TWI730777B - Medical image synthesis method - Google Patents

Medical image synthesis method Download PDF

Info

Publication number
TWI730777B
TWI730777B TW109116897A TW109116897A TWI730777B TW I730777 B TWI730777 B TW I730777B TW 109116897 A TW109116897 A TW 109116897A TW 109116897 A TW109116897 A TW 109116897A TW I730777 B TWI730777 B TW I730777B
Authority
TW
Taiwan
Prior art keywords
model information
information
tissue
feature points
model
Prior art date
Application number
TW109116897A
Other languages
Chinese (zh)
Other versions
TW202143916A (en
Inventor
楊建霆
沈子貴
洪國棟
李岳衡
Original Assignee
倍利科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倍利科技股份有限公司 filed Critical 倍利科技股份有限公司
Priority to TW109116897A priority Critical patent/TWI730777B/en
Application granted granted Critical
Publication of TWI730777B publication Critical patent/TWI730777B/en
Publication of TW202143916A publication Critical patent/TW202143916A/en

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本發明為一種醫療影像合成方法,包括輸入第一模型資訊及第二模型資訊,並擷取其二模型資訊的組織密度數值,將大於組織密度預設值的部分定義為不可變組織資訊;在第一模型資訊之不可變組織資訊上產生至少三基準特徵點,並搜尋第二模型資訊之不可變組織資訊中,對應基準特徵點的三對應特徵點;最後將第一模型資訊之三基準特徵點,與第二模型資訊之三對應特徵點以基準疊合,以融合第一模型資訊與第二模型資訊,產生合成模型資訊。本發明可快速合成不同型態的醫療影像,能降低反覆對多張影像比對,能提升診斷效率及準確度。The present invention is a medical image synthesis method, which includes inputting first model information and second model information, and extracting the tissue density value of the second model information, and defining the part greater than the preset value of tissue density as immutable tissue information; At least three reference feature points are generated on the immutable tissue information of the first model information, and three corresponding feature points corresponding to the reference feature points are searched for in the immutable tissue information of the second model information; finally, the three reference features of the first model information The point is superimposed with the three corresponding feature points of the second model information with a reference to fuse the first model information and the second model information to generate synthetic model information. The invention can quickly synthesize different types of medical images, can reduce repeated comparisons of multiple images, and can improve diagnosis efficiency and accuracy.

Description

醫療影像合成方法Medical image synthesis method

本發明係有關一種影像資料處理或產生之技術,特別是指一種能有效融合醫療影像合成方法。The present invention relates to a technology for image data processing or generation, in particular to a synthetic method that can effectively integrate medical images.

電腦斷層掃描(Computed Tomography,CT)是利用無數的X光射線穿透人體,以取得多張人體內部的CT影像後,再由電腦將多張CT影像合成三維的斷層影像。Computed tomography (CT) uses countless X-rays to penetrate the human body to obtain multiple CT images of the inside of the human body, and then a computer synthesizes the multiple CT images into three-dimensional tomographic images.

磁力共振成像(Magnetic Resonance Imaging,MRI)也是用以顯示病人體內的狀態,磁力共振成像的原理是利用強大的磁場來引起原子核釋放電磁波,由於不同物質的氫原子含量不同,因此不同物質會産生不同的共振現象,並將其轉換為圖像顯示。Magnetic Resonance Imaging (MRI) is also used to show the state of the patient's body. The principle of magnetic resonance imaging is to use a strong magnetic field to cause the nuclei to release electromagnetic waves. Because different substances have different hydrogen atoms content, different substances will produce different Resonance phenomenon, and convert it into an image display.

目前CT影像與MRI都被廣泛地應用在醫療檢測上,雖兩者皆可非破壞性地觀察體內的靜態結構與動態功能,藉此獲得器官、組織、及神經的特性,但CT影像與MRI對於不同組織所呈現出的成像清晰度不同。詳細來說,CT影像對於硬組織,如骨骼的檢測成像較有優勢,因此CT影像常被應用在顱骨、鈣化性病灶等方面疾病的診斷;MRI則是對於腦、內臟、血管等軟組織的檢測成像較有優勢,常被用於諸腦內星形膠質細胞瘤、神經節、神經膠質瘤、動靜脈畸形和血腫等軟組織病變的診斷。At present, both CT imaging and MRI are widely used in medical examinations. Although both can non-destructively observe the static structure and dynamic function of the body to obtain the characteristics of organs, tissues, and nerves, CT imaging and MRI The imaging clarity presented by different tissues is different. In detail, CT images are more advantageous for detecting and imaging hard tissues, such as bones. Therefore, CT images are often used to diagnose diseases such as skulls and calcified lesions; MRI is for the detection of soft tissues such as brain, internal organs, and blood vessels. Imaging has advantages and is often used in the diagnosis of soft tissue diseases such as astrocytomas, ganglia, gliomas, arteriovenous malformations and hematomas in the brain.

由於CT影像與MRI對於不同組織所呈現出的成像清晰度不同,通常醫師在診斷時,仍然係以人眼反覆參考比對兩者的資訊,已經失去一定的資料的完整性,且會影響診斷的精準度與效率。Because CT images and MRI have different imaging definitions for different tissues, usually doctors still use the human eye to repeatedly compare the information of the two when making a diagnosis. Certain data integrity has been lost and the diagnosis will be affected. Precision and efficiency.

雖目前已有構思將兩者資訊合併,但並不能簡單地實現,因在實際上須面臨CT影像與MRI在畫素或切割數上的不對等,且CT影像與MRI兩者會因病人拍攝姿勢,而提升合成的困難度。因此如何將兩者資訊完整地做合併,成為生醫領域重要的課題。Although there are existing ideas to merge the two information, it cannot be achieved simply because in reality it is necessary to face the mismatch in pixels or cutting numbers between CT images and MRI, and both CT images and MRI will be taken by the patient. Posture, and improve the difficulty of synthesis. Therefore, how to integrate the two information completely has become an important topic in the field of biomedicine.

有鑑於此,本發明遂針對上述習知技術之缺失,提出一種醫療影像合成方法,以有效克服上述之該等問題。In view of this, the present invention addresses the shortcomings of the above-mentioned conventional technologies and proposes a medical image synthesis method to effectively overcome the above-mentioned problems.

本發明之主要目的在提供一種醫療影像合成方法,其可將不同型態的醫療影像融合成一張檢測影像,能降低醫師針對兩張影像反覆比對,有效提升診斷效率,及診斷的準確度。The main purpose of the present invention is to provide a medical image synthesis method, which can fuse different types of medical images into one detection image, which can reduce the repeated comparison of two images by doctors, and effectively improve the diagnosis efficiency and diagnosis accuracy.

本發明之另一目的在提供一種醫療影像合成方法,其透過特殊影像合成方法,令醫療影像合成速度快速且準確性高。Another object of the present invention is to provide a medical image synthesis method, which uses a special image synthesis method to make the medical image synthesis fast and accurate.

本發明之再一目的在提供一種醫療影像合成方法,能將不同型態的醫療影像轉換為相同座標,減少合成不全的缺點,並提升合成效率。Another object of the present invention is to provide a medical image synthesis method that can convert different types of medical images into the same coordinates, reduce the shortcomings of incomplete synthesis, and improve synthesis efficiency.

為達上述之目的,本發明係提供一種醫療影像合成方法,步驟包括,首先輸入一第一模型資訊及一第二模型資訊。接著擷取第一模型資訊與第二模型資訊的組織密度數值,將第一模型資訊及第二模型資訊中,大於組織密度預設值的部分定義為不可變組織資訊。在第一模型資訊之不可變組織資訊上產生至少三基準特徵點。搜尋第二模型資訊之不可變組織資訊中,對應基準特徵點的三對應特徵點。最後,將第一模型資訊之三基準特徵點,與第二模型資訊之三對應特徵點以基準疊合,並融合第一模型資訊與第二模型資訊,產生一合成模型資訊。To achieve the above objective, the present invention provides a medical image synthesis method. The steps include first inputting a first model information and a second model information. Then, the tissue density values of the first model information and the second model information are retrieved, and the part of the first model information and the second model information that is greater than the preset value of the tissue density is defined as the immutable tissue information. At least three reference feature points are generated on the immutable organization information of the first model information. Search for three corresponding feature points corresponding to the reference feature point in the immutable tissue information of the second model information. Finally, the three reference feature points of the first model information and the three corresponding feature points of the second model information are superimposed on a reference basis, and the first model information and the second model information are merged to generate a composite model information.

在本實施例中,在第一模型資訊之不可變組織資訊上產生至少三基準特徵點之步驟中,更包括將第一個產生的基準特徵點,定義為第一中心定位點。接著以第一中心定位點為基準轉動第一模型資訊,依序產生其餘二基準特徵點,並儲存二基準特徵點對應第一中心定位點之相對距離及相對角度。In this embodiment, the step of generating at least three reference feature points on the immutable tissue information of the first model information further includes defining the first generated reference feature point as the first central positioning point. Then, the first model information is rotated using the first central positioning point as a reference, the remaining two reference feature points are sequentially generated, and the relative distance and relative angle of the two reference feature points corresponding to the first central positioning point are stored.

在本實施例中,在搜尋第二模型資訊之不可變組織資訊中,對應基準特徵點的三對應特徵點之步驟中,更包括令第二模型資訊根據第一個產生基準特徵點之投影角度轉動,使第二模型資訊與第一模型資訊呈現相同角度。接著在第二模型資訊中搜尋與第一模型資訊中,第一個產生的基準特徵點相同之對應特徵點,並定義對應特徵點為第二中心定位點。最後以第二中心定位點為基準,並根據相對距離及相對角度轉動第二模型資訊,搜尋第二模型資訊中的二對應特徵點。In this embodiment, in the step of searching for the immutable tissue information of the second model information, the three corresponding feature points corresponding to the reference feature point further includes making the second model information generate the projection angle of the reference feature point according to the first one Rotate so that the second model information and the first model information present the same angle. Then search the second model information for the corresponding feature point that is the same as the first generated reference feature point in the first model information, and define the corresponding feature point as the second central positioning point. Finally, the second central positioning point is used as a reference, and the second model information is rotated according to the relative distance and relative angle to search for two corresponding feature points in the second model information.

在本實施例中,在融合第一模型資訊與第二模型資訊,以產生該合成模型資訊之步驟包括,比對第一模型資訊與第二模型資訊之資訊密度,將資訊密度高取代密度資訊密度低的部分,以產生合成模型資訊。In this embodiment, the step of fusing the first model information and the second model information to generate the synthesized model information includes comparing the information density of the first model information and the second model information, and replacing the density information with a higher information density Low-density parts to generate synthetic model information.

在本實施例中,不可變組織資訊可為骨頭組織資訊或支氣管組織資訊。In this embodiment, the immutable tissue information can be bone tissue information or bronchial tissue information.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。Detailed descriptions are given below by specific embodiments, so that it will be easier to understand the purpose, technical content, features, and effects of the present invention.

本實施例為一種將不同型態的醫療影像融合成一張檢測影像之技術,能降低醫師針對兩張影像反覆比對,能有效提升診斷效率,及診斷的準確度。This embodiment is a technology for fusing different types of medical images into one detection image, which can reduce the physician's repeated comparison of two images, and can effectively improve diagnosis efficiency and diagnosis accuracy.

為能更加瞭解如何達到上述功效,接著說明本發明實施狀態,首先請參照第一圖,以說明本實施例之醫療影像合成方法所應用之裝置,醫療影像合成裝置1包括一第一掃描器10、一第二掃描器12分別連接一處理器14,處理器14並連接一顯示器16。第一掃描器10可為電腦斷層(computerized tomography,CT)掃描器、磁力共振成像(Magnetic Resonance Imaging,MRI)掃描器、正電子發射斷層顯像(Positron Emission Tomography)掃描器或單光子放射斷層攝影(Single-photon Emission Computed Tomography)掃描器,用以掃描病患的身體以產生第一模型資訊。第二掃描器12亦可為電腦斷層掃描器、磁力共振成像掃描器、正電子發射斷層顯像掃描器或單光子放射斷層攝影掃描器,用以掃描人的身體以產生第二模型資訊。上述第一掃描器10與第二掃描器12,並不限制可為電腦斷層掃描器、磁力共振成像掃描器、正電子發射斷層顯像掃描器或單光子放射斷層攝影掃描器,但為了明確說明本案技術特徵,在本實施例中定義第一掃描器10為磁力共振成像掃描器,第二掃描器12為電腦斷層掃描器。In order to better understand how to achieve the above effects, and then explain the implementation of the present invention, please first refer to the first figure to illustrate the device used in the medical image synthesis method of this embodiment. The medical image synthesis device 1 includes a first scanner 10 , A second scanner 12 is respectively connected to a processor 14, and the processor 14 is also connected to a display 16. The first scanner 10 may be a computerized tomography (CT) scanner, a magnetic resonance imaging (Magnetic Resonance Imaging, MRI) scanner, a Positron Emission Tomography (Positron Emission Tomography) scanner, or a single photon emission tomography. The (Single-photon Emission Computed Tomography) scanner is used to scan the patient's body to generate the first model information. The second scanner 12 can also be a computed tomography scanner, a magnetic resonance imaging scanner, a positron emission tomography scanner, or a single photon emission tomography scanner for scanning the human body to generate the second model information. The above-mentioned first scanner 10 and second scanner 12 are not limited to a computed tomography scanner, a magnetic resonance imaging scanner, a positron emission tomography scanner or a single photon emission tomography scanner, but for clear description The technical feature of this case is that the first scanner 10 is defined as a magnetic resonance imaging scanner, and the second scanner 12 is a computed tomography scanner in this embodiment.

處理器14可為具有運算功能之計算機,以接收第一掃描器10與第二掃描器12所產生的第一模型資訊與第二模型資訊,處理器14能處理並融合第一模型資訊與第二模型資訊,以產生一合成模型資訊。顯示器16可為影像顯示器,顯示器16接收處理器14之控制以顯示合成模型資訊。The processor 14 can be a computer with arithmetic function to receive the first model information and the second model information generated by the first scanner 10 and the second scanner 12, and the processor 14 can process and fuse the first model information and the first model information. 2. Model information to generate a composite model information. The display 16 may be an image display, and the display 16 receives the control of the processor 14 to display composite model information.

在說明完本實施例之系統架構後,接著說明本實施例之醫療影像合成方法如何搭配醫療影像合成裝置1進行醫療影像的處理。請參照第一圖、第二圖及第三A圖至第三D圖,本實施例之醫療影像合成方法步驟包括,首先進入步驟S10並配合參照第三A圖,第一掃描器10掃描人體後產生一第一模型資訊20,第二掃描器12掃描人體產生一第二模型資訊30,以傳遞至處理器14,輸入第一模型資訊20及第二模型資訊30至處理器14中,且處理器14接收到第一模型資訊20及第二模型資訊30後,可調整第一模型資訊20與第二模型資訊30的座標資訊,令第一模型資訊20與第二模型資訊30呈現相同世界座標資訊。在本實施例中,第一模型資訊20為複數磁力共振影像(MRI)組合而成的三維模型資訊;第二模型資訊30為電腦斷層掃描(CT)組合而成的三維模型資訊。After the description of the system architecture of this embodiment is complete, it will be explained how the medical image synthesis method of this embodiment is combined with the medical image synthesis device 1 to process medical images. Please refer to the first figure, the second figure, and the third figure A to the third figure D. The steps of the medical image synthesis method of this embodiment include: first enter step S10 and refer to the third figure A, the first scanner 10 scans the human body After generating a first model information 20, the second scanner 12 scans the human body to generate a second model information 30, which is transmitted to the processor 14, and the first model information 20 and the second model information 30 are input to the processor 14, and After the processor 14 receives the first model information 20 and the second model information 30, it can adjust the coordinate information of the first model information 20 and the second model information 30 so that the first model information 20 and the second model information 30 present the same world Coordinate information. In this embodiment, the first model information 20 is three-dimensional model information formed by a combination of complex magnetic resonance images (MRI); the second model information 30 is three-dimensional model information formed by a combination of computer tomography (CT).

接著進入步驟S12,處理器14擷取第一模型資訊20及第二模型資訊30的組織密度數值,在本實施例中,組織密度數值為亨氏單位,處理器14透過第一模型資訊20及第二模型資訊30的組織密度數值判斷組織為不可變組織資訊或可變組織資訊,舉例來說,不可變組織資訊可為骨頭組織資訊或支氣管組織資訊,可變組織資訊則可為心臟、肺臟或胃等較軟的組織。在本實施例中,大於組織密度預設值的部分定義為不可變組織資訊,組織密度預設值可為300亨氏單位(hounsfield unit,HU)。Next, in step S12, the processor 14 captures the tissue density values of the first model information 20 and the second model information 30. In this embodiment, the tissue density value is in Heinz units, and the processor 14 uses the first model information 20 and the second model information 20 The tissue density value of the model information 30 determines whether the tissue is immutable tissue information or variable tissue information. For example, the immutable tissue information may be bone tissue information or bronchial tissue information, and the variable tissue information may be heart, lung, or Softer tissues such as the stomach. In this embodiment, the part greater than the preset value of tissue density is defined as immutable tissue information, and the preset value of tissue density may be 300 Hounsfield unit (HU).

如步驟S14所示並請參照第三B圖,接下來處理器14在第一模型資訊20之不可變組織資訊上產生至少三基準特徵點22、22’、22”,當然基準特徵點22的數量選擇,包含但不限於三個,當使用者欲增加合成的精準度與信賴度時,使用者可視情況增加基準特徵點的數量。在本實施例中,處理器14可先判斷第一模型資訊20或第二模型資訊30中的不可變組織資訊的數量,以選擇不可變組織資訊較少的為第一模型資訊20產生至少三基準特徵點22、22’、22”。詳細來說,並配合參照第三A圖與第三B圖,本實施例舉例第一模型資訊20為複數磁力共振影像(MRI)組合而成的三維模型資訊,第二模型資訊30為電腦斷層掃描(CT)組合而成的三維模型資訊;其中MRI影像的性質是較容易呈現軟組織,也就是容易呈現可變組織,不可變組織如骨頭則有多處遺失,在MRI影像中會呈現多處破碎的表面樣貌;CT影像的性質則是能令不可變組織如骨頭呈現較為清晰且正確,在3D模型中不可變組織可呈現平滑的表面樣貌;由此可知,本實施例第一模型資訊20為複數磁力共振影像(MRI)組合而成的三維模型資訊,第二模型資訊30為電腦斷層掃描(CT)組合而成的三維模型資訊,因此第一模型資訊20中可呈現的不可變組織資訊,相對第二模型資訊30中可呈現的不可變組織資訊來的少,此時,處理器14即可選擇不可變組織較少的第一模型資訊20作為參考者,可確保在第一模型資訊20之不可變組織上所選取的三個基準特徵點22、22’、22”,能第二模型資訊30的對應位置中被找到,能更有效率地執行。As shown in step S14 and referring to the third figure B, the processor 14 then generates at least three reference feature points 22, 22', 22" on the immutable tissue information of the first model information 20, and of course the reference feature point 22 is The number selection includes but is not limited to three. When the user wants to increase the accuracy and reliability of the synthesis, the user can increase the number of reference feature points as appropriate. In this embodiment, the processor 14 may first determine the first model The amount of immutable organization information in the information 20 or the second model information 30 is selected to generate at least three reference feature points 22, 22', 22" for the first model information 20 with less immutable organization information. In detail, and with reference to the third A and third B diagrams, this embodiment exemplifies that the first model information 20 is a three-dimensional model information composed of a complex magnetic resonance image (MRI), and the second model information 30 is a computer tomography. Three-dimensional model information composed of scans (CT); the nature of MRI images is that it is easier to present soft tissues, that is, it is easy to present variable tissues. Invariable tissues such as bones are lost in many places, and there will be many places in MRI images. Fragmented surface appearance; the nature of CT images can make immutable tissues such as bones appear clearer and correct. In the 3D model, immutable tissues can present a smooth surface appearance; it can be seen that the first model of this embodiment The information 20 is the three-dimensional model information formed by a combination of multiple magnetic resonance images (MRI), and the second model information 30 is the three-dimensional model information formed by the combination of computer tomography (CT). Therefore, the first model information 20 can be rendered immutable The organization information is less than the immutable organization information that can be presented in the second model information 30. At this time, the processor 14 can select the first model information 20 with less immutable organization as the reference, which can ensure that the The three reference feature points 22, 22', 22" selected on the immutable organization of the model information 20 can be found in the corresponding positions of the second model information 30, and can be executed more efficiently.

請持續參照步驟S14,以詳細說明處理器14在第一模型資訊20之不可變組織資訊上產生至少三基準特徵點22、22’、22”之步驟,處理器14可自動隨機在第一模型資訊20之不可變組織上任意產生三基準特徵點22、22’、22”,但處理器14在生成三基準特徵點22、22’、22”時會將第一個產生的基準特徵點22,定義為第一中心定位點,以方便取得其餘二基準特徵點22’、22”相對於基準特徵點22的角度及位置。配合請參照第三B圖,在產生第一個基準特徵點22時,同時會產生一條投影線24打在不可變組織的基準特徵點22上,此時處理器14即可根據投影線24打在基準特徵點22的三維座標(X,Y,Z),以根據三維座標取得目前的投影角度,也就是目前正視基準特徵點22相對於整個第一模型資訊20的視覺角度。接著以第一中心定位點將第一模型資訊20定住,以第一中心定位點為基準轉動第一模型資訊20,依序產生其餘二基準特徵點22’、22”,在產生其餘二基準特徵點22’、22”的同時,處理器14並儲存紀錄二基準特徵點22’、22”相對於基準特徵點22的距離及相對角度,以利後續在第二模型資訊30搜尋對應特徵點時能更加準確且快速。在本實施例中,第一個產生的基準特徵點22為肋骨上的點,接著以基準特徵點22基準轉動第一模型資訊20,令視角落在右肩上以產生基準特徵點22’,接著仍以基準特徵點22基準轉動第一模型資訊20轉動視角至後方脊椎,以選擇基準特徵點22”,當然亦可在同一根骨頭上就定義三個基準特徵點22、22’、22”,能有效提升基準度。Please continue to refer to step S14 to describe in detail the steps of the processor 14 generating at least three reference feature points 22, 22', 22" on the immutable tissue information of the first model information 20. The processor 14 can automatically randomly select the first model The three reference feature points 22, 22', 22" are arbitrarily generated on the immutable organization of the information 20, but the processor 14 will generate the first reference feature point 22 when generating the three reference feature points 22, 22', 22" , Is defined as the first central positioning point to facilitate obtaining the angles and positions of the remaining two reference feature points 22', 22" relative to the reference feature point 22. Please refer to the third figure B for coordination. When the first reference feature point 22 is generated, a projection line 24 will be generated at the same time to hit the reference feature point 22 of the immutable tissue. At this time, the processor 14 can print according to the projection line 24. The three-dimensional coordinates (X, Y, Z) of the reference feature point 22 are used to obtain the current projection angle according to the three-dimensional coordinates, that is, the current visual angle of the reference feature point 22 relative to the entire first model information 20. Then fix the first model information 20 with the first central positioning point, rotate the first model information 20 based on the first central positioning point, and generate the remaining two reference feature points 22', 22" in sequence, and then generate the remaining two reference feature points At the same time as 22' and 22", the processor 14 also stores and records the distance and relative angle of the two reference feature points 22', 22" with respect to the reference feature point 22, so as to facilitate the subsequent search for corresponding feature points in the second model information 30 More accurate and faster. In this embodiment, the first generated reference feature point 22 is a point on the rib, and then the first model information 20 is rotated based on the reference feature point 22, so that the viewing angle falls on the right shoulder to generate the reference Feature point 22', and then still use the reference feature point 22 to rotate the first model information 20 to the rear spine to select the reference feature point 22". Of course, three reference feature points 22, 22 can also be defined on the same bone. 22', 22", can effectively improve the benchmark.

除了上述處理器14可隨機自動產生三基準特徵點22、22’、22”之外,當然也可供使用者自行點選基準特徵點22、22’、22”,當使用者可透過連接處理器14的輸入裝置(圖中未示),如操作滑鼠在第一模型資訊20之不可變組織上點選基準特徵點22、22’、22”,且在使用者點選基準特徵點22、22’、22”時,處理器14可只顯示不可變組織,以方便使用者選擇基準特徵點22、22’、22”。其餘在點選基準特徵點22、22’、22”的方法與上述處理器14隨機自動產生三基準特徵點22、22’、22”相同,故不再重複贅述。In addition to the aforementioned processor 14 that can automatically generate the three reference feature points 22, 22', 22" at random, of course, users can also select the reference feature points 22, 22', 22" by themselves. The input device of the device 14 (not shown in the figure), such as operating a mouse to click the reference feature points 22, 22', 22" on the immutable tissue of the first model information 20, and the user clicks the reference feature point 22 , 22', 22", the processor 14 can only display the immutable tissues to facilitate the user to select the reference feature points 22, 22', 22". The rest is the method of clicking the reference feature points 22, 22', 22" It is the same as the three reference feature points 22, 22', and 22" that the processor 14 generates randomly and automatically, so it will not be repeated here.

接著進入步驟S16並配合參照第三B圖與第三C圖,處理器14搜尋第二模型資訊30的不可變組織資訊中,對應基準特徵點22、22’、22”的三對應特徵點32、32’、32”。詳細來說,處理器14在搜尋第二模型資訊30之不可變組織資訊中,對應基準特徵點22、22’、22”的三對應特徵點32、32’、32”時,處理器14會控制第二模型資訊30,使第二模型資訊30根據第一個產生基準特徵點22之投影角度轉動,令第二模型資訊30與第一模型資訊20呈現相同視覺角度。接著處理器14在第二模型資訊30中搜尋與第一模型資訊20中,第一個產生的基準特徵點22相同之對應特徵點32,並定義對應特徵點32為第二中心定位點;處理器14在搜尋第二中心定位點時,係擷取第一模型資訊20中,第一個產生的基準特徵點22的第一影像,以根據第一影像,比對第二資訊模型30中相同第一影像的區域,以定義該區域為對應第一個產生的基準特徵點22的對應特徵點32。Then go to step S16 and refer to the third B and third C pictures, the processor 14 searches the immutable tissue information of the second model information 30, and the three corresponding feature points 32 corresponding to the reference feature points 22, 22', 22" , 32', 32". In detail, when the processor 14 searches for the immutable tissue information of the second model information 30, the processor 14 will respond to the three corresponding feature points 32, 32', 32" corresponding to the reference feature points 22, 22', 22" The second model information 30 is controlled to rotate the second model information 30 according to the projection angle of the first generated reference feature point 22, so that the second model information 30 and the first model information 20 present the same visual angle. Then the processor 14 searches the second model information 30 for the corresponding feature point 32 that is the same as the first generated reference feature point 22 in the first model information 20, and defines the corresponding feature point 32 as the second central positioning point; processing; When searching for the second central positioning point, the device 14 captures the first image of the reference feature point 22 generated first in the first model information 20, and compares the same in the second information model 30 according to the first image. The area of the first image is defined as the corresponding feature point 32 corresponding to the first generated reference feature point 22.

處理器14找到第二資訊模型30中的第二中心定位點後,以第二中心定位點為基準,並根據先前產生基準特徵點22、22’、22”所記錄的相對距離及相對角度轉動第二模型資訊30,藉此搜尋第二模型資訊30中的其餘二對應特徵點32'、32”,同理處理器14也會根據二對應特徵點32'、32”區域的影像與第一模型資訊20中的二基準特徵點22'、22”之影像比對,以確保搜尋到的二對應特徵點32'、32”是正確的。透過在產生基準特徵點22、22’、22”記錄的相對距離及相對角度,以透過相對距離及相對角度搜尋對應特徵點的方法,可提升搜尋的速度且準確性高,令合成速度快速。After the processor 14 finds the second central positioning point in the second information model 30, it uses the second central positioning point as a reference, and rotates according to the relative distance and relative angle recorded by the previously generated reference feature points 22, 22', 22" The second model information 30 is used to search for the remaining two corresponding feature points 32', 32" in the second model information 30. Similarly, the processor 14 will also compare the image of the two corresponding feature points 32', 32" with the first Image comparison of the two reference feature points 22', 22" in the model information 20 to ensure that the two corresponding feature points 32', 32" found are correct. By generating the reference feature points 22, 22', 22" With the recorded relative distance and relative angle, the method of searching the corresponding feature point through the relative distance and relative angle can increase the search speed and accuracy, and make the synthesis speed fast.

最後進入步驟S18並請參照第三B圖至第三D圖,處理器14將第一模型資訊20之三基準特徵點22、22’、22”與第二模型資訊30之三對應特徵點32、32’、32”以基準疊合,並融合第一模型資訊20與第二模型資訊30,產生一合成模型資訊40,處理器14並控制顯示器16,以在顯示器16中顯示合成模型資訊40。在融合的過程中,處理器14會比對第一模型資訊20與第二模型資訊30之資訊密度的數量,在本實施例中,資訊密度可為像素密度,處理器14比對資訊密度的數量後,會將資訊密度高取代密度資訊密度低的部分,以產生合成模型資訊40。詳細來說,假設第二模型資訊30中有一塊區域的資訊密度為100×100×100,而第一模型資訊20相對該區域的部分為50×50×50時,處理器14即可將第二模型資訊30中資訊密度較高的區域,取代資訊密度明顯較低的第一模型資訊20區域,資訊密度高取代資訊密度低多對一的取代模式,可使用平均、取中位數、內插法,內插法可為多項式插值(polynomial interpolation)、拉格朗日插值法(Lagrange Interpolation)、雙線性插值(Bilinear Interpolation)、徑向基函數插值(Radial Basis Function Interpolation)等等多種既有的手段來決定,且能確保每筆數據的真實。但若將資訊密度較低的取代資訊密度較高的,就是以一對多的取代模式方式,此時就必須透過內插法等方式生成虛擬的數值,相對來說產生資訊就不準確。Finally, go to step S18 and refer to the third B to third D, the processor 14 corresponds the three reference feature points 22, 22', 22" of the first model information 20 to the three reference feature points 32 of the second model information 30 , 32', and 32" are superimposed on a basis, and the first model information 20 and the second model information 30 are combined to generate a composite model information 40. The processor 14 controls the display 16 to display the composite model information 40 on the display 16. . During the fusion process, the processor 14 compares the number of information densities of the first model information 20 and the second model information 30. In this embodiment, the information density may be the pixel density, and the processor 14 compares the information density After the quantity, the part with high information density will be replaced with low information density to generate synthetic model information 40. In detail, assuming that the information density of an area in the second model information 30 is 100×100×100, and the portion of the first model information 20 relative to the area is 50×50×50, the processor 14 can The area with higher information density in the second model information 30 replaces the area with significantly lower information density in the first model information 20. The high information density replaces the low information density. The many-to-one replacement mode can use average, median, and internal Interpolation, the interpolation method can be polynomial interpolation, Lagrange Interpolation, Bilinear Interpolation, Radial Basis Function Interpolation, etc. There are methods to decide, and to ensure the truthfulness of each piece of data. However, if the information density is lower to replace the higher information density, it is a one-to-many replacement mode. At this time, it is necessary to generate virtual values through interpolation and other methods. Relatively speaking, the generated information is not accurate.

雖上述使用磁力共振成像掃描器及電腦斷層掃描器所產生的影像模型進行疊合的實施例說明,但本發明當然並不限於上述的實施例,本發明只要是任意兩種影像模型的疊合,都能使用本發明技術。舉例來說,本發明之技術亦可將電腦斷層艘描器與正電子發射斷層顯像掃描器之影像模型疊合,或將磁力共振成像掃描器與掃描器或單光子放射斷層攝影掃描器之影像模型疊合。透過本發明的方法能快速將不同型態的醫療影像融合成一張檢測影像,能降低醫師針對兩張影像模型反覆比對,能有效提升診斷效率,及診斷的準確度。Although the foregoing embodiment of superimposing the image models generated by the magnetic resonance imaging scanner and the computed tomography scanner is described, the present invention is of course not limited to the foregoing embodiment, as long as the present invention is a superposition of any two image models. , Can use the technology of the present invention. For example, the technology of the present invention can also superimpose the image model of a CT scanner and a positron emission tomography scanner, or combine a magnetic resonance imaging scanner with a scanner or a single photon emission tomography scanner. The image model is superimposed. Through the method of the present invention, different types of medical images can be quickly fused into one detection image, which can reduce the physician's repeated comparison of two image models, and can effectively improve diagnosis efficiency and diagnosis accuracy.

綜上所述,本發明透過特殊合成方法,可快速將不同型態的醫療影像融合成一張檢測影像,能降低醫師針對兩張影像反覆比對,能有效提升診斷效率,及診斷的準確度。本發明更能將不同型態的醫療影像轉換為相同座標,減少合成不全的缺點,並提升合成效率。In summary, the present invention can quickly fuse different types of medical images into one detection image through a special synthesis method, which can reduce the physician's repeated comparison of two images, and can effectively improve diagnosis efficiency and diagnosis accuracy. The present invention can further convert different types of medical images into the same coordinates, reduce the shortcomings of incomplete synthesis, and improve the synthesis efficiency.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。Only the above are only preferred embodiments of the present invention and are not used to limit the scope of implementation of the present invention. Therefore, all equivalent changes or modifications made in accordance with the characteristics and spirit of the application scope of the present invention should be included in the patent application scope of the present invention.

1:醫療影像合成裝置 10:第一掃描器 12:第二掃描器 14:處理器 16:顯示器 20:第一模型資訊 22:基準特徵點 22’:基準特徵點 22”:基準特徵點 24:投影線 30:第二模型資訊 32:對應特徵點 32’:對應特徵點 32”:對應特徵點 40:合成模型資訊 S10~S18:步驟 1: Medical image synthesis device 10: The first scanner 12: second scanner 14: processor 16: display 20: First model information 22: Reference feature points 22’: Reference feature point 22": Reference feature point 24: Projection line 30: Second model information 32: Corresponding feature points 32’: Corresponding feature points 32”: Corresponding feature points 40: Synthetic model information S10~S18: steps

第一圖為本實施例應用之系統方塊圖。 第二圖為本實施例之方法流程圖。 第三A圖至第三D圖為本實施例之連續合成影像示意圖。 The first figure is a block diagram of the system applied in this embodiment. The second figure is a flowchart of the method of this embodiment. The third A to the third D are schematic diagrams of the continuous composite image of this embodiment.

S10~S18:步驟 S10~S18: steps

Claims (9)

一種醫療影像合成方法,包括下列步驟:輸入一第一模型資訊及一第二模型資訊;擷取該第一模型資訊及該第二模型資訊的組織密度數值,將該第一模型資訊及該第二模型資訊中,大於組織密度預設值的部分定義為不可變組織資訊;在該第一模型資訊之該不可變組織資訊上產生至少三基準特徵點,包括:將第一個產生的該基準特徵點,定義為第一中心定位點;及以該第一中心定位點為基準轉動該第一模型資訊,依序產生其餘二該基準特徵點,並儲存二該基準特徵點對應該第一中心定位點之相對距離及相對角度;搜尋該第二模型資訊之該不可變組織資訊中,對應該基準特徵點的三對應特徵點;以及將該第一模型資訊之該三基準特徵點與該第二模型資訊之該三對應特徵點以基準疊合,並融合該第一模型資訊與該第二模型資訊,產生一合成模型資訊。 A medical image synthesis method includes the following steps: inputting a first model information and a second model information; capturing the first model information and the second model information tissue density value, the first model information and the second model information In the second model information, the part greater than the default value of tissue density is defined as immutable tissue information; generating at least three benchmark feature points on the immutable tissue information of the first model information, including: the first generated benchmark The feature point is defined as the first central location point; and the first model information is rotated based on the first central location point, the other two reference feature points are sequentially generated, and the two reference feature points are stored corresponding to the first center The relative distance and relative angle of the positioning point; the three corresponding feature points corresponding to the reference feature point in the immutable tissue information of the second model information; and the three reference feature points of the first model information and the first model information The three corresponding feature points of the second model information are superimposed with a reference, and the first model information and the second model information are merged to generate a composite model information. 如請求項1所述之醫療影像合成方法,其中在搜尋該第二模型資訊之該不可變組織資訊中,對應該基準特徵點的三對應特徵點之步驟中,包括:令該第二模型資訊根據第一個產生該基準特徵點之投影角度轉動,使該第二模型資訊與該第一模型資訊呈現相同角度;在該第二模型資訊中搜尋與該第一模型資訊中,第一個產生的該基準特徵點相同之該對應特徵點,並定義該對應特徵點為第二中心定位點;及 以該第二中心定位點為基準,並根據該相對距離及該相對角度轉動該第二模型資訊,以搜尋該第二模型資訊中的該二對應特徵點。 The medical image synthesis method according to claim 1, wherein in the immutable tissue information of the second model information, the step of three corresponding feature points corresponding to the reference feature point includes: making the second model information Rotate according to the projection angle of the first generation of the reference feature point, so that the second model information and the first model information present the same angle; the second model information is searched for and the first model information is generated first The corresponding feature point whose reference feature point is the same, and the corresponding feature point is defined as the second central positioning point; and Taking the second central positioning point as a reference, and rotating the second model information according to the relative distance and the relative angle to search for the two corresponding feature points in the second model information. 如請求項2所述之醫療影像合成方法,其中在該第二模型資訊中搜尋與該第一模型資訊中,第一個產生的該基準特徵點相同之該對應特徵點之步驟時,係擷取該第一模型資訊中,第一個產生的該基準特徵點的第一影像,以根據該第一影像,比對該第二資訊模型中相同該第一影像的區域,以定義該區域為對應該第一個產生的該基準特徵點的該對應特徵點。 The medical image synthesis method according to claim 2, wherein the step of searching for the corresponding feature point that is the same as the reference feature point first generated in the first model information in the second model information is to extract Take the first image of the reference feature point generated first in the first model information to compare the same area of the first image in the second information model based on the first image to define the area as The corresponding feature point corresponding to the reference feature point generated first. 如請求項1所述之醫療影像合成方法,其中在融合該第一模型資訊與該第二模型資訊,以產生該合成模型資訊之步驟包括,比對該第一模型資訊與該第二模型資訊之資訊密度,將該資訊密度高取代該密度資訊密度低的部分,以產生該合成模型資訊。 The medical image synthesis method according to claim 1, wherein the step of fusing the first model information and the second model information to generate the synthesized model information includes comparing the first model information with the second model information In order to generate the composite model information, the high information density replaces the low information density part of the information density. 如請求項1所述之醫療影像合成方法,其中該第一模型資訊為複數磁力共振影像(Magnetic Resonance Imaging,MRI)組合而成的三維模型資訊。 The medical image synthesis method according to claim 1, wherein the first model information is three-dimensional model information formed by a combination of complex magnetic resonance imaging (MRI). 如請求項1所述之醫療影像合成方法,其中該第二模型資訊為電腦斷層掃描(computerized tomography,CT)組合而成的三維模型資訊。 The medical image synthesis method according to claim 1, wherein the second model information is 3D model information combined by computerized tomography (CT). 如請求項1所述之醫療影像合成方法,其中該組織密度預設值為300亨氏單位(hounsfield unit,HU)。 The medical image synthesis method according to claim 1, wherein the tissue density is preset to 300 Hounsfield unit (HU). 如請求項1所述之醫療影像合成方法,其中該不可變組織資訊為骨頭組織資訊或支氣管組織資訊。 The medical image synthesis method according to claim 1, wherein the immutable tissue information is bone tissue information or bronchial tissue information. 如請求項1所述之醫療影像合成方法,其中該第一模型資訊與該第二模型資訊具有相同世界座標資訊。 The medical image synthesis method according to claim 1, wherein the first model information and the second model information have the same world coordinate information.
TW109116897A 2020-05-21 2020-05-21 Medical image synthesis method TWI730777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109116897A TWI730777B (en) 2020-05-21 2020-05-21 Medical image synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109116897A TWI730777B (en) 2020-05-21 2020-05-21 Medical image synthesis method

Publications (2)

Publication Number Publication Date
TWI730777B true TWI730777B (en) 2021-06-11
TW202143916A TW202143916A (en) 2021-12-01

Family

ID=77517117

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116897A TWI730777B (en) 2020-05-21 2020-05-21 Medical image synthesis method

Country Status (1)

Country Link
TW (1) TWI730777B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849773A (en) * 2013-12-17 2016-08-10 皇家飞利浦有限公司 Model-based segmentation of an anatomical structure
CN109146993A (en) * 2018-09-11 2019-01-04 广东工业大学 A kind of Method of Medical Image Fusion and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849773A (en) * 2013-12-17 2016-08-10 皇家飞利浦有限公司 Model-based segmentation of an anatomical structure
CN109146993A (en) * 2018-09-11 2019-01-04 广东工业大学 A kind of Method of Medical Image Fusion and system

Also Published As

Publication number Publication date
TW202143916A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
US9980691B2 (en) Method and apparatus for three dimensional viewing of images
JP6080248B2 (en) Three-dimensional image display apparatus and method, and program
US9349183B1 (en) Method and apparatus for three dimensional viewing of images
US6983063B1 (en) Computer-aided diagnosis method for aiding diagnosis of three dimensional digital image data
US20070247454A1 (en) 3D visualization with synchronous X-ray image display
CN106901834A (en) The preoperative planning of minimally invasive cardiac surgery and operation virtual reality simulation method
US20080137924A1 (en) Device for merging a 2D radioscopy image with an image from a 3D image data record
CN107194909A (en) Medical image-processing apparatus and medical imaging processing routine
JP2009106530A (en) Medical image processing apparatus, medical image processing method, and medical image diagnostic apparatus
Rohkohl et al. CAVAREV—an open platform for evaluating 3D and 4D cardiac vasculature reconstruction
US20080084415A1 (en) Orientation of 3-dimensional displays as a function of the regions to be examined
JP5415245B2 (en) MEDICAL IMAGE DISPLAY DEVICE, METHOD, AND PROGRAM
US20140015836A1 (en) System and method for generating and displaying a 2d projection from a 3d or 4d dataset
JP2004057411A (en) Method for preparing visible image for medical use
TWI730777B (en) Medical image synthesis method
JP2008086658A (en) Image display device, and image display program
CN115375595A (en) Image fusion method, device, system, computer equipment and storage medium
CN113256754B (en) Stacking projection reconstruction method for segmented small-area tumor mass
JP6896145B2 (en) Image processing equipment, image processing methods, and image processing programs
KR101525040B1 (en) Method and Apparatus of Generation of reference image for determining scan range of pre-operative images
CN113421323A (en) Bimodal volume data region-of-interest fusion method based on ray projection
Kim et al. Biomedical image visualization and display technologies
JP2003305036A (en) Method for producing sequence
Dandekar et al. Image registration accuracy with low-dose CT: How low can we go?
US20240020860A1 (en) Method and apparatus of fusion of multimodal images to fluoroscopic images