TWI741243B - Semiconductor devices and manufacturing methods thereof - Google Patents

Semiconductor devices and manufacturing methods thereof Download PDF

Info

Publication number
TWI741243B
TWI741243B TW107146901A TW107146901A TWI741243B TW I741243 B TWI741243 B TW I741243B TW 107146901 A TW107146901 A TW 107146901A TW 107146901 A TW107146901 A TW 107146901A TW I741243 B TWI741243 B TW I741243B
Authority
TW
Taiwan
Prior art keywords
layer
silicon liner
liner layer
silicon
patterned surface
Prior art date
Application number
TW107146901A
Other languages
Chinese (zh)
Other versions
TW202025484A (en
Inventor
楊亞諭
劉家呈
沈豫俊
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW107146901A priority Critical patent/TWI741243B/en
Publication of TW202025484A publication Critical patent/TW202025484A/en
Application granted granted Critical
Publication of TWI741243B publication Critical patent/TWI741243B/en

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

A semiconductor device is provided, having a composite silicon substrate and a nucleation layer. The composite silicon substrate includes a first silicon pad layer and a second silicon pad layer, where the second silicon pad layer is formed on the first silicon pad layer. The second silicon pad layer has a second resistance higher than a first resistance of the first silicon pad layer. The second silicon pad layer has a patterned top surface. The nucleation layer is formed on the patterned top surface, and has a top surface. The nucleation layer includes a group-III element.

Description

半導體元件以及其製作方法 Semiconductor element and its manufacturing method

本說明書係關於一種半導體元件以及其製作方法,尤指關於具有複合矽基底的半導體元件以及其相關之製作方法。This specification is about a semiconductor device and its manufacturing method, especially a semiconductor device with a composite silicon substrate and its related manufacturing method.

氮化鎵(GaN)功率電晶體主要應用於功率電路中,當作開關使用,其具有耐高溫、高壓、高電流密度、以及高頻操作的特性。在製造GaN功率元件的過程中,需要在一基底上磊晶生長一些半導體層,而半導體層磊晶品質的優劣,會影響GaN功率元件的特性。舉例來說,當基底與所磊晶成長的半導體層之間存在晶格常數差異(lattice mismatch)時,容易導致應力產生,以及半導體層材料中錯位的出現,而錯位容易明顯地惡化半導體元件的電性表現。此外,當基底跟磊晶成長的半導體層彼此之間有熱膨脹係數差異時,也會在半導體層材料中產生應力。而且,如果基底具有良好的導熱係數,那半導體元件於操作過程中所產生的熱,就可以透過基底而迅速散熱,維持半導體元件的溫度不致過高。因此,在理想情況下,基底應當是跟其上將要磊晶成長的半導體層材料相同。當基底跟磊晶成長的半導體層具有相同材料時的情形,稱為同質磊晶(homoepitaxy)。Gallium nitride (GaN) power transistors are mainly used in power circuits as switches. They have the characteristics of high temperature resistance, high voltage, high current density, and high frequency operation. In the process of manufacturing GaN power devices, it is necessary to epitaxially grow some semiconductor layers on a substrate, and the quality of the epitaxial semiconductor layers will affect the characteristics of the GaN power devices. For example, when there is a lattice constant difference (lattice mismatch) between the substrate and the epitaxially grown semiconductor layer, it is easy to cause stress and the appearance of dislocations in the semiconductor layer material, and the dislocations easily deteriorate the semiconductor device significantly. Electrical performance. In addition, when there is a difference in thermal expansion coefficient between the substrate and the epitaxially grown semiconductor layer, stress will also be generated in the semiconductor layer material. Moreover, if the substrate has a good thermal conductivity, the heat generated during the operation of the semiconductor element can be quickly dissipated through the substrate, and the temperature of the semiconductor element is maintained not to be too high. Therefore, under ideal circumstances, the substrate should be the same material as the semiconductor layer on which the epitaxial growth will be made. When the substrate and the epitaxially grown semiconductor layer have the same material, it is called homoepitaxy.

現有技術中採用非GaN的基底來磊晶製造GaN元件。當基底跟磊晶成長的半導體層具有不相同材料時的情形,稱為異質磊晶(heteroepitaxy)。但是,晶格常數差異以及熱膨脹係數差異所導致的不良影響,不容易完全地消除。為了降低這些不想要的不良影響,已經開發了用於異質磊晶的半導體模板(semiconductor template)。這些半導體模板一般是多層的磊晶結構,目的是用來優化後續成長於其上的半導體結構的特性。舉例來說, GaN功率電晶體中的GaN半導體層可以透過半導體模板,磊晶形成於矽基底上。利用矽基底比較良好的導熱係數,降低GaN功率電晶體的操作溫度。儘管半導體模板可以改善後續磊晶成長的半導體層,抑制半導體模板和基底之間熱膨脹係數差異所產生的不良影響,仍為本發明領域技術人員持續研究開發的目標之一。In the prior art, non-GaN substrates are used to epitaxially manufacture GaN devices. When the substrate and the epitaxially grown semiconductor layer have different materials, it is called heteroepitaxy. However, it is not easy to completely eliminate the adverse effects caused by the difference in lattice constants and the difference in thermal expansion coefficient. In order to reduce these unwanted adverse effects, semiconductor templates for heteroepitaxial wafers have been developed. These semiconductor templates are generally multi-layer epitaxial structures, and the purpose is to optimize the characteristics of the semiconductor structures that are subsequently grown on them. For example, the GaN semiconductor layer in a GaN power transistor can be epitaxially formed on a silicon substrate through a semiconductor template. The relatively good thermal conductivity of the silicon substrate is used to reduce the operating temperature of the GaN power transistor. Although the semiconductor template can improve the subsequent epitaxial growth of the semiconductor layer and suppress the adverse effects caused by the difference in thermal expansion coefficient between the semiconductor template and the substrate, it is still one of the goals of continuous research and development by those skilled in the art.

此外,當GaN元件生成於矽基底上時,矽基底本身的導電特性,容易提供GaN元件的漏電流路徑,降低了GaN元件的崩潰電壓。In addition, when a GaN device is formed on a silicon substrate, the conductive properties of the silicon substrate can easily provide a leakage current path for the GaN device, which reduces the breakdown voltage of the GaN device.

本發明實施例提供一種半導體元件,包含有一複合矽基底以及一成核層。複合矽基底包含有一第一矽襯層以及一第二矽襯層,第二矽襯層設於第一矽襯層上。第二矽襯層的第二電阻值高於第一矽襯層的第一電阻值。第二矽襯層具有一圖案化表面,成核層形成於圖案化表面上,具有一上表面。且成核層包含有一第一元素,屬於第三族。The embodiment of the present invention provides a semiconductor device including a composite silicon substrate and a nucleation layer. The composite silicon substrate includes a first silicon liner layer and a second silicon liner layer, and the second silicon liner layer is disposed on the first silicon liner layer. The second resistance value of the second silicon liner layer is higher than the first resistance value of the first silicon liner layer. The second silicon liner layer has a patterned surface, and the nucleation layer is formed on the patterned surface and has an upper surface. And the nucleation layer contains a first element, which belongs to the third group.

本發明實施例提供一種一半導體元件的製造方法,包含有:提供一第一矽襯層,其具有一第一電阻值;形成一第二矽襯層於第一矽襯層上,其中,第二矽襯層包含有一第二電阻值,大於第一電阻值,且第二矽襯層包含有一圖案化表面;以及,形成一成核層於圖案化表面上,產生一上表面,其中,成核層包含有一第一元素,屬於第三族。An embodiment of the present invention provides a method for manufacturing a semiconductor device, including: providing a first silicon liner layer having a first resistance value; forming a second silicon liner layer on the first silicon liner layer, wherein the first silicon liner layer The second silicon liner layer includes a second resistance value greater than the first resistance value, and the second silicon liner layer includes a patterned surface; and a nucleation layer is formed on the patterned surface to produce an upper surface, wherein The core layer contains a first element, which belongs to the third group.

下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings, so that those skilled in the art of the present invention can fully understand the spirit of the present invention. The present invention is not limited to the following embodiments, but can be implemented in other forms. In this specification, there are some same symbols, which represent elements with the same or similar structure, function, and principle, and those with general knowledge in the industry can infer it based on the teaching of this specification. For the sake of simplicity in the description, the elements with the same symbols will not be repeated.

第1圖為本申請案一實施例中一種半導體元件10a的剖面圖。半導體元件10a包含一複合矽基底12a,於複合矽基底12a上依序形成有一成核層16、一緩衝結構18、一通道層20以及一阻障層22,一源極26、一閘極28、以及一汲極30形成於阻障層22上。FIG. 1 is a cross-sectional view of a semiconductor device 10a in an embodiment of the application. The semiconductor device 10a includes a composite silicon substrate 12a. A nucleation layer 16, a buffer structure 18, a channel layer 20, and a barrier layer 22, a source electrode 26, and a gate electrode 28 are sequentially formed on the composite silicon substrate 12a. , And a drain electrode 30 are formed on the barrier layer 22.

複合矽基底12a包含有堆疊而成的低阻值矽襯層12aa以及高阻值矽襯層12ab。相較於低阻值矽襯層12aa,高阻值矽襯層12ab具有較高的電阻值。在一實施例中,低阻值矽襯層12aa具有一平整表面Saa,而高阻值矽襯層12ab具有一圖案化表面Sab。The composite silicon substrate 12a includes a stacked low-resistance silicon liner layer 12aa and a high-resistance silicon liner layer 12ab. Compared with the low-resistance silicon liner layer 12aa, the high-resistance silicon liner 12ab has a higher resistance value. In one embodiment, the low-resistance silicon liner layer 12aa has a flat surface Saa, and the high-resistance silicon liner layer 12ab has a patterned surface Sab.

成核層16形成於高阻值矽襯層12ab上,大致填平圖案化表面Sab。於一實施例中,成核層16具有實質平整的一上表面S16。The nucleation layer 16 is formed on the high resistance silicon liner layer 12ab, and substantially fills the patterned surface Sab. In one embodiment, the nucleation layer 16 has a substantially flat upper surface S16.

於一實施例中,緩衝結構18由下而上,包含有緩衝層18a、夾層(interlayer)18b、以及緩衝層18c。在一個實施例中,夾層18b的薄膜電阻值(sheet resistance)大於緩衝層18a與18c的兩薄膜電阻值。在另一個實施例中,夾層18b的能帶間隙(band gap)大於緩衝層18a與18c的能帶間隙。In one embodiment, the buffer structure 18 is from bottom to top and includes a buffer layer 18a, an interlayer 18b, and a buffer layer 18c. In one embodiment, the sheet resistance of the interlayer 18b is greater than the two sheet resistances of the buffer layers 18a and 18c. In another embodiment, the band gap of the interlayer 18b is larger than the band gap of the buffer layers 18a and 18c.

通道層20及阻障層22依序形成於緩衝結構18上。阻障層22之能帶間隙大於通道層20之能帶間隙。舉例來說,通道層20包含氮化銦鎵(Inx Ga(1-x) N),0≦x<1,阻障層22包含氮化鋁銦鎵(Aly Inz Ga(1-z) N),0<y<1,0≦z<1。阻障層22與通道層20之間,因為形成自發性極化(spontaneous polarization),以及兩者不同的晶格常數形成壓電極化效應(piezoelectric polarization),在通道層20內靠近與阻障層22介面的地方,產生二維電子氣(two-dimensional electron gas;2DEG)24。源極26、閘極28、以及汲極30分別位於阻障層22上。源極26與汲極30,與阻障層22之間形成歐姆接觸,且電性上短路至二維電子氣24。閘極28與阻障層22之間形成具有整流效應的蕭基特接面(schottky contact)。於閘極28施以一負電壓可以空乏閘極28下方的二維電子氣24,關閉半導體元件10a。The channel layer 20 and the barrier layer 22 are sequentially formed on the buffer structure 18. The energy band gap of the barrier layer 22 is larger than the energy band gap of the channel layer 20. For example, the channel layer 20 includes indium gallium nitride (In x Ga (1-x) N), 0≦x<1, and the barrier layer 22 includes aluminum indium gallium nitride (Al y In z Ga (1-z) ) N), 0<y<1, 0≦z<1. Between the barrier layer 22 and the channel layer 20, because of the formation of spontaneous polarization (spontaneous polarization) and the different lattice constants of the two, the piezoelectric polarization effect (piezoelectric polarization) is formed, which is close to the barrier layer in the channel layer 20. At the interface 22, two-dimensional electron gas (2DEG) 24 is generated. The source electrode 26, the gate electrode 28 and the drain electrode 30 are respectively located on the barrier layer 22. The source electrode 26 and the drain electrode 30 form an ohmic contact with the barrier layer 22 and are electrically short-circuited to the two-dimensional electron gas 24. A schottky contact with a rectifying effect is formed between the gate 28 and the barrier layer 22. Applying a negative voltage to the gate 28 can deplete the two-dimensional electron gas 24 under the gate 28 and turn off the semiconductor device 10a.

低阻值矽襯層12aa可用來增加複合矽基底12a的強度,避免在磊晶製程溫度變化的過程中,產生碎裂。The low-resistance silicon liner layer 12aa can be used to increase the strength of the composite silicon substrate 12a to avoid chipping during the temperature change of the epitaxial process.

高能帶間隙的成核層16、以及緩衝結構18中具有高能帶間隙以及/或高阻值的夾層18b,可以降低半導體元件10a中的漏電流發生,提高半導體元件10a的崩潰電壓。高阻值矽襯層12ab可以進一步阻隔半導體元件10a中流到低阻值矽襯層12aa的漏電流,提高半導體元件10a的崩潰電壓。The high energy band gap nucleation layer 16 and the high energy band gap and/or high resistance interlayer 18b in the buffer structure 18 can reduce the leakage current in the semiconductor device 10a and increase the breakdown voltage of the semiconductor device 10a. The high-resistance silicon lining layer 12ab can further block the leakage current flowing to the low-resistance silicon lining layer 12aa in the semiconductor device 10a, and increase the breakdown voltage of the semiconductor device 10a.

高阻值矽襯層12ab的圖案化表面Sab,可以降低氮化物半導體疊層(例如前述緩衝結構18、通道層20以及阻障層22等)與矽基底之間熱膨脹係數差異所產生的應力,避免其上方的半導體疊層中產生裂紋、基板翹曲或破片的情形,用來實現高厚度、高品質磊晶成長以及大尺寸基底成長。The patterned surface Sab of the high-resistance silicon liner layer 12ab can reduce the stress caused by the difference in thermal expansion coefficient between the nitride semiconductor stack (such as the aforementioned buffer structure 18, channel layer 20, and barrier layer 22, etc.) and the silicon substrate. Avoid cracks, substrate warping, or chipping in the semiconductor stack above it, so as to achieve high-thickness, high-quality epitaxial growth and large-size substrate growth.

第2圖顯示一種製造方法,可以用來製造第1圖之半導體元件10a。Figure 2 shows a manufacturing method that can be used to manufacture the semiconductor device 10a of Figure 1.

第2圖中的步驟62提供了低阻值矽襯層12aa。步驟64形成高阻值矽襯層12ab於低阻值矽襯層12aa上,高阻值矽襯層12ab的電阻值高於低阻值矽襯層12aa的電阻值。舉例來說,高阻值矽襯層12ab的薄膜電阻值介於100至20000Ω-cm,而低阻值矽襯層12aa的薄膜電阻值介於0.001至10Ω-cm。Step 62 in Figure 2 provides a low-resistance silicon liner layer 12aa. In step 64, a high-resistance silicon liner layer 12ab is formed on the low-resistance silicon liner layer 12aa, and the resistance value of the high-resistance silicon liner layer 12ab is higher than that of the low-resistance silicon liner layer 12aa. For example, the high-resistance silicon liner layer 12ab has a sheet resistance value of 100 to 20000 Ω-cm, and the low-resistance silicon liner layer 12aa has a sheet resistance value of 0.001 to 10 Ω-cm.

請參閱第3A圖與第3B圖,分別顯示兩種形成高阻值矽襯層12ab於低阻值矽襯層12aa上的方法。Please refer to FIG. 3A and FIG. 3B, which respectively show two methods of forming a high-resistance silicon liner layer 12ab on a low-resistance silicon liner layer 12aa.

第3A圖中,高阻值矽襯層12ab原本是獨立於低阻值矽襯層12aa之外。舉例來說,原本高阻值矽襯層12ab與低阻值矽襯層12aa是兩個分開來的晶圓(wafer)。在第3A圖中,透過一黏著層11,將高阻值矽襯層12ab固著於低阻值矽襯層12aa上。黏著層11包含金屬材料或絕緣材料等。金屬材料包含金、銅、銦、錫,其合金及/或其疊層。其中絕緣材料包含氧化物材料,例如氧化鋁(Al2 O3 )、氮化矽(SiNx )、氧化矽(SiO2 )、氮化鋁(AlN)、二氧化鈦(TiO2 )、五氧化二鉭(Tantalum Pentoxide, Ta2 O5 )等材料或其組合。絕緣材料也可以是有機高分子透明膠材,例如聚醯亞胺(polyimide)、苯環丁烯類高分子(BCB)、全氟環丁基類高分子(PFCB)、環氧類樹脂(Epoxy)、壓克力類樹脂(Acrylic Resin)、聚脂類樹脂(PET)、聚碳酸酯類樹脂(PC)等材料或其組合。In FIG. 3A, the high-resistance silicon liner layer 12ab is originally independent of the low-resistance silicon liner layer 12aa. For example, originally the high-resistance silicon liner layer 12ab and the low-resistance silicon liner layer 12aa are two separate wafers. In FIG. 3A, the high-resistance silicon liner layer 12ab is fixed on the low-resistance silicon liner layer 12aa through an adhesive layer 11. The adhesive layer 11 includes a metal material, an insulating material, or the like. The metal material includes gold, copper, indium, tin, their alloys and/or their laminated layers. The insulating material includes oxide materials, such as aluminum oxide (Al 2 O 3 ), silicon nitride (SiN x ), silicon oxide (SiO 2 ), aluminum nitride (AlN), titanium dioxide (TiO 2 ), tantalum pentoxide (Tantalum Pentoxide, Ta 2 O 5 ) and other materials or combinations thereof. The insulating material can also be an organic polymer transparent plastic material, such as polyimide (polyimide), benzocyclobutene polymer (BCB), perfluorocyclobutyl polymer (PFCB), epoxy resin (Epoxy ), acrylic resin (Acrylic Resin), polyester resin (PET), polycarbonate resin (PC) and other materials or combinations thereof.

另一實施例中,第3B圖顯示高阻值矽襯層12ab直接接觸低阻值矽襯層12aa,中間沒有黏著層。舉例來說,將高阻值矽襯層12ab與低阻值矽襯層12aa對接並壓合,經過高溫退火後,使高阻值矽襯層12ab與低阻值矽襯層12aa接合。於另一實施例中,對一矽基板進行摻雜及擴散製程,使得摻雜物擴散到矽基板內一深度,進而形成下方為低阻值矽襯層12aa且其上方為高阻值矽襯層12ab之複合矽基底12a。摻雜物可以包括但不限於硼、磷、碳、鍺、氮、砷、鎵或鋁。可藉由控制摻雜物在矽基板表面的表面濃度、擴散條件(像是加熱溫度和擴散時間)等,而使摻雜物擴散到矽基板內特定的深度。In another embodiment, FIG. 3B shows that the high-resistance silicon liner layer 12ab directly contacts the low-resistance silicon liner layer 12aa without an adhesive layer in between. For example, the high-resistance silicon lining layer 12ab and the low-resistance silicon lining layer 12aa are butted and pressed together, and after high-temperature annealing, the high-resistance silicon lining layer 12ab and the low-resistance silicon lining layer 12aa are joined. In another embodiment, a silicon substrate is doped and diffused so that the dopants are diffused to a depth in the silicon substrate to form a low-resistance silicon liner layer 12aa underneath and a high-resistance silicon liner above it. The composite silicon substrate 12a of the layer 12ab. Dopants may include, but are not limited to, boron, phosphorus, carbon, germanium, nitrogen, arsenic, gallium, or aluminum. By controlling the surface concentration of the dopant on the surface of the silicon substrate, the diffusion conditions (such as heating temperature and diffusion time), etc., the dopant can be diffused to a specific depth in the silicon substrate.

接著進行第2圖之步驟66圖案化高阻值矽襯層12ab,產生了圖案化表面Sab;參考第4A圖與第4B圖,其顯示高阻值矽襯層12ab被圖案化的過程。首先,高阻值矽襯層12ab上以塗佈的方式,形成一光阻層82。接著,以一微影製程,使光阻層82上形成一圖案,如同第4A圖所示。圖案可以是規則或是非規則。蝕刻製程可以將光阻層82上的圖案,轉印至高阻值矽襯層12ab,而產生了圖案化表面Sab。於一實施例中,經過圖案化後的高阻值矽襯層12ab,如同第4B圖所示,具有一圖案,包含規則排列的凸狀結構P與凹陷結構H。請參考第4B圖,於一實施例中,凹陷結構H並沒有穿過高阻值矽襯層12ab而曝露出低阻值矽襯層12aa,但本發明並不限於此。Next, proceed to step 66 of FIG. 2 to pattern the high-resistance silicon liner layer 12ab to produce a patterned surface Sab; refer to FIGS. 4A and 4B, which show the process of patterning the high-resistance silicon liner layer 12ab. First, a photoresist layer 82 is formed on the high resistance silicon liner layer 12ab by coating. Next, a lithography process is used to form a pattern on the photoresist layer 82, as shown in FIG. 4A. The pattern can be regular or irregular. The etching process can transfer the pattern on the photoresist layer 82 to the high-resistance silicon liner layer 12ab to produce a patterned surface Sab. In one embodiment, the patterned high-resistance silicon liner layer 12ab, as shown in FIG. 4B, has a pattern including regularly arranged convex structures P and concave structures H. Please refer to FIG. 4B. In one embodiment, the recessed structure H does not pass through the high-resistance silicon liner layer 12ab and exposes the low-resistance silicon liner layer 12aa, but the present invention is not limited to this.

舉例來說,低阻值矽襯層12aa的平整表面Saa的平均粗糙度(平均最大高度落差)小於高阻值矽襯層12ab的圖案化表面Sab的平均粗糙度。平整表面Saa的平均粗糙度小於1奈米,圖案化表面Sab的平均粗糙度介於0.1至100奈米。For example, the average roughness (average maximum height drop) of the flat surface Saa of the low-resistance silicon liner layer 12aa is less than the average roughness of the patterned surface Sab of the high-resistance silicon liner 12ab. The average roughness of the flat surface Saa is less than 1 nanometer, and the average roughness of the patterned surface Sab is between 0.1 and 100 nanometers.

接著執行第2圖之步驟68,形成成核層16於高阻值矽襯層12ab上,產生實質平整的上表面S16,如同第4C圖所示。舉例來說,上表面S16的平均粗糙度小於1奈米。在一實施例中,可以採用有機金屬化學氣相沉積(MOCVD, Metal Organic Chemical Vapor Deposition)或濺鍍(sputter)製程,在高阻值矽襯層12ab上沉積成核層16。在一實施例中,成核層16為一氮化鋁(AlN)層,其厚度大於500奈米。在一實施例中,厚度為500奈米以上的成核層16可以大致填平圖案化表面Sab。Then, step 68 of FIG. 2 is performed to form the nucleation layer 16 on the high resistance silicon liner layer 12ab to produce a substantially flat upper surface S16, as shown in FIG. 4C. For example, the average roughness of the upper surface S16 is less than 1 nanometer. In one embodiment, a metal organic chemical vapor deposition (MOCVD) or sputtering process may be used to deposit the nucleation layer 16 on the high resistance silicon liner layer 12ab. In one embodiment, the nucleation layer 16 is an aluminum nitride (AlN) layer with a thickness greater than 500 nm. In one embodiment, the nucleation layer 16 having a thickness of 500 nm or more can substantially fill the patterned surface Sab.

第2圖之步驟70選擇性地形成緩衝結構18於成核層16上,如同第4D圖所示。緩衝層18a、夾層18b、以及緩衝層18c依序磊晶形成於成核層16上。夾層18b可以是AlN或AlGaN、摻雜有碳及/或鐵的AlGaN、或是摻雜有碳及/或鐵的GaN。緩衝層18a與18b可以是AlGaN。緩衝層18a的Al含量,大於緩衝層18b的Al含量。儘管第4D圖中的緩衝結構18僅僅顯示一夾層18b,但是本發明並不限於此。另一個本發明實施例中的緩衝結構具有兩個以上的夾層,每個夾層上下被兩個緩衝層所夾著。Step 70 in FIG. 2 selectively forms the buffer structure 18 on the nucleation layer 16, as shown in FIG. 4D. The buffer layer 18a, the interlayer 18b, and the buffer layer 18c are epitaxially formed on the nucleation layer 16 in sequence. The interlayer 18b may be AlN or AlGaN, AlGaN doped with carbon and/or iron, or GaN doped with carbon and/or iron. The buffer layers 18a and 18b may be AlGaN. The Al content of the buffer layer 18a is greater than the Al content of the buffer layer 18b. Although the buffer structure 18 in FIG. 4D only shows an interlayer 18b, the present invention is not limited to this. The buffer structure in another embodiment of the present invention has more than two interlayers, and each interlayer is sandwiched by two buffer layers.

第2圖之步驟74形成通道層20、阻障層22及電極(源極26、閘極28及汲極30)於緩衝結構18上,如同第1圖所示。Step 74 in FIG. 2 forms the channel layer 20, the barrier layer 22 and the electrodes (source 26, gate 28 and drain 30) on the buffer structure 18, as shown in FIG.

第5A圖與第5B圖分別舉例顯示第4A圖之光阻層82的兩種實施例上視圖,分別具有規則圖案84a與84b。第5A圖中,光阻層82的規則圖案84a具有規則排列的正方形孔洞86。依據第5A圖之光阻層82所形成的高阻值矽襯層12ab,第4B圖中凸狀結構P會彼此相連,在一上視圖中,環繞一凹陷結構H,使凹陷結構H彼此隔離。第5B圖中,光阻層82的規則圖案84a具有規則排列的正方形柱88。依據第5B圖之光阻層82所形成的高阻值矽襯層12ab,第4B圖中的凹陷結構H會彼此相連,在一上視圖中,會環繞一凸狀結構P,使凸狀結構P彼此隔離。Figures 5A and 5B respectively illustrate top views of two embodiments of the photoresist layer 82 of Figure 4A, respectively, with regular patterns 84a and 84b. In FIG. 5A, the regular pattern 84a of the photoresist layer 82 has square holes 86 regularly arranged. According to the high-resistance silicon liner layer 12ab formed by the photoresist layer 82 in Figure 5A, the convex structures P in Figure 4B are connected to each other. In a top view, a recessed structure H is surrounded to isolate the recessed structures H from each other. . In FIG. 5B, the regular pattern 84a of the photoresist layer 82 has square pillars 88 arranged regularly. According to the high-resistance silicon liner layer 12ab formed by the photoresist layer 82 in Figure 5B, the recessed structures H in Figure 4B are connected to each other. P are isolated from each other.

儘管第5A圖與第5B圖中的孔洞86與柱88都具有正方形的外觀,但本發明並不限於此。孔洞86與柱88可以具有任何的外觀,舉例來說,可以是三角形、五角形、多邊形、圓形、橢圓形等。藉由此光阻層82所形成的高阻值矽襯層12ab的凹陷結構H與凸狀結構P,由上視觀之,也呈三角形、五角形、多邊形、圓形、或橢圓形等。另一實施例中,孔洞86(或柱88)並非彼此相連。例如,孔洞86與柱88皆為長條狀且交錯排列。如此一來,藉由此光阻層82所形成的高阻值矽襯層12ab的凹陷結構H與凸狀結構P,由上視觀之,也呈交錯排列的長條狀。Although the holes 86 and the posts 88 in FIGS. 5A and 5B all have a square appearance, the present invention is not limited to this. The holes 86 and the posts 88 can have any appearance, for example, they can be triangular, pentagonal, polygonal, circular, elliptical, and the like. The concave structure H and the convex structure P of the high-resistance silicon liner layer 12ab formed by the photoresist layer 82 are also triangular, pentagonal, polygonal, circular, or elliptical when viewed from above. In another embodiment, the holes 86 (or posts 88) are not connected to each other. For example, the holes 86 and the pillars 88 are all elongated and arranged in a staggered manner. In this way, the concave structure H and the convex structure P of the high-resistance silicon liner layer 12ab formed by the photoresist layer 82 are also elongated staggered as viewed from the top.

在一實施例中,凹陷結構H的深度及/或凸狀結構P的高度介於50-200nm。在一實施例中,高阻值矽襯層12ab之最大厚度小於低阻值矽襯層12ba之厚度。In one embodiment, the depth of the concave structure H and/or the height of the convex structure P is between 50-200 nm. In one embodiment, the maximum thickness of the high resistance silicon liner layer 12ab is smaller than the thickness of the low resistance silicon liner layer 12ba.

第1圖中的高阻值矽襯層12ab之圖案化表面Sab可以透過微影蝕刻製程產生,但本發明並不限於此。在另一個實施例中,不需要微影製程,就可以產生不規則的一圖案化表面。The patterned surface Sab of the high-resistance silicon liner layer 12ab in Figure 1 can be produced through a photolithography process, but the present invention is not limited to this. In another embodiment, an irregular patterned surface can be produced without the need for a lithography process.

第6圖舉例一種半導體元件10b的剖面圖。半導體元件10b包含複合矽基底12b。複合矽基底12b上有成核層16、緩衝結構18、通道層20、阻障層22及電極(源極26、閘極28及汲極30)。半導體元件10b與半導體元件10a彼此類似或是一樣的部分,可以透過先前針對半導體元件10a之解說而得知,不再累述。複合矽基底12b包含有堆疊的低阻值矽襯層12ba以及高阻值矽襯層12bb。跟第1圖之高阻值矽襯層12ab差異在於,第6圖中的高阻值矽襯層12bb的圖案化表面Sbb由非規則圖案所構成。Fig. 6 illustrates a cross-sectional view of a semiconductor device 10b. The semiconductor device 10b includes a composite silicon substrate 12b. The composite silicon substrate 12b has a nucleation layer 16, a buffer structure 18, a channel layer 20, a barrier layer 22, and electrodes (source 26, gate 28, and drain 30). The similar or the same parts of the semiconductor element 10b and the semiconductor element 10a can be known from the previous explanation of the semiconductor element 10a and will not be repeated here. The composite silicon substrate 12b includes a stacked low-resistance silicon liner layer 12ba and a high-resistance silicon liner layer 12bb. The difference from the high-resistance silicon liner layer 12ab in FIG. 1 is that the patterned surface Sbb of the high-resistance silicon liner layer 12bb in FIG. 6 is composed of irregular patterns.

第7A圖至第7D圖顯示第6圖中的半導體元件10b在一些製作過程的剖面圖。FIGS. 7A to 7D show cross-sectional views of the semiconductor device 10b in FIG. 6 during some manufacturing processes.

第7A圖顯示在平整的高阻值矽襯層12bb上塗佈光阻層90。此時,光阻層90具有一平整表面。光阻層90之材料可為有機化合物材料,為一有機物層。FIG. 7A shows that the photoresist layer 90 is coated on the flat high-resistance silicon liner layer 12bb. At this time, the photoresist layer 90 has a flat surface. The material of the photoresist layer 90 can be an organic compound material, which is an organic layer.

在第7A圖的高阻值矽襯層12bb及低阻值矽襯層12ba,可以依據第3A圖之方式,以黏著層(圖未示)互相接合;或是可以依據第3B圖之方式,以壓合或摻雜物熱擴散之方式而形成。The high-resistance silicon liner layer 12bb and the low-resistance silicon liner layer 12ba in FIG. 7A can be bonded to each other by an adhesive layer (not shown) according to the method shown in FIG. 3A; or according to the method shown in FIG. 3B, It is formed by bonding or thermal diffusion of dopants.

接著,對高阻值矽襯層12bb進行圖案化步驟。於一實施例中,先對光阻層90進行一乾蝕刻製程,將第7A圖中的複合矽基底12b置入感應耦合電漿離子蝕刻機台(inductively coupled plasma reactive ion etcher,ICP etcher)中,對光阻層90表面進行碳化步驟。舉例來說,利用ICP製程中的粒子轟擊所產生的熱能,使光阻層90之表面焦化,藉以粗糙化光阻層90之表面,如同第7B圖所示。如此,光阻層90的粗糙表面將由非規則圖案所構成。Next, a patterning step is performed on the high-resistance silicon liner layer 12bb. In one embodiment, a dry etching process is first performed on the photoresist layer 90, and the composite silicon substrate 12b in Figure 7A is placed in an inductively coupled plasma reactive ion etcher (ICP etcher), A carbonization step is performed on the surface of the photoresist layer 90. For example, the thermal energy generated by the particle bombardment in the ICP process is used to scorch the surface of the photoresist layer 90, thereby roughening the surface of the photoresist layer 90, as shown in FIG. 7B. In this way, the rough surface of the photoresist layer 90 will be composed of irregular patterns.

接著,可以在同一個ICP機台中,持續粒子轟擊,同時蝕刻光阻層90以及高阻值矽襯層12bb,將光阻層90的粗糙表面至少部分地轉印到高阻值矽襯層12bb的表面,如同第7C圖所示。在此步驟的一實施例中,ICP轟擊對於光阻層90以及高阻值矽襯層12bb的蝕刻率比例RA,可以介於0.9-1.1。當RA等於1時,表示在ICP轟擊下,光阻層90的蝕刻率大約等於高阻值矽襯層12bb的蝕刻率。如此,可以忠實的把光阻層90之粗糙表面轉印到高阻值矽襯層12bb上,產生圖案化表面Sbb。此時,高阻值矽襯層12bb的圖案化表面Sbb也會是由非規則圖案所構成。Then, the photoresist layer 90 and the high-resistance silicon lining layer 12bb can be etched continuously in the same ICP machine, and the rough surface of the photoresist layer 90 can be at least partially transferred to the high-resistance silicon lining layer 12bb. The surface, as shown in Figure 7C. In an embodiment of this step, the etching rate ratio RA of the ICP bombardment to the photoresist layer 90 and the high-resistance silicon liner layer 12bb may be between 0.9 and 1.1. When RA is equal to 1, it means that under ICP bombardment, the etching rate of the photoresist layer 90 is approximately equal to the etching rate of the high-resistance silicon liner layer 12bb. In this way, the rough surface of the photoresist layer 90 can be faithfully transferred to the high-resistance silicon liner layer 12bb to produce a patterned surface Sbb. At this time, the patterned surface Sbb of the high-resistance silicon liner layer 12bb will also be composed of irregular patterns.

第7D圖形成成核層16於高阻值矽襯層12bb上,產生實質上平整的上表面S16。成核層16可以大致填平圖案化表面Sbb。In FIG. 7D, a nucleation layer 16 is formed on the high-resistance silicon liner layer 12bb, resulting in a substantially flat upper surface S16. The nucleation layer 16 may substantially fill the patterned surface Sbb.

接續第7D圖之後,可以依照第2圖中的步驟70與74,製作第6圖中的半導體元件10b。半導體元件10b一樣具有高強度的複合矽基底12b以及高崩潰電壓,並可以降低半導體疊層與複合矽基底12b之間熱膨脹係數差異所產生的應力。Following the continuation of FIG. 7D, the semiconductor device 10b in FIG. 6 can be fabricated according to steps 70 and 74 in FIG. 2. The semiconductor element 10b also has a high-strength composite silicon substrate 12b and a high breakdown voltage, and can reduce the stress caused by the difference in thermal expansion coefficient between the semiconductor laminate and the composite silicon substrate 12b.

第1圖與第6圖中的低阻值矽襯層12aa與12ba,分別具有平整表面Saa與Sba,但本發明並不限於此。在本發明之一實施例中,複合矽基底中的低阻值矽襯層與高低阻值矽襯層都具有圖案化表面。The low-resistance silicon liner layers 12aa and 12ba in FIGS. 1 and 6 have flat surfaces Saa and Sba, respectively, but the invention is not limited to this. In an embodiment of the present invention, both the low-resistance silicon liner layer and the high- and low-resistance silicon liner layer in the composite silicon substrate have a patterned surface.

第8圖舉例一種半導體元件10c的剖面圖。半導體元件10c包含複合矽基底12c。複合矽基底12c上有成核層16、緩衝結構18、通道層20、阻障層22及電極(源極26、閘極28及汲極30)。半導體元件10c與半導體元件10a彼此類似或是一樣的部分,可以透過先前針對半導體元件10a之說明而得知,不再累述。複合矽基底12c包含低阻值矽襯層12ca以及高阻值矽襯層12cb。跟第1圖中低阻值矽襯層12aa之平整表面Saa不同處在於,第8圖中的低阻值矽襯層12ca有一圖案化表面Sca,且其上方的高阻值矽襯層12cb圖案化表面Sca順應於低阻值矽襯層12ca襯的圖案化表面Sca。Fig. 8 illustrates a cross-sectional view of a semiconductor device 10c. The semiconductor device 10c includes a composite silicon substrate 12c. The composite silicon substrate 12c has a nucleation layer 16, a buffer structure 18, a channel layer 20, a barrier layer 22, and electrodes (source 26, gate 28, and drain 30). The similar or the same parts of the semiconductor element 10c and the semiconductor element 10a can be known from the previous description of the semiconductor element 10a, and will not be repeated here. The composite silicon substrate 12c includes a low-resistance silicon lining layer 12ca and a high-resistance silicon lining layer 12cb. The difference between the flat surface Saa of the low resistance silicon liner layer 12aa in Figure 1 is that the low resistance silicon liner layer 12ca in Figure 8 has a patterned surface Sca, and the high resistance silicon liner layer 12cb is patterned above it. The patterned surface Sca conforms to the patterned surface Sca lined by the low-resistance silicon liner layer 12ca.

第9A圖至第9D圖顯示第8圖中的半導體元件10c在一些製作過程的剖面圖。9A to 9D show cross-sectional views of the semiconductor device 10c in FIG. 8 during some manufacturing processes.

第9A圖提供低阻值矽襯層12ca。第9B圖在低阻值矽襯層12ca上形成曝光顯影後的光阻層96。光阻層96具有圖案化表面。光阻層96的圖案化表面,經過蝕刻製程,轉印到低阻值矽襯層12ca,結果如同第9C圖所示。此時,低阻值矽襯層12ca具有一圖案化表面。Figure 9A provides a low-resistance silicon liner layer 12ca. In FIG. 9B, a photoresist layer 96 after exposure and development is formed on the low-resistance silicon liner layer 12ca. The photoresist layer 96 has a patterned surface. The patterned surface of the photoresist layer 96 is transferred to the low-resistance silicon liner layer 12ca through an etching process, and the result is as shown in FIG. 9C. At this time, the low-resistance silicon liner layer 12ca has a patterned surface.

接著,對第9C圖之圖案化後的低阻值矽襯層12ca進行離子佈植或摻雜不純物後再經由擴散製程,使得離子或不純物自表面擴散到低阻值矽襯層12ca內一深度,進而形成低阻值矽襯層12ca上方接近表面處為為高阻值矽襯層12cb,上下方高低阻值矽襯層構成複合矽基底12c,如同第9D圖所示。於一實施例中,當高阻值離子或不純物為等向佈植、摻雜及擴散時,高阻值矽襯層12cb的圖案化表面Scb也會順應於低阻值矽襯層12ca的圖案化表面Sca。Next, the patterned low-resistance silicon liner layer 12ca in Figure 9C is ion-implanted or doped with impurities, and then through a diffusion process, the ions or impurities are diffused from the surface to a depth into the low-resistance silicon liner 12ca , And further forming a low-resistance silicon lining layer 12ca above and near the surface is a high-resistance silicon lining layer 12cb, and the upper and lower high- and low-resistance silicon lining layers constitute a composite silicon substrate 12c, as shown in FIG. 9D. In one embodiment, when high-resistance ions or impurities are isotropically implanted, doped and diffused, the patterned surface Scb of the high-resistance silicon liner layer 12cb will also conform to the pattern of the low-resistance silicon liner 12ca化surface Sca.

接續第9D圖之後,可以依照第2圖中的步驟68、70與74,產生第8圖中的半導體元件10c。半導體元件10c具有高強度的複合矽基底12c以及高崩潰電壓,並可以降低半導體疊層與複合矽基底12c之間熱膨脹係數差異所產生的應力。After continuation of FIG. 9D, steps 68, 70, and 74 in FIG. 2 can be followed to produce the semiconductor device 10c in FIG. 8. The semiconductor device 10c has a high-strength composite silicon substrate 12c and a high breakdown voltage, and can reduce the stress caused by the difference in thermal expansion coefficient between the semiconductor laminate and the composite silicon substrate 12c.

第8圖中的低阻值矽襯層12ca的圖案化表面Sca是由微影蝕刻所定義,但本發明不限於此。在本發明另一個實施例中,低阻值矽襯層的表面可以透過類似第7A、7B與7C圖之粗糙化高阻值矽襯層12bb之表面的方法,來加以粗糙化,產生一圖案化表面。之後再順應的形成一高阻值矽襯層於該低阻值矽襯層上。The patterned surface Sca of the low-resistance silicon liner layer 12ca in Figure 8 is defined by photolithography, but the invention is not limited to this. In another embodiment of the present invention, the surface of the low-resistance silicon liner layer can be roughened by a method similar to the roughening of the surface of the high-resistance silicon liner layer 12bb in Figures 7A, 7B, and 7C to produce a pattern化面。 The surface. Then, a high-resistance silicon liner layer is conformably formed on the low-resistance silicon liner layer.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

10a、10b、10c:半導體元件11:黏著層12a、12b、12c:複合矽基底12aa、12ba、12ca:低阻值矽襯層12ab、12bb、12cb:高阻值矽襯層16:成核層18:緩衝結構18a、18c:緩衝層18b:夾層20:通道層22:阻障層24:二維電子氣26:源極28:閘極30:汲極62、64、66、68、70、74:步驟82:光阻層84a、84b:規則圖案86:孔洞88:柱90、96:光阻層H:凹陷結構P:凸狀結構S16:上表面Saa、Sba、Sca:平整表面Sab、Sbb、Scb:圖案化表面10a, 10b, 10c: semiconductor element 11: adhesive layer 12a, 12b, 12c: composite silicon substrate 12aa, 12ba, 12ca: low resistance silicon liner 12ab, 12bb, 12cb: high resistance silicon liner 16: nucleation layer 18: Buffer structure 18a, 18c: buffer layer 18b: interlayer 20: channel layer 22: barrier layer 24: two-dimensional electron gas 26: source 28: gate 30: drain 62, 64, 66, 68, 70, 74: Step 82: photoresist layer 84a, 84b: regular pattern 86: hole 88: pillar 90, 96: photoresist layer H: recessed structure P: convex structure S16: upper surface Saa, Sba, Sca: flat surface Sab, Sbb, Scb: patterned surface

[第1圖]為本申請案一實施例之半導體元件10a的剖面圖。 [第2圖]為本申請案一實施例之半導體元件10a的製造方法。 [第3A圖與第3B圖]分別顯示形成高阻值矽襯層12ab於低阻值矽襯層12aa上的方法。 [第4A圖與第4B圖]顯示高阻值矽襯層12ab被圖案化的過程。 [第4C圖與第4D圖]分別顯示成核層16與緩衝結構18的形成。 [第5A圖與第5B圖]分別為第4A圖之光阻層82的兩種實施例之上視圖。 [第6圖]為本申請案一實施例之半導體元件10b的剖面圖。 [第7A圖至第7D圖]顯示第6圖中的半導體元件10b在一些製作過程的剖面圖。 [第8圖]為本申請案一實施例之半導體元件10c的剖面圖。 [第9A圖至第9D圖]顯示第8圖中的半導體元件10c在一些製作過程的剖面圖。[Figure 1] is a cross-sectional view of a semiconductor device 10a according to an embodiment of the application. [Figure 2] This is a method of manufacturing a semiconductor device 10a according to an embodiment of the application. [FIG. 3A and FIG. 3B] respectively show a method of forming a high-resistance silicon liner layer 12ab on a low-resistance silicon liner layer 12aa. [Figures 4A and 4B] show the patterning process of the high-resistance silicon liner layer 12ab. [Figure 4C and Figure 4D] respectively show the formation of the nucleation layer 16 and the buffer structure 18. [FIG. 5A and FIG. 5B] are top views of two embodiments of the photoresist layer 82 in FIG. 4A, respectively. [Figure 6] is a cross-sectional view of a semiconductor device 10b according to an embodiment of the application. [FIG. 7A to FIG. 7D] shows cross-sectional views of the semiconductor device 10b in FIG. 6 in some manufacturing processes. [Figure 8] is a cross-sectional view of a semiconductor device 10c according to an embodiment of the application. [FIG. 9A to FIG. 9D] show cross-sectional views of the semiconductor device 10c in FIG. 8 during some manufacturing processes.

10a:半導體元件 10a: Semiconductor components

12a:複合矽基底 12a: Composite silicon substrate

12aa:低阻值矽襯層 12aa: low resistance silicon liner

12ab:高阻值矽襯層 12ab: high resistance silicon liner

16:成核層 16: Nucleation layer

18:緩衝結構 18: Buffer structure

18a、18c:緩衝層 18a, 18c: buffer layer

18b:夾層 18b: mezzanine

20:通道層 20: Channel layer

22:阻障層 22: barrier layer

24:二維電子氣 24: Two-dimensional electron gas

26:源極 26: Source

28:閘極 28: Gate

30:汲極 30: Dip pole

S16:上表面 S16: Upper surface

Saa:平整表面 Saa: flat surface

Sab:圖案化表面 Sab: patterned surface

Claims (9)

一種半導體元件,包含有:一複合矽基底(composite silicon substrate),其包含有:一第一矽襯層(first silicon pad layer),其具有一第一電阻值;以及一第二矽襯層(second silicon pad layer),設於該第一矽襯層上,具有一第二電阻值,高於該第一電阻值,其中,該第二矽襯層具有一圖案化表面;以及一成核層(nucleation layer),形成於該圖案化表面上,具有一上表面,該成核層包含有一第一元素,屬於第三族;其中,該圖案化表面包含有複數個凸狀結構或複數個凹陷結構,及/或該圖案化表面由非規則圖案所構成。 A semiconductor device includes: a composite silicon substrate, which includes: a first silicon pad layer having a first resistance value; and a second silicon pad layer ( second silicon pad layer), disposed on the first silicon liner layer, having a second resistance value higher than the first resistance value, wherein the second silicon liner layer has a patterned surface; and a nucleation layer (nucleation layer), formed on the patterned surface, has an upper surface, the nucleation layer includes a first element, belonging to the third group; wherein, the patterned surface includes a plurality of convex structures or a plurality of depressions The structure, and/or the patterned surface is composed of irregular patterns. 如申請專利範圍第1項所述之半導體元件,其中該成核層大致填平該圖案化表面且該成核層的厚度大於500奈米,及/或該成核層係為一氮化鋁層。 The semiconductor device described in claim 1, wherein the nucleation layer substantially fills the patterned surface and the thickness of the nucleation layer is greater than 500 nm, and/or the nucleation layer is made of aluminum nitride Floor. 如申請專利範圍第1項所述之半導體元件,另包含:一緩衝結構(buffer structure),形成於該成核層上;以及一通道層,形成於該緩衝結構上。 The semiconductor device described in item 1 of the scope of the patent application further includes: a buffer structure formed on the nucleation layer; and a channel layer formed on the buffer structure. 如申請專利範圍第3項所述之半導體元件,其中,該緩衝結構包含一第一緩衝層、一夾層(interlayer)、以及一第二緩衝層,且該夾層設於該第一緩衝層與該第二緩衝層之間,其中,該夾層具有一第三電阻值,大於該第一緩衝層之一第四電阻值與該第二緩衝層之一第五電阻值;及/或,該夾層具有一能帶間隙(band gap),分別大於該第一緩衝層與該第二緩衝層之一能帶間隙。 The semiconductor device described in claim 3, wherein the buffer structure includes a first buffer layer, an interlayer, and a second buffer layer, and the interlayer is provided between the first buffer layer and the Between the second buffer layers, wherein the interlayer has a third resistance value greater than a fourth resistance value of the first buffer layer and a fifth resistance value of the second buffer layer; and/or, the interlayer has A band gap is larger than one of the first buffer layer and the second buffer layer. 如申請專利範圍第4項所述之半導體元件,其中,該夾層包含AlN或AlGaN;或包含摻雜有碳的AlGaN或摻雜有碳的GaN。 The semiconductor device described in item 4 of the scope of patent application, wherein the interlayer contains AlN or AlGaN; or contains AlGaN doped with carbon or GaN doped with carbon. 如申請專利範圍第1項所述之半導體元件,更包含一黏著層位於該第二矽襯層與該第一矽襯層之間。 The semiconductor device described in claim 1 further includes an adhesive layer located between the second silicon liner layer and the first silicon liner layer. 如申請專利範圍第1項所述之半導體元件,其中,該圖案化表面為一第二圖案化表面,該第一矽襯層包含有一第一圖案化表面,該第二圖案化表面順應於(conformable to)該第一圖案化表面。 The semiconductor device described in claim 1, wherein the patterned surface is a second patterned surface, the first silicon liner layer includes a first patterned surface, and the second patterned surface conforms to ( conformable to) the first patterned surface. 一種半導體元件的製造方法,包含有:提供一第一矽襯層,其具有一第一電阻值;形成一第二矽襯層於該第一矽襯層上,其中,該第二矽襯層包含有一第二電阻值,大於該第一電阻值,且該第二矽襯層包含有一圖案化表面;形成一成核層於該圖案化表面上,產生一上表面,其中,該成核層包含有一第一元素,屬於第三族;形成一緩衝結構(buffer structure)於該成核層上;以及形成一通道層於該緩衝結構上。 A method for manufacturing a semiconductor device includes: providing a first silicon liner layer having a first resistance value; forming a second silicon liner layer on the first silicon liner layer, wherein the second silicon liner layer It includes a second resistance value greater than the first resistance value, and the second silicon liner layer includes a patterned surface; a nucleation layer is formed on the patterned surface to produce an upper surface, wherein the nucleation layer Containing a first element belonging to the third group; forming a buffer structure on the nucleation layer; and forming a channel layer on the buffer structure. 如申請專利範圍第8項所述之半導體元件製造方法,其中,形成該第二矽襯層於該第一矽襯層上之方法包含方法一、方法二、方法三或方法四,其中,方法一之步驟包含有:提供該第二矽襯層;以及將該第二矽襯層固著於該第一矽襯層上;其中,方法二之步驟包含有:於該第二矽襯層上形成一光阻層;以一微影製程,於該光阻層上形成一規則圖案;以及以一蝕刻製程,將該規則圖案轉印至該第二矽襯層,而產生該圖案化表面; 其中,方法三之步驟包含有:於該第二矽襯層上形成一光阻層;以一離子轟擊製程,焦化該光阻層,以形成一不規則圖案;以及以一蝕刻製程,將該不規則圖案轉印至該第二矽襯層;其中,方法四之步驟包含有:於該第一矽襯層上形成一光阻層,具有一圖案化光阻表面;將該圖案化光阻表面轉印至該第一矽襯層;以及形成該第二矽襯層於該第一矽襯層上。 The method for manufacturing a semiconductor device according to claim 8, wherein the method for forming the second silicon liner layer on the first silicon liner layer includes method one, method two, method three, or method four, wherein the method The step one includes: providing the second silicon liner layer; and fixing the second silicon liner layer on the first silicon liner layer; wherein, the step of the second method includes: on the second silicon liner layer Forming a photoresist layer; using a photolithography process to form a regular pattern on the photoresist layer; and using an etching process to transfer the regular pattern to the second silicon liner layer to produce the patterned surface; Wherein, the steps of method three include: forming a photoresist layer on the second silicon liner layer; using an ion bombardment process to coke the photoresist layer to form an irregular pattern; and using an etching process to The irregular pattern is transferred to the second silicon liner layer; wherein, the steps of the fourth method include: forming a photoresist layer on the first silicon liner layer with a patterned photoresist surface; and the patterned photoresist The surface is transferred to the first silicon liner layer; and the second silicon liner layer is formed on the first silicon liner layer.
TW107146901A 2018-12-25 2018-12-25 Semiconductor devices and manufacturing methods thereof TWI741243B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107146901A TWI741243B (en) 2018-12-25 2018-12-25 Semiconductor devices and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146901A TWI741243B (en) 2018-12-25 2018-12-25 Semiconductor devices and manufacturing methods thereof

Publications (2)

Publication Number Publication Date
TW202025484A TW202025484A (en) 2020-07-01
TWI741243B true TWI741243B (en) 2021-10-01

Family

ID=73005016

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146901A TWI741243B (en) 2018-12-25 2018-12-25 Semiconductor devices and manufacturing methods thereof

Country Status (1)

Country Link
TW (1) TWI741243B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264370A1 (en) * 2013-03-15 2014-09-18 Transphorm Inc. Carbon doping semiconductor devices
US9224904B1 (en) * 2011-07-24 2015-12-29 Ananda Kumar Composite substrates of silicon and ceramic
US20160233329A1 (en) * 2013-10-15 2016-08-11 Enkris Semiconductor, Inc. Nitride power transistor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224904B1 (en) * 2011-07-24 2015-12-29 Ananda Kumar Composite substrates of silicon and ceramic
US20140264370A1 (en) * 2013-03-15 2014-09-18 Transphorm Inc. Carbon doping semiconductor devices
US20160233329A1 (en) * 2013-10-15 2016-08-11 Enkris Semiconductor, Inc. Nitride power transistor and manufacturing method thereof

Also Published As

Publication number Publication date
TW202025484A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
TWI767741B (en) Electronic power devices integrated with an engineered substrate
JP4530171B2 (en) Semiconductor device
TWI749171B (en) Rf device integrated on an engineered substrate
TWI538199B (en) Iii-n device structures and methods
US10158046B2 (en) Semiconductor element and fabrication method thereof
JP2019153603A (en) Semiconductor substrate and manufacturing method thereof
TW201937535A (en) Power and RF devices implemented using an engineered substrate structure
TW201929044A (en) Systems and method for integrated devices on an engineered substrate
JP2012054559A (en) Large area silicon substrate and growth of multilayer group iii nitride buffer on other substrate
US11810954B2 (en) Semiconductor devices with dissimlar materials and methods
CN116325093A (en) Electronic device with enhanced gallium nitride transistor and manufacturing method thereof
JP2005354101A (en) Heterojunction field effect transistor using nitride semiconductor material
TWI725433B (en) Manufacturing method of semiconductor device
JP2009026838A (en) Semiconductor device and manufacturing method therefor
JP2004087587A (en) Nitride semiconductor device and its manufacturing method
JP7113554B2 (en) Semiconductor device manufacturing method and semiconductor substrate
WO2019201002A1 (en) Gallium nitride transistor with gap-type composite passivation medium and manufacturing method therefor
US20130069074A1 (en) Power device and method of manufacturing the same
CN110676167A (en) AlInN/GaN high electron mobility transistor with multi-channel fin structure and manufacturing method
TWI741243B (en) Semiconductor devices and manufacturing methods thereof
CN116581159A (en) Vertical power device and preparation method thereof
JP3686582B2 (en) Silicon nitride solid surface protection film
JP2008198675A (en) Laminate semiconductor integrated device
CN115863400B (en) High-heat-conductivity GaN-based HEMT device and preparation method thereof
TWI788692B (en) Power semiconductor device and methods forming the same