TW201818169A - Method for constructing a processing expert system and electronic device using the method capable of obtaining demand indicators like speed index, geometric accuracy index, and surface quality index - Google Patents

Method for constructing a processing expert system and electronic device using the method capable of obtaining demand indicators like speed index, geometric accuracy index, and surface quality index Download PDF

Info

Publication number
TW201818169A
TW201818169A TW105137243A TW105137243A TW201818169A TW 201818169 A TW201818169 A TW 201818169A TW 105137243 A TW105137243 A TW 105137243A TW 105137243 A TW105137243 A TW 105137243A TW 201818169 A TW201818169 A TW 201818169A
Authority
TW
Taiwan
Prior art keywords
processing
expert system
index
constructing
objective function
Prior art date
Application number
TW105137243A
Other languages
Chinese (zh)
Other versions
TWI600987B (en
Inventor
李慶鴻
邱泓維
陳政雄
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW105137243A priority Critical patent/TWI600987B/en
Application granted granted Critical
Publication of TWI600987B publication Critical patent/TWI600987B/en
Publication of TW201818169A publication Critical patent/TW201818169A/en

Links

Landscapes

  • Numerical Control (AREA)

Abstract

This invention relates to a method for constructing a processing expert system. The processing expert system is applicable to a CNC machine tool. The method for constructing a processing expert system comprises the following steps: obtaining multiple sets of actual operation samples, each actual operation sample containing existing control parameters and corresponding operational characteristics. The CNC machine tool will derive the results of machining characteristics based on the existing control parameters; the machining characteristics include a machining time, a contour error, and a tracking error. According to the actual operation sample and a machine learning algorithm, an objective function is obtained, so that a processing expert system capable of accurately predicting the processing parameters of the controller based on the processing demand indicators is efficiently constructed, and the processing demand indicators are a speed index, an accuracy index, and a surface quality index.

Description

建構加工專家系統的方法及使用此方法的電子裝置Method for constructing processing expert system and electronic device using the method

本發明係關於一種專家系統,特別係一種建構加工專家系統的方法及使用此方法的電子裝置。The invention relates to an expert system, in particular to a method for constructing a processing expert system and an electronic device using the method.

因應於不同產品特性,CNC工具機進行加工時通常會以切削速度(speed)、幾何精度(accuracy)及表面品質(surface quality)等性能指標作為加工需求目標。而影響這些性能指標的因素有很多種,其中CNC控制器運作時所使用之加工參數(例如,最大加速度、加加速度、轉角速度等)對加工結果影響甚多,因此該CNC控制器即扮演著該加工結果是否能符合加工需求目標的重要角色。傳統CNC控制器的控制參數通常係選用出廠時的標準設定,使用者很少會進一步考慮機台的組裝製成、機械特性、加工目標來動態地調整控制器加工參數。而隨著社會與科技的演進,現今加工產品已逐漸朝向少量、樣式多元及作工精緻等趨勢發展,客戶更有許多客製化的要求,套用標準設定的單一控制器加工參數通常無法達到預設的加工需求目標。雖然使用者可依據經驗或使用廠商所提供的資料來自行調整控制器加工參數,但使用者可能需要多次反覆試驗且廠商的資料甚少,最後不僅造成使用者的困擾與不便,更可能影響加工效率與品質。由此可知,如何建構一種適用於CNC控制器的加工專家系統,以提供較佳的控制器加工參數來達到所欲的加工需求目標是相關業者努力的目標之一。Due to different product characteristics, CNC machine tools usually use cutting speed (speed), geometric accuracy (surface accuracy), and surface quality (surface quality) as processing requirements. There are many factors that affect these performance indicators. Among them, the processing parameters (such as maximum acceleration, jerk, and angular speed) used by the CNC controller during operation have a lot of influence on the processing results, so the CNC controller plays a role Whether the processing result can meet the important role of the processing demand target. The control parameters of traditional CNC controllers are usually selected from the factory default settings. Users rarely further consider the machine's assembly and manufacturing, mechanical characteristics, and processing goals to dynamically adjust the controller's processing parameters. With the evolution of society and technology, today's processed products have gradually developed towards a small number, diversified styles, and exquisite workmanship. Customers also have many customized requirements. The processing parameters of a single controller applied with standard settings usually cannot meet the pre-defined requirements. Set processing demand targets. Although the user can adjust the controller processing parameters according to experience or using the data provided by the manufacturer, the user may need to repeatedly test repeatedly and the manufacturer's data is very small. In the end, it not only causes the user's distress and inconvenience, but also may affect the user. Processing efficiency and quality. It can be known from this that how to construct a processing expert system suitable for CNC controllers to provide better controller processing parameters to achieve the desired processing requirements is one of the goals of the relevant industry.

有鑑於上述之缺失,本發明之目的在於提供一種建構加工專家系統的方法及使用此方法的電子裝置,其能有效率地得出控制器加工參數與加工特性之間的對應關係。In view of the above-mentioned shortcomings, an object of the present invention is to provide a method for constructing a processing expert system and an electronic device using the method, which can efficiently obtain the correspondence between the processing parameters of the controller and the processing characteristics.

為達成上述目的,本發明提供一種建構加工專家系統的方法,該加工專家系統適用於一CNC工具機,而該建構加工專家系統的方法包括下列步驟:取得多組實際運作樣本,其中每一該實際運作樣本包含有多個既有控制參數及對應之多個加工特性,而該CNC工具機係基於該些既有控制參數得出具有該些加工特性的結果,該些加工特性包含有一加工時間、一輪廓誤差及一追蹤誤差;依據該些實際運作樣本並透過一機器學習演算法得出一目標函數,以建構該加工專家系統,其中該目標函數可依據三加工需求指標得出該CNC工具機的多個控制器加工參數,而該三加工需求指標係一速度指標、一精度指標及一表面品質指標。In order to achieve the above object, the present invention provides a method for constructing a processing expert system, which is applicable to a CNC machine tool, and the method for constructing a processing expert system includes the following steps: obtaining a plurality of sets of actual operation samples, each of which The actual operation sample includes multiple existing control parameters and corresponding multiple processing characteristics, and the CNC machine tool is based on the existing control parameters to obtain results with the processing characteristics, and the processing characteristics include a processing time A contour error and a tracking error; based on the actual operating samples and a machine learning algorithm to obtain an objective function to construct the processing expert system, the objective function can be used to obtain the CNC tool based on three processing demand indicators Machine's multiple controller processing parameters, and the three processing demand indicators are a speed indicator, a precision indicator and a surface quality indicator.

此外,本發明另一提供一種電子裝置,適用於建構一加工專家系統,該加工專家系統可應用於一CNC工具機,而該電子裝置包含有一輸入單元、以及一處理單元耦接該輸入單元;該輸入單元用以取得多組實際運作樣本,其中每一該實際運作樣本包含有多個既有控制參數及對應之多個加工特性,而該CNC工具機係基於該些既有控制參數得出具有該些加工特性的結果,該些加工特性包含有一加工時間、一輪廓誤差及一追蹤誤差;該處理單元,耦接該輸入單元,該處理單元依據該些實際運作樣本並透過一機器學習演算法得出一目標函數,以建構該加工專家系統,其中該目標函數可依據三加工需求指標得出該CNC工具機的多個控制器加工參數,而該三加工需求指標係一速度指標、一精度指標及一表面品質指標。In addition, the present invention provides an electronic device suitable for constructing a processing expert system. The processing expert system can be applied to a CNC machine tool. The electronic device includes an input unit and a processing unit coupled to the input unit. The input unit is used to obtain a plurality of sets of actual operation samples, each of which includes a plurality of existing control parameters and corresponding processing characteristics, and the CNC machine tool is based on the existing control parameters. As a result of the processing characteristics, the processing characteristics include a processing time, a contour error, and a tracking error; the processing unit is coupled to the input unit, and the processing unit is based on the actual operation samples and through a machine learning algorithm An objective function can be obtained to construct the processing expert system. The objective function can obtain the processing parameters of multiple controllers of the CNC machine tool according to the three processing demand indicators, and the three processing demand indicators are a speed indicator, a Precision index and a surface quality index.

藉由該機器學習演算法,本發明可自該些實際運作樣本中自動且有效率地分析控制器加工參數與加工特性之間的對應關係,從而建構出能基於該三加工需求指標精確預測出控制器加工參數的加工專家系統。With the machine learning algorithm, the present invention can automatically and efficiently analyze the correspondence between the processing parameters of the controller and the processing characteristics from the actual operating samples, thereby constructing an accurate prediction based on the three processing demand indicators. Processing expert system of controller processing parameters.

請參照第1圖係本發明一較佳實施例的電子裝置1,其包含有一顯示單元10、一輸入單元30、一處理單元50耦接該顯示單元10及該輸入單元30、以及一儲存單元70耦接該處理單元50。該電子裝置1可以係個人電腦、筆記型電腦、智慧型手機、平板電腦、伺服器等裝置,亦可內建於一CNC工具機(圖未示)中。Please refer to FIG. 1. FIG. 1 shows an electronic device 1 according to a preferred embodiment of the present invention. The electronic device 1 includes a display unit 10, an input unit 30, a processing unit 50 coupled to the display unit 10 and the input unit 30, and a storage unit. 70 is coupled to the processing unit 50. The electronic device 1 can be a personal computer, a notebook computer, a smart phone, a tablet computer, a server, or other devices, or it can be built into a CNC machine tool (not shown).

該顯示單元10可以係LCD、LED等類型的視訊顯示單元,該顯示單元10並用以顯示一使用者介面供使用者操作,該使用者介面待後續實施例詳細說明。The display unit 10 may be a video display unit such as an LCD, an LED, or the like. The display unit 10 is also used to display a user interface for a user to operate. The user interface is to be described in detail in subsequent embodiments.

該輸入單元30可以係可透過無線信號、光纖、纜線或匯流排等傳輸媒介接收資料的任何類型單元(例如,行動通訊單元、乙太網路模組、藍芽模組、匯流排埠等)。該輸入單元30亦可以結合電容式、電阻式等類型的觸控面板、按鈕、鍵盤或滑鼠等,以接收使用者對於該使用者介面上的輸入操作所取得之輸入資訊。The input unit 30 can be any type of unit (such as a mobile communication unit, an Ethernet module, a Bluetooth module, a bus port, etc.) that can receive data through a transmission medium such as a wireless signal, optical fiber, cable, or a bus. ). The input unit 30 may also be combined with a capacitive touch panel, a resistive touch panel, a button, a keyboard, or a mouse to receive input information obtained by a user for input operations on the user interface.

該處理單元50可以係中央處理單元、晶片或其他可程式化之一般用途或特殊用途的微控制器等具有訊號處理、參數運算等功能的類似元件或上述元件的組合,該處理單元50用以控制該電子裝置1的所有功能運作。The processing unit 50 may be a central processing unit, a chip, or other programmable general-purpose or special-purpose microcontrollers that have similar functions or a combination of the above-mentioned functions with signal processing and parameter calculation functions. The processing unit 50 is used to: Controls all functions of the electronic device 1.

該儲存單元70可以係隨機存取記憶體、快閃記憶體、唯讀記憶體、可抹除可編程唯讀記憶體或電子抹除式可複寫唯讀記憶體等類型的儲存媒介,該儲存單元70用以儲存用於該CNC工具機的各種控制參數(例如,最大加速度、加加速度(jerk)、轉角速度等CNC控制器(圖未示)加工參數、直線、方形以及圓形加工軌跡、透過該CNC工具機之光學尺(圖未示)所取得之加工路徑(即座標位置資訊)等)、該輸入資訊、多組實際運作樣本等參數及資料。每一該實際運作樣本包含有多個既有控制參數及對應之多個加工特性(例如,一加工時間、一輪廓誤差及一追蹤誤差等),而該CNC工具機之CNC控制器係基於每一該既有控制參數中的控制器加工參數而實際運作後得出具有對應之加工特性的結果。The storage unit 70 may be a storage medium such as a random access memory, a flash memory, a read-only memory, an erasable programmable read-only memory or an electronic erasable rewritable read-only memory. The unit 70 is used to store various control parameters (such as the maximum acceleration, jerk, angular speed and other CNC controllers (not shown)) of the CNC machine tool, processing parameters, linear, square, and circular machining trajectories, Parameters and data such as the machining path (ie coordinate position information) obtained through the optical ruler (not shown) of the CNC machine tool, the input information, and multiple sets of actual operation samples. Each actual operation sample includes multiple existing control parameters and corresponding multiple processing characteristics (for example, a processing time, a contour error, a tracking error, etc.), and the CNC controller of the CNC machine tool is based on each The controller has the processing parameters of the existing control parameters, and the results have corresponding processing characteristics after actual operation.

前述說明是相關於該電子裝置1之結構與元件設計,以下將搭配第2圖進一步說明該電子裝置1的建構加工專家系統的方法,此加工專家系統適用於該CNC工具機。The foregoing description is related to the structure and component design of the electronic device 1. The method of constructing a processing expert system for the electronic device 1 will be further described below with reference to FIG. 2. This processing expert system is applicable to the CNC machine tool.

請參照第2圖,在步驟S21中,該處理單元50透過該輸入單元30取得多組實際運作樣本。例如,該處理單元50透過該輸入單元30而自網際網路、儲存設備、其他電子裝置或使用者輸入資料等方式取得該些實際運作樣本。需說明的是,該輸入單元30接收資料的實施範例可能有很多種,只要能使該處理單元50取得該些實際運作樣本即可。Referring to FIG. 2, in step S21, the processing unit 50 obtains multiple sets of actual operation samples through the input unit 30. For example, the processing unit 50 uses the input unit 30 to obtain the actual operation samples from the Internet, a storage device, other electronic devices, or a user to input data. It should be noted that there may be many implementation examples of the data received by the input unit 30, as long as the processing unit 50 can obtain the actual operation samples.

該處理單元50取得該CNC控制器實際運作下的該些實際運作樣本之後,即可進一步分析該些加工特性及該些既有控制參數之間的對應關係,以得知控制器加工參數的變動對於每一該加工特性的影響趨勢。而能夠理解前述對應關係及影響趨勢的系統便係適用於該CNC控制器的加工專家系統。本發明即係藉由該處理單元50依據該些實際運作樣本並透過一機器學習演算法得出一目標函數,以建構該加工專家系統(步驟S23)。該加工專家系統所載入的目標函數便係能依據三加工需求指標得出該CNC工具機的多個控制器加工參數。而該三加工需求指標即係相關於加工效能指標的一速度指標、一精度指標及一表面品質指標。After the processing unit 50 obtains the actual operation samples under the actual operation of the CNC controller, it can further analyze the correspondence between the processing characteristics and the existing control parameters to learn the changes in the processing parameters of the controller. For each of these processing characteristics, the influence trend. A system capable of understanding the aforementioned correspondence and influence trends is a processing expert system suitable for the CNC controller. In the present invention, the processing unit 50 obtains an objective function based on the actual operation samples and a machine learning algorithm to construct the processing expert system (step S23). The objective function loaded by the processing expert system can obtain the processing parameters of multiple controllers of the CNC machine tool according to the three processing demand indicators. The three processing demand indexes are a speed index, a precision index, and a surface quality index related to the processing efficiency index.

值得注意的是,本實施例的機器學習演算法係採用一倒傳遞類神經網路演算法。該倒傳遞類神經網路演算法係一種模仿生物神經網路架構發展出來的演算法,其係基於一監督式學習。而該處理單元50便係透過該監督式學習並依據該些實際運作樣本得出該些加工特性(輸出層神經元)與該些既控制參數(輸入層神經元)之間的所有連結權重(包含隱藏層神經元),該處理單元50並基於該些連接權重建構該目標函數。而前述建構方式請參照第3圖,該處理單元50初始化該些連接權重,並基於該些既有控制參數及該些連接權重而得出多個預估特性(例如,一預估加工時間、一預估輪廓誤差及一預估追蹤誤差等)。該處理單元50計算該些加工特性及該些預估特性之間的預估誤差,並透過最小化該些實際運作樣本的預估誤差而調整該些連接權重,最終該處理單元50可得出該目標函數。相較於利用經驗法則或廠商資料,本發明透過該機器學習演算法能更有效率地分析出不同情況下的控制器加工參數會產生何種加工特性。It is worth noting that the machine learning algorithm of this embodiment uses an inverted transfer neural network algorithm. The backward transitive neural network algorithm is an algorithm developed after imitating the biological neural network architecture, which is based on a supervised learning. The processing unit 50 obtains all connection weights between the processing characteristics (output layer neurons) and the existing control parameters (input layer neurons) through the supervised learning and according to the actual operating samples. Including hidden layer neurons), the processing unit 50 constructs the objective function based on the connection weights. For the foregoing construction method, please refer to FIG. 3. The processing unit 50 initializes the connection weights, and obtains multiple estimated characteristics based on the existing control parameters and the connection weights (for example, an estimated processing time, An estimated contour error, an estimated tracking error, etc.). The processing unit 50 calculates an estimation error between the processing characteristics and the estimated characteristics, and adjusts the connection weights by minimizing the estimation error of the actual operation samples. Finally, the processing unit 50 can obtain The objective function. Compared with the use of empirical rules or manufacturer data, the present invention can more efficiently analyze the processing characteristics of the controller processing parameters under different conditions through the machine learning algorithm.

需說明的是,該機器學習演算法事實上有很多種,諸如支援向量機、決策樹、線性回歸等演算法皆可應用於建構該目標函數或形成一目標模型,而該些實際運作樣本之內容則需依據不同演算法而調整。It should be noted that there are actually many kinds of machine learning algorithms. Algorithms such as support vector machines, decision trees, and linear regression can be applied to construct the objective function or form an objective model. The content needs to be adjusted according to different algorithms.

在建構出具有該目標函數的加工專家系統之後,本發明更提供使用者介面以方便使用者操作該電子裝置1所載入之加工專家系統。於本實施例中,該處理單元50透過該顯示單元10顯示具有該三加工需求指標的一使用者介面。由於該三加工需求指標彼此相互牴觸,因此實際的加工結果並無法同時讓該三加工需求指標皆達到最高的偏好需求量。例如,第4圖係一較佳實施例的使用者介面80,該使用者介面80具有一以該速度指標、該精度指標及該表面品質指標為頂點的三角形區域81。使用者可在該三角形區域81中選取對於該三加工需求指標的一目標位置P,此目標位置P即代表該使用者對於每一該加工需求指標的偏好需求量。After a processing expert system having the objective function is constructed, the present invention further provides a user interface to facilitate a user to operate the processing expert system loaded in the electronic device 1. In this embodiment, the processing unit 50 displays a user interface with the three processing demand indicators through the display unit 10. Because the three processing demand indicators conflict with each other, the actual processing results cannot make the three processing demand indicators all reach the highest preferred demand at the same time. For example, FIG. 4 is a user interface 80 of a preferred embodiment. The user interface 80 has a triangular area 81 with the speed index, the accuracy index, and the surface quality index as vertices. The user can select a target position P for the three processing demand indicators in the triangular area 81, and the target position P represents the user's preferred demand for each of the processing demand indicators.

需說明的是,該三角形區域81之界定係由於該三加工需求指標彼此的對應關係,然該使用者介面80的變化可能有很多種,其可能係可調整該些偏好需求量之百分比的介面、供選項直接輸入該些偏好需求量之介面等。It should be noted that the definition of the triangular area 81 is due to the corresponding relationship between the three processing demand indicators. However, there may be many changes in the user interface 80. It may be an interface that can adjust the percentage of the preferred demand. , The option to directly enter the interface of these preferred demand, etc.

而當使用者選取該三角形區域81中的目標位置P時,該處理單元50可透過該輸入單元30接收在該使用者介面上80對應於該三加工需求指標的一輸入資訊,該輸入資訊即係該三角形區域81中的該目標位置P。When the user selects the target position P in the triangular area 81, the processing unit 50 may receive an input information corresponding to the three processing demand indicators on the user interface 80 through the input unit 30. The input information is Is the target position P in the triangular area 81.

接著,該處理單元50依據該輸入資訊並透過一最佳化演算法計算該目標函數之結果,以得出對應於該輸入資訊的該些控制器加工參數。於本實施例中,該最佳化演算法之目標函數定義為方程式(1):…(1)為該目標函數,r 為該目標位置P與三頂點位置之間的距離()之倒數(即i 為1、2、3),為一加工時間函數(直線、方形與圓形加工軌跡之加工時間的平均),為一輪廓誤差函數(方形與圓形加工軌跡之輪廓誤差的平均),為一追蹤誤差函數(直線、方形與圓形加工軌跡之追蹤誤差的平均)。Then, the processing unit 50 calculates the result of the objective function through an optimization algorithm according to the input information to obtain the controller processing parameters corresponding to the input information. In this embodiment, the objective function of the optimization algorithm is defined as equation (1): …(1) Is the objective function, r is the distance between the objective position P and the three vertex positions ( , , ) (I.e. , I is 1, 2, 3), Is a function of processing time (average of processing time for straight, square and circular processing trajectories), Is a contour error function (average of the contour errors of square and circular machining trajectories), Is a tracking error function (average of tracking errors for straight, square, and circular machining trajectories).

該處理單元50計算該目標位置P與三頂點位置之間的距離之倒數(),以作為該三加工需求指標的權重值(即偏好需求量)。而本實施例的最佳化演算法係採用一粒子群最佳化演算法,該處理單元50並依據該些權重值而透過該粒子群最佳化演算法計算該目標函數之最小值(並限制該CNC控制器之多個加工參數的範圍)的結果,以得出該些控制器加工參數(例如,該CNC控制器之加工參數)。例如,該處理單元50依據該目標函數定義一解空間,初始化多個粒子之在該解空間中的位置(即解或結果)及速度,並評估該些粒子的適應值以決定是否更新該些粒子的最佳位置及該些粒子所組成之群體的最佳位置而移動該些粒子,並迭代演算搜尋找到該些粒子的最佳位置以作為該些控制參數。The processing unit 50 calculates the inverse of the distance between the target position P and the three vertex positions ( , , ) As the weight value of the three processing demand indicators (that is, the preferred demand volume). The optimization algorithm of this embodiment uses a particle swarm optimization algorithm. The processing unit 50 calculates the minimum value of the objective function (and Limiting the range of the machining parameters of the CNC controller) to obtain the machining parameters of the controller (for example, the machining parameters of the CNC controller). For example, the processing unit 50 defines a solution space according to the objective function, initializes the positions (ie solutions or results) and velocities of a plurality of particles in the solution space, and evaluates the adaptive values of the particles to determine whether to update the particles. The best position of the particles and the best position of the group of the particles is to move the particles, and iteratively search to find the best position of the particles as the control parameters.

需說明的是,該粒子群最佳化演算法係一種利用群體智慧所發展出來的演算法,其能夠在最佳化的問題中得出最佳解,並有效地節省成本與時間。然該最佳化演算法事實上有很多種,於其他實施例中,最佳化演算法亦可依據需求而變更為模擬退化、基因等類型的演算法,而該目標函數及該些權重值需適當調整以符合對應演算法。It should be noted that the particle swarm optimization algorithm is an algorithm developed using swarm intelligence, which can obtain the best solution in the optimization problem and effectively save costs and time. However, there are actually many kinds of optimization algorithms. In other embodiments, the optimization algorithms can also be changed to simulate degradation, genes and other types of algorithms according to requirements. The objective function and the weight values Need to adjust appropriately to match the corresponding algorithm.

該處理單元50便可透過該顯示單元10在該使用者介面80的一訊息顯示欄位83中顯示該些控制器加工參數,或者透過一通訊單元(圖未示,例如利用USB、WiFi等有線或無線通訊技術)將該些控制器加工參數傳送並設定於該CNC工具機的CNC控制器。The processing unit 50 can display the processing parameters of the controller in a message display field 83 of the user interface 80 through the display unit 10, or through a communication unit (not shown, for example, using USB, WiFi, etc. Or wireless communication technology) to transmit and set the processing parameters of these controllers to the CNC controller of the CNC machine tool.

而由於該三角形區域81中不同位置對應於該三加工需求指標之不同偏好需求量,因此使用者可選取的偏好需求量之組合有非常多種,即便使用者透過經驗法則或廠商資料亦難以推論出精確的對應控制器加工參數(即該三加工需求指標與基於該些控制器加工參數所產生之加工特性相差過大)。反觀本發明實施例結合該機器學習演算法及該最佳化演算法,其可基於部份已知的實際運作樣本而推算出特定數值範圍內的不同控制器加工參數與該三加工需求指標之間對應連結(即該目標函數),再快速地推算出該目標函數之最佳結果以作為對應的控制器加工參數。藉此,使用者只要依據所欲之加工需求指標輕鬆地選取該三角形區域81中的目標位置P,該處理單元50便可快速地得出精確的控制器加工參數(即該三加工需求指標接近基於該些控制器加工參數所產生之加工特性),更能進一步提昇該CNC控制器的性能、加工效率及加工品質。And because the different positions in the triangular area 81 correspond to the different preferred demand quantities of the three processing demand indicators, there are many combinations of preferred demand quantities that can be selected by the user, and it is difficult to infer even by the user through rules of thumb or manufacturer data Accurately correspond to the controller processing parameters (that is, the three processing demand indicators are too different from the processing characteristics generated based on the controller processing parameters). In contrast, the embodiment of the present invention combines the machine learning algorithm and the optimization algorithm, which can calculate the processing parameters of different controllers and the three processing demand indicators in a specific numerical range based on some known actual operating samples. The corresponding link (ie, the objective function), and then quickly calculate the best result of the objective function as the corresponding controller processing parameters. Thereby, as long as the user easily selects the target position P in the triangular area 81 according to the desired processing demand index, the processing unit 50 can quickly obtain accurate controller processing parameters (that is, the three processing demand indexes are close to Based on the processing characteristics generated by the processing parameters of the controllers), the performance, processing efficiency and processing quality of the CNC controller can be further improved.

上述僅為本發明實施例的說明,不可用來限制本發明的專利範圍,舉凡未超脫本發明精神所作的簡易結構潤飾或變化,仍應屬於本發明申請專利範圍涵蓋的範疇。The above is only a description of the embodiments of the present invention, and cannot be used to limit the patent scope of the present invention. For example, any simple structural decoration or change that does not exceed the spirit of the present invention should still fall within the scope of the patent scope of the present invention.

1‧‧‧加工專家系統1‧‧‧Processing Expert System

10‧‧‧顯示單元10‧‧‧Display unit

30‧‧‧輸入單元30‧‧‧ input unit

50‧‧‧處理單元50‧‧‧ processing unit

70‧‧‧儲存單元70‧‧‧Storage unit

S21~S23‧‧‧步驟S21 ~ S23‧‧‧‧Steps

80‧‧‧使用者介面80‧‧‧ user interface

81‧‧‧三角形區域81‧‧‧ triangle area

83‧‧‧訊息顯示欄位83‧‧‧ Message display field

P‧‧‧目標位置P‧‧‧ target position

‧‧‧距離 ‧‧‧distance

第1圖係本發明一較佳實施例之加工專家系統的元件方塊圖。 第2圖係本發明一較佳實施例之建構加工專家系統的方法的流程圖。 第3圖係本發明一較佳實施例之倒傳遞神經網路學習架構之示意圖。 第4圖係本發明一較佳實施例之使用者介面的示意圖。FIG. 1 is a component block diagram of a processing expert system according to a preferred embodiment of the present invention. FIG. 2 is a flowchart of a method for constructing a processing expert system according to a preferred embodiment of the present invention. FIG. 3 is a schematic diagram of a learning architecture of a reverse transfer neural network according to a preferred embodiment of the present invention. FIG. 4 is a schematic diagram of a user interface of a preferred embodiment of the present invention.

Claims (12)

一種建構加工專家系統的方法,該加工專家系統適用於一CNC工具機,而該建構加工專家系統的方法包括下列步驟: 取得多組實際運作樣本,其中每一該實際運作樣本包含有多個既有控制參數及對應之多個加工特性,而該CNC工具機係基於該些既有控制參數得出具有該些加工特性的結果,該些加工特性包含有一加工時間、一輪廓誤差及一追蹤誤差;以及 依據該些實際運作樣本並透過一機器學習演算法得出一目標函數,以建構該加工專家系統,其中該目標函數可依據三加工需求指標得出該CNC工具機的多個控制器加工參數,而該三加工需求指標係一速度指標、一精度指標及一表面品質指標。A method for constructing a processing expert system is applicable to a CNC machine tool. The method for constructing a processing expert system includes the following steps: obtaining a plurality of sets of actual operation samples, each of which includes a plurality of existing operation samples; There are control parameters and corresponding processing characteristics, and the CNC machine tool obtains the results with the processing characteristics based on the existing control parameters. The processing characteristics include a processing time, a contour error, and a tracking error. ; And based on the actual operating samples and a machine learning algorithm to obtain an objective function to construct the processing expert system, wherein the objective function can be obtained by the CNC machine based on the three processing demand indicators of multiple controller processing Parameters, and the three processing demand indicators are a speed indicator, a precision indicator, and a surface quality indicator. 如請求項1所述建構加工專家系統的方法,其中該機器學習演算法係一倒傳遞類神經網路演算法,而依據該些實際運作樣本並透過該機器學習演算法產生該目標函數的步驟包括: 基於該些既有控制參數得出多個預估特性; 計算該些加工特性及該些預估特性之間的預估誤差;以及 最小化該些實際運作樣本的預估誤差以得出該目標函數。The method for constructing a processing expert system as described in claim 1, wherein the machine learning algorithm is an inverted transfer neural network algorithm, and the steps of generating the objective function according to the actual operation samples and using the machine learning algorithm include : Obtaining multiple estimated characteristics based on the existing control parameters; calculating the estimated errors between the processing characteristics and the estimated characteristics; and minimizing the estimated errors of the actual operating samples to obtain the Objective function. 如請求項1所述建構加工專家系統的方法,其中依據該些實際運作樣本並透過該機器學習演算法產生該目標函數之後,更包括下列步驟: 顯示具有該三加工需求指標的一使用者介面; 接收在該使用者介面上對應於該三加工需求指標的輸入資訊;以及 依據該輸入資訊並透過一最佳化演算法計算該目標函數之結果,以得出對應於該輸入資訊的該些控制器加工參數。The method for constructing a processing expert system as described in claim 1, after generating the objective function according to the actual operation samples and the machine learning algorithm, the method further includes the following steps: displaying a user interface with the three processing demand indicators Receiving input information corresponding to the three processing demand indicators on the user interface; and calculating the result of the objective function through an optimization algorithm based on the input information to obtain the corresponding numbers of the input information Controller processing parameters. 如請求項3所述建構加工專家系統的方法,其中該最佳化演算法係一粒子群最佳化演算法,而依據該輸入資訊並透過該最佳化演算法計算該目標函數之結果的步驟包括: 依據該輸入資訊得出該三加工需求指標的權重值;以及 依據該些權重值而透過該粒子群最佳化演算法得出該些控制器加工參數。The method for constructing a processing expert system as described in claim 3, wherein the optimization algorithm is a particle swarm optimization algorithm, and the result of the objective function is calculated based on the input information and the optimization algorithm. The steps include: obtaining weight values of the three processing demand indicators according to the input information; and obtaining the controller processing parameters through the particle swarm optimization algorithm according to the weight values. 如請求項4所述建構加工專家系統的方法,其中該使用者介面具有一以該速度指標、該精度指標及該表面品質指標為頂點的三角形區域,該輸入資訊係該三角形區域中的一目標位置,而依據該輸入資訊判斷該三加工需求指標的權重值的步驟包括: 依據該目標位置與三頂點位置之間的距離得出該三加工需求指標的權重值。The method for constructing a processing expert system as described in claim 4, wherein the user mask has a triangle region with the speed index, the accuracy index, and the surface quality index as vertices, and the input information is a target in the triangle region. Position, and determining the weight value of the three processing demand index according to the input information includes: obtaining the weight value of the three processing demand index according to the distance between the target position and the three vertex position. 如請求項5所述建構加工專家系統的方法,其中該三加工需求指標的權重值係該目標位置與該三頂點位置之間的距離之倒數。The method for constructing a processing expert system as described in claim 5, wherein the weight value of the three processing demand indicators is the inverse of the distance between the target position and the three vertex positions. 一種電子裝置,適用於建構一加工專家系統,該加工專家系統可應用於一CNC工具機,而該電子裝置包含有: 一輸入單元,用以取得多組實際運作樣本,其中每一該實際運作樣本包含有多個既有控制參數及對應之多個加工特性,而該CNC工具機係基於該些既有控制參數得出具有該些加工特性的結果,該些加工特性包含有一加工時間、一輪廓誤差及一追蹤誤差;以及 一處理單元,耦接該輸入單元,該處理單元依據該些實際運作樣本並透過一機器學習演算法得出一目標函數,以建構該加工專家系統,其中該目標函數可依據三加工需求指標得出該CNC工具機的多個控制器加工參數,而該三加工需求指標係一速度指標、一精度指標及一表面品質指標。An electronic device is suitable for constructing a processing expert system. The processing expert system can be applied to a CNC machine tool, and the electronic device includes: an input unit for obtaining multiple sets of actual operation samples, each of which is actually operated The sample contains multiple existing control parameters and corresponding processing characteristics, and the CNC machine tool is based on the existing control parameters to obtain results with the processing characteristics. The processing characteristics include a processing time, a Contour error and a tracking error; and a processing unit coupled to the input unit, the processing unit obtains an objective function based on the actual operating samples and a machine learning algorithm to construct the processing expert system, wherein the objective The function can obtain the processing parameters of multiple controllers of the CNC machine tool according to the three processing demand indexes, and the three processing demand indexes are a speed index, an accuracy index, and a surface quality index. 如請求項7所述的電子裝置,其中該機器學習演算法係一倒傳遞類神經網路演算法,而該處理單元基於該些既有控制參數得出多個預估特性,該處理單元計算該些加工特性及該些預估特性之間的預估誤差,該處理單元並最小化該些實際運作樣本的預估誤差以得出該目標函數。The electronic device according to claim 7, wherein the machine learning algorithm is a backward transfer neural network algorithm, and the processing unit obtains a plurality of estimated characteristics based on the existing control parameters, and the processing unit calculates the The processing unit and the estimated error between the estimated characteristics, the processing unit minimizes the estimated error of the actual operating samples to obtain the objective function. 如請求項7所述的電子裝置,更包括: 一顯示單元,耦接該處理單元,用以顯示具有該三加工需求指標的一使用者介面, 而該輸入單元接收在該使用者介面上對應於該三加工需求指標的輸入資訊,該處理單元依據該輸入資訊並透過一最佳化演算法計算該目標函數之結果,以得出對應於該輸入資訊的該些控制器加工參數。The electronic device according to claim 7, further comprising: a display unit coupled to the processing unit for displaying a user interface having the three processing demand indicators, and the input unit receives a corresponding response on the user interface. Based on the input information of the three processing demand indicators, the processing unit calculates the result of the objective function through an optimization algorithm based on the input information to obtain the controller processing parameters corresponding to the input information. 如請求項9所述的電子裝置,其中該最佳化演算法係一粒子群最佳化演算法,而該處理單元依據該輸入資訊得出該三加工需求指標的權重值,該處理單元並依據該些權重值而透過該粒子群最佳化演算法得出該些控制器加工參數。The electronic device according to claim 9, wherein the optimization algorithm is a particle swarm optimization algorithm, and the processing unit obtains a weight value of the three processing demand indicators according to the input information, and the processing unit and According to the weight values, the controller processing parameters are obtained through the particle swarm optimization algorithm. 如請求項10所述的電子裝置,其中該使用者介面具有一以該速度指標、該精度指標及該表面品質指標為頂點的三角形區域,該輸入資訊係該三角形區域中的一目標位置,而該處理單元依據該目標位置與三頂點位置之間的距離得出該三加工需求指標的權重值。The electronic device according to claim 10, wherein the user mask has a triangle region with the speed index, the accuracy index, and the surface quality index as vertices, and the input information is a target position in the triangle region, and The processing unit obtains a weight value of the three processing demand indicators according to the distance between the target position and the three vertex positions. 如請求項11所述的電子裝置,其中該三加工需求指標的權重值係該目標位置與該三頂點位置之間的距離之倒數。The electronic device according to claim 11, wherein the weight value of the three processing demand indicators is the inverse of the distance between the target position and the three vertex positions.
TW105137243A 2016-11-15 2016-11-15 Method of constructing processing expert system and electronic device using the method TWI600987B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105137243A TWI600987B (en) 2016-11-15 2016-11-15 Method of constructing processing expert system and electronic device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105137243A TWI600987B (en) 2016-11-15 2016-11-15 Method of constructing processing expert system and electronic device using the method

Publications (2)

Publication Number Publication Date
TWI600987B TWI600987B (en) 2017-10-01
TW201818169A true TW201818169A (en) 2018-05-16

Family

ID=61011333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105137243A TWI600987B (en) 2016-11-15 2016-11-15 Method of constructing processing expert system and electronic device using the method

Country Status (1)

Country Link
TW (1) TWI600987B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873699A (en) * 2018-08-30 2020-03-10 广东生益科技股份有限公司 Method, device and system for online quality control of bonding sheet and storage medium
TWI737497B (en) * 2020-09-18 2021-08-21 中國鋼鐵股份有限公司 Quality designing method and electrical device
TWI761938B (en) * 2019-09-20 2022-04-21 芬蘭商麥拉佛益楚森公司 Machine-learning-based quality prediction of manufactured fiber optic cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926309A (en) * 1988-09-12 1990-05-15 Ford Motor Company Artificial intelligence for adaptive machining control of surface finish
SI21200A (en) * 2002-03-27 2003-10-31 Jože Balič The CNC control unit for controlling processing centres with learning ability
CN101738981B (en) * 2009-12-04 2011-06-15 清华大学 Machine learning-based robot grinding method
TWI492008B (en) * 2013-11-01 2015-07-11 Ind Tech Res Inst Working machine controlling system and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873699A (en) * 2018-08-30 2020-03-10 广东生益科技股份有限公司 Method, device and system for online quality control of bonding sheet and storage medium
TWI761938B (en) * 2019-09-20 2022-04-21 芬蘭商麥拉佛益楚森公司 Machine-learning-based quality prediction of manufactured fiber optic cable
TWI737497B (en) * 2020-09-18 2021-08-21 中國鋼鐵股份有限公司 Quality designing method and electrical device

Also Published As

Publication number Publication date
TWI600987B (en) 2017-10-01

Similar Documents

Publication Publication Date Title
US11921609B2 (en) Data anomaly detection
TW201818170A (en) Machining expert system for CNC machine tool and controller machining parameter generation method with which a user can obtain precise controller machining parameters according to machining requirement indicators through an easy operation
TW201818169A (en) Method for constructing a processing expert system and electronic device using the method capable of obtaining demand indicators like speed index, geometric accuracy index, and surface quality index
CN108376299A (en) A kind of prediction technique and device of running trend of the equipment
CN113627846A (en) Inventory adjusting method and device, electronic equipment and computer readable medium
US11064349B2 (en) Methods and systems for managing resources on a mobile trading device
CN112513886A (en) Information processing method, information processing apparatus, and information processing program
CN116339239B (en) Numerical control machine tool cooperative control method, device, equipment and computer storage medium
JP2019505889A (en) Cost function design system, cost function design method, and cost function design program
CN114791982B (en) Object recommendation method and device
Gebhardt et al. flapAssist: How the integration of VR and visualization tools fosters the factory planning process
JP2019082874A (en) Design support device and design support system
US20170139908A1 (en) Technology trend predicting method and system and non-transitory computer readable storage medium
JP6955811B1 (en) Test evaluation system, program and test evaluation method
CN106817252A (en) Internet data processing method and processing device
Cus et al. Dynamic neural network approach for tool cutting force modelling of end milling operations
US20240054385A1 (en) Experiment point recommendation device, experiment point recommendation method, and semiconductor device manufacturing device
CN104636489B (en) The treating method and apparatus of attribute data is described
KR20230102461A (en) Method and system for converting order book data into 2d data for machine learning models
KR102560283B1 (en) Apparatus and method for manufacturing and designing a shower head
JP2023508040A (en) Apparatus and method for optimizing control parameters of solder printing equipment
EP3889840A1 (en) A recommender system and method for recommending a setting of an adjustable parameter
CN110262290B (en) Device and method for determining control condition set for production line
Li et al. Benchmarking and evaluating MATLAB derivative-free optimisers for single-objective applications
CN115598967B (en) Parameter setting model training, parameter determining method, device, equipment and medium