TWI731473B - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
TWI731473B
TWI731473B TW108141545A TW108141545A TWI731473B TW I731473 B TWI731473 B TW I731473B TW 108141545 A TW108141545 A TW 108141545A TW 108141545 A TW108141545 A TW 108141545A TW I731473 B TWI731473 B TW I731473B
Authority
TW
Taiwan
Prior art keywords
light
laser element
contact layer
item
recess
Prior art date
Application number
TW108141545A
Other languages
Chinese (zh)
Other versions
TW202121781A (en
Inventor
温鉌語
黃國閔
呂志強
Original Assignee
晶智達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶智達光電股份有限公司 filed Critical 晶智達光電股份有限公司
Priority to TW108141545A priority Critical patent/TWI731473B/en
Priority to CN202011266647.0A priority patent/CN112821190B/en
Publication of TW202121781A publication Critical patent/TW202121781A/en
Application granted granted Critical
Publication of TWI731473B publication Critical patent/TWI731473B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The laser device as disclosed includes an epitaxial structure, at least a first and a second emitters which are arranged next to each other, and a plurality of trenches arranged between the emitters in the epitaxial structure. From a top view of the laser device, it shows that there is only one trench located between the first emitter and the second emitter, and the line passing the center of the first emitter and the center of the second emitter also passes the trench located therebetween.

Description

雷射元件 Laser components

本揭露是關於一種雷射元件,特別是關於一種垂直共振腔面射型雷射元件(Vertical Cavity Surface Emitting Laser,VCSEL)。 The present disclosure relates to a laser element, in particular to a vertical cavity surface emitting laser (VCSEL).

有鑑於消費性電子產品中臉部辨識功能的普及、以及雷射元件於3D感測應用之趨勢的漸長,半導體雷射作為光源的使用勢必將有爆炸性的成長。 In view of the popularity of facial recognition functions in consumer electronic products and the increasing trend of laser components in 3D sensing applications, the use of semiconductor lasers as light sources is bound to explode.

在3D感測應用領域中,以垂直共振腔面射型雷射元件(Vertical Cavity Surface Emitting Laser,VCSEL)作為光源會面臨到光轉換效率的限制、必須減小元件尺寸、以及需進一步提升元件調變頻寬等挑戰。 In the field of 3D sensing applications, the use of Vertical Cavity Surface Emitting Laser (VCSEL) as the light source will face the limitation of light conversion efficiency, the size of the device must be reduced, and the need to further improve the adjustment of the device. Challenges such as variable frequency bandwidth.

鑑於前述,本揭露提出一種垂直共振腔面射型雷射元件(Vertical Cavity Surface Emitting Laser,VCSEL)之設計,利用同平面金屬電極走向,產生大電流驅動而降低其串聯電阻(Rs)以降低熱干擾,進而提高VCSEL之光轉換效率。同時,本揭露利用VCSEL中濕氧化溝渠共用之設計,可縮小發光孔間距,進以縮小雷射元件的尺寸。此外,利用VCSEL中歐姆接觸的 形態設計,可產生金屬屏蔽以減少高階模態數(High-ordered Mode),簡化其光頻頻譜,提升調變頻寬。 In view of the foregoing, the present disclosure proposes a vertical cavity surface emitting laser (VCSEL) design, which uses the same plane metal electrode to generate a large current drive and reduces its series resistance (Rs) to reduce thermal interference. , Thereby improving the light conversion efficiency of the VCSEL. At the same time, the present disclosure utilizes the shared design of the wet oxide trenches in the VCSEL to reduce the spacing of the light-emitting holes, thereby reducing the size of the laser element. In addition, using the ohmic contact in the VCSEL The shape design can produce a metal shield to reduce the number of high-ordered modes (High-ordered Mode), simplify its optical frequency spectrum, and increase the frequency modulation bandwidth.

本揭露提供一種雷射元件,其包括磊晶結構、彼此相鄰的至少一第一發光孔和一第二發光孔、以及複數個凹部結構,所述凹部結構係形成於該磊晶結構內並且位於相鄰的發光孔之間。自該雷射元件之上視圖觀之,該複數個凹部結構中僅有一個位於該第一發光孔和該第二發光孔之間,且該第一發光孔和該第二發光孔的中心連線通過該凹部結構。 The present disclosure provides a laser device, which includes an epitaxial structure, at least one first light-emitting hole and a second light-emitting hole adjacent to each other, and a plurality of recessed structures formed in the epitaxial structure and Located between adjacent light-emitting holes. From the top view of the laser element, only one of the plurality of recess structures is located between the first light-emitting hole and the second light-emitting hole, and the center of the first light-emitting hole and the second light-emitting hole are connected The line passes through the recess structure.

100:雷射元件 100: Laser component

110:基板 110: substrate

120:磊晶結構 120: epitaxial structure

122:第一半導體結構 122: The first semiconductor structure

124:活性結構 124: active structure

125、1251、1252、1253:電流侷限層 125, 1251, 1252, 1253: current limiting layer

125A、125A1、125A2、125A3:開口/發光孔 125A, 125A 1 , 125A 2 , 125A 3 : opening/lighting hole

126:第二半導體結構 126: Second semiconductor structure

130:接觸層 130: contact layer

130’:環形部 130’: Ring

130A:環形部開口 130A: Ring part opening

130P:延伸部 130P: Extension

140、140A、140B、140C、140D、140E:凹部結構 140, 140A, 140B, 140C, 140D, 140E: recess structure

140L1、140L2:長邊 140L 1 , 140L 2 : Long side

140S1、140S2:短邊 140S 1 , 140S 2 : short side

150:保護層 150: protective layer

150A:保護層開口 150A: protective layer opening

160:電極結構 160: Electrode structure

200:雷射元件 200: Laser component

I:阻絕結構 I: blocking structure

O、O1、O2、O3:開口的中心/發光孔的中心 O, O 1 , O 2 , O 3 : the center of the opening/the center of the light-emitting hole

H1、H2:深度 H 1 , H 2 : depth

D12、D23:距離 D12, D23: distance

為能更進一步瞭解本揭露之特徵與技術內容,請參閱下述有關本揭露實施例之詳細說明及如附圖式。惟所揭詳細特徵說明及如附圖式係謹提供參考與說明之用,並非用以對本發明加以限制;其中:第1圖係根據本揭露之一實施例的雷射元件之上視圖;第2A圖和第2B圖為剖面示意圖,分別示意說明自第1圖中的線A-A’和線B-B’所示之雷射元件的剖面結構;第2C圖係一上視示意圖,其示意說明根據本揭露實施例之雷射元件中的接觸層;第3圖係根據本揭露之一實施例的雷射元件之上視示意圖;第4A圖和第4B圖說明自第3圖中的線A-A’和線B-B’所示之雷射元件的剖面結構示意圖;以及 In order to further understand the features and technical content of the present disclosure, please refer to the following detailed description of the embodiments of the present disclosure and the accompanying drawings. However, the detailed description of the features and the accompanying drawings are provided for reference and illustration, and are not intended to limit the present invention; among them: Figure 1 is a top view of a laser element according to an embodiment of the present disclosure; Figures 2A and 2B are schematic cross-sectional views, respectively illustrating the cross-sectional structure of the laser element shown from the line A-A' and line B-B' in Figure 1; Figure 2C is a schematic top view, which Schematically illustrate the contact layer in the laser device according to an embodiment of the present disclosure; FIG. 3 is a schematic top view of the laser device according to an embodiment of the present disclosure; FIG. 4A and FIG. 4B illustrate from FIG. 3 The schematic diagram of the cross-sectional structure of the laser element shown on the line A-A' and the line B-B'; and

下文係參照圖式、並且以例示實施例說明本揭露之概念,在圖式或說明中,相似或相同的部分係使用相同的元件符號;再者,圖式係為利於 理解而繪製,除具體指明的情況以外,圖式中各層之厚度和形狀皆非元件之實際尺寸或成比例關係。需特別注意的是,圖式中未繪示、或說明書中未描述之元件係可為熟習本揭露所屬領域技藝之人士所知之形式。 The following describes the concept of the present disclosure with reference to the drawings and exemplary embodiments. In the drawings or descriptions, similar or identical parts use the same symbols; in addition, the drawings are for the benefit of Drawing for understanding, the thickness and shape of each layer in the drawing are not the actual size or proportional relationship of the element, unless otherwise specified. It should be noted that the elements not shown in the drawings or described in the specification can be in the form known to those who are familiar with the art of the present disclosure.

第1圖係根據本揭露之一例示實施例的雷射元件100之上視示意圖。第2A圖和第2B圖分別說明自第1圖中的線A-A’(通過凹部結構)和線B-B’(未通過凹部結構)所示之雷射元件100的剖面結構。為求圖面清晰,在第1圖中並未標示出覆於接觸層130上的保護層和電極結構(即第2A圖和第2B圖所示剖面結構中的保護層150和電極結構160)。 FIG. 1 is a schematic top view of a laser device 100 according to an exemplary embodiment of the present disclosure. Fig. 2A and Fig. 2B respectively illustrate the cross-sectional structure of the laser element 100 shown by the line A-A' (passing through the recess structure) and the line B-B' (not passing through the recess structure) in Figure 1, respectively. For the sake of clarity, the protective layer and electrode structure covering the contact layer 130 are not shown in Figure 1 (ie, the protective layer 150 and the electrode structure 160 in the cross-sectional structure shown in Figures 2A and 2B) .

如第1圖和第2A~2B圖所示,雷射元件100包含基板110、磊晶結構120、位於磊晶結構120上的接觸層130以及發光孔。磊晶結構120包括第一半導體結構122、活性結構124和第二半導體結構126。雷射元件100還包括電流侷限層125,位於接觸層130和基板110之間。詳言之,電流侷限層125可位於活性結構124和第二半導體結構126之間或活性結構124和第一半導體結構122之間。電流侷限層125具有一開口125A用以讓電流流過而產生光,開口125A即定義為發光孔。開口125A的中心O即對應於雷射元件100整體的中心位置(亦為O) As shown in FIG. 1 and FIGS. 2A to 2B, the laser device 100 includes a substrate 110, an epitaxial structure 120, a contact layer 130 on the epitaxial structure 120, and light-emitting holes. The epitaxial structure 120 includes a first semiconductor structure 122, an active structure 124 and a second semiconductor structure 126. The laser element 100 further includes a current confinement layer 125 located between the contact layer 130 and the substrate 110. In detail, the current confinement layer 125 may be located between the active structure 124 and the second semiconductor structure 126 or between the active structure 124 and the first semiconductor structure 122. The current limiting layer 125 has an opening 125A for allowing current to flow through and generating light. The opening 125A is defined as a light-emitting hole. The center O of the opening 125A corresponds to the center position of the entire laser element 100 (also O)

雷射元件100還包括有複數個凹部結構140形成於磊晶結構120內,亦即,凹部結構140係形成於第一半導體結構122、活性結構124和第二半導體結構126內。詳言之,凹部結構140貫穿第一半導體結構122、活性結構124及一部分的第二半導體結構126以暴露出第二半導體結構126。或者,凹部結構140貫穿第一半導體結構122、活性結構124及第二半導體結構126以暴露出基板110。在本實施例中,凹部結構140係用以進行後續之氧化製程以形成電流侷限層125。在本實施例中,於上視圖視之,雷射元件100具有六個凹部結構140且開口125A係 概呈圓形。各凹部結構140係具有一弧形邊界,弧形邊界是由兩相對長邊140L1、140L2和兩相對短邊140S1、140S2所構成。弧形邊界的兩相對長邊140L1、140L2係各為圓心角30°之圓弧。透過氧化製程或/及凹部結構140形狀的控制,可定義開口125A的尺寸及形狀,亦即定義雷射元件100發光孔的尺寸及形狀(將於後續進一步說明)。 The laser device 100 further includes a plurality of recess structures 140 formed in the epitaxial structure 120, that is, the recess structure 140 is formed in the first semiconductor structure 122, the active structure 124 and the second semiconductor structure 126. In detail, the recess structure 140 penetrates the first semiconductor structure 122, the active structure 124 and a part of the second semiconductor structure 126 to expose the second semiconductor structure 126. Alternatively, the recess structure 140 penetrates the first semiconductor structure 122, the active structure 124, and the second semiconductor structure 126 to expose the substrate 110. In this embodiment, the recess structure 140 is used for a subsequent oxidation process to form the current limiting layer 125. In this embodiment, as viewed from the top view, the laser element 100 has six recess structures 140 and the opening 125A is generally circular. Each recess structure 140 has an arc-shaped boundary, and the arc-shaped boundary is formed by two relatively long sides 140L 1 , 140L 2 and two relatively short sides 140S 1 , 140S 2 . The two opposite long sides 140L 1 and 140L 2 of the arc-shaped boundary are arcs with a central angle of 30°. Through the oxidation process or/and the control of the shape of the recess structure 140, the size and shape of the opening 125A can be defined, that is, the size and shape of the light-emitting hole of the laser device 100 (which will be further described later).

接觸層130包括環形部130’、自環形部130’向內(向發光孔的中心)延伸突出的複數個延伸部130P及環形部開口130A。環形部開口130A之中心與開口125A相對應。複數個延伸部130P彼此不相連。延伸部130P的個數係相應於凹部結構140的個數。舉例來說,在本實施例中,延伸部130P與凹部結構140的個數為六個。在其他實施例中,延伸部130P與凹部結構140的個數可為2個、4個、8個、12個或14個。如第1圖所示,複數個延伸部130P中係與凹部結構140彼此對位,亦即一個延伸部130P對應於一個凹部結構140。 The contact layer 130 includes a ring portion 130', a plurality of extension portions 130P extending inward from the ring portion 130' (toward the center of the light-emitting hole), and a ring portion opening 130A. The center of the ring opening 130A corresponds to the opening 125A. The plurality of extension parts 130P are not connected to each other. The number of extensions 130P corresponds to the number of recess structures 140. For example, in this embodiment, the number of the extension portion 130P and the recess structure 140 is six. In other embodiments, the number of the extension portion 130P and the recess structure 140 may be 2, 4, 8, 12, or 14. As shown in FIG. 1, the plurality of extension portions 130P are aligned with the recess structure 140, that is, one extension portion 130P corresponds to one recess structure 140.

在本實施例中,接觸層130的各個延伸部130P自其環形部130向內突出之長度d為1~3微米。環形部130’之向內突出的所有延伸部130P的總面積與環形部130’之內圈圓之面積(即第2C圖中虛線圓的圓面積)之比例係介於6%~36%。延伸部130P的設計可避免尖端放電效應,提供了金屬屏蔽作用,有利於減少雷射元件100之高階模態數(high-ordered mode)。 In this embodiment, the length d of each extension portion 130P of the contact layer 130 protruding inward from the annular portion 130 thereof is 1 to 3 microns. The ratio of the total area of all the extending portions 130P protruding inwardly of the annular portion 130' to the area of the inner circle of the annular portion 130' (that is, the area of the dashed circle in Figure 2C) is between 6% and 36%. The design of the extension 130P can avoid the tip discharge effect, provide a metal shielding effect, and help reduce the number of high-ordered modes of the laser element 100.

雷射元件100進一步包括保護層150、電極結構160和背電極170。保護層150覆蓋接觸層130且覆蓋凹部結構140之底面和側面。電極結構160則位於保護層150上並填入凹部結構140內,供雷射元件100整體對外電性連接用。電極結構160可部分填入而未填滿凹部結構140或是完全填滿凹部結構140。背電極 170覆蓋基板110且供雷射元件100整體對外電性連接用。電極結構160和背電極170包含金屬。 The laser element 100 further includes a protective layer 150, an electrode structure 160, and a back electrode 170. The protective layer 150 covers the contact layer 130 and covers the bottom surface and the side surface of the recess structure 140. The electrode structure 160 is located on the protective layer 150 and filled in the recess structure 140 for the overall electrical connection of the laser element 100 to the outside. The electrode structure 160 may be partially filled without filling the recess structure 140 or completely filling the recess structure 140. Back electrode 170 covers the substrate 110 and is used for the overall electrical connection of the laser element 100 to the outside. The electrode structure 160 and the back electrode 170 include metal.

如第1圖和第2B圖所示,保護層150具有複數個保護層開口150A。延伸部130P(或凹部結構140)係與保護層開口150A錯位,亦即,每一延伸部130P1(或每一凹部結構140)未對應於每一保護層開口150A。 As shown in FIGS. 1 and 2B, the protective layer 150 has a plurality of protective layer openings 150A. The extension 130P (or the recess structure 140) is misaligned with the protective layer opening 150A, that is, each extension 130P1 (or each recess structure 140) does not correspond to each protective layer opening 150A.

雷射元件100進一步選擇性地包括阻絕結構I形成於磊晶結構120中,用以阻絕橫向電流的傳遞以降低雷射元件整體串聯電阻,並進一步降低雷射元件的RC常數,有效提高調變的頻寬(即操作頻寬)。阻絕結構I可透過氧化製程或是離子佈植(ion implant)製程而形成。如第2A和2B圖所示,阻絕結構I形成於第二半導體結構126中。於其他實施例中,阻絕結構I可進一步形成於第一半導體結構122或/和活性結構124中。 The laser element 100 further optionally includes a blocking structure I formed in the epitaxial structure 120 to block the transmission of lateral current to reduce the overall series resistance of the laser element, further reduce the RC constant of the laser element, and effectively improve the modulation The bandwidth (that is, the operating bandwidth). The barrier structure I can be formed through an oxidation process or an ion implant process. As shown in FIGS. 2A and 2B, the blocking structure I is formed in the second semiconductor structure 126. In other embodiments, the blocking structure I may be further formed in the first semiconductor structure 122 or/and the active structure 124.

在本實施例中,第一半導體結構122和第二半導體結構126分別包含複數個不同折射率的膜層交互週期性的堆疊(例如,高鋁含量的AlGaAs層及低鋁含量的AlGaAs層之交互週期性堆疊),以形成分散式布拉格反射鏡(Distributed Bragg Reflector,DBR),使得自活性結構124發射的光可以在兩個反射鏡中反射以形成同調光。第一半導體結構122的反射率高於第二半導體結構126的反射率,藉此使同調光朝向電極結構160的方向射出。第一半導體結構122、第二半導體結構126及活性結構124之材料包含三五族化合物半導體,例如GaAs、InGaAs、AlGaAs、AlGaInAs、GaP、InGaP、AlInP、AlGaInP、GaN、InGaN、AlGaN、AlGaInN、AlAsSb、InGaAsP、InGaAsN或AlGaAsP等化合物。在本揭露內容之實施例中,若無特別說明,上述化學表示式包含「符合化學劑量之化合物」及「非符合化學劑量之化合物」,其中,「符合化學劑量之化合物」例如為三族 元素的總元素劑量與五族元素的總元素劑量相同;反之,「非符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量不同。舉例而言,化學表示式為AlGaInAs即代表包含三族元素鋁(Al)及/或鎵(Ga)及/或銦(In),以及包含五族元素砷(As),其中三族元素(鋁及/或鎵及/或銦)的總元素劑量可以與五族元素(砷)的總元素劑量相同或相異。另外,若上述由化學表示式表示的各化合物為符合化學劑量之化合物時,AlGaAs代表Alx1Ga(1-x1)As,其中,0<x1<1;AlInP代表Alx2In(1-x2)P,其中,0<x2<1;AlGaInP代表(Aly1Ga(1-y1)1-x3Inx3P,其中,0<x3<1,0<y1<1;AlGaInAs代表(Aly2Ga(1-y2))1-x4Inx4As,其中,0≦x4≦1,0≦y2≦1;AlGaN代表Alx5Ga(1-x5)N,其中,0<x5<1;AlAsSb代表AlAsx6Sb(1-x6),其中,0≦x6≦1;InGaP代表Inx7Ga(1-x7)P,其中,0<x7<1;InGaAsP代表Inx8Ga1-x8As1-y3Py3,其中,0≦x8≦1,0≦y3≦1;InGaAsN代表Inx8Ga1-x8As1-y4Ny4,其中,0<x9<1,0<y4<1;AlGaAsP代表Alx10Ga1-x10As1-y5Py5,其中,0<x10<1,0<y5<1InGaAs代表Inx11Ga(1-x11)As,其中,0<x11<1;InGaN代表Inx12Ga(1-x12)N,其中,0<x12<1;AlGaInN代表(Aly6Ga(1-y6)1-x13Inx13P,其中,0<x13<1,0<y6<1。 In this embodiment, the first semiconductor structure 122 and the second semiconductor structure 126 respectively comprise a plurality of layers of different refractive index stacked alternately and periodically (for example, the interaction of the AlGaAs layer with high aluminum content and the AlGaAs layer with low aluminum content). Periodically stacked) to form a Distributed Bragg Reflector (DBR), so that the light emitted from the active structure 124 can be reflected in the two mirrors to form co-dimmer. The reflectivity of the first semiconductor structure 122 is higher than the reflectivity of the second semiconductor structure 126, so that the co-dimming light is emitted toward the direction of the electrode structure 160. The materials of the first semiconductor structure 122, the second semiconductor structure 126 and the active structure 124 include Group III and V compound semiconductors, such as GaAs, InGaAs, AlGaAs, AlGaInAs, GaP, InGaP, AlInP, AlGaInP, GaN, InGaN, AlGaN, AlGaInN, AlAsSb , InGaAsP, InGaAsN or AlGaAsP and other compounds. In the embodiments of the present disclosure, unless otherwise specified, the above chemical expressions include "compounds that meet the chemical dose" and "compounds that do not meet the chemical dose", where the "compounds that meet the chemical dose" are, for example, Group III elements The total element dose of is the same as the total element dose of Group V elements; on the contrary, the "non-chemical dose compound" is, for example, the total element dose of Group III elements and the total element dose of Group V elements are different. For example, the chemical formula is AlGaInAs, which means that it contains three-group elements aluminum (Al) and/or gallium (Ga) and/or indium (In), and contains five-group elements arsenic (As), of which group three elements (aluminum) And/or the total element dose of gallium and/or indium) may be the same as or different from the total element dose of the group V element (arsenic). In addition, if each compound represented by the above chemical formula is a compound that meets the stoichiometric dose, AlGaAs stands for Al x1 Ga (1-x1) As, where 0<x1<1; AlInP stands for Al x2 In (1-x2) P, where 0<x2<1; AlGaInP stands for (Al y1 Ga (1-y1 ) 1-x3 In x3 P, where 0<x3<1, 0<y1<1; AlGaInAs stands for (Al y2 Ga (1 -y2) ) 1-x4 In x4 As, where 0≦x4≦1, 0≦y2≦1; AlGaN stands for Al x5 Ga (1-x5) N, where 0<x5<1; AlAsSb stands for AlAs x6 Sb (1-x6) , where 0≦x6≦1; InGaP stands for In x7 Ga (1-x7) P, where 0<x7<1; InGaAsP stands for In x8 Ga 1-x8 As 1-y3 P y3 , where , 0≦x8≦1, 0≦y3≦1; InGaAsN stands for In x8 Ga 1-x8 As 1-y4 N y4 , where 0<x9<1, 0<y4<1; AlGaAsP stands for Al x10 Ga 1-x10 As 1-y5 P y5 , where 0<x10<1, 0<y5<1 InGaAs represents In x11 Ga (1-x11) As, where 0<x11<1; InGaN represents In x12 Ga (1-x12) N , Where 0<x12<1; AlGaInN stands for (Al y6 Ga (1-y6 ) 1-x13 In x13 P, where 0<x13<1, 0<y6<1.

視其材料不同,活性結構124可發出峰值波長(peak wavelength)介於700nm及1700nm的紅外光、峰值波長介於610nm及700nm之間的紅光、峰值波長介於530nm及570nm之間的黃光、峰值波長介於490nm及550nm之間的綠光、峰值波長介於400nm及490nm之間的藍光或深藍光、或是峰值波長介於250nm及400nm之間的紫外光。在本實施例中,活性結構204的峰值波長為介於750nm及1200nm之間的紅外光。 Depending on the material, the active structure 124 can emit infrared light with a peak wavelength between 700nm and 1700nm, red light with a peak wavelength between 610nm and 700nm, and yellow light with a peak wavelength between 530nm and 570nm. , Green light with a peak wavelength between 490nm and 550nm, blue or deep blue light with a peak wavelength between 400nm and 490nm, or ultraviolet light with a peak wavelength between 250nm and 400nm. In this embodiment, the peak wavelength of the active structure 204 is infrared light between 750 nm and 1200 nm.

如上所述,當第一半導體結構122和第二半導體結構126包含複數個的膜層且皆包含鋁時,可使得第一半導體結構202中之其中一層或多層之鋁含 量大於97%(定義為電流侷限層125)且大於活性結構124、第一半導體結構122之其他膜層及第二半導體結構126的鋁含量,藉此,在進行氧化製程後,具有鋁含量大於97%之該層或該些層之部分會被氧化以形成電流侷限層(例如:氧化鋁),未被氧化之部分則為開口。詳言之,當凹部結構140形成於第一半導體結構122、活性結構124及第二半導體結構126中時,第一半導體結構122、活性結構124及第二半導體結構126的側壁會被曝露出,因此當雷射元件100設置於一含氧的環境時,氧氣會透過凹部結構140和第一半導體結構122、活性結構124或第二半導體結構126發生化學反應進而形成電流侷限層125。因此,透過凹部結構140的配置位置及數量和氧化製程的控制(例如氧氣濃度或/及氧化時間),可調整電流侷限層125的深度H1及形狀(氧化鋁的深度)進而定義開口125A的形狀。在本實施例中,由上視圖視之,電流侷限層125為一概呈環形,且開口125A為概呈圓形。 As described above, when the first semiconductor structure 122 and the second semiconductor structure 126 include a plurality of film layers and both include aluminum, the aluminum in one or more layers of the first semiconductor structure 202 can be contained The amount is greater than 97% (defined as the current limiting layer 125) and greater than the aluminum content of the active structure 124, the other film layers of the first semiconductor structure 122, and the second semiconductor structure 126, so that after the oxidation process, the aluminum content is greater than 97% of the layer or parts of these layers will be oxidized to form a current limiting layer (for example, aluminum oxide), and the unoxidized part will be an opening. In detail, when the recess structure 140 is formed in the first semiconductor structure 122, the active structure 124, and the second semiconductor structure 126, the sidewalls of the first semiconductor structure 122, the active structure 124, and the second semiconductor structure 126 are exposed, so When the laser device 100 is placed in an oxygen-containing environment, the oxygen gas will pass through the recess structure 140 and the first semiconductor structure 122, the active structure 124 or the second semiconductor structure 126 to chemically react to form the current limiting layer 125. Therefore, the depth H1 and shape (aluminum oxide depth) of the current limiting layer 125 can be adjusted to define the shape of the opening 125A by controlling the position and number of the recess structures 140 and the oxidation process (such as oxygen concentration or/and oxidation time). . In this embodiment, as viewed from the top view, the current limiting layer 125 is generally annular, and the opening 125A is generally circular.

類似地,可設計第一半導體結構122、第二半導體結構126和活性結構124的材料,進行濕式氧化製程以形成阻絕結構I於其中。如第2A和2B圖所示,阻絕結構I具有一深度H2小於電流侷限層125之一深度H1。深度H1為6-12um且深度H2為2um-5um。或者,佈植氫離子(H+)、氦離子(He+)或氬離子(Ar+)來進行離子佈植製程以形成阻絕結構I。在一實施例中,當電流侷限層125藉由離子佈植製程所形成時,雷射元件100可不具有凹部結構140。 Similarly, the materials of the first semiconductor structure 122, the second semiconductor structure 126, and the active structure 124 can be designed, and a wet oxidation process can be performed to form the barrier structure I therein. As shown in FIGS. 2A and 2B, the blocking structure I has a depth H2 smaller than a depth H1 of the current confinement layer 125. The depth H1 is 6-12um and the depth H2 is 2um-5um. Alternatively, hydrogen ions (H + ), helium ions (He + ), or argon ions (Ar + ) are implanted to perform the ion implantation process to form the barrier structure I. In one embodiment, when the current confinement layer 125 is formed by an ion implantation process, the laser device 100 may not have the recess structure 140.

接觸層130係為一歐姆接觸層且與磊晶結構120形成電連接,其材料可包括金屬、金屬合金、金屬氧化物或半導體。金屬包括鋁(Al)、銀(Ag)、鉻(Cr)、鉑(Pt)、鎳(Ni)、鍺(Ge)、鈹(Be)、金(Au)、鈦(Ti)、鎢(W)或鋅(Zn)。金屬合金包括上述金屬之合金。金屬氧化物(透明導電氧 化物,Transparent Conductive Oxide,TCO)包括氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO)。半導體包含AlGaAs、GaAs或InGaP。 The contact layer 130 is an ohmic contact layer and forms an electrical connection with the epitaxial structure 120, and its material may include metal, metal alloy, metal oxide or semiconductor. Metals include aluminum (Al), silver (Ag), chromium (Cr), platinum (Pt), nickel (Ni), germanium (Ge), beryllium (Be), gold (Au), titanium (Ti), tungsten (W) ) Or zinc (Zn). Metal alloys include alloys of the aforementioned metals. Metal oxide (transparent conductive oxygen Transparent Conductive Oxide, TCO) includes indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), oxide Zinc tin (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO), or indium zinc oxide (IZO). The semiconductor includes AlGaAs, GaAs, or InGaP.

第3圖為根據本揭露之一實施例的雷射元件200的上視示意圖。第4A圖和第4B圖分別為第3圖中的線A-A’線B-B’所示之雷射元件200的剖面結構。第3圖、第4A圖至第4B圖與第1圖、第2A圖至第2B圖係以相同符號描述相同元件,並且這些元件的材料及特性如前所述,故不再贅述。為求圖面清晰,在第3圖之上視示意圖中並未標示出覆於接觸層130上的保護層和電極結構(即第4A圖和第4B圖所示剖面結構中的保護層150和電極結構160)。 FIG. 3 is a schematic top view of a laser element 200 according to an embodiment of the disclosure. Fig. 4A and Fig. 4B are respectively the cross-sectional structure of the laser element 200 shown by the line A-A' and the line B-B' in Fig. 3. Figure 3, Figure 4A to Figure 4B, Figure 1, Figure 2A to Figure 2B use the same symbols to describe the same elements, and the materials and characteristics of these elements are as described above, so they will not be repeated. For clarity of the drawing, the protective layer and electrode structure covering the contact layer 130 (that is, the protective layer 150 and the electrode structure in the cross-sectional structure shown in Figures 4A and 4B are not shown in the schematic top view of Figure 3). Electrode structure 160).

如第3圖所示,雷射元件200包含複數個發光孔,發光孔即為雷射元件200中電流侷限層125之開口125A。發光孔係以一陣列方式排列。於一上視圖中,雷射元件200中的複數個開口125A(發光孔)係採最密堆積方式排列。本實施例中,複數個開口係採六方最密堆積方式排列,亦即每一個開口周圍皆形成有六個相鄰的開口。再者,六個凹部結構140圍繞一個開口且每一凹部結構140位於兩個鄰近的開口之間。在一實施例中,每一個開口周圍皆形成有大於兩個(例如:三個、四個或五個)相鄰的開口。換言之,大於兩個(例如:三個、四個或五個)凹部結構140圍繞一個開口且每一凹部結構140位於兩個鄰近的開口之間。 As shown in FIG. 3, the laser element 200 includes a plurality of light-emitting holes, and the light-emitting holes are the openings 125A of the current confinement layer 125 in the laser element 200. The light-emitting holes are arranged in an array. In a top view, the plurality of openings 125A (light-emitting holes) in the laser element 200 are arranged in the most densely packed manner. In this embodiment, the plurality of openings are arranged in a hexagonal most densely packed manner, that is, six adjacent openings are formed around each opening. Furthermore, six recess structures 140 surround one opening and each recess structure 140 is located between two adjacent openings. In one embodiment, more than two (for example: three, four or five) adjacent openings are formed around each opening. In other words, more than two (for example: three, four, or five) recess structures 140 surround one opening and each recess structure 140 is located between two adjacent openings.

如前述說明,凹部結構140係用以進行氧化製程。當進行氧化製程時,氧氣係以各個方向進行化學反應,因此,於雷射元件200中,透過凹部結構140,可同時往兩側(兩相對長邊140L2,如第1圖所示)形成電流侷限層以定義開口,換言之,每一個開口125A皆分別與鄰近的開口125A共用其間的凹部結構 140。詳言之,如第4A圖所示,以兩個相鄰之開口125A1及125A2為例,透過凹部結構140A以形成電流侷限層1252;透過凹部結構140B以形成電流侷限層1251;透過凹部結構140C以形成電流侷限層1253。電流侷限層1252、1251定義開口125A1;電流侷限層1252、1253定義開口125A2。由上可知,僅透過三個凹部結構(非圍繞同一開口)則可定義出兩個開口(發光孔),亦即,兩個相鄰的開口共用其間的凹部結構140或是兩個相鄰的開口之間僅有一個凹部結構140。由一剖面圖觀之,,雷射元件200具有N個凹部結構及N-1個開口(發光孔),N為正整數。於一實施例中,N為大於2之正整數。於其他實施例中,N並無特別限制,其可為例如大於3、4、5、6、7,...,係端視於雷射元件200之規格(即所需之發光孔數量)而加以選擇。 As described above, the recess structure 140 is used for the oxidation process. During the oxidation process, oxygen reacts chemically in all directions. Therefore, in the laser element 200, through the recess structure 140, current can be formed to both sides (two opposite long sides 140L2, as shown in Figure 1) at the same time. The confined layer defines the openings. In other words, each opening 125A shares a recess structure with adjacent openings 125A. 140. In detail, as shown in FIG. 4A, taking two adjacent openings 125A1 and 125A2 as an example, the current confinement layer 1252 is formed through the recess structure 140A; the current confinement layer 1251 is formed through the recess structure 140B; and the current confinement layer 1251 is formed through the recess structure 140C To form a current confinement layer 1253. The current confinement layers 1252, 1251 define the opening 125A1; the current confinement layers 1252, 1253 define the opening 125A2. It can be seen from the above that two openings (light-emitting holes) can be defined only through three concave structures (not surrounding the same opening), that is, two adjacent openings share the concave structure 140 therebetween or two adjacent openings. There is only one recess structure 140 between the openings. From a cross-sectional view, the laser device 200 has N recess structures and N-1 openings (light-emitting holes), and N is a positive integer. In one embodiment, N is a positive integer greater than 2. In other embodiments, N is not particularly limited. It can be, for example, greater than 3, 4, 5, 6, 7,..., depending on the specifications of the laser element 200 (ie, the required number of light-emitting holes) And choose.

如前所述,每一開口125之形狀係透過六個圍繞於旁的凹部結構140進行氧化製程所共同定義,上述僅以剖面圖而作簡單說明,並非表示一個凹部結構140即可定義一個開口。因此,參考第3圖,六個凹部結構140可共同定義一開口125A且進而同時定義相鄰之六個開口,詳言之,該六個凹部結構140中的每一個可同時對其兩側(兩相對長邊140L2,如第1圖所示)形成電流侷限層進而定義兩側的開口。換言之,圍繞於一開口125A的六個凹部結構140皆可與相鄰的開口共用其間的凹部結構140,使得相鄰開口之間的間距得以進一步縮小。在其他實施例中,可依據實際應用,圍繞於一開口125A的六個凹部結構140中,僅有二、三、四、或五個與相鄰的開口共用其間的凹部結構140。 As mentioned above, the shape of each opening 125 is defined by the oxidation process of the six surrounding recessed structures 140. The above is only a cross-sectional view for a brief description, which does not mean that one recessed structure 140 can define an opening. . Therefore, referring to Figure 3, the six recess structures 140 can jointly define an opening 125A and further define six adjacent openings at the same time. In detail, each of the six recess structures 140 can simultaneously align both sides ( The two opposite long sides 140L2 (as shown in Figure 1) form a current confinement layer and define openings on both sides. In other words, all the six recess structures 140 surrounding an opening 125A can share the recess structure 140 therebetween with adjacent openings, so that the distance between adjacent openings can be further reduced. In other embodiments, depending on actual applications, among the six recess structures 140 surrounding an opening 125A, only two, three, four, or five of the six recess structures 140 are shared with adjacent openings.

如第3圖所示,因雷射元件200中的複數個開口125A(發光孔)採六方最密堆積方式排列,使得在雷射元件的相鄰三個發光孔125A1、125A2、125A3中,第一發光孔125A1的中心O1與第二發光孔125A2的中心O2之間的距離 D12等於第二發光孔125A2之中心O2與第三發光孔125A3之中心O3的距離D23。在本實施例中,第一發光孔125A1和第二發光孔125A2的中心連線O1-O2通過凹部結構140B,第二發光孔125A2和第三發光孔125A3的中心連線O2-O3通過凹部結構140D,且第三發光孔125A3和第一發光孔125A1的中心連線O3-O1通過凹部結構140E。 As shown in Figure 3, the plurality of openings 125A (light-emitting holes) in the laser element 200 are arranged in a hexagonal most densely packed manner, so that there are three adjacent light-emitting holes 125A 1 , 125A 2 , and 125A 3 of the laser element. the first emission hole center O 125A 1 1 and the distance between the second emission hole center O 125A 2 D12 is equal to the center of the second light emitting aperture 125A 2 O 2 and the center of the third light emitting aperture 125A 3 O 3 The distance D23. In the present embodiment, the first holes 125A 1 and the light emission center of the second light emitting aperture 125A 2 O 1 -O 2 connection through the recess structure 140B, 125A 2 and the third light emitting aperture of the second aperture line of centers of 125A 3 O 2 -O 3 through the recess structure 140D, and the third light emitting aperture 125A 3 and the center of the first light emitting connection hole 125A 1 O 3 -O 1 structure through the recess 140E.

在本實施例中,接觸層130係形成為具有複數個彼此分離之環形部130’,且每一個環形部130’的環形部開口130A之中心與各個對應的開口125A相對應。由剖面圖視之,相鄰的環形部130’之間係由一凹部結構140予以分隔。 In this embodiment, the contact layer 130 is formed to have a plurality of ring portions 130' separated from each other, and the center of the ring portion opening 130A of each ring portion 130' corresponds to each corresponding opening 125A. As seen from the cross-sectional view, adjacent annular portions 130' are separated by a recess structure 140.

此外,選擇性地,雷射元件200可包含複數個彼此分離且不連續的阻絕結構I,用以阻絕橫向電流的傳遞。阻絕結構I係形成於相鄰的開口125A(或凹部結構140)之間,換言之,複數個開口125A(或凹部結構140)圍繞一阻絕結構I。在本實施例中,在彼此相鄰的三個開口125A(或凹部結構140)圍繞一阻絕結構I。再者,任兩個阻絕結構I之間具有一個凹部結構140。 In addition, optionally, the laser element 200 may include a plurality of blocking structures I separated from each other and discontinuous to block the transmission of the lateral current. The blocking structure I is formed between adjacent openings 125A (or recess structures 140). In other words, a plurality of openings 125A (or recess structures 140) surround a blocking structure I. In this embodiment, a blocking structure I is surrounded by three openings 125A (or recess structures 140) adjacent to each other. Furthermore, there is a recess structure 140 between any two blocking structures I.

本揭露之雷射元件係一垂直共振腔面射型雷射元件(Vertical Cavity Surface Emitting Laser,VCSEL),特別是一種具有緊密排列之發光孔的VCSEL。在本揭露中,藉由在雷射元件中共用實施濕式氧化製程所需之凹部結構,使得相鄰開口(發光孔)之間的間距得以進一步縮小,從而提高雷射元件的辨識效率並且降低封裝成本。 The laser element of the present disclosure is a Vertical Cavity Surface Emitting Laser (VCSEL), especially a VCSEL with closely arranged light-emitting holes. In the present disclosure, by sharing the concave structure required to implement the wet oxidation process in the laser element, the distance between adjacent openings (light-emitting holes) can be further reduced, thereby improving the identification efficiency of the laser element and reducing Packaging cost.

根據本揭露,雷射元件的每一個發光孔周圍皆形成有均勻分佈(即在周圍呈相隔60度之配置)的六個凹部結構,藉由通過六個凹部結構實施濕式氧化製程,可於雷射元件磊晶結構中形成概呈圓形的開口(即雷射元件之發光孔)。根據本揭露,每一個凹部結構皆為其相鄰的兩個發光孔所共用,從而使得 本揭露之雷射元件中的複數個發光孔得以最密堆積方式排列,增加雷射元件中發光孔結構的佈局空間。 According to the present disclosure, each light-emitting hole of the laser element is formed with six concave structures uniformly distributed (that is, arranged at a distance of 60 degrees). By implementing the wet oxidation process through the six concave structures, the The epitaxial structure of the laser element forms an approximately circular opening (that is, the light-emitting hole of the laser element). According to this disclosure, each recess structure is shared by two adjacent light-emitting holes, so that The plurality of light-emitting holes in the laser element of the present disclosure are arranged in the most densely packed manner, which increases the layout space of the light-emitting hole structure in the laser element.

在本揭露中,在相鄰的發光孔結構之間的電流注入路徑上形成有阻絕結構,可阻斷兩個發光孔結構之間的橫向電流以降低其串聯電阻(Series Resistance,Rs),從而降低雷射元件的RC常數,有效提高調變的頻寬(即操作頻寬)。再者,本揭露之電極結構大致上都形成於同一平面上,藉此可縮短電流路徑,減少串聯電阻,且有助於降低雷射元件的熱干擾,提高雷射元件的光轉換效率。在一實施例中,當雷射元件於大電流(0.5A以上)操作下時,上述之功效會特別顯著。 In the present disclosure, a blocking structure is formed on the current injection path between adjacent light-emitting hole structures, which can block the lateral current between the two light-emitting hole structures to reduce the series resistance (Rs), thereby Lowering the RC constant of the laser component effectively increases the modulation bandwidth (that is, the operating bandwidth). Furthermore, the electrode structures of the present disclosure are generally formed on the same plane, thereby shortening the current path, reducing the series resistance, and helping to reduce the thermal interference of the laser element and improve the light conversion efficiency of the laser element. In one embodiment, when the laser element is operated at a high current (above 0.5A), the above-mentioned effect is particularly significant.

在本揭露中,雷射元件的接觸層係為環形部結構,且具有向內延伸的延伸部,從而可避免電流的尖端放電效應,產生金屬屏蔽作用,從而減少高階模態數以使光頻譜簡單化。如此,本揭露之雷射元件因具有相對簡單光譜之光模態,在應用時能使光偵測器產生較佳的光響應,提升辨識效率。 In this disclosure, the contact layer of the laser element has a ring-shaped structure and has an inwardly extending extension, which can avoid the tip discharge effect of the current and produce a metal shielding effect, thereby reducing the number of high-order modes to make the light spectrum simplify. In this way, because the laser element of the present disclosure has a relatively simple optical mode of the spectrum, the photodetector can generate a better light response during application, thereby improving the identification efficiency.

綜上所述,本揭露提供一種具有極佳光電特性的雷射元件,其具有高光轉換效率、小尺寸、有效提高的操作頻寬和辨識率,深具有3D感測應用潛力。 In summary, the present disclosure provides a laser element with excellent photoelectric characteristics, which has high light conversion efficiency, small size, effectively improved operating bandwidth and recognition rate, and has a deep potential for 3D sensing applications.

需注意的是,本揭露所提之前述實施例係僅用於例示說明本揭露,而非用於限制本揭露之範圍。熟習本揭露所屬領域技藝之人對本揭露所進行之諸般修飾和變化皆不脫離本揭露之精神與範疇。不同實施例中相同或相似的構件、或不同實施例中以相同元件符號表示的構件係具有相同的物理或化學特性。此外,在適當的情況下,本揭露之上述實施例係可互相組合或替換,而非僅限於上文所描述的特定實施例。在一實施例中所描述的特定構件與其他構件的連接關係亦可應用於其他實施例中,其皆落於本揭露如附申請專利範圍之範疇。 It should be noted that the aforementioned embodiments mentioned in the present disclosure are only used to illustrate the present disclosure, and not to limit the scope of the present disclosure. The various modifications and changes made to this disclosure by those who are familiar with the field and skills of this disclosure do not deviate from the spirit and scope of this disclosure. The same or similar components in different embodiments, or components denoted by the same symbol in different embodiments, have the same physical or chemical characteristics. In addition, under appropriate circumstances, the above-mentioned embodiments of the present disclosure can be combined or replaced with each other, and are not limited to the specific embodiments described above. The connection relationship between the specific component and other components described in one embodiment can also be applied to other embodiments, and it falls within the scope of the patent application attached to this disclosure.

100:雷射元件 100: Laser component

125A:電流侷限層 125A: current limiting layer

130:金屬接觸層 130: metal contact layer

130’:環形部 130’: Ring

130A:環形部開口 130A: Ring part opening

130P:延伸部 130P: Extension

140:凹部結構 140: Recessed structure

140L1、140L2:長邊 140L 1 , 140L 2 : Long side

140S1、140S2:短邊 140S 1 , 140S 2 : short side

150A:保護層開口 150A: protective layer opening

I:阻絕結構 I: blocking structure

Claims (10)

一種雷射元件,包括:磊晶結構;複數個發光孔,彼此相鄰且至少包含一第一發光孔和一第二發光孔;以及複數個凹部結構,係各形成於該磊晶結構內且位於該複數個發光孔之間;其中,自該雷射元件之上視圖觀之,該複數個凹部結構中僅有一個位於該第一發光孔和該第二發光孔之間,且該第一發光孔和該第二發光孔的中心連線通過該凹部結構。 A laser element includes: an epitaxial structure; a plurality of light-emitting holes adjacent to each other and at least a first light-emitting hole and a second light-emitting hole; and a plurality of recessed structures, each formed in the epitaxial structure and Is located between the plurality of light-emitting holes; wherein, from the top view of the laser element, only one of the plurality of recessed structures is located between the first light-emitting hole and the second light-emitting hole, and the first The central line of the light-emitting hole and the second light-emitting hole passes through the concave structure. 如申請專利範圍第1項所述之雷射元件,其中,自該雷射元件之一剖面圖觀之,該雷射元件具有N個凹部結構及N-1個發光孔,N為大於2之正整數。 The laser element described in item 1 of the scope of patent application, wherein, as viewed from a cross-sectional view of the laser element, the laser element has N recess structures and N-1 light-emitting holes, and N is greater than 2 Positive integer. 如申請專利範圍第1項所述之雷射元件,更包含一接觸層,該接觸層包括一環形部及自該環形部向內延伸的複數個延伸部。 The laser device described in item 1 of the scope of patent application further includes a contact layer. The contact layer includes a ring portion and a plurality of extension portions extending inward from the ring portion. 一種雷射元件,包括:一基板;一磊晶結構,位於該基板上;一電流侷限層,具有一開口;一接觸層,位於該磊晶結構上且具有一環形部以及自該環形部向內延伸的複數個延伸部;一電極結構,位於該接觸層上;以及一保護層,位於該接觸層及該電極結構之間。 A laser element includes: a substrate; an epitaxial structure located on the substrate; a current confinement layer having an opening; a contact layer located on the epitaxial structure and having an annular portion and a direction from the annular portion A plurality of extensions extending inside; an electrode structure located on the contact layer; and a protective layer located between the contact layer and the electrode structure. 如申請專利範圍第4項所述之雷射元件,更包括複數個凹部結構,該接觸層位於所述複數個凹部結構之其中兩個之間。 The laser element described in item 4 of the scope of the patent application further includes a plurality of concave structures, and the contact layer is located between two of the plurality of concave structures. 如申請專利範圍第3項或第5項所述之雷射元件,其中,自該雷射元件之上視圖觀之,所述複數個延伸部之各該延伸部係與所述複數個凹部結構之各該凹部結構對位。 The laser element described in item 3 or item 5 of the scope of patent application, wherein, as viewed from the top view of the laser element, each of the plurality of extensions is in the same structure as the plurality of recesses The structure of each recess is aligned. 如申請專利範圍第4項所述之雷射元件,更包括複數個保護層開口,位於該接觸層上方,其中,由該雷射元件之上視圖觀之,所述複數個延伸部之各該延伸部係與所述複數個保護層開口之各該保護層開口錯位。 The laser element described in item 4 of the scope of patent application further includes a plurality of protective layer openings located above the contact layer, wherein, as viewed from the top view of the laser element, each of the plurality of extensions The extension part is misaligned with each of the plurality of protective layer openings. 如申請專利範圍第1項或第5項所述之雷射元件,其中,該電極結構填入該複數凹部結構內。 For the laser element described in item 1 or item 5 of the scope of patent application, the electrode structure is filled in the plurality of concave structure. 如申請專利範圍第4項所述之雷射元件,其中,該電極結構與該接觸層具有不同的形狀。 According to the laser device described in item 4 of the scope of patent application, the electrode structure and the contact layer have different shapes. 如申請專利範圍第4項所述之雷射元件,其中,該接觸層具有一側壁,該保護層覆蓋該側壁。 According to the laser device described in claim 4, the contact layer has a side wall, and the protective layer covers the side wall.
TW108141545A 2019-11-15 2019-11-15 Laser device TWI731473B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108141545A TWI731473B (en) 2019-11-15 2019-11-15 Laser device
CN202011266647.0A CN112821190B (en) 2019-11-15 2020-11-13 Laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108141545A TWI731473B (en) 2019-11-15 2019-11-15 Laser device

Publications (2)

Publication Number Publication Date
TW202121781A TW202121781A (en) 2021-06-01
TWI731473B true TWI731473B (en) 2021-06-21

Family

ID=75853134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141545A TWI731473B (en) 2019-11-15 2019-11-15 Laser device

Country Status (2)

Country Link
CN (1) CN112821190B (en)
TW (1) TWI731473B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110027925A1 (en) * 2009-07-28 2011-02-03 Canon Kabushiki Kaisha Surface emitting laser, method for producing surface emitting laser, and image forming apparatus
US20130034117A1 (en) * 2011-07-27 2013-02-07 Hibbs-Brenner Mary K Method and apparatus including improved vertical-cavity surface-emitting lasers
TW201820730A (en) * 2016-11-17 2018-06-01 錼創科技股份有限公司 Semiconductor laser device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839662B2 (en) * 2005-04-08 2011-12-21 富士ゼロックス株式会社 Surface emitting semiconductor laser array and optical transmission system using the same
US9153944B2 (en) * 2014-02-05 2015-10-06 Epistar Corporation Light-emitting array
KR102140279B1 (en) * 2014-05-15 2020-07-31 엘지이노텍 주식회사 Light emitting device and light emitting device package including the device
RU2570060C1 (en) * 2014-05-29 2015-12-10 Общество с ограниченной ответственностью "Научно-технический центр НТС Инновации" High-voltage light-emitting device
JP6940749B2 (en) * 2016-04-28 2021-09-29 日亜化学工業株式会社 Light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110027925A1 (en) * 2009-07-28 2011-02-03 Canon Kabushiki Kaisha Surface emitting laser, method for producing surface emitting laser, and image forming apparatus
US20130034117A1 (en) * 2011-07-27 2013-02-07 Hibbs-Brenner Mary K Method and apparatus including improved vertical-cavity surface-emitting lasers
TW201820730A (en) * 2016-11-17 2018-06-01 錼創科技股份有限公司 Semiconductor laser device

Also Published As

Publication number Publication date
TW202121781A (en) 2021-06-01
CN112821190A (en) 2021-05-18
CN112821190B (en) 2024-07-30

Similar Documents

Publication Publication Date Title
TWI794849B (en) Light-emitting device
JP2018517301A (en) Vertical cavity surface emitting laser
US20070153865A1 (en) Vertical cavity surface emitting laser
US20080056323A1 (en) VCSEL, manufacturing method thereof, module, light sending device, optical spatial transmission device, light sending system, and optical spatial transmission system
US20120009704A1 (en) Vertical cavity surface emitting laser and method of manufacturing thereof
US20110007769A1 (en) Laser diode
TWI847246B (en) Semiconductor device
TWI731473B (en) Laser device
TWI787003B (en) Semiconductor laser structure
CN115207764A (en) Vertical cavity surface emitting laser, manufacturing method, distance measuring device and electronic equipment
TWI753828B (en) Laser device
US20230067254A1 (en) Semiconductor device
US20230129560A1 (en) Semiconductor device and semiconductor component including the same
US20110249696A1 (en) Laser diode
TWI794380B (en) Semiconductor device
TW202220232A (en) Semiconductor device
JP2011061083A (en) Semiconductor laser
US20220158413A1 (en) Semiconductor laser
WO2019107273A1 (en) Surface emission semiconductor laser
TWI790622B (en) Laser device and semiconductor device having the same
TW202236767A (en) Semiconductor device
WO2024153132A1 (en) Packaging structure
TWI797044B (en) Semiconductor device
CN113572023B (en) Laser element
US11699893B2 (en) VCSELs for high current low pulse width applications