TWI737497B - Quality designing method and electrical device - Google Patents
Quality designing method and electrical device Download PDFInfo
- Publication number
- TWI737497B TWI737497B TW109132458A TW109132458A TWI737497B TW I737497 B TWI737497 B TW I737497B TW 109132458 A TW109132458 A TW 109132458A TW 109132458 A TW109132458 A TW 109132458A TW I737497 B TWI737497 B TW I737497B
- Authority
- TW
- Taiwan
- Prior art keywords
- manufacturing parameters
- historical
- function
- objective function
- quality data
- Prior art date
Links
Images
Landscapes
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Feedback Control In General (AREA)
Abstract
Description
本揭露是關於自動化的品質設計方法。 This disclosure is about automated quality design methods.
現階段的品質參數設計大多仰賴人為知識與經驗,當客戶提出品質的要求時,需要靠人為經驗衡量用那些製造參數可以製造出符合客戶要求的產品,進而判斷是否可以接單。然而,依靠人為知識與經驗參雜了許多主觀的判斷,如何提出一種客觀的品質設計方法,為此領域技術人員所關心的議題。 The quality parameter design at this stage mostly relies on human knowledge and experience. When customers put forward quality requirements, they need to rely on human experience to measure those manufacturing parameters that can produce products that meet customer requirements, and then determine whether they can accept orders. However, relying on human knowledge and experience mixed with many subjective judgments, how to propose an objective quality design method is a topic of concern to those skilled in the art.
本發明的實施例提出一種品質設計方法,適用於一電腦裝置,包括:取得歷史製造參數與歷史品質數據,根據歷史製造參數與歷史品質數據訓練一機器學習模型;接收客戶要求,並根據客戶要求建立目標函數;以及根據目標函數執行最佳化演算法,藉此嘗試多組製造參數,將每組製造參數輸入至機器學習模型以取得預測品質數據,並 且尋找最佳化目標函數的預測品質數據。 The embodiment of the present invention proposes a quality design method suitable for a computer device, including: obtaining historical manufacturing parameters and historical quality data, training a machine learning model based on the historical manufacturing parameters and historical quality data; receiving customer requirements, and according to customer requirements Establish an objective function; and execute an optimization algorithm based on the objective function to try multiple sets of manufacturing parameters, input each set of manufacturing parameters into the machine learning model to obtain predicted quality data, and And look for prediction quality data that optimizes the objective function.
在一些實施例中,上述的品質設計方法適用於軋延系統。歷史製造參數包括合金成份、熱軋溫度、冷軋溫度、速度、張力以及調質率。歷史品質參數包括抗拉強度、降伏強度與伸長率。 In some embodiments, the above-mentioned quality design method is applicable to the rolling system. Historical manufacturing parameters include alloy composition, hot rolling temperature, cold rolling temperature, speed, tension, and quenching and tempering rate. Historical quality parameters include tensile strength, yield strength and elongation.
在一些實施例中,根據目標函數執行最佳化演算法的步驟還包括:設定限制條件,使得每組製造參數中的合金成份必須在一既有範圍內。 In some embodiments, the step of performing the optimization algorithm according to the objective function further includes: setting restriction conditions so that the alloy composition in each set of manufacturing parameters must be within an existing range.
在一些實施例中,若客戶要求屬於雙邊要求,設定目標函數為凹函數或凸函數。 In some embodiments, if the customer request is a bilateral request, the objective function is set to be a concave function or a convex function.
在一些實施例中,若客戶要求屬於單邊要求,設定目標函數為單調遞增函數或單調遞減函數。 In some embodiments, if the customer requirement is a unilateral requirement, the objective function is set as a monotonically increasing function or a monotonically decreasing function.
以另一個角度來說,本發明的實施例提出一種電子裝置,包括記憶體與處理器。記憶體儲存有多個指令,處理器用以執行這些指令以完成多個步驟:取得歷史製造參數與歷史品質數據,根據歷史製造參數與歷史品質數據訓練一機器學習模型;接收客戶要求,並根據客戶要求建立目標函數;以及根據目標函數執行最佳化演算法,藉此嘗試多組製造參數,將每組製造參數輸入至機器學習模型以取得預測品質數據,並且尋找最佳化目標函數的預測品質數據。 From another perspective, an embodiment of the present invention provides an electronic device including a memory and a processor. The memory stores multiple instructions, and the processor executes these instructions to complete multiple steps: obtain historical manufacturing parameters and historical quality data, train a machine learning model based on historical manufacturing parameters and historical quality data; receive customer requirements and follow Requires the establishment of an objective function; and executes an optimization algorithm based on the objective function to try multiple sets of manufacturing parameters, input each set of manufacturing parameters to the machine learning model to obtain predicted quality data, and find the predicted quality of the optimized objective function data.
在上述的品質設計方法中,可以自動化地計算出生產成本較低且讓品質達標的製造參數,可加速後續的試製與回覆能否接單的整體效率。 In the above-mentioned quality design method, it is possible to automatically calculate the manufacturing parameters that have lower production costs and meet the quality standards, which can speed up the overall efficiency of subsequent trial production and answering whether the order can be accepted.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
110:軋延系統 110: Rolling system
111:煉鋼階段 111: Steelmaking stage
112:熱軋階段 112: Hot rolling stage
113:冷軋階段 113: Cold rolling stage
120:電子裝置 120: electronic device
121:處理器 121: processor
122:記憶體 122: memory
210:凸函數 210: Convex function
220:單調遞增函數 220: monotonically increasing function
230:單調遞減函數 230: Monotonic decreasing function
301~303:步驟 301~303: steps
[圖1]是繪示軋延系統的示意圖。 [Figure 1] is a schematic diagram showing the rolling system.
[圖2A]至[圖2C]是根據一實施例繪示目標函數的示意圖。 [FIG. 2A] to [FIG. 2C] are schematic diagrams illustrating the objective function according to an embodiment.
[圖3]是根據一實施例繪示品質設計方法的流程圖。 [Fig. 3] is a flowchart of a quality design method according to an embodiment.
關於本文中所使用之「第一」、「第二」等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 Regarding the “first”, “second”, etc. used in this text, it does not particularly mean the order or sequence, but only to distinguish elements or operations described in the same technical terms.
圖1是繪示軋延系統的示意圖。請參照圖1,軋延系統110包括了多個生產階段,例如為煉鋼階段111、熱軋階段112與冷軋階段113,每個生產階段都需要對應的設備與製程,本領域具有通常知識者當可理解這些生產階段,在此並不再贅述。此外,這些生產階段的相關參數會傳送至電子裝置120,電子裝置120包括了處理器121與記憶體122。電子裝置120可以是各種形式的控制電腦,處理器121可以是中央處理器、微處理器、微控制器、數位信號處理器、特殊應用積體電路等,記憶體122可為揮發性記憶體或非揮發性記憶體,其中儲存有多個指令,處
理器121會執行這些指令來完成一個品質設計方法,以下將詳細說明此方法。
Fig. 1 is a schematic diagram showing the rolling system. 1, the
首先取得關於軋延系統110的歷史製造參數與歷史品質數據,歷史製造參數是關於製造的製程與成份,歷史品質數據則是關於產品品質。舉例來說,在此所生產的產品為鋼捲,歷史製造參數包括鋼捲的合金成份、熱軋溫度、冷軋溫度、速度、張力以及調質率。另一方面,歷史品質數據包括了抗拉強度(tensile strength)、降伏強度(yield stress)與伸長率(elongation)。然而,本發明並不在此限,在其他實施例中歷史製造參數與歷史品質數據也可以是關於鋼捲以外的產品。在一些實施例中,還可以對這些歷史製造參數與歷史品質數據執行一些前處理,這些前處理包括離群值濾除以及正規化,但本發明並不限制這些前處理的內容。
First, obtain historical manufacturing parameters and historical quality data about the
接下來,根據上述的歷史製造參數與歷史品質數據訓練一機器學習模型,目的是根據製造參數來預測品質數據,換言之在訓練階段中歷史製造參數是做為機器學習模型的輸入,而歷史品質數據是做為機器學習模型的輸出。此機器學習模型可以是隨機森林演算法、支持向量機、神經網路等等,本發明並不在此限。在一些實施例中,在訓練階段所採用的損失函數(loss function)為預測值與實際值(ground truth)之間的平方差(mean square error),但本發明並不在此限。在測試階段時是輸入製造參數至訓練完的機器學習模型,而機器學習模型的輸出為 預測品質數據,此計算可以表示為 y i =g( x i ),其中g()表示訓練好的機器學習模型, x i 表示第i組製造參數, y i 表示第i組製造參數所對應的預測品質數據,i為正整數。值得注意的是在此用粗體來表示向量,非粗體則是純量。 Next, train a machine learning model based on the aforementioned historical manufacturing parameters and historical quality data. The purpose is to predict quality data based on manufacturing parameters. In other words, historical manufacturing parameters are used as input to the machine learning model during the training phase, while historical quality data It is used as the output of the machine learning model. The machine learning model can be a random forest algorithm, a support vector machine, a neural network, etc. The present invention is not limited to this. In some embodiments, the loss function used in the training phase is the mean square error between the predicted value and the ground truth, but the present invention is not limited thereto. In the testing phase, the manufacturing parameters are input to the trained machine learning model, and the output of the machine learning model is the predicted quality data. This calculation can be expressed as y i = g ( x i ), where g () represents the trained machine Learning model, x i represents the i-th group of manufacturing parameters, y i represents the predicted quality data corresponding to the i-th group of manufacturing parameters, and i is a positive integer. It is worth noting that boldface is used to represent vectors, and non-boldface is scalar.
接下來接收客戶要求,此客戶要求可以是關於一或多個品質數據,且可以是單邊要求或是雙邊要求。具體來說,單邊要求是指一或多個品質數據必須大於一預設值;或者單邊要求也可以指一或多個品質數據必須小於一預設值。另一方面,雙邊要求是指一或多個品質數據必須要在一預設範圍內,例如介於10-20之間,不能小於10也不能大於20。 Next, the customer request is received. This customer request can be about one or more quality data, and can be a unilateral request or a bilateral request. Specifically, a unilateral requirement means that one or more quality data must be greater than a preset value; or a unilateral requirement can also mean that one or more quality data must be less than a preset value. On the other hand, bilateral requirements mean that one or more quality data must be within a preset range, for example, between 10-20, and cannot be less than 10 nor greater than 20.
根據客戶要求可以建立一個目標函數。當客戶要求屬於雙邊要求時,設定目標函數為凹(concave)函數或凸(convex)函數。舉例來說,如果客戶要求的預設範圍為[a,b],其中a、b為實數,代表某一品質數據必須在此範圍內,則目標函數可設定為圖2A的凸函數210,此凸函數210在實數a到實數b的範圍內為正,在其他範圍則為0,在後續的演算法中要搜尋此凸函數210的最大值。或者,也可以將凸函數210乘上-1(形成凹函數),在後續的演算法則可以搜尋此目標函數的最小值。換言之,要選擇凹函數或凸函數取決於要搜尋目標函數的最大值或最小值。
An objective function can be established according to customer requirements. When the customer's requirement is a bilateral requirement, the objective function is set as a concave (concave) function or a convex (convex) function. For example, if the preset range requested by the customer is [a, b], where a and b are real numbers, which means that a certain quality data must be within this range, then the objective function can be set to the
當客戶要求屬於單邊要求時,可設定目標函數為單調遞增(monotonic increasing)函數或單調遞減
(monotonic decreasing)函數。舉例來說,如果客戶要求某一個品質數據必須大於一預設值,則可以採用如圖2B的單調遞增函數220,當此單調遞增函數220的輸入小於等於c時輸出為0,當單調遞增函數220的輸入大於c時輸出為正,其中c為實數,在後續的演算法中要搜尋此單調遞增函數220的最大值。在一些實施例中,上述的實數c可以設定為客戶要求的預設值,也可以是預設值加上n倍的標準差(根據歷史品質數據來計算),n為正整數,此正整數n例如為3或其他合適的數值。以另一個角度來說,此目標函數可以表示為以下數學式(1),其中y表示品質數據。α為一正實數,可經由實驗來決定。
When the customer requirements are unilateral requirements, the objective function can be set as a monotonic increasing function or a monotonic decreasing function. For example, if the customer requires that a certain quality data must be greater than a preset value, a monotonic increasing
另一方面,如果客戶要求某一個品質數據必須小於一預設值,則可以採用如圖2C的單調遞減函數230,當此單調遞減函數230的輸入小於d時輸出為正,當單調遞減函數230的輸入大於等於d時輸出為0,其中d為實數,在後續的演算法中要搜尋此單調遞減函數230的最大值。在一些實施例中,上述的實數d可以設定為客戶要求的預設值,也可以是預設值減去n倍的標準差(根據歷史品質數據來計算),此正整數n例如為3或其他合適的數值。以另一個角度來說,此目標函數可以表示為以下數學式(2),其中β為一正實數,可經由實驗來決定。
On the other hand, if the customer requires a certain quality data to be less than a preset value, a monotonic decreasing
[數學式2]
在圖2B與圖2C的實施例中是要搜尋目標函數的最大值,若要搜尋最小值則可以在客戶要求某一個品質數據必須大於一預設值時採用一個單調遞減函數,而在客戶要求某一個品質數據必須小於一預設值時採用一個單調遞增函數。換言之,要選擇單調遞增函數或是單調遞減函數取決於要搜尋目標函數的最大值或最小值,也取決於客戶要求屬於哪一種單邊要求。 In the embodiment of FIG. 2B and FIG. 2C, it is necessary to search for the maximum value of the objective function. To search for the minimum value, a monotonically decreasing function can be used when the customer requires that a certain quality data must be greater than a preset value. When a certain quality data must be less than a preset value, a monotonically increasing function is used. In other words, the choice of monotonic increasing function or monotonic decreasing function depends on the maximum or minimum value of the objective function to be searched, and also depends on which unilateral requirement the customer request belongs to.
圖2A至圖2C中的凸函數210、單調遞增函數220與單調遞減函數230僅是範例,本領域具有通常知識者當可根據上述揭示內容設計出其他的函數。
The
在決定目標函數以後,可根據此目標函數執行最佳化演算法,藉此嘗試多組製造參數,將每一組製造參數輸入至上述的機器學習模型以取得預測品質數據,並且尋找能夠最佳化目標函數的預測品質數據。在一些實施例中,執行最佳化演算法時也可以設定限制條件,使得每一組製造參數中的合金成份必須在既有範圍內。具體來說,此最佳化演算法可以表示為以下數學式(3)。 After the objective function is determined, an optimization algorithm can be executed according to the objective function to try multiple sets of manufacturing parameters, input each set of manufacturing parameters into the above-mentioned machine learning model to obtain predicted quality data, and find the best Optimize the predicted quality data of the objective function. In some embodiments, restrictions can also be set when the optimization algorithm is executed, so that the alloy composition in each set of manufacturing parameters must be within the existing range. Specifically, this optimization algorithm can be expressed as the following mathematical formula (3).
其中ac i 表示第i組製造參數 x i 中的合金成份。為一集合,表示上述的既有範圍,此集合包括所有曾經生產過的合金成份。f()是上述的目標函數。值得注意的是,當
預測品質數據 y i 為向量(長度大於1)時,可以將每一個預測品質數據都輸入對應的目標函數,然後將結果加總起來。舉例來說,如果客戶要求第一品質數據必須在[a,b]的範圍內,第二品質數據必須大於c,第三品質數據必須小於d時,則所預測出的第一至第三品質數據可以分別輸入至凸函數210、單調遞增函數220與單調遞減函數230,然後再將這些函數的輸出加總起來做為數學式(3)中的f()。
Where ac i represents the alloy composition in the i-th group of manufacturing parameters x i. Is a set, representing the above-mentioned existing range, this set Including all the alloy components that have been produced. f () is the above objective function. It is worth noting that when the predicted quality data y i is a vector (the length is greater than 1), each predicted quality data can be input to the corresponding objective function, and then the results can be added up. For example, if the customer requires that the first quality data must be within the range of [a,b], the second quality data must be greater than c, and the third quality data must be less than d, then the predicted first to third quality The data can be input into the
在一些實施例中可以採用生物啟發式演算法,例如基因演算法或粒子群最佳化(Particle Swarm Optimization,PSO)來搜尋製造參數 x i ,藉此找到最佳的一組製造參數 x i ,使得對應的預測品質數據 y i 能讓目標函數輸出最大的數值,本領域具有通常知識者當可理解在給定目標函數下如何使用生物啟發式演算法,在此並不詳細贅述。在此最佳化演算法中限制合金成份必須在既有範圍內是為了減緩剛種增加、提升連鑄率與降低成本,如此一來可以搜尋出生產成本較低又讓品質達標的製造參數。 In some embodiments, biological heuristic algorithms, such as genetic algorithms or Particle Swarm Optimization (PSO) can be used to search for manufacturing parameters x i to find the best set of manufacturing parameters x i , The corresponding predicted quality data y i enables the objective function to output the maximum value. Those with ordinary knowledge in the art should understand how to use the biological heuristic algorithm under a given objective function, which will not be described in detail here. In this optimization algorithm, limiting the alloy composition must be within the existing range in order to slow down the increase of rigid species, increase the continuous casting rate and reduce the cost, so that the manufacturing parameters with lower production costs and quality standards can be searched for.
圖3是根據一實施例繪示品質設計方法的流程圖。請參照圖3,在步驟301,取得歷史製造參數與歷史品質數據,根據歷史製造參數與歷史品質數據訓練一機器學習模型。在步驟302,接收客戶要求,並根據客戶要求建立目標函數。在步驟303,根據目標函數執行最佳化演算法,藉此嘗試多組製造參數,將每組製造參數輸入至機器學習模型以取得預測品質數據,並且尋找最佳化目標函數的預測品質數據。然而,圖3中各步驟已詳細說明如上,在此
便不再贅述。值得注意的是,圖3中各步驟可以實作為多個程式碼或是電路,本發明並不在此限。此外,圖3的方法可以搭配以上實施例使用,也可以單獨使用。換言之,圖3的各步驟之間也可以加入其他的步驟。
Fig. 3 is a flowchart illustrating a quality design method according to an embodiment. Referring to FIG. 3, in
在上述的品質設計方法中,可以自動化地計算出生產成本較低且讓品質達標的製造參數,可提供產品工程師進行品質設計的決策輔助,加速後續的試製以及回覆能否接單的整體效率。 In the above-mentioned quality design method, it is possible to automatically calculate the manufacturing parameters with low production cost and meet the quality standards, which can provide product engineers with decision-making assistance in quality design, speed up subsequent trial production and reply to the overall efficiency of whether to accept orders.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.
301~303:步驟 301~303: steps
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132458A TWI737497B (en) | 2020-09-18 | 2020-09-18 | Quality designing method and electrical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132458A TWI737497B (en) | 2020-09-18 | 2020-09-18 | Quality designing method and electrical device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI737497B true TWI737497B (en) | 2021-08-21 |
TW202212020A TW202212020A (en) | 2022-04-01 |
Family
ID=78283475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109132458A TWI737497B (en) | 2020-09-18 | 2020-09-18 | Quality designing method and electrical device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI737497B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI785945B (en) * | 2021-12-23 | 2022-12-01 | 中國鋼鐵股份有限公司 | Estimating system for shape of hot rolled steel |
CN116580791A (en) * | 2023-04-28 | 2023-08-11 | 贵研铂业股份有限公司 | Method for simultaneously optimizing wettability and braze joint strength of alloy solder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI819578B (en) * | 2022-04-20 | 2023-10-21 | 國立中央大學 | Multi-objective parameters optimization system, method and computer program product thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000263110A (en) * | 1999-03-10 | 2000-09-26 | Toshiba Corp | Learning apparatus for rolling control model |
TW201818169A (en) * | 2016-11-15 | 2018-05-16 | 國立中興大學 | Method for constructing a processing expert system and electronic device using the method capable of obtaining demand indicators like speed index, geometric accuracy index, and surface quality index |
TWI697585B (en) * | 2019-03-20 | 2020-07-01 | 中國鋼鐵股份有限公司 | Hot dip galvanizing product defect estimation system and method thereof |
-
2020
- 2020-09-18 TW TW109132458A patent/TWI737497B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000263110A (en) * | 1999-03-10 | 2000-09-26 | Toshiba Corp | Learning apparatus for rolling control model |
TW201818169A (en) * | 2016-11-15 | 2018-05-16 | 國立中興大學 | Method for constructing a processing expert system and electronic device using the method capable of obtaining demand indicators like speed index, geometric accuracy index, and surface quality index |
TWI697585B (en) * | 2019-03-20 | 2020-07-01 | 中國鋼鐵股份有限公司 | Hot dip galvanizing product defect estimation system and method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI785945B (en) * | 2021-12-23 | 2022-12-01 | 中國鋼鐵股份有限公司 | Estimating system for shape of hot rolled steel |
CN116580791A (en) * | 2023-04-28 | 2023-08-11 | 贵研铂业股份有限公司 | Method for simultaneously optimizing wettability and braze joint strength of alloy solder |
Also Published As
Publication number | Publication date |
---|---|
TW202212020A (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI737497B (en) | Quality designing method and electrical device | |
US20210049515A1 (en) | Prediction method and system of high slope deformation | |
CN111191822A (en) | Steel parameter prediction method and terminal equipment | |
WO2021004198A1 (en) | Plate performance prediction method and apparatus | |
CN111061564A (en) | Server capacity adjusting method and device and electronic equipment | |
CN110942248A (en) | Training method and device for transaction wind control network and transaction risk detection method | |
CN116184828B (en) | Online real-time optimization method and system for high-speed valve characteristic curve of self-adaptive steam turbine | |
US20190185960A1 (en) | Forging Method | |
TWI708128B (en) | Method and electrical device for adjusting process parameter | |
JP7440395B2 (en) | Optimal solution search device and optimal solution search program | |
CN112948582A (en) | Data processing method, device, equipment and readable medium | |
EP4027274A1 (en) | Calculation device, calculation method, and non-transitory computer-readable medium storing program | |
CN116579654A (en) | Online intelligent quality monitoring method and system for IF steel | |
CN104021499B (en) | Semiconductor manufacturing control method | |
CN116882033A (en) | Multi-network generation model determining method, device, equipment and storage medium | |
CN116596391A (en) | Change control performance determining method, device, electronic equipment and storage medium | |
Zhang et al. | Rolling force prediction in heavy plate rolling based on uniform differential neural network | |
CN116451415A (en) | Performance prediction method, device, equipment and storage medium | |
CN116092653A (en) | Comprehensive hospital medical distribution dynamic scheduling method | |
CN110516242A (en) | The method and apparatus for identifying negative financial Information based on machine learning algorithm | |
Hansen et al. | Bootstrap model averaging unit root inference | |
CN115439916A (en) | Face recognition method, apparatus, device and medium | |
CN113256128A (en) | Task scheduling method for balancing resource usage by reinforcement learning in power internet of things | |
Chen | Construction and Application of Forecast Model for Eco-Tourism Market Demand Based on BP Neural Network | |
CN111310964A (en) | Load prediction method and device |