TWI740739B - 電磁感測元件及其製作方法和厚度感測方法 - Google Patents

電磁感測元件及其製作方法和厚度感測方法 Download PDF

Info

Publication number
TWI740739B
TWI740739B TW109142280A TW109142280A TWI740739B TW I740739 B TWI740739 B TW I740739B TW 109142280 A TW109142280 A TW 109142280A TW 109142280 A TW109142280 A TW 109142280A TW I740739 B TWI740739 B TW I740739B
Authority
TW
Taiwan
Prior art keywords
sensing element
electromagnetic
coil
induction coil
thickness
Prior art date
Application number
TW109142280A
Other languages
English (en)
Other versions
TW202223331A (zh
Inventor
黃彥傑
洪政源
田偉辰
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW109142280A priority Critical patent/TWI740739B/zh
Application granted granted Critical
Publication of TWI740739B publication Critical patent/TWI740739B/zh
Publication of TW202223331A publication Critical patent/TW202223331A/zh

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一種電磁感測元件,其包含由銅線捲繞而成的感應線圈,此感應線圈的內徑、外徑和厚度分別為4毫米至6毫米、小於25毫米和小於2毫米,且此感應線圈的共振頻率為1 MHz至12 MHz。

Description

電磁感測元件及其製作方法和厚度感測方法
本發明是有關於電磁感測元件,且特別是指一種使用特殊設計的感測線圈進行非接觸式厚度感測的電磁感測元件及其製作方法和厚度感測方法。
金屬薄膜感測所使用的設備主要有四點探針膜厚計和渦電流(eddy current)膜厚計兩種。四點探針膜厚計係利用歐姆定律,將四個探針分別置於金屬薄膜的四處,以量測出金屬薄膜的片電阻值,進而得到金屬薄膜的厚度。然而,四點探針膜厚計採破壞式量測,進行量測時探針需破壞金屬薄膜的表面,或是污染金屬薄膜,故已逐漸被渦電流膜厚計取代。渦電流膜厚計係利用渦電流產生的屏蔽效果,將探針置於金屬薄膜的上方,進行非接觸式感測,並由電壓變化換算出金屬薄膜的厚度。例如,將待測導電薄膜或者塗層放置在兩個線圈之間。然而,傳統渦電流膜厚計可感測的金屬薄膜厚度範圍通常在10微米以上,對於10微米以下的金屬薄膜(例如用於5G通訊系統的多層電 路板薄膜)而言,膜厚計產生的電磁場直接穿透金屬薄膜,導致無法正確量測到金屬薄膜的厚度。
本發明的目的在於提供一種電磁感測元件及其製作方法和厚度量測方法,其具有特殊設計的感應線圈,且可利用高頻電磁技術(1MHz~12MHz)對厚度較薄的金屬薄膜或電路板等進行非接觸式厚度量測,以符合用於5G行動通訊產品之多層電路板的實際量測需求,且無需破壞多層電路板的結構。
本發明的一方面是指一種電磁感測元件,其包含由銅線捲繞而成的感應線圈,此感應線圈的內徑、外徑和厚度分別為4毫米至6毫米、小於25毫米和小於2毫米,且此感應線圈的共振頻率為1MHz至12MHz。
依據本發明一或多個實施例,上述電磁感測元件包含封膠,其包覆感測線圈的側緣和底部,並固定感測線圈的形狀,使感測線圈位於封膠的平面側。
依據本發明一或多個實施例,上述電磁感測元件包含接頭,其插入至封膠中,該接頭提供該感應線圈電性連接至該封膠外部的途徑。
依據本發明一或多個實施例,上述接頭位於封膠的側緣。
依據本發明一或多個實施例,上述接頭位於封膠之相對感應線圈的另一側。
依據本發明一或多個實施例,上述感應線圈的阻抗為35kΩ至50kΩ。
依據本發明一或多個實施例,上述銅線之線徑為0.1毫米至0.3毫米。
本發明的另一方面是指使用上述電磁感測元件進行厚度感測的方法,包含:將電磁感測元件電性連接分析儀器,並使用電磁感測元件對多個具有不同已知厚度的金屬薄膜進行非接觸式感測,以在感應線圈的共振頻率下,得到分別對應此些金屬薄膜的S參數(scattering parameters),其中每一金屬薄膜的已知厚度的範圍為0.1微米至5微米;依據此些金屬薄膜的已知厚度及S參數建立資料庫;使用電磁感測元件對待測金屬薄膜進行非接觸式感測,以在感應線圈的共振頻率下,得到對應待測金屬薄膜的S參數;以及比對對應待測金屬薄膜的S參數與儲存於資料庫中分別對應此些金屬薄膜的S參數,進而得到待測金屬薄膜的厚度。
依據本發明一或多個實施例,上述感應線圈電性連接的分析儀器為向量網路分析儀(vector network analyzer)。
本發明的又一方面是指一種電磁感測元件的製作方法,其包含由銅線捲繞成層疊環形而構成感應線圈,此感應線圈的內徑、外徑和厚度係透過電磁場分佈模擬方式決定;以及形成包覆感測線圈的側緣和底部且用以固定感測線圈的形狀的封膠。
100,200,400,500A,500B:電磁感測元件
110,210,410,510A,510B:感測線圈
112,212:銅線
112A,212A:第一端
112B,212B:第二端
120,220:封膠
130,230:接頭
300:厚度感測方法
S302、S304、S306、S308:步驟
D,D1,D2:間距
F1,F2:金屬薄膜
為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:[圖1A]和[圖1B]分別為依據本發明一實施例之電磁感測元件的側視圖和俯視圖;[圖2A]和[圖2B]分別為依據本發明一實施例之電磁感測元件的側視圖和俯視圖;[圖3]為依據本發明一實施例之使用電磁感測元件進行厚度感測方法的流程圖;以及[圖4]和[圖5]分別為使用電磁感測元件進行非接觸式厚度量測的示意圖。
以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。
空間相對性用語的使用是為了說明元件在使用或操作時的不同方位,而不只限於圖式所繪示的方向。元件也可以其他方式定向(旋轉90度或在其他方向),而在此使用的空間相對性描述也可以相同方式解讀。
圖1A和圖1B分別為依據本發明一實施例之電磁感測元件100的側視圖和俯視圖。電磁感測元件100包含 感測線圈110、封膠120和接頭130。感測線圈110為立體環形結構,其由銅線112捲繞成層疊環形而構成。感測線圈110的特性如下:共振頻率為1MHz至12MHz,線圈阻抗為35kΩ至50kΩ、銅線線徑為0.1毫米至0.3毫米、線圈內徑為4毫米至6毫米、線圈外徑小於25毫米、且線圈厚度小於2毫米。此外,銅線112的純度、電阻係數和導電率分別為大於95%、1.5μΩ-cm至2.0μΩ-cm和大約95% IACS。感測線圈110的線圈內徑、線圈外徑和線圈厚度等參數可透過電磁場分佈模擬方式決定,例如使用COMSOL模擬工具或其他具感測線圈模擬功能的工具。
感測線圈110可由捲線機對銅線112進行捲繞操作而形成。感測線圈110的捲繞方向可以是由內而外且由下而上,或是在厚度方向上由內而外和由外而內交替,但不限於此。封膠120包覆感測線圈110的側緣和底部,並固定感測線圈110的形狀,使感測線圈110位於封膠120的平面側(即頂部)。封膠120的材料可以是樹脂、壓克力、陶瓷或是其他可固定感測線圈110並具絕緣效果的介電材料,且其可透過在感測線圈110上灌注介電材料的方式形成,但不限於此。接頭130插入至封膠120的側緣,且提供感應線圈110電性連接至封膠120外部的途徑。在一些實施例中,接頭130具有至少一穿孔,且銅線112的第一端112A和第二端112B經由接頭130的穿孔而穿出封膠120。在其他實施例中,電磁感測元件100也可不具 有接頭130,即銅線的第一端和第二端直接由封膠120穿出。應注意的是,銅線112穿出封膠120的長度不侷限於圖1A和圖1B所示,且銅線112的第一端112A和第二端112B可電性連接分析儀器,例如向量網絡分析儀(vector network analyzer),以在分析儀器送出高頻訊號時,使感測線圈110產生電磁場,並觀測感測線圈110的S參數(scattering parameters)。此外,由於電磁感測元件100在高頻環境下較敏感,故感測線圈110可再串聯和/或並聯其他電路元件以改變其阻抗值,進而調整其靈敏度。
圖2A和圖2B分別為依據本發明另一實施例之電磁感測元件200的側視圖和俯視圖。電磁感測元件200包含感測線圈210、封膠220和接頭230,其中感測線圈210和接頭230分別位於封膠220的相對兩側,且感測線圈210是由銅線212捲繞成層疊環形而構成。相較於圖1A和圖1B之電磁感測元件100,在電磁感測元件200中,接頭230插入至封膠220的底部而非側緣,且銅線212的第一端212A和第二端212B由封膠220之相對於感測線圈210的另一側穿出,而非由封膠220的側緣穿出;其餘元件可分別相似於電磁感測元件100中對應的元件,例如封膠220可相似電磁感測元件100的封膠120,故相關說明在此不贅述。
圖3為使用電磁感測元件進行厚度感測方法300的流程圖。進行厚度感測方法300所使用的電磁感測元件 可以是圖1A所示之電磁感測元件100、圖2A所示之電磁感測元件200或其他依據本發明實施例所衍生的電磁感測元件。首先,進行步驟S302,將電磁感測元件電性連接分析儀器,並使用電磁感測元件對多個具有不同已知厚度的金屬薄膜進行非接觸式感測,以在感應線圈的共振頻率下,得到分別對應此些金屬薄膜的S參數。此些金屬薄膜的厚度範圍為0.1微米至5微米,以符合本發明電磁感測元件的高頻感測特性。接著,進行步驟S304,依據對應此些金屬薄膜的S參數及此些金屬薄膜的厚度建立資料庫。建立的資料庫可儲存在分析儀器的儲存元件,或是與分析儀器通訊連接之電腦的儲存元件,例如硬碟、非揮發式記憶體等,但不限於此。
之後,進行步驟S306,使用電磁感測元件對待測金屬薄膜進行非接觸式感測,以在感應線圈的共振頻率下,得到對應待測金屬薄膜的S參數。由於得到的S參數相依於頻率,故步驟S302、S306可藉由相同的電磁感測元件或是具有相同物理特性的電磁感測元件進行。接著,進行步驟S308,比對對應待測金屬薄膜的S參數與儲存於資料庫中分別對應此些金屬薄膜的S參數,進而得到待測金屬薄膜的厚度。由於S參數是對應至特定的金屬薄膜厚度,故若是S參數與儲存於資料庫中的某一筆S參數相同,則此筆S參數對應的厚度即為待測金屬薄膜的厚度;若S參數與儲存於資料庫中的所有S參數不同,則可依據S參數與金屬薄膜厚度的關係決定對應的內插計算方式,從資料 庫所儲存的資料計算出待測金屬薄膜的厚度。上述比對步驟可在具運算功能的分析儀器進行,或是在與分析儀器通訊連接的電腦進行。
圖4為使用電磁感測元件400進行非接觸式厚度量測的示意圖。使用的電磁感測元件400可以是圖1A所示之電磁感測元件100、圖2A所示之電磁感測元件200或其他依據本發明實施例所衍生的電磁感測元件。電磁感測元件400的感測線圈410與金屬薄膜F1之間的間距D可以是1毫米至10毫米。此外,感測線圈410的兩端電性連接分析儀器,且藉由分析S參數,可得到金屬薄膜F1的量測厚度。當分析儀器送出高頻訊號時,感測線圈410產生電磁場,且金屬薄膜F1的表面受到電磁場的作用而產生集膚效應(skin effect)。當共振頻率愈高時,金屬薄膜F1的集膚深度(skin depth)愈淺,即產生的渦電流(eddy current)更集中於表面。由於感測線圈410的共振頻率為1MHz至12MHz,故電磁感測元件400適於感測厚度範圍為0.1微米至5微米的金屬薄膜F1。電磁感測元件400可連接二維移動平台,以將電磁感測元件400移動到金屬薄膜F1的各處,進而得到金屬薄膜F1的量測厚度均勻度。
圖5為使用電磁感測元件500A、500B進行非接觸式厚度量測的示意圖。同樣地,使用的電磁感測元件500A、500B可以是圖1A所示之電磁感測元件100、圖2A所示之電磁感測元件200或其他依據本發明實施例所 衍生的電磁感測元件。電磁感測元件500A、500B分別位於金屬薄膜F2的相對兩側。電磁感測元件500A的感測線圈510A與金屬薄膜F2之間的間距D1以及電磁感測元件500B的感測線圈510B與金屬薄膜F2之間的間距D2可均為1毫米至10毫米,且間距D1、D2可不相同。電磁感測元件500A、500B可以相似於電磁感測元件400的厚度感測方式而分別得到金屬薄膜F2的對應量測厚度,並可藉由比較量測厚度而判別感測是否正確及感測誤差度等。電磁感測元件500A、500B可連接二維移動平台,以將電磁感測元件500A、500B移動到金屬薄膜F2的各處,進而得到金屬薄膜F2的量測厚度均勻度。
綜上所述,本發明的特點至少如下。本發明之電磁感測元件採用高頻電磁技術(1MHz~12MHz),且其設計可對抗高頻雜訊干擾,故可針對厚度較薄的金屬薄膜或電路板等進行非接觸式厚度量測,以符合用於5G行動通訊產品之多層電路板的實際量測需求,且無需破壞多層電路板的結構。本發明之電磁感測元件可藉由電磁模擬分析和精密環形捲繞方式製作,故可增加其製作彈性,以對應感測不同類型的金屬薄膜。此外,本發明之電磁感測元件可用於例如電路板製造產業、金屬零件(例如螺絲、螺帽等)製造產業、金屬鍍膜產業或其他適用產業。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故 本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:電磁感測元件
110:感測線圈
112A:第一端
112B:第二端
120:封膠
130:接頭

Claims (10)

  1. 一種電磁感測元件,包含由一銅線捲繞而成之一感應線圈,該感應線圈之內徑、外徑和厚度分別為4毫米至6毫米、小於25毫米和小於2毫米,且該感應線圈之共振頻率為1 MHz至12 MHz。
  2. 如請求項1所述之電磁感測元件,更包含: 一封膠,包覆該感測線圈的側緣和底部,並固定該感測線圈的形狀,使該感測線圈位於該封膠之一平面側。
  3. 如請求項2所述之電磁感測元件,更包含: 一接頭,插入至該封膠中,該接頭提供該感應線圈電性連接至該封膠外部的途徑。
  4. 如請求項3所述之電磁感測元件,其中該接頭位於該封膠之側緣。
  5. 如請求項3所述之電磁感測元件,其中該接頭位於該封膠之相對該感應線圈的另一側。
  6. 如請求項1所述之電磁感測元件,其中該感應線圈之阻抗為35 kΩ至50 kΩ。
  7. 如請求項1所述之電磁感測元件,其中該銅線之線徑為0.1毫米至0.3毫米。
  8. 一種使用如請求項1至7中任一項所述之電磁感測元件進行厚度感測之方法,包含: 將該電磁感測元件電性連接一分析儀器,並使用該電磁感測元件對複數個具有不同已知厚度的金屬薄膜進行非接觸式感測,以在該感應線圈之共振頻率下,得到分別對應該些金屬薄膜的S參數(scattering parameters),其中每一該些金屬薄膜之已知厚度的範圍為0.1微米至5微米; 依據該些金屬薄膜之已知厚度及S參數建立一資料庫; 使用該電磁感測元件對一待測金屬薄膜進行非接觸式感測,以在該感應線圈之共振頻率下,得到對應該待測金屬薄膜的S參數;以及 比對對應該待測金屬薄膜的S參數與儲存於該資料庫中分別對應該些金屬薄膜的S參數,進而得到該待測金屬薄膜之厚度。
  9. 如請求項8中所述之方法,其中該感應線圈電性連接之分析儀器係一向量網路分析儀(vector network analyzer)。
  10. 一種電磁感測元件之製作方法,包含: 由一銅線捲繞成層疊環形而構成一感應線圈,該感應線圈之內徑、外徑和厚度係透過電磁場分佈模擬方式決定;以及 形成包覆該感測線圈的側緣和底部且用以固定該感測線圈之形狀之一封膠。
TW109142280A 2020-12-01 2020-12-01 電磁感測元件及其製作方法和厚度感測方法 TWI740739B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109142280A TWI740739B (zh) 2020-12-01 2020-12-01 電磁感測元件及其製作方法和厚度感測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109142280A TWI740739B (zh) 2020-12-01 2020-12-01 電磁感測元件及其製作方法和厚度感測方法

Publications (2)

Publication Number Publication Date
TWI740739B true TWI740739B (zh) 2021-09-21
TW202223331A TW202223331A (zh) 2022-06-16

Family

ID=78777808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142280A TWI740739B (zh) 2020-12-01 2020-12-01 電磁感測元件及其製作方法和厚度感測方法

Country Status (1)

Country Link
TW (1) TWI740739B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM508105U (zh) * 2015-04-30 2015-09-01 Jtouch Corp 薄膜線圈元件及其適用之可撓式無線充電裝置與系統
TWI563241B (en) * 2011-05-19 2016-12-21 Neovision Llc Apparatus and method of using impedance resonance sensor for thickness measurement
CN109253689A (zh) * 2018-09-27 2019-01-22 南京佳业检测工程有限公司 一种电磁测厚装置及其测厚方法
CN209357540U (zh) * 2019-03-04 2019-09-06 苏州密科唯电子科技有限公司 一种电磁线圈
CN210603173U (zh) * 2019-11-27 2020-05-22 南京信息工程大学 一种适用于铁基与铝基的涂层测厚仪
JP2020098879A (ja) * 2018-12-19 2020-06-25 トヨタ自動車株式会社 コイルユニット
TWI704584B (zh) * 2018-10-22 2020-09-11 德商伍斯艾索電子有限公司及合資公司 用於電感元件之核心及電感元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563241B (en) * 2011-05-19 2016-12-21 Neovision Llc Apparatus and method of using impedance resonance sensor for thickness measurement
TWM508105U (zh) * 2015-04-30 2015-09-01 Jtouch Corp 薄膜線圈元件及其適用之可撓式無線充電裝置與系統
CN109253689A (zh) * 2018-09-27 2019-01-22 南京佳业检测工程有限公司 一种电磁测厚装置及其测厚方法
TWI704584B (zh) * 2018-10-22 2020-09-11 德商伍斯艾索電子有限公司及合資公司 用於電感元件之核心及電感元件
JP2020098879A (ja) * 2018-12-19 2020-06-25 トヨタ自動車株式会社 コイルユニット
CN209357540U (zh) * 2019-03-04 2019-09-06 苏州密科唯电子科技有限公司 一种电磁线圈
CN210603173U (zh) * 2019-11-27 2020-05-22 南京信息工程大学 一种适用于铁基与铝基的涂层测厚仪

Also Published As

Publication number Publication date
TW202223331A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
Wang et al. Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation
US6188218B1 (en) Absolute property measurement with air calibration
Moulder et al. Thickness and conductivity of metallic layers from eddy current measurements
US6549006B2 (en) Eddy current measurements of thin-film metal coatings using a selectable calibration standard
US9377287B2 (en) Eddy current based method for coating thickness measurement
JP2009539086A (ja) 導電性基材上の導電性被膜の膜厚の決定方法
Chen et al. Analysis of arc-electrode capacitive sensors for characterization of dielectric cylindrical rods
UA80755C2 (en) Method of noncontact measurement of resistance by eddy-current sensors and a device for the realization of the method
Lee et al. Multiparameter eddy-current sensor design for conductivity estimation and simultaneous distance and thickness measurements
Syas’ ko et al. Measurement of electromagnetic parameters of metal-coating thickness measures
JP7304589B2 (ja) Pcb多層板に応用した非接触式上下層銅厚の測量方法
US20230094478A1 (en) Measurement Device and Measurement Method for Measuring Permeability and Permittivity
Tytko et al. Fast calculation of the filamentary coil impedance using the truncated region eigenfunction expansion method
JP5722681B2 (ja) 模擬負荷装置
TWI740739B (zh) 電磁感測元件及其製作方法和厚度感測方法
Zhang Analytical model of an I-core coil for nondestructive evaluation of a conducting cylinder below an infinite plane conductor
Risos et al. Interdigitated sensors: A design principle for accurately measuring the permittivity of industrial oils
NL8020516A (nl) Wervelstroomsonde voor een niet-destruktieve testinrichting voor pijpen en openingen in werkstukken en een werkwijze voor het vervaardigen daarvan.
CN111595232B (zh) 金属导体表面金属涂层的厚度及电导率检测方法及装置
EP2930523B1 (en) Contactless conductive interconnect testing
CN206311670U (zh) 介质材料测量装置
El Ghoul et al. Accurate measurement of Aluminum layer thickness in a multilayer material using eddy current sensor
Kolyshkin et al. Determination of electrical conductivity of metal plates using planar spiral coils
CN112880542B (zh) 超薄金属涂层厚度和电导率快速检测方法及系统
JP2002531853A (ja) 電気的測定コンポーネントおよびその使用法