TWI735589B - A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device - Google Patents

A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device Download PDF

Info

Publication number
TWI735589B
TWI735589B TW106118370A TW106118370A TWI735589B TW I735589 B TWI735589 B TW I735589B TW 106118370 A TW106118370 A TW 106118370A TW 106118370 A TW106118370 A TW 106118370A TW I735589 B TWI735589 B TW I735589B
Authority
TW
Taiwan
Prior art keywords
valve
piston
chamber
assembly
platform
Prior art date
Application number
TW106118370A
Other languages
Chinese (zh)
Other versions
TW201809483A (en
Inventor
佰學 楊
崔永俊
張秉威
坂田晃一
樹平 李
Original Assignee
日商尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商尼康股份有限公司 filed Critical 日商尼康股份有限公司
Publication of TW201809483A publication Critical patent/TW201809483A/en
Application granted granted Critical
Publication of TWI735589B publication Critical patent/TWI735589B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0442Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with proportional solenoid allowing stable intermediate positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/007Simulation or modelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A stage assembly for positioning a workpiece includes a stage, a base, a fluid actuator assembly, and a control system. The stage retains the workpiece. The fluid actuator assembly moves the stage along the movement axis relative to the base. The fluid actuator assembly includes a piston housing that defines a piston chamber, a piston that is positioned within and moves relative to the piston chamber along a piston axis, and a valve assembly that controls the flow of a piston fluid into the piston chamber. The valve assembly includes a first inlet valve having a first inlet valve characteristic. The control system controls the valve assembly to control the flow of the piston fluid into the piston chamber. The control system can utilize an inverse of the first inlet valve characteristic to control the valve assembly.

Description

用於定位工件之平台總成、曝光設備以及用於製造一裝置之程序 Platform assembly for positioning workpieces, exposure equipment, and program for manufacturing a device

曝光設備通常用以將影像自遮罩轉印至諸如LCD平板顯示器或半導體晶圓之工件上。典型的曝光設備包括:照明源;遮罩平台總成,其保持及精確地定位遮罩;透鏡總成;工件平台總成,其保持及精確地定位工件;及量測系統,其監測遮罩及工件之位置或移動。從未終止期望減小用以定位遮罩及/或工件之致動器的成本,同時仍準確地定位此等組件。 Exposure equipment is usually used to transfer images from a mask to a workpiece such as an LCD flat panel display or a semiconductor wafer. Typical exposure equipment includes: an illumination source; a mask platform assembly, which holds and accurately positions the mask; a lens assembly; a workpiece platform assembly, which holds and accurately positions the workpiece; and a measurement system, which monitors the mask And the position or movement of the workpiece. There has never been a desire to reduce the cost of the actuators used to position the mask and/or the workpiece, while still accurately positioning these components.

本發明係關於用於沿著一移動軸線定位一工件之平台總成。在一個實施例中,該平台總成包括一平台、一底座、一流體致動器總成及一控制系統。該平台經調適以保持該工件。該流體致動器總成耦接至該平台且沿著該移動軸線相對於該底座來移動該平台。該流體致動器總成可包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成,其控制一活塞流體進入該活塞腔室之流動。該閥總成包括具有一第一入口閥特性之一 第一入口閥。該控制系統控制該閥總成以控制該活塞流體進入該活塞腔室之該流動。在某些實施例中,該控制系統利用該第一入口閥特性之一反轉以控制該閥總成。 The present invention relates to a platform assembly for positioning a workpiece along a moving axis. In one embodiment, the platform assembly includes a platform, a base, a fluid actuator assembly, and a control system. The platform is adapted to hold the workpiece. The fluid actuator assembly is coupled to the platform and moves the platform relative to the base along the movement axis. The fluid actuator assembly may include: a piston housing defining a piston chamber; a piston positioned in the piston chamber and moving relative to the piston chamber along a piston axis; and a valve The assembly controls the flow of a piston fluid into the piston chamber. The valve assembly includes one of the characteristics of a first inlet valve The first inlet valve. The control system controls the valve assembly to control the flow of the piston fluid into the piston chamber. In some embodiments, the control system uses one of the first inlet valve characteristics to reverse to control the valve assembly.

在一個實施例中,該活塞流體為一氣體,且本發明被描述為一種氣動控制應用。替代地,該活塞流體可為諸如油之一液體,且可利用不同方程式。 In one embodiment, the piston fluid is a gas, and the invention is described as a pneumatic control application. Alternatively, the piston fluid may be a liquid such as oil, and different equations may be used.

如本文中所提供,該控制系統精確地控制該活塞之每一側上的流體壓力以產生用以準確地驅動及定位該平台之所要力。在某些實施例中,評估該閥總成以識別嵌入於該系統中之非線性。此等非線性包括每一閥之該等閥特性。閥特性之非獨占式實例包括:(i)隨著腔室體積之流體壓力變化;(ii)比例閥之背隙及差壓相依性;及(iii)與上游及下游壓力相關聯之流體流動非線性。可經由測試、模型化或模擬來識別該等非線性。隨後,在該控制系統之一控制迴路中反轉及使用該等閥特性以線性化該系統且準確地控制該流體致動器總成。 As provided herein, the control system precisely controls the fluid pressure on each side of the piston to generate the required force to accurately drive and position the platform. In some embodiments, the valve assembly is evaluated to identify non-linearities embedded in the system. These non-linearities include the valve characteristics of each valve. Non-exclusive examples of valve characteristics include: (i) fluid pressure changes with chamber volume; (ii) proportional valve backlash and differential pressure dependence; and (iii) fluid flow associated with upstream and downstream pressures Non-linear. These nonlinearities can be identified through testing, modeling, or simulation. Subsequently, the valve characteristics are reversed and used in a control loop of the control system to linearize the system and accurately control the fluid actuator assembly.

因此,已藉由將經識別之系統動力學模型併入至控制設計中而解決與將一液壓缸施加至平台軌跡運動相關聯之液壓缸壓力及閥動力學的系統非線性問題。 Therefore, the system non-linearity problem of hydraulic cylinder pressure and valve dynamics associated with applying a hydraulic cylinder to the platform trajectory movement has been solved by incorporating the identified system dynamics model into the control design.

在某些實施例中,該活塞將該活塞腔室分離成在該活塞之相對側上的一第一腔室及一第二腔室。另外,該閥總成控制該活塞流體進入及離開該第一腔室及該第二腔室之流動。 In some embodiments, the piston separates the piston chamber into a first chamber and a second chamber on opposite sides of the piston. In addition, the valve assembly controls the flow of the piston fluid into and out of the first chamber and the second chamber.

在一個實施例中,該閥總成包括:(i)該第一入口閥,其控制該活塞流體進入該第一腔室之該流動;(ii)一第一出口閥,其控制該活 塞流體離開該第一腔室之該流動;(iii)一第二入口閥,其控制該活塞流體進入該第二腔室之該流動;及(iv)一第二出口閥,其控制該活塞流體離開該第二腔室之該流動。另外,該第一出口閥具有一第一出口閥特性;該第二入口閥具有一第二入口閥特性;且該第二出口閥具有一第二出口閥特性。在此實施例中,該控制系統亦利用該第一出口閥特性之一反轉、該第二入口閥特性之一反轉及該第二出口閥特性之一反轉以控制該閥總成。 In one embodiment, the valve assembly includes: (i) the first inlet valve, which controls the flow of the piston fluid into the first chamber; (ii) a first outlet valve, which controls the valve The flow of plug fluid leaving the first chamber; (iii) a second inlet valve that controls the flow of the piston fluid into the second chamber; and (iv) a second outlet valve that controls the piston The flow of fluid leaving the second chamber. In addition, the first outlet valve has a first outlet valve characteristic; the second inlet valve has a second inlet valve characteristic; and the second outlet valve has a second outlet valve characteristic. In this embodiment, the control system also uses an inversion of the first outlet valve characteristic, an inversion of the second inlet valve characteristic, and an inversion of the second outlet valve characteristic to control the valve assembly.

作為一個非獨占式實例,可使用該第一入口閥之實驗測試來判定該第一入口閥特性,可使用該第一出口閥之實驗測試來判定該第一出口閥特性,可使用該第二入口閥之實驗測試來判定該第二入口閥特性,且可使用該第二出口閥之實驗測試來判定該第二出口閥特性。 As a non-exclusive example, the experimental test of the first inlet valve can be used to determine the characteristics of the first inlet valve, the experimental test of the first outlet valve can be used to determine the characteristics of the first outlet valve, and the second The experimental test of the inlet valve is used to determine the characteristics of the second inlet valve, and the experimental test of the second outlet valve can be used to determine the characteristics of the second outlet valve.

如本文中所提供,舉例而言,每一閥特性可為:(i)用於該閥之電流命令與一有效孔口面積之間的關係;(ii)用於該閥之電流命令與閥位置之間的關係;及/或(iii)用於該閥之有效孔口面積與閥位置之間的關係。 As provided herein, for example, each valve characteristic can be: (i) the relationship between the current command for the valve and an effective orifice area; (ii) the current command for the valve and the valve The relationship between the positions; and/or (iii) the relationship between the effective orifice area of the valve and the valve position.

本發明亦係關於一種曝光設備,及一種用於製造一裝置之程序,該程序包括以下步驟:提供一基板;及運用該曝光設備將一影像形成至該基板。 The present invention also relates to an exposure equipment and a process for manufacturing a device. The process includes the following steps: providing a substrate; and using the exposure equipment to form an image on the substrate.

本發明亦係關於一種用於沿著一移動軸線定位一工件之方法。在一個實施例中,該方法包括:(i)提供一底座;(ii)將該工件耦接至一平台;(iii)運用一流體致動器總成而沿著該移動軸線移動該平台,該流體致動器總成包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成, 其控制一活塞流體進入該活塞腔室之流動;其中該閥總成包括具有一第一入口閥特性之一第一入口閥;及(iv)運用一控制系統來控制該閥總成以控制該活塞流體進入該活塞腔室之該流動,其中該控制系統利用該第一入口閥特性之一反轉以控制該閥總成。 The invention also relates to a method for positioning a workpiece along a moving axis. In one embodiment, the method includes: (i) providing a base; (ii) coupling the workpiece to a platform; (iii) using a fluid actuator assembly to move the platform along the movement axis, The fluid actuator assembly includes: a piston housing defining a piston chamber; a piston positioned in the piston chamber and moving relative to the piston chamber along a piston axis; and a valve assembly become, It controls the flow of a piston fluid into the piston chamber; wherein the valve assembly includes a first inlet valve having a first inlet valve characteristic; and (iv) using a control system to control the valve assembly to control the valve assembly The flow of piston fluid into the piston chamber, wherein the control system uses one of the first inlet valve characteristics to reverse to control the valve assembly.

10:平台總成 10: Platform assembly

12:底座 12: Base

14:平台 14: Platform

16:平台移動器總成 16: Platform mover assembly

18:量測系統 18: Measurement system

20:控制系統 20: Control system

20A:處理器 20A: processor

20B:電子資料儲存器 20B: Electronic data storage

22:工件 22: Workpiece

24:流體致動器總成 24: Fluid actuator assembly

26:底座安裝台 26: Pedestal mounting table

28:軸承總成 28: Bearing assembly

30:移動軸線 30: moving axis

31:活塞總成 31: Piston assembly

32:活塞殼體 32: Piston housing

32A:管狀側壁 32A: Tubular side wall

32B:圓盤狀第一端壁 32B: Disc-shaped first end wall

32C:圓盤狀第二端壁 32C: Disc-shaped second end wall

32D:壁孔隙 32D: Wall pores

34:活塞腔室 34: Piston chamber

34A:第一腔室 34A: first chamber

34B:第二腔室 34B: second chamber

36:活塞 36: Piston

36A:活塞軸線 36A: Piston axis

36B:活塞體 36B: Piston body

36C:活塞密封件 36C: Piston seal

36D:第一橫樑 36D: The first beam

36E:第二橫樑 36E: second beam

38:閥總成 38: valve assembly

38A:第一閥子總成 38A: First valve sub-assembly

38B:第二閥子總成 38B: Second valve sub-assembly

38C:第一入口閥 38C: First inlet valve

38D:第一出口閥 38D: First outlet valve

38E:第二入口閥 38E: second inlet valve

38F:第二出口閥 38F: second outlet valve

40:活塞流體 40: Piston fluid

42:活塞安裝台 42: Piston mounting table

44:總力(F) 44: Total force (F)

46:流體壓力源 46: fluid pressure source

46A:流體貯槽 46A: fluid storage tank

46B:壓縮器 46B: Compressor

46C:壓力調節器 46C: Pressure regulator

260:平台參考區塊 260: Platform reference block

262:平台回饋控制器 262: Platform Feedback Controller

264:平台前饋控制器 264: Platform feedforward controller

266:回饋轉換器 266: Feedback Converter

268:前饋轉換器 268: Feedforward converter

270:第一腔室控制器 270: The first chamber controller

272:第二腔室控制器 272: The second chamber controller

278:腔室體積估計器 278: Chamber Volume Estimator

290:壓力回饋控制器 290: Pressure feedback controller

292:壓力至質量流量轉換器 292: Pressure to mass flow converter

294:入口質量流量至孔口面積轉換器 294: Inlet mass flow to orifice area converter

296:出口質量流量至孔口面積轉換器 296: Outlet mass flow to orifice area converter

297:入口孔口面積至電流轉換器 297: Entrance orifice area to current converter

298:出口孔口面積至電流轉換器 298: Outlet orifice area to current converter

334i:腔室 334i: Chamber

338i:閥子總成 338i: Valve sub-assembly

338ii:入口閥 338ii: inlet valve

338io:出口閥 338io: outlet valve

340:加壓活塞流體 340: Pressurized Piston Fluid

346:壓力源 346: Pressure Source

400:管路 400: pipeline

402:孔口 402: Orifice

538:閥 538: Valve

539A:閥殼體 539A: Valve housing

539B:可移動閥體 539B: movable valve body

539C:入口導管 539C: Inlet duct

539D:出口導管 539D: Outlet duct

539E:彈性構件 539E: Elastic member

539F:螺線管 539F: Solenoid

600A:線 600A: line

600B:線 600B: line

602A:線 602A: Line

602B:線 602B: Line

604A:線 604A: Line

604B:線 604B: Line

606A:線 606A: Line

606B:線 606B: Line

608A:線 608A: Line

608B:線 608B: Line

610A:線 610A: Line

610B:線 610B: Line

612A:線 612A: Line

612B:線 612B: Line

614:閥特性 614: Valve characteristics

616:反轉閥特性 616: Reversal valve characteristics

738:閥 738: Valve

739A:閥殼體 739A: Valve housing

739B:可移動閥體 739B: movable valve body

739D:出口開口 739D: Exit opening

739E:彈性構件 739E: Elastic member

739F:螺線管 739F: Solenoid

814:閥特性 814: Valve Characteristics

816:反轉閥特性 816: Reverse valve characteristics

914:閥特性 914: Valve characteristics

1014:第一閥特性 1014: First valve characteristics

1015:第二閥特性 1015: Second valve characteristics

1016:反轉閥特性/圖形 1016: Reverse valve characteristics/graphics

1017:反轉閥特性/圖形 1017: Reverse valve characteristics/graphics

1110:板平台總成 1110: Board platform assembly

1120:控制系統 1120: control system

1122:工件 1122: Workpiece

1170:曝光設備 1170: Exposure equipment

1172:設備框架 1172: device frame

1182:照明系統 1182: lighting system

1184:遮罩平台總成 1184: Masking platform assembly

1186:光學總成 1186: optical assembly

1188:遮罩 1188: Mask

1192:照明源 1192: Illumination source

1194:照明光學總成 1194: Illumination optics assembly

1201:步驟 1201: Step

1202:步驟 1202: Step

1203:步驟 1203: Step

1204:步驟 1204: Step

1205:步驟 1205: Step

1206:步驟 1206: step

結合隨附描述自隨附圖式將最佳地理解本發明之新穎特徵以及本發明自身(關於其結構及其操作兩者),在圖式中相似參考標號指代相似部分,且在圖式中:圖1為具有本發明之特徵之平台總成的簡化側視說明;圖2A為說明用於控制流體致動器總成之方法的控制方塊圖;圖2B為腔室控制器的控制方塊圖;圖3為具有本發明之特徵之一個活塞腔室及一個閥子總成的簡化說明;圖4為包括孔口之管路的簡化說明;圖5A至圖5C為閥之一個非獨占式實例的簡化剖示圖;圖6A為說明圖5A至圖5C之閥之閥特性的圖形;圖6B為說明圖5A至圖5C之閥之反轉閥特性的圖形;圖7A至圖7D為在各種閥位置處的另一類型之閥的簡化說明;圖7E為在部分敞開位置中之出口及閥體的簡化說明;圖8A為說明用於圖7A至圖7D所說明之閥之經計算正規化有效孔口面積對正規化滑軸位置的圖形;圖8B為標繪滑軸位置對正規化有效孔口面積的圖形;圖9A為說明滑軸閥之測試結果的圖形; 圖9B為說明滑軸閥之模擬結果的圖形;圖10A說明滑軸閥之兩個閥特性;圖10B說明兩個反轉閥特性;圖11為具有本發明之特徵之曝光設備的示意性說明;且圖12為概述根據本發明的用於製造裝置之程序的流程圖。 The novel features of the present invention and the present invention itself (both with regard to its structure and operation) will be best understood from the accompanying drawings in conjunction with the accompanying description. Similar reference numerals in the drawings refer to similar parts, and in the drawings Middle: Figure 1 is a simplified side view description of the platform assembly with the features of the present invention; Figure 2A is a control block diagram illustrating the method for controlling the fluid actuator assembly; Figure 2B is the control block of the chamber controller Figure; Figure 3 is a simplified illustration of a piston chamber and a valve subassembly with the features of the present invention; Figure 4 is a simplified illustration of a pipeline including an orifice; Figures 5A to 5C are a non-exclusive valve A simplified cross-sectional view of an example; Fig. 6A is a graph illustrating the valve characteristics of the valve of Figs. 5A to 5C; Fig. 6B is a graph illustrating the reversal valve characteristics of the valve of Figs. 5A to 5C; Figs. 7A to 7D are in A simplified illustration of another type of valve at various valve positions; Fig. 7E is a simplified illustration of the outlet and valve body in a partially open position; Fig. 8A is a simplified illustration of the valve used in the description of Figs. 7A to 7D Figure 8B is a graph plotting the position of the sliding shaft versus the area of the normalized effective orifice; Figure 9A is a graph illustrating the test results of the spool valve; Fig. 9B is a graph illustrating the simulation results of the spool valve; Fig. 10A illustrates the two valve characteristics of the spool valve; Fig. 10B illustrates the characteristics of two reversing valves; Fig. 11 is a schematic illustration of an exposure apparatus having the characteristics of the present invention And FIG. 12 is a flowchart outlining a procedure for manufacturing a device according to the present invention.

圖1為平台總成10的簡化說明,平台總成10包括底座12、平台14、平台移動器總成16、量測系統18及控制系統20(被說明為方框)。此等組件中之每一者的設計可變化以適合平台總成10之設計要求。平台總成10特別有用於在製造及/或檢測程序期間精確地定位工件22(有時亦被稱作裝置)。 Fig. 1 is a simplified illustration of the platform assembly 10. The platform assembly 10 includes a base 12, a platform 14, a platform mover assembly 16, a measurement system 18, and a control system 20 (illustrated as a box). The design of each of these components can be changed to suit the design requirements of the platform assembly 10. The platform assembly 10 is particularly useful for accurately positioning the workpiece 22 (sometimes referred to as a device) during manufacturing and/or inspection procedures.

作為概觀,在某些實施例中,平台移動器總成16包括製造起來相對廉價的流體致動器總成24。另外,在本文中所提供之獨特校準及識別程序之後,控制系統20可控制流體致動器總成24以準確地定位工件22。由此,平台總成10製造起來較不昂貴,且工件22仍係以所要程度之準確度而定位。 As an overview, in certain embodiments, the platform mover assembly 16 includes a fluid actuator assembly 24 that is relatively inexpensive to manufacture. In addition, after the unique calibration and identification procedures provided herein, the control system 20 can control the fluid actuator assembly 24 to accurately position the workpiece 22. As a result, the platform assembly 10 is less expensive to manufacture, and the workpiece 22 is still positioned with the required degree of accuracy.

由平台總成10定位及移動之工件22的類型可變化。舉例而言,工件22可為LCD平板顯示器、半導體晶圓或遮罩,且平台總成10可用作曝光設備之部分。替代地,舉例而言,平台總成10可用以在製造及/或檢測期間移動其他類型之裝置,在電子顯微鏡(圖中未示)下方移動裝置,或在精密量測操作(圖中未示)期間移動裝置。 The type of workpiece 22 positioned and moved by the platform assembly 10 can vary. For example, the workpiece 22 can be an LCD flat panel display, a semiconductor wafer or a mask, and the platform assembly 10 can be used as part of an exposure equipment. Alternatively, for example, the platform assembly 10 can be used to move other types of devices during manufacturing and/or inspection, to move devices under an electron microscope (not shown in the figure), or to perform precision measurement operations (not shown in the figure). ) During the mobile device.

本文中所提供之一些圖包括指定X軸、Y軸及Z軸之定向 系統。應理解,定向系統僅僅用於參考且可變化。舉例而言,X軸可與Y軸切換,及/或平台總成10可旋轉。此外,此等軸線可替代地被稱作第一軸線、第二軸線或第三軸線。 Some of the diagrams provided in this article include specifying the orientation of the X-axis, Y-axis and Z-axis system. It should be understood that the orientation system is for reference only and can be varied. For example, the X axis and the Y axis can be switched, and/or the platform assembly 10 can be rotated. In addition, these iso-axes may alternatively be referred to as a first axis, a second axis, or a third axis.

底座12支撐平台14。在圖1所說明之非獨占式實施例中,底座12具剛性且為大體上矩形板形狀。另外,底座12可固定地緊固至底座安裝台26。替代地,底座12可緊固至另一結構。 The base 12 supports the platform 14. In the non-exclusive embodiment illustrated in FIG. 1, the base 12 is rigid and has a substantially rectangular plate shape. In addition, the base 12 can be fixedly fastened to the base mounting table 26. Alternatively, the base 12 may be fastened to another structure.

平台14保持工件22。在一個實施例中,平台係由平台移動器總成16相對於底座12精確地移動以精確地定位平台14及工件22。在圖1中,平台14為大體上矩形形狀且包括用於保持工件22之裝置固持器(圖中未示)。裝置固持器可為真空卡盤、靜電卡盤,或將工件22直接耦接至平台14的某一其他類型之夾具。在本文中所說明之實施例中,平台總成10包括保持工件22之單一平台14。替代地,舉例而言,平台總成10可經設計為包括被獨立地移動及定位之多個平台。作為一實例,平台總成10可包括由平台移動器總成16移動之粗略平台(圖中未示),及保持工件22且運用精細平台移動器總成(圖中未示)相對於粗略平台而移動之精細平台(圖中未示)。 The platform 14 holds the workpiece 22. In one embodiment, the platform is accurately moved relative to the base 12 by the platform mover assembly 16 to accurately position the platform 14 and the workpiece 22. In FIG. 1, the platform 14 has a substantially rectangular shape and includes a device holder (not shown) for holding a workpiece 22. The device holder may be a vacuum chuck, an electrostatic chuck, or some other type of clamp that directly couples the workpiece 22 to the platform 14. In the embodiment described herein, the platform assembly 10 includes a single platform 14 that holds a workpiece 22. Alternatively, for example, the platform assembly 10 may be designed to include multiple platforms that are independently moved and positioned. As an example, the platform assembly 10 may include a rough platform (not shown in the figure) moved by the platform mover assembly 16, and hold the workpiece 22 and use the fine platform mover assembly (not shown in the figure) relative to the rough platform And the mobile fine platform (not shown in the picture).

另外,在圖1中,可運用允許平台14相對於底座12移動之軸承總成28相對於底座12來支撐平台14。舉例而言,軸承總成28可為輥軸承、流體軸承、線性軸承,或另一類型之軸承。 In addition, in FIG. 1, a bearing assembly 28 that allows the platform 14 to move relative to the base 12 can be used to support the platform 14 relative to the base 12. For example, the bearing assembly 28 may be a roller bearing, a fluid bearing, a linear bearing, or another type of bearing.

量測系統18監測平台14相對於參考(諸如光學總成(圖1中未示)或底座12)之移動及/或位置,且將量測資訊提供至控制系統20。在具有此資訊的情況下,可運用控制系統20來控制平台移動器總成16以精 確地定位平台14。量測系統18之設計可根據平台14之移動要求而變化。在一個實施例中,量測系統18可包括監測平台14沿著Y軸之移動的線性編碼器。替代地,量測系統18可包括干涉計,或另一類型之移動或位置感測器。 The measurement system 18 monitors the movement and/or position of the platform 14 relative to a reference (such as the optical assembly (not shown in FIG. 1) or the base 12), and provides measurement information to the control system 20. With this information, the control system 20 can be used to control the platform mover assembly 16 for precision Position the platform 14 accurately. The design of the measurement system 18 can be changed according to the movement requirements of the platform 14. In one embodiment, the measurement system 18 may include a linear encoder that monitors the movement of the platform 14 along the Y axis. Alternatively, the measurement system 18 may include an interferometer, or another type of movement or position sensor.

平台移動器總成16係由控制系統20控制以相對於底座12來移動平台14。在圖1中,平台移動器總成16包括沿著單一移動軸線30(例如,Y軸)移動平台14之流體致動器總成24。 The platform mover assembly 16 is controlled by the control system 20 to move the platform 14 relative to the base 12. In FIG. 1, the platform mover assembly 16 includes a fluid actuator assembly 24 that moves the platform 14 along a single movement axis 30 (eg, Y axis).

流體致動器總成24之設計可依照本文中所提供之教示而變化。在一個非獨占式實施例中,流體致動器總成24包括:(i)活塞總成31,其包括界定活塞腔室34之活塞殼體32,及定位於活塞腔室34中之活塞36;及(ii)閥總成38,其控制活塞流體40(被說明為小圓圈)進入及離開活塞腔室34之流動。舉例而言,活塞流體40可為空氣或另一類型之流體。此等組件之設計可依照本文中所提供之教示而變化。 The design of the fluid actuator assembly 24 can be varied in accordance with the teachings provided herein. In a non-exclusive embodiment, the fluid actuator assembly 24 includes: (i) a piston assembly 31, which includes a piston housing 32 defining a piston chamber 34, and a piston 36 positioned in the piston chamber 34 And (ii) the valve assembly 38, which controls the flow of piston fluid 40 (illustrated as small circles) into and out of the piston chamber 34. For example, the piston fluid 40 may be air or another type of fluid. The design of these components can be changed in accordance with the teachings provided herein.

在一個實施例中,活塞殼體32具剛性且界定大體上右圓柱狀活塞腔室34。在此實施例中,活塞殼體32包括:管狀側壁32A;圓盤狀第一端壁32B;及圓盤狀第二端壁32C,其與第一端壁32B隔開。一個或兩個端壁32B、32C可包括用於收納活塞36之部分的壁孔隙32D。 In one embodiment, the piston housing 32 is rigid and defines a substantially right cylindrical piston chamber 34. In this embodiment, the piston housing 32 includes: a tubular side wall 32A; a disc-shaped first end wall 32B; and a disc-shaped second end wall 32C, which is separated from the first end wall 32B. One or both of the end walls 32B, 32C may include a wall aperture 32D for receiving a portion of the piston 36.

活塞殼體32可固定地緊固至活塞安裝台42。替代地,活塞殼體32可緊固至另一結構,諸如底座12。又替代地,因為活塞殼體32接收由平台移動器總成16產生之反作用力,所以活塞殼體32可耦接至抵消、減小及最小化來自平台移動器總成16之反作用力對其他結構之位置的影響的反作用總成(reaction assembly)。舉例而言,活塞殼體32可耦接至維持於 配重質量塊支撐件(圖中未示)上方之大配重質量塊(圖中未示),配重質量塊支撐件具有允許活塞殼體32沿著移動軸線30運動之反作用軸承(圖中未示)。 The piston housing 32 can be fixedly fastened to the piston mounting table 42. Alternatively, the piston housing 32 may be fastened to another structure, such as the base 12. Alternatively, because the piston housing 32 receives the reaction force generated by the platform mover assembly 16, the piston housing 32 can be coupled to counteract, reduce, and minimize the reaction force from the platform mover assembly 16 to other forces. The reaction assembly that affects the position of the structure. For example, the piston housing 32 can be coupled to be maintained at The large counterweight mass (not shown) above the counterweight mass support (not shown in the figure), the counterweight mass support has a reaction bearing that allows the piston housing 32 to move along the moving axis 30 (in the figure) Not shown).

活塞36定位於活塞腔室34內且沿著活塞軸線36A相對於活塞腔室34而移動。在某些實施例中,活塞軸線36A與移動軸線30同軸。在圖1所說明之非獨占式實施例中,活塞36包括:(i)剛性圓盤狀活塞體36B;(ii)活塞密封件36C,其密封活塞體36B與活塞殼體32之間的區域;(iii)剛性第一橫樑36D,其附接至活塞體36B且遠離活塞體36B而懸臂,且延伸通過第一端壁32B中之壁孔隙32D;(iv)剛性第二橫樑36E,其附接至活塞體36B且遠離活塞體36B而懸臂,且延伸通過第二端壁32C中之壁孔隙32D;(iv)第一橫樑密封件(圖中未示),其密封第一橫樑36D與第一端壁32B之間的區域;及(v)第二橫樑密封件(圖中未示),其密封第二橫樑36E與第二端壁32C之間的區域。 The piston 36 is positioned in the piston chamber 34 and moves relative to the piston chamber 34 along the piston axis 36A. In some embodiments, the piston axis 36A is coaxial with the movement axis 30. In the non-exclusive embodiment illustrated in FIG. 1, the piston 36 includes: (i) a rigid disc-shaped piston body 36B; (ii) a piston seal 36C that seals the area between the piston body 36B and the piston housing 32 (Iii) the rigid first beam 36D, which is attached to the piston body 36B and cantilever away from the piston body 36B, and extends through the wall aperture 32D in the first end wall 32B; (iv) the rigid second beam 36E, which is attached Is connected to the piston body 36B and cantilever away from the piston body 36B, and extends through the wall aperture 32D in the second end wall 32C; (iv) a first beam seal (not shown), which seals the first beam 36D and the first beam 36D The area between one end wall 32B; and (v) a second beam seal (not shown), which seals the area between the second cross beam 36E and the second end wall 32C.

在此實施例中,第二橫樑36E亦固定地緊固至平台14。換言之,第二橫樑36E延伸於活塞體36B與平台14之間,使得活塞體36B之移動引起平台14之移動。另外,在此實施例中,包括第一橫樑36D以使得活塞體36B之每一側上的有效面積出於計算簡易起見而相同。替代地,舉例而言,流體致動器總成24可經設計為沒有第一橫樑36D。在此設計中,活塞體36B之左側上的有效面積大於右側上的有效面積。 In this embodiment, the second cross beam 36E is also fixedly fastened to the platform 14. In other words, the second beam 36E extends between the piston body 36B and the platform 14 so that the movement of the piston body 36B causes the platform 14 to move. In addition, in this embodiment, the first beam 36D is included so that the effective area on each side of the piston body 36B is the same for the sake of simplicity of calculation. Alternatively, for example, the fluid actuator assembly 24 may be designed without the first beam 36D. In this design, the effective area on the left side of the piston body 36B is larger than the effective area on the right side.

活塞體36B將活塞腔室34分離成在活塞體36B之相對側上的第一腔室34A(亦被稱作「腔室1」)及第二腔室34B(亦被稱作「腔室2」)。在圖1中,第一腔室34A在活塞體36B之左側上,且第二腔室34B在活塞 體36B之右側上。另外,第一腔室34A具有腔室1有效活塞面積(A 1 ),且被填充有處於第一壓力(P 1 )、處於第一溫度(T 1 )且具有第一體積(V 1 )之活塞流體40。相似地,第二腔室34B具有腔室2有效活塞面積(A 2 ),且被填充有處於第二壓力(P 2 )、處於第二溫度(T 2 )且具有第二體積(V 2 )之活塞流體40。在圖1所說明之此非獨占式實例中,流體致動器總成24經設計使得腔室1有效活塞面積(A 1 )大致等於腔室2有效活塞面積(A 2 )。 The piston body 36B separates the piston chamber 34 into a first chamber 34A (also referred to as "chamber 1") and a second chamber 34B (also referred to as "chamber 2" on the opposite side of the piston body 36B). "). In FIG. 1, the first chamber 34A is on the left side of the piston body 36B, and the second chamber 34B is on the right side of the piston body 36B. In addition, the first chamber 34A has an effective piston area (A 1 ) of chamber 1 and is filled with a first pressure (P 1 ), a first temperature (T 1 ), and a first volume (V 1 ). Piston fluid 40. Similarly, the second chamber 34B has an effective piston area (A 2 ) of chamber 2 and is filled with a second pressure (P 2 ), a second temperature (T 2 ), and a second volume (V 2 ) The piston fluid 40. In the non-exclusive example illustrated in FIG. 1, the fluid actuator assembly 24 is designed such that the effective piston area (A 1 ) of chamber 1 is approximately equal to the effective piston area (A 2 ) of chamber 2.

第一腔室34A中的活塞流體40之第一壓力(P 1 )在活塞體36B上產生第一力(F 1 ),且第二腔室34B中的活塞流體40之第二壓力(P 2 )在活塞體36B上產生第二力(F 2 )。由流體致動器總成24產生之總力(F)44(由箭頭所說明)等於第一力(F 1 )減去第二力(F 2 )(F=F 1 -F 2 )。 The first pressure (P 1 ) of the piston fluid 40 in the first chamber 34A generates a first force (F 1 ) on the piston body 36B, and the second pressure (P 2 ) of the piston fluid 40 in the second chamber 34B ) A second force (F 2 ) is generated on the piston body 36B. The total force (F) 44 (illustrated by the arrow) generated by the fluid actuator assembly 24 is equal to the first force (F 1 ) minus the second force (F 2 ) (F=F 1 -F 2 ).

在具有圖1所說明之非獨占式設計的情況下,當第一壓力(P 1 )大於第二壓力(P 2 )時,第一力(F 1 )大於第二力(F 2 ),總力(F)為正且自左向右推動活塞體36B及平台14。與此對比,當第一壓力(P 1 )小於第二壓力(P 2 )時,第一力(F 1 )小於第二力(F 2 ),總力(F)為負且自右向左推動活塞體36B及平台14。 With the non-exclusive design illustrated in Figure 1, when the first pressure (P 1 ) is greater than the second pressure (P 2 ), the first force (F 1 ) is greater than the second force (F 2 ), and the total The force (F) is positive and pushes the piston body 36B and the platform 14 from left to right. In contrast, when the first pressure (P 1 ) is less than the second pressure (P 2 ), the first force (F 1 ) is less than the second force (F 2 ), and the total force (F) is negative and goes from right to left Push the piston body 36B and the platform 14.

在一個實施例中,閥總成38係由控制系統20控制以準確地且個別地控制每一腔室34A、34B中之壓力。作為一個非獨占式實施例,閥總成38包括:(i)第一閥子總成38A,其經控制以控制活塞流體40進入及離開第一腔室34A之流動且準確地控制第一壓力(P 1 );及(ii)第二閥子總成38B,其經控制以控制活塞流體40進入及離開第二腔室34B之流動以準確地控制第二壓力(P 2 )。在此實施例中,第一閥子總成38A包括:第一入口閥38C,其經控制以控制活塞流體40進入第一腔室34A之流動;及第 一出口閥38D,其經控制以控制活塞流體40離開第一腔室34A之流動。相似地,第二閥子總成38B包括:第二入口閥38E,其經控制以控制活塞流體40進入第二腔室34B之流動;及第二出口閥38F,其經控制以控制活塞流體40離開第二腔室34B之流動。 In one embodiment, the valve assembly 38 is controlled by the control system 20 to accurately and individually control the pressure in each chamber 34A, 34B. As a non-exclusive embodiment, the valve assembly 38 includes: (i) a first valve sub-assembly 38A, which is controlled to control the flow of the piston fluid 40 into and out of the first chamber 34A and accurately control the first pressure (P 1 ); and (ii) The second valve sub-assembly 38B, which is controlled to control the flow of the piston fluid 40 into and out of the second chamber 34B to accurately control the second pressure (P 2 ). In this embodiment, the first valve subassembly 38A includes: a first inlet valve 38C, which is controlled to control the flow of the piston fluid 40 into the first chamber 34A; and a first outlet valve 38D, which is controlled to control The piston fluid 40 leaves the flow of the first chamber 34A. Similarly, the second valve subassembly 38B includes: a second inlet valve 38E, which is controlled to control the flow of the piston fluid 40 into the second chamber 34B; and a second outlet valve 38F, which is controlled to control the piston fluid 40 The flow leaving the second chamber 34B.

在此實施例中,流體致動器總成24可包括將加壓活塞流體40提供至入口閥38C、38E之一或多個流體壓力源46(展示兩個)。此外,流體壓力源46中之每一者可包括流體貯槽46A、在貯槽46A中產生加壓活塞流體40之壓縮器46B,及控制被遞送至入口閥38C、38E之活塞流體40之壓力的壓力調節器46C。另外,出口閥38D、38F可通向大氣或通向低壓區域,諸如真空腔室。 In this embodiment, the fluid actuator assembly 24 may include fluid pressure sources 46 (two are shown) that provide pressurized piston fluid 40 to one of the inlet valves 38C, 38E. In addition, each of the fluid pressure sources 46 may include a fluid reservoir 46A, a compressor 46B that generates pressurized piston fluid 40 in the reservoir 46A, and a pressure that controls the pressure of the piston fluid 40 delivered to the inlet valves 38C, 38E Adjuster 46C. In addition, the outlet valves 38D, 38F may open to the atmosphere or open to a low pressure area, such as a vacuum chamber.

在某些實施例中,閥38C、38D、38E、38F中之每一者包括影響此等閥38C、38D、38E、38F之控制的一或多個閥特性。舉例而言,(i)第一入口閥38C具有一或多個第一入口閥特性;(ii)第一出口閥38D具有一或多個第一出口閥特性;(iii)第二入口閥38E具有一或多個第二入口閥特性;及/或(iv)第二出口閥38F具有一或多個第二出口閥特性。在一個實施例中,個別地測試每一閥38C、38D、38E、38F以判定各別閥38C、38D、38E、38F之個別閥特性。在具有此設計的情況下,使用各別閥38C、38D、38E、38F之個別閥特性以控制每一閥38C、38D、38E、38F。替代地,若每一閥38C、38D、38E、38F相似且具有相似閥特性,則可測試閥38C、38D、38E、38F中之一者且可使用彼閥之閥特性以控制閥38C、38D、38E、38F中之全部。 In certain embodiments, each of the valves 38C, 38D, 38E, 38F includes one or more valve characteristics that affect the control of these valves 38C, 38D, 38E, 38F. For example, (i) the first inlet valve 38C has one or more first inlet valve characteristics; (ii) the first outlet valve 38D has one or more first outlet valve characteristics; (iii) the second inlet valve 38E Having one or more second inlet valve characteristics; and/or (iv) the second outlet valve 38F has one or more second outlet valve characteristics. In one embodiment, each valve 38C, 38D, 38E, 38F is individually tested to determine the individual valve characteristics of the respective valves 38C, 38D, 38E, and 38F. With this design, the individual valve characteristics of the respective valves 38C, 38D, 38E, and 38F are used to control each valve 38C, 38D, 38E, and 38F. Alternatively, if each valve 38C, 38D, 38E, 38F is similar and has similar valve characteristics, one of the valves 38C, 38D, 38E, 38F can be tested and the valve characteristics of the other valve can be used to control the valves 38C, 38D , 38E, 38F all.

所利用之閥38C、38D、38E、38F的類型可變化。作為非獨 占式實例,每一閥38C、38D、38E、38F可為比例閥,諸如提動(「蘑菇」)型閥或滑軸型閥。 The types of valves 38C, 38D, 38E, and 38F used can vary. As a non-independence For example, each valve 38C, 38D, 38E, 38F may be a proportional valve, such as a poppet ("mushroom") valve or a spool type valve.

閥特性之類型將根據所利用之閥38C、38D、38E、38F的類型而變化。下文詳細地描述閥38C、38D、38E、38F之非獨占式類型與閥特性之非獨占式實例的配對。應注意,閥38C、38D、38E、38F可不同於本文中所提供之實例,且閥特性可不同於本文中所提供之實例。 The type of valve characteristics will vary according to the type of valve 38C, 38D, 38E, 38F used. The pairing of non-exclusive types of valves 38C, 38D, 38E, and 38F with non-exclusive examples of valve characteristics is described in detail below. It should be noted that the valves 38C, 38D, 38E, 38F may be different from the examples provided herein, and the valve characteristics may be different from the examples provided herein.

如本文中所提供,對於每一閥38C、38D、38E、38F,其對應閥特性可經由實驗測試、經由模擬或此兩者之組合予以判定。 As provided herein, for each valve 38C, 38D, 38E, 38F, its corresponding valve characteristic can be determined through experimental testing, simulation, or a combination of the two.

控制系統20控制閥總成38以控制活塞流體40進入及離開每一腔室34A、34B之流動。藉由選擇性地控制活塞流體40進入及離開每一腔室34A、34B之流動,可控制閥總成38以在活塞體36B上產生準確地移動活塞體36B及平台14之可控制力44(「F」)。 The control system 20 controls the valve assembly 38 to control the flow of the piston fluid 40 into and out of each chamber 34A, 34B. By selectively controlling the flow of the piston fluid 40 into and out of each chamber 34A, 34B, the valve assembly 38 can be controlled to generate a controllable force 44 on the piston body 36B that accurately moves the piston body 36B and the platform 14 ( "F").

控制系統20電連接至及控制被引導至閥總成38之電流以精確地定位平台14及工件22。在一個實施例中,控制系統20使用來自量測系統18之資訊以進行以下操作:(i)不斷地判定平台14之位置(「x」);及(ii)將電流引導至閥總成38以定位平台14。控制系統20可包括一或多個處理器20A及電子資料儲存器20B。控制系統20使用一或多個演算法以執行本文中所提供之步驟。 The control system 20 is electrically connected to and controls the current directed to the valve assembly 38 to accurately position the platform 14 and the workpiece 22. In one embodiment, the control system 20 uses information from the measurement system 18 to perform the following operations: (i) continuously determine the position ("x") of the platform 14; and (ii) direct current to the valve assembly 38 To position the platform 14. The control system 20 may include one or more processors 20A and an electronic data storage 20B. The control system 20 uses one or more algorithms to perform the steps provided herein.

在某些實施例中,控制系統20個別地控制第一閥38C、38D中之每一者以控制第一腔室34A中之第一壓力(P 1 )以產生所要第一力(F 1 )。相似地,控制系統20個別地控制第二閥38E、38F中之每一者以控制第二腔室34B中之第二壓力(P 2 )以產生所要第二力(F 2 )。因此,藉由控制閥 38C、38D、38E、38F,控制系統20可控制流體致動器總成24以在平台14上產生所要總力(F)44。 In some embodiments, the control system 20 individually controls each of the first valves 38C, 38D to control the first pressure (P 1 ) in the first chamber 34A to generate the desired first force (F 1 ) . Similarly, the control system 20 individually controls each of the second valves 38E, 38F to control the second pressure (P 2 ) in the second chamber 34B to generate the desired second force (F 2 ). Therefore, by controlling the valves 38C, 38D, 38E, and 38F, the control system 20 can control the fluid actuator assembly 24 to generate the desired total force (F) 44 on the platform 14.

在某些實施例中,當控制系統20判定需要將活塞流體40添加至第一腔室34A時,控制系統20將第一出口閥38D控制為閉合,且將第一入口閥38C控制為敞開適當量以添加活塞流體40。另外,當控制系統20判定需要自第一腔室34A移除活塞流體40時,控制系統20將第一入口閥38C控制為閉合,且將第一出口閥38C控制為敞開適當量以釋放活塞流體40。在此實例中,將第一閥38C、38D中之一者控制為在任何給定時間閉合。替代地,控制系統20可將第一閥38C、38D兩者控制為在自第一腔室34A添加活塞流體40及/或移除活塞流體40期間敞開。 In some embodiments, when the control system 20 determines that the piston fluid 40 needs to be added to the first chamber 34A, the control system 20 controls the first outlet valve 38D to be closed, and controls the first inlet valve 38C to be properly opened. The amount to add piston fluid 40. In addition, when the control system 20 determines that the piston fluid 40 needs to be removed from the first chamber 34A, the control system 20 controls the first inlet valve 38C to be closed, and controls the first outlet valve 38C to open an appropriate amount to release the piston fluid 40. In this example, one of the first valves 38C, 38D is controlled to be closed at any given time. Alternatively, the control system 20 may control both the first valves 38C, 38D to be open during the addition and/or removal of the piston fluid 40 from the first chamber 34A.

相似地,當控制系統20判定需要將活塞流體40添加至第二腔室34B時,控制系統20將第二出口閥38F控制為閉合,且將第二入口閥38E控制為敞開適當量以添加活塞流體40。另外,當控制系統20判定需要自第二腔室34B移除活塞流體40時,控制系統20將第二入口閥38E控制為閉合,且將第二出口閥38F控制為敞開適當量以釋放活塞流體40。在此實例中,將第二閥38E、38F中之一者控制為在任何給定時間閉合。替代地,控制系統20可將第二閥38E、38F兩者控制為在自第二腔室34B添加活塞流體40及/或移除活塞流體40期間敞開。 Similarly, when the control system 20 determines that it is necessary to add the piston fluid 40 to the second chamber 34B, the control system 20 controls the second outlet valve 38F to be closed, and controls the second inlet valve 38E to open an appropriate amount to add the piston Fluid 40. In addition, when the control system 20 determines that it is necessary to remove the piston fluid 40 from the second chamber 34B, the control system 20 controls the second inlet valve 38E to be closed, and controls the second outlet valve 38F to open an appropriate amount to release the piston fluid 40. In this example, one of the second valves 38E, 38F is controlled to be closed at any given time. Alternatively, the control system 20 may control both the second valves 38E, 38F to be open during the addition and/or removal of the piston fluid 40 from the second chamber 34B.

對兩個腔室34A、34B進行精確流體壓力控制以產生所要力44來驅動平台14。為了準確地控制流體致動器總成24,關鍵的是判定嵌入於系統中之非線性,諸如:(i)隨著腔室體積之流體壓力變化;(ii)比例閥38C、38D、38E、38F之背隙及差壓相依性;及(3)與上游及下游壓力相關 聯之流體流動非線性。經由實驗測試及/或模型化,可由控制系統20識別及補償此等非線性。 Precise fluid pressure control is performed on the two chambers 34A, 34B to generate the required force 44 to drive the platform 14. In order to accurately control the fluid actuator assembly 24, it is critical to determine the nonlinearity embedded in the system, such as: (i) fluid pressure changes with the chamber volume; (ii) proportional valves 38C, 38D, 38E, 38F is dependent on backlash and differential pressure; and (3) is related to upstream and downstream pressure The fluid flow of the coupling is non-linear. Through experimental testing and/or modeling, these nonlinearities can be identified and compensated for by the control system 20.

舉例而言,控制系統20可進行以下操作:(i)利用第一入口閥特性之反轉以控制第一入口閥38C;(ii)利用第一出口閥特性之反轉以控制第一出口閥38D;(iii)利用第二入口閥特性之反轉以控制第二入口閥38E;及(iv)利用第二出口閥特性之反轉以控制第二出口閥38F。因為控制系統20利用每一閥特性之反轉,所以可以改良的準確度控制每一閥38C、38D、38E、38F。 For example, the control system 20 may perform the following operations: (i) use the reversal of the first inlet valve characteristic to control the first inlet valve 38C; (ii) use the reversal of the first outlet valve characteristic to control the first outlet valve 38D; (iii) Use the reversal of the second inlet valve characteristic to control the second inlet valve 38E; and (iv) Use the reversal of the second outlet valve characteristic to control the second outlet valve 38F. Because the control system 20 utilizes the reversal of the characteristics of each valve, each valve 38C, 38D, 38E, and 38F can be controlled with improved accuracy.

圖2A為說明用於控制流體致動器總成24以準確地定位平台14之方法之一個非獨占式實例的控制方塊圖220。更特定言之,控制方塊圖220說明一種用於將電流引導至閥總成38以控制活塞總成31以精確地定位平台14之非獨占式方法。在控制方塊圖220中,平台14具有如由量測系統18(圖1所說明)所量測之經量測瞬時平台位置(「x」)(例如沿著量測軸線30(圖1所說明))。 2A is a control block diagram 220 illustrating a non-exclusive example of a method for controlling the fluid actuator assembly 24 to accurately position the platform 14. More specifically, the control block diagram 220 illustrates a non-exclusive method for directing current to the valve assembly 38 to control the piston assembly 31 to accurately position the platform 14. In the control block diagram 220, the platform 14 has a measured instantaneous platform position ("x") as measured by the measurement system 18 (illustrated in FIG. 1) (for example, along the measurement axis 30 (illustrated in FIG. 1) )).

在此實施例中,控制方塊圖220包括:(i)平台參考區塊260,其提供平台、平台14之所要參考位置或軌跡(「x d 」)(例如沿著移動軸線30(圖1所說明))、所要速度(「

Figure 106118370-A0305-02-0018-1
」)、所要加速度(「
Figure 106118370-A0305-02-0018-2
」),及平台加速度變化率參考(「
Figure 106118370-A0305-02-0018-3
」);(ii)平台回饋(「FB」)控制器262;(iii)平台前饋(「FF」)控制器264;(iv)回饋轉換器266,其將回饋力命令轉換為回饋壓力命令;(v)前饋轉換器268,其將前饋力命令轉換為前饋壓力命令;(vi)第一腔室控制器270;(vii)第二腔室控制器272;及(vii)腔室體積估計器278,其基於平台14之經量測位置(「x」)來估計第一腔室之當前第一腔室體積 (「V 1 」)及第一體積改變率(「
Figure 106118370-A0305-02-0019-4
」),且基於平台14之經量測位置來估計第二腔室之當前第二腔室體積(「V 2 」)及第二體積改變率(「
Figure 106118370-A0305-02-0019-5
」)。 In this embodiment, the control block diagram 220 includes: (i) a platform reference block 260, which provides a desired reference position or trajectory ("x d ") of the platform and the platform 14 (for example, along the moving axis 30 (as shown in FIG. 1) Description)), desired speed ("
Figure 106118370-A0305-02-0018-1
``), desired acceleration ("
Figure 106118370-A0305-02-0018-2
”), and the platform acceleration change rate reference (“
Figure 106118370-A0305-02-0018-3
"); (ii) Platform Feedback ("FB") Controller 262; (iii) Platform Feedforward ("FF") Controller 264; (iv) Feedback Converter 266, which converts feedback force commands into feedback pressure commands (V) a feedforward converter 268, which converts the feedforward force command into a feedforward pressure command; (vi) the first chamber controller 270; (vii) the second chamber controller 272; and (vii) the cavity The chamber volume estimator 278 estimates the current first chamber volume ("V 1 ") and the first volume change rate ("
Figure 106118370-A0305-02-0019-4
"), and based on the measured position of the platform 14 to estimate the current second chamber volume ("V 2 ") and the second volume change rate ("
Figure 106118370-A0305-02-0019-5
").

應注意,圖2A之控制方塊圖220的一些區塊係可選的,及/或控制方塊圖220可包括額外控制區塊。舉例而言,可將控制方塊圖220設計為沒有平台前饋控制器264迴路。另外或替代地,控制方塊圖220可經設計為包括反覆學習迴路(圖中未示)。在控制方塊圖220中,在自左向右移動的情況下,比較平台所要參考260位置或軌跡(「x d 」)與平台經量測位置(「x」)以產生表示平台14之所要位置與經量測位置之間的誤差的平台跟蹤誤差(「e」)。接下來,將平台跟蹤誤差(「e」)饋送至產生平台回饋力命令(「F fb 」)之平台回饋控制器262,平台回饋力命令(「F fb 」)表示為將平台14自經量測位置移動至參考位置所必要的力命令。同時,將所要參考位置(「x d 」)、平台速度參考(「

Figure 106118370-A0305-02-0019-6
」)、平台加速度參考(「
Figure 106118370-A0305-02-0019-7
」)、平台加速度變化率參考(「
Figure 106118370-A0305-02-0019-8
」)饋送至產生平台前饋力命令(「F ff 」)之平台前饋控制器264,平台前饋力命令(「F ff 」)表示為補償諸如系統時間延遲及軌跡之事項所必要的力命令。 It should be noted that some blocks of the control block diagram 220 of FIG. 2A are optional, and/or the control block diagram 220 may include additional control blocks. For example, the control block diagram 220 can be designed without the platform feedforward controller 264 loop. Additionally or alternatively, the control block diagram 220 may be designed to include an iterative learning loop (not shown in the figure). In the control block diagram 220, when moving from left to right, compare the position or trajectory ("x d ") of the platform to be referenced 260 with the measured position ("x") of the platform to generate the desired position of the platform 14 The platform tracking error ("e") of the error between the measured position and the measured position. Next, the platform tracking error ("e") is fed to the platform feedback controller 262 that generates the platform feedback force command ("F fb "). The platform feedback force command ("F fb ") is expressed as the self-passage of the platform 14 The force command necessary to move the measured position to the reference position. At the same time, set the desired reference position ("x d "), the platform speed reference ("
Figure 106118370-A0305-02-0019-6
``), platform acceleration reference ("
Figure 106118370-A0305-02-0019-7
``), platform acceleration change rate reference ("
Figure 106118370-A0305-02-0019-8
") is fed to the platform feedforward controller 264 that generates the platform feedforward force command ("F ff "). The platform feedforward force command ("F ff ") represents the force necessary to compensate for things such as system time delay and trajectory Order.

接下來,在此實施例中,組合平台回饋力命令(「Ffb」)與前饋力命令(「Fff」)以產生被饋送至回饋轉換器266之組合力命令(「Fcmd」),回饋轉換器266將組合力命令轉換為用於第一腔室之第一回饋壓力命令(「P1fb」或「P1,cmd」),及用於第二腔室之第二回饋壓力命令(「P2fb」或「P2,cmd」)。相似地,將平台前饋力命令(「Fff」)饋送至前饋轉換器268,前饋轉換器268將前饋力命令轉換為用於第一腔室之第一前饋改變率壓力命令(「

Figure 106118370-A0305-02-0019-9
」),及用於第二腔室之第二前饋改變率壓力命令(「
Figure 106118370-A0305-02-0019-10
」)。 Next, in this embodiment, the platform feedback force command ("F fb ") and the feed forward force command ("F ff ") are combined to generate a combined force command ("F cmd ") that is fed to the feedback converter 266 , The feedback converter 266 converts the combined force command into a first feedback pressure command ("P1 fb " or "P 1,cmd ") for the first chamber, and a second feedback pressure command for the second chamber ("P2 fb " or "P 2,cmd "). Similarly, the platform feedforward force command ("F ff ") is fed to the feedforward converter 268, which converts the feedforward force command into a first feedforward rate of change pressure command for the first chamber ("
Figure 106118370-A0305-02-0019-9
"), and the second feedforward rate of change pressure command for the second chamber ("
Figure 106118370-A0305-02-0019-10
").

隨後,第一腔室控制器270使用第一回饋壓力命令(「P1,cmd」、第一前饋壓力命令(「

Figure 106118370-A0305-02-0020-11
」)、第一經量測壓力(「P 1 」)、第一腔室體積(「V 1 」)及第一體積改變率(「
Figure 106118370-A0305-02-0020-12
」)以判定被引導至第一閥子總成之第一閥子總成電流命令(「u 1 」)。相似地,第二腔室控制器272使用第二回饋壓力命令(「P2,cmd」、第二前饋壓力命令(「
Figure 106118370-A0305-02-0020-13
」)、第二經量測壓力(「P 2 」)、第二腔室體積(「V 2 」)及第二體積改變率(「
Figure 106118370-A0305-02-0020-14
」)以判定被引導至第二閥子總成之第二閥子總成電流命令(「u 2 」)。至閥總成38之電流控制至活塞總成31之活塞流體且在平台14上產生力(「F」)。 Subsequently, the first chamber controller 270 uses the first feedback pressure command ("P 1,cmd ", the first feedforward pressure command ("
Figure 106118370-A0305-02-0020-11
''), the first measured pressure ("P 1 "), the first chamber volume ("V 1 "), and the first volume change rate ("
Figure 106118370-A0305-02-0020-12
") to determine the current command ("u 1 ") of the first valve sub-assembly that is directed to the first valve sub-assembly. Similarly, the second chamber controller 272 uses the second feedback pressure command ("P 2, cmd ", the second feedforward pressure command ("
Figure 106118370-A0305-02-0020-13
”), the second measured pressure (“P 2 ”), the second chamber volume (“V 2 ”) and the second volume change rate (“
Figure 106118370-A0305-02-0020-14
”) to determine the second valve sub-assembly current command ("u 2 ") that is directed to the second valve sub-assembly. The current to the valve assembly 38 controls the piston fluid to the piston assembly 31 and generates a force ("F") on the platform 14.

如本文中所提供,腔室控制器270、272利用閥特性之反轉以準確地判定為準確地控制兩個腔室中之壓力所必要的各別電流命令。下文參考圖2B來更詳細地描述此程序。 As provided herein, the chamber controllers 270, 272 use the inversion of the valve characteristics to accurately determine the respective current commands necessary to accurately control the pressure in the two chambers. This procedure is described in more detail below with reference to FIG. 2B.

應注意,在每一閥子總成之一個閥在任何給定時間閉合的實施例中,單一電流命令全部為每一閥子總成所需要。替代地,若每一閥子總成之兩個閥可在任何給定時間敞開,則腔室控制器270、272將需要經設計以將單獨電流命令提供至每一閥。 It should be noted that in embodiments where one valve of each valve subassembly is closed at any given time, a single current command is all required for each valve subassembly. Alternatively, if the two valves of each valve subassembly can be opened at any given time, the chamber controllers 270, 272 will need to be designed to provide individual current commands to each valve.

數個方程式有用於理解由平台移動器總成16產生之力且有用於理解由控制系統20對平台移動器總成16之控制。如上文所提供,如下提供由平台移動器總成16產生之總力: F = F 1- F 2。 方程式1 Several equations are useful for understanding the forces generated by the platform mover assembly 16 and for understanding the control of the platform mover assembly 16 by the control system 20. As provided above, the total force generated by the platform mover assembly 16 is provided as follows: F = F 1 - F 2 . Equation 1

如上文所提供, F 為總力; F 1 為由第一腔室產生之力;且 F 2 為由第二腔室產生之力。 As provided above, F is the total force; F 1 is the force generated by the first chamber; and F 2 is the force generated by the second chamber.

可如下重寫方程式1: F = P 1 A 1- P 2 A 2。 方程式2 Equation 1 can be rewritten as follows: F = P 1 A 1 - P 2 A 2 . Equation 2

如上文所提供, P 1 為第一腔室中之第一腔室壓力; A 1 為用於第一腔室之有效活塞面積; P 2 為第二腔室34B中之第二腔室壓力;且 A 2 為用於第二腔室34B之有效活塞面積。 As provided above, P 1 is the first chamber pressure in the first chamber; A 1 is the effective piston area for the first chamber; P 2 is the second chamber pressure in the second chamber 34B; And A 2 is the effective piston area for the second chamber 34B.

另外,可如下表達平台上之力:

Figure 106118370-A0305-02-0021-15
In addition, the power on the platform can be expressed as follows:
Figure 106118370-A0305-02-0021-15

在方程式3中及在別處,M為平台(包括工件)之質量,C為阻尼係數,

Figure 106118370-A0305-02-0021-16
為平台之質量塊的加速度,月
Figure 106118370-A0305-02-0021-17
為平台速度。 In Equation 3 and elsewhere, M is the mass of the platform (including the workpiece), C is the damping coefficient,
Figure 106118370-A0305-02-0021-16
Is the acceleration of the mass of the platform, month
Figure 106118370-A0305-02-0021-17
Is the platform speed.

可如下表達氣體方程式: P i V i = m i RT i 。 方程式4 The gas equation can be expressed as follows: P i V i = m i RT i . Equation 4

在方程式4中及在別處, i 為各別腔室(第一腔室(「1」)或第二腔室(「2」));P i 為各別腔室中之壓力;V i 為各別腔室中之體積;R為氣體常數; m i 為各別腔室中之氣體質量;且T i 為各別腔室中之溫度, In Equation 4 and elsewhere, i is the respective chamber (the first chamber ("1") or the second chamber ("2")); P i is the pressure in the respective chamber; V i is The volume in the respective chamber; R is the gas constant; m i is the mass of the gas in the respective chamber; and T i is the temperature in the respective chamber,

可如下重寫方程式4:

Figure 106118370-A0305-02-0021-18
Equation 4 can be rewritten as follows:
Figure 106118370-A0305-02-0021-18

在方程式5中及在別處,

Figure 106118370-A0305-02-0021-19
為各別腔室中之壓力改變率;
Figure 106118370-A0305-02-0021-20
為各別腔室中之體積改變率,且
Figure 106118370-A0305-02-0021-21
為各別腔室中之質量流率。 In Equation 5 and elsewhere,
Figure 106118370-A0305-02-0021-19
Is the rate of pressure change in each chamber;
Figure 106118370-A0305-02-0021-20
Is the rate of volume change in each chamber, and
Figure 106118370-A0305-02-0021-21
Is the mass flow rate in each chamber.

可如下將方程式5重寫為腔室壓力模型化:

Figure 106118370-A0305-02-0021-22
Equation 5 can be rewritten as a chamber pressure model as follows:
Figure 106118370-A0305-02-0021-22

另外,可如下將方程式5重寫為腔室質量流率控制:

Figure 106118370-A0305-02-0022-23
In addition, Equation 5 can be rewritten as the chamber mass flow rate control as follows:
Figure 106118370-A0305-02-0022-23

可如下將第一腔室34A之第一體積 V 1 寫為平台位置之函數:V 1=A 1(x+x 1,o )。 方程式8 The first volume V 1 of the first chamber 34A can be written as a function of the platform position as follows: V 1 = A 1 ( x + x 1, o ). Equation 8

相似地,可如下將第二腔室34B之第二體積 V 2 寫為平台位置之函數:V 2=A 2(-x+x 2,o )。 方程式9 Similarly, the second volume V 2 of the second chamber 34B can be written as a function of the platform position as follows: V 2 = A 2 (- x + x 2, o ). Equation 9

在方程式8及9中及在別處, A 1 為第一腔室之有效活塞面積; A 2 為第二腔室之有效活塞面積; X 為平台之當前位置;x 1,O 為第一腔室之截止長度;且x 2,O 為第二腔室之截止長度。 In equations 8 and 9 and elsewhere, A 1 is the effective piston area of the first chamber; A 2 is the effective piston area of the second chamber; X is the current position of the platform; x 1, O is the first chamber The cut-off length; and x 2, O is the cut-off length of the second chamber.

可如下重寫方程式8:

Figure 106118370-A0305-02-0022-24
Equation 8 can be rewritten as follows:
Figure 106118370-A0305-02-0022-24

相似地,可如下重寫方程式9:

Figure 106118370-A0305-02-0022-25
Similarly, Equation 9 can be rewritten as follows:
Figure 106118370-A0305-02-0022-25

在此等方程式中及在別處,

Figure 106118370-A0305-02-0022-26
為第一腔室中之體積改變率;且
Figure 106118370-A0305-02-0022-27
為第二腔室中之體積改變率。 In these equations and elsewhere,
Figure 106118370-A0305-02-0022-26
Is the rate of volume change in the first chamber; and
Figure 106118370-A0305-02-0022-27
Is the rate of volume change in the second chamber.

可如下表達每一腔室34A、34B之腔室壓力控制:

Figure 106118370-A0305-02-0022-28
The chamber pressure control of each chamber 34A, 34B can be expressed as follows:
Figure 106118370-A0305-02-0022-28

F cmd = P 1,cmd A 1- P 2,cmd A 2。 方程式13 F cmd = P 1, cmd A 1 - P 2, cmd A 2 . Equation 13

在方程式12及13中及在別處, F cmd 為力命令; F feedforward 為前饋力命令; F feedback 為回饋力命令;

Figure 106118370-A0305-02-0022-29
為平台加速度參考;
Figure 106118370-A0305-02-0022-30
為平台速度參考;
Figure 106118370-A0305-02-0022-31
為平台加速度變化率參考,x d 為參考位置; C 為平台與致動器系統之阻尼比; C fb (s)為平台回饋控制濾波器;x為平台之當前經量測位置; P 1,cmd 為至第一腔室之壓力命令;且 P 2,cmd 為至第二腔室之壓力命令。 In equations 12 and 13 and elsewhere, F cmd is the force command; F feedforward is the feedforward force command; F feedback is the feedback force command;
Figure 106118370-A0305-02-0022-29
For the platform acceleration reference;
Figure 106118370-A0305-02-0022-30
For the platform speed reference;
Figure 106118370-A0305-02-0022-31
Is the platform acceleration change rate reference, x d is the reference position; C is the damping ratio between the platform and the actuator system; C fb ( s ) is the platform feedback control filter; x is the current measured position of the platform; P 1, cmd is the pressure command to the first chamber; and P 2, cmd is the pressure command to the second chamber.

可如下重寫方程式12及13:P 1,cmd A 1=F o +rF,及 方程式14 Equations 12 and 13 can be rewritten as follows: P 1, cmd A 1 = F o + r . F , and equation 14

P 2,cmd A 2=F o -(1-r).F。 方程式15 P 2, cmd A 2 = F o -(1- r ). F. Equation 15

在方程式14及15中及在別處,F o 為偏移力命令;且r為第一腔室與第二腔室之間的分佈比。在某些實施例中,r具有大於0但小於1之值(0<r<1),其中標稱值為r=0.5。 In equations 14 and 15 and elsewhere, F o is the offset force command; and r is the distribution ratio between the first chamber and the second chamber. In some embodiments, r has a value greater than 0 but less than 1 (0<r<1), where the nominal value is r=0.5.

可如下重寫方程式14及15:

Figure 106118370-A0305-02-0023-32
Figure 106118370-A0305-02-0023-33
Equations 14 and 15 can be rewritten as follows:
Figure 106118370-A0305-02-0023-32
Figure 106118370-A0305-02-0023-33

可如下表達腔室壓力控制:

Figure 106118370-A0305-02-0023-34
The chamber pressure control can be expressed as follows:
Figure 106118370-A0305-02-0023-34

另外,可如下表達方程式18:

Figure 106118370-A0305-02-0023-35
Figure 106118370-A0305-02-0023-36
In addition, Equation 18 can be expressed as follows:
Figure 106118370-A0305-02-0023-35
Figure 106118370-A0305-02-0023-36

相似於方程式7,可如下表達腔室質量流量控制:

Figure 106118370-A0305-02-0023-37
Similar to Equation 7, the chamber mass flow control can be expressed as follows:
Figure 106118370-A0305-02-0023-37

在方程式21中及在別處,

Figure 106118370-A0305-02-0023-38
為用於第一腔室及第二腔室中之一者的質量流率命令。 In Equation 21 and elsewhere,
Figure 106118370-A0305-02-0023-38
It is a mass flow rate command for one of the first chamber and the second chamber.

圖2B為說明腔室控制器270、272(圖2A所說明)中之一者可如何被組態的控制方塊圖。在此實施例中,腔室控制器包括:(i)壓力回饋控制器290;(ii)壓力至質量流量轉換器292;(iii)入口質量流量至孔口面積轉換器294;(iv)出口質量流量至孔口面積轉換器296;(v)入口孔口面積至電流轉換器297;及(vi)出口孔口面積至電流轉換器298。在此實施例中,壓力回饋控制器290接收用於各別腔室之壓力誤差 P i,err ,且產生壓力改變率回饋(「

Figure 106118370-A0305-02-0024-39
」)。壓力至質量流量轉換器292接收壓力改變率命令(「
Figure 106118370-A0305-02-0024-40
」)、腔室壓力(「P i 」)、當前腔室體積(「V i」)及體積改變率(「
Figure 106118370-A0305-02-0024-41
」),且產生用於入口閥之質量流率命令(
Figure 106118370-A0305-02-0024-42
)及用於出口閥之質量流率命令(「
Figure 106118370-A0305-02-0024-43
」)。壓力至質量流量轉換器292可使用本文中所提供之方程式21及22。 Figure 2B is a control block diagram illustrating how one of the chamber controllers 270, 272 (illustrated in Figure 2A) can be configured. In this embodiment, the chamber controller includes: (i) pressure feedback controller 290; (ii) pressure to mass flow converter 292; (iii) inlet mass flow to orifice area converter 294; (iv) outlet Mass flow to orifice area converter 296; (v) inlet orifice area to current converter 297; and (vi) outlet orifice area to current converter 298. In this embodiment, the pressure feedback controller 290 receives the pressure error P i,err for each chamber, and generates a pressure change rate feedback ("
Figure 106118370-A0305-02-0024-39
"). The pressure-to-mass flow converter 292 receives the pressure change rate command ("
Figure 106118370-A0305-02-0024-40
``), chamber pressure (" P i "), current chamber volume (" V i "), and volume change rate ("
Figure 106118370-A0305-02-0024-41
"), and generate a mass flow rate command for the inlet valve (
Figure 106118370-A0305-02-0024-42
) And the mass flow rate command for the outlet valve ("
Figure 106118370-A0305-02-0024-43
"). The pressure to mass flow converter 292 can use equations 21 and 22 provided herein.

入口質量流量至孔口面積轉換器294接收質量流率命令(「

Figure 106118370-A0305-02-0024-44
」)及腔室壓力(「P i 」),且產生用於入口閥之入口孔口面積命令(「a i,cmd+」)。入口質量流量至孔口面積轉換器294可使用本文中所提供之方程式24。稍微相似地,出口質量流量至孔口面積轉換器296接收質量流率命令(「
Figure 106118370-A0305-02-0024-45
」)及腔室壓力(「P i 」),且產生用於出口閥之出口孔口面積命令(「a i,cmd-」)。出口質量流量至孔口面積轉換器296可使用本文中所提供之方程式25。 The inlet mass flow to orifice area converter 294 receives the mass flow rate command ("
Figure 106118370-A0305-02-0024-44
") And chamber pressure (" P i "), and generates the command area of the inlet opening of the inlet valve used (" a i, cmd + "). The inlet mass flow to orifice area converter 294 can use Equation 24 provided herein. Slightly similarly, the outlet mass flow to orifice area converter 296 receives the mass flow rate command ("
Figure 106118370-A0305-02-0024-45
") and the chamber pressure (" P i "), and generate the output orifice area command (" a i , cmd- ") for the outlet valve. The outlet mass flow to orifice area converter 296 can use Equation 25 provided herein.

接下來,入口孔口面積至電流轉換器297使用入口孔口面積命令(「a i,cmd+」)以產生用於入口閥之入口電流命令(「u i,cmd +」)。入口孔口面積至電流轉換器297可使用本文中所提供之方程式27。相似地,出口孔口面積至電流轉換器298使用出口孔口面積命令(「a i,cmd-」)以產生 用於出口閥之出口電流命令(「u i,cmd-」)。出口孔口面積至電流轉換器298可使用本文中所提供之方程式28。 Next, the area of the inlet orifice to-current converter 297 using commands inlet aperture area ( "a i, cmd +") to generate a current command for the inlet valve of the inlet ( "u i, cmd +"). The inlet orifice area to current converter 297 can use Equation 27 provided herein. Similarly, the outlet orifice area to current converter 298 uses the outlet orifice area command (" a i , cmd- ") to generate the outlet current command (" u i , cmd- ") for the outlet valve. The exit orifice area to current converter 298 can use Equation 28 provided herein.

圖3為一個活塞腔室334i及一個閥子總成338i的簡化說明。如圖3所說明,在此實施例中,進入及離開腔室334i之腔室質量流率命令係由入口閥338ii及出口閥338io控制。在此實施例中,壓力源346將處於被稱作 P source 之壓力的加壓活塞流體340提供至入口閥338ii之入口。另外,出口閥338io之出口處於 P drain 之壓力。可如下重寫方程式21之腔室質量流量控制:

Figure 106118370-A0305-02-0025-46
Figure 3 is a simplified illustration of a piston chamber 334i and a valve subassembly 338i. As illustrated in FIG. 3, in this embodiment, the chamber mass flow rate commands entering and leaving the chamber 334i are controlled by the inlet valve 338ii and the outlet valve 338io. In this embodiment, the pressure source 346 provides the pressurized piston fluid 340 at a pressure called P source to the inlet of the inlet valve 338ii. In addition, the outlet of the outlet valve 338io is at the pressure of P drain. The chamber mass flow control of Equation 21 can be rewritten as follows:
Figure 106118370-A0305-02-0025-46

在方程式22中及在別處,

Figure 106118370-A0305-02-0025-47
為用於所選擇腔室334i之入口閥338ii的質量流率命令;且
Figure 106118370-A0305-02-0025-48
為用於所選擇腔室334i之出口閥338io的質量流率命令。如本文中所提供,在某些實施例中,若需要增加進入腔室334i之質量流率(
Figure 106118370-A0305-02-0025-49
0),則將出口閥338io閉合(
Figure 106118370-A0305-02-0025-50
)且將質量流率命令設定為等於入口閥338ii之質量流率命令(
Figure 106118370-A0305-02-0025-51
)。相似地,在某些實施例中,若需要增加離開腔室334i之質量流率(
Figure 106118370-A0305-02-0025-52
<0),則將入口閥338ii閉合(
Figure 106118370-A0305-02-0025-53
)且將質量流率命令設定為等於出口閥338io之質量流率命令(
Figure 106118370-A0305-02-0025-54
)。 In Equation 22 and elsewhere,
Figure 106118370-A0305-02-0025-47
Is the mass flow rate command for the inlet valve 338ii of the selected chamber 334i; and
Figure 106118370-A0305-02-0025-48
Is the mass flow rate command for the outlet valve 338io of the selected chamber 334i. As provided herein, in certain embodiments, the mass flow rate into the chamber 334i (
Figure 106118370-A0305-02-0025-49
0), then close the outlet valve 338io (
Figure 106118370-A0305-02-0025-50
) And set the mass flow rate command equal to the mass flow rate command of the inlet valve 338ii (
Figure 106118370-A0305-02-0025-51
). Similarly, in some embodiments, if it is necessary to increase the mass flow rate leaving the chamber 334i (
Figure 106118370-A0305-02-0025-52
<0), then close the inlet valve 338ii (
Figure 106118370-A0305-02-0025-53
) And set the mass flow rate command equal to the mass flow rate command of the outlet valve 338io (
Figure 106118370-A0305-02-0025-54
).

可如下書寫閥流量方程式:

Figure 106118370-A0305-02-0025-55
The valve flow equation can be written as follows:
Figure 106118370-A0305-02-0025-55

在方程式23中及在別處, a 為敞開的閥孔口之面積; f 為數學函數; P upstream 為閥孔口之上游壓力;且 P downstream 為閥孔口之下游壓力。因此,質量流率等 於敞開的閥孔口之面積乘以上游壓力及下游壓力之函數。 In Equation 23 and elsewhere, a is the area of the open valve orifice; f is a mathematical function; P upstream is the upstream pressure of the valve orifice; and P downstream is the downstream pressure of the valve orifice. Therefore, the mass flow rate is equal to the area of the open valve orifice multiplied by a function of the upstream pressure and the downstream pressure.

圖4為包括孔口402之管路400的簡化說明,孔口402類似於閥在敞開時之閥孔口。在此實例中,上游壓力及下游壓力被標記,且孔口402具有孔口面積。參考圖3及圖4,可將方程式23重寫為以下閥孔口面積命令:

Figure 106118370-A0305-02-0026-56
Figure 106118370-A0305-02-0026-57
Figure 4 is a simplified illustration of a pipeline 400 that includes an orifice 402, which is similar to the valve orifice when the valve is open. In this example, the upstream pressure and the downstream pressure are marked, and the orifice 402 has an orifice area. Referring to Figures 3 and 4, Equation 23 can be rewritten as the following valve orifice area command:
Figure 106118370-A0305-02-0026-56
Figure 106118370-A0305-02-0026-57

在此等方程式中及在別處,a i,cmd +為用於所選擇腔室334i之入口閥338ii的閥孔口命令;且a i,cmd -為用於所選擇腔室334i之出口閥338io的質量流率命令。 In these equations and elsewhere, a i , cmd + are the valve orifice commands for the inlet valve 338ii of the selected chamber 334i; and a i , cmd -are the outlet valve 338io for the selected chamber 334i The mass flow rate command.

可如下書寫閥面積方程式:a=A(u)。 方程式26 The valve area equation can be written as follows: a = A ( u ). Equation 26

在方程式26中, a 為閥孔口面積; A 為閥面積方程式;且 u 為閥電流。下文更詳細地描述閥面積方程式。 In Equation 26, a is the valve orifice area; A is the valve area equation; and u is the valve current. The valve area equation is described in more detail below.

可如下將方程式26重寫為閥電流命令:

Figure 106118370-A0305-02-0026-58
Figure 106118370-A0305-02-0026-59
Equation 26 can be rewritten as a valve current command as follows:
Figure 106118370-A0305-02-0026-58
Figure 106118370-A0305-02-0026-59

在方程式27及28中及在別處,u i,cmd+為至入口閥之閥電流命令;

Figure 106118370-A0305-02-0026-60
為用於入口閥之閥面積方程式之反轉;a i,cmd+為入口閥之閥孔口面積;u i,cmd-為至出口閥之閥電流命令;
Figure 106118370-A0305-02-0026-61
為用於出口閥之閥面積方程式之反轉;且a i,cmd-為出口閥之閥孔口面積。 In equations 27 and 28 and elsewhere, u i , cmd + are the valve current commands to the inlet valve;
Figure 106118370-A0305-02-0026-60
Is the reversal of the valve area equation for the inlet valve; a i , cmd + is the valve orifice area of the inlet valve; u i , cmd - is the valve current command to the outlet valve;
Figure 106118370-A0305-02-0026-61
Is the reversal of the valve area equation for the outlet valve; and a i , cmd - is the valve orifice area of the outlet valve.

可如下更一般地書寫方程式24及25:

Figure 106118370-A0305-02-0027-62
Equations 24 and 25 can be written more generally as follows:
Figure 106118370-A0305-02-0027-62

對於次音速流,上游壓力除以下游壓力小於或等於塞塔(「θ」)(

Figure 106118370-A0305-02-0027-65
θ),則
Figure 106118370-A0305-02-0027-64
For subsonic flow, the upstream pressure divided by the downstream pressure is less than or equal to the stopt (" θ ") (
Figure 106118370-A0305-02-0027-65
θ ), then
Figure 106118370-A0305-02-0027-64

對於次音速流,當上游壓力除以下游壓力大於塞塔(「θ」)(

Figure 106118370-A0305-02-0027-66
>θ)時,則f(P u ,P d )=βP u 。 方程式31 For subsonic flow, when the upstream pressure divided by the downstream pressure is greater than the stopt (" θ ") (
Figure 106118370-A0305-02-0027-66
> θ ), then f ( P u , P d ) = βP u . Equation 31

在此等方程式中,

Figure 106118370-A0305-02-0027-67
Figure 106118370-A0305-02-0027-68
;且
Figure 106118370-A0305-02-0027-69
,其中 c 為排放係數; M m 為氣體分子質量;Z為氣體可壓縮性因子;k為比熱比;R為通用氣體定律常數;且T為溫度。 In these equations,
Figure 106118370-A0305-02-0027-67
Figure 106118370-A0305-02-0027-68
;and
Figure 106118370-A0305-02-0027-69
, Where c is the emission coefficient; M m is the mass of gas molecules; Z is the gas compressibility factor; k is the specific heat ratio; R is the general gas law constant; and T is the temperature.

圖5A為可用作來自圖1之閥38C、38D、38E、38F中之一者的閥538之一個非獨占式實例的簡化剖示圖。在此實施例中,閥538為提動型閥,其包括閥殼體539A、可移動閥體539B、入口導管539C、出口導管539D、抵靠入口導管539C推動閥體539B之彈性構件539E(例如彈簧),及螺線管539F。 FIG. 5A is a simplified cross-sectional view of a non-exclusive example of a valve 538 that can be used as one of the valves 38C, 38D, 38E, and 38F from FIG. 1. In this embodiment, the valve 538 is a poppet valve, which includes a valve housing 539A, a movable valve body 539B, an inlet duct 539C, an outlet duct 539D, and an elastic member 539E that pushes the valve body 539B against the inlet duct 539C (for example, Spring), and solenoid 539F.

在此簡化實例中,閥殼體538A為稍微圓柱形形狀,閥體539B為圓盤形狀,且導管539C、539D為管狀形狀。另外,在圖5A中,閥538被說明為在控制系統(圖5A中未示)未將電流引導至螺線管539F時處於 閉合位置。由此,彈性構件539E抵靠入口導管539C之頂部推動閥體539B以閉合閥538。 In this simplified example, the valve housing 538A has a slightly cylindrical shape, the valve body 539B has a disc shape, and the ducts 539C, 539D have a tubular shape. In addition, in FIG. 5A, the valve 538 is illustrated as being in position when the control system (not shown in FIG. 5A) is not directing current to the solenoid 539F Closed position. Thus, the elastic member 539E pushes the valve body 539B against the top of the inlet duct 539C to close the valve 538.

應注意,當未將電流引導至螺線管539F時,只要彈簧預負載力大於由上游壓力與下游壓力之間的壓力差產生的力,閥就保持閉合。 It should be noted that when current is not directed to the solenoid 539F, the valve remains closed as long as the spring preload force is greater than the force generated by the pressure difference between the upstream pressure and the downstream pressure.

圖5B為圖5A之閥538的簡化剖示圖,其中閥538處於敞開位置。此時,控制系統(圖5B中未示)正將電流引導至螺線管539F。當將電流引導至螺線管時,此產生遠離入口導管539C之頂部向上推動(吸引)閥體539B的螺線管力 F solenoid 。典型地,螺線管力之量值與電流成比例。當將足夠電流引導至螺線管539F時,會克服彈性構件539F之彈簧預負載力,遠離入口導管539C之頂部移動閥體539B,且將閥538敞開。另外,電流之量將判定閥538被敞開多遠。通常,閥開口之大小隨著電流增加而增加。 Fig. 5B is a simplified cross-sectional view of the valve 538 of Fig. 5A, wherein the valve 538 is in an open position. At this time, the control system (not shown in Figure 5B) is directing current to solenoid 539F. When the current is directed to the solenoid, this generates a solenoid force F solenoid that pushes (attracts) the valve body 539B upward away from the top of the inlet duct 539C. Typically, the magnitude of the solenoid force is proportional to the current. When sufficient current is guided to the solenoid 539F, the spring preload force of the elastic member 539F is overcome, the valve body 539B is moved away from the top of the inlet duct 539C, and the valve 538 is opened. In addition, the amount of current will determine how far the valve 538 is opened. Generally, the size of the valve opening increases as the current increases.

如圖5B所說明,閥體539B已自閉合位置移動至敞開位置的量被稱作「y」。 As illustrated in FIG. 5B, the amount by which the valve body 539B has moved from the closed position to the open position is referred to as "y".

圖5C為圖5A之閥538的簡化剖示圖,其中入口導管539C被移除,螺線管539F未啟動,且導管539C、539D中不存在壓力。此時,彈性構件539E將閥體539B向下推動預負載距離y o 。閥體539B被說明為處於呈參考假想之形式的閉合位置。當入口導管539D處於適當位置(如圖5A所說明)時,彈性構件539E施加等於彈性構件539E之彈簧常數k s 乘以預負載距離y o 的彈簧預負載力。 Figure 5C is a simplified cross-sectional view of the valve 538 of Figure 5A, where the inlet duct 539C is removed, the solenoid 539F is not activated, and there is no pressure in the ducts 539C, 539D. At this time, the elastic member 539B pushes down the valve body 539E preload distance y o. The valve body 539B is illustrated as being in a closed position in the form of a reference hypothesis. When the inlet conduit 539D in place (as illustrated in FIG. 5A), the resilient member 539E is applied to the elastic member 539E of equal spring constant k s is multiplied by the preload force of the preload spring in the distance y o.

可如下表達閥538之控制

Figure 106118370-A0305-02-0029-70
The control of valve 538 can be expressed as follows
Figure 106118370-A0305-02-0029-70

在方程式32中及在別處, M v 為閥體539B之質量;

Figure 106118370-A0305-02-0029-72
為閥體539B之加速度; C v 為由彈簧摩擦造成之阻尼;
Figure 106118370-A0305-02-0029-71
為閥體539B之速度;k s 為彈性構件539E之彈簧常數;y o 為預負載距離;k f 為螺線管力常數;u為被引導至螺線管之電流命令;r為入口導管539C之頂部處的半徑;差量壓力(delta pressure)為上游壓力與下游壓力之間的差(P = P u - P d )。 In Equation 32 and elsewhere, M v is the mass of the valve body 539B;
Figure 106118370-A0305-02-0029-72
Is the acceleration of the valve body 539B; C v is the damping caused by spring friction;
Figure 106118370-A0305-02-0029-71
Is the speed of the valve body 539B; k s is the spring constant of the elastic member 539E; y o is the preload distance; k f is the solenoid force constant; u is the current command guided to the solenoid; r is the inlet duct 539C The radius at the top; delta pressure is the difference between the upstream pressure and the downstream pressure ( P = P u - P d ).

可如下表達圖5A至圖5C所說明之閥538之有效孔口面積「a」:

Figure 106118370-A0305-02-0029-73
Figure 106118370-A0305-02-0029-74
The effective orifice area "a" of the valve 538 illustrated in FIGS. 5A to 5C can be expressed as follows:
Figure 106118370-A0305-02-0029-73
Figure 106118370-A0305-02-0029-74

在方程式33及34中及在別處, A 為閥面積方程式;且 A -1為閥面積方程式之反轉。 In Equations 33 and 34 and elsewhere, A is the valve area equation; and A -1 is the inverse of the valve area equation.

可如下表達為克服彈簧預負載力所必要的截止區電流u o

Figure 106118370-A0305-02-0029-75
It can be expressed as the cut-off area current u o necessary to overcome the spring preload force as follows:
Figure 106118370-A0305-02-0029-75

在具有圖5A至圖5C所說明之閥538的情況下,可如下表達在無洩漏的情況下的最大允許壓力差△P max

Figure 106118370-A0305-02-0029-76
In the case of a valve 538 illustrated in the FIGS. 5A to 5C, the following may be expressed in a case where no leak maximum allowable differential pressure △ P max:
Figure 106118370-A0305-02-0029-76

在具有圖5A至圖5C所說明之閥538的情況下,可如下表達靜態控制電流:

Figure 106118370-A0305-02-0030-77
In the case of the valve 538 illustrated in FIGS. 5A to 5C, the static control current can be expressed as follows:
Figure 106118370-A0305-02-0030-77

如上文所提供,為了準確地控制流體致動器總成24,關鍵的是判定嵌入於閥38C、38D、38E、38F中之每一者中的非線性。在某些實施例中,每一閥38C、38D、38E、38F未拆卸以識別每一閥38C、38D、38E、38F之閥特性。代替地,測試閥總成24之每一實體閥38C、38D、38E、38F以判定其各別閥特性。舉例而言,對於每一閥38C、38D、38E、38F,運用各種閥電流命令與各種入口/出口壓力差來量測流率。隨後,對於每一閥38C、38D、38E、38F,可使用流量方程式(參見方程式24至31)而自流率資訊計算有效孔口面積。 As provided above, in order to accurately control the fluid actuator assembly 24, it is critical to determine the non-linearity embedded in each of the valves 38C, 38D, 38E, 38F. In some embodiments, each valve 38C, 38D, 38E, 38F is not disassembled to identify the valve characteristics of each valve 38C, 38D, 38E, 38F. Instead, each physical valve 38C, 38D, 38E, and 38F of the valve assembly 24 is tested to determine its individual valve characteristics. For example, for each valve 38C, 38D, 38E, 38F, various valve current commands and various inlet/outlet pressure differences are used to measure the flow rate. Subsequently, for each valve 38C, 38D, 38E, 38F, the effective orifice area can be calculated from the flow rate information using the flow equation (see equations 24 to 31).

圖6A為說明針對各種差量壓力(「△P」)之閥有效孔口面積對電流命令的圖形。此圖形係藉由在各種差量壓力下以實驗方式測試提動閥而產生。舉例而言,在維持350kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小方框。隨後,藉由曲線擬合此等資料點而產生線600A。線600A表示針對350kPa之差量壓力之閥面積孔口對電流命令之間的關係。 Figure 6A is a graph illustrating the effective orifice area of the valve versus current command for various differential pressures ("△ P"). This pattern is generated by experimentally testing the poppet valve under various differential pressures. For example, while maintaining a differential pressure of 350 kPa, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small box in FIG. 6A. Then, line 600A is generated by curve fitting these data points. The line 600A represents the relationship between the valve area orifice versus the current command for a differential pressure of 350 kPa.

接下來,在維持300kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小圓圈。隨後,藉由曲線擬合此等資料點而產生線602A。線602A表示針對300kPa之差量壓力之閥面積孔口 對電流命令之間的關係。 Next, while maintaining a differential pressure of 300kPa, measure the flow rate under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small circle in FIG. 6A. Subsequently, a line 602A is generated by curve fitting these data points. Line 602A represents the valve area orifice for the differential pressure of 300kPa The relationship between the current commands.

接下來,在維持250kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「x」。隨後,藉由曲線擬合此等資料點而產生線604A。線604A表示針對250kPa之差量壓力之閥面積孔口對電流命令之間的關係。 Next, while maintaining the differential pressure of 250kPa, measure the flow rate under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "x" in FIG. 6A. Subsequently, a line 604A is generated by curve fitting these data points. Line 604A represents the relationship between the valve area orifice versus current command for a differential pressure of 250 kPa.

另外,在維持200kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「z」。隨後,藉由曲線擬合此等資料點而產生線606A。線606A表示針對200kPa之差量壓力之閥面積孔口對電流命令之間的關係。 In addition, while maintaining a differential pressure of 200kPa, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "z" in FIG. 6A. Subsequently, line 606A is generated by curve fitting these data points. Line 606A represents the relationship between the valve area orifice versus the current command for a differential pressure of 200 kPa.

此外,在維持150kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小三角形。隨後,藉由曲線擬合此等資料點而產生線608A。線608A表示針對150kPa之差量壓力之閥面積孔口對電流命令之間的關係。 In addition, while maintaining the differential pressure of 150kPa, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small triangle in FIG. 6A. Subsequently, line 608A is generated by curve fitting these data points. The line 608A represents the relationship between the valve area orifice and the current command for a differential pressure of 150 kPa.

另外,在維持100kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「+」。隨後,藉由曲線擬合此等資料點而產生線610A。線610A表示針對100kPa之差量壓力之閥面積孔口對電流命令之間的關係。 In addition, while maintaining a differential pressure of 100kPa, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "+" in FIG. 6A. Subsequently, a line 610A is generated by curve fitting these data points. The line 610A represents the relationship between the valve area orifice versus the current command for a differential pressure of 100 kPa.

最後,在維持50kPa之差量壓力時,在至螺線管之複數個 不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「D」。隨後,藉由曲線擬合此等資料點而產生線612。線612表示針對50kPa之差量壓力之閥面積孔口對電流命令之間的關係。 Finally, when maintaining the differential pressure of 50kPa, the Measure the flow rate under different current commands. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "D" in FIG. 6A. Subsequently, a line 612 is generated by curve fitting these data points. Line 612 represents the relationship between the valve area orifice and the current command for a differential pressure of 50 kPa.

在此實例中,此閥之閥特性614表示針對數個不同差量壓力之有效閥孔口面積對電流命令的關係。替代地,舉例而言,閥特性614可為以下各者:(i)針對數個不同差量壓力之有效閥孔口面積對電壓之間的關係;(ii)針對數個不同差量壓力之流率對電流命令之間的關係;及/或(iii)針對數個不同差量壓力之流率對電壓之間的關係。 In this example, the valve characteristic 614 of this valve represents the relationship between the effective valve orifice area and the current command for several different differential pressures. Alternatively, for example, the valve characteristic 614 may be each of the following: (i) the relationship between the effective valve orifice area and the voltage for several different differential pressures; (ii) the relationship between the effective valve orifice area and the voltage for several different differential pressures; The relationship between flow rate and current command; and/or (iii) the relationship between flow rate and voltage for several different differential pressures.

如上文所提供,在某些實施例中,將閥特性614反轉以產生隨後用於控制彼閥之反轉閥特性616。舉例而言,可將圖6A中之資料反轉(切換圖形之X及Y軸)以產生圖6B所說明之反轉閥特性616。 As provided above, in certain embodiments, the valve characteristic 614 is inverted to produce an inverted valve characteristic 616 that is then used to control the other valve. For example, the data in FIG. 6A can be inverted (switching the X and Y axes of the graph) to produce the inverted valve characteristic 616 illustrated in FIG. 6B.

更特定言之,圖6B為說明閥電流命令對有效孔口面積的圖形,該圖形為圖6A中之圖形的反轉。在此實例中,將來自圖6A之資料反轉以產生圖6B中之資料。隨後,使用曲線擬合以產生圖6B中之曲線。 More specifically, FIG. 6B is a graph illustrating the valve current command to the effective orifice area, which is the inverse of the graph in FIG. 6A. In this example, the data from FIG. 6A is inverted to generate the data in FIG. 6B. Subsequently, curve fitting was used to generate the curve in Figure 6B.

舉例而言,在350kPa之差量壓力下,將資料表示為小方框。隨後,藉由曲線擬合此等資料點而產生線600B。線600B表示針對350kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 For example, under a differential pressure of 350kPa, the data is represented as a small box. Then, line 600B is generated by curve fitting these data points. Line 600B represents the relationship between the valve current command for a differential pressure of 350 kPa and the valve area orifice.

接下來,在300kPa之差量壓力下,將資料表示為小圓圈。隨後,藉由曲線擬合此等資料點而產生線602B。線602B表示針對300kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 Next, under a differential pressure of 300kPa, the data is represented as a small circle. Subsequently, a line 602B is generated by curve fitting these data points. Line 602B represents the relationship between the valve current command for a differential pressure of 300 kPa and the valve area orifice.

相似地,在250kPa之差量壓力下,將資料表示為小「x's」。 隨後,藉由曲線擬合此等資料點而產生線604B。線604B表示針對250kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 Similarly, under a differential pressure of 250kPa, the data is expressed as a small "x's". Then, line 604B is generated by curve fitting these data points. Line 604B represents the relationship between the valve current command for a differential pressure of 250 kPa and the valve area orifice.

另外,在200kPa之差量壓力下,將資料表示為小「z's」。隨後,藉由曲線擬合此等資料點而產生線606B。線606B表示針對200kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 In addition, under a differential pressure of 200kPa, the data is expressed as a small "z's". Subsequently, line 606B is generated by curve fitting these data points. Line 606B represents the relationship between the valve current command for a differential pressure of 200 kPa and the valve area orifice.

此外,在150kPa之差量壓力下,將資料表示為小三角形。隨後,藉由曲線擬合此等資料點而產生線608B。線608B表示針對150kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 In addition, under a differential pressure of 150kPa, the data is represented as a small triangle. Subsequently, line 608B is generated by curve fitting these data points. The line 608B represents the relationship between the valve current command for the differential pressure of 150 kPa and the valve area orifice.

另外,在100kPa之差量壓力下,將資料表示為小「+'s」。隨後,藉由曲線擬合此等資料點而產生線610B。線610B表示針對100kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 In addition, under the differential pressure of 100kPa, the data is expressed as small "+'s". Subsequently, a line 610B is generated by curve fitting these data points. Line 610B represents the relationship between the valve current command for a differential pressure of 100 kPa and the valve area orifice.

最後,在50kPa之差量壓力下,將資料表示為小「D's」。隨後,藉由曲線擬合此等資料點而產生線612B。線612B表示針對50kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 Finally, under the differential pressure of 50kPa, the data is expressed as small "D's". Subsequently, line 612B is generated by curve fitting these data points. Line 612B represents the relationship between the valve current command for a differential pressure of 50 kPa and the valve area orifice.

應注意,來自圖6B圖形之反轉閥特性616資料可由控制系統使用以準確地控制閥。亦應注意,控制系統可利用內插以產生針對其他差量壓力之資料以在其他差量壓力下準確地控制閥。 It should be noted that the reversal valve characteristic 616 data from the graph in Figure 6B can be used by the control system to accurately control the valve. It should also be noted that the control system can use interpolation to generate data for other differential pressures to accurately control the valve at other differential pressures.

圖7A至圖7D為在各種閥位置處的另一類型之閥738的簡化剖示說明,閥738可用作來自圖1之閥38C、38D、38E、38F中之一者。更特定言之,圖7A為在完全閉合位置處之滑軸型閥738的簡化側視說明;圖7B為在閉合基線(準備敞開)位置處之滑軸型閥738的簡化側視說明;圖7C為在部分敞開位置處之滑軸型閥738的簡化側視說明;且圖7D為在 完全敞開位置處之滑軸型閥738的簡化側視說明。 7A to 7D are simplified cross-sectional illustrations of another type of valve 738 at various valve positions. The valve 738 can be used as one of the valves 38C, 38D, 38E, and 38F from FIG. 1. More specifically, Figure 7A is a simplified side view illustration of the spool type valve 738 at the fully closed position; Figure 7B is a simplified side view illustration of the spool type valve 738 at the closed baseline (ready to open) position; 7C is a simplified side view illustration of the spool type valve 738 in the partially open position; and FIG. 7D is the A simplified side view illustration of the spool type valve 738 in the fully open position.

在此實施例中,閥738為滑軸型閥,其包括閥殼體739A、可移動閥體739B(有時被稱作「滑軸」)、入口開口(圖中未示)、出口開口739D、自右向左推動閥體739B之彈性構件739E(例如彈簧),及自左向右移動閥體739B之螺線管739F。 In this embodiment, the valve 738 is a spool type valve, which includes a valve housing 739A, a movable valve body 739B (sometimes referred to as a "sliding shaft"), an inlet opening (not shown in the figure), and an outlet opening 739D , Push the elastic member 739E (such as a spring) of the valve body 739B from right to left, and move the solenoid 739F of the valve body 739B from left to right.

在此簡化實例中,閥殼體738A為稍微中空圓柱形形狀,閥體739B為圓盤形狀,且開口739D為圓形形狀且定位於閥殼體738A之相對側上,其中閥體739B定位於相對側之間。 In this simplified example, the valve housing 738A has a slightly hollow cylindrical shape, the valve body 739B has a disc shape, and the opening 739D has a circular shape and is positioned on the opposite side of the valve housing 738A, wherein the valve body 739B is positioned on the opposite side of the valve housing 738A. Between opposite sides.

應注意,因為上游壓力及下游壓力正交於閥體739B,所以差量壓力將不影響閥738之敞開或閉合。 It should be noted that because the upstream pressure and the downstream pressure are orthogonal to the valve body 739B, the differential pressure will not affect the opening or closing of the valve 738.

另外,在圖7A中,閥738被說明為在控制系統(圖7A中未示)未將電流引導至螺線管739F時處於完全閉合位置。此時,閥體739B覆蓋入口及出口739D兩者以閉合閥738。 Additionally, in FIG. 7A, the valve 738 is illustrated as being in a fully closed position when the control system (not shown in FIG. 7A) is not directing current to the solenoid 739F. At this time, the valve body 739B covers both the inlet and the outlet 739D to close the valve 738.

圖7B為圖7A之閥738的簡化剖示圖,其中閥738處於恰在其敞開之前的基線位置。此時,控制系統(圖7B中未示)正將電流引導至螺線管739F。當將電流引導至螺線管時,此產生將閥體739B推動至閥738準備敞開之基線位置y b 的螺線管力 F solenoid Figure 7B is a simplified cross-sectional view of the valve 738 of Figure 7A, where the valve 738 is in a baseline position just before it opens. At this time, the control system (not shown in Figure 7B) is directing current to solenoid 739F. When the current is directed to the solenoid, this generates a solenoid force F solenoid that pushes the valve body 739B to the baseline position y b where the valve 738 is about to open.

圖7C為圖7A之閥738的簡化剖示圖,其中閥738處於部分敞開位置。此時,控制系統(圖7C中未示)正將電流引導至螺線管739F。當將電流引導至螺線管時,此產生將閥體739B推動至閥738部分敞開之位置y的螺線管力 F solenoid FIG. 7C is a simplified cross-sectional view of the valve 738 of FIG. 7A, wherein the valve 738 is in a partially open position. At this time, the control system (not shown in Figure 7C) is directing current to solenoid 739F. When the current is directed to the solenoid, this generates a solenoid force F solenoid that pushes the valve body 739B to the position y where the valve 738 is partially opened.

典型地,螺線管力之量值與電流成比例。當將足夠電流引導 至螺線管739F時,會克服彈性構件739F之彈簧預負載力,使閥體739B移動。另外,電流之量將判定閥738被敞開多遠。通常,閥開口之大小隨著電流增加而增加。 Typically, the magnitude of the solenoid force is proportional to the current. When directing enough current When it reaches the solenoid 739F, it will overcome the spring preload force of the elastic member 739F and move the valve body 739B. In addition, the amount of current will determine how far the valve 738 is opened. Generally, the size of the valve opening increases as the current increases.

圖7D為圖7A之閥738的簡化剖示圖,其中閥738處於完全位置。 Figure 7D is a simplified cross-sectional view of the valve 738 of Figure 7A with the valve 738 in a full position.

在此實施例中,可如下表達用於圖7A至圖7D所說明之閥738的閥機械動力學:

Figure 106118370-A0305-02-0035-78
In this embodiment, the valve mechanical dynamics for the valve 738 illustrated in FIGS. 7A to 7D can be expressed as follows:
Figure 106118370-A0305-02-0035-78

在方程式38中及在別處, M V 為閥體739B之質量;

Figure 106118370-A0305-02-0035-79
為閥體739B之加速度;c v 為由彈簧摩擦造成之阻尼;
Figure 106118370-A0305-02-0035-80
為閥體739B之速度;k s 為彈性構件739E之彈簧常數;y o 為預負載距離;k f 為螺線管力常數;u為被引導至螺線管之電流命令;且f preload 為彈性構件739E之預負載力。 In Equation 38 and elsewhere, M V is the mass of the valve body 739B;
Figure 106118370-A0305-02-0035-79
Is the acceleration of the valve body 739B; c v is the damping caused by spring friction;
Figure 106118370-A0305-02-0035-80
Is the speed of the valve body 739B; k s is the spring constant of the elastic member 739E; y o is the preload distance; k f is the solenoid force constant; u is the current command guided to the solenoid; and f preload is the elasticity Preload force of member 739E.

圖7E為在有助於闡釋有效孔口面積之部分敞開位置中之出口739D及閥體739B的簡化說明。在此實例中,χ=y o +y。另外,可如下計算此類型之閥738的有效孔口面積Aeff

Figure 106118370-A0305-02-0035-81
Figure 106118370-A0305-02-0035-82
Figure 7E is a simplified illustration of the outlet 739D and the valve body 739B in a partially open position that helps explain the effective orifice area. In this example, χ = y o + y . In addition, the effective orifice area A eff of this type of valve 738 can be calculated as follows:
Figure 106118370-A0305-02-0035-81
Figure 106118370-A0305-02-0035-82

圖8A為說明使用用於圖7A至圖7D所說明之閥的上述公式所計算之正規化有效孔口面積對正規化滑軸位置的圖形。在此實例中,此閥之閥特性814表示正規化有效孔口面積對正規化滑軸位置之關係。 8A is a graph illustrating the normalized effective orifice area versus the normalized sliding shaft position calculated using the above formula for the valve illustrated in FIGS. 7A to 7D. In this example, the valve characteristic 814 of this valve represents the relationship between the normalized effective orifice area and the normalized spool position.

如上文所提供,在某些實施例中,將閥特性814反轉以產生圖8B所說明的隨後用於控制彼閥之反轉閥特性816。舉例而言,可將圖8A中之資料反轉(切換圖形之X及Y軸)以產生圖8B所說明的標繪滑軸位置對正規化有效孔口面積之反轉閥特性816。 As provided above, in certain embodiments, the valve characteristic 814 is reversed to produce the reverse valve characteristic 816 illustrated in FIG. 8B that is then used to control the other valve. For example, the data in FIG. 8A can be inverted (switching the X and Y axes of the graph) to generate the inverted valve characteristic 816 that plots the sliding axis position versus the normalized effective orifice area illustrated in FIG. 8B.

某些閥(例如滑軸閥)具有類背隙滯後。在此等閥中,對於相同電流命令,滑軸位置可取決於先前命令歷史而不同。 Some valves (such as spool valves) have backlash-like hysteresis. In these valves, for the same current command, the spool position may be different depending on the previous command history.

圖9A為說明滑軸閥之測試結果的圖形。在圖9A中,該圖形說明滑軸位置對電壓。另外,圖9B為說明滑軸閥之模擬結果的圖形。在圖9B中,該圖形說明滑軸位置對電流。此等圖說明:對於相同電流命令(或電壓命令),滑軸位置可取決於先前命令歷史而不同。舉例而言,參考圖9A,對於相同命令(例如5伏特),滑軸位置將取決於先前命令而不同。相似地,參考圖9B,對於相同命令(例如0.5安培),滑軸位置將取決於先前命令而不同。 Figure 9A is a graph illustrating the test results of the spool valve. In Figure 9A, the graph illustrates the sliding axis position versus voltage. In addition, FIG. 9B is a graph illustrating the simulation result of the spool valve. In Figure 9B, the graph illustrates the sliding axis position versus current. These diagrams illustrate that for the same current command (or voltage command), the position of the sliding shaft can be different depending on the previous command history. For example, referring to FIG. 9A, for the same command (for example, 5 volts), the position of the sliding axis will be different depending on the previous command. Similarly, referring to FIG. 9B, for the same command (for example, 0.5 ampere), the position of the sliding shaft will be different depending on the previous command.

如本文中所提供,參考圖9A,此閥之另一閥特性914係由滑軸位置對電壓之關係表示。參考圖9B,此閥之又一閥特性915係由滑軸位置對電流之關係表示。因此,如本文中所提供,可校準及模型化滑軸閥非線性(背隙及有效孔口幾何形狀)。隨後,可將其反轉應用於控制軟體以線性化滑軸閥。 As provided herein, referring to FIG. 9A, another valve characteristic 914 of this valve is represented by the relationship between the position of the spool shaft and the voltage. Referring to FIG. 9B, another valve characteristic 915 of this valve is represented by the relationship between the position of the spool shaft and the current. Therefore, as provided in this article, spool valve nonlinearities (backlash and effective orifice geometry) can be calibrated and modeled. Later, its inversion can be applied to the control software to linearize the spool valve.

用以計算閥之背隙的方法可變化。在一個實施例中,可藉由將電流(或電壓)命令自零逐漸地增加至最大值且接著將其逐漸地減小至零同時監測閥體之位置而執行校準。隨後將電流(或電壓)命令對滑軸位置資料用作補償映圖。 The method used to calculate the backlash of the valve can vary. In one embodiment, the calibration can be performed by gradually increasing the current (or voltage) command from zero to the maximum value and then gradually reducing it to zero while monitoring the position of the valve body. Then the current (or voltage) command is used as a compensation map for the position data of the sliding shaft.

在某些實施例中,可在校準背隙時判定閥之基線位置 y o 。可藉由在檢查閥之出口流量以判定孔口何時開始敞開時稍微增加電流命令而判定基線位置。 In certain embodiments, the baseline may be determined during calibration of the position of the valve backlash y o. The baseline position can be determined by slightly increasing the current command when checking the outlet flow of the valve to determine when the orifice begins to open.

圖10A說明滑軸閥之兩個閥特性。更特定言之,圖10A包括:(i)第一閥特性1014,例如說明正規化有效孔口面積對正規化滑軸位置之圖形;及(ii)第二閥特性1015,例如說明滑軸位置對電流之圖形。可以實驗方式獲取或計算用於圖形1014、1015之資料。 Figure 10A illustrates the two valve characteristics of the spool valve. More specifically, FIG. 10A includes: (i) a first valve characteristic 1014, such as a graph illustrating a normalized effective orifice area versus a normalized spool position; and (ii) a second valve characteristic 1015, such as a spool position The graph of current. The data used for the graphics 1014 and 1015 can be obtained or calculated experimentally.

如上文所提供,在某些實施例中,將閥特性1014、1015反轉以產生圖10B所說明的隨後用於控制彼閥之反轉閥特性1016、1017。舉例而言,將來自圖形1014之資料反轉(切換圖形之X及Y軸)以產生標繪正規化滑軸位置對正規化有效孔口面積之圖形1016。另外,將來自圖形1015之資料反轉(切換圖形之X及Y軸)以產生標繪電流對滑軸位置之圖形1017。如本文中所提供,反轉閥特性1016、1017有助於準確地控制閥之有效孔口面積,而不管閥之非線性。 As provided above, in certain embodiments, the valve characteristics 1014, 1015 are reversed to produce the reverse valve characteristics 1016, 1017 that are subsequently used to control the other valve as illustrated in FIG. 10B. For example, invert the data from the graph 1014 (switch the X and Y axes of the graph) to generate a graph 1016 that plots the normalized sliding axis position versus the normalized effective orifice area. In addition, the data from the graph 1015 is inverted (the X and Y axes of the graph are switched) to generate a graph 1017 that plots the position of the current versus the sliding axis. As provided herein, the reversal valve features 1016, 1017 help to accurately control the effective orifice area of the valve regardless of the valve's non-linearity.

應注意,反轉閥特性1016、1017可呈查找表、映圖、圖形、圖表或分析模型或擬合模型之形式。 It should be noted that the reversal valve characteristics 1016, 1017 may be in the form of look-up tables, maps, graphs, charts, or analytical models or fitting models.

圖11為說明有用於本發明之曝光設備1170的示意圖。曝光設備1170包括設備框架1172、照明系統1182(輻照設備)、遮罩平台總成1184、光學總成1186(透鏡總成)、板平台總成1110,及控制遮罩平台總成1184及板平台總成1110之控制系統1120。 FIG. 11 is a schematic diagram illustrating an exposure apparatus 1170 used in the present invention. Exposure equipment 1170 includes equipment frame 1172, lighting system 1182 (irradiation equipment), mask platform assembly 1184, optical assembly 1186 (lens assembly), plate platform assembly 1110, and control mask platform assembly 1184 and plate The control system 1120 of the platform assembly 1110.

曝光設備1170特別可用作將液晶顯示裝置之圖案(圖中未示)自遮罩1188轉印至工件1122上的微影裝置。 The exposure equipment 1170 is particularly useful as a lithography device for transferring the pattern (not shown in the figure) of the liquid crystal display device from the mask 1188 to the workpiece 1122.

設備框架1172具剛性且支撐曝光設備1170之組件。設備框架1172之設計可變化以適合針對曝光設備1170之其餘部分的設計要求。 The equipment frame 1172 is rigid and supports the components of the exposure equipment 1170. The design of the equipment frame 1172 can be changed to suit the design requirements for the rest of the exposure equipment 1170.

照明系統1182包括照明源1192及照明光學總成1194。照明源1192發射光能射束(輻照)。照明光學總成1194將光能射束自照明源1192導引至遮罩1188。射束選擇性地照明遮罩1188之不同部分且曝光工件1122。 The illumination system 1182 includes an illumination source 1192 and an illumination optical assembly 1194. The illumination source 1192 emits a beam of light energy (irradiation). The illumination optics assembly 1194 guides the light energy beam from the illumination source 1192 to the shield 1188. The beam selectively illuminates different parts of the mask 1188 and exposes the workpiece 1122.

光學總成1186將傳遞通過遮罩1188之光投影及/或聚焦至工件1122。取決於曝光設備1170之設計,光學總成1186可放大或減小照明於遮罩1188上之影像。 The optical assembly 1186 projects and/or focuses the light transmitted through the mask 1188 to the workpiece 1122. Depending on the design of the exposure device 1170, the optical assembly 1186 can magnify or reduce the image illuminated on the mask 1188.

遮罩平台總成1184相對於光學總成1186及工件1122來固持及定位遮罩1188。相似地,板平台總成1110相對於遮罩1188之經照明部分的經投影影像來固持及定位工件1122。 The mask platform assembly 1184 holds and positions the mask 1188 relative to the optical assembly 1186 and the workpiece 1122. Similarly, the plate platform assembly 1110 holds and positions the workpiece 1122 relative to the projected image of the illuminated portion of the mask 1188.

存在數個不同類型之微影裝置。舉例而言,曝光設備1170可用作掃描類型光微影系統,其將圖案自遮罩1188曝光至玻璃工件1122上,其中遮罩1188與工件1122同步地移動。替代地,曝光設備1170可為步進及重複類型光微影系統,其在遮罩1188及工件1122靜止時曝光遮罩1188。 There are several different types of lithography devices. For example, the exposure device 1170 can be used as a scanning type photolithography system, which exposes a pattern from a mask 1188 to a glass workpiece 1122, wherein the mask 1188 and the workpiece 1122 move synchronously. Alternatively, the exposure device 1170 may be a step and repeat type photolithography system that exposes the mask 1188 when the mask 1188 and the workpiece 1122 are stationary.

然而,本文中所提供之曝光設備1170及平台總成的用途並不限於用於液晶顯示裝置製造之光微影系統。舉例而言,曝光設備1170可用作半導體光微影系統,其將積體電路圖案曝光至晶圓或光微影系統上以用於製造薄膜磁頭。另外,本發明亦可應用於近接光微影系統,其藉由在不使用透鏡總成的情況下接近地定位遮罩及基板而曝光遮罩圖案。另外,本文中所提供之本發明可用於其他裝置,包括其他平板顯示器處理裝備、 電梯、機器工具、金屬切割機器、檢測機器及磁碟機。 However, the use of the exposure equipment 1170 and the platform assembly provided herein is not limited to the photolithography system used in the manufacture of liquid crystal display devices. For example, the exposure equipment 1170 can be used as a semiconductor photolithography system, which exposes integrated circuit patterns onto a wafer or a photolithography system for manufacturing thin film magnetic heads. In addition, the present invention can also be applied to a proximity photolithography system, which exposes the mask pattern by positioning the mask and the substrate closely without using the lens assembly. In addition, the present invention provided herein can be used in other devices, including other flat panel display processing equipment, Elevators, machine tools, metal cutting machines, inspection machines and disk drives.

根據上述實施例之光微影系統可藉由以下方式而建置:裝配各種子系統(包括所附申請專利範圍中列出之每一元件),使得維持規定的機械準確度、電準確度及光學準確度。為了維持各種準確度,在裝配之前及之後,調整每一光學系統以達成其光學準確度。相似地,調整每一機械系統及每一電系統以達成其各別機械及電準確度。將每一子系統裝配至光微影系統中之程序包括在每一子系統之間的機械介面、電路配線連接及氣壓管道連接。不必說,亦存在在自各種子系統裝配光微影系統之前裝配每一子系統的程序。一旦使用各種子系統而裝配光微影系統,就執行總調整以確保在整個光微影系統中維持準確度。另外,需要在溫度及清潔度被控制的清潔室中製造曝光系統。 The photolithography system according to the above-mentioned embodiment can be constructed by assembling various subsystems (including each component listed in the scope of the attached patent application) so as to maintain the specified mechanical accuracy, electrical accuracy and Optical accuracy. In order to maintain various accuracy levels, before and after assembly, each optical system is adjusted to achieve its optical accuracy. Similarly, adjust each mechanical system and each electrical system to achieve its respective mechanical and electrical accuracy. The procedure for assembling each sub-system into the photolithography system includes the mechanical interface, circuit wiring connection and air pressure pipe connection between each sub-system. Needless to say, there is also a procedure for assembling each subsystem before assembling the photolithography system from the various subsystems. Once the photolithography system is assembled using various subsystems, overall adjustments are performed to ensure that accuracy is maintained throughout the photolithography system. In addition, the exposure system needs to be manufactured in a clean room where the temperature and cleanliness are controlled.

另外,可藉由圖12中大體上所展示之程序而使用上述系統來製作裝置。在步驟1201中,設計裝置之功能及效能特性。接下來,在步驟1202中,根據先前設計步驟來設計具有圖案之遮罩(光罩),且在並列步驟1203中製造玻璃板。在步驟1204中藉由上文中根據本發明所描述之光微影系統將步驟1202中所設計之遮罩圖案曝光至來自步驟1203之玻璃板上。在步驟1205中,裝配(包括切割程序、接合程序及封裝程序)平板顯示裝置,最後,接著在步驟1206中檢測裝置。 In addition, the above-mentioned system can be used to fabricate the device by the procedure generally shown in FIG. 12. In step 1201, the function and performance characteristics of the device are designed. Next, in step 1202, a mask (mask) with a pattern is designed according to the previous design steps, and a glass plate is manufactured in a parallel step 1203. In step 1204, the mask pattern designed in step 1202 is exposed to the glass plate from step 1203 by the photolithography system described above according to the present invention. In step 1205, the flat panel display device is assembled (including the cutting procedure, the bonding procedure and the packaging procedure), and finally, the device is inspected in step 1206.

雖然如本文中所展示及揭示之特定總成完全地能夠獲得目標且提供上文中所陳述之優點,但應理解,其僅僅說明本發明之目前較佳實施例,且除了如所附申請專利範圍中所描述的內容以外,並不意欲限制本文中所展示之建構或設計細節。 Although the specific assembly as shown and disclosed herein can fully achieve the objectives and provide the advantages stated above, it should be understood that it only illustrates the presently preferred embodiments of the present invention, and is in addition to the scope of the attached patent application Except for the content described in, it is not intended to limit the construction or design details shown in this article.

10:平台總成 10: Platform assembly

12:底座 12: Base

14:平台 14: Platform

16:平台移動器總成 16: Platform mover assembly

18:量測系統 18: Measurement system

20:控制系統 20: Control system

20A:處理器 20A: processor

20B:電子資料儲存器 20B: Electronic data storage

22:工件 22: Workpiece

24:流體致動器總成 24: Fluid actuator assembly

26:底座安裝台 26: Pedestal mounting table

28:軸承總成 28: Bearing assembly

30:移動軸線 30: moving axis

31:活塞總成 31: Piston assembly

32:活塞殼體 32: Piston housing

32A:管狀側壁 32A: Tubular side wall

32B:圓盤狀第一端壁 32B: Disc-shaped first end wall

32C:圓盤狀第二端壁 32C: Disc-shaped second end wall

32D:壁孔隙 32D: Wall pores

34:活塞腔室 34: Piston chamber

34A:第一腔室 34A: first chamber

34B:第二腔室 34B: second chamber

36:活塞 36: Piston

36A:活塞軸線 36A: Piston axis

36B:活塞體 36B: Piston body

36C:活塞密封件 36C: Piston seal

36D:第一橫樑 36D: The first beam

36E:第二橫樑 36E: second beam

38:閥總成 38: valve assembly

38A:第一閥子總成 38A: First valve sub-assembly

38B:第二閥子總成 38B: Second valve sub-assembly

38C:第一入口閥 38C: First inlet valve

38D:第一出口閥 38D: First outlet valve

38E:第二入口閥 38E: second inlet valve

38F:第二出口閥 38F: second outlet valve

40:活塞流體 40: Piston fluid

42:活塞安裝台 42: Piston mounting table

44:總力(F) 44: Total force (F)

46:流體壓力源 46: fluid pressure source

46A:流體貯槽 46A: fluid storage tank

46B:壓縮器 46B: Compressor

46C:壓力調節器 46C: Pressure regulator

Claims (7)

一種用於沿著一移動軸線定位一工件之平台總成,該平台總成包含:一平台,其經調適以耦接至該工件;一流體致動器總成,其耦接至該平台且沿著該移動軸線來移動該平台,該流體致動器總成包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成,其控制一活塞流體進入該活塞腔室之流動;一控制系統,其控制該閥總成以控制該活塞流體進入該活塞腔室之該流動,其中該閥總成包括一殼體、一第一入口閥,該第一入口閥形成在該殼體中並且設置成覆蓋一出口開口,該殼體中的該活塞流體通過該出口開口流入該活塞腔室,以及一彈性構件,其通過該第一入口閥控制該出口開口的打開和關閉的量;及該控制系統控制該閥總成,其中該控制系統利用該第一入口閥特性之一反函數,該第一入口閥特性是閥位置和發送給該彈性構件以控制上述打開和關閉量的電流命令之間的關係,以及利用在該第一入口閥打開和關閉該出口開口時校準該第一入口閥特性差異之一特性來控制該閥總成。 A platform assembly for positioning a workpiece along a moving axis. The platform assembly includes: a platform adapted to be coupled to the workpiece; a fluid actuator assembly coupled to the platform and To move the platform along the moving axis, the fluid actuator assembly includes: a piston housing defining a piston chamber; a piston positioned in the piston chamber and relative to the piston along a piston axis The piston chamber moves; and a valve assembly that controls the flow of a piston fluid into the piston chamber; a control system that controls the valve assembly to control the flow of the piston fluid into the piston chamber, wherein The valve assembly includes a housing and a first inlet valve. The first inlet valve is formed in the housing and is arranged to cover an outlet opening. The piston fluid in the housing flows into the piston cavity through the outlet opening. Chamber, and an elastic member that controls the opening and closing amount of the outlet opening through the first inlet valve; and the control system controls the valve assembly, wherein the control system uses an inverse function of the first inlet valve characteristic The first inlet valve characteristic is the relationship between the valve position and the current command sent to the elastic member to control the above-mentioned opening and closing amount, and the first inlet valve is calibrated when the first inlet valve opens and closes the outlet opening. The characteristic difference of the inlet valve is one of the characteristics to control the valve assembly. 如申請專利範圍第1項之平台總成,其中該活塞將該活塞腔室分離成在該活塞之相對側上的一第一腔室及一第二腔室;且其中該閥總成控制該活塞流體進入該第一腔室及該第二腔室之流動。 For example, the platform assembly of item 1 of the scope of patent application, wherein the piston separates the piston chamber into a first chamber and a second chamber on opposite sides of the piston; and wherein the valve assembly controls the Piston fluid enters the flow of the first chamber and the second chamber. 如申請專利範圍第2項之平台總成,其中該閥總成控制該活塞流體離開該第一腔室及該第二腔室之流動。 For example, the platform assembly of item 2 of the scope of patent application, wherein the valve assembly controls the flow of the piston fluid out of the first chamber and the second chamber. 如申請專利範圍第3項之平台總成,其中該閥總成包括:(i)該第一入口閥,其控制該活塞流體進入該第一腔室之該流動;(ii)一第一出口閥,其控制該活塞流體離開該第一腔室之該流動;(iii)一第二入口閥,其控制該活塞流體進入該第二腔室之該流動;及(iv)一第二出口閥,其控制該活塞流體離開該第二腔室之該流動。 For example, the platform assembly of item 3 of the scope of patent application, wherein the valve assembly includes: (i) the first inlet valve, which controls the flow of the piston fluid into the first chamber; (ii) a first outlet Valve, which controls the flow of the piston fluid out of the first chamber; (iii) a second inlet valve, which controls the flow of the piston fluid into the second chamber; and (iv) a second outlet valve , Which controls the flow of the piston fluid out of the second chamber. 如申請專利範圍第4項之平台總成,其中該第一出口閥具有一第一出口閥特性,該第二入口閥具有一第二入口閥特性,且該第二出口閥具有一第二出口閥特性;且其中該控制系統亦利用該第一出口閥特性之一反函數、該第二入口閥特性之一反函數及該第二出口閥特性之一反函數以控制該閥總成。 For example, the platform assembly of item 4 of the scope of patent application, wherein the first outlet valve has a first outlet valve characteristic, the second inlet valve has a second inlet valve characteristic, and the second outlet valve has a second outlet Valve characteristics; and the control system also uses an inverse function of the first outlet valve characteristic, an inverse function of the second inlet valve characteristic and an inverse function of the second outlet valve characteristic to control the valve assembly. 一種曝光設備,其包括一照明源,及如申請專利範圍第1至5項中任一項之平台總成,該平台總成相對於該照明系統來移動該平台。 An exposure equipment includes an illumination source and a platform assembly according to any one of items 1 to 5 in the scope of patent application, the platform assembly moves the platform relative to the illumination system. 一種用於製造一裝置之程序,其包括以下步驟:提供一基板;及運用如申請專利範圍第6項之曝光設備將一影像形成至該基板。 A process for manufacturing a device includes the following steps: providing a substrate; and forming an image on the substrate by using the exposure equipment as in the sixth patent application.
TW106118370A 2016-06-01 2017-06-01 A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device TWI735589B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662344262P 2016-06-01 2016-06-01
US62/344,262 2016-06-01

Publications (2)

Publication Number Publication Date
TW201809483A TW201809483A (en) 2018-03-16
TWI735589B true TWI735589B (en) 2021-08-11

Family

ID=60477928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118370A TWI735589B (en) 2016-06-01 2017-06-01 A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device

Country Status (5)

Country Link
JP (1) JP6737346B2 (en)
KR (1) KR102214590B1 (en)
CN (1) CN109477501B (en)
TW (1) TWI735589B (en)
WO (1) WO2017210450A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092170B2 (en) 2017-02-15 2021-08-17 Nikon Corporation Dual valve fluid actuator assembly
WO2021108770A1 (en) * 2019-11-27 2021-06-03 The Texas A & M University System Nanopositioning systems and associated methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914475A (en) * 1995-06-29 1997-01-14 Andreas Stihl:Fa Vent-exhaust valve for vessel
JP2014215774A (en) * 2013-04-24 2014-11-17 キヤノン株式会社 Stage device, creation method and program

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385041A (en) * 1992-08-12 1995-01-31 Gemcor Engineering Corporation Piston rod stabilizing device for a riveting apparatus ram assembly
JPH09144705A (en) * 1995-11-27 1997-06-03 Nippon Kuatsu Syst Kk Negative pneumatic pressure servo unit
US6289259B1 (en) * 1998-10-16 2001-09-11 Husky Injection Molding Systems Ltd. Intelligent hydraulic manifold used in an injection molding machine
TWI284785B (en) * 2002-04-24 2007-08-01 Nikon Corp Exposure system and device manufacturing method
US7021191B2 (en) * 2003-01-24 2006-04-04 Viking Technologies, L.C. Accurate fluid operated cylinder positioning system
CN101158365A (en) * 2007-11-13 2008-04-09 辽宁鑫宇装备自动化有限公司 Direct driving type volume servo control power installation
US8375989B2 (en) * 2009-10-22 2013-02-19 Eaton Corporation Method of operating a control valve assembly for a hydraulic system
JP5460764B2 (en) * 2012-02-29 2014-04-02 富士重工業株式会社 Range switching device
JP5978985B2 (en) * 2012-12-26 2016-08-24 コベルコ建機株式会社 Hydraulic control device and construction machine equipped with the same
CN203373716U (en) * 2013-06-26 2014-01-01 上海利策海洋工程技术有限公司 Self-installation suction pile type movable platform structure
CN103481093B (en) * 2013-09-13 2015-09-09 中联重科股份有限公司 Machining mechanism and machining system for workpiece
CN103738882B (en) * 2014-01-24 2016-01-06 长安大学 A kind of space orientation platform
CN105179340B (en) * 2015-09-10 2017-06-06 北汽福田汽车股份有限公司 Concrete mixer and its stirring hydraulic system
CN205207305U (en) * 2015-12-04 2016-05-04 上海创力集团股份有限公司 Entry driving machine hydraulic actuating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914475A (en) * 1995-06-29 1997-01-14 Andreas Stihl:Fa Vent-exhaust valve for vessel
JP2014215774A (en) * 2013-04-24 2014-11-17 キヤノン株式会社 Stage device, creation method and program

Also Published As

Publication number Publication date
TW201809483A (en) 2018-03-16
KR20190003723A (en) 2019-01-09
KR102214590B1 (en) 2021-02-09
JP6737346B2 (en) 2020-08-05
WO2017210450A1 (en) 2017-12-07
CN109477501B (en) 2021-07-09
CN109477501A (en) 2019-03-15
JP2019520604A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US10260656B2 (en) Vacuum valve and vacuum pressure control system using the same
TWI735589B (en) A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device
JP7113529B2 (en) Valve device, flow control method, fluid control device, flow control method, semiconductor manufacturing equipment, and semiconductor manufacturing method
JP7174430B2 (en) VALVE DEVICE, ADJUSTMENT INFORMATION GENERATING METHOD, FLOW CONTROL METHOD, FLUID CONTROL DEVICE, FLOW CONTROL METHOD, SEMICONDUCTOR MANUFACTURING APPARATUS AND SEMICONDUCTOR MANUFACTURING METHOD
US20080309910A1 (en) Vibration isolating apparatus, control method for vibration isolating apparatus, and exposure apparatus
KR101004857B1 (en) Vibration suppression apparatus, exposure apparatus, and method of manufacturing device
JP2005032818A (en) Hydrostatic bearing, pointing device and aligner
US11242934B2 (en) Valve device
JP6566192B2 (en) Anti-vibration apparatus, exposure apparatus, and device manufacturing method
US11092170B2 (en) Dual valve fluid actuator assembly
Zhou et al. Microassembly station with controlled environment
JP5865475B2 (en) Substrate holding device, pattern transfer device, and pattern transfer method
JP5912654B2 (en) Substrate holding device, pattern transfer device, and pattern transfer method
CN101678506B (en) Fluid counterbalance for a laser lens used to scribe an electronic component substrate
JP2002110523A (en) Aligner
JP2005307993A (en) Method for calibrating stage device using variable restriction static pressure bearing
TWI845514B (en) Non-contact support platform with open-loop control and method of controlling the same
US20030008532A1 (en) Method and apparatus for increasing flow capacity associated with a valve
WO2024012768A1 (en) Substrate holder, lithographic apparatus, computer program and method
JP2024526180A (en) SYSTEM, METHOD AND DEVICE FOR THERMAL CONDITIONING OF A RETICLE IN A LITHOGRAPHIC APPARATUS - Patent application
JP2022059871A (en) Feedback control device, lithographic device, measuring device, processing device, flattening device, article manufacturing method, computer program, and feedback control method
TW202012290A (en) Non-contact support platform with open-loop control
NL2022862A (en) Frame assembly, lithographic Apparatus and device manufacturing method
JP2002367898A (en) Stage unit, apparatus and method for exposing as well as method for manufacturing device
JP2004031978A (en) Exposure equipment