TWI737082B - 用於電源轉換器穩定控制的量子電荷調制器配置方法和裝置 - Google Patents

用於電源轉換器穩定控制的量子電荷調制器配置方法和裝置 Download PDF

Info

Publication number
TWI737082B
TWI737082B TW108145950A TW108145950A TWI737082B TW I737082 B TWI737082 B TW I737082B TW 108145950 A TW108145950 A TW 108145950A TW 108145950 A TW108145950 A TW 108145950A TW I737082 B TWI737082 B TW I737082B
Authority
TW
Taiwan
Prior art keywords
signal
cycles
phase deviation
predetermined number
compensation
Prior art date
Application number
TW108145950A
Other languages
English (en)
Other versions
TW202101874A (zh
Inventor
阿米爾 巴巴扎德
克里斯M 楊
Original Assignee
大陸商萬民半導體(澳門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商萬民半導體(澳門)有限公司 filed Critical 大陸商萬民半導體(澳門)有限公司
Publication of TW202101874A publication Critical patent/TW202101874A/zh
Application granted granted Critical
Publication of TWI737082B publication Critical patent/TWI737082B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明揭露了電源轉換器穩定控制的方法和裝置。該裝置和相關方法關聯開關訊號的頻率調制。經調制後,可在保持預定數量N個週期數上平均頻率恆定的同時實現快速瞬態響應。在一例證中,量子電荷調制器可包含補償處理器,後者經配置後可以通過執行操作以響應瞬態,保持N個週期上平均開關頻率,來補償誤差訊號和生成補償訊號。補償訊號可以是真實相偏差△TSW的函數,該真實相偏差為瞬態前具有循環週期TSW的穩定脈衝模制訊號與瞬態後具有循環週期TSW_M的測得脈衝模制訊號之差。可以應用遺忘因子,來計算相偏差。量子電荷調制器可提供針對功率級組件變更的無補償、穩定和高性能響應。

Description

用於電源轉換器穩定控制的量子電荷調制器配置方法和 裝置
各類實施例實質上關於電源轉換器。
電子設備以各式各樣的方式接收電力。例如,消費電子設備可以從壁式插座(例如:主電源)或者各類攜帶式來源(例如:蓄電池、可再生能源、發電機)處接收電力。由蓄電池供電的設備具有取決於蓄電池容量和平均電流消耗的運行時間。蓄電池供電設備的製造商會努力爭取降低其產品的平均蓄電池電流,以便提供蓄電池更換或充電操作之間更長的設備使用時間。在某些示例中,主電源供電設備的製造商會努力爭取提高其產品的電源效率,以便儘量減小熱負載和/或儘量增加消耗電力的每瓦性能。
在某些電子設備中,輸入供電電壓(例如:蓄電池輸入、整流主電源供電、中間直流電源)可經由各類電壓轉換電路轉換成不同的電壓。作為電壓轉換電路的開關模式電源因其高效率而備受青睞,從而經常被應用於各類電子設備。
開關模式電源應用開關設備轉換電壓,後者在打開時電阻極低,在關斷時電阻極高。開關模式電源可在一段時間內給輸出電感充電,且可在後續時間段內釋放部分或全部電感能量。輸出能量可傳送至輸出電容器庫,後者可提供過濾以生成直流輸出電壓。在降壓衍生開關模式電源中,穩定狀態的輸出電壓近似為輸入電壓乘以占空比,占空比為直駛開關的持續接通時間除以直駛開關一個開關循環的總計接通和關斷時間。
本發明的目的在於提出一種電源轉換器穩定控制的方法和裝置,以改善先前技術中的一個或多個問題。
本發明的一個態樣在於提出一種裝置,包含:一回饋誤差補償器,配置可以響應關聯數字回饋系統受控電路參數的誤差訊號,生成第一補償訊號;一補償處理器,配置通過響應瞬態執行操作,在預定數量N個週期上保持平均開關頻率,從而補償誤差訊號並生成第二補償訊號;其中的第二補償訊號是計算相偏差△calc的函數,計算相偏差△calc是真實相偏差△TSW的函數,該真實相偏差為瞬態前具有循環週期TSW的穩定脈衝模制訊號與瞬態後具有循環週期TSW_M的測得脈衝模制訊號之差;以及一組合模組,配置組合第一補償訊號和第二補償訊號,從而生成由數字回饋系統接收的控制訊號;其中,數字回饋系統輸出的測得脈衝模制訊號的週期響應生成的控制訊號。
較佳地,操作包含:(a)決定真實相偏差△TSW;(b)如果△TSW小於等於預定閾值THR1,則更新△calc=0;且(c)如果△TSW大於THR1,則對於第一預定週期數NC1,通過添加△TSW,更新每一週期中的△calc
較佳地,操作進一步包含:(d)如果在第一預定週期數NC1之後,△TSW大於THR1,則對於第二預定週期數NC2,通過乘以用戶預定遺忘因子,更新每一週期中的△calc;以及(e)如果在NC1個週期之後,△TSW小於等於THR1,則重複NC1週期的操作(a)-(d)。
較佳地,第二預定週期數NC2進一步包含複數個子週期,而在其中的每一個子週期中,補償處理器配置可以更新△calc,以關聯相應的遺忘因子。
較佳地,操作進一步包含:(f)如果在預定週期數NC2之後,△calc的絕對值大於THR1,則對於第三預定週期數NC3,更新△calc=0;以及(g)如果在NC2個週期之後,△calc的絕對值小於等於THR1,則重複NC1週期的操作(a)-(d)。較佳地,補償處理器進一步包含:一誤差計算電路,配置可以響應誤差訊號、具有循環週期TSW的穩定脈衝調制訊號、具有循環週期TSW_M的測得脈衝調制訊號,計算△calc
較佳地,誤差計算電路進一步配置可以響應用戶預定遺忘因子,計算△calc
較佳地,相偏差△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),其中i是瞬態後測得脈衝調制訊號的第i個脈衝,i=1,2,...N。
較佳地,補償處理器進一步包含一快速增益路徑電路,配置可以接收誤差訊號並生成放大電壓誤差訊號。
較佳地,快速增益路徑電路進一步包含配置可以過濾誤差訊號的低通濾波器以及配置可以放大過濾誤差訊號的放大電路。
較佳地,放大電路進一步包含第一選擇電路,配置可以啟動或禁用快速增益路徑電路。
較佳地,放大電路進一步包含一放大器,配置可以在電壓誤差訊號為正時應用第一增益值放大過濾誤差訊號,在電壓誤差訊號為負時應用第二增益值放大電壓誤差訊號。
較佳地,第一增益值不同於第二增益值。
本發明的另一個態樣在於提出一種量子電荷調制器的配置方法,包含:對關聯數字回饋系統受控電路參數的誤差訊號作出響應,通過回饋誤差補償器生成第一補償訊號;通過執行操作以響應瞬態,在預定數量N個週期上保持平均開關頻率,從而經由補償處理器,生成第二補償訊號,補償誤差訊號;和組合第一補償訊號和第二補償訊號,從而生成由數字回饋系統接收的控制訊號;其中,數字回饋系統輸出的測得脈衝模制訊號的週期響應生成的控制訊號。
較佳地,第二補償訊號是計算相偏差△calc的函數,計算相偏差△calc是真實相偏差△TSW的函數,該真實相偏差為瞬態前具有循環週期TSW的穩定脈衝模制訊號與瞬態後具有循環週期TSW_M的測得脈衝模制訊號之差。
較佳地,執行操作進一步包含:(a)決定真實相偏差△TSW;(b)如果△TSW小於等於預定閾值THR1,則更新△calc=0;和(c)如果△TSW大於THR1,則對於第一預定週期數NC1,通過添加△TSW更新△calc
較佳地,執行操作進一步包含:(d)如果在第一預定週期數NC1之後,△TSW大於THR1,則對於第二預定週期數NC2,可通過乘以用戶預定遺忘因子來更新△calc;以及(e)如果在第一預定週期數NC1之後,△TSW小於等於THR1,則重複NC1週期的操作(a)-(d)。
較佳地,當第二預定週期數NC2進一步包含複數個子週期時,在複數個子週期的每一個中,通過補償處理器更新△calc,以關聯相應的遺忘因子。
較佳地,操作執行進一步包含:(f)如果在NC2個週期後,△calc的絕對值大於THR1,則對於第三預定週期數NC3,更新△calc=0;以及(g)如果在NC2個週期後,△calc的絕對值小於等於THR1,則重複NC1週期的操作(a)-(d)。
較佳地,補償處理器包含誤差計算電路,經配置後可以響應誤差訊號、具有循環週期TSW的穩定脈衝調制訊號、具有循環週期TSW_M的測得脈衝調制訊號,計算△calc
較佳地,相偏差△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),其中i是瞬態後測得脈衝調制訊號的第i個脈衝,i=1,2,...N。
閱讀以下詳細說明的實施例例並參照各種附圖,本發明的這些特點和優勢對於所屬技術領域的具有通常知識者而言,無疑將顯而易見。
105:電動負載系統
110:電源
115:負載
120:電源轉換器
125:數字脈衝寬度調制器
130:功率級
135:負載電路
140:輸出電壓訊號
145:減法節點
150:參考電壓訊號
155、155a、155b、155c:誤差電壓訊號
160:類比數位轉換器
165:量子電荷調制器
165b:控制訊號
170:振盪器
175:交錯管理模組
205:緩慢路徑電路
210:回饋誤差補償器
215:第一補償訊號
220:快速增益路徑電路
225:低通濾波器
230:放大電路
235:放大誤差訊號
240:誤差補償路徑電路
245:誤差計算電路
250:誤差補償器
255:欠補償訊號
260:第一求和節點
265:第二補償訊號
270:第二求和節點
305:比較器
310:啟動模組
315:增益放大器
320:第一增益值
325:第二增益值
330:複用器
335:符號模組
365:第二補償訊號
600~680:方法
En_G:用戶命令訊號
Fclk:時鐘頻率
FF:遺忘因子
m:第一斜率
m1:第二斜率
N:週期
Nph:相個數
P1:第一脈衝
P2:第二脈衝
PI:比例積分器
Pi:第i個脈衝
PWM:脈衝調制訊號
Thr:第一預定計算閾值
Ton:接通時間訊號
TSW、TSW_M:循環週期
TSW_M1:第一週期
TSW_M2:第二週期
TSW_M3:第三週期
TSW1:補償調制脈衝週期
VID、VID:輸入直流電壓
VCO:電壓控制振盪器
1、△2、△3:偏差
第1圖描繪了經典型量子電荷調制器補償的電源轉換器,該調制器經配置後可響應輸出瞬態,作出動態補償。
第2圖描繪了電源轉換器中的典型量子電荷調制器。
第3圖描繪了量子電荷調制器中的典型放大電路。
第4A圖描繪了對單個週期中負載變化作出響應的開關脈衝的典型行為。
第4B圖描繪了對N個週期中負載變化作出響應的開關脈衝的典型行為。
第5A圖描繪了對升高負載瞬態作出響應的電壓恢復時間的典型模擬結果。
第5B圖描繪了對下降負載瞬態作出響應的電壓恢復時間的典型模擬結果。
第6圖描繪了真實開關脈衝和理想開關脈衝之間偏差典型計算方法的流程圖。
各類附圖中的類似元件符號指示類似元件。
裝置和相關方法關於調制開關訊號的頻率,後者可實現快速瞬態響應,同時在預定數量N個週期上保持平均頻率恆定不變。在一例證中,量子電荷調制器可包含一補償處理器,後者經配置後可補償誤差訊號並通過執行操作以生成補償訊號,從而對瞬態做出響應,維持N個週期上的平均開關頻率。補償訊號可以是實相偏差△TSW的函數,該偏差為具有瞬態前循環週期TSW的穩定脈衝調制訊號與具有瞬態後循環週期TSW_M的測得脈衝調制訊號之差。可以應用遺忘因子來計算相偏差。量子電荷調制器可提供針對功率級組件變更的無補償、穩定和高性能響應。
各類實施例可實現一項或多項優勢。例如,量子電荷調制器可使電源轉換器具有廣泛系列操作中穩定且强健的性能。量子電荷調制器還可使電源轉換器作出快速瞬態響應,抑制負載擾動,例如:針對用戶作出的功率級組件變更或者因老化和溫度變化造成的無意變更。某些實施例可以通過在計算並補償誤差時應用遺忘因子來提供簡單且划算的電源,例如:數字回饋系統(例如:開關模式電源)的輸出電壓錯誤。誤差補償路徑電路具有一誤差計算電路和一誤差補償器,可使電源轉換器變得易於使用和方便調諧。在某些實施例中,遺忘因子可以有利加速瞬態校正。在某些實施例中,量子電荷調制器還可響應負載電流中的負載瞬態(例如:階躍變化),儘量減小過沖、下沖和/或振鈴。某些實施例可經由量子電荷調制,通過減小晶片上面積和功耗,來提供低成本和易於 設計的電源。在某些實施例中,帶量子電荷調制器的電源可具有更高的控制回路帶寬。在某些實施例中,電源控制器回饋系統可具有對瞬態足夠快的響應,同時應用量子電荷調制方法,保持穩定(例如:無振盪)。設計和補償過程因而可得以實現有利的簡化。
在所附附圖和以下說明中陳述了各類實施例的詳情。其他特性和優勢可通過說明、附圖以及要求得以明確瞭解。
為便於理解,本文件結構組織如下。第一步,參考第1圖,簡要介紹:經典型量子電荷調制器補償的電源轉換器,該調制器經配置後可響應輸出瞬態,作出動態補償。第二步,參考第2圖至第4B圖,討論轉向舉例說明量子電荷調制器結構的典型實施例,以及理想開關脈衝和真實開關脈衝之間偏差的定義。參考第5A圖至第5B圖,呈現進一步的解釋性討論和實驗資料,以解釋通過執行量子電荷調制器實現的瞬態響應改進。最後,參考第6圖,呈現進一步的解釋性討論,以解釋真實開關脈衝和理想開關脈衝之間偏差的計算方法。
第1圖描繪了:經典型量子電荷調制器補償的電源轉換器,該調制器經配置後可響應輸出瞬態,作出動態補償。在此描繪示例中,系統100包含電動負載系統105,如電腦。電動負載系統105包含一個或複數個交錯電源110,後者在電動負載系統105中得到執行,供應一個或複數個負載115。在某些示例中,可規定負載115在帶有限電壓擾動輸入電壓下運行。電源110包含電源轉換器120。電源轉換器120調整供應至負載115的電流或電壓。電源轉換器120經配置後,可動態調制開關訊號的頻率,以實現快速瞬態響應,同時保持預定數量N個週期上平均頻率恆定不變。
更具體地說,電源轉換器120包含一個數字脈衝寬度調制器(DPWM)125,後者可以控制至相關電源開關的輸入,並減小輸出電容。在一例證中,DPWM125可接收恆定的接通時間訊號Ton並生成一個或複數個脈衝調制訊 號(例如:PWM1、PWM2、PWM3),且具有fsw頻率下指令占空比。電源轉換器120還包含與DPWM125串行連接的功率級130。功率級130從DPWM125處接收一個或複數個時鐘訊號。在某些實施例中,功率級130可包含許多電源開關。功率級向負載電路135提供電力。負載電路具有輸出電壓訊號(Vout)140。
電源轉換器120還包含減法節點145。減法節點145接收輸出電壓訊號(Vout)140和參考電壓訊號150。減法節點145從參考電壓訊號150處減去輸出電壓訊號140,並生成誤差電壓訊號(Verr)155a。在某些實施例中,參考電壓訊號150可保持恆定。在另外一些實施例中,可對參考電壓訊號150作出調節。由類比數位轉換器(ADC)160接收誤差電壓訊號(Verr)155a。ADC160將誤差電壓訊號(verr)155a轉換為數字誤差電壓訊號155b,並將數字誤差電壓訊號發送至量子電荷調制器(QCM)165。QCM165生成控制訊號165b,並對負載瞬態作出響應,以控制DPWM125。在各類實施例中,QCM165可通過常規線性時不變(LTI)(例如:比例積分器(PI))、比例積分微分(PID)補償器模組調制補償訊號輸出,例如:作為瞬態後測得週期和瞬態前穩定狀態運行週期之差的函數。通過選擇性地在特定預定運行條件下應用遺忘因子,可保持電源轉換器120預定數量N個週期上平均頻率恆定不變。
在該描繪示例中,電源轉換器120還包含振盪器170。電源轉換器120是一個數字控制電源轉換器,而振盪器170可以是數字電壓控制振盪器(VCO)。VCO170可以在恆定接通時間(COT)控制中起到計數器的作用。VCO170從QCM165處接收補償訊號,並調制脈衝寬度調制訊號的頻率。在該描繪示例中,VCO應用具有時鐘頻率Fclk的數字計數器。
在該描繪示例中,電源轉換器120還包含交錯管理模組175。交錯管理模組175管理並分裂脈衝寬度調制訊號的頻率。例如,交錯管理模組175將 第一個脈衝規定為第一相,將第二個脈衝規定為第二相。交錯管理模組175將分裂頻率發送至DPWM125。
量子電荷調制器165、數字VCO170和交錯管理模組175可作為(例如)恆定接通時間控制得以運行。在某些實施例中,量子電荷調制器165可應用於按可變開關頻率運行的系統。在某些實施例中,可以應用量子電荷調制器165,針對在恆定頻率控制下運行的系統,進一步增强瞬態響應。在某些實施例中,電動負載系統105可包含(在舉例來說而不是作出限制的情况下)一個服務器、數個閉環速度控制電機。
第2圖描繪了電源轉換器中的典型量子電荷調制器。在該描繪示例中,量子電荷調制器165包含緩慢路徑電路205。緩慢路徑電路205包含一回饋誤差補償器210。在某些實施例中,回饋誤差補償器可包含比例積分器(PI)響應。回饋誤差補償器210從ADC160處接收數字誤差電壓訊號155b。在該描繪示例中,回饋誤差補償器210可(例如)獲得積分增益,以響應瞬態,驅使穩定態回饋誤差變為零。回饋誤差補償器210生成第一補償訊號215。
量子電荷調制器165還包含快速增益路徑電路220。緩慢路徑電路205確保輸出隨時間推移調整至直流設定點,而快速路徑電路220確保輸出針對快速瞬態調整至直流設定點。快速增益路徑電路220從ADC160處接收數字誤差電壓訊號155b。在該描繪示例中,快速增益路徑電路220包含低通濾波器(LPF)225。低通濾波器225用於清除數字誤差電壓訊號155b產生的噪音。快速增益路徑電路220還包含放大電路230。放大電路230通過增益放大清除噪音的數字誤差電壓訊號155c,並生成放大誤差訊號235。參照第3圖,進一步詳盡說明快速增益路徑電路220中放大電路的一個示例。
量子電荷調制器165還包含一誤差補償路徑電路240。誤差補償路徑電路240包含一誤差計算電路245。誤差計算電路245接收數字誤差電壓訊號 155b、瞬態後真實開關訊號循環週期TSW_M(例如:負載瞬態)、瞬態前理想開關訊號循環週期TSW(例如:處於穩定狀態)和相個數Nph。數字誤差電壓訊號155b量度輸出電壓訊號140相對於參考電壓訊號150(例如:直流設定點)的偏差。在某些實施例中,誤差計算電路245可被設計成具有第一預定計算閾值Thr。誤差計算電路245僅在誤差大於計算閾值的情况下計算誤差。在某些實施例中,誤差計算電路245還可被設計成接收遺忘因子FF。遺忘因子FF可以是預定的用戶定義數值(例如:60%)。遺忘因子可經忽略誤差的某一部分來有利地加速補償。在某些實施例中,可基於誤差,對遺忘因子作適應性調節。參照第4A圖和第4B圖,進一步詳細說明計算誤差的示例。參照第6圖,進一步詳細說明應用遺忘因子計算誤差的示例。
誤差補償路徑電路240還包含一誤差補償器250。誤差補償器250生成具有調制斜率的欠補償訊號255,以改變開關訊號的頻率,對計算得到的誤差予以補償。
量子電荷調制器165還包含第一求和節點260。第一求和節點260接收放大誤差訊號235和欠補償訊號255,並輸出第二補償訊號265。量子電荷調制器165還包含第二求和節點270。第二求和節點270接收第一補償訊號215和第二補償訊號265,以輸出控制訊號165b。在某些實施例中,第一求和節點260和第二求和節點270可進行組合。VCO170接收控制訊號165b。例如,控制訊號165b可調制成具有第二斜率m1,它不同於穩定態訊號的第一斜率m。調制開關訊號的頻率具有補償調制脈衝週期TSW1。在穩定狀態下,放大誤差訊號235和欠補償訊號255均為0。第二求和節點270生成的控制訊號165b等於第一補償訊號215(例如:-VID/TSW*Nph)。發生躍遷時,如果誤差補償路徑電路240未激活,則第一補償訊號215和放大誤差訊號235將生成等於(-VID/TSW_M*Nph)的控制訊號(例如:控制訊號165b)。如果激活誤差補償路徑電路240,則它可以通過添加欠補償訊號255 來調制控制訊號165b。欠補償訊號255可以是(-VID/TSW_M*Nph+VID/(TSW_M+△)*Nph),且第一補償訊號215和放大誤差訊號235之和可為VID/TSW_M*Nph
第3圖描繪了量子電荷調制器中的典型放大電路。放大電路230包含比較器305。比較器305從LPF225處接收消除噪音的數字誤差電壓訊號155c。比較器305將消除噪音的數字誤差電壓訊號155c與第二預定閾值作比較。在某些實施例中,第二預定閾值可能等於誤差計算電路245的第一預定閾值Thr。在另一些實施例中,第二預定閾值可能不同於誤差計算電路245的第一預定閾值Thr。放大電路230僅在誤差絕對值大於閾值時放大消除噪音的數字誤差電壓訊號155c。在某些實施例中,閾值可包含一預定正閾值和一預定負閾值。當誤差為正時,比較器305可將誤差與正閾值作比較。當誤差為負時,比較器305可將誤差與負閾值作比較。在某些實施例中,正閾值和負閾值具有不同的絕對值。
放大電路230還包含啟動模組310。可對啟動模組310予以控制,響應用戶命令訊號En_G,啟動或禁用放大電路230。在該描繪示例中,啟動模組310是一啟動放大器。用戶命令訊號En_G包含0或1。當用戶想要啟動放大電路230時,用戶可輸入1以啟動模組310。當用戶想要禁用放大電路230時,用戶可輸入0以啟動模組310。通過0或1放大消除噪音的數字誤差電壓訊號155c。在某些實施例中,當特定情况下需要應用標準補償方法時,用戶可禁用快速增益路徑電路220。例如:故障排除和/或系統特性描述。在該描繪示例中,啟動模組310布置在比較器305和增益放大器315之間。增益放大器315通過增益放大誤差。在某些實施例中,增益放大器315可具有不同的增益,以放大不同的誤差值。在該描繪示例中,增益放大器315可具有第一增益值320和第二增益值325。由雙輸入複用器330接收第一增益值320和第二增益值325。複用器330選擇應用於增益放大器315的的增益值。由誤差符號控制該選擇。在該描繪示例中,放大電路230還 包含符號模組335。符號模組與比較器305相連,以識別誤差符號。當誤差為正時,符號模組335可控制複用器330,以選擇第一增益值320。當誤差為負時,符號模組335可控制複用器,以選擇第二增益值325。增益放大器315應用所選增益值放大誤差,並生成放大誤差訊號235。在某些實施例中,第一增益值320可能不同於第二增益值325。
第4A圖描繪了對一個週期中負載變化作出響應的開關脈衝的典型行為。在該描繪示例中,當發生負載瞬態時,理想脈衝寬度調制訊號Ideal_PWM改變其脈衝頻率。Ideal_PWM訊號具有循環週期TSW。真實電源開關訊號PWM具有與Ideal_PWM相同的相和頻率關係。當負載提高時,需要輸送更多的電力至負載。當誤差補償器250發現誤差時,真實的電源開關訊號PWM可提高其頻率。例如,Ideal_PWM訊號的第一脈衝P1可被移動至左側,具有第一週期TSW_M1。例如,移動第一脈衝P1,使之具有相對理想脈衝寬度調制訊號的第一正偏差△1,TSW-TSW_M1=△1。假設在一個週期過後電力充足,則誤差補償器250會移動第二個脈衝P2,以補償第一偏差△1。更具體一點說,誤差補償器250將第二脈衝P2向右移動,通過第一負偏差△1產生第二週期TSW_M2,以保持平均穩定。TSW_M2=TSW+△1。平均脈衝頻率保持恆定。
第4B圖描繪了對N個週期中負載變化作出響應的開關脈衝的典型行為。在該描繪示例中,當出現大負載瞬態時,理想脈衝寬度調制訊號會改變其脈衝頻率。因存在大負載瞬態,單個週期不足以完成降落。理想脈衝寬度調制訊號具有穩定的脈衝週期TSW。當負載提高時,需要輸送更多的電力至負載。當補償電路發現誤差時,理想脈衝寬度調制訊號可提高其頻率。例如,理想脈衝寬度調制訊號可被移動至左側,通過第一脈衝P1產生第一週期TSW_M1。移動第一脈衝P1,使之具有相對理想脈衝寬度調制訊號的第一正偏差△1。△1=TSW-TSW_M1。假設提供給負載的電力仍不足,則補償電路會移動第二個脈衝 P2至左側,通過第二脈衝P2產生第二週期TSW_M2。移動第二脈衝P2,產生相對於理想脈衝寬度調制訊號的第二偏差△2。△2=2*TSW-TSW_M1-TSW_M2=(TSW-TSW_M1)+(TSW-TSW_M2)=△1+(TSW-TSW_M2)。類似地,△3=3*TSW-TSW_M1-TSW_M2-TSW_M3=(TSW-TSW_M1)+(TSW-TSW_M2)+(TSW-TSW_M3)=△2+(TSW-TSW_M3)。對于第i個脈衝Pi,△i=△i-1+(TSW-TSW_Mi)。i是瞬態之後第i個開關調制脈衝,i=1,2,...N。在N個週期中,總計真實相偏差△TSW=Σ△i
為使系統穩定,誤差補償器250需要基本上促使ΣTSW_Mn/N=TSW或者驅使△n=0,以使系統在N個週期中保持穩定。
第5A圖描繪了對升高負載瞬態作出響應的電壓恢復時間的典型模擬結果。作為對快速上升(例如:負載具有200A電流提升)作出的響應,電源電壓會降落,直至電源調整回饋回路將電壓帶回編程值。在該模擬中,如僅使用緩慢路徑電路205,則較之同時使用緩慢路徑電路205和快速增益路徑電路220,要花費多得多的時間(帶振盪振鈴)才能使電壓降落到編程值。在本示例中,通過QCM執行的電源極大地避免了過沖、下沖和振鈴。
第5B圖描繪了對升高負載瞬態作出響應的電壓恢復時間的典型模擬結果。作為對快速下降(例如:負載具有200A電流下降)作出的響應,電源電壓會升高,直至電源調整回饋回路將電壓帶回編程值。在該模擬中,如僅使用緩慢路徑電路205,則較之同時使用緩慢路徑電路205和快速增益路徑電路220,要花費多得多的時間(帶振盪振鈴)才能使電壓降落到編程值。通過同時應用緩慢路徑電路205和快速增益路徑電路220,電壓會在較短時間內降落。
出現負載瞬態時,量子電荷調制器165可有利地減少恢復時間。在本示例中,通過QCM執行的電源極大地避免了過沖、下沖和/或振鈴。
第6圖描繪了用於計算真實開關脈衝和理想開關脈衝之間偏差的典型方法的流程圖。方法600在605處包含控制邏輯,用於決定脈衝總偏差 △TSW(例如:|TSW-TSW_M|)是否小於用戶預定的第一閾值THR1。脈衝總偏差△TSW是理想開關訊號循環週期TSW和負載瞬態之後測得開關訊號循環週期TSW_M之間的脈衝偏差。
如果△TSW小於THR1,則在610處,控制邏輯計算得出偏差△calc=0。如果△TSW不小於THR1,則在615處,控制邏輯引入第一個變量I,且給予該變量初始值i=0。
在620處,控制邏輯更新△calc=△calc+△TSW.△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),i是瞬態後第i個開關調制脈衝,i=1,2,...N。在625處,控制邏輯決定i是否等於第一個用戶定義週期數NC1。如果它不等於NC1,則在630處,控制邏輯遞增i,並環回620。
如果它等於NC1,則在635處,控制邏輯決定△calc的絕對值是否大於THR1。如果△calc的絕對值大於THR1,則在640處,控制邏輯引入第二個變量j,且給予該變量初始值j=0。在645處,控制邏輯通過應用遺忘因子FF(例如:20%)更新△calc,△calc=△calc*FF+△TSW
在650處,控制邏輯決定第二個變量j是否等於第二個用戶定義週期數NC2。如果它不等於NC2,則在655處,控制邏輯遞增j,並環回645。如果它等於NC2,則在660處,控制邏輯決定△calc的絕對值是否大於THR1。
如果635處或者660之後△calc的絕對值不大於THR1,則在665處,控制邏輯引入第三個變量k,且給予該變量初始值k=0。在670處,控制邏輯更新△calc=0。在675處,控制邏輯決定第三個變量k是否等於第三個用戶定義週期數NC3。如果第三個變量k不等於NC3,則在680處,控制邏輯會遞增k,並環回670。如果第三個變量k等於NC3,則控制邏輯環回605。
如果660之後△calc的絕對值大於THR1,則控制邏輯環回605。
在某些實施例方式中,第二個預定週期數NC2可包含數個子週期。每一子週期可採用一不同的FF。在某些實施例中,可基於偏差△TSW對FF作適應性調節。用戶可以建立查找表以顯示具有不同偏差△TSW的FF建議值。
儘管已參照這些圖片說明了各類實施例,其他實施例方式仍然可行。例如,量子電荷調制器165和相應方法可應用於任何數字回饋系統。PID控制廣泛應用於工業過程控制,其方法可應用於幾乎所有此類用途。該示例是調整電源輸出電壓,但它也可以應用於(例如)電機速度控制,以調整電機速度至一個或複數個參考值。在舉例來說而不是作出限制的情况下,它還可應用於數字回饋控制系統,如溫度控制、扭矩控制、質量或體積流量控制。在某些實施例中,提議控制方法可應用於在可變開關頻率(例如:恆定接通時間)控制下運行的系統。提議控制方法可應用於恆定頻率控制。例如,用戶可選擇啟動或禁用計算期間遺忘因子的應用。在某些實施例中,當應用遺忘因子進行計算時,可以將該計算劃分為幾個階段。每一階段可採用一個不同的遺忘因子。在某些實施例中,可以建立查找表,包含計算得出誤差和建議遺忘因子之間關係的相關訊息。例如,當誤差較大時,可選擇一個小的遺忘因子。
實施例方式的某些態樣可以作為電腦系統予以執行。例如,各類執行可包含數字和/或模擬電路、電腦硬體、韌體、軟體或其組合。可以在電腦程式產品中執行裝置元件,具體體現於訊息載體中,例如在機器可讀的儲存設備中由可編程處理器予以執行;且可由可編程處理器執行其方法,實施例程式指令,以通過運行輸入資料和生成一輸出來執行各類實施例的功能。可以在一個或複數個電腦程式中有利執行某些實施例方式,此類程式在可編程系統上可執行,而此類可編程系統包含至少一個經耦合後接收資料及指令,並發送資料及指令至資料儲存系統的可編程處理器,包含至少一台輸入設備和/或一台輸出設備。電腦程式為一組指令,可直接或間接應用於電腦,以執行特定活動或帶 來特定結果。可以用任何編程語言形式編寫電腦程式,包含編譯或翻譯語言,且可以按任何形式予以部署,包含作為獨立程式和作為適合於計算環境使用的模組、組件、子程式或其他單元。
在舉例來說而不是作出限制的情况下,執行程式指令的合適處理器包含通用和特殊目的微處理器兩者,而該類微處理器可包含任何類型電腦的單個處理器或多重處理器之一。通常情况下,處理器從只讀儲存器或隨機存取儲存器或者同時兩者處接收指令和資料。電腦的基本元件為執行指令的一個處理器以及用於儲存指令和資料的一個或複數個儲存器。
在各類實施例中,電腦系統可包含非暫時儲存器。儲存器可接入一個或多個處理器,後者經配置後,可以儲存資料和電腦可讀指令,包含處理器可執行程式指令。一個或多個處理器可存取資料和電腦可讀指令。處理器可執行程式指令在經一個或多個處理器執行時,可導致此類處理器執行各類操作。
在各類實施例中,電腦系統可包含物聯網(IoT)設備。物聯網設備可包含嵌入電子元件、軟體、傳感器、執行器的物件,以及啟動此類物件以收集並交換資料的網絡連接。通過發送資料通過接口進入另一設備,物聯網設備可以與有線和無線設備結合使用。物聯網設備可以收集有用資料,然後在其他設備之間自主流動資料。
可以應用電路實施例各類模組示例,包含各類電子硬體。在舉例來說而不是作出限制的情况下,硬體可包含電晶體、電阻器、電容器、開關、積體電路和/或其他模組。在各類示例中,模組可包含模擬和/或數字邏輯、離散組件,以及於矽基材上製作,包含各類積體電路(例如:FPGA、ASIC)的軌跡線和/或儲存電路。在某些實施例中,模組可關於預編程指令的執行和/或處理器執行的軟體。例如,各類模組可同時關於硬體和軟體。
在一典型態樣,裝置包含回饋誤差補償器,後者經配置後可以響應與數字回饋系統受控電路參數相關聯的誤差訊號,生成第一補償訊號。裝置還包含補償處理器,後者經配置後可通過執行操作以響應瞬態來保持預定數量N個週期上的平均開關頻率,從而補償誤差訊號並生成第二補償訊號。第二補償訊號是計算相偏差△calc的函數,而計算相偏差△calc是真實相偏差△TSW的函數,該偏差為瞬態前具有循環週期TSW的穩定脈衝模制訊號與瞬態後具有循環週期TSW_M的測得脈衝模制訊號之差。該裝置還包含一組合模組,經配置後可以組合第一補償訊號和第二補償訊號,從而生成由數字回饋系統接收的控制訊號。數字回饋系統輸出的測得脈衝模制訊號的週期響應生成的控制訊號。
在某些實施例中,操作可包含(a)決定真實相偏差△TSW,(b)如果△TSW小於等於預定閾值THR1,則更新△calc=0,以及(c)如果△TSW大於THR1,則對於第一預定週期數NC1,通過添加△TSW,更新每一週期中的△calc
在某些實施例中,操作可包含(d)如果在第一預定週期數NC1之後,△TSW大於THR1,則對於第二預定週期數NC2,通過乘以用戶預定遺忘因子,在每一週期中更新△calc,以及(e)如果在NC1週期之後,△TSW小於等於預定閾值THR1,則對於NC1週期重複操作(a)-(d)。
在某些實施例中,第二預定週期數NC2還可包含複數個子週期。在這些子週期的每一個中,補償處理器經配置後可更新△calc,使之關聯相應的遺忘因子。在某些實施例中,相偏差△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),i是瞬態後測得脈衝調制訊號的第i個脈衝,i=1,2,...N。
在某些實施例中,操作還可包含(f)如果在預定週期數NC2之後,△calc的絕對值大於THR1,則對於第三預定週期數NC3,更新△calc=0,以及(g)如果△calc的絕對值小於等於NC2週期後THR1,則對於NC1週期重複操作(a)-(d)。
在某些實施例中,補償處理器可包含一誤差計算電路,後者經配置後,可以響應誤差訊號、具有循環週期TSW的穩定脈衝調制訊號、具有循環週期TSW_M的測得脈衝調制訊號,計算△calc。在某些實施例中,誤差計算電路經配置後還可響應用戶預定遺忘因子,計算△calc。補償處理器還可包含誤差補償器,後者經配置後可以補償△calc。補償處理器還可包含快速增益路徑電路,後者經配置後可以接收誤差訊號並生成放大電壓誤差訊號。該快速增益路徑電路可包含經配置後過濾誤差訊號的低通濾波器和經配置後放大過濾誤差訊號的放大電路。放大電路還可包含第一選擇電路,後者經配置後可啟動或禁用快速增益路徑電路。放大電路還可包含一放大器,經配置後,當電壓誤差訊號為正時,可以應用第一增益值放大過濾誤差訊號;當電壓誤差訊號為負時,可以應用第二增益值放大電壓誤差訊號。第一增益值可能不同於第二增益值。
在另一典型態樣,量子電荷調制器的配置方法包含響應關聯數字回饋系統受控電路參數的誤差訊號,通過回饋誤差補償器,生成第一補償訊號。該方法還包含通過補償處理器生成第二補償訊號,以通過執行操作補償誤差訊號,從而響應瞬態,在預定數量N個週期上保持平均開關頻率。該方法還包含組合第一補償訊號和第二補償訊號,以生成由數字回饋系統接收的控制訊號。數字回饋系統輸出的測得脈衝模制訊號的週期響應生成的控制訊號。第二補償訊號是計算相偏差△calc的函數,而計算相偏差△calc是真實相偏差△TSW的函數,該真實相偏差為瞬態前具有循環週期TSW的穩定脈衝模制訊號與瞬態後具有循環週期TSW_M的測得脈衝模制訊號之差。
在某些實施例中,操作執行還可包含(a)決定真實的相偏差△TSW,(b)如果△TSW小於等於預定閾值THR1,則更新△calc=0,以及(c)如果△TSW大於THR1,則對於第一預定週期數NC1,通過添加△TSW更新△calc
在某些實施中,操作執行還可包含(d)如果在第一預定週期數NC1之後,△TSW大於THR1,則對於第二預定週期數NC2,通過乘以用戶預定的遺忘因子,更新△calc。以及(e)如果在第一預定週期數NC1之後,△TSW小於等於THR1,則重複NC1週期的操作(a)-(d)。在某些實施例中,第二預定週期數NC2還可包含複數個子週期;在該複數個子週期的每一個中,可以應用補償處理器更新△calc,以關聯相應的遺忘因子。
在某些實施例中,操作執行還可包含(f)如果在NC2個週期後,△calc的絕對值大於THR1,則對於第三預定週期數NC3,更新△calc=0,以及(g)如果在NC2個週期後,△calc的絕對值小於等於THR1,則對於NC1週期,重複操作(a)-(d)。
在某些實施例中,相偏差△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),i是瞬態後測得脈衝調制訊號的第i個脈衝,i=1,2,...N。在某些實施例中,補償處理器可包含一誤差計算電路,後者經配置後,可以響應誤差訊號、具有循環週期TSW的穩定脈衝調制訊號、具有循環週期TSW_M的測得脈衝調制訊號,計算△calc。誤差計算電路經配置後還可響應用戶預定遺忘因子,計算△calc
已對複數個實施例方式予以說明。然而,應當可以理解的是,仍可對其作出各類修改。例如,如果按不同的順序執行揭露手法的步驟,或者以不同方式組合揭露系統的組件,或者用其他組件補充原組件,則可獲得有利結果。相應的其他實施例方式均在以下要求的範圍以內。
105:電動負載系統
110:電源
115:負載
120:電源轉換器
125:數字脈衝寬度調制器
130:功率級
135:負載電路
140:輸出電壓訊號
145:減法節點
150:參考電壓訊號
155a、155b:誤差電壓訊號
160:類比數位轉換器
165:量子電荷調制器
165b:控制訊號
170:振盪器
175:交錯管理模組
Ton:接通時間訊號

Claims (20)

  1. 一種量子電荷調制器配置裝置,其包含:一回饋誤差補償器,配置響應關聯的一數字回饋系統受控電路參數的一誤差訊號,生成一第一補償訊號;一補償處理器,配置通過響應瞬態執行一操作,在預定數量N個週期上保持一平均開關頻率,從而補償該誤差訊號並生成一第二補償訊號;其中的該第二補償訊號是計算一相偏差△calc的函數,計算該相偏差△calc是一真實相偏差△TSW的函數,該真實相偏差為瞬態前具有一循環週期TSW的一穩定脈衝模制訊號與瞬態後具有該循環週期TSW_M的一測得脈衝模制訊號之差;以及一組合模組,配置組合該第一補償訊號和該第二補償訊號,從而生成由該數字回饋系統接收的一控制訊號;其中,該數字回饋系統輸出的該測得脈衝模制訊號的週期響應生成的該控制訊號。
  2. 如申請專利範圍第1項所述之量子電荷調制器配置裝置,其中該操作包含:(a)決定該真實相偏差△TSW;(b)如果該真實相偏差△TSW小於等於一預定閾值THR1,則更新該相偏差△calc=0;且(c)如果該真實相偏差△TSW大於該預定閾值THR1,則對於一第一預定週期數NC1,通過添加該真實相偏差△TSW,更新每一週期中的該相偏差△calc
  3. 如申請專利範圍第2項所述之量子電荷調制器配置裝置,其中該操作進一步包含:(d)如果在該第一預定週期數NC1之後,該真實相偏差△TSW大於該預定閾值THR1,則對於一第二預定週期數NC2,通過乘以用戶預定的一遺忘因子,更新每一週期中的該相偏差△calc;以及(e)如果在該第一預定週期數NC1個週期之後,該真實相偏差△TSW小於等於該預定閾值THR1,則重複該第一預定週期數NC1週期的操作(a)-(d)。
  4. 如申請專利範圍第3項所述之量子電荷調制器配置裝置,其中該第二預定週期數NC2進一步包含複數個子週期,而在該複數個子週期中的每一個中,該補償處理器配置更新該相偏差△calc,以關聯相應的該遺忘因子。
  5. 如申請專利範圍第3項所述之量子電荷調制器配置裝置,其中該操作進一步包含:(f)如果在該第二預定週期數NC2之後,該相偏差△calc的絕對值大於該預定閾值THR1,則對於一第三預定週期數NC3,更新該相偏差△calc=0;以及(g)如果在該第二預定週期數NC2個週期之後,△calc的絕對值小於等於該預定閾值THR1,則重複該第一預定週期數NC1週期的操作(a)-(d)。
  6. 如申請專利範圍第1項所述之量子電荷調制器配置裝置,其中該補償處理器進一步包含: 一誤差計算電路,配置響應該誤差訊號、具有該循環週期TSW的一穩定脈衝調制訊號、具有該循環週期TSW_M的一測得脈衝調制訊號,計算該相偏差△calc
  7. 如申請專利範圍第6項所述之量子電荷調制器配置裝置,其中該誤差計算電路進一步配置響應用戶預定的一遺忘因子,計算該相偏差△calc
  8. 如申請專利範圍第1項所述之量子電荷調制器配置裝置,其中該相偏差△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),其中i是瞬態後一測得脈衝調制訊號的第i個脈衝,i=1,2,...N。
  9. 如申請專利範圍第1項所述之量子電荷調制器配置裝置,其中該補償處理器進一步包含一快速增益路徑電路,配置接收該誤差訊號並生成一放大電壓誤差訊號。
  10. 如申請專利範圍第9項所述之量子電荷調制器配置裝置,其中該快速增益路徑電路進一步包含配置過濾該誤差訊號的一低通濾波器以及配置放大一過濾誤差訊號的一放大電路。
  11. 如申請專利範圍第10項所述之量子電荷調制器配置裝置,其中該放大電路進一步包含第一選擇電路,配置啟動或禁用該快速增益路徑電路。
  12. 如申請專利範圍第11項所述之量子電荷調制器配置裝置,其中該放大電路進一步包含一放大器,配置在一電壓誤差訊號為正時應用一第一增益值放大該過濾誤差訊號,在該電壓誤差訊號為負時應用一第二增益值放大該電壓誤差訊號。
  13. 如申請專利範圍第12項所述之量子電荷調制器配置裝置,其中該第一增益值不同於該第二增益值。
  14. 一種量子電荷調制器的配置方法,其包含:對關聯的一數字回饋系統受控電路參數的一誤差訊號作出響應,通過一回饋誤差補償器生成一第一補償訊號;通過一執行操作以響應瞬態,在預定數量N個週期上保持一平均開關頻率,從而經由一補償處理器,生成一第二補償訊號,補償該誤差訊號;和組合該第一補償訊號和該第二補償訊號,從而生成由該數字回饋系統接收的一控制訊號;其中,該數字回饋系統輸出的一測得脈衝模制訊號的週期響應生成的該控制訊號;其中,該第二補償訊號是計算一相偏差△calc的函數,計算該相偏差△calc是一真實相偏差△TSW的函數,該真實相偏差為瞬態前具有一循環週期TSW的一穩定脈衝模制訊號與瞬態後具有該循環週期TSW_M的一測得脈衝模制訊號之差。
  15. 如申請專利範圍第14項所述之量子電荷調制器的配置方法,其中該執行操作進一步包含:(a)決定該真實相偏差△TSW;(b)如果該真實相偏差△TSW小於等於一預定閾值THR1,則更新該相偏差△calc=0;以及(c)如果該真實相偏差△TSW大於該預定閾值THR1,則對於一第一預定週期數NC1,通過添加該真實相偏差△TSW更新該相偏差△calc
  16. 如申請專利範圍第15項所述之量子電荷調制器的配置方法,其中該執行操作進一步包含: (d)如果在該第一預定週期數NC1之後,該真實相偏差△TSW大於該預定閾值THR1,則對於一第二預定週期數NC2,可通過乘以用戶預定的一遺忘因子來更新該相偏差△calc;以及(e)如果在該第一預定週期數NC1之後,該真實相偏差△TSW小於等於該預定閾值THR1,則重複該第一預定週期數NC1週期的操作(a)-(d)。
  17. 如申請專利範圍第16項所述之量子電荷調制器的配置方法,其中當該第二預定週期數NC2進一步包含複數個子週期時,在複數個子週期的每一個中,通過補償處理器更新該相偏差△calc,以關聯相應的該遺忘因子。
  18. 如申請專利範圍第16項所述之量子電荷調制器的配置方法,其中該執行操作進一步包含:(f)如果在該第二預定週期數NC2個週期後,該相偏差△calc的絕對值大於該預定閾值THR1,則對於一第三預定週期數NC3,更新該相偏差△calc=0;以及(g)如果在該第二預定週期數NC2個週期後,該相偏差△calc的絕對值小於等於該預定閾值THR1,則重複該第一預定週期數NC1週期的操作(a)-(d)。
  19. 如申請專利範圍第16項所述之量子電荷調制器的配置方法,其中該補償處理器包含誤差計算電路,經配置後響應一誤差訊號、具有該循環週期TSW的一穩定脈衝調制訊號、具有該循環週期TSW_M的一測得脈衝調制訊號,計算該相偏差△calc
  20. 如申請專利範圍第14項所述之量子電荷調制器的配置方法,其中該相偏差△TSW=Σ△i.△i=△i-1+(TSW-TSW_Mi),其中i是瞬態後 的一測得脈衝調制訊號的第i個脈衝,i=1,2,...N。
TW108145950A 2019-01-10 2019-12-16 用於電源轉換器穩定控制的量子電荷調制器配置方法和裝置 TWI737082B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/245,041 2019-01-10
US16/245,041 US10523102B1 (en) 2019-01-10 2019-01-10 Methods and apparatuses for stable control in power converters

Publications (2)

Publication Number Publication Date
TW202101874A TW202101874A (zh) 2021-01-01
TWI737082B true TWI737082B (zh) 2021-08-21

Family

ID=69057619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108145950A TWI737082B (zh) 2019-01-10 2019-12-16 用於電源轉換器穩定控制的量子電荷調制器配置方法和裝置

Country Status (3)

Country Link
US (1) US10523102B1 (zh)
CN (1) CN111431401B (zh)
TW (1) TWI737082B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11606018B2 (en) * 2021-02-09 2023-03-14 Alpha And Omega Semiconductor International Lp High bandwidth constant on-time PWM control
CN113067351B (zh) * 2021-03-31 2022-12-30 国网北京市电力公司 锁频器的频率响应控制方法、装置、存储介质和处理器
CN114740707B (zh) * 2022-04-22 2024-06-28 深圳市创诺新电子科技有限公司 一种数字电源调压控制方法、系统、设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129264A1 (en) * 2006-10-06 2008-06-05 Intersil Americas Inc. Hysteretic power-supply controller with adjustable switching frequency, and related power supply, system, and method
CN101826798A (zh) * 2010-04-07 2010-09-08 矽创电子股份有限公司 电源转换装置
TW201340570A (zh) * 2012-03-30 2013-10-01 Upi Semiconductor Corp 電源轉換器及其操作方法
US20140333270A1 (en) * 2013-05-08 2014-11-13 Intersil Americas LLC Current Ramping During Multiphase Current Regulation
TW201511454A (zh) * 2013-09-10 2015-03-16 Advanced Analog Technology Inc 錯相式直流轉直流電源轉換器及其電流平衡器
CN105305833A (zh) * 2013-10-28 2016-02-03 崇贸科技股份有限公司 可调式电源供应器的可调整降频电路及调变切换频率方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929692A (en) 1997-07-11 1999-07-27 Computer Products Inc. Ripple cancellation circuit with fast load response for switch mode voltage regulators with synchronous rectification
US6518849B1 (en) * 2000-04-17 2003-02-11 Tripath Technology, Inc. Dynamic delay compensation versus average switching frequency in a modulator loop and methods thereof
US6522108B2 (en) 2001-04-13 2003-02-18 Vlt Corporation Loss and noise reduction in power converters
TWI395082B (zh) * 2009-11-11 2013-05-01 Richtek Technology Corp 用於變頻式電壓調節器的頻率控制電路及方法
US8410768B2 (en) * 2010-01-19 2013-04-02 Delta Electronics, Inc. Switch-mode power supply having reduced audible noise
US8575910B2 (en) 2010-01-20 2013-11-05 Intersil Americas Inc. Single-cycle charge regulator for digital control
US9531266B2 (en) * 2011-02-23 2016-12-27 Infineon Technologies Americas Corp. Power supply circuitry and adaptive transient control
US8786377B2 (en) * 2011-11-21 2014-07-22 Intersil Americas LLC System and method of maintaining gain linearity of variable frequency modulator
US20140125306A1 (en) 2012-11-07 2014-05-08 Infineon Technologies North America Corp. Switching Regulator Control with Nonlinear Feed-Forward Correction
CN103095107B (zh) * 2013-01-22 2015-03-25 西南交通大学 开关变换器双缘脉冲频率调制v2型控制方法及其装置
US10181791B2 (en) * 2017-04-14 2019-01-15 Allegro Microsystems, Llc Converter digital control circuit with adaptive compensation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129264A1 (en) * 2006-10-06 2008-06-05 Intersil Americas Inc. Hysteretic power-supply controller with adjustable switching frequency, and related power supply, system, and method
CN101826798A (zh) * 2010-04-07 2010-09-08 矽创电子股份有限公司 电源转换装置
TW201340570A (zh) * 2012-03-30 2013-10-01 Upi Semiconductor Corp 電源轉換器及其操作方法
US20140333270A1 (en) * 2013-05-08 2014-11-13 Intersil Americas LLC Current Ramping During Multiphase Current Regulation
TW201511454A (zh) * 2013-09-10 2015-03-16 Advanced Analog Technology Inc 錯相式直流轉直流電源轉換器及其電流平衡器
CN105305833A (zh) * 2013-10-28 2016-02-03 崇贸科技股份有限公司 可调式电源供应器的可调整降频电路及调变切换频率方法

Also Published As

Publication number Publication date
CN111431401B (zh) 2023-06-09
TW202101874A (zh) 2021-01-01
CN111431401A (zh) 2020-07-17
US10523102B1 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
TWI737082B (zh) 用於電源轉換器穩定控制的量子電荷調制器配置方法和裝置
JP4725641B2 (ja) 昇降圧型スイッチングレギュレータ
TWI548182B (zh) 用於調適性暫態控制之方法,電源系統及電腦可讀式儲存硬體
EP3413448B1 (en) Power supply control and use of generated ramp signal
TWI551020B (zh) 具平均限流功率轉換器
KR20130036065A (ko) 벅 스위치 모드 파워 컨버터 큰 신호 천이 응답 최적화기
JP2012161146A (ja) 出力電圧切替機能を備えたスイッチング電源装置
KR101562554B1 (ko) 펄스 폭 변조 전력 변환기 및 제어 방법
Chincholkar et al. Design and implementation of an output feedback controller for the Cuk converter
US11863057B2 (en) High bandwidth constant on-time PWM control
EP3534517B1 (en) Reference voltage control in a power supply
US11962249B2 (en) Multi-level power converter architecture
JP6048323B2 (ja) Dcdcコンバータ及びこのdcdcコンバータを備えた電源装置
Eirea et al. Adaptive Output Current FeedforwardControl in VR Applications
US11929679B2 (en) Power supply configurations and PWM edge control
Yousefzadeh Advances in digital power control
Tajuddin et al. State space averaging technique of power converter with digital PID controller
Platon et al. Simple and digital implementation of PI controller used in voltage-mode control
JP6326965B2 (ja) 電源装置
EP2638624B1 (en) Method for generating pwm signals and a pulse width modulation power converter
Prasuna et al. Digital peak current mode control of boost converter
JP6217257B2 (ja) Dc/dcコンバータ及び電源装置
Lang et al. The closed-loop design for Buck Chopper circuit
Das et al. Improved One Cycle Control Strategy to Eliminate Steady State Error in Buck Regulators
Patel et al. Boundary‐based hybrid control algorithm for switched boost converter operating in CCM and DCM