TWI737973B - Electrical device and manufacturing method thereof - Google Patents

Electrical device and manufacturing method thereof Download PDF

Info

Publication number
TWI737973B
TWI737973B TW108110147A TW108110147A TWI737973B TW I737973 B TWI737973 B TW I737973B TW 108110147 A TW108110147 A TW 108110147A TW 108110147 A TW108110147 A TW 108110147A TW I737973 B TWI737973 B TW I737973B
Authority
TW
Taiwan
Prior art keywords
layer
dimensional material
material layer
polycrystalline
transition metal
Prior art date
Application number
TW108110147A
Other languages
Chinese (zh)
Other versions
TW202036916A (en
Inventor
王鼎
林威廷
鄭君丞
侯拓宏
黃俊宏
林智斌
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW108110147A priority Critical patent/TWI737973B/en
Publication of TW202036916A publication Critical patent/TW202036916A/en
Application granted granted Critical
Publication of TWI737973B publication Critical patent/TWI737973B/en

Links

Images

Abstract

An electrical device includes a substrate, a gate, a two-dimensional material layer, a gate insulating layer, a source and a drain. The gate is over the substrate. The two-dimensional material layer is over the substrate. The two-dimensional material layer includes a channel and first and second contacts on two sides of the channel. The channel includes a first polycrystalline transition metal dichalcogenide. The gate insulating layer is between the gate and the two-dimensional material layer. The source and the drain are on two sides of the two-dimensional material layer and electrically connected to the two-dimensional material layer, respectively.

Description

電子裝置與其製造方法 Electronic device and manufacturing method thereof

本揭露是關於一種電子裝置與其製造方法。 This disclosure relates to an electronic device and its manufacturing method.

在平面顯示器技術中,薄膜電晶體(thin film transistor,TFT)係一種被廣泛應用之半導體元件,例如應用在液晶顯示器(liquid crystal display,LCD)、有機發光二極體(organic light emitting diode,OLED)顯示器及電子紙(electronic paper,E-paper)等平面顯示器中。薄膜電晶體係利用來提供電壓或電流的切換,以使得各種顯示器中的顯示畫素可呈現出亮、暗以及灰階的顯示效果。在顯示器中被大量使用到的薄膜電晶體,其結構設計或是材料的選擇更是會直接影響到產品的性能。 In flat panel display technology, thin film transistor (TFT) is a widely used semiconductor device, such as liquid crystal display (LCD) and organic light emitting diode (OLED). ) Displays and electronic paper (electronic paper, E-paper) and other flat-panel displays. The thin-film electrocrystalline system is used to provide voltage or current switching, so that the display pixels in various displays can show bright, dark, and grayscale display effects. The structure design or material selection of thin film transistors that are used in a large number of displays will directly affect the performance of the product.

一般來說,薄膜電晶體至少具有閘極、源極、汲極以及通道層等構件,其中可透過控制閘極的電壓來改變通道層的導電性,以使源極與汲極之間形成導通(開)或絕緣(關)的狀態。此外,通常還會在通道層上形成一具有N型掺雜或P型掺雜的歐姆接觸層,以減少通道層與源極、或通道層與汲極間的接觸電阻。在習知的薄膜電晶體中,所使用的通道層材質大 多為非晶矽(amorphous silicon,a-Si)。然而,由於非晶矽薄膜電晶體的載子遷移率(carrier mobility)較低,且信賴性(reliability)不佳,因此非晶矽薄膜電晶體的應用範圍仍受到諸多限制。 Generally speaking, a thin film transistor has at least a gate, a source, a drain, and a channel layer. The conductivity of the channel layer can be changed by controlling the voltage of the gate, so that the source and the drain are connected. (On) or insulated (off) state. In addition, an ohmic contact layer with N-type doping or P-type doping is usually formed on the channel layer to reduce the contact resistance between the channel layer and the source, or the channel layer and the drain. In the conventional thin film transistors, the channel layer material used is large Mostly amorphous silicon (a-Si). However, due to the low carrier mobility of amorphous silicon thin film transistors and poor reliability, the application range of amorphous silicon thin film transistors is still subject to many restrictions.

本揭露之實施例提供一種電子裝置與其製造方法,透過具有高載子遷移率、低接觸電阻與高熱穩定性的第一結構相(例如1T’相)的接觸端,可有效提供低電阻歐姆接觸於主動元件的源極、汲極與通道層之間的接觸介面,而提升元件表現與熱穩定性。並透過採用非晶的二維材料層進行雷射與退火製程來得到分別具有不同結構相的多晶的接觸端與多晶的通道層並使其共存,具有製程彈性大的優點。甚至,可依產品需求來選擇需要表現半導體特性的通道層的位置,以及表現金屬特性的接觸端的位置。 The embodiments of the present disclosure provide an electronic device and a manufacturing method thereof, which can effectively provide low-resistance ohmic contact through the contact terminal of the first structural phase (such as 1T' phase) with high carrier mobility, low contact resistance and high thermal stability The contact interface between the source and drain of the active device and the channel layer improves the performance and thermal stability of the device. And through the use of an amorphous two-dimensional material layer for laser and annealing processes to obtain and coexist polycrystalline contact ends and polycrystalline channel layers with different structural phases, which has the advantage of large process flexibility. Furthermore, the position of the channel layer that needs to exhibit semiconductor characteristics and the position of the contact terminal that exhibits metal characteristics can be selected according to product requirements.

於一實施例中,一種電子裝置包括基板、閘極、二維材料層、閘極絕緣層、源極與一汲極。閘極位於基板上方。二維材料層位於基板上方,二維材料層包括通道層以及位於通道層兩側的第一接觸端與第二接觸端,通道層包括第一多晶過渡金屬硫屬化合物。閘極絕緣層位於閘極與二維材料層之間。源極與汲極位於二維材料層兩側且分別電性連接二維材料層。 In one embodiment, an electronic device includes a substrate, a gate electrode, a two-dimensional material layer, a gate insulating layer, a source electrode, and a drain electrode. The gate is located above the substrate. The two-dimensional material layer is located above the substrate. The two-dimensional material layer includes a channel layer and first and second contact ends on both sides of the channel layer. The channel layer includes a first polycrystalline transition metal chalcogenide compound. The gate insulating layer is located between the gate and the two-dimensional material layer. The source electrode and the drain electrode are located on both sides of the two-dimensional material layer and are respectively electrically connected to the two-dimensional material layer.

於一實施例中,一種電子裝置的製造方法包括下列步驟。沉積非晶二維材料層於基板上方。照射雷射於非晶二維材料層的第一部分,使第一部分包括晶種部及非晶部,晶種 部具有第一結構相,非晶二維材料層具有第二部分緊鄰第一部分,第二部分免於受到雷射照射。執行退火製程,使第一部分的晶種部及非晶部轉變為接觸端,並使第二部分轉變為通道層,接觸端具有第一結構相,通道層具有第二結構相,第一結構相的導電率高於第二結構相的導電率。 In one embodiment, a method of manufacturing an electronic device includes the following steps. A layer of amorphous two-dimensional material is deposited on the substrate. Irradiate the laser on the first part of the amorphous two-dimensional material layer so that the first part includes the seed part and the amorphous part, the seed crystal The part has a first structural phase, and the amorphous two-dimensional material layer has a second part adjacent to the first part, and the second part is protected from laser irradiation. Perform an annealing process to transform the seed part and amorphous part of the first part into contact ends, and transform the second part into a channel layer. The contact ends have the first structural phase, the channel layer has the second structural phase, and the first structural phase The conductivity of is higher than the conductivity of the second structural phase.

10、10a‧‧‧電子裝置 10, 10a‧‧‧Electronic device

100‧‧‧基板 100‧‧‧Substrate

102‧‧‧緩衝層 102‧‧‧Buffer layer

104‧‧‧閘極 104‧‧‧Gate

106‧‧‧閘極絕緣層 106‧‧‧Gate insulation layer

108‧‧‧二維材料層 108‧‧‧Two-dimensional material layer

108a‧‧‧第一部分 108a‧‧‧Part One

108a’‧‧‧接觸端 108a’‧‧‧Contact terminal

108b‧‧‧第二部分 108b‧‧‧Part Two

108b’‧‧‧通道層 108b’‧‧‧passage layer

110‧‧‧保護層 110‧‧‧Protection layer

112‧‧‧源極 112‧‧‧Source

114‧‧‧汲極 114‧‧‧Dip pole

116‧‧‧主動元件 116‧‧‧Active Components

118‧‧‧無機保護層 118‧‧‧Inorganic protective layer

120‧‧‧有機保護層 120‧‧‧Organic protective layer

122‧‧‧畫素電極 122‧‧‧Pixel electrode

124‧‧‧層間介電層 124‧‧‧Interlayer dielectric layer

P1‧‧‧雷射 P1‧‧‧Laser

P2‧‧‧退火製程 P2‧‧‧Annealing process

T1、T1’、T2、T2’‧‧‧厚度 T1, T1’, T2, T2’‧‧‧Thickness

TH1‧‧‧畫素電極連通孔 TH1‧‧‧Pixel electrode connecting hole

TH2‧‧‧接觸洞 TH2‧‧‧Contact hole

閱讀以下詳細敘述並搭配對應之圖式,可了解本揭露之多個樣態。需留意的是,圖式中的多個特徵並未依照該業界領域之標準作法繪製實際比例。事實上,所述之特徵的尺寸可以任意的增加或減少以利於討論的清晰性。 Read the following detailed description and match the corresponding diagrams to understand many aspects of this disclosure. It should be noted that many of the features in the drawing are not drawn in actual proportions according to the standard practice in the industry. In fact, the size of the feature can be increased or decreased arbitrarily to facilitate the clarity of the discussion.

第1A圖至第1H圖為根據一實施例之電子裝置之製作流程的剖面示意圖;以及第2A圖至第2G圖為根據另一實施例之電子裝置之製作流程的剖面示意圖。 1A to 1H are schematic cross-sectional views of the manufacturing process of an electronic device according to an embodiment; and FIGS. 2A to 2G are schematic cross-sectional views of the manufacturing process of an electronic device according to another embodiment.

以下將以圖式及詳細說明清楚說明本揭露之精神,任何所屬技術領域中具有通常知識者在瞭解本揭露之實施例後,當可由本揭露所教示之技術,加以改變及修飾,其並不脫離本揭露之精神與範圍。舉例而言,敘述「第一特徵形成於第二特徵上方或上」,於實施例中將包含第一特徵及第二特徵具有直接接觸;且也將包含第一特徵和第二特徵為非直接接觸,具有額外的特徵形成於第一特徵和第二特徵之間。此外, 本揭露在多個範例中將重複使用元件標號以和/或文字。重複的目的在於簡化與釐清,而其本身並不會決定多個實施例以和/或所討論的配置之間的關係。 The following will clearly illustrate the spirit of the present disclosure with figures and detailed descriptions. Anyone with ordinary knowledge in the relevant technical field who understands the embodiments of the present disclosure can change and modify the techniques taught in the present disclosure, which is not Depart from the spirit and scope of this disclosure. For example, the statement that "the first feature is formed on or on the second feature" will include the first feature and the second feature having direct contact; and will also include the first feature and the second feature being indirect The contact has an additional feature formed between the first feature and the second feature. also, In this disclosure, component numbers and/or text are reused in multiple examples. The purpose of repetition is to simplify and clarify, and it does not determine the relationship between multiple embodiments and/or the discussed configurations.

此外,方位相對詞彙,如「在...之下」、「下面」、「下」、「上方」或「上」或類似詞彙,在本文中為用來便於描述繪示於圖式中的一個元件或特徵至另外的元件或特徵之關係。方位相對詞彙除了用來描述裝置在圖式中的方位外,其包含裝置於使用或操作下之不同的方位。當裝置被另外設置(旋轉90度或者其他面向的方位),本文所用的方位相對詞彙同樣可以相應地進行解釋。 In addition, relative terms such as "below", "below", "below", "above" or "up" or similar words are used in this article to facilitate the description of what is shown in the diagram The relationship of one element or feature to another element or feature. In addition to describing the orientation of the device in the diagram, the relative orientation vocabulary includes the different orientations of the device under use or operation. When the device is additionally set (rotated by 90 degrees or other facing orientation), the relative terms used in this article can also be explained accordingly.

第1A圖至第1H圖為根據一實施例之電子裝置10之製作流程的剖面示意圖。首先,參照第1A圖,提供基板100,在基板100上形成緩衝層102,並形成閘極104於緩衝層102上。基板100之材質例如是藍寶石、金屬箔、單晶矽、多晶矽、非晶矽、玻璃、石英、塑膠或陶瓷等等。緩衝層102之材質例如是氧化物。然而,本揭露不限於此。在本揭露的其他實施例中,亦可不包括緩衝層102,只要基板100可忍受後續的微影蝕刻製程即可。接著,在已形成緩衝層102的基板100上形成第一導電材料(未繪示),並圖案化第一導電材料,以形成閘極104。圖案化的方法例如是進行微影蝕刻製程。閘極104可以是單層結構或多層堆疊結構,其材質例如是鈦、鉬、鉻、銥、鋁、銅、銀、金或上述之任意組合或合金。 1A to 1H are schematic cross-sectional views of the manufacturing process of the electronic device 10 according to an embodiment. First, referring to FIG. 1A, a substrate 100 is provided, a buffer layer 102 is formed on the substrate 100, and a gate 104 is formed on the buffer layer 102. The material of the substrate 100 is, for example, sapphire, metal foil, monocrystalline silicon, polycrystalline silicon, amorphous silicon, glass, quartz, plastic or ceramics, etc. The material of the buffer layer 102 is, for example, oxide. However, this disclosure is not limited to this. In other embodiments of the present disclosure, the buffer layer 102 may not be included, as long as the substrate 100 can withstand the subsequent lithographic etching process. Next, a first conductive material (not shown) is formed on the substrate 100 on which the buffer layer 102 has been formed, and the first conductive material is patterned to form the gate 104. The patterning method is, for example, a photolithographic etching process. The gate electrode 104 can be a single-layer structure or a multi-layer stack structure, and its material is, for example, titanium, molybdenum, chromium, iridium, aluminum, copper, silver, gold, or any combination or alloy of the foregoing.

參照第1B圖,形成閘極絕緣層106於基板100上,並覆蓋住閘極104,接著,沉積二維材料於基板100上,且 覆蓋閘極絕緣層106,並隨之圖案化二維材料為二維材料層108。閘極絕緣層106的材質例如是無機材料(例如:氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層)、有機材料或上述之組合。當然,本實施例不以此為限,凡是可以提供絕緣特性的材料都可以選擇性地應用於本實施例以製作閘極絕緣層106。二維材料層108為非晶二維材料層。二維材料層108的材質例如是過渡金屬硫屬化合物(Transition metal dichalcogenides;TMDs),例如為二硫化鉬(MoS2)、二碲化鉬(MoTe2)、二碲化鎢(WTe2)、類似物或以上之組合。具體而言,過渡金屬硫屬化合物包含至少一過渡金屬與至少一硫屬元素作為二維材料元素。所述過渡金屬為選自由鉬、鎢、鉻、釩、鈮、鉭、鉑、鈦、鉿、鋯、錸所組成的群組,且所述硫屬元素為選自由硫、硒、碲所組成的群組。 1B, a gate insulating layer 106 is formed on the substrate 100 and covers the gate 104. Then, a two-dimensional material is deposited on the substrate 100 and covers the gate insulating layer 106, and then the two-dimensional material is patterned It is a two-dimensional material layer 108. The material of the gate insulating layer 106 is, for example, an inorganic material (for example, silicon oxide, silicon nitride, silicon oxynitride, silicon aluminum oxide, or a stacked layer of at least two of the foregoing materials), an organic material, or a combination of the foregoing. Of course, this embodiment is not limited to this, and any material that can provide insulating properties can be selectively applied to this embodiment to make the gate insulating layer 106. The two-dimensional material layer 108 is an amorphous two-dimensional material layer. The material of the two-dimensional material layer 108 is, for example, Transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS 2 ), molybdenum ditelluride (MoTe 2 ), tungsten ditelluride (WTe 2 ), Analogs or combinations of the above. Specifically, the transition metal chalcogen compound includes at least one transition metal and at least one chalcogen element as two-dimensional material elements. The transition metal is selected from the group consisting of molybdenum, tungsten, chromium, vanadium, niobium, tantalum, platinum, titanium, hafnium, zirconium, and rhenium, and the chalcogen element is selected from the group consisting of sulfur, selenium, and tellurium 'S group.

於一實施例中,二維材料可由物理氣相沉積法所形成,以過渡金屬與硫屬元素中所製成的二維材料為例,在非晶二維材料形成步驟中,可於具有上述兩類二維材料元素之靶材進行濺鍍或蒸鍍。於一實施例,可採用單一靶材,且靶材上的過渡金屬與硫屬元素具有當量比。在其他實施例,亦可視製程需求採用共濺鍍或共蒸鍍包含二維材料元素(例如過渡金屬與硫屬元素)的複數個靶材而形成非晶二維材料。於一實施例中,二維材料的沉積環境可通入惰性氣體(例如氬氣),舉例而言,通入流量為約15sccm至約25sccm的惰性氣體,並在工作壓力為約8mTorr至約12mTorr的條件下沉積約25秒至約35秒。 In one embodiment, the two-dimensional material can be formed by physical vapor deposition. Taking the two-dimensional material made from transition metals and chalcogens as an example, in the step of forming the amorphous two-dimensional material, the above-mentioned The targets of two types of two-dimensional material elements are sputtered or evaporated. In one embodiment, a single target may be used, and the transition metal and chalcogen on the target have an equivalent ratio. In other embodiments, co-sputtering or co-evaporation of multiple targets containing two-dimensional material elements (such as transition metals and chalcogen elements) may be used to form amorphous two-dimensional materials depending on the process requirements. In one embodiment, an inert gas (such as argon) can be introduced into the deposition environment of the two-dimensional material. For example, an inert gas with a flow rate of about 15 sccm to about 25 sccm and a working pressure of about 8 mTorr to about 12 mTorr can be introduced. Under the conditions of deposition about 25 seconds to about 35 seconds.

參照第1C圖,照射雷射P1於二維材料層108的複數第一部分108a,使第一部分108a包括晶種部及非晶部,晶種部具有第一結構相。換言之,在雷射P1照射於二維材料層108的第一部分108a時,會有一部分的第一部分108a轉變成具有第一結構相之晶種(即晶種部),而剩餘部分的第一部分108a不會被轉變而維持非晶態(即非晶部)。第一部分108a位於閘極104兩側,換句話說,第一部分108a在基板100的垂直投影不重疊於閘極104在基板100的垂直投影,二維材料層108具有第二部分108b緊鄰第一部分108a,第二部分108b位於第一部分108a之間,且第二部分108b位於閘極104正上方,換句話說,第二部分108b在基板100的垂直投影重疊於閘極104在基板100的垂直投影。因為第二部分108b免於受到雷射P1照射,因此第二部分108b維持非晶態。於一實施例中,可以波長為約532奈米的雷射並在雷射功率為約15mW至約25mW,且光束大小為約1微米對第一部分108a照射。第一部分108a具有厚度T1,第二部分108b具有厚度T2,厚度T1實質上相同於厚度T2。於一實施例中,厚度T1與厚度T2介於約4奈米至約6奈米之間。 Referring to FIG. 1C, the first part 108a of the two-dimensional material layer 108 is irradiated with a laser P1, so that the first part 108a includes a seed part and an amorphous part, and the seed part has a first structural phase. In other words, when the laser P1 irradiates the first part 108a of the two-dimensional material layer 108, a part of the first part 108a will be transformed into a seed crystal with the first structural phase (ie, the seed part), and the remaining part of the first part 108a Will not be transformed and maintain the amorphous state (that is, the amorphous part). The first part 108a is located on both sides of the gate 104. In other words, the vertical projection of the first part 108a on the substrate 100 does not overlap with the vertical projection of the gate 104 on the substrate 100. The two-dimensional material layer 108 has a second part 108b adjacent to the first part 108a. The second portion 108b is located between the first portions 108a, and the second portion 108b is located directly above the gate 104. In other words, the vertical projection of the second portion 108b on the substrate 100 overlaps the vertical projection of the gate 104 on the substrate 100. Because the second part 108b is protected from the laser P1, the second part 108b remains amorphous. In one embodiment, a laser with a wavelength of about 532 nm, a laser power of about 15 mW to about 25 mW, and a beam size of about 1 micron can be used to irradiate the first portion 108a. The first portion 108a has a thickness T1, the second portion 108b has a thickness T2, and the thickness T1 is substantially the same as the thickness T2. In one embodiment, the thickness T1 and the thickness T2 are between about 4 nanometers and about 6 nanometers.

參照第1D圖,沉積保護層110於二維材料層108上方,以覆蓋第一部分108a與第二部分108b,保護層110包含至少一氧化物,舉例而言,保護層110可包含氧化矽。於其他實施例中,保護層110可包含氮化矽、氮氧化矽、矽鋁氧化物、類似物或以上之組合。保護層110可以防止二維材料層108中的二維材料元素(例如過渡金屬,像是鉬)在後續製程(例如第1E圖所示之退火製程P2)而損失,以提高二維材料層108的品質。 Referring to FIG. 1D, a protective layer 110 is deposited on the two-dimensional material layer 108 to cover the first portion 108a and the second portion 108b. The protective layer 110 includes at least one oxide. For example, the protective layer 110 may include silicon oxide. In other embodiments, the protective layer 110 may include silicon nitride, silicon oxynitride, silicon aluminum oxide, the like, or a combination thereof. The protective layer 110 can prevent the two-dimensional material elements (such as transition metals, such as molybdenum) in the two-dimensional material layer 108 from being lost in the subsequent process (such as the annealing process P2 shown in FIG. 1E), so as to improve the two-dimensional material layer 108 Quality.

參照第1E圖,執行退火製程P2,使第一部分108a的晶種部及非晶部轉變為接觸端108a’,並使第二部分180b轉變為通道層108b’。於本實施例中,接觸端108a’具有第一結構相,通道層108b’具有第二結構相。於一實施例中,接觸端108a’具有多晶之第一結構相,通道層108b’具有多晶之第二結構相。於二維材料層108包括過渡金屬硫屬化合物的部分實施例中,通道層108b’包括具有第二結構相之第一多晶過渡金屬硫屬化合物,接觸端108a’包括具有第一結構相之第二多晶過渡金屬硫屬化合物。第一多晶過渡金屬硫屬化合物的組成元素與第二多晶過渡金屬硫屬化合物的組成元素相同。接觸端108a’具有厚度T1’。通道層108b’具有厚度T2’。於本實施例中,第二結構相不同於第一結構相。舉例而言,第一結構相的導電率高於第二結構相的導電率。於本實施例中,第一結構相為多晶1T’相,第二結構相為多晶2H相,1T’相表現金屬特性,舉例而言,1T’相具有高載子遷移率以及低接觸電阻,因此可有效提供低電阻歐姆接觸於主動元件的源極/汲極與通道層(例如第1G圖的源極112、汲極114與通道層108b’)之間的接觸介面,從而提升元件表現,且經由雷射P1及退火製程P2處理所得到之1T’相具有高熱穩定性,如此一來,可提升元件之熱穩定性。2H相具有半導體特性,因此,通道層108b’可作為主動元件的通道。 Referring to Figure 1E, an annealing process P2 is performed to transform the seed part and amorphous part of the first part 108a into the contact end 108a', and transform the second part 180b into the channel layer 108b'. In this embodiment, the contact end 108a' has a first structural phase, and the channel layer 108b' has a second structural phase. In one embodiment, the contact end 108a' has a polycrystalline first structure phase, and the channel layer 108b' has a polycrystalline second structure phase. In some embodiments in which the two-dimensional material layer 108 includes a transition metal chalcogenide compound, the channel layer 108b' includes a first polycrystalline transition metal chalcogenide compound having a second structural phase, and the contact end 108a' includes a first structural phase The second polycrystalline transition metal chalcogenide compound. The constituent elements of the first polycrystalline transition metal chalcogen compound are the same as the constituent elements of the second polycrystalline transition metal chalcogen compound. The contact end 108a' has a thickness T1'. The channel layer 108b' has a thickness T2'. In this embodiment, the second structural phase is different from the first structural phase. For example, the conductivity of the first structural phase is higher than the conductivity of the second structural phase. In this embodiment, the first structural phase is a polycrystalline 1T' phase, and the second structural phase is a polycrystalline 2H phase. The 1T' phase exhibits metallic characteristics. For example, the 1T' phase has high carrier mobility and low contact. Therefore, it can effectively provide a low-resistance ohmic contact interface between the source/drain of the active device and the channel layer (for example, the source 112, the drain 114, and the channel layer 108b' in Figure 1G), thereby enhancing the device Performance, and the 1T' phase obtained by the laser P1 and annealing process P2 has high thermal stability. As a result, the thermal stability of the device can be improved. The 2H phase has semiconductor characteristics, and therefore, the channel layer 108b' can be used as a channel of the active device.

透過採用非晶的二維材料層108進行雷射P1與退火製程P2來得到分別具有不同結構相的多晶的接觸端108a’與多晶的通道層108b’並使其共存,具有製程彈性大的優點,舉例而言,毋需準備單晶的二維材料,甚至,可依產品需求來選擇需要表現半導體特性的通道層108b’的位置,以及表現金屬特性的接觸端108a’的位置。 By using the amorphous two-dimensional material layer 108 to perform the laser P1 and the annealing process P2, the polycrystalline contact ends 108a' and the polycrystalline channel layer 108b' with different structural phases are obtained and coexist, which has great process flexibility. For example, there is no need to prepare a single crystal two-dimensional material, and even the position of the channel layer 108b' that needs to exhibit semiconductor characteristics and the position of the contact end 108a' that exhibits metal characteristics can be selected according to product requirements.

退火製程P2使得具有厚度T1的第一部分108a變成具有厚度T1’的接觸端108a’,厚度T1’介於約7奈米至約10奈米之間。退火製程P2使得具有厚度T2的第二部分108b變成具有厚度T2’的通道層108b’,厚度T2’介於約2奈米至約4奈米之間。其中退火製程P2使得接觸端108a’的厚度T1’大於通道層108b’的厚度T2’。 The annealing process P2 turns the first portion 108a having a thickness T1 into a contact end 108a' having a thickness T1', and the thickness T1' is between about 7 nanometers and about 10 nanometers. The annealing process P2 turns the second portion 108b having a thickness T2 into a channel layer 108b' having a thickness T2', and the thickness T2' is between about 2 nanometers and about 4 nanometers. The annealing process P2 makes the thickness T1' of the contact end 108a' greater than the thickness T2' of the channel layer 108b'.

退火製程P2的方式例如可採用爐管退火、快速熱退火、雷射退火或微波退火。舉例而言,退火製程P2可為將二維材料層108置於退火環境為氣壓為約25Torr至約35Torr的惰性氣體(例如氮氣)中,以溫度範圍為約600℃至約700℃的條件下維持約20小時至約30小時進行退火。 The method of the annealing process P2 can be, for example, furnace annealing, rapid thermal annealing, laser annealing or microwave annealing. For example, the annealing process P2 may be to place the two-dimensional material layer 108 in an annealing environment of an inert gas (such as nitrogen) with a pressure of about 25 Torr to about 35 Torr, and a temperature range of about 600° C. to about 700° C. Maintain for about 20 hours to about 30 hours for annealing.

參照第1F圖,以圖案化光阻層(未繪示)為罩幕對保護層110進行蝕刻以形成圖案化保護層110’,以露出位於通道層108b’兩側的接觸端108a’,並使得保護層110仍部分覆蓋鄰近於通道層108b’的接觸端108a’,換句話說,圖案化保護層110’完整覆蓋住通道層108b’與部分覆蓋住鄰近於通道層108b’的接觸端108a’。於其他實施方式中,在退火製程P2後可以完全移除保護層110,並使接觸端108a’與通道層108b’完全露出。 Referring to Figure 1F, the protective layer 110 is etched with a patterned photoresist layer (not shown) as a mask to form a patterned protective layer 110' to expose the contact ends 108a' located on both sides of the channel layer 108b', and The protective layer 110 still partially covers the contact end 108a' adjacent to the channel layer 108b', in other words, the patterned protective layer 110' completely covers the channel layer 108b' and partially covers the contact end 108a adjacent to the channel layer 108b' '. In other embodiments, the protective layer 110 can be completely removed after the annealing process P2, and the contact end 108a' and the channel layer 108b' can be completely exposed.

參照第1G圖,於通道層108b’兩側形成源極112與汲極114。具體而言,可以先在通道層108b’與接觸端108a’ 上形成第二導電層(未繪示),並隨之圖案化第二導電層,以形成源極112與汲極114。在本實施例中,第二導電層(或者說,源極112與汲極114)的材質可為鈦、鉬、鉻、銥、鋁、銅、銀、金或上述之任意組合或合金。第二導電層(或者說,源極112與汲極114)的形成方式可為物理氣相沉積法,例如濺鍍法。圖案化第二導電層的方式可為例如微影及蝕刻法。 Referring to FIG. 1G, a source 112 and a drain 114 are formed on both sides of the channel layer 108b'. Specifically, the channel layer 108b' and the contact end 108a' can be used first A second conductive layer (not shown) is formed thereon, and then the second conductive layer is patterned to form a source 112 and a drain 114. In this embodiment, the material of the second conductive layer (or the source 112 and the drain 114) can be titanium, molybdenum, chromium, iridium, aluminum, copper, silver, gold, or any combination or alloy of the foregoing. The second conductive layer (or the source 112 and the drain 114) may be formed by a physical vapor deposition method, such as a sputtering method. The method of patterning the second conductive layer can be, for example, photolithography and etching.

在第1G圖的步驟完成後,閘極104、閘極絕緣層106、接觸端108a’、通道層108b’、源極112與汲極114共同構成主動元件116,於本實施例中,主動元件116為底閘型薄膜電晶體,但此並不限制本揭露,實際上主動元件116亦可為其他形式的主動元件,例如頂閘型薄膜電晶體,本發明所屬技術領域中具有通常知識者,應視實際需要,彈性選擇主動元件116的實施例。 After the steps in Figure 1G are completed, the gate 104, the gate insulating layer 106, the contact end 108a', the channel layer 108b', the source 112 and the drain 114 together constitute the active device 116. In this embodiment, the active device 116 is a bottom gate type thin film transistor, but this does not limit the disclosure. In fact, the active device 116 can also be another type of active device, such as a top gate type thin film transistor. Those with ordinary knowledge in the technical field of the present invention, The embodiment of the active element 116 should be flexibly selected according to actual needs.

接著參照第1H圖。依序形成無機保護層118、有機保護層120以及畫素電極122於源極112與汲極114之上。無機保護層118覆蓋主動元件116,無機保護層118的材質可為任何無機介電材料,例如:氮化矽、氧化矽、氮氧化矽或上述之任意組合。無機保護層118的形成方式可例如為化學氣相沉積法。 Next, refer to Figure 1H. An inorganic protective layer 118, an organic protective layer 120, and a pixel electrode 122 are sequentially formed on the source 112 and the drain 114. The inorganic protective layer 118 covers the active device 116. The material of the inorganic protective layer 118 can be any inorganic dielectric material, such as silicon nitride, silicon oxide, silicon oxynitride, or any combination of the foregoing. The formation method of the inorganic protective layer 118 may be, for example, a chemical vapor deposition method.

在本實施例中,有機保護層120覆蓋無機保護層118,但此並不限制本揭露,若主動元件116或無機保護層118上方具有其他疊層,例如其他介電層或阻障層,有機保護層120亦可覆蓋這些疊層。亦即,有機保護層120可直接或間接覆蓋無機保護層118。有機保護層120的材質可為任何有機介電材 料,例如:丙烯酸類聚合物(acrylic polymer)。有機保護層120的形成方式可為例如旋塗法。 In this embodiment, the organic protective layer 120 covers the inorganic protective layer 118, but this does not limit the disclosure. If the active device 116 or the inorganic protective layer 118 has other stacked layers, such as other dielectric layers or barrier layers, organic The protective layer 120 can also cover these stacked layers. That is, the organic protective layer 120 may directly or indirectly cover the inorganic protective layer 118. The material of the organic protective layer 120 can be any organic dielectric material Material, for example: acrylic polymer (acrylic polymer). The formation method of the organic protective layer 120 may be, for example, a spin coating method.

畫素電極122電性連接主動元件116。具體而言,可先形成畫素電極連通孔TH1,此畫素電極連通孔TH1貫穿汲極114上方的疊層,讓汲極114暴露出來。在本實施例中,由於汲極114上方的疊層包含無機保護層118與有機保護層120,因此畫素電極連通孔TH1將貫穿無機保護層118與有機保護層120,讓汲極114暴露出來。 The pixel electrode 122 is electrically connected to the active device 116. Specifically, the pixel electrode through hole TH1 can be formed first, and the pixel electrode through hole TH1 penetrates the stacked layer above the drain 114 to expose the drain 114. In this embodiment, since the stacked layer above the drain 114 includes an inorganic protective layer 118 and an organic protective layer 120, the pixel electrode through hole TH1 will penetrate through the inorganic protective layer 118 and the organic protective layer 120 to expose the drain 114 .

然後,形成第三導電層覆蓋有機保護層120與畫素電極連通孔TH1,並隨之圖案化第三導電層,以形成畫素電極122。所形成之畫素電極122將藉由畫素電極連通孔TH1,與汲極114電性連接。如此一來,電子裝置10製作完成。 Then, a third conductive layer is formed to cover the organic protective layer 120 and the pixel electrode communication hole TH1, and then the third conductive layer is patterned to form the pixel electrode 122. The formed pixel electrode 122 will be electrically connected to the drain 114 through the pixel electrode through hole TH1. In this way, the electronic device 10 is completed.

上述之第三導電層(或者說,畫素電極122)的材質可為任何導電材料。在本實施方式中,第三導電層(或者說,畫素電極122)的材質可為透明導電材料,例如:氧化銦錫、氧化銦鋅、氧化鋅鋁或其他導電氧化物或上述任意之組合。或者,第三導電層(或者說,畫素電極122)的材質亦可為其他不透明的導電材料,例如:鈦、鉬、鉻、銥、鋁、銅、銀、金或上述之任意組合或合金。第三導電層的形成方式可為例如物理氣相沉積法或化學氣相沉積法。形成畫素電極連通孔TH1及圖案化第三導電層的方式可為例如微影及蝕刻法。 The material of the aforementioned third conductive layer (or the pixel electrode 122) can be any conductive material. In this embodiment, the material of the third conductive layer (or the pixel electrode 122) can be a transparent conductive material, such as indium tin oxide, indium zinc oxide, zinc aluminum oxide or other conductive oxides or any combination of the foregoing . Alternatively, the material of the third conductive layer (or the pixel electrode 122) can also be other opaque conductive materials, such as titanium, molybdenum, chromium, iridium, aluminum, copper, silver, gold, or any combination or alloy of the foregoing . The formation method of the third conductive layer can be, for example, a physical vapor deposition method or a chemical vapor deposition method. The method of forming the pixel electrode communication hole TH1 and patterning the third conductive layer can be, for example, a photolithography and etching method.

第2A圖至第2G圖為根據另一實施例之電子裝置10a之製作流程的剖面示意圖。首先,參照第2A圖,提供基板100,在基板100上形成緩衝層102,並形成二維材料層108於 緩衝層102上。基板100、緩衝層102與二維材料層108的材質與形成方法與第1A圖與第1B圖的實施例相同,因此不再重複贅述之。 2A to 2G are schematic cross-sectional views of the manufacturing process of the electronic device 10a according to another embodiment. First, referring to Figure 2A, a substrate 100 is provided, a buffer layer 102 is formed on the substrate 100, and a two-dimensional material layer 108 is formed on the substrate 100. On the buffer layer 102. The materials and formation methods of the substrate 100, the buffer layer 102, and the two-dimensional material layer 108 are the same as those of the embodiment shown in FIG. 1A and FIG. 1B, and therefore will not be repeated here.

參照第2B圖,形成閘極絕緣層106於基板100上,並覆蓋住二維材料層108,接著形成閘極104於閘極絕緣層106上。閘極絕緣層106與閘極104的材質與形成方法與第1A圖與第1B圖的實施例相同,因此不再重複贅述之。 Referring to FIG. 2B, a gate insulating layer 106 is formed on the substrate 100 to cover the two-dimensional material layer 108, and then a gate 104 is formed on the gate insulating layer 106. The material and forming method of the gate insulating layer 106 and the gate 104 are the same as those of the embodiment shown in FIG. 1A and FIG. 1B, so they will not be repeated here.

參照第2C圖,照射雷射P1於二維材料層108的複數第一部分108a,使第一部分108a包括晶種部及非晶部,晶種部具有第一結構相。換言之,在雷射P1照射於二維材料層108的第一部分108a時,會有一部分的第一部分108a轉變成具有第一結構相之晶種(即晶種部),而剩餘部分的第一部分108a不會被轉變而維持非晶態(即非晶部)。第一部分108a位於閘極104兩側,換句話說,第一部分108a在基板100的垂直投影不重疊於閘極104在基板100的垂直投影,二維材料層108具有第二部分108b緊鄰第一部分108a,第二部分108b位於第一部分108a之間,且第二部分108b位於閘極104正上方,換句話說,第二部分108b在基板100的垂直投影重疊於閘極104在基板100的垂直投影。第二部分108b免於受到雷射P1照射。於其他實施例中,亦可照射雷射P1於整面基板100,因為閘極104為金屬材質,可以將雷射P1反射,使位於閘極104正下方的第二部分108b免於受到雷射P1的照射。可依照不同的雷射設備來選擇只照射第一部分108a或同時照射整面基板100,達到僅使第一部分108a受到雷射P1照射的效果,藉此達到製程彈性大的優點。 Referring to FIG. 2C, the first portion 108a of the two-dimensional material layer 108 is irradiated with the laser P1, so that the first portion 108a includes a seed part and an amorphous part, and the seed part has a first structural phase. In other words, when the laser P1 irradiates the first part 108a of the two-dimensional material layer 108, a part of the first part 108a will be transformed into a seed crystal with the first structural phase (ie, the seed part), and the remaining part of the first part 108a Will not be transformed and maintain the amorphous state (that is, the amorphous part). The first part 108a is located on both sides of the gate 104. In other words, the vertical projection of the first part 108a on the substrate 100 does not overlap with the vertical projection of the gate 104 on the substrate 100. The two-dimensional material layer 108 has a second part 108b adjacent to the first part 108a. The second portion 108b is located between the first portions 108a, and the second portion 108b is located directly above the gate 104. In other words, the vertical projection of the second portion 108b on the substrate 100 overlaps the vertical projection of the gate 104 on the substrate 100. The second part 108b is protected from the laser P1. In other embodiments, the laser P1 can also be irradiated on the entire substrate 100. Because the gate 104 is made of metal, the laser P1 can be reflected, so that the second part 108b directly under the gate 104 is protected from the laser. Irradiation of P1. It is possible to choose to irradiate only the first part 108a or irradiate the entire substrate 100 at the same time according to different laser equipment, so that only the first part 108a is irradiated by the laser P1, thereby achieving the advantage of greater process flexibility.

因為第二部分108b免於受到雷射P1照射,因此第二部分108b免於結晶化,換句話說,第二部分108b維持非晶態。照射雷射P1的方式與第1C圖的照射雷射P1的方式相同,於此不再重複贅述。 Because the second part 108b is protected from the laser P1, the second part 108b is protected from crystallization, in other words, the second part 108b remains amorphous. The method of irradiating the laser P1 is the same as the method of irradiating the laser P1 in FIG. 1C, and will not be repeated here.

參照第2D圖,執行退火製程P2,使第一部分108a的晶種部及非晶部轉變為接觸端108a’,並使第二部分180b轉變為通道層108b’。於本實施例中,接觸端108a’具有第一結構相,通道層108b’具有第二結構相。於一實施例中,接觸端108a’具有多晶之第一結構相,通道層108b’具有多晶之第二結構相。於二維材料層108包括過渡金屬硫屬化合物的部分實施例中,通道層108b’包括具有第二結構相之第一多晶過渡金屬硫屬化合物,接觸端108a’包括具有第一結構相之第二多晶過渡金屬硫屬化合物。第一多晶過渡金屬硫屬化合物的組成元素與第二多晶過渡金屬硫屬化合物的組成元素相同。接觸端108a’具有厚度T1’通道層108b’具有厚度T2’。於本實施例中,第二結構相不同於第一結構相。舉例而言,第一結構相的導電率高於第二結構相的導電率。於本實施例中,第一結構相為多晶1T’相,第二結構相為多晶2H相,1T’相表現金屬特性,舉例而言,1T’相具有高載子遷移率以及低接觸電阻,因此可有效提供低電阻歐姆接觸於主動元件的源極/汲極與通道層(例如第1G圖的源極112、汲極114與通道層108b’)之間的接觸介面,從而提升元件表現,且經由雷射P1及退火製程P2處理所得到之1T’相具有高熱穩定性,如此一來,可提升元件之熱穩定性。2H相具有半導體特性,因此,通道層108b’可作為主動元件的通道。閘極絕緣層106可以防止二維材料層108中的二維材料元素(例如過渡金屬,像是鉬)因退火製程P2而損失,以提高二維材料層108的品質。接觸端108a’和通道層108b’的厚度與結構相以及退火製程P2的方式和第1E圖的實施例相同,因此不再重複贅述之。 Referring to FIG. 2D, an annealing process P2 is performed to transform the seed part and amorphous part of the first part 108a into the contact end 108a', and transform the second part 180b into the channel layer 108b'. In this embodiment, the contact end 108a' has a first structural phase, and the channel layer 108b' has a second structural phase. In one embodiment, the contact end 108a' has a polycrystalline first structure phase, and the channel layer 108b' has a polycrystalline second structure phase. In some embodiments in which the two-dimensional material layer 108 includes a transition metal chalcogenide compound, the channel layer 108b' includes a first polycrystalline transition metal chalcogenide compound having a second structural phase, and the contact end 108a' includes a first structural phase The second polycrystalline transition metal chalcogenide compound. The constituent elements of the first polycrystalline transition metal chalcogen compound are the same as the constituent elements of the second polycrystalline transition metal chalcogen compound. The contact end 108a' has a thickness T1' and the channel layer 108b' has a thickness T2'. In this embodiment, the second structural phase is different from the first structural phase. For example, the conductivity of the first structural phase is higher than the conductivity of the second structural phase. In this embodiment, the first structural phase is a polycrystalline 1T' phase, and the second structural phase is a polycrystalline 2H phase. The 1T' phase exhibits metallic characteristics. For example, the 1T' phase has high carrier mobility and low contact. Therefore, it can effectively provide a low-resistance ohmic contact interface between the source/drain of the active device and the channel layer (for example, the source 112, the drain 114, and the channel layer 108b' in Figure 1G), thereby enhancing the device Performance, and the 1T' phase obtained by the laser P1 and annealing process P2 has high thermal stability. As a result, the thermal stability of the device can be improved. The 2H phase has semiconductor characteristics, and therefore, the channel layer 108b' can be used as a channel of the active device. The gate insulating layer 106 can prevent the two-dimensional material elements (such as transition metals, such as molybdenum) in the two-dimensional material layer 108 from being lost due to the annealing process P2, so as to improve the quality of the two-dimensional material layer 108. The thickness and structure phase of the contact end 108a' and the channel layer 108b' and the way of the annealing process P2 are the same as those of the embodiment in FIG. 1E, so they will not be repeated here.

參照第2E圖,接著利用閘極104作為蝕刻遮罩,並對閘極絕緣層106進行蝕刻製程以形成圖案化閘極絕緣層106’,使位於通道層108b’兩側的接觸端108a’露出。 Referring to Figure 2E, the gate 104 is then used as an etching mask, and the gate insulating layer 106 is etched to form a patterned gate insulating layer 106', exposing the contact ends 108a' on both sides of the channel layer 108b' .

參照第2F圖,形成層間介電層124於基板100上,形成複數接觸洞TH2貫穿層間介電層124,使位於通道層108b’兩側的接觸端108a’露出,並形成源極112與汲極114於層間介電層124上,分別經由不同接觸洞TH2與接觸端108a’接觸。源極112與汲極114的材質與形成方法與第1G圖的實施例相同,因此不再重複贅述之。 Referring to FIG. 2F, an interlayer dielectric layer 124 is formed on the substrate 100, and a plurality of contact holes TH2 are formed through the interlayer dielectric layer 124, exposing the contact terminals 108a' located on both sides of the channel layer 108b', and forming the source electrode 112 and the drain electrode. The pole 114 is on the interlayer dielectric layer 124, and is in contact with the contact end 108a' through different contact holes TH2, respectively. The material and forming method of the source electrode 112 and the drain electrode 114 are the same as those of the embodiment in FIG. 1G, so they will not be repeated here.

在第2F圖的步驟完成後,閘極104、閘極絕緣層106、接觸端108a’、通道層108b’、源極112與汲極114共同構成主動元件116,於本實施例中,主動元件116為頂閘型薄膜電晶體,但此並不限制本揭露,實際上主動元件116亦可為其他形式的主動元件,本發明所屬技術領域中具有通常知識者,應視實際需要,彈性選擇主動元件116的實施例。 After the steps in FIG. 2F are completed, the gate 104, the gate insulating layer 106, the contact terminal 108a', the channel layer 108b', the source 112 and the drain 114 together constitute the active device 116. In this embodiment, the active device 116 is a top gate type thin film transistor, but this does not limit the disclosure. In fact, the active device 116 can also be another type of active device. Those with ordinary knowledge in the technical field of the present invention should choose the active device flexibly according to actual needs. Example of element 116.

接著參照第2G圖,依序形成無機保護層118、有機保護層120以及畫素電極122於源極112與汲極114之上。無機保護層118、有機保護層120以及畫素電極122的材質與形成方法與第1H圖的實施例相同,因此不再重複贅述之。 Next, referring to FIG. 2G, an inorganic protective layer 118, an organic protective layer 120, and a pixel electrode 122 are sequentially formed on the source 112 and the drain 114. The materials and forming methods of the inorganic protective layer 118, the organic protective layer 120, and the pixel electrode 122 are the same as those of the embodiment shown in FIG. 1H, so they will not be repeated here.

電子裝置10與10a透過具有高載子遷移率、低接 觸電阻與高熱穩定性的第一結構相(例如1T’相)的接觸端108a’,可有效提供低電阻歐姆接觸於主動元件的源極112、汲極114與通道層108b’之間的接觸介面,而提升元件表現與熱穩定性。並透過採用非晶的二維材料層108進行雷射P1與退火製程P2來得到分別具有不同結構相的多晶的接觸端108a’與多晶的通道層108b’並使其共存,具有製程彈性大的優點,舉例而言,毋需準備單晶的二維材料,甚至,可依產品需求來選擇需要表現半導體特性(例如:2H相)的通道層108b’的位置,以及表現金屬特性(例如:1T’相)的接觸端108a’的位置。 The electronic devices 10 and 10a have high carrier mobility and low connection The contact end 108a' of the contact resistance and the first structural phase with high thermal stability (for example, 1T' phase) can effectively provide low-resistance ohmic contact between the source 112, the drain 114 and the channel layer 108b' of the active device. Interface, and improve component performance and thermal stability. And by using the amorphous two-dimensional material layer 108 to perform the laser P1 and annealing process P2 to obtain the polycrystalline contact end 108a' and the polycrystalline channel layer 108b' with different structural phases and make them coexist, which has process flexibility Great advantages. For example, there is no need to prepare single-crystal two-dimensional materials, and even the position of the channel layer 108b' that needs to exhibit semiconductor characteristics (such as 2H phase) can be selected according to product requirements, and to exhibit metal characteristics (such as : 1T' phase) the position of the contact end 108a'.

以上概述數個實施方式或實施例的特徵,使所屬領域中具有通常知識者可以從各個方面更加瞭解本揭露。本技術領域中具有通常知識者應可理解,且可輕易地以本揭露為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到在此介紹的實施方式或實施例相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本揭露的揭露精神與範圍。在不背離本揭露的精神與範圍之前提下,可對本揭露進行各種改變、置換或修改。 The above summarizes the characteristics of several implementations or embodiments, so that those with ordinary knowledge in the field can better understand the present disclosure from various aspects. Those skilled in the art should understand, and can easily design or modify other processes and structures based on the present disclosure, so as to achieve the same purpose and/or the implementation modes or embodiments introduced herein The same advantages. Those skilled in the art should also understand that these equivalent structures do not deviate from the spirit and scope of the disclosure. Without departing from the spirit and scope of this disclosure, various changes, substitutions or modifications can be made to this disclosure.

10‧‧‧電子裝置 10‧‧‧Electronic device

100‧‧‧基板 100‧‧‧Substrate

102‧‧‧緩衝層 102‧‧‧Buffer layer

104‧‧‧閘極 104‧‧‧Gate

106‧‧‧閘極絕緣層 106‧‧‧Gate insulation layer

108a’‧‧‧接觸端 108a’‧‧‧Contact terminal

108b’‧‧‧通道層 108b’‧‧‧passage layer

110’‧‧‧保護層 110’‧‧‧Protection layer

112‧‧‧源極 112‧‧‧Source

114‧‧‧汲極 114‧‧‧Dip pole

116‧‧‧主動元件 116‧‧‧Active Components

118‧‧‧無機保護層 118‧‧‧Inorganic protective layer

120‧‧‧有機保護層 120‧‧‧Organic protective layer

122‧‧‧畫素電極 122‧‧‧Pixel electrode

TH1‧‧‧畫素電極連通孔 TH1‧‧‧Pixel electrode connecting hole

Claims (12)

一種電子裝置,包含:一基板;一閘極,位於該基板上方;一二維材料層,位於該基板上方,該二維材料層包含一通道層以及位於該通道層兩側的一第一接觸端與一第二接觸端,該通道層包含一第一多晶過渡金屬硫屬化合物,該第一接觸端與該第二接觸端包含一第二多晶過渡金屬硫屬化合物,該第二多晶過渡金屬硫屬化合物具有一第一結構相,該第一多晶過渡金屬硫屬化合物具有一第二結構相,該第一結構相為1T’相,該第二結構相為2H相;一閘極絕緣層,位於該閘極與該二維材料層之間;以及一源極與一汲極,位於該二維材料層兩側且分別電性連接該二維材料層。 An electronic device comprising: a substrate; a gate electrode located above the substrate; a two-dimensional material layer located above the substrate, the two-dimensional material layer including a channel layer and a first contact located on both sides of the channel layer End and a second contact end, the channel layer includes a first polycrystalline transition metal chalcogen compound, the first contact end and the second contact end include a second polycrystalline transition metal chalcogen compound, the second polycrystalline chalcogenide The crystalline transition metal chalcogenide compound has a first structural phase, the first polycrystalline transition metal chalcogenide compound has a second structural phase, the first structural phase is a 1T' phase, and the second structural phase is a 2H phase; The gate insulating layer is located between the gate and the two-dimensional material layer; and a source and a drain are located on both sides of the two-dimensional material layer and are electrically connected to the two-dimensional material layer. 如請求項1所述之電子裝置,其中該基板為藍寶石、金屬箔、單晶矽、非晶矽、多晶矽、玻璃、石英、塑膠或陶瓷。 The electronic device according to claim 1, wherein the substrate is sapphire, metal foil, monocrystalline silicon, amorphous silicon, polycrystalline silicon, glass, quartz, plastic or ceramic. 如請求項1所述之電子裝置,其中該第一結構相的導電率高於該第二結構相的導電率。 The electronic device according to claim 1, wherein the conductivity of the first structural phase is higher than the conductivity of the second structural phase. 如請求項1所述之電子裝置,其中該第一多晶過渡金屬硫屬化合物的組成元素與該第二多晶過渡金屬硫 屬化合物的組成元素相同。 The electronic device according to claim 1, wherein the constituent elements of the first polycrystalline transition metal chalcogen compound and the second polycrystalline transition metal sulfur The constituent elements of the genus compounds are the same. 如請求項1所述之電子裝置,其中該第一與該第二多晶過渡金屬硫屬化合物包含至少一過渡金屬與至少一硫屬元素,該過渡金屬為選自由鉬、鎢、鉻、釩、鈮、鉭、鉑、鈦、鉿、鋯、錸所組成的群組,該硫屬元素為選自由硫、硒、碲所組成的群組。 The electronic device according to claim 1, wherein the first and second polycrystalline transition metal chalcogen compounds comprise at least one transition metal and at least one chalcogen element, and the transition metal is selected from molybdenum, tungsten, chromium, and vanadium , Niobium, tantalum, platinum, titanium, hafnium, zirconium, rhenium, and the chalcogen element is selected from the group consisting of sulfur, selenium, and tellurium. 如請求項1所述之電子裝置,其中該第一接觸端的厚度與該第二接觸端的厚度分別大於該通道層的厚度。 The electronic device according to claim 1, wherein the thickness of the first contact end and the thickness of the second contact end are respectively greater than the thickness of the channel layer. 如請求項1所述之電子裝置,更包含:一畫素電極,位於該二維材料層上方並電性連接該汲極。 The electronic device according to claim 1, further comprising: a pixel electrode located above the two-dimensional material layer and electrically connected to the drain electrode. 一種電子裝置的製造方法,包含:沉積一非晶二維材料層於一基板上方;照射雷射於該非晶二維材料層的一第一部分,使該第一部分包含一晶種部及一非晶部,其中該晶種部具有一第一結構相,該非晶二維材料層具有一第二部分緊鄰該第一部分,該第二部分免於受到該雷射照射;以及執行一退火製程,使該第一部分的該晶種部及該非晶部轉變為一接觸端,並使該第二部分轉變為一通道層,該接觸端具有該第一結構相,該通道層具有一第二結構相,其中該 第一結構相的導電率高於該第二結構相的導電率。 A method for manufacturing an electronic device includes: depositing an amorphous two-dimensional material layer on a substrate; irradiating a laser on a first part of the amorphous two-dimensional material layer so that the first part includes a seed part and an amorphous part Part, wherein the seed part has a first structure phase, the amorphous two-dimensional material layer has a second part adjacent to the first part, and the second part is protected from the laser; and an annealing process is performed to make the The seed part and the amorphous part of the first part are transformed into a contact end, and the second part is transformed into a channel layer, the contact end has the first structural phase, and the channel layer has a second structural phase, wherein Should The conductivity of the first structural phase is higher than the conductivity of the second structural phase. 如請求項8所述之方法,其中該退火製程為爐管退火、快速熱退火、雷射退火或微波退火。 The method according to claim 8, wherein the annealing process is furnace annealing, rapid thermal annealing, laser annealing or microwave annealing. 如請求項8所述之方法,其中在該退火製程後,該接觸端具有多晶之該第一結構相。 The method according to claim 8, wherein after the annealing process, the contact end has the polycrystalline first structural phase. 如請求項8所述之方法,其中在該照射雷射前,該第一部分具有一第一厚度,該第二部分具有一第二厚度,該退火製程使得該第一厚度大於該第二厚度。 The method according to claim 8, wherein before the laser irradiation, the first part has a first thickness and the second part has a second thickness, and the annealing process makes the first thickness greater than the second thickness. 如請求項8所述之方法,更包含:在該退火製程之前,沉積一保護層於該非晶二維材料層上方,以覆蓋該第一部分與該第二部分,其中該保護層包含氮化矽、氮氧化矽、矽鋁氧化物或以上之組合。 The method according to claim 8, further comprising: before the annealing process, depositing a protective layer on the amorphous two-dimensional material layer to cover the first part and the second part, wherein the protective layer comprises silicon nitride , Silicon oxynitride, silicon aluminum oxide or a combination of the above.
TW108110147A 2019-03-22 2019-03-22 Electrical device and manufacturing method thereof TWI737973B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108110147A TWI737973B (en) 2019-03-22 2019-03-22 Electrical device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108110147A TWI737973B (en) 2019-03-22 2019-03-22 Electrical device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202036916A TW202036916A (en) 2020-10-01
TWI737973B true TWI737973B (en) 2021-09-01

Family

ID=74091221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110147A TWI737973B (en) 2019-03-22 2019-03-22 Electrical device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI737973B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171392B (en) * 2021-11-17 2024-03-15 北京大学 Method for preparing large-area high-performance n-type two-dimensional molybdenum telluride field effect transistor array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201721862A (en) * 2015-12-02 2017-06-16 三星電子股份有限公司 Field effect transistor and semiconductor device
CN107039462A (en) * 2015-12-31 2017-08-11 乐金显示有限公司 Active layer including its thin-film transistor array base-plate and display device
CN107452631A (en) * 2017-05-08 2017-12-08 北京大学 A kind of method that electronic device electrode is prepared using metallic transition metals chalcogen compound
TW201824224A (en) * 2016-09-30 2018-07-01 南韓商Lg顯示器股份有限公司 Array substrate for thin-film transistor and display device of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201721862A (en) * 2015-12-02 2017-06-16 三星電子股份有限公司 Field effect transistor and semiconductor device
CN107039462A (en) * 2015-12-31 2017-08-11 乐金显示有限公司 Active layer including its thin-film transistor array base-plate and display device
TW201824224A (en) * 2016-09-30 2018-07-01 南韓商Lg顯示器股份有限公司 Array substrate for thin-film transistor and display device of the same
CN107452631A (en) * 2017-05-08 2017-12-08 北京大学 A kind of method that electronic device electrode is prepared using metallic transition metals chalcogen compound

Also Published As

Publication number Publication date
TW202036916A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
US9202896B2 (en) TFT, method of manufacturing the TFT, and method of manufacturing organic light emitting display device including the TFT
CN109148482B (en) Display back plate, preparation method thereof and display device
US9553201B2 (en) Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
US20130256653A1 (en) Thin film transistor having plural semiconductive oxides, thin film transistor array panel and display device including the same, and manufacturing method of thin film transistor
US9698278B2 (en) Thin film transistor and manufacturing method thereof, array substrate, display device
CN102447074A (en) Organic light-emitting display device and manufacturing method of the same
TW201513369A (en) Thin film transistor and method of manufacturing the same
US20100148155A1 (en) Thin film transistor, method of forming the same and flat panel display device having the same
US9704998B2 (en) Thin film transistor and method of manufacturing the same, display substrate, and display apparatus
US9070597B2 (en) Thin film transistor, display substrate and method of manufacturing a thin film transistor
CN103094305A (en) Thin-film transistor array substrate, method of manufacturing the same and organic light emitting display device
US20160079285A1 (en) Double thin film transistor and method of manufacturing the same
EP3252802B1 (en) Thin film transistor manufacturing method and array substrate manufacturing method
US10283628B2 (en) Thin film transistor with source electrode, drain electrode and active layer prepared in a same layer and method for manufacturing the same, array substrate and display device
TWI737973B (en) Electrical device and manufacturing method thereof
KR20110058356A (en) Array substrate and method of fabricating the same
US20150048360A1 (en) Semiconductor device and semiconductor device manufacturing method
US9437622B2 (en) Thin film transistor and method for manufacturing the same, array substrate and display device
KR20120067108A (en) Array substrate and method of fabricating the same
US20150108468A1 (en) Thin film transistor and method of manufacturing the same
US10283533B2 (en) Transistor array panel including transistor with top electrode being electrically connected to source electrode and manufacturing method thereof
KR20160049172A (en) Thin film transistor array substrate and display device comprising the same
US9806100B2 (en) Manufacturing method of thin film transistor array panel and thin film transistor array panel
US20200388709A1 (en) Thin film transistor, method for manufacturing same, and display apparatus