P-SS可以具有監視週期,例如4時槽週期,如圖5所示。WTRU可以在該搜尋空間被啟動或處於活動狀態時進行監視。當該搜尋空間被停用或不在活動狀態或在停用狀態時,WTRU可以不在該搜尋空間中進行監視。WTRU可以根據所配置的週期以及監視符號在時間位置中監視該P-SS。
WTRU可以接收資訊以啟動SP-SS(630)。可以在P-SS中的PDCCH中接收該資訊。要啟動的SP-SS可以與該P-SS相關聯。該資訊可以包括對停用SP-SS的指示。該資訊可以用於複數相關聯的SP-SS。
WTRU可以針對PDCCH而監視SP-SS(640)。該SP-SS可以具有所配置的監視週期,該監視週期可以不同於相關聯的P-SS的監視週期。例如,在圖5中,該P-SS具有4時槽週期,而該SP-SS具有1時槽週期。搜尋空間可以經由例如在PDCCH中接收的DCI中的L1傳訊而被啟動或停用。搜尋空間可以經由例如MAC-CE中的L2傳訊而被啟動或停用。當該搜尋空間在活動狀態(例如,被啟動)時,WTRU可以監視該搜尋空間。例如,搜尋空間可以被配置,並且當WTRU接收到用於該搜尋空間的啟動(例如啟動指示或啟動信號)時,WTRU可以監視該搜尋空間。如果在P-SS中接收的資訊表明SP-SS的啟動,則WTRU可以在SP-SS中針對PDCCH進行監視。WTRU可以基於接收到的配置資訊而在SP-SS中進行監視。當SP-SS被啟動時,WTRU可以跳過監視相關聯的P-SS。如果盲解碼複雜度或用於通道估計的CCE的數量高於臨界值(例如,WTRU能力),則WTRU可以跳過監視相關聯的P-SS。在該P-SS中接收的該資訊表明SP-SS的停用的情況下,該WTRU可以停止在該SP-SS中進行監視。
可以基於例如DCI、MAC-CE、預定序列或前導碼、利用PDSCH的CRC加擾的位元序列、或PDSCH的DM-RS序列而從時槽#n啟動及/或停用SP-SS。
在時槽#n-x中接收到DCI的情況下,該DCI可以包括針對該搜尋空間的啟動及/或停用資訊,並且x可以是非負整數(例如,0、1、2、…)。WTRU可以在P-SS中監視或接收用於SP-SS啟動(及/或停用)的DCI,該P-SS可以基於WTRU特定的PDCCH或群組公共PDCCH。群組公共PDCCH可以由一組WTRU共用。一個或複數無線電網路臨時識別符(RNTI)可以用於P-SS中的DCI。如果第一RNTI用於加擾時槽#n-x中的DCI的CRC,則可以在時槽#n中啟動相關聯的SP-SS,並且該SP-SS可以處於活動狀態,直到其被停用。如果第二RNTI用於加擾該DCI的CRC,則相關聯的SP-SS可以保持在目前狀態(例如,非活動或活動)。如果第二RNTI用於加擾該DCI的CRC,則可以停用相關聯的SP-SS。這裡用於啟動SP-SS的DCI還可以用於排程PDSCH或PUSCH。x值可以在該DCI中表明。
在時槽#n-x中接收到MAC-CE的情況下,其中x可以是非負整數,該MAC-CE可以包括用於一個或複數SP-SS的啟動及/或停用訊息。可以基於攜帶MAC-CE的PDCCH的HARQ-ACK時序來確定x值。該x值可以在該MAC-CE中表明。
如果WTRU在時槽#n-x中接收到序列或前導碼,則SP-SS可以從時槽#n被啟動並保持在活動狀態直到其被停用。該序列或前導碼可以是WUS。該WUS可以被配置或用於SP-SS。如果搜尋空間是P-SS,則可以不使用喚醒,並且可以在所配置的時槽中監視該搜尋空間。該WUS可以按照搜尋空間來配置。
在利用PDSCH的CRC加擾的位元序列的情況下,例如可以在時槽#n-x中排程該PDSCH。如果用特定位元序列加擾該PDSCH的CRC,則可以在時槽#n中啟動相關聯的SP-SS,其中該PDSCH可以由P-SS排程。可以使用一個或複數位元序列以用於加擾。如果WTRU接收到第一位元序列,則相關聯的SP-SS可以停留在目前狀態(例如活動或不活動)。如果WTRU接收到第二位元序列,則可以在時槽#n中啟動相關聯的SP-SS。在一個範例中,第一位元序列可以是全零,而第二位元序列可以是全一或除了一個位元之外可以是全零。如果PDSCH包括多於一個碼塊或碼塊組,則所有碼塊或碼塊組的CRC可以用該位元序列來加擾。第一或最後碼塊或碼塊組的CRC可以用該位元序列進行加擾。
在PDSCH的DM-RS序列的情況下,可以利用特定識別碼對該DM-RS序列進行加擾。例如,PDSCH可以在時槽#n-x中被排程,並且,如果該DM-RS以第一識別碼被加擾,則相關聯的SP-SS可以停留在目前狀態(例如,活動或非活動)。如果以第二識別加擾該DM-RS,則可以在時槽#n中啟動相關聯的SP-SS。DM-RS加擾識別(ID)可以確定該相關聯的SP-SS的啟動。該DM-RS加擾ID可以用於加擾序列初始化。
WTRU可以在SP-SS中接收PDCCH(650)。WTRU可以基於所接收的PDCCH中的資源分配來接收PDSCH。例如,WTRU可以在時槽s+5、s+6、s+7、s+8、s+9及s+10中接收PDSCH叢發,如圖5所示。
WTRU可以基於該SP-SS的停用來停止監視該SP-SS(660)。可以基於計時器或時間視窗來停用活動SP-SS。計時器可以從該SP-SS被啟動的時槽開始。如果相關聯的計時器正在運行,則WTRU可以監視SP-SS。如果該計時器停止,則WTRU可以停止監視該SP-SS。如果WTRU在K個時槽(或連續的K個時槽)中沒有偵測到為WTRU排程的DCI,則該計時器可以停止。如果WTRU需要切換頻寬部分(BWP),則該計時器可以停止。如果經過了預定義或配置的時間視窗,則該計時器可以停止。該時間視窗可以從該SP-SS被啟動的時槽開始。如果例如上鏈緩衝器之類的緩衝器為空,則該計時器可以停止。如果WTRU接收到計時器期滿命令,則該計時器可以停止。可以從gNB接收計時器期滿命令。可以基於所報告的緩衝器大小來確定該時間視窗。例如,如果所報告的緩衝器大小大於第一臨界值,則可以使用第一時間視窗大小,並且如果所報告的緩衝器大小大於第二臨界值,則可以使用第二時間視窗大小。如果WTRU接收到停用信號,則可以停用活動SP-SS。可以從gNB接收停用信號。該停用信號可以是進入休眠(GOS)信號。在從啟動信號所表明的複數時槽之後,可以停用活動SP-SS。例如,啟動信號可以包括SP-SS是活動的時間長度,並且該時間長度可以基於時槽的數量。一個或複數時間長度值可以是被預先確定、預定義、配置或使用,並且一個時間長度值可以在該啟動信號中表明。
SP-SS的時間位置可以基於較高層配置來預先確定。SP-SS的啟動時間可以不改變該SP-SS的時間位置。當WTRU在預先確定的位置是活動的時,WTRU可以監視SP-SS。
啟動指示可以確定WTRU是否需要監視該SP-SS。可以基於啟動時間來確定SP-SS的時間位置。例如,可以預先配置SP-SS的週期以及時槽內的監視符號,同時可以基於WTRU接收啟動指示時或該SP-SS被啟動時的時間位置來確定該起始偏移。
SP-SS以及與其相關聯的P-SS可以位於或配置在不同的BWP中。如果SP-SS被啟動,則WTRU可以不監視相關聯的P-SS,並且WTRU可以切換到為SP-SS配置的BWP。如果SP-SS被停用,則WTRU可以切換回到用於相關聯的P-SS的BWP。例如,第一BWP可以被配置有P-SS,第二BWP可以被配置有相關聯的SP-SS。P-SS可以啟動/停用位於不同BWP中的相關聯的SP-SS。如果WTRU具有同時接收多於一個BWP的能力,則WTRU可以監視相關聯的P-SS以及SP-SS。
當P-SS或相關聯的P-SS週期大於臨界值時,可以使用或允許使用SP-SS。例如,如果與SP-SS相關聯的P-SS週期大於臨界值,則WTRU可以針對SP-SS的啟動信號進行監視。SP-SS的週期可以比相關聯的P-SS的週期長。如果與SP-SS相關聯的P-SS週期短於臨界值,則WTRU可以跳過對SP-SS的啟動信號的監視
可以針對下鏈、上鏈或這二者來啟動/停用SP-SS。例如,如果SP-SS被啟動用於下鏈(DL)訊務或下鏈傳輸,則WTRU可以在該SP-SS中針對DL DCI格式進行監視。如果SP-SS被啟動用於上鏈(UL)訊務或上鏈傳輸,則WTRU可以在該SP-SS中針對UL DCI格式進行監視。如果WTRU處於DRX操作中的活動時間以監視SP-SS,則如果該SP-SS被啟動用於下鏈傳輸,則WTRU可以執行DL測量(例如RRM、RLM、CSI)。如果該SP-SS未被啟動用於DL傳輸或僅被啟動用於UL傳輸,則WTRU可以跳過執行DL測量及/或跳過報告週期性測量(例如週期性CSI)。如果WTRU處於DRX操作中的活動時間中並且WTRU監視用於UL傳輸(例如僅用於UL傳輸)的SP-SS,則WTRU可以跳過報告週期性測量(例如週期性CSI)。
對於DRX操作,可以針對P-SS應用非活動計時器或重傳計時器。如果無論DRX狀態如何(例如即使在OFF持續時間) SP-SS都被啟動,WTRU可能需要監視該SP-SS。SP-SS狀態(例如,活動的)可以覆蓋DRX狀態(例如,OFF持續時間)。如果SP-SS是非活動的,WTRU可以遵循DRX狀態(例如,ON持續時間或OFF持續時間)。對SP-SS的監視可以不增加不活動計時器或重傳計時器。所配置的DRX參數或操作可以不應用於該SP-SS。
WTRU可以接收用於該P-SS的更新後的配置(670)。該更新後的配置可以包括更新後的週期。可以在P-SS中的PDCCH中的DCI中接收該更新後的配置。例如,WTRU可以在圖5中的時槽s+12中接收用於該P-SS的更新後的週期。WTRU可以基於該更新後的週期監視該P-SS(680)。例如,WTRU可以基於該更新後的P-SS週期以在時槽s+14、s+16等中監視P-SS。
該P-SS及/或SP-SS的週期可以動態地改變。搜尋空間週期可以用動態指示來改變。搜尋空間週期可以在有或沒有RRC重新配置下改變。例如,當叢發訊務到達時,可以縮短搜尋空間監視週期。例如,當資料緩衝器為空時,可以增加搜尋空間監視週期。該週期改變可以經由例如DCI中的L1及/或例如MAC-CE中的L2傳訊來表明。
可以為搜尋空間配置一個或複數週期值。可以基於最小週期值來確定預設週期。可以基於最大週期值來確定預設週期。可以基於一組被配置的週期中的第一週期來確定預設週期。最小週期值或最大週期值可被用作預設週期。一組被配置的週期中的第一週期也可以用作預設週期。
一個或複數週期值可以例如經由RRC傳訊來配置。如果配置了單一週期值,則搜尋空間的週期可以是所配置的值。如果配置了多於一個週期值,則可以表明所配置的週期值之一。WTRU可以經由例如DCI中的L1傳訊及/或例如MAC-CE中的L2傳訊來接收該指示。WTRU可以例如在接收到指示之後使用所表明的週期。WTRU可以在接收到指示之後的被配置的、表明的或已知的時間之後使用所表明的週期。如果WTRU在從L1及/或L2傳訊接收週期值的該指示之前被配置具有多於一個週期值,則WTRU也可使用預設值。
如果例如經由L1或L2傳訊表明週期或週期改變,則所指示或更新的週期在時間視窗期間可以是有效的。例如,當WTRU接收到針對搜尋空間的週期或更新的週期時,WTRU可以使用所表明的週期在一時間視窗期間監視搜尋空間、並且在該時間視窗之前及/或之後使用或切換回先前配置的、先前指示的或預設的週期。可以基於較高層配置來確定該時間視窗。可以基於例如不活動計時器之類的計時器來確定該時間視窗。在該較高層配置下,WTRU可以使用或切換回所配置的或預設的週期以在該時間視窗之後監視搜尋空間。在該計時器(例如不活動計時器)的情況下,當使用所表明的或更新後的週期時,如果WTRU在K個時槽(例如K個連續時槽)期間沒有接收到DCI,則WTRU可以認為計時器(例如不活動計時器)期滿,並且可以使用或切換回所配置的或預設的週期。
可以基於搜尋空間的配置資訊來確定具有一個或複數週期值的該搜尋空間的時間位置。當週期值被表明或更新時,WTRU可以在從接收到該週期指示或更新的時槽開始的x個時槽之後監視與所指示或更新的週期值相關聯的時間位置。例如,該x值可以被預定義為固定值(例如,4)。該x值可以是非負整數值。可以基於參數集來確定該x值。該x可為被配置的值,例如由RRC配置的配置值。該x值可以被動態地表明,例如由DCI或MAC-CE動態地表明。該x值可以與改變或更新該週期的指示一起被包括。
可以基於例如特定HARQ過程號、所傳輸的否定HARQ-ACK的數量、時槽格式指示符所表明的時槽配置、或者排程請求之後的第一上鏈許可之類的資訊來確定或更新搜尋空間的週期。
在特定HARQ過程號的情況下,WTRU可以接收具有特定HARQ過程號的下鏈許可或上鏈許可。例如,如果WTRU接收到具有HARQ過程號N(例如#16)的PDSCH,則WTRU可以利用更新後的週期監視的搜尋空間。gNB可以確定HARQ過程號以改變該搜尋空間的週期。例如,第一組HARQ過程號(例如,0-3)可以與第一搜尋空間週期相關聯,並且第二組HARQ過程號(例如,4-7)可以與第二搜尋空間週期相關聯。WTRU可以基於例如接收到的用於最後的PDSCH或PUSCH的HARQ過程號來確定搜尋空間的週期。
在時槽配置的情況下,第一時槽配置可以與該搜尋空間的第一週期值相關聯,並且第二時槽配置可以與該搜尋空間的第二週期值相關聯。
在排程請求之後的第一上鏈許可的情況下,在傳輸排程請求之後並且在接收第一上鏈許可之前,可以使用搜尋空間的第一監視週期來針對上鏈許可進行監視。如果WTRU接收到針對由該第一上鏈許可所排程的上鏈傳輸的HARQ-ACK,則可以使用用於該搜尋空間的第二監視週期。該HARQ-ACK可以是具有相同HARQ過程號的上鏈許可(例如,切換或不切換新資料指示符)。如果WTRU在時槽#n-x中接收到用於上鏈傳輸的HARQ-ACK,則可以從時槽#n開始使用用於搜尋空間的第二監視週期。如果第一上鏈許可包括關於監視週期改變或更新的指示,則可以使用針對搜尋空間的第二監視週期。該指示可以基於RNTI。在傳輸排程請求之後,可以使用搜尋空間的第一監視週期來監視上鏈許可,直到接收到監視週期改變命令。
可以經由L1及/或L2傳訊動態地增加或減少用於搜尋空間的時槽內的監視符號。時槽內的不同符號中的搜尋空間可以在不同的時槽中排程PDSCH。該PDSCH可以是長PDSCH(例如,PDSCH類型A)或短PDSCH(例如,PDSCH類型B)。
搜尋空間可由DCI觸發、排程或表明,以被監視。該搜尋空間可以在於其上傳輸DCI的時槽之後的X個時槽或Y個OFDM符號之後被觸發或排程。該DCI可以排程一個或複數搜尋空間。可以觸發一個或複數搜尋空間的DCI在此可以被稱為觸發DCI、參考DCI或第一DCI。
第一DCI可以觸發複數非週期性搜尋空間(A-SS)或非週期性監視時機。該第一DCI可以包括A-SS或監視時機的數量、起始時槽、搜尋空間(例如,相等空間)之間的間隙、A-SS的聚合等級及/或REG束大小。
圖7示出了觸發複數A-SS的第一DCI的範例。第一DCI可以排程三個搜尋空間(或三個監視時機),例如圖7中的A-SS1 、A-SS2 以及A-SS3 ,連續排程/觸發的搜尋空間之間的間隔可以被相等地間隔m 個時槽,並且第一觸發或排程的搜尋空間與傳輸DCI的時槽之間的間隔可以是n 個時槽。可以是n =m 。在圖7的範例中,A-SS的數量= 3;起始時槽=時槽s0+ n;搜尋空間之間的間隙是m,這些搜尋空間可具有相等的空間。兩個監視時機之間的按照時槽或符號數量的間距可以彼此不同
如果所觸發的搜尋空間在時間上位於兩個連續的P-SS之間,則可以減少該第一DCI的開銷。例如,在圖7中,DCI以及下一週期性搜尋空間之間的間距是10個時槽。所排程的搜尋空間可以位於這10個時槽中的一些時槽上。如果給定了起始時槽以及A-SS的數量或該A-SS之間的間隙,則WTRU可以確定所排程的搜尋空間的位置。如果n =m ,則可以進一步減少該第一DCI的開銷。在此範例中,該DCI可以表明A-SS的數量,並且可以選擇這些搜尋空間的位置,使得在最後一個搜尋空間與傳輸該DCI的時槽之間存在均勻的間隔。
該第一DCI可以觸發一個或複數搜尋空間、並且還可以排程PDSCH或PUSCH。WTRU可以在P-SS中接收第一DCI,並且WTRU可以在所觸發的A-SS中接收第二DCI。該第一DCI可以包括用於觸發A-SS以及PUSCH或PDSCH的排程的資訊。該第二DCI可以包括PUSCH或PDSCH的排程資訊。該第一DCI以及第二DCI可以是相同的DCI格式,然而內容可以不同。用於第一DCI的DCI大小以及用於第二DCI的DCI大小可以不同。用於A-SS的相關聯CORESET可以與P-SS的CORESET相同,在該P-SS中,WTRU可以接收該第一DCI。
該第一DCI可以用一種模式觸發一個或複數搜尋空間,該模式可以確定時間視窗內的時槽,其中WTRU可能需要監視該搜尋空間。該時間視窗可以經由較高層傳訊來配置。可以基於相關聯的P-SS的週期來確定該時間視窗。例如,如果相關聯的P-SS的週期是x,則該時間視窗可以是x。該模式可以是位元映像,其可以表明針對該A-SS的時間視窗內的時槽。在該位元映像中,每個位元可以與一個或複數時槽相關聯。如果該位元映像中的位元表明一值,例如“1”,則WTRU可能需要監視相關聯時槽中的搜尋空間。如果該位元映像中的位元表明不同的值,例如“0”,則WTRU可以跳過對相關聯的時槽中的搜尋空間的監視。可以使用一個或複數模式,並且由其相關聯的RNTI來表明該一個或複數模式,其中該RNTI可以用CRC來加擾。可以使用一個或複數RNTI,並且每個RNTI可以與模式相關聯。
第一DCI不僅可以在該DCI時槽以及隨後的P-SS之間排程搜尋空間、還可以在該P-SS的複數週期上排程搜尋空間。例如,假設週期是10個時槽並且該DCI在時槽0上被傳輸,則該DCI可以在時槽[0-9]、[10-19]、或[20-29]等之間排程搜尋空間。該第一DCI還可以表明在其上排程附加搜尋空間的週期的數量。
接收該DCI的WTRU可以被預期在排程的搜尋空間及/或該週期性搜尋空間期間執行控制通道(例如PDCCH)的盲解碼。
DCI可以觸發單一A-SS。該DCI可以表明隨後的A-SS的存在/不存在。該DCI可以表明從目前搜尋空間的時間偏移。該DCI可以表明該A-SS的聚合等級。該DCI可以表明該A-SS的REG束大小。
圖8示出了觸發單一A-SS的DCI的範例。如果在第一A-SS中傳輸DCI,則該DCI可以觸發第二A-SS。如果在第二A-SS中傳輸DCI,則此DCI可以觸發第三A-SS等等。如果在A-SS中沒有偵測到DCI,則WTRU可以不執行A-SS的盲偵測,而僅執行P-SS的盲解碼。
DCI可以觸發A-SS。該A-SS可以與在其中接收該DCI的搜尋空間相同的CORESET相關聯。單一位元欄位可以表明該A-SS的存在/不存在。針對該A-SS的時間位置的時槽/符號偏移可以被預先確定的或預配置。RNTI可以表明該A-SS的存在/不存在。
圖9示出了DCI觸發單一A-SS的範例性方法。WTRU可以在P-SS中的PDCCH中接收第一DCI(910)。該第一DCI可以排程A-SS1 。WTRU可以基於該第一DCI以針對PDCCH監視所排程的A-SS1 (920)。WTRU可以在A-SS1 中的PDCCH中接收第二DCI(930)。該第二DCI可以排程A-SS2 。WTRU可以基於該第二DCI以針對PDCCH監視所排程的A-SS2 (940)。
圖10示出了PDSCH叢發傳輸的範例,其中單一DCI可以攜帶整個叢發的全部或一些所需排程資訊。PDSCH叢發可以由WTRU活動時間內的NBURST 個時槽(即,NBURST ≤ TUE_active )組成。
WTRU可以針對單一DCI叢發(SDB)PDSCH傳輸來監視或嘗試解碼搜尋空間中的DCI。叢發PDSCH傳輸可以是一個或複數時槽上的NBURST 個PDSCH傳輸。
該叢發中的每個PDSCH可以是長PDSCH(PDSCH類型A)或短PDSCH(PDSCH類型B)。在叢發PDSCH傳輸內,所有PDSCH可以是相同的PDSCH類型。叢發內的第一PDSCH的PDSCH類型可以確定用於PDSCH傳輸的其餘部分的PDSCH類型。
WTRU可以基於例如DCI欄位、MAC CE或RRC配置以動態地確定叢發內的PDSCH數量(NBURST )及/或時槽數量。WTRU可以基於例如搜尋空間、搜尋空間的週期、用該DCI的CRC加擾的RNTI、或DCI中的位元欄位來確定SDB傳輸或單一DCI單一PDSCH(SDSP)傳輸。
WTRU可以被配置有搜尋空間,並且可以在該搜尋空間配置中表明PDSCH傳輸方案(例如SDB或SDSP)。叢發中的PDSCH的數量(NBURST )可以在搜尋空間配置中。如果WTRU在第一搜尋空間中接收到DCI,則WTRU可以接收或期望第一類型的傳輸,例如PDSCH叢發傳輸。如果WTRU在第二搜尋空間中接收到DCI,則WTRU可以接收或期望第二類型的傳輸,例如單一PDSCH傳輸。
在搜尋空間的週期的情況下,如果搜尋空間的週期大於臨界值,則WTRU可以接收或期望第一類型的傳輸,例如具有單一DCI排程的PDSCH叢發傳輸。如果該搜尋空間的該週期小於臨界值,則WTRU可以接收或期望第二類型的傳輸,例如具有單一DCI排程的單一PDSCH傳輸。這可以在WTRU處於功率節省模式及/或被提供叢發訊務時應用。叢發中的PDSCH的數量可以基於該搜尋空間的週期來確定。
在利用DCI的CRC對RNTI進行加擾的情況下,可以使用一個或複數RNTI。如果WTRU接收到可以用該DCI的CRC加擾的第一RNTI,則WTRU可以接收或期望第一類型的傳輸,例如SDB傳輸。如果WTRU接收到可以用該DCI的CRC加擾的第二RNTI,則WTRU可以接收或期望第二類型的傳輸,例如SDSP傳輸。該第一RNTI可以是SDB-RNTI。該第二RNTI可以是SDSP-RNTI或C-RNTI。
在DCI中的位元欄位的情況下,該DCI中的單一位元可以表明其是用於SDB傳輸還是SDSP傳輸。單一DCI可以排程一個或複數PDSCH,並且該DCI可以包括一個或複數PDSCH的排程資訊。
對於SDB PDSCH傳輸,WTRU可以使用該DCI中的資源分配資訊欄位以用於解碼該叢發內的所有該NBURST 個P DSCH傳輸。該資源配置資訊可以包括:載波BWP、頻域/時域資源分配/映射、ZP CSI-RS、傳輸埠、TCI、探測請求、參考信號配置、用於該叢發的持續時間的PUCCH相關資訊。WTRU可以不需要接收或解碼用於PDSCH速率匹配的資訊元素。WTRU可以為該叢發內的剩餘時槽假定與第一時槽類似的速率匹配。在第一時槽之後的時槽中沒有DCI的情況下,WTRU可以假定在第一時槽中使用的CORSET用於速率PDSCH速率匹配。
WTRU可以假設用於解碼NBURST 個PDSCH時槽的固定MCS資訊。WTRU可以從例如DCI欄位的資訊元素、或者從用於SDB PDSCH操作的半靜態配置來動態地確定該MCS。
為了節省功率,WTRU可以不維持其緩衝器用於在下一個WTRU活動開啟週期內與將來的PDSCH傳輸進行可能的軟組合。例如,SDB PDSCH模式中的WTRU可以針對每個叢發假設新資料指示符(NDI)=1、及/或冗餘版本RV =0。
WTRU可以基於以下中的一者或多者來確定具有單一DCI的叢發PDSCH傳輸中的一個或複數PDSCH的HARQ過程號。
WTRU可以接收DCI、並將NBURST 個索引解碼為用於該叢發內的每個該PDSCH的HARQ過程號。WTRU可以解碼單一PDSCH-至-HARQ時序以用於整個叢發的ACK/NACK指示。WTRU可以在所確定的上鏈時槽內表明NBURST 個ACK /NACK訊息。WTRU可以解碼複數PDSCH-至-HARQ時序以用於與該叢發內的每個PDSCH對應的ACK/NACK指示。WTRU可以用對應的所表明的時序來表明NBURST 個ACK/NACK訊息。
WTRU可以接收DCI、並解碼用於整個PDSCH叢發的單一HARQ過程號。該叢發中的每個PDSCH可以被認為或確定為碼塊組(CBG),並且WTRU可以報告每個PDSCH的HARQ-ACK(例如,每個CBG的HARQ-ACK)。如果可以針對PDSCH叢發傳輸來捆紮PDSCH的HARQ-ACK位元,則可以將該捆紮稱為HARQ-ACK位元的互斥或(XOR)。該叢發中的每個PDSCH可以被認為或確定為碼字,並且WTRU可以報告作為碼字的每個PDSCH的HARQ-ACK。如果該叢發中的PDSCH的數量大於臨界值,則可以捆紮針對一組PDSCH的HARQ-ACK位元。可以基於該叢發中的PDSCH的數量來確定用於HARQ-ACK捆紮的組的數量。可以基於被配置用於HARQ-ACK傳輸的上鏈資源來確定用於HARQ-ACK捆紮的組的數量。如果該叢發內的所有PDSCH時槽都被正確解碼,則WTRU可以表明ACK。WTRU可以期望在下一個活動週期上重傳相同的叢發。
WTRU可以為失敗的傳輸維持軟緩衝器,以用於在下一叢發內進行潛在組合。在下一活動週期中,WTRU可以從所接收的DCI確定重傳的叢發是否具有與用於潛在組合的先前叢發相同的傳輸特性。WTRU可以不嘗試解碼在先前叢發中被成功解碼的時槽。可以基於用於PDSCH叢發傳輸的最後時槽或第一時槽來確定HARQ-ACK時序。
圖11示出了PDSCH叢發傳輸的配置。單一DCI可以攜帶整個叢發的全部或一些所需排程資訊。WTRU可能被要求確定該叢發內的每個PDSCH的時序。WTRU可以藉由假定WTRU活動時間內的相等間距來確定該叢發內的每個PDSCH時槽的時序。WTRU可以從DCI欄位中動態地確定該間距資訊或經由其半靜態配置來確定該間距資訊。
單一DCI可以排程一個或複數PDSCH作為PDSCH叢發傳輸,並且該叢發中的該PDSCH可以位於不同的時槽中。
該DCI可以表明起始時槽,例如,該叢發中的第一PDSCH的時槽偏移。可以基於從該起始時槽起的連續下鏈時槽來確定該叢發中的其餘PDSCH的時槽。從該起始時槽開始的連續下鏈時槽可以用於其餘PDSCH。下鏈時槽可以是有效下鏈時槽,其可以包含大於臨界值的下鏈符號。可以基於該起始時槽中的下鏈符號的數量來確定該臨界值。該臨界值可以是預定值。可以基於從先前時槽的偏移值來確定該叢發中的其餘PDSCH的時槽。可以在該DCI中表明該偏移值以用於排程該PDSCH叢發傳輸。該偏移值可經由較高層傳訊來配置。
該DCI可以表明該叢發內的每個PDSCH的一個或複數時槽偏移。可以經由較高層傳訊(例如,RRC及/或MAC-CE)來配置一組或多組偏移值,並且可以在DCI中表明一組偏移值。
這裡描述了利用C-DRX來處理叢發訊務。這裡描述了使用SP-SS或具有動態或半持續週期的搜尋空間的範例。
一個或複數DRX計時器值可以被確定或者可以是一個或複數搜尋空間的類型或週期的函數,該一個或複數搜尋空間例如為WTRU可以監視的一個或複數搜尋空間。DRX計時器以及DRX計時器值在這裡可以互換使用。
搜尋空間可以被配置有DRX計時器,該DRX計時器可以用於搜尋空間類型或者可以與搜尋空間類型相關聯。例如,第一DRX計時器可以被配置用於第一搜尋空間類型(例如,P-SS),並且第二DRX計時器可以被配置用於第二搜尋空間類型(例如,SP-SS)。當監視第一搜尋空間類型時,或者當第二搜尋空間類型的一個或複數搜尋空間(例如,用於HARQ進程)未被配置、不活動、未被啟動、或被停用時,WTRU可以使用第一DRX計時器。當監視第二搜尋空間類型時或者當第二搜尋空間類型是活動的或被啟動時,WTRU可以使用第二DRX計時器。例如,當使用第一類型的搜尋空間(例如,P-SS)時,WTRU可以使用第一DRX UL(或DL)重傳計時器,而當使用第二類型的搜尋空間(例如,SP-SS)時,WTRU可以使用第二DRX UL(或DL)重傳計時器。
計時器的使用可以包括以下動作中的一者或多者:啟動或重啟該計時器、停止該計時器、基於該計時器是否正在運行來確定活動時間(例如,DRX活動時間)、基於該計時器是否正在運行來執行動作或做出決定、基於該計時器是否期滿來執行動作或做出決定,及/或在該計時器正在運行時針對PDCCH進行監視。
在範例中,與一個或複數DRX計時器有關的一個或複數動作及/或決定可以與根據3GPP LTE規範或5G NR規範執行的動作及/或決定相同或相似。
可以配置一組搜尋空間,並且可以針對該組搜尋空間中的一個或複數搜尋空間來配置DRX計時器。當該組搜尋空間中的搜尋空間是活動的或被啟動時,可以使用或啟動與該搜尋空間相關聯的DRX計時器。當該組搜尋空間中的搜尋空間被啟動時,WTRU可以從使用與預設的或先前使用的搜尋空間相關聯的DRX計時器切換到使用與啟動的搜尋空間相關聯的DRX計時器。該組搜尋空間中的搜尋空間可以與週期相關聯。可以為該組搜尋空間中的搜尋空間配置週期。
例如,第一DRX計時器可以與一組搜尋空間內的第一搜尋空間相關聯、或者被配置用於該第一搜尋空間。第二DRX計時器可以與一組搜尋空間內的第二搜尋空間相關聯、或者被配置用於該第二搜尋空間。當以下情況發生時,WTRU可以使用第一DRX計時器:i)使用該第一搜尋空間(例如,當根據該第一搜尋空間的時序或週期而針對PDCCH進行監視時);ii)當該第一搜尋空間是活動的或被啟動時;及/或iii)當該第一搜尋空間是預設搜尋空間並且沒有SP-SS被配置或啟動時。當以下情況發生時,WTRU可以使用第二DRX計時器:i)使用該第二搜尋空間(例如,當根據該第二搜尋空間的時序或週期而針對PDCCH進行監視時);及/或ii)當第二搜尋空間是活動的或被啟動時。當第二搜尋空間被停用時,WTRU可以返回到使用第一DRX計時器。
搜尋空間可以與HARQ過程相關聯、及/或被配置用於HARQ過程。這裡針對搜尋空間或一組搜尋空間描述的範例以及實施例可以例如單獨地適用於針對HARQ過程的搜尋空間或針對HARQ過程的一組搜尋空間。
WTRU可以從例如gNB接收搜尋空間、搜尋空間集及/或DRX計時器配置。WTRU可以例如從gNB接收搜尋空間、搜尋空間集及/或DRX計時器啟動及/或停用。
搜尋空間可以被配置有與該搜尋空間的週期相關聯的DRX計時器。當該搜尋空間的週期被啟動時,可以使用或啟動與該週期相關聯的該DRX計時器。
搜尋空間可以具有至少第一週期以及第二週期。該第一週期可以是預設週期。該第二週期可以比第一週期更短或更長。DRX計時器可以具有與第一週期相關聯的第一值以及與第二週期相關聯的第二值。該第二值可以比該第一值短或長。當使用第一週期時,WTRU可以使用該第一DRX計時器值。當使用第二週期時,例如,當該第二週期被啟動時,WTRU可以使用第二DRX計時器值。當該第二週期被停用時,WTRU可以恢復到第一計時器值。
DRX計時器可以是搜尋空間週期的函數,例如是搜尋空間週期的倍數。當搜尋空間被啟動、或者搜尋空間的週期被啟動時,WTRU可以基於該搜尋空間週期來確定DRX計時器值、並且可以使用所確定的DRX計時器值。
用於監視搜尋空間的第一週期、或第一搜尋空間的週期可以具有值T1,例如10個時槽(例如10 ms),其可以允許WTRU休眠一段時間。用於第一週期或第一搜尋空間的UL(或DL)的DRX HARQ RTT計時器可以是T-RTT1。用於該第一週期或該第一搜尋空間的DRX UL(或DL)重傳計時器可以是T-RTX1。用於監視搜尋空間的第二週期、或者第二搜尋空間的週期可以具有值T2,例如1個時槽(例如1 ms),其可以允許WTRU更快地接收具有許可及/或HARQ的PDCCH,例如以更好地處理叢發訊務。用於該第二週期或該第二搜尋空間的UL(或DL)的DRX HARQ RTT計時器可以是T-RTT2。用於該第二週期或該第二搜尋空間的DRX UL(或DL)重傳計時器可以是T-RTX2。T-RTT2可以小於T-RTT1。T-RTX2可以小於T-RTX1。
T-RTT1及/或T-RTX1可以是T1及/或第一搜尋空間類型中的至少一者的函數。T-RTT2及/或T-RTX2可以是以下至少一者的函數:T1、T2、T-RTT1、T-RTX1及/或該第二搜尋空間類型。
當使用第一搜尋空間週期或第一搜尋空間時,WTRU可以使用具有值T-RTT1及/或T-RTX1的值或計時器。當使用第二搜尋空間週期或第二搜尋空間時,例如當第二週期或第二搜尋空間被啟動時,WTRU可以使用具有值T-RTT2及/或T-RTX2的值或計時器。在使用具有值T-RTT2及/或T-RTX2的值或計時器之後,例如當第二搜尋空間週期或第二搜尋空間被停用時或者當另一搜尋空間週期或搜尋空間被啟動時,WTRU可以使用具有值T-RTT1及/或T-RTX1或例如T-RTT3及/或T-RTX3的其他值的值或計時器。
WTRU可以配置或確定與搜尋空間或搜尋空間週期相關聯的計時器(例如DRX計時器)或計時器值。WTRU可以從gNB接收該配置。
WTRU可以接收一請求或指示以停止DRX計時器,例如用於UL及/或DL的RTT或重傳計時器。該請求或指示可以經由L1傳訊(例如在PDCCH中的DCI中的L1傳訊)、或者經由L2傳訊(例如在MAC-CE中的L2傳訊)而被接收。作為回應,WTRU可以停止所指示或請求停止的DRX計時器或複數DRX計時器。
該停止可以應用於一個或複數DRX計時器類型(例如,UL RTT、DL RTT、UL以及DL RTT、UL重傳、DL重傳、或者UL以及DL重傳)。該停止可以應用於一個或複數DRX類型的活動DRX計時器。該停止可以應用於一個或複數DRX類型的所有DRX計時器。
在這裡描述的範例以及實施例中,P-SS以及SP-SS可以用作搜尋空間類型的非限制性範例。可以使用任何其他搜尋空間並且與本揭露內容一致。
儘管以上以特定組合描述了特徵以及元素,但是本領域中具有通常知識者將理解,每個特徵或元素可以單獨使用或與其他特徵及元素進行任何組合。另外,在此所述的方法可以在結合在電腦可讀媒體中的電腦程式、軟體或韌體中實施,以由電腦或處理器執行。電腦可讀媒體的範例包括但不限於電子信號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(例如,內部硬碟以及可移磁片)、磁光媒體以及光學媒體(例如,CD-ROM光碟以及數位多功能光碟(DVD))。與軟體相關聯的處理器可用於實施用於WTRU、UE、終端、基地台、RNC以及任何主機電腦的射頻收發器。
A-SS:非週期性搜尋空間 DCI:下鏈控制資訊 DRX:不連續接收 GOS:進入休眠 N2、N3、N4、N6、N11、S1、X2、Xn:介面 PDCCH:實體下鏈控制通道 PDSCH:實體下鏈共用通道 P-SS:週期性搜尋空間 SP-SS:半持久性搜尋空間 WTRU、102、102a、102b、102c、102d:無線傳輸/接收單元 WUS:喚醒信號 100:通信系統 104:無線電存取網路(RAN) 106:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:行動性管理實體(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(PGW) 180a、180b、180c:g節點B(gNB) 182a、182b:存取以及行動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 610、620、630、640、650、660、670、680:流程
可以從以下結合附圖以範例方式給出的描述中獲得更詳細的理解,其中附圖中相同的元件符號表示相同的元素,並且其中: 圖1A是示出了可以實施所揭露的一個或複數實施例的範例性通信系統的系統圖; 圖1B是示出了根據實施例的可以在圖1A所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖; 圖1C是示出了根據實施例的可以在圖1A所示的通信系統內使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖; 圖1D是示出了根據實施例的可以在圖1A所示的通信系統內使用的另一個範例性RAN以及另一個範例性CN的系統圖; 圖2示出了不連續接收(DRX)的範例; 圖3示出了具有DRX操作的喚醒信號(WUS)以及進入休眠(GOS)的範例; 圖4示出了用於叢發訊務的長WTRU活動時間的範例; 圖5示出了用於支援具有長週期搜尋空間(P-SS)的叢發訊務的半持久性搜尋空間(SP-SS)的範例; 圖6示出了使用半持久性搜尋空間(SP-SS)以支援叢發訊務的範例; 圖7示出了觸發複數非週期性搜尋空間(A-SS)的第一DCI的範例; 圖8示出了觸發單一非週期性搜尋空間(A-SS)的DCI的範例; 圖9示出了DCI觸發單一非週期性搜尋空間(A-SS)的範例性方法; 圖10示出了具有排程了該叢發的單一DCI的PDSCH叢發傳輸的範例;以及 圖11示出了PDSCH叢發傳輸的範例性配置。
PDCCH:第一實體下鏈控制通道
P-SS:週期性搜尋空間
SP-SS:半持久性搜尋空間
WTRU:無線傳輸/接收單元
610、620、630、640、650、660、670、680:流程

Claims (20)

  1. 一種由一無線傳輸/接收單元(WTRU)實施的方法,該方法包括:接收用於一第一搜尋空間(P-SS)以及一第二搜尋空間(SP-SS)的配置資訊,其中該配置資訊包括該第一搜尋空間的一監視週期及監視符號以及該第二搜尋空間的一監視週期及監視符號;以該該第一搜尋空間的該監視週期及在該第一搜尋空間的這些監視符號中監視該第一搜尋空間;在該第一搜尋空間的一時槽中的一第一實體下鏈控制通道(PDCCH)中接收一第一訊息,其中該第一訊息表明對該第二搜尋空間的一啟動;使用該第二搜尋空間的該監視週期及在該第二搜尋空間的這些監視符號中監視該第二搜尋空間;以及在該第二搜尋空間的一時槽中的一第二PDCCH中接收一第二訊息。
  2. 如請求項1所述的方法,進一步包括基於該第一PDCCH中的該第一訊息或該第二PDCCH中的該第二訊息而在一實體下鏈共用通道(PDSCH)中接收一訊息。
  3. 如請求項1所述的方法,其中該監視週期表明一時槽重複。
  4. 如請求項1所述的方法,其中該配置資訊是從一gNB接收的。
  5. 如請求項1所述的方法,其中該配置資訊進一步包括一監視偏移。
  6. 如請求項1所述的方法,其中,該配置資訊更包括一監視模式,該監視模式包括一符號模式。
  7. 如請求項1所述的方法,更包括發送支援搜尋空間切換的一能力的一指示。
  8. 如請求項1所述的方法,其中該第一搜尋空間的該監視週期大於該第二搜尋空間的該監視週期。
  9. 如請求項1所述的方法,更包括:基於一第二搜尋空間停用確定來停止該監視該第二搜尋空間;以該第一搜尋空間的該監視週期來監視該第一搜尋空間;接收一第三訊息,其中該第三訊息包括該第一搜尋空間的一更新後的監視週期;以及以該更新後的監視週期來監視該第一搜尋空間。
  10. 一種無線傳輸/接收單元(WTRU),該WTRU包括:一接收器;以及一處理器;其中該接收器被配置為接收用於一第一搜尋空間以及一第二搜尋空間的配置資訊,其中該配置資訊包括該第一搜尋空間的一監視週期及監視符號以及該第二搜尋空間的一監視週期及監視符號;該處理器被配置為以該第一搜尋空間的該監視週期及在該第一搜尋空間的這些監視符號中監視該第一搜尋空間;該接收器更被配置為在該第一搜尋空間的一時槽中的一第一實體下鏈控制通道(PDCCH)中接收一第一訊息,其中該第一訊息表明對該第二搜尋空間的一啟動;該處理器更被配置為使用該第二搜尋空間的該監視週期及在該第二搜尋空間的這些監視符號中監視該第二搜尋空間;以及該接收器更被配置為在該第二搜尋空間的一時槽中的一第二PDCCH中接收一第二訊息。
  11. 如請求項10所述的WTRU,其中該接收器更被配置為基於該第一PDCCH中的該第一訊息或該第二PDCCH中的該第二訊息來接收一實體下鏈共用通道(PDSCH)中的一訊息。
  12. 如請求項10所述的WTRU,其中該監視週期表明一時槽重複。
  13. 如請求項10所述的WTRU,其中該配置資訊是從一gNB接收的。
  14. 如請求項10所述的WTRU,其中該配置資訊更包括一監視偏移。
  15. 如請求項10所述的WTRU,其中該配置資訊更包括一監視模式,該監視模式包括一符號模式。
  16. 如請求項10所述的WTRU,更包括一傳輸器,該傳輸器被配置為傳輸支援搜尋空間切換的一能力的一指示。
  17. 如請求項10所述的WTRU,其中該第一搜尋空間的該監視週期大於該第二搜尋空間的該監視週期。
  18. 如請求項10所述的WTRU,其中:該處理器更被配置為:基於一第二搜尋空間停用確定來停止監視該第二搜尋空間、並且以該第一搜尋空間的該監視週期來在該第一搜尋空間中進行監視;該接收器更被配置為接收一第三訊息,其中該第三訊息包括該第一搜尋空間的一更新後的監視週期;以及該處理器更被配置為以該更新後的監視週期來監視該第一搜尋空間。
  19. 一種無線傳輸/接收單元(WTRU),該WTRU包括:一接收器;以及一處理器;其中該接收器被配置為在一第一搜尋空間中的一實體下鏈控制通道(PDCCH)中接收一第一下鏈控制資訊(DCI),其中該第一DCI表明用於一第二搜尋空間的一排程配置;該處理器被配置為基於用於該第二搜尋空間的該第一DCI排程配置來監視該第二搜尋空間; 該接收器更被配置為在該第二搜尋空間中的一PDCCH中接收一第二DCI,其中該第二DCI表明用於一第三搜尋空間的一排程配置;以及該處理器更被配置為基於該第二DCI排程配置來監視該第三搜尋空間。
  20. 如請求項19所述的WTRU,其中:該接收器更被配置為在該第三搜尋空間的一PDCCH中接收一第三DCI,其中該第三DCI包括用於複數搜尋空間的一排程配置。
TW108134811A 2018-09-26 2019-09-26 叢發傳輸方法及裝置 TWI741376B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862736874P 2018-09-26 2018-09-26
US62/736874 2018-09-26

Publications (2)

Publication Number Publication Date
TW202021399A TW202021399A (zh) 2020-06-01
TWI741376B true TWI741376B (zh) 2021-10-01

Family

ID=68172285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134811A TWI741376B (zh) 2018-09-26 2019-09-26 叢發傳輸方法及裝置

Country Status (9)

Country Link
US (1) US20220132341A1 (zh)
EP (1) EP3857795A2 (zh)
JP (2) JP7245901B2 (zh)
KR (1) KR20210081331A (zh)
CA (1) CA3113973A1 (zh)
SG (1) SG11202102905SA (zh)
TW (1) TWI741376B (zh)
WO (1) WO2020069135A2 (zh)
ZA (1) ZA202101984B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546940B2 (en) 2018-01-10 2023-01-03 Idac Holdings, Inc. Channel access methods and listen-before-talk solutions for new radio operation in unlicensed bands
JP2022516601A (ja) * 2019-01-08 2022-03-01 オフィノ, エルエルシー 省電力メカニズム
US20220077960A1 (en) * 2019-03-28 2022-03-10 Lg Electronics Inc. Method and apparatus for performing downlink reception based on drx retransmission timer in wireless communication system
EP3987883A1 (en) * 2019-06-18 2022-04-27 Telefonaktiebolaget LM Ericsson (publ) Adaptation of active-time pdcch monitoring using short discontinuous reception (drx)
KR20210001754A (ko) * 2019-06-28 2021-01-06 삼성전자주식회사 무선 통신 시스템에서 pdcch에 대한 커버리지 향상 방법 및 장치
US11877302B2 (en) * 2020-01-07 2024-01-16 Qualcomm Incorporated Control channel element and blind decode limits for physical downlink control channel
US11737125B2 (en) * 2020-03-09 2023-08-22 Qualcomm Incorporated User equipment feedback reduction for semipersistent scheduling
US11765756B2 (en) * 2020-04-29 2023-09-19 Qualcomm Incorporated User equipment (UE) requested control resource set (CORESET)/search space (SS) sets
CN116017653A (zh) * 2020-05-13 2023-04-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113709911B (zh) * 2020-05-20 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021228168A1 (en) * 2020-05-13 2021-11-18 Shanghai Langbo Communication Technology Company Limited Method and device in a node for wireless communication
US11871255B2 (en) * 2020-05-18 2024-01-09 Qualcomm Incorporated Discontinuous downlink channel monitoring
CN115606136A (zh) * 2020-06-05 2023-01-13 Oppo广东移动通信有限公司(Cn) Drx参数的切换方法、装置、设备及存储介质
US11671984B2 (en) * 2020-06-19 2023-06-06 Kt Corporation Method and apparatus for controlling search space for power saving
US20210409244A1 (en) * 2020-06-26 2021-12-30 Qualcomm Incorporated Control channel monitoring aggregation with blended resource element group (reg) bundles
US11659423B2 (en) * 2020-07-10 2023-05-23 Qualcomm Incorporated Indications of physical downlink control channel monitoring occasion aggregation via demodulation reference signal parameters
WO2022031892A1 (en) * 2020-08-05 2022-02-10 Idac Holdings, Inc. Pdcch coverage enhancement
CN115699869A (zh) * 2020-08-07 2023-02-03 中兴通讯股份有限公司 无线通信系统中的移动设备的节能
US20220053516A1 (en) * 2020-08-13 2022-02-17 Qualcomm Incorporated Adaptive monitoring for control messages
US20220159630A1 (en) * 2020-11-13 2022-05-19 Qualcomm Incorporated Search space set group switching for monitoring dormancy
WO2022147770A1 (en) * 2021-01-08 2022-07-14 Lenovo (Beijing) Limited Method and apparatus for monitoring physical downlink control channels
BR112023020084A2 (pt) * 2021-04-01 2023-11-14 Lenovo Singapore Pte Ltd Configuração de ocasiões de canal de controle de enlace descendente físico para monitoramento
WO2022240327A1 (en) * 2021-05-14 2022-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Search space monitoring for wireless communication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243048A1 (en) * 2010-04-02 2011-10-06 Chun-Yen Wang Method of Handling Component Carrier Activation and Deactivation and Communication Device Thereof
US20130201834A1 (en) * 2012-02-03 2013-08-08 Qualcomm Incorporated Downlink data transfer flow control during carrier aggregation
US20140105154A1 (en) * 2011-08-18 2014-04-17 Lg Electronics Inc. Method for allocating a control channel and apparatus therefor
US20170086172A1 (en) * 2015-09-22 2017-03-23 Ofinno Technologies, Llc Carrier Selection in a Multi-Carrier Wireless Network
US20180160420A1 (en) * 2012-10-08 2018-06-07 Samsung Electronics Co., Ltd. Method and apparatus for reporting performance of terminal in mobile communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091697A (ko) * 2011-10-27 2014-07-22 삼성전자주식회사 이동통신 시스템에서 단말의 전력 소모를 효과적으로 감소시키는 방법 및 장치
EP2807836B1 (en) * 2012-01-30 2020-05-27 Huawei Technologies Co., Ltd. System and method for common control channels in a communications system
WO2014007595A1 (en) * 2012-07-06 2014-01-09 Samsung Electronics Co., Ltd. Method and apparatus for determining tdd ul-dl configuration applicable for radio frames
US20170318620A1 (en) * 2016-04-28 2017-11-02 Mediatek Inc. Connected Mode Discontinuous Reception for Narrow Band Internet of Things
CN109831932B (zh) * 2016-08-10 2022-05-24 交互数字专利控股公司 多天线系统中的非周期性测量参考信号传输的系统和方法
US10385510B2 (en) * 2016-11-16 2019-08-20 Astenjohnson, Inc. Seamless press felt with intermediate elastic carrier layer
WO2018128439A1 (ko) * 2017-01-06 2018-07-12 한국전자통신연구원 통신 시스템에서 제어 채널의 송수신 방법 및 장치
CN111034073B (zh) * 2017-05-03 2022-06-24 康维达无线有限责任公司 基础设施装备、移动终端、计算机软件和方法
US10701756B2 (en) * 2017-05-16 2020-06-30 Qualcomm Incorporated Service specific short DRX cycles
CN110999413B (zh) * 2017-08-11 2023-06-23 5G Ip控股有限责任公司 用于新无线电中的不连续接收的装置和方法
TWI670986B (zh) * 2018-02-07 2019-09-01 華碩電腦股份有限公司 無線通訊系統中監聽間斷傳輸指示的方法和設備
CN112567670A (zh) * 2018-08-10 2021-03-26 苹果公司 用于在功率节省与通信效率之间平衡的动态c-drx配置以及使用dci激活载波分量

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243048A1 (en) * 2010-04-02 2011-10-06 Chun-Yen Wang Method of Handling Component Carrier Activation and Deactivation and Communication Device Thereof
US20140105154A1 (en) * 2011-08-18 2014-04-17 Lg Electronics Inc. Method for allocating a control channel and apparatus therefor
US20130201834A1 (en) * 2012-02-03 2013-08-08 Qualcomm Incorporated Downlink data transfer flow control during carrier aggregation
US20180160420A1 (en) * 2012-10-08 2018-06-07 Samsung Electronics Co., Ltd. Method and apparatus for reporting performance of terminal in mobile communication system
US20170086172A1 (en) * 2015-09-22 2017-03-23 Ofinno Technologies, Llc Carrier Selection in a Multi-Carrier Wireless Network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nokia, Alcatel-Lucent Shanghai Bell, "SC-PTM search space design for NB-IoT", R1-1608883, 3GPP TSG RAN WG1 Meeting 86-bis, Lisbon, Portugal, 10th-14th October 2016

Also Published As

Publication number Publication date
EP3857795A2 (en) 2021-08-04
US20220132341A1 (en) 2022-04-28
CN112740611A (zh) 2021-04-30
WO2020069135A2 (en) 2020-04-02
JP2023082002A (ja) 2023-06-13
JP2022500962A (ja) 2022-01-04
WO2020069135A3 (en) 2020-05-14
SG11202102905SA (en) 2021-04-29
TW202021399A (zh) 2020-06-01
JP7245901B2 (ja) 2023-03-24
KR20210081331A (ko) 2021-07-01
CA3113973A1 (en) 2020-04-02
ZA202101984B (en) 2023-12-20

Similar Documents

Publication Publication Date Title
TWI741376B (zh) 叢發傳輸方法及裝置
JP7232898B2 (ja) 無線通信における省電力信号
US11395231B2 (en) Methods and apparatuses for channel access and recovery wake-up radios
JP2023536880A (ja) Tci状態グループに基づくビーム指示
JP2023522593A (ja) サイドリンク無線送信/受信ユニット(wtru)間連携のための方法及び装置
EP4136794A2 (en) Discontinuous reception operation of multicast and broadcast services
TW202143674A (zh) 下鏈小資料接收方法及裝置
JP2023512676A (ja) より高い周波数における電力の効率的な測定
US20230180249A1 (en) Pdcch monitoring reduction associated with wtru power saving
JP2023534432A (ja) 柔軟な非周期的srs送信のための方法及び装置
EP4305887A1 (en) Methods, architectures, apparatuses and systems for downlink small data transmission (dl sdt) and reception in inactive radio access network (ran) state
CN116547914A (zh) 用于更高频率中的无线通信的方法
JP2023536878A (ja) 動的スペクトル共有のための方法及び装置
TW202123740A (zh) 省電信號操作
CN112740611B (zh) 用于突发传输的方法和装置
US20240031931A1 (en) Wtru power saving in active time
CN117242835A (zh) 活动时间中的wtru功率节省
CN117280774A (zh) 用于非活动无线电接入网络(ran)状态下的下行链路小数据传输(dl sdt)和接收的方法、架构、装置和系统
CN116982365A (zh) 用于蜂窝系统中寻呼过程的节能增强的方法和装置