TWI734339B - Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal - Google Patents

Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal Download PDF

Info

Publication number
TWI734339B
TWI734339B TW109100820A TW109100820A TWI734339B TW I734339 B TWI734339 B TW I734339B TW 109100820 A TW109100820 A TW 109100820A TW 109100820 A TW109100820 A TW 109100820A TW I734339 B TWI734339 B TW I734339B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
logic circuit
synchronization
logic
Prior art date
Application number
TW109100820A
Other languages
Chinese (zh)
Other versions
TW202127175A (en
Inventor
許人壽
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW109100820A priority Critical patent/TWI734339B/en
Publication of TW202127175A publication Critical patent/TW202127175A/en
Application granted granted Critical
Publication of TWI734339B publication Critical patent/TWI734339B/en

Links

Images

Landscapes

  • Logic Circuits (AREA)

Abstract

A synchronization circuit and a cascaded synchronization circuit for converting an asynchronous signal into at least one synchronous signal are provided. The synchronization circuit includes a signal control circuit, a flip-flop circuit, a clock enable circuit and a clock control circuit. The flip-flop circuit is coupled to the signal control circuit, the clock enable circuit is coupled to the signal control circuit and the flip-flop circuit, and the clock control circuit is coupled to the flip-flop circuit and the clock enable circuit. The signal control circuit and the clock control circuit can guarantee hold time and setup time is sufficient to allow the flip-flop circuit to output the synchronous signal without glitch regardless of the asynchronous signal.

Description

用於將非同步訊號轉換為同步訊號的同步電路以及疊接同步 電路 Synchronous circuit for converting non-synchronous signals into synchronous signals and overlapping synchronization Circuit

本發明係關於電子電路,尤指一種用於將一非同步訊號轉換為一同步訊號的同步電路以及疊接(cascaded)同步電路。 The present invention relates to electronic circuits, in particular to a synchronous circuit and a cascaded synchronous circuit for converting an asynchronous signal into a synchronous signal.

在某些積體電路(integrated circuit,IC)的設計中(例如用來控制記憶裝置之運作的控制器電路),非同步訊號在被傳送至對應的功能區塊前需被轉換為同步訊號。基於一參考時脈訊號,一同步電路可將一非同步訊號轉換為與該參考時脈訊號同步的一輸出訊號。然而,在實作上,該同步電路的輸出訊號在某些情況下可能會出現毛刺(glitch)。例如,當該非同步訊號的邊緣(edge)諸如上升邊緣或下降邊緣非常靠近該參考時脈訊號的觸發邊緣時,或者當該非同步訊號在該參考時脈訊號的觸發邊緣的時間點具有一窄脈波時,該同步電路的輸出訊號會因為該非同步訊號的狀態的不確定而受到影響,從而導致毛刺的產生。 In some integrated circuit (IC) designs (such as a controller circuit used to control the operation of a memory device), asynchronous signals need to be converted into synchronous signals before being transmitted to the corresponding functional blocks. Based on a reference clock signal, a synchronization circuit can convert an asynchronous signal into an output signal synchronized with the reference clock signal. However, in practice, the output signal of the synchronization circuit may have glitches in some cases. For example, when the edge of the asynchronous signal, such as the rising edge or the falling edge, is very close to the trigger edge of the reference clock signal, or when the asynchronous signal has a narrow pulse at the time point of the trigger edge of the reference clock signal The output signal of the synchronous circuit will be affected due to the uncertainty of the state of the non-synchronous signal during the wave time, resulting in the generation of glitches.

因此,本發明之一目的在於提供一種用於將一非同步訊號轉換為一同步訊號的同步電路以及疊接(cascaded)同步電路,以確保能在不產生任何毛刺(glitch)的情況下妥善地產生該同步訊號。 Therefore, one object of the present invention is to provide a synchronous circuit and a cascaded synchronous circuit for converting an asynchronous signal into a synchronous signal, so as to ensure that it can be properly protected without any glitch. Generate the synchronization signal.

本發明至少一實施例提供一種用於將一非同步訊號轉換為至少一同步訊號的同步電路,其中該同步電路可包含一訊號控制電路、一正反器(flip-flop)電路、一時脈啟用電路以及一時脈控制電路。該訊號控制電路係用來在該非同步訊號與該同步訊號之間的差異被偵測到時鎖存(latch)一內部輸入訊號的一邏輯值並且輸出該內部輸入訊號。該正反器電路耦接至該訊號控制電路,並且係用來在一正反器時脈訊號的一轉變邊緣(transition edge)的時間點依據該內部輸入訊號輸出該同步訊號。該時脈啟用電路耦接至該訊號控制電路以及該正反器電路,並且係用來在該同步訊號與該內部輸入訊號之間的差異被偵測到時啟用一內部時脈訊號。該時脈控制電路耦接至該正反器電路以及該時脈啟用電路,並且係用來因應該內部時脈訊號的一脈波寬度輸出該正反器時脈訊號。 At least one embodiment of the present invention provides a synchronization circuit for converting an asynchronous signal into at least one synchronization signal, wherein the synchronization circuit may include a signal control circuit, a flip-flop circuit, and a clock enable Circuit and a clock control circuit. The signal control circuit is used for latching a logic value of an internal input signal and outputting the internal input signal when the difference between the asynchronous signal and the synchronous signal is detected. The flip-flop circuit is coupled to the signal control circuit, and is used to output the synchronization signal at a time point of a transition edge of a flip-flop clock signal according to the internal input signal. The clock activation circuit is coupled to the signal control circuit and the flip-flop circuit, and is used to activate an internal clock signal when the difference between the synchronization signal and the internal input signal is detected. The clock control circuit is coupled to the flip-flop circuit and the clock enabling circuit, and is used to output the flip-flop clock signal in response to a pulse width of the internal clock signal.

本發明至少一實施例提供一種用於將一初始非同步訊號轉換為一最終同步訊號的疊接同步電路。該疊接同步電路可包含互相串連的一第一同步電路以及一第二同步電路,以及該第一同步電路以及該第二同步電路的每一同步電路係用來基於一主時脈訊號將一非同步訊號轉換為至少一同步訊號。尤其,該第一同步電路基於該主時脈訊號將該初始非同步訊號轉換為一暫時同步訊號,以及該第二同步電路基於該主時脈訊號將該暫時同步訊號轉換為該最終同步訊號。上述每一同步電路可包含一訊號控制電路、一正反器電路、一時脈啟用電路以及一時脈控制電路。該訊號控制電路係用來在該非同步訊號與該同步訊號之間的差異被偵測到時鎖存一內部輸入訊號的一邏輯值並且輸出該內部輸入訊號。該正反器電路耦接至該訊號控制電路,並且係用來在一正反器時脈訊號的一轉變邊緣的時間點依據該內部輸入訊號輸出該同步訊號。該時脈啟用電路耦接至該訊號控制電路以及該正反器電路,並且係用來在該同步訊號與該內部輸入訊號之間的差異被偵測到時啟用一內部時脈訊號。該時脈控制電路耦接至該正反器電路以及該時脈啟用電路,並且係用來因應該內部時脈訊號的一脈 波寬度輸出該正反器時脈訊號。依據該疊接同步電路,不論該初始非同步訊號如何,該主時脈訊號與該最終同步訊號之間的相位關係是固定的。 At least one embodiment of the present invention provides a spliced synchronization circuit for converting an initial asynchronous signal into a final synchronous signal. The overlapping synchronization circuit may include a first synchronization circuit and a second synchronization circuit connected in series with each other, and each synchronization circuit of the first synchronization circuit and the second synchronization circuit is used to convert the synchronization circuit based on a main clock signal An asynchronous signal is converted into at least one synchronous signal. In particular, the first synchronization circuit converts the initial asynchronous signal into a temporary synchronization signal based on the main clock signal, and the second synchronization circuit converts the temporary synchronization signal into the final synchronization signal based on the main clock signal. Each of the aforementioned synchronization circuits may include a signal control circuit, a flip-flop circuit, a clock enable circuit, and a clock control circuit. The signal control circuit is used for latching a logic value of an internal input signal and outputting the internal input signal when the difference between the asynchronous signal and the synchronous signal is detected. The flip-flop circuit is coupled to the signal control circuit, and is used to output the synchronization signal at a time point of a transition edge of a flip-flop clock signal according to the internal input signal. The clock activation circuit is coupled to the signal control circuit and the flip-flop circuit, and is used to activate an internal clock signal when the difference between the synchronization signal and the internal input signal is detected. The clock control circuit is coupled to the flip-flop circuit and the clock enable circuit, and is used to respond to a pulse of the internal clock signal The wave width outputs the clock signal of the flip-flop. According to the overlapping synchronization circuit, regardless of the initial asynchronous signal, the phase relationship between the main clock signal and the final synchronization signal is fixed.

本發明的同步電路提供了穩固的運作機制,不論非同步訊號如何,均能確保該同步電路產生的同步訊號不會有毛刺。另外,本發明另提供基於一同步電路的疊接架構,以確保同步訊號與目標時序(target timing)之間的相位關係是固定的。 The synchronization circuit of the present invention provides a stable operation mechanism, which can ensure that the synchronization signal generated by the synchronization circuit will not have glitches regardless of the asynchronous signal. In addition, the present invention also provides a stacking architecture based on a synchronization circuit to ensure that the phase relationship between the synchronization signal and the target timing is fixed.

10,51,52:同步電路 10, 51, 52: synchronization circuit

120:訊號控制電路 120: signal control circuit

121:及邏輯電路 121: And logic circuit

122,126,164,181,184,185:反及邏輯電路 122, 126, 164, 181, 184, 185: inverse logic circuit

123,124:反或邏輯電路 123,124: Inverse OR logic circuit

125,144,146,182,183,186:反向器 125,144,146,182,183,186: reverser

140:正反器電路 140: flip-flop circuit

142:正反器邏輯電路 142: Flip-flop logic circuit

160:時脈啟用電路 160: Clock enable circuit

162:互斥或邏輯電路 162: Mutually Exclusive or Logic Circuit

180:時脈控制電路 180: clock control circuit

50:疊接同步電路 50: Overlap synchronization circuit

CLK,VPU,CKE_AS,CKE_I,CKE_SB,CKE_S,CKE_O,PDK,PDKb,DK,DKb,ENDK,N1,N2,CKE_AS_INITIAL,CKE_S_TEMP,CKE_S_FINAL,CKE_I1,ENDK1,PDKb1,DKb1,CKE_I2,ENDK2,PDKb2,DKb2:訊號 CLK, VPU, CKE_AS, CKE_I, CKE_SB, CKE_S, CKE_O, PDK, PDKb, DK, DKb, ENDK, N1, N2, CKE_AS_INITIAL, CKE_S_TEMP, CKE_S_FINAL, CKE_I1, ENDK1, PDK1, ENDbC2, DKPD: Signal

310,320,330,340,410,420,430,440,610,620,630,640:狀況 310,320,330,340,410,420,430,440,610,620,630,640: condition

310a,310b,310c,320a,320b,320c,330a,330b,340a,340b,410a,410b,420a,420b,430a,430b,430c,430d,440a,440b,440c,440d,610a,610b,610c, 620a,620b,620c,630a,630b,630c,640a,640b,640c:時間點 310a, 310b, 310c, 320a, 320b, 320c, 330a, 330b, 340a, 340b, 410a, 410b, 420a, 420b, 430a, 430b, 430c, 430d, 440a, 440b, 440c, 440d, 610a, 610b, 610c, 620a, 620b, 620c, 630a, 630b, 630c, 640a, 640b, 640c: point in time

第1圖為依據本發明一實施例之一同步電路的區塊示意圖。 FIG. 1 is a block diagram of a synchronization circuit according to an embodiment of the invention.

第2圖為依據本發明一實施例之第1圖所示之同步電路的電路示意圖。 Fig. 2 is a schematic circuit diagram of the synchronization circuit shown in Fig. 1 according to an embodiment of the present invention.

第3圖為依據本發明一實施例之第2圖所示之同步電路中的複數個訊號的時序圖。 FIG. 3 is a timing diagram of a plurality of signals in the synchronization circuit shown in FIG. 2 according to an embodiment of the present invention.

第4圖為依據本發明另一實施例之第2圖所示之同步電路中的複數個訊號的時序圖。 FIG. 4 is a timing diagram of a plurality of signals in the synchronization circuit shown in FIG. 2 according to another embodiment of the present invention.

第5圖為依據本發明一實施例之一疊接同步電路的示意圖。 FIG. 5 is a schematic diagram of a stacked synchronization circuit according to an embodiment of the present invention.

第6圖為依據本發明一實施例之第5圖所示之疊接同步電路中的複數個訊號的時序圖。 FIG. 6 is a timing diagram of a plurality of signals in the overlapping synchronization circuit shown in FIG. 5 according to an embodiment of the present invention.

第1圖為依據本發明一實施例之同步電路10的區塊示意圖,其中同步電路10係用來將一非同步訊號(諸如訊號CKE_AS)轉換為至少一同步訊號(例如一或多個同步訊號,其統稱為該同步訊號)。同步電路10可包含一訊號控制電路120、一正反器(flip-flop)電路140、一時脈啟用電路160以及一時脈控制電路 180。正反器電路140耦接至訊號控制電路120,時脈啟用電路160耦接至訊號控制電路120以及正反器電路140,以及時脈控制電路180耦接至正反器電路140以及時脈啟用電路160。 Figure 1 is a block diagram of a synchronization circuit 10 according to an embodiment of the present invention. The synchronization circuit 10 is used to convert an asynchronous signal (such as the signal CKE_AS) into at least one synchronization signal (such as one or more synchronization signals). , Which are collectively referred to as the synchronization signal). The synchronization circuit 10 may include a signal control circuit 120, a flip-flop circuit 140, a clock enable circuit 160, and a clock control circuit 180. The flip-flop circuit 140 is coupled to the signal control circuit 120, the clock enable circuit 160 is coupled to the signal control circuit 120 and the flip-flop circuit 140, and the clock control circuit 180 is coupled to the flip-flop circuit 140 and the clock is enabled Circuit 160.

在訊號控制電路120的運作中,訊號控制電路120可在該非同步訊號(例如訊號CKE_AS)與該同步訊號(例如該一或多個同步訊號中之任一者諸如訊號CKE_S)之間的差異被偵測到時鎖存(latch)一內部輸入訊號(諸如訊號CKE_I)的一邏輯值,並且輸出該內部輸入訊號。尤其,當訊號CKE_S具有一第一邏輯值時,因應訊號CKE_AS自該第一邏輯值變為一第二邏輯值,訊號控制電路120可鎖存訊號CKE_I的該邏輯值並且輸出具有該邏輯值的訊號CKE_I,其中訊號CKE_I的該邏輯值等於該第二邏輯值。例如,當訊號CKE_S的邏輯值為「0」且訊號CKE_AS的邏輯值自「0」變為「1」時,訊號控制電路120可將訊號CKE_I的邏輯值鎖存在「1」並且輸出訊號CKE_I。又例如,當訊號CKE_S的邏輯值為「1」且訊號CKE_AS的邏輯值自「1」變為「0」時,訊號控制電路120可將訊號CKE_I的邏輯值鎖存在「0」並且輸出訊號CKE_I。 In the operation of the signal control circuit 120, the signal control circuit 120 can be used to determine the difference between the asynchronous signal (for example, the signal CKE_AS) and the synchronous signal (for example, any of the one or more synchronous signals such as the signal CKE_S). When detected, a logic value of an internal input signal (such as the signal CKE_I) is latched, and the internal input signal is output. In particular, when the signal CKE_S has a first logic value, in response to the signal CKE_AS changing from the first logic value to a second logic value, the signal control circuit 120 can latch the logic value of the signal CKE_I and output the logic value of the signal CKE_I. The signal CKE_I, wherein the logical value of the signal CKE_I is equal to the second logical value. For example, when the logic value of the signal CKE_S is “0” and the logic value of the signal CKE_AS changes from “0” to “1”, the signal control circuit 120 may latch the logic value of the signal CKE_I to “1” and output the signal CKE_I. For another example, when the logical value of the signal CKE_S is "1" and the logical value of the signal CKE_AS changes from "1" to "0", the signal control circuit 120 can latch the logical value of the signal CKE_I in "0" and output the signal CKE_I .

在時脈啟用電路160的運作中,時脈啟用電路160可在訊號CKE_S與訊號CKE_I之間的差異被偵測到時啟用(enable)一內部時脈訊號(諸如訊號PDKb)。例如,若沒有偵測到訊號CKE_S與訊號CKE_I之間的差異,該內部時脈訊號可被禁用(disable)從而節省同步電路10的整體功耗。尤其,當訊號CKE_S與訊號CKE_I具有不同的邏輯值時,時脈啟用電路160可依據一主時脈訊號諸如訊號CLK輸出訊號PDKb;以及當訊號CKE_S與訊號CKE_I具有相同的邏輯值時,訊號CKE_I可具有一固定邏輯值。例如,當訊號CKE_S及訊號CKE_I的邏輯值分別為「0」及「1」(或分別為「1」及「0」)時,時脈啟用電路160可依據訊號CLK輸出訊號PDKb,即啟用訊號PDKb的狀態切換(toggling)。又例如,當訊號CKE_S及訊號CKE_I的邏輯值均為「0」(或均為「1」)時,時脈啟用電路160 可將訊號PDKb的邏輯值固定在「1」,即禁用訊號PDKb的狀態切換。 In the operation of the clock enabling circuit 160, the clock enabling circuit 160 can enable an internal clock signal (such as the signal PDKb) when the difference between the signal CKE_S and the signal CKE_I is detected. For example, if the difference between the signal CKE_S and the signal CKE_I is not detected, the internal clock signal can be disabled to save the overall power consumption of the synchronization circuit 10. In particular, when the signal CKE_S and the signal CKE_I have different logic values, the clock enable circuit 160 can output the signal PDKb according to a main clock signal such as the signal CLK; and when the signal CKE_S and the signal CKE_I have the same logic value, the signal CKE_I It can have a fixed logical value. For example, when the logical values of the signal CKE_S and the signal CKE_I are "0" and "1" (or "1" and "0" respectively), the clock enable circuit 160 can output the signal PDKb according to the signal CLK, that is, the enable signal PDKb state switching (toggling). For another example, when the logical values of the signal CKE_S and the signal CKE_I are both "0" (or both are "1"), the clock enable circuit 160 The logic value of the signal PDKb can be fixed at "1", that is, the state switching of the signal PDKb is disabled.

在時脈控制電路180的運作中,時脈控制電路180可因應訊號PDKb的一脈波寬度輸出一正反器時脈訊號(諸如訊號DKb)。尤其,當訊號PDKb的該脈波寬度大於一預定寬度時,訊號DKb可具有大於一最小寬度的一脈波寬度;以及當訊號PDKb的該脈波寬度小於該預定寬度時,訊號DKb可具有一固定邏輯值。例如,當訊號PDKb的脈波寬度大於該預定寬度時,時脈控制電路180可控制訊號DKb以確保訊號DKb的脈波寬度大於該最小寬度。又例如,當訊號CKE_I及CKE_S的邏輯值變為不同(例如變為彼此相異的邏輯值)的時間點很靠近訊號CLK的一邊緣(edge)(例如一下降邊緣)時,訊號PDKb的脈波寬度可能會因此小於該預定寬度,而時脈控制電路180可將訊號DKb固定在「1」,即禁用訊號DKb的狀態切換。 In the operation of the clock control circuit 180, the clock control circuit 180 can output a flip-flop clock signal (such as the signal DKb) in response to a pulse width of the signal PDKb. In particular, when the pulse width of the signal PDKb is greater than a predetermined width, the signal DKb may have a pulse width greater than a minimum width; and when the pulse width of the signal PDKb is less than the predetermined width, the signal DKb may have a Fixed logic value. For example, when the pulse width of the signal PDKb is greater than the predetermined width, the clock control circuit 180 can control the signal DKb to ensure that the pulse width of the signal DKb is greater than the minimum width. For another example, when the logical values of the signals CKE_I and CKE_S become different (for example, they become different logical values from each other), the time point is very close to an edge (for example, a falling edge) of the signal CLK, the pulse of the signal PDKb The wave width may therefore be smaller than the predetermined width, and the clock control circuit 180 can fix the signal DKb at "1", that is, disable the state switching of the signal DKb.

在正反器電路140的運作中,正反器電路140可在訊號DKb的一轉變邊緣(transition edge)的時間點依據訊號CKE_I輸出該同步訊號(例如訊號CKE_S)。基於以上所述之訊號CKE_I及DKb的控制,可提供足夠的建立時間(setup time)以及保持時間(hold time),所以不論訊號CKE_AS如何,正反器電路140均能穩定地輸出訊號CKE_S而不帶有毛刺(glitch)。 In the operation of the flip-flop circuit 140, the flip-flop circuit 140 can output the synchronization signal (such as the signal CKE_S) according to the signal CKE_I at a time point of a transition edge of the signal DKb. Based on the above-mentioned control of the signals CKE_I and DKb, sufficient setup time and hold time can be provided, so regardless of the signal CKE_AS, the flip-flop circuit 140 can stably output the signal CKE_S without With glitch.

第2圖為依據本發明一實施例之同步電路10的電路示意圖。需注意的是,標示有相同符號的端子可視為直接地互相連接,為簡明起見這些端子之間的連接線在此省略不顯示。 FIG. 2 is a schematic circuit diagram of the synchronization circuit 10 according to an embodiment of the present invention. It should be noted that the terminals marked with the same symbol can be regarded as directly connected to each other, and the connecting lines between these terminals are omitted and not shown here for the sake of brevity.

如第2圖所示,正反器140可包含一正反器邏輯電路142(標示為「FF」以求簡明)以及一或多個反向器諸如反向器144及146。在本實施例中,正反器邏輯電路142可包含複數個輸入端子(諸如端子D、K、Kb及PU)以及一輸出端子(諸如端子Q),其中端子D、K、Kb及PU係分別用來接收訊號CKE_I、DKb、DK及VPU,以及端子Q係用來傳送一訊號CKE_O至正反器144,其中訊號DK為 訊號DKb的反向訊號。訊號VPU係用來提供初始值給同步電路10內的某些節點,且訊號VPU的邏輯值在同步電路10被上電(或啟用)時可自「0」改變為「1」。需注意的是,當訊號VPU的邏輯值為「0」時,不論訊號CKE_I、DKb及DK如何,正反器邏輯電路142可將訊號CKE_O固定在「0」(或「1」);而當訊號VPU的邏輯值為「1」時,正反器邏輯電路142可在訊號DKb的上升邊緣依據訊號CKE_I輸出並更新訊號CKE_O;但本發明不限於此。另外,正反器144可產生訊號CKE_O的反向訊號(諸如訊號CKE_SB)並且傳送訊號CKE_SB至正反器146;以及正反器146可產生訊號CKE_SB的反向訊號諸如訊號CKE_S。 As shown in FIG. 2, the flip-flop 140 may include a flip-flop logic circuit 142 (labeled “FF” for brevity) and one or more inverters such as inverters 144 and 146. In this embodiment, the flip-flop logic circuit 142 may include a plurality of input terminals (such as terminals D, K, Kb, and PU) and an output terminal (such as terminal Q), where the terminals D, K, Kb, and PU are respectively Used to receive the signals CKE_I, DKb, DK and VPU, and the terminal Q is used to transmit a signal CKE_O to the flip-flop 144, where the signal DK is The reverse signal of the signal DKb. The signal VPU is used to provide initial values to certain nodes in the synchronization circuit 10, and the logic value of the signal VPU can be changed from "0" to "1" when the synchronization circuit 10 is powered on (or activated). It should be noted that when the logic value of the signal VPU is "0", regardless of the signals CKE_I, DKb, and DK, the flip-flop logic circuit 142 can fix the signal CKE_O at "0" (or "1"); When the logic value of the signal VPU is "1", the flip-flop logic circuit 142 can output and update the signal CKE_O according to the signal CKE_I at the rising edge of the signal DKb; however, the present invention is not limited to this. In addition, the flip-flop 144 can generate the reverse signal of the signal CKE_O (such as the signal CKE_SB) and transmit the signal CKE_SB to the flip-flop 146; and the flip-flop 146 can generate the reverse signal of the signal CKE_SB such as the signal CKE_S.

如第2圖所示,訊號控制電路120可包含一及(AND)邏輯電路121、一反及(NAND)邏輯電路122、一反或(NOR)邏輯電路123、一反或邏輯電路124以及一反向器125,其中訊號控制電路120可另包含一反及邏輯電路126以供上電控制之用。及邏輯電路121的一第一輸入端子以及一第二輸入端子係分別用來接收訊號CKE_AS及VPU。反及邏輯電路122的一輸出端子耦接至及邏輯電路121的一第三輸入端子,以及反及邏輯電路122的一第一輸入端子係用來接收訊號CKE_S。反或邏輯電路123的一第一輸入端子耦接至反及邏輯電路126的一輸出端子,其中反及邏輯電路126的一第一輸入端子以及一第二輸入端子係分別用來接收訊號CKE_SB及VPU。例如,當訊號VPU的邏輯值為「0」時,不論訊號CKE_SB如何,反及邏輯電路126可傳送邏輯值「1」至反或邏輯電路123。當訊號VPU的邏輯值為「1」時,反及邏輯電路126可充當一反向器來傳送訊號CKE_SB的反向訊號至反或邏輯電路123。因此,反或邏輯電路123的該第一輸入端子在同步電路10上電(或啟用)後係用來接收該同步訊號(例如訊號CKE_O及CKE_S的任一者)或其衍生物(derivative)(例如自反及邏輯電路126傳送的訊號)。反或邏輯電路124的一輸出端子耦接至反或邏輯電路123的一第二輸入端子以及反及邏輯電路122的一第二輸入端子,反或邏輯電路124的一第一輸入端 子耦接至反或邏輯電路123的一輸出端子,以及反或邏輯電路124的一第二輸入端子耦接至及邏輯電路121的一輸出端子。反向器125的一輸入端子耦接至反或邏輯電路124的該輸出端子,以容許反向器125輸出訊號CKE_I。基於此架構,訊號控制電路120可偵測訊號CKE_AS相對於訊號CKE_S的變化(例如狀態轉變),並且鎖存訊號CKE_AS之改變後的邏輯值以提供足夠的建立時間以及保持時間給正反器140。 As shown in Figure 2, the signal control circuit 120 may include an AND logic circuit 121, a NAND logic circuit 122, a NOR logic circuit 123, a NOR logic circuit 124, and a The inverter 125, in which the signal control circuit 120 may further include an inverter and logic circuit 126 for power-on control. A first input terminal and a second input terminal of the logic circuit 121 are used to receive the signals CKE_AS and VPU, respectively. An output terminal of the negative logic circuit 122 is coupled to a third input terminal of the logic circuit 121, and a first input terminal of the negative logic circuit 122 is used to receive the signal CKE_S. A first input terminal of the inverting logic circuit 123 is coupled to an output terminal of the inverting logic circuit 126, wherein a first input terminal and a second input terminal of the inverting logic circuit 126 are used to receive the signals CKE_SB and VPU. For example, when the logic value of the signal VPU is “0”, regardless of the signal CKE_SB, the inverse logic circuit 126 can transmit the logic value “1” to the inverted logic circuit 123. When the logic value of the signal VPU is “1”, the inverting logic circuit 126 can act as an inverter to transmit the inverted signal of the signal CKE_SB to the inverting logic circuit 123. Therefore, the first input terminal of the inverting logic circuit 123 is used to receive the synchronization signal (for example, any one of the signals CKE_O and CKE_S) or its derivative (derivative) after the synchronization circuit 10 is powered on (or enabled). For example, the signal transmitted by the reflexive and logic circuit 126). An output terminal of the inverting logic circuit 124 is coupled to a second input terminal of the inverting logic circuit 123 and a second input terminal of the inverting logic circuit 122, and a first input terminal of the inverting logic circuit 124 The sub is coupled to an output terminal of the NOR logic circuit 123, and a second input terminal of the NOR logic circuit 124 is coupled to an output terminal of the AND logic circuit 121. An input terminal of the inverter 125 is coupled to the output terminal of the inverter logic circuit 124 to allow the inverter 125 to output the signal CKE_I. Based on this architecture, the signal control circuit 120 can detect the change (such as state transition) of the signal CKE_AS relative to the signal CKE_S, and latch the changed logic value of the signal CKE_AS to provide sufficient setup time and hold time for the flip-flop 140 .

如第2圖所示,時脈啟用電路160可包含一互斥或(exclusive-OR,XOR)邏輯電路162以及一反及邏輯電路164。互斥或邏輯電路162的一第一輸入端子以及一第二輸入端子係分別用來接收該內部輸入訊號以及該同步訊號,以產生可指出訊號CKE_I與CKE_S的邏輯值是否不同的訊號ENDK。需注意的是,傳送至互斥或邏輯電路162以供偵測的同步訊號在某些實施例中可為訊號CKE_O,但本發明不限於此。反及邏輯電路164係用來輸出訊號PDKb,其中反及邏輯電路164的一第一輸入端子係用來接收訊號CLK,以及反及邏輯電路164的一第二輸入端子耦接至互斥或邏輯電路162的一輸出端子以接收訊號ENDK。 As shown in FIG. 2, the clock enable circuit 160 may include an exclusive-OR (XOR) logic circuit 162 and an inverted logic circuit 164. A first input terminal and a second input terminal of the exclusive OR logic circuit 162 are used to receive the internal input signal and the synchronization signal, respectively, to generate a signal ENDK that can indicate whether the logic values of the signals CKE_I and CKE_S are different. It should be noted that the synchronization signal sent to the mutual exclusion or logic circuit 162 for detection may be the signal CKE_O in some embodiments, but the invention is not limited thereto. The inverting logic circuit 164 is used to output the signal PDKb, wherein a first input terminal of the inverting logic circuit 164 is used to receive the signal CLK, and a second input terminal of the inverting logic circuit 164 is coupled to the exclusive OR logic An output terminal of the circuit 162 receives the signal ENDK.

如第2圖所示,時脈控制電路180可包含反及邏輯電路181、184及185、以及反向器182、183及186。反及邏輯電路181的一第一輸入端子係用來接收訊號PDKb,其中反向器182的一輸入端子耦接至反及邏輯電路181的一輸出端子以輸出訊號DKb,以及反向器183的一輸入端子耦接至反向器182的一輸出端子以輸出訊號DK。反及邏輯電路185的一第一輸入端子以及一第二輸入端子系分別用來接收訊號DKb及VPU,以及反及邏輯電路185的一輸出端子耦接至反向器186的一輸入端子。反及邏輯電路184的一第一輸入端子耦接至反及邏輯電路181的該輸出端子,以及反及邏輯電路184的一輸出端子耦接至反及邏輯電路181的一第二輸入端子。須注意的是,當訊號VPU的邏輯狀態為「1」時,自反向器186輸出的訊號N1可等效於訊號DKb。因此,反及邏輯電路184的一第二輸入端 子在同步電路10上電後係用來接收該正反器時脈訊號(例如訊號DKb)或其衍生物(例如訊號N1)。 As shown in FIG. 2, the clock control circuit 180 may include inverter logic circuits 181, 184, and 185, and inverters 182, 183, and 186. A first input terminal of the inverter logic circuit 181 is used to receive the signal PDKb, wherein an input terminal of the inverter 182 is coupled to an output terminal of the inverter logic circuit 181 to output the signal DKb, and the inverter 183 An input terminal is coupled to an output terminal of the inverter 182 to output the signal DK. A first input terminal and a second input terminal of the inverting logic circuit 185 are used to receive the signals DKb and VPU, respectively, and an output terminal of the inverting logic circuit 185 is coupled to an input terminal of the inverter 186. A first input terminal of the inverse logic circuit 184 is coupled to the output terminal of the inverse logic circuit 181, and an output terminal of the inverse logic circuit 184 is coupled to a second input terminal of the inverse logic circuit 181. It should be noted that when the logic state of the signal VPU is "1", the signal N1 output from the inverter 186 can be equivalent to the signal DKb. Therefore, the second input terminal of the logic circuit 184 is reversed After the synchronization circuit 10 is powered on, it is used to receive the flip-flop clock signal (such as the signal DKb) or its derivative (such as the signal N1).

針對時脈控制電路180,上述預定寬度以及最小寬度能藉由上述邏輯電路(諸如反向器182及186、以及反及邏輯電路185、181及184中之一或多者)來決定。在本實施例中,反向器182的比例參數小於反及邏輯電路184的比例參數,其中對於上述邏輯電路中之任一者,其比例參數(上述邏輯電路中之所述任一者的比例參數)表示其內的N型電晶體的通道寬度對通道長度比(width-to-length ratio)(其可稱為「(W/L)N」)與其內的P型電晶體的通道寬度對通道長度比(其可稱為「(W/L)P」)之間的比值。基於此架構,反向器182的下拉能力小於反及邏輯電路184的下拉能力。因此,當訊號PDKb的一下降邊緣被傳送至反及邏輯電路181並且從而上拉了訊號PDK,反及邏輯電路184輸出的訊號N2可早於反向器182輸出的訊號DKb被下拉。需注意的是,若訊號PDKb的低脈波寬度不夠寬而無法在訊號PDK再次被下拉前上拉訊號N2,訊號N2將不會被下拉,這表示訊號PDKb的轉變在此運作中是被忽略的;而若訊號PDKb的低脈波寬度足夠寬以下拉訊號N2,直到訊號N2再次被上拉(其需要被訊號N1觸發)後訊號PDK才會被下拉,使得訊號DKb的脈波寬度大於上述最小寬度,意即若訊號PDK的高脈波寬度足夠寬以下拉訊號N2,訊號DKb將具有對應於至少五個閘極(185-186-184-181-182)延遲時間的最小低脈波寬度,而若訊號PDK的高脈波寬度不夠寬而無法下拉訊號N2,訊號DKb將不會有低脈波的產生。 For the clock control circuit 180, the predetermined width and the minimum width can be determined by the above-mentioned logic circuits (such as inverters 182 and 186, and one or more of the inverter logic circuits 185, 181, and 184). In this embodiment, the proportional parameter of the inverter 182 is smaller than the proportional parameter of the inverse logic circuit 184. For any of the above-mentioned logic circuits, the proportional parameter (the ratio of any one of the above-mentioned logic circuits) Parameter) represents the channel width to channel length ratio of the N-type transistor in it (width-to-length ratio) (which can be called ``(W/L) N ``) and the channel width of the P-type transistor in it The ratio between the channel length ratios (which may be referred to as "(W/L) P "). Based on this architecture, the pull-down capability of the inverter 182 is smaller than the pull-down capability of the inverter logic circuit 184. Therefore, when a falling edge of the signal PDKb is transmitted to the inverting logic circuit 181 and thereby the signal PDK is pulled up, the signal N2 output by the inverting logic circuit 184 can be pulled down earlier than the signal DKb output by the inverter 182. It should be noted that if the low pulse width of the signal PDKb is not wide enough to pull up the signal N2 before the signal PDK is pulled down again, the signal N2 will not be pulled down, which means that the transition of the signal PDKb is ignored in this operation If the low pulse width of the signal PDKb is wide enough to pull down the signal N2, the signal PDK will not be pulled down until the signal N2 is pulled up again (it needs to be triggered by the signal N1), so that the pulse width of the signal DKb is greater than the above The minimum width means that if the high pulse width of the signal PDK is wide enough to pull down the signal N2, the signal DKb will have the minimum low pulse width corresponding to the delay time of at least five gates (185-186-184-181-182) , And if the high pulse width of the signal PDK is not wide enough to pull down the signal N2, the signal DKb will not have a low pulse.

第3圖為依據本發明一實施例之同步電路10中的複數個訊號的時序圖。本實施例說明了四種狀況諸如狀況310、320、330及340。在狀況310中,訊號CKE_AS在訊號CLK為低(即具有邏輯值「0」)時轉為低(即其邏輯狀態自「1」改變為「0」);在狀況320中,訊號CKE_AS在訊號CLK為低時轉為高(即其邏輯狀態自「0」改變為「1」);在狀況330中,訊號CKE_AS在訊號CLK為高(即具 有邏輯值「1」)時轉為低;在狀況340中,訊號CKE_AS在訊號CLK為高時轉為高。 FIG. 3 is a timing diagram of a plurality of signals in the synchronization circuit 10 according to an embodiment of the present invention. This embodiment illustrates four conditions such as conditions 310, 320, 330, and 340. In the condition 310, the signal CKE_AS turns to low when the signal CLK is low (that is, it has a logic value of "0") (that is, its logic state changes from "1" to "0"); in the situation 320, the signal CKE_AS is in the signal When CLK is low, it turns to high (that is, its logic state changes from "0" to "1"); in the condition 330, the signal CKE_AS is high when the signal CLK is high (that is, it has When there is a logic value "1"), it turns low; in condition 340, the signal CKE_AS turns high when the signal CLK is high.

請參考第3圖所示之狀況310以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點310a轉為低(在此刻訊號CKE_S為高)後,訊號CKE_I轉為低,以及訊號ENDK轉為高。在訊號CLK於一時間點310b轉為高後,訊號DKb轉為低。在訊號CLK於一時間點310c轉為低後,訊號DKb轉為高,訊號CKE_O及CKE_S轉為低,以及訊號ENDK轉為低。 Please refer to the situation 310 shown in Fig. 3 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS turns low at a time point 310a (the signal CKE_S is high at this moment), the signal CKE_I turns low, and the signal ENDK turns high. After the signal CLK turns high at a time point 310b, the signal DKb turns low. After the signal CLK turns low at a time point 310c, the signal DKb turns high, the signals CKE_O and CKE_S turn low, and the signal ENDK turns low.

請參考第3圖所示之狀況320以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點320a轉為高(在此刻訊號CKE_S為低)後,訊號CKE_I轉為高,以及訊號ENDK轉為高。在訊號CLK於一時間點320b轉為高後,訊號DKb轉為低。在訊號CLK於一時間點320c轉為低後,訊號DKb轉為高,訊號CKE_O及CKE_S轉為高,以及訊號ENDK轉為低。 Please refer to the situation 320 shown in Fig. 3 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS turns high at a time point 320a (the signal CKE_S is low at this moment), the signal CKE_I turns high, and the signal ENDK turns high. After the signal CLK turns high at a time point 320b, the signal DKb turns low. After the signal CLK turns low at a time point 320c, the signal DKb turns high, the signals CKE_O and CKE_S turn high, and the signal ENDK turns low.

請參考第3圖所示之狀況330以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點330a轉為低(在此刻訊號CKE_S為高)後,訊號CKE_I轉為低,訊號ENDK轉為高,以及訊號DKb轉為低。在訊號CLK於一時間點330b轉為低後,訊號DKb轉為高,訊號CKE_O及CKE_S轉為低,以及訊號ENDK轉為低。 Please refer to the situation 330 shown in Fig. 3 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS turns low at a time point 330a (the signal CKE_S is high at this moment), the signal CKE_I turns low, the signal ENDK turns high, and the signal DKb turns low. After the signal CLK turns low at a time point 330b, the signal DKb turns high, the signals CKE_O and CKE_S turn low, and the signal ENDK turns low.

請參考第3圖所示之狀況340以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點340a轉為高(在此刻訊號CKE_S為低)後,訊號CKE_I轉為高,訊號ENDK轉為高,以及訊號DKb轉為低。在訊號CLK於一時間點340b轉為低後,訊號DKb轉為高,訊號CKE_O及CKE_S轉為高,以及訊號ENDK轉為低。 Please refer to the situation 340 shown in Fig. 3 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS turns high at a time point 340a (the signal CKE_S is low at this moment), the signal CKE_I turns high, the signal ENDK turns high, and the signal DKb turns low. After the signal CLK turns low at a time point 340b, the signal DKb turns high, the signals CKE_O and CKE_S turn high, and the signal ENDK turns low.

第4圖為依據本發明另一實施例之同步電路10中的複數個訊號的時序圖。本實施例說明了四種狀況諸如狀況410、420、430及440。在狀況410及430中,訊號CKE_AS在訊號CLK為高時轉為低;而在狀況420及440中,訊號CKE_AS在訊號CLK為高時轉為高;其中需注意的是,訊號CKE_AS的轉變邊緣在這些狀 況中皆分別與訊號CLK的下降緣靠近,如第4圖所示。 FIG. 4 is a timing diagram of a plurality of signals in the synchronization circuit 10 according to another embodiment of the present invention. This embodiment illustrates four conditions such as conditions 410, 420, 430, and 440. In conditions 410 and 430, the signal CKE_AS changes to low when the signal CLK is high; and in conditions 420 and 440, the signal CKE_AS changes to high when the signal CLK is high; it should be noted that the signal CKE_AS changes edge In these states In each case, they are respectively close to the falling edge of the signal CLK, as shown in Fig. 4.

請參考第4圖所示之狀況410以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點410a轉變為低(此刻訊號CKE_S為高且訊號CLK為高)後,訊號CKE_I轉為低,訊號ENDK轉為高,以及訊號PDKb及DKb轉為低。在訊號CLK於一時間點410b轉為低後,訊號PDKb回到高,其中訊號PDK的高脈波(例如邏輯值「1」的脈波)足夠寬以下拉訊號N2並且相較於訊號PDKb的低脈波(例如邏輯值「0」的脈波)能被進一步拉寬。尤其,在因應訊號PDK轉為高而使訊號N2轉為低後,訊號PDK不會因應訊號PDKb轉為高而立即轉為低,直到訊號N2透過反向器182、反及邏輯電路185、反向器186、反及邏輯電路184以及反及邏輯電路181的訊號路徑再次被上拉為止,從而拉寬了訊號PDK的高脈波(或訊號DKb的低脈波)。之後,訊號CKE_O及CKE_S轉為低,以及訊號ENDK轉為低。 Please refer to the situation 410 shown in Fig. 4 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS changes to low at a time point 410a (the signal CKE_S is high and the signal CLK is high), the signal CKE_I changes to low, the signal ENDK changes to high, and the signals PDKb and DKb change to low. After the signal CLK goes low at a time point 410b, the signal PDKb returns to high. The high pulse of the signal PDK (for example, the pulse with the logic value "1") is wide enough to pull down the signal N2 and compare with the signal PDKb. Low pulses (such as pulses with logic value "0") can be further widened. In particular, after the signal PDK turns high and the signal N2 turns low, the signal PDK will not immediately turn low due to the high signal PDKb, until the signal N2 passes through the inverter 182, the inverter logic circuit 185, and the inverter. The signal paths of the director 186, the inverter logic circuit 184, and the inverter logic circuit 181 are pulled up again, thereby widening the high pulse of the signal PDK (or the low pulse of the signal DKb). After that, the signals CKE_O and CKE_S turn low, and the signal ENDK turns low.

請參考第4圖所示之狀況420以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點420a轉為高(此刻訊號CKE_S為低且訊號CLK為高)後,訊號CKE_I轉為高,訊號ENDK轉為高,以及訊號PDKb及DKb轉為低。在訊號CLK於一時間點420b轉為低後,訊號PDKb回到高,其中訊號PDK的高脈波相較於訊號PDKb的低脈波能被進一步拉寬,以及與狀況410類似之某些細節內容為簡明起見在此不重複贅述。之後,訊號CKE_O及CKE_S轉為高,以及訊號ENDK轉為低。 Please refer to the situation 420 shown in Fig. 4 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS turns high at a time point 420a (the signal CKE_S is low and the signal CLK is high), the signal CKE_I turns high, the signal ENDK turns high, and the signals PDKb and DKb turn low. After the signal CLK goes low at a time point 420b, the signal PDKb returns to high, where the high pulse of the signal PDK can be further broadened compared to the low pulse of the signal PDKb, and some details similar to the situation 410 The content is for brevity and will not be repeated here. After that, the signals CKE_O and CKE_S turn high, and the signal ENDK turns low.

請參考第4圖所示之狀況430以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點430a轉為低(此刻訊號CKE_S為高且訊號CLK為高)後,訊號CKE_I轉為低,訊號ENDK轉為高,以及訊號PDKb轉為低。在訊號CLK於一時間點430b轉為低後,訊號PDKb轉為高,但訊號PDK的高脈波過窄而無法下拉訊號N2(以及訊號DKb),所以訊號DKb被維持在其原來的邏輯狀態並且正反器邏輯電路142將不會被觸發。在訊號CLK於一時間點430c轉為高後,訊號DKb轉 為低。在訊號CLK於一時間點430d轉為低後,訊號DKb轉為高,訊號CKE_O及CKE_S轉為低,以及訊號ENDK轉為低。 Please refer to the situation 430 shown in Fig. 4 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS turns low at a time point 430a (the signal CKE_S is high and the signal CLK is high), the signal CKE_I turns to low, the signal ENDK turns to high, and the signal PDKb turns to low. After the signal CLK goes low at a time point 430b, the signal PDKb goes high, but the high pulse of the signal PDK is too narrow to pull down the signal N2 (and the signal DKb), so the signal DKb is maintained in its original logic state And the flip-flop logic circuit 142 will not be triggered. After the signal CLK turns high at a time point 430c, the signal DKb turns Is low. After the signal CLK turns low at a time point 430d, the signal DKb turns high, the signals CKE_O and CKE_S turn low, and the signal ENDK turns low.

請參考第4圖所示之狀況440以及第2圖所示之同步電路10。在訊號CKE_AS於一時間點440a轉為高(此刻訊號CKE_S為低且訊號CLK為高)後,訊號CKE_I轉為高,訊號ENDK轉為高,以及訊號PDKb轉為低。在訊號CLK於一時間點440b轉為低後,訊號PDKb轉為高,但訊號PDK的高脈波過窄而無法下拉訊號N2(以及訊號DKb),所以訊號DKb被維持在其原來的邏輯狀態並且正反器邏輯電路142將不會被觸發。在訊號CLK於一時間點440c轉為高後,訊號DKb轉為低。在訊號CLK於一時間點440d轉為低後,訊號DKb轉為高,訊號CKE_O及CKE_S轉為高,以及訊號ENDK轉為低。 Please refer to the situation 440 shown in Fig. 4 and the synchronization circuit 10 shown in Fig. 2. After the signal CKE_AS changes to high at a time point 440a (the signal CKE_S is low and the signal CLK is high), the signal CKE_I changes to high, the signal ENDK changes to high, and the signal PDKb changes to low. After the signal CLK goes low at a time point 440b, the signal PDKb goes high, but the high pulse of the signal PDK is too narrow to pull down the signal N2 (and the signal DKb), so the signal DKb is maintained in its original logic state And the flip-flop logic circuit 142 will not be triggered. After the signal CLK turns high at a time point 440c, the signal DKb turns low. After the signal CLK turns low at a time point 440d, the signal DKb turns high, the signals CKE_O and CKE_S turn high, and the signal ENDK turns low.

如第4圖所示,上述拉寬訊號PDK的高脈波(以及訊號DKb的低脈波)的機制可能造成在訊號CLK的下降邊緣(該同步訊號的目標時序)與該同步訊號(諸如訊號CKE_O及CKE_S)的轉變邊緣之間有額外的延遲。在某些實施例中,兩個相同的同步電路可互相串連來避免上述延遲問題,如第5圖所示,其中第5圖為依據本發明一實施例之疊接(cascaded)同步電路50的示意圖。如第5圖所示,疊接同步電路50可將一初始非同步訊號(例如訊號CKE_AS_INITIAL)轉換為一最終同步訊號(例如訊號CKE_S_FINAL)。疊接同步電路50可包含互相串連的一第一同步電路(例如同步電路51)以及一第二同步電路(例如同步電路52),而同步電路51及52的每一者可基於一主時脈訊號(例如訊號CLK)將一非同步訊號轉換為至少一同步訊號。在本實施例中,同步電路51可基於訊號CLK將該初始非同步訊號(例如訊號CKE_AS_INITIAL)轉換為一暫時同步訊號(例如訊號CKE_S_TEMP),以及同步電路52可基於訊號CLK將該暫時同步訊號(例如訊號CKE_S_TEMP)轉換為該最終同步訊號(例如訊號CKE_S_FINAL)。另外,同步電路51及52的每一者可依據第1圖及第2圖所示之 同步電路10來實施。為便於理解,在單一的同步電路(例如同步電路51及52的每一者)中之用來接收一非同步訊號(諸如訊號CKE_AS)、一參考時脈訊號(諸如訊號CLK)以及一上電控制訊號(諸如訊號VPU)的輸入端子在第5圖中分別標示為「AS」、「RCLK」以及「PU」,以及用來輸出一同步訊號(諸如訊號CKE_O及CKE_S中之任一者)的一輸出端子在第5圖中標示為「S」。 As shown in Figure 4, the above-mentioned mechanism of widening the high pulse of the signal PDK (and the low pulse of the signal DKb) may cause the falling edge of the signal CLK (the target timing of the synchronization signal) to interact with the synchronization signal (such as the signal). There is an additional delay between the transition edges of CKE_O and CKE_S). In some embodiments, two identical synchronization circuits can be connected in series to avoid the above-mentioned delay problem, as shown in Figure 5, where Figure 5 is a cascaded synchronization circuit 50 according to an embodiment of the present invention. Schematic diagram. As shown in FIG. 5, the overlapping synchronization circuit 50 can convert an initial asynchronous signal (such as the signal CKE_AS_INITIAL) into a final synchronization signal (such as the signal CKE_S_FINAL). The overlapping synchronization circuit 50 may include a first synchronization circuit (such as the synchronization circuit 51) and a second synchronization circuit (such as the synchronization circuit 52) connected in series, and each of the synchronization circuits 51 and 52 may be based on a master time. The pulse signal (such as the signal CLK) converts an asynchronous signal into at least one synchronous signal. In this embodiment, the synchronization circuit 51 can convert the initial asynchronous signal (such as the signal CKE_AS_INITIAL) into a temporary synchronization signal (such as the signal CKE_S_TEMP) based on the signal CLK, and the synchronization circuit 52 can convert the temporary synchronization signal (such as the signal CKE_S_TEMP) based on the signal CLK ( For example, the signal CKE_S_TEMP) is converted into the final synchronization signal (for example, the signal CKE_S_FINAL). In addition, each of the synchronization circuits 51 and 52 can be based on those shown in Fig. 1 and Fig. 2 The synchronization circuit 10 is implemented. For ease of understanding, a single synchronization circuit (such as each of the synchronization circuits 51 and 52) is used to receive an asynchronous signal (such as the signal CKE_AS), a reference clock signal (such as the signal CLK), and a power-on The input terminals of the control signal (such as the signal VPU) are respectively marked as "AS", "RCLK" and "PU" in the figure 5, and are used to output a synchronization signal (such as any of the signals CKE_O and CKE_S) An output terminal is marked as "S" in Figure 5.

為便於理解,請連同第2圖及第5圖參考第6圖,其中第6圖為依據本發明一實施例之疊接同步電路50中的複數個訊號的時序圖。在本實施例中,同步電路51(第一級)中之訊號CLK、CKE_AS、CKE_I、CKE_S、ENDK、PDKb及DKb可分別由訊號CLK、CKE_AS_INITIAL、CKE_I1、CKE_S_TEMP、ENDK1、PDKb1及DKb1來表示,而同步電路52(第二級)中之訊號CLK、CKE_AS、CKE_I、CKE_S、ENDK、PDKb及DKb可分別由訊號CLK、CKE_S_TEMP、CKE_I2、CKE_S_FINAL、ENDK2、PDKb2及DKb2來表示。 For ease of understanding, please refer to FIG. 6 together with FIG. 2 and FIG. 5, where FIG. 6 is a timing diagram of a plurality of signals in the cascading synchronization circuit 50 according to an embodiment of the present invention. In this embodiment, the signals CLK, CKE_AS, CKE_I, CKE_S, ENDK, PDKb, and DKb in the synchronization circuit 51 (first stage) can be represented by the signals CLK, CKE_AS_INITIAL, CKE_I1, CKE_S_TEMP, ENDK1, PDKb1, and DKb1, respectively. The signals CLK, CKE_AS, CKE_I, CKE_S, ENDK, PDKb, and DKb in the synchronization circuit 52 (second stage) can be represented by the signals CLK, CKE_S_TEMP, CKE_I2, CKE_S_FINAL, ENDK2, PDKb2, and DKb2, respectively.

針對該第一級(同步電路51),請參考狀況610及620。在狀況610中,在訊號CKE_AS_INITIAL於一時間點610a轉為低(此刻訊號CKE_S_TEMP為高且訊號CLK為高)後,訊號CKE_I1轉為低,訊號ENDK1轉為高,以及訊號PDKb1及DKb1轉為低。在訊號CLK於一時間點610b轉為低後,訊號PDKb1回到高,其中同步電路51中之訊號PDK的高脈波(例如邏輯值「1」的脈波)足夠寬以下拉同步電路51中之訊號N2並且相較於訊號PDKb1的低脈波(例如邏輯值「0」的脈波)能被進一步拉寬。尤其,在因應訊號PDK轉為高而使同步電路51中之訊號N2轉為低後,同步電路51中之訊號PDK不會因應訊號PDKb1轉為高而立即轉為低,直到同步電路51中之訊號N2透過同步電路51中之反向器182、反及邏輯電路185、反向器186、反及邏輯電路184以及反及邏輯電路181的訊號路徑再次被上拉為止,從而拉寬了同步電路51中之訊號PDK的高脈波(或訊號DKb1的低脈波)。之後,在一時間點610c,訊號CKE_S_TEMP轉為低並且訊號ENDK1轉為 低。 For the first stage (synchronization circuit 51), please refer to conditions 610 and 620. In condition 610, after the signal CKE_AS_INITIAL turns low at a time point 610a (the signal CKE_S_TEMP is high and the signal CLK is high), the signal CKE_I1 turns to low, the signal ENDK1 turns to high, and the signals PDKb1 and DKb1 turn to low . After the signal CLK turns low at a time point 610b, the signal PDKb1 returns to high, and the high pulse of the signal PDK in the synchronization circuit 51 (for example, the pulse with the logic value "1") is wide enough to pull down the synchronization circuit 51 The signal N2 can be further broadened compared to the low pulse of the signal PDKb1 (for example, the pulse with the logic value "0"). In particular, after the signal N2 in the synchronization circuit 51 turns low in response to the signal PDK turning high, the signal PDK in the synchronization circuit 51 will not immediately turn low in response to the signal PDKb1 turning high, until the signal in the synchronization circuit 51 The signal N2 passes through the signal path of the inverter 182, the inverter logic circuit 185, the inverter 186, the inverter logic circuit 184, and the inverter logic circuit 181 in the synchronization circuit 51 until it is pulled up again, thereby widening the synchronization circuit The high pulse of signal PDK in 51 (or the low pulse of signal DKb1). After that, at a time point 610c, the signal CKE_S_TEMP turns low and the signal ENDK1 turns Low.

在狀況620中,在訊號CKE_AS_INITIAL於一時間點620a轉為高(此刻訊號CKE_S_TEMP為低且訊號CLK為高)後,訊號CKE_I1轉為高,訊號ENDK1轉為高,以及訊號PDKb1及DKb1轉為低。在訊號CLK於一時間點620b轉為低後,訊號PDKb1回到高,其中同步電路51中之訊號PDK的高脈波相較於訊號PDKb1的低脈波能被拉寬,以及與狀況610類似之某些細節內容為簡明起見在此不重複贅述。之後,在一時間點620c,訊號CKE_S_TEMP轉為高並且訊號ENDK1轉為低。 In condition 620, after the signal CKE_AS_INITIAL turns high at a time point 620a (the signal CKE_S_TEMP is low and the signal CLK is high), the signal CKE_I1 turns to high, the signal ENDK1 turns to high, and the signals PDKb1 and DKb1 turn to low . After the signal CLK goes low at a time point 620b, the signal PDKb1 returns to high, where the high pulse wave of the signal PDK in the synchronization circuit 51 can be broadened compared to the low pulse wave of the signal PDKb1, and is similar to the situation 610 Some of the details are not repeated here for the sake of brevity. After that, at a time point 620c, the signal CKE_S_TEMP turns high and the signal ENDK1 turns low.

針對該第二級(同步電路52),請參考狀況630及640。在狀況630中,在訊號CKE_S_TEMP於時間點610c轉為低(此刻訊號CKE_S_FINAL為高且訊號CLK為低)後,訊號CKE_I2轉為低,以及訊號ENDK2轉為高。在訊號CLK於一時間點630a轉為高後,訊號PDKb2轉為低,以及訊號DKb2轉為低。在訊號CLK於一時間點630b轉為低後,訊號DKb2轉為高,而在一時間點630c,訊號CKE_S_FINAL轉為低並且訊號ENDK2轉為低。 For the second stage (synchronization circuit 52), please refer to conditions 630 and 640. In the condition 630, after the signal CKE_S_TEMP turns low at time 610c (the signal CKE_S_FINAL is high and the signal CLK is low at this moment), the signal CKE_I2 turns to low, and the signal ENDK2 turns to high. After the signal CLK turns high at a time point 630a, the signal PDKb2 turns low, and the signal DKb2 turns low. After the signal CLK turns low at a time point 630b, the signal DKb2 turns high, and at a time 630c, the signal CKE_S_FINAL turns low and the signal ENDK2 turns low.

在狀況640中,在訊號CKE_S_TEMP於時間點620c轉為高(此刻訊號CKE_S_FINAL為低且訊號CLK為低)後,訊號CKE_I2轉為高,以及訊號ENDK2轉為高。在訊號CLK於一時間點640a轉為高後,訊號PDKb2轉為低,以及訊號DKb2轉為低。在訊號CLK於一時間點640b轉為低後,訊號DKb2轉為高,而在一時間點640c,訊號CKE_S_FINAL轉為高並且訊號ENDK2轉為低。 In the condition 640, after the signal CKE_S_TEMP turns high at time 620c (the signal CKE_S_FINAL is low and the signal CLK is low at this moment), the signal CKE_I2 turns to high, and the signal ENDK2 turns to high. After the signal CLK turns high at a time point 640a, the signal PDKb2 turns low, and the signal DKb2 turns low. After the signal CLK turns low at a time point 640b, the signal DKb2 turns high, and at a time 640c, the signal CKE_S_FINAL turns high and the signal ENDK2 turns low.

針對第6圖所示之狀況610及620(類似於狀況410及420),訊號DKb1的低脈波被拉寬,從而造成在訊號CLK的下降邊緣(分別對應於時間點610b及620b之該同步訊號的目標時序)與訊號CKE_S_TEMP的轉變邊緣(分別對應於時間點610c及620c)之間有額外的延遲。接著,同步電路52可基於訊號CLK同步化訊號CKE_S_TEMP。請注意,同步電路51已將訊號CKE_S_TEMP的轉變邊緣 配置為稍微在訊號CLK的下降邊緣的之後,所以該同步訊號的目標時序(例如訊號CKE_S_FINAL)可為訊號CLK的下個下降邊緣(分別對應於時間點630a及640a)。針對第6圖所示之狀況630及640,於時間點610c與630b(或時間點620c與640b)之間的時間差是足夠的(時間差足夠長的或脈波寬度足夠寬的),所以上述拉寬該正反器時脈訊號(例如第2圖所示之訊號DKb)的低脈波的機制將不會被啟動/激活(activate)。因此,訊號DKb2的低脈波的上升邊緣可由訊號CLK(或訊號CKE_I2)來決定,而不會由反向器182、反及邏輯電路185、反向器186、反及邏輯電路184以及反及邏輯電路181的訊號路徑來決定,所以相較於使用單一級電路(例如僅使用同步電路51),於訊號CLK的下降邊緣(分別對應於時間點630b及640b之該同步訊號的目標時序)與訊號CKE_S_FINAL的轉變邊緣(分別對應於時間點630c及640c)之間的延遲能被減少且固定。 For conditions 610 and 620 (similar to conditions 410 and 420) shown in Figure 6, the low pulse of signal DKb1 is widened, resulting in the synchronization at the falling edge of signal CLK (corresponding to time points 610b and 620b, respectively) There is an additional delay between the target timing of the signal and the transition edge of the signal CKE_S_TEMP (corresponding to time points 610c and 620c, respectively). Then, the synchronization circuit 52 can synchronize the signal CKE_S_TEMP based on the signal CLK. Please note that the synchronization circuit 51 has changed the transition edge of the signal CKE_S_TEMP The configuration is slightly after the falling edge of the signal CLK, so the target timing of the synchronization signal (for example, the signal CKE_S_FINAL) can be the next falling edge of the signal CLK (corresponding to time points 630a and 640a, respectively). For the conditions 630 and 640 shown in Figure 6, the time difference between time points 610c and 630b (or time points 620c and 640b) is sufficient (the time difference is long enough or the pulse width is wide enough), so the above pull The low pulse mechanism of the clock signal of the flip-flop (such as the signal DKb shown in Figure 2) will not be activated/activated. Therefore, the rising edge of the low pulse of the signal DKb2 can be determined by the signal CLK (or the signal CKE_I2) instead of the inverter 182, the inverter logic circuit 185, the inverter 186, the inverter logic circuit 184, and the inverter logic circuit 184. The signal path of the logic circuit 181 is determined, so compared to using a single-stage circuit (for example, only the synchronization circuit 51), the falling edge of the signal CLK (corresponding to the target timing of the synchronization signal at time points 630b and 640b, respectively) and The delay between the transition edges of the signal CKE_S_FINAL (corresponding to time points 630c and 640c, respectively) can be reduced and fixed.

依據第5圖所示之疊接同步電路50的架構,不論該初始非同步訊號(例如訊號CKE_AS_INITIAL)如何,於該主時脈訊號(例如訊號CLK)與該最終同步訊號(例如訊號CKE_S_FINAL)之間的相位關係均是固定的。例如,不論該初始非同步訊號如何,該最終同步訊號的每一轉變相對於該主時脈訊號之對應的下降邊緣均不會有額外的延遲。又例如,不論該初始非同步訊號如何,該最終同步訊號的每一轉變相對於該主時脈訊號之對應的下降邊緣均具有固定的延遲。因此,疊接同步電路50相較於單一的同步電路(例如同步電路10)能進一步地提升效能。 According to the structure of the overlapping synchronization circuit 50 shown in Figure 5, regardless of the initial asynchronous signal (such as the signal CKE_AS_INITIAL), the main clock signal (such as the signal CLK) and the final synchronization signal (such as the signal CKE_S_FINAL) The phase relationship between them is fixed. For example, regardless of the initial asynchronous signal, each transition of the final synchronous signal will not have an additional delay relative to the corresponding falling edge of the main clock signal. For another example, regardless of the initial asynchronous signal, each transition of the final synchronization signal has a fixed delay relative to the corresponding falling edge of the main clock signal. Therefore, compared with a single synchronization circuit (such as the synchronization circuit 10), the overlapped synchronization circuit 50 can further improve the performance.

需注意的是,同步電路10(或同步訊號51及52)中之一或多個訊號可被視為等效的,例如訊號CKE_O及CKE_S,所以用來傳送這些等效訊號之於某些節點之間的一或多個連接在不影響同步電路10(或同步電路51及52)的整體運作或較不容易影響整體運作的情況下可予以調整,但本發明不限於此。另外,提供初始值給同步電路10(或同步電路51及52)中之某些節點的實施方式 不限於第2圖所示之實施方式。另外,以上實施例提供了下降邊緣觸發同步電路(例如產生的同步訊號是與該參考時脈訊號的下降邊緣對齊),但本發明不限於此。本領域中具有通常知識者能藉由修改同步電路10及50中之任一者內的一或多個邏輯電路來實施,例如修改正反器電路140(或時脈啟用電路160)或其內的正反器邏輯電路142,而相關細節在此不贅述以求簡明。 It should be noted that one or more of the signals in the synchronization circuit 10 (or the synchronization signals 51 and 52) can be regarded as equivalent, such as the signals CKE_O and CKE_S, so they are used to transmit these equivalent signals to certain nodes. One or more connections can be adjusted without affecting the overall operation of the synchronization circuit 10 (or the synchronization circuits 51 and 52) or less likely to affect the overall operation, but the present invention is not limited to this. In addition, the implementation of providing initial values to some nodes in the synchronization circuit 10 (or synchronization circuits 51 and 52) It is not limited to the embodiment shown in FIG. 2. In addition, the above embodiments provide a falling edge trigger synchronization circuit (for example, the generated synchronization signal is aligned with the falling edge of the reference clock signal), but the present invention is not limited to this. Those with ordinary knowledge in the art can modify one or more logic circuits in any one of the synchronization circuits 10 and 50 to implement, for example, modify the flip-flop circuit 140 (or the clock enable circuit 160) or its internal The logic circuit 142 of the flip-flop logic circuit 142, and the relevant details will not be repeated here for the sake of brevity.

總結來說,本發明的同步電路能分別產生足夠的保持時間以及建立時間以供訊號同步之用,且亦提供一省電機制。因此,不論非同步訊號如何,該同步電路均能在不大幅增加整體成本的情況下確保該同步電路產生的同步訊號沒有毛刺產生。另外,本發明另提供基於本發明的同步電路的疊接架構,以確保於該同步訊號(例如該最終同步訊號)與目標時脈(例如該主時脈訊號CLK)之間的相位關係是固定的。以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, the synchronization circuit of the present invention can respectively generate sufficient hold time and setup time for signal synchronization, and also provides a power saving mechanism. Therefore, regardless of the asynchronous signal, the synchronous circuit can ensure that the synchronous signal generated by the synchronous circuit has no glitches without greatly increasing the overall cost. In addition, the present invention further provides a stacking structure based on the synchronization circuit of the present invention to ensure that the phase relationship between the synchronization signal (such as the final synchronization signal) and the target clock (such as the main clock signal CLK) is fixed of. The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:同步電路 10: Synchronization circuit

120:訊號控制電路 120: signal control circuit

140:正反器電路 140: flip-flop circuit

160:時脈啟用電路 160: Clock enable circuit

180:時脈控制電路 180: clock control circuit

CKE_AS,CLK,CKE_S,CKE_I,PDKb,DKb:訊號 CKE_AS, CLK, CKE_S, CKE_I, PDKb, DKb: signal

Claims (14)

一種用於將一非同步訊號轉換為至少一同步訊號的同步電路,包含:一訊號控制電路,用來在該非同步訊號與該同步訊號之間的差異被偵測到時鎖存(latch)一內部輸入訊號的一邏輯值並且輸出該內部輸入訊號;一正反器(flip-flop)電路,耦接至該訊號控制電路,用來在一正反器時脈訊號的一轉變邊緣(transition edge)的時間點依據該內部輸入訊號輸出該同步訊號;一時脈啟用電路,耦接至該訊號控制電路以及該正反器電路,用來在該同步訊號與該內部輸入訊號之間的差異被偵測到時啟用一內部時脈訊號;以及一時脈控制電路,耦接至該正反器電路以及該時脈啟用電路,用來因應該內部時脈訊號的一脈波寬度輸出該正反器時脈訊號,其中當該內部時脈訊號的該脈波寬度大於一預定寬度時,該正反器時脈訊號具有大於一最小寬度的一脈波寬度,以及當該內部時脈訊號的該脈波寬度小於該預定寬度時,該正反器時脈訊號具有一固定邏輯值。 A synchronous circuit for converting an asynchronous signal into at least one synchronous signal includes: a signal control circuit for latching when the difference between the asynchronous signal and the synchronous signal is detected A logic value of the internal input signal and output the internal input signal; a flip-flop circuit, coupled to the signal control circuit, used for a transition edge of a flip-flop clock signal ) Output the synchronization signal according to the internal input signal; a clock enable circuit, coupled to the signal control circuit and the flip-flop circuit, is used to detect the difference between the synchronization signal and the internal input signal When it is detected, an internal clock signal is activated; and a clock control circuit, coupled to the flip-flop circuit and the clock activation circuit, is used to output the flip-flop according to a pulse width of the internal clock signal A pulse signal, wherein when the pulse width of the internal clock signal is greater than a predetermined width, the flip-flop clock signal has a pulse width greater than a minimum width, and when the pulse width of the internal clock signal When the width is less than the predetermined width, the flip-flop clock signal has a fixed logic value. 如申請專利範圍第1項所述之同步電路,其中當該同步訊號具有一第一邏輯值時,因應該非同步訊號自該第一邏輯值變為一第二邏輯值,該訊號控制電路鎖存該內部輸入訊號的該邏輯值並且輸出具有該邏輯值的該內部輸入訊號,其中該內部輸入訊號的該邏輯值等於該第二邏輯值。 For example, the synchronous circuit described in the first item of the scope of patent application, wherein when the synchronous signal has a first logic value, the signal control circuit locks because the asynchronous signal changes from the first logic value to a second logic value Storing the logical value of the internal input signal and outputting the internal input signal having the logical value, wherein the logical value of the internal input signal is equal to the second logical value. 如申請專利範圍第2項所述之同步電路,其中該訊號控制電路包含: 一及(AND)邏輯電路,其中該及邏輯電路的一第一輸入端子係用來接收該非同步訊號;一反及(NAND)邏輯電路,其中該反及邏輯電路的一輸出端子耦接至該及邏輯電路的一第二輸入端子,以及該反及邏輯電路的一第一輸入端子係用來接收該同步訊號;一第一反或(NOR)邏輯電路,其中該第一反或邏輯電路的一第一輸入端子在該同步電路上電後係用來接收該同步訊號或其衍生物(derivative);一第二反或邏輯電路,其中該第二反或邏輯電路的一輸出端子耦接至該第一反或邏輯電路的一第二輸入端子以及該反及邏輯電路的一第二輸入端子,該第二反或邏輯電路的一第一輸入端子耦接至該第一反或邏輯電路的一輸出端子,以及該第二反或邏輯電路的一第二輸入端子耦接至該及邏輯電路的一輸出端子;以及一反向器,耦接至該第二反或邏輯電路的該輸出端子,用來輸出該內部輸入訊號。 The synchronization circuit described in item 2 of the scope of patent application, wherein the signal control circuit includes: An AND logic circuit, wherein a first input terminal of the AND logic circuit is used to receive the asynchronous signal; a NAND logic circuit, wherein an output terminal of the NAND logic circuit is coupled to the And a second input terminal of the logic circuit, and a first input terminal of the logic circuit is used to receive the synchronization signal; a first NOR logic circuit, wherein the first NOR logic circuit A first input terminal is used to receive the synchronization signal or its derivative after the synchronization circuit is powered on; a second NOR logic circuit, wherein an output terminal of the second NOR logic circuit is coupled to A second input terminal of the first inverting logic circuit and a second input terminal of the inverting logic circuit, a first input terminal of the second inverting logic circuit is coupled to the first inverting logic circuit An output terminal, and a second input terminal of the second NOR logic circuit coupled to an output terminal of the AND logic circuit; and an inverter coupled to the output terminal of the second NOR logic circuit , Used to output the internal input signal. 如申請專利範圍第1項所述之同步電路,其中當該同步訊號與該內部輸入訊號具有不同的邏輯值時,該時脈啟用電路依據一主時脈訊號輸出該內部時脈訊號;以及當該同步訊號與該內部輸入訊號具有相同的邏輯值時,該內部時脈訊號具有一固定邏輯值。 For example, the synchronization circuit described in item 1 of the scope of patent application, wherein when the synchronization signal and the internal input signal have different logic values, the clock enable circuit outputs the internal clock signal according to a main clock signal; and When the synchronization signal and the internal input signal have the same logic value, the internal clock signal has a fixed logic value. 如申請專利範圍第4項所述之同步電路,其中該時脈啟用電路包含:一互斥或(exclusive-OR,XOR)邏輯電路,其中該互斥或邏輯電路的一第一輸入端子以及一第二輸入端子係分別用來接收該內部輸入訊號以及該 同步訊號;以及一反及邏輯電路,用來輸出該內部時脈訊號,其中該反及邏輯電路的一第一輸入端子係用來接收該主時脈訊號,以及該反及邏輯電路的一第二輸入端子耦接至該互斥或邏輯電路的一輸出端子。 The synchronization circuit described in item 4 of the scope of patent application, wherein the clock enable circuit includes: an exclusive-OR (XOR) logic circuit, wherein a first input terminal of the exclusive-OR logic circuit and a The second input terminal is used to receive the internal input signal and the Synchronization signal; and an inverted logic circuit for outputting the internal clock signal, wherein a first input terminal of the inverted logic circuit is used to receive the main clock signal, and a first of the inverted logic circuit The two input terminals are coupled to an output terminal of the mutually exclusive OR logic circuit. 如申請專利範圍第1項所述之同步電路,其中該時脈控制電路包含:一第一反及邏輯電路,其中該第一反及邏輯電路的一第一輸入端子係用來接收該內部時脈訊號;一反向器,用來輸出該反向器時脈訊號,其中該反向器的一輸入端子耦接至該第一反及邏輯電路的一輸出端子;以及一第二反及邏輯電路,其中該第二反及邏輯電路的一第一輸入端子耦接至該第一反及邏輯電路的該輸出端子,該第二反及邏輯電路的一輸出端子耦接至該第一反及邏輯電路的一第二輸入端子,以及該第二反及邏輯電路的一第二輸入端子在該同步電路上電後係用來接收該正反器時脈訊號或其衍生物(derivative)。 For the synchronization circuit described in claim 1, wherein the clock control circuit includes: a first inverting logic circuit, wherein a first input terminal of the first inverting logic circuit is used to receive the internal time Pulse signal; an inverter for outputting the inverter clock signal, wherein an input terminal of the inverter is coupled to an output terminal of the first inverter logic circuit; and a second inverter logic circuit Circuit, wherein a first input terminal of the second inverter logic circuit is coupled to the output terminal of the first inverter logic circuit, and an output terminal of the second inverter logic circuit is coupled to the first inverter A second input terminal of the logic circuit and a second input terminal of the second inverter logic circuit are used to receive the flip-flop clock signal or its derivative after the synchronization circuit is powered on. 如申請專利範圍第6項所述之同步電路,其中該反向器的比例參數小於該第二反及邏輯電路的比例參數,其中對於該反向器以及該第二反及邏輯電路中之任一者,其比例參數表示其內的N型電晶體的通道寬度對通道長度比(width-to-length ratio)與其內的P型電晶體的通道寬度對通道長度比之間的比值。 For the synchronous circuit described in item 6 of the scope of patent application, the proportional parameter of the inverter is smaller than the proportional parameter of the second inverter logic circuit, and for any of the inverter and the second inverter logic circuit First, the ratio parameter represents the ratio between the width-to-length ratio of the N-type transistor and the ratio of the P-type transistor. 一種用於將一初始非同步訊號轉換為一最終同步訊號的疊接 (cascaded)同步電路,該疊接同步電路包含互相串連的一第一同步電路以及一第二同步電路,該第一同步電路以及該第二同步電路的每一同步電路係用來基於一主時脈訊號將一非同步訊號轉換為至少一同步訊號,其中該第一同步電路基於該主時脈訊號將該初始非同步訊號轉換為一暫時同步訊號,該第二同步電路基於該主時脈訊號將該暫時同步訊號轉換為該最終同步訊號,以及所述每一同步電路包含:一訊號控制電路,用來在該非同步訊號與該同步訊號之間的差異被偵測到時鎖存(latch)一內部輸入訊號的一邏輯值並且輸出該內部輸入訊號;一正反器(flip-flop)電路,耦接至該訊號控制電路,用來在一正反器時脈訊號的一轉變邊緣(transition edge)的時間點依據該內部輸入訊號輸出該同步訊號;一時脈啟用電路,耦接至該訊號控制電路以及該正反器電路,用來在該同步訊號與該內部輸入訊號之間的差異被偵測到時啟用一內部時脈訊號;以及一時脈控制電路,耦接至該正反器電路以及該時脈啟用電路,用來因應該內部時脈訊號的一脈波寬度輸出該正反器時脈訊號,其中當該內部時脈訊號的該脈波寬度大於一預定寬度時,該正反器時脈訊號具有大於一最小寬度的一脈波寬度,以及當該內部時脈訊號的該脈波寬度小於該預定寬度時,該正反器時脈訊號具有一固定邏輯值;其中不論該初始非同步訊號為何,該主時脈訊號與該最終同步訊號之間的相位關係是固定的。 A splicing used to convert an initial asynchronous signal into a final synchronous signal (cascaded) synchronization circuit, the cascaded synchronization circuit includes a first synchronization circuit and a second synchronization circuit connected in series with each other, and each synchronization circuit of the first synchronization circuit and the second synchronization circuit is used based on a master The clock signal converts an asynchronous signal into at least one synchronous signal, wherein the first synchronous circuit converts the initial asynchronous signal into a temporary synchronous signal based on the main clock signal, and the second synchronous circuit is based on the main clock signal The signal converts the temporary synchronization signal into the final synchronization signal, and each synchronization circuit includes: a signal control circuit for latching when the difference between the asynchronous signal and the synchronization signal is detected ) A logic value of an internal input signal and output the internal input signal; a flip-flop circuit, coupled to the signal control circuit, used for a transition edge of a flip-flop clock signal ( The time point of transition edge) outputs the synchronization signal according to the internal input signal; a clock enable circuit is coupled to the signal control circuit and the flip-flop circuit for the difference between the synchronization signal and the internal input signal When detected, an internal clock signal is activated; and a clock control circuit, coupled to the flip-flop circuit and the clock enabling circuit, is used to output the positive and negative signals in response to a pulse width of the internal clock signal When the pulse width of the internal clock signal is greater than a predetermined width, the flip-flop clock signal has a pulse width greater than a minimum width, and when the internal clock signal has a pulse width When the pulse width is less than the predetermined width, the flip-flop clock signal has a fixed logic value; wherein regardless of the initial asynchronous signal, the phase relationship between the main clock signal and the final synchronization signal is fixed. 如申請專利範圍第8項所述之疊接同步電路,其中當該同步訊號具有一第一邏輯值時,因應該非同步訊號自該第一邏輯值變為一第二邏輯 值,該訊號控制電路鎖存該內部輸入訊號的該邏輯值並且輸出具有該邏輯值的該內部輸入訊號,其中該內部輸入訊號的該邏輯值等於該第二邏輯值。 As for the overlapping synchronization circuit described in item 8 of the scope of patent application, when the synchronization signal has a first logic value, the asynchronous signal changes from the first logic value to a second logic value. Value, the signal control circuit latches the logic value of the internal input signal and outputs the internal input signal with the logic value, wherein the logic value of the internal input signal is equal to the second logic value. 如申請專利範圍第9項所述之疊接同步電路,其中該訊號控制電路包含:一及(AND)邏輯電路,其中該及邏輯電路的一第一輸入端子係用來接收該非同步訊號;一反及(NAND)邏輯電路,其中該反及邏輯電路的一輸出端子耦接至該及邏輯電路的一第二輸入端子,以及該反及邏輯電路的一第一輸入端子係用來接收該同步訊號;一第一反或(NOR)邏輯電路,其中該第一反或邏輯電路的一第一輸入端子在該同步電路上電後係用來接收該同步訊號或其衍生物(derivative);一第二反或邏輯電路,其中該第二反或邏輯電路的一輸出端子耦接至該第一反或邏輯電路的一第二輸入端子以及該反及邏輯電路的一第二輸入端子,該第二反或邏輯電路的一第一輸入端子耦接至該第一反或邏輯電路的一輸出端子,以及該第二反或邏輯電路的一第二輸入端子耦接至該及邏輯電路的一輸出端子;以及一反向器,耦接至該第二反或邏輯電路的該輸出端子,用來輸出該內部輸入訊號。 For example, the overlapped synchronous circuit described in item 9 of the scope of patent application, wherein the signal control circuit includes: an AND logic circuit, wherein a first input terminal of the AND logic circuit is used to receive the asynchronous signal; A NAND logic circuit, wherein an output terminal of the NAND logic circuit is coupled to a second input terminal of the NAND logic circuit, and a first input terminal of the NAND logic circuit is used to receive the synchronization Signal; a first NOR logic circuit, wherein a first input terminal of the first NOR logic circuit is used to receive the synchronization signal or its derivative (derivative) after the synchronization circuit is powered on; A second inverting logic circuit, wherein an output terminal of the second inverting logic circuit is coupled to a second input terminal of the first inverting logic circuit and a second input terminal of the inverting logic circuit, the first A first input terminal of the two inverted OR logic circuit is coupled to an output terminal of the first inverted OR logic circuit, and a second input terminal of the second inverted OR logic circuit is coupled to an output of the AND logic circuit Terminal; and an inverter, coupled to the output terminal of the second inverted OR logic circuit, for outputting the internal input signal. 如申請專利範圍第8項所述之疊接同步電路,其中當該同步訊號與該內部輸入訊號具有不同的邏輯值時,該時脈啟用電路依據該主時脈訊號輸出該內部時脈訊號;以及當該同步訊號與該內部輸入訊號具有相同的邏輯值時,該內部時脈訊號具有一固定邏輯值。 For example, the overlapped synchronization circuit described in item 8 of the scope of patent application, wherein when the synchronization signal and the internal input signal have different logic values, the clock enable circuit outputs the internal clock signal according to the main clock signal; And when the synchronization signal and the internal input signal have the same logic value, the internal clock signal has a fixed logic value. 如申請專利範圍第11項所述之疊接同步電路,其中該時脈啟用電路包含:一互斥或(exclusive-OR,XOR)邏輯電路,其中該互斥或邏輯電路的一第一輸入端子以及一第二輸入端子係分別用來接收該內部輸入訊號以及該同步訊號;以及一反及邏輯電路,用來輸出該內部時脈訊號,其中該反及邏輯電路的一第一輸入端子係用來接收該主時脈訊號,以及該反及邏輯電路的一第二輸入端子耦接至該互斥或邏輯電路的一輸出端子。 The overlapped synchronization circuit described in item 11 of the scope of patent application, wherein the clock enable circuit includes: an exclusive-OR (XOR) logic circuit, wherein a first input terminal of the exclusive-OR logic circuit And a second input terminal is used to receive the internal input signal and the synchronization signal respectively; and a reverse logic circuit is used to output the internal clock signal, wherein a first input terminal of the reverse logic circuit is used To receive the main clock signal, and a second input terminal of the inverse logic circuit is coupled to an output terminal of the mutual exclusion OR logic circuit. 如申請專利範圍第8項所述之疊接同步電路,其中該時脈控制電路包含:一第一反及邏輯電路,其中該第一反及邏輯電路的一第一輸入端子係用來接收該內部時脈訊號;一反向器,用來輸出該反向器時脈訊號,其中該反向器的一輸入端子耦接至該第一反及邏輯電路的一輸出端子;以及一第二反及邏輯電路,其中該第二反及邏輯電路的一第一輸入端子耦接至該第一反及邏輯電路的該輸出端子,該第二反及邏輯電路的一輸出端子耦接至該第一反及邏輯電路的一第二輸入端子,以及該第二反及邏輯電路的一第二輸入端子在該同步電路上電後係用來接收該正反器時脈訊號或其衍生物(derivative)。 As described in the eighth item of the scope of patent application, the clock control circuit includes: a first inverter and logic circuit, wherein a first input terminal of the first inverter and logic circuit is used to receive the Internal clock signal; an inverter for outputting the inverter clock signal, wherein an input terminal of the inverter is coupled to an output terminal of the first inverter and the logic circuit; and a second inverter And logic circuit, wherein a first input terminal of the second inverter logic circuit is coupled to the output terminal of the first inverter logic circuit, and an output terminal of the second inverter logic circuit is coupled to the first A second input terminal of the inverse logic circuit, and a second input terminal of the second inverse logic circuit are used to receive the flip-flop clock signal or its derivative after the synchronization circuit is powered on . 如申請專利範圍第13項所述之疊接同步電路,其中該反向器的比例參數小於該第二反及邏輯電路的比例參數,其中對於該反向器以及該第二 反及邏輯電路中之任一者,其比例參數表示其內的N型電晶體的通道寬度對通道長度比(width-to-length ratio)與其內的P型電晶體的通道寬度對通道長度比之間的比值。 As described in item 13 of the scope of patent application, the proportional parameter of the inverter is smaller than the proportional parameter of the second inverter logic circuit. Contrary to any of the logic circuits, the ratio parameter indicates the ratio of the channel width to channel length of the N-type transistor in it (width-to-length ratio) and the channel width to channel length ratio of the P-type transistor in it The ratio between.
TW109100820A 2020-01-10 2020-01-10 Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal TWI734339B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109100820A TWI734339B (en) 2020-01-10 2020-01-10 Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109100820A TWI734339B (en) 2020-01-10 2020-01-10 Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal

Publications (2)

Publication Number Publication Date
TW202127175A TW202127175A (en) 2021-07-16
TWI734339B true TWI734339B (en) 2021-07-21

Family

ID=77908815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100820A TWI734339B (en) 2020-01-10 2020-01-10 Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal

Country Status (1)

Country Link
TW (1) TWI734339B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200301042A (en) * 2001-12-12 2003-06-16 Etron Technology Inc A minimum pulse width detection and regeneration circuit
TW200710658A (en) * 2005-08-17 2007-03-16 Atmel Corp Method and apparatus for synchronizing data between different clock domains in a memory controller
TW200937864A (en) * 2007-11-27 2009-09-01 Nec Corp Synchronizing device and synchronizing method
US20090323457A1 (en) * 2008-06-30 2009-12-31 Micron Technology, Inc. System and method for synchronizing asynchronous signals without external clock
US20150341032A1 (en) * 2014-05-23 2015-11-26 Advanced Micro Devices, Inc. Locally asynchronous logic circuit and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200301042A (en) * 2001-12-12 2003-06-16 Etron Technology Inc A minimum pulse width detection and regeneration circuit
TW200710658A (en) * 2005-08-17 2007-03-16 Atmel Corp Method and apparatus for synchronizing data between different clock domains in a memory controller
TW200937864A (en) * 2007-11-27 2009-09-01 Nec Corp Synchronizing device and synchronizing method
US20090323457A1 (en) * 2008-06-30 2009-12-31 Micron Technology, Inc. System and method for synchronizing asynchronous signals without external clock
US20150341032A1 (en) * 2014-05-23 2015-11-26 Advanced Micro Devices, Inc. Locally asynchronous logic circuit and method therefor

Also Published As

Publication number Publication date
TW202127175A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
US7868677B2 (en) Low power flip-flop circuit
US6392456B1 (en) Analog mixed digital DLL
KR100861919B1 (en) multi-phase signal generator and method there-of
US7317341B2 (en) Duty correction device
US5936893A (en) Integrated circuit clock input buffer
JPH11127062A (en) Integrated circuit device
US6573754B2 (en) Circuit configuration for enabling a clock signal in a manner dependent on an enable signal
US20090058483A1 (en) Duty cycle correcting circuit and method
US7746135B2 (en) Wake-up circuit
KR100761359B1 (en) On-die termination control circuit and method
CN100411057C (en) Delay locked loop
JP3420018B2 (en) Data receiver
US10256823B2 (en) Clock generation circuit
US11073862B2 (en) Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal
TWI734339B (en) Synchronization circuit and cascaded synchronization circuit for converting asynchronous signal into synchronous signal
WO2023178989A1 (en) Self-alignment control circuit for offset cancellation calibration circuit of input buffer
US7756236B2 (en) Phase detector
JP2002064366A (en) Conditional capture flip-flop for power saving
US10921846B1 (en) Clock generation circuit of semiconductor device
KR100705205B1 (en) Internal clock generator for generating stable internal clock signal regardless of variation of pulse width of external clock signal and internal clock generation method of the same
CN113113059A (en) Synchronous circuit for converting asynchronous signal into synchronous signal and cascade synchronous circuit
TWI394157B (en) Delay line and memory control circuit utilizing the delay line
TWI630797B (en) Delay lock loop
CN116232317B (en) High-speed frequency and phase discrimination circuit based on TSPC and phase-locked loop
US11967961B2 (en) Clock generation circuit and voltage generation circuit including the clock generation circuit