TWI728920B - Electronic circuit for online monitoring a clock signal - Google Patents

Electronic circuit for online monitoring a clock signal Download PDF

Info

Publication number
TWI728920B
TWI728920B TW109134289A TW109134289A TWI728920B TW I728920 B TWI728920 B TW I728920B TW 109134289 A TW109134289 A TW 109134289A TW 109134289 A TW109134289 A TW 109134289A TW I728920 B TWI728920 B TW I728920B
Authority
TW
Taiwan
Prior art keywords
pulse
electronic circuit
coupled
flip
signal
Prior art date
Application number
TW109134289A
Other languages
Chinese (zh)
Other versions
TW202215786A (en
Inventor
黃錫瑜
陳韋豪
許竹均
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW109134289A priority Critical patent/TWI728920B/en
Application granted granted Critical
Publication of TWI728920B publication Critical patent/TWI728920B/en
Publication of TW202215786A publication Critical patent/TW202215786A/en

Links

Images

Abstract

An electronic circuit for online monitoring a clock signal is provided. The electronic circuit includes a period-to-pulse converter, a pulse-shrinking block and an encoder. The period-to-pulse converter receives the clock signal, and converts each of a plurality of clock period samples of the clock signal to generate a pulse-train signal having a plurality of pulses. The pulse-shrinking block receives the plurality of pulses of the pulse-train signal, and generates a plurality of catch bits by shrinking the plurality of pulses of the pulse-train signal. The encoder outputs a minimum code denoting a minimum clock period of the clock signal and a maximum code denoting a maximum clock period of the clock signal according to the plurality of catch bits. The electronic circuit subtracts the maximum code and the minimum code to generate a peak-to-peak jitter amount code.

Description

在線監測時脈信號的電子電路Electronic circuit for on-line monitoring of clock signal

本發明有關於一種電路設計,且特別是一種用於在線監測時脈信號的電子電路。The invention relates to a circuit design, and in particular to an electronic circuit for online monitoring of clock signals.

對於攸關安全的汽車或生物醫學裝置,在線健康監測已日益變得愈來愈重要。這些監測可幫助在矽驗證製程期間暴露裝置的潛在弱點,以及快速查明消費者所返回的故障裝置的根本原因,且藉此使用者可有效地縮短產品偵錯及修正的周轉時間。此外,這些監測可進一步幫助俘獲由於各種原因(諸如惡化參數缺陷、環境雜訊、軟誤差及/或老化)所致的效能危害,且藉此警告系統預先反應以避免潛在致命故障。For safety-critical cars or biomedical devices, online health monitoring has become increasingly important. These monitoring can help expose the potential weaknesses of the device during the silicon verification process, and quickly identify the root cause of the failed device returned by the consumer, and by this, the user can effectively shorten the turnaround time for product debugging and correction. In addition, these monitoring can further help capture performance hazards due to various reasons (such as deteriorated parameter defects, environmental noise, soft errors, and/or aging), and thereby warn the system to react in advance to avoid potentially fatal failures.

在此方面,常見方法中的其中一個為監測器可檢查由裝置中應用的鎖相迴路(phase-locked loop;PLL)生成的時脈信號的峰對峰抖動,及延遲鎖定迴路(delay locked loop;DLL)的輸入信號與輸出信號之間的相位誤差。對於鎖相迴路,時脈週期變化為一個重要健康狀況指示符。因此,如何有效地監測由鎖相迴路生成的時脈信號為本領域中的重要研究方向,且下文提供若干實施例的解決方案。In this regard, one of the common methods is that the monitor can check the peak-to-peak jitter of the clock signal generated by the phase-locked loop (PLL) applied in the device, and the delay locked loop (delay locked loop). ; DLL) the phase error between the input signal and the output signal. For phase-locked loops, the clock cycle change is an important health indicator. Therefore, how to effectively monitor the clock signal generated by the phase-locked loop is an important research direction in the field, and the solutions of several embodiments are provided below.

本發明是針對用於監測時脈信號的電子電路,且能夠執行由鎖相迴路提供的時脈信號的有效在線監測。The invention is directed to an electronic circuit for monitoring the clock signal, and can perform effective online monitoring of the clock signal provided by a phase-locked loop.

本發明的電子電路包含週期至脈衝轉換器、脈衝縮減區塊以及編碼器。週期至脈衝轉換器接收由鎖相迴路輸出的時脈信號,且轉換時脈信號的多個時脈週期樣本中的每一個以生成具有多個脈衝的脈衝串信號。脈衝縮減區塊接收脈衝串信號的多個脈衝,且藉由縮減脈衝串信號的多個脈衝來生成多個捕獲位元。編碼器根據多個捕獲位元來輸出最小編碼及最大編碼,最小編碼指示時脈信號的最小時脈週期,最大編碼指示時脈信號的最大時脈週期。電子電路減去最大編碼及最小編碼以生成峰對峰抖動量編碼。The electronic circuit of the present invention includes a period-to-pulse converter, a pulse reduction block, and an encoder. The period-to-pulse converter receives the clock signal output by the phase-locked loop, and converts each of a plurality of clock period samples of the clock signal to generate a pulse train signal with a plurality of pulses. The pulse reduction block receives multiple pulses of the pulse train signal, and generates multiple capture bits by reducing the multiple pulses of the pulse train signal. The encoder outputs a minimum code and a maximum code according to multiple captured bits. The minimum code indicates the minimum clock period of the clock signal, and the maximum code indicates the maximum clock period of the clock signal. The electronic circuit subtracts the maximum code and the minimum code to generate a peak-to-peak jitter amount code.

基於以上,根據本發明的電子電路,電子電路可藉由監測由時脈信號轉換的脈衝串信號的多個脈衝的縮減結果來獲得對應於時脈信號的最小編碼及最大編碼,且可藉由減去最小編碼及最大編碼來計算與時脈信號相關的峰對峰抖動量編碼。Based on the above, according to the electronic circuit of the present invention, the electronic circuit can obtain the minimum code and the maximum code corresponding to the clock signal by monitoring the reduction result of multiple pulses of the pulse train signal converted from the clock signal, and can obtain the minimum code and the maximum code corresponding to the clock signal by Subtract the minimum code and the maximum code to calculate the peak-to-peak jitter amount code associated with the clock signal.

為使前述內容更容易理解,如下詳細描述伴隨附圖的若干實施例。In order to make the foregoing content easier to understand, several embodiments accompanying the drawings are described in detail as follows.

應理解,在不脫離本發明的範疇的情況下,可利用其他實施例,且可發生結構變化。此外,應理解,本文中所使用的措詞及術語係用於描述目的且不應視為限制性的。「包含」、「包括」或「具有」以及其變化形式在本文中的使用意謂涵蓋其後所列舉的項目及其等效物以及額外項目。除非以其他方式受限,否則本文中的術語「連接」、「耦接」以及「安裝」及其變化形式廣泛加以使用,且涵蓋直接及間接的連接、耦接以及安裝。It should be understood that without departing from the scope of the present invention, other embodiments may be utilized, and structural changes may occur. In addition, it should be understood that the wording and terminology used herein are for descriptive purposes and should not be considered restrictive. The use of "include", "include" or "have" and their variations in this article means to cover the items listed thereafter and their equivalents and additional items. Unless restricted in other ways, the terms "connection", "coupling" and "installation" and their variations are widely used in this article, and cover direct and indirect connection, coupling, and installation.

圖1為根據本發明的實施例的說明電子電路的示意圖。參看圖1,電子電路100耦接至鎖相迴路10,且用以接收由鎖相迴路10生成的時脈信號CS。鎖相迴路10可應用於例如安全攸關汽車或生物醫學裝置中。在本發明的實施例中,電子電路100可不間斷地處理由鎖相迴路10連續生成的時脈信號CS以在線監測時脈信號CS,且輸出數位資料,所述數位資料指示時脈信號CS的多個時脈週期變化,諸如最小時脈週期、最大時脈信號以及與時脈信號CS相關的峰對峰抖動量編碼(peak-to-peak jitter amount code)。因此,電子電路100或裝置的其他處理電路可例如基於對最小時脈週期、最大時脈信號以及峰對峰抖動量編碼的分析而有效判斷裝置的操作狀態是否正常。然而,本發明並不受限於時脈信號CS由鎖相迴路10生成。在本發明的其他實施例中,時脈信號CS可從其他時鐘系統或其他功能電路經俘獲,且電子電路100能夠緊接著藉由在線監測時脈信號CS來判斷電路操作狀態或時鐘系統操作狀態。Fig. 1 is a schematic diagram illustrating an electronic circuit according to an embodiment of the present invention. Referring to FIG. 1, the electronic circuit 100 is coupled to the phase locked loop 10 and used for receiving the clock signal CS generated by the phase locked loop 10. The phase-locked loop 10 can be used in, for example, safety-critical automobiles or biomedical devices. In the embodiment of the present invention, the electronic circuit 100 can continuously process the clock signal CS continuously generated by the phase-locked loop 10 to monitor the clock signal CS online, and output digital data that indicates the value of the clock signal CS Multiple clock cycle changes, such as the minimum clock cycle, the maximum clock signal, and the peak-to-peak jitter amount code related to the clock signal CS. Therefore, the electronic circuit 100 or other processing circuits of the device can effectively determine whether the operating state of the device is normal based on the analysis of the minimum clock period, the maximum clock signal, and the peak-to-peak jitter amount encoding, for example. However, the present invention is not limited to the clock signal CS generated by the phase-locked loop 10. In other embodiments of the present invention, the clock signal CS can be captured from other clock systems or other functional circuits, and the electronic circuit 100 can then determine the circuit operation state or the clock system operation state by monitoring the clock signal CS online. .

應解釋,在正常操作期間,鎖定狀態中的鎖相迴路10的輸出頻率通常在平均感測中極準確,其中輸出頻率可為1 GHz。因此,其輸出時脈週期樣本往往會具有等於目標時脈週期的標稱值的分佈。此外,分佈往往會具有與其標稱值的相對對稱偏差,例如,[-10ps, +10ps]。然而,當鎖相迴路10受在線故障或暫時雜訊影響時,此對稱屬性可即刻受到破壞,從而引起異常狀況,其中最小時脈週期可過小(例如,從43變為36),而最大時脈週期可保持正常(例如,在50下),或反之亦然。在此故障情形下,峰對峰抖動量指示符可仍標示出異常狀況(例如,從50-43=7至50-36=14)。然而,幾乎不知道其從7至14的增大是否是由於過小的最小時脈週期或過大的最大時脈週期。另一方面,本發明電路不僅可展現最大時脈週期且亦可展現異常的最小時脈週期。It should be explained that during normal operation, the output frequency of the phase-locked loop 10 in the locked state is usually extremely accurate in average sensing, where the output frequency may be 1 GHz. Therefore, its output clock period samples often have a distribution equal to the nominal value of the target clock period. In addition, the distribution tends to have a relative symmetric deviation from its nominal value, for example, [-10ps, +10ps]. However, when the phase-locked loop 10 is affected by an online fault or temporary noise, this symmetry property can be immediately destroyed, causing abnormal conditions, in which the minimum clock period can be too small (for example, from 43 to 36), and the maximum The pulse period can remain normal (for example, under 50), or vice versa. In this fault situation, the peak-to-peak jitter indicator can still indicate abnormal conditions (for example, from 50-43=7 to 50-36=14). However, it is hardly known whether its increase from 7 to 14 is due to an excessively small minimum clock period or an excessively large maximum clock period. On the other hand, the circuit of the present invention can not only exhibit the maximum clock period but also exhibit an abnormal minimum clock period.

因此,實施例的電子電路100用以著重於監測用於數位時脈的鎖相迴路10。具體而言,異常小的最小時脈週期尤其有害(相較於過大的最大時脈週期),此是由於其可導致由鎖相迴路10輸出時脈信號驅動的邏輯電路中的計算故障。因此,電子電路100設計成能夠在監測期間即時地報告最小時脈週期及最大時脈週期的任何改變。此外,根據此兩個變量,峰對峰抖動量亦可被推導出作為補充健康狀況指示符。Therefore, the electronic circuit 100 of the embodiment is used to focus on monitoring the phase-locked loop 10 for digital clock. Specifically, an abnormally small minimum clock period is particularly harmful (compared to an excessively large maximum clock period) because it can cause calculation failures in the logic circuit driven by the output clock signal of the phase-locked loop 10. Therefore, the electronic circuit 100 is designed to be able to report any changes in the minimum clock period and the maximum clock period in real time during the monitoring period. In addition, based on these two variables, the amount of peak-to-peak jitter can also be derived as a supplementary health indicator.

具體而言,實施例的電子電路100包含週期至脈衝轉換器110、脈衝縮減區塊120、編碼器130以及控制器140。電子電路100可為時間至數位轉換器(time-to-digital converter;TDC),但本發明不限於此。在本發明的實施例中,週期至脈衝轉換器110耦接至鎖相迴路10,且從鎖相迴路10接收時脈信號CS。脈衝縮減區塊120耦接至週期至脈衝轉換器110、編碼器130以及控制器140。控制器140可將控制信號或致能信號輸出至脈衝縮減區塊120以控制或致能脈衝縮減區塊120。在本發明的實施例中,週期至脈衝轉換器110可轉換時脈信號CS的多個時脈週期樣本中的每一個以生成具有多個脈衝的至脈衝縮減區塊120的脈衝串信號PT。在本發明的實施例中,週期至脈衝轉換器110可將時脈信號CS的多個信號波形的每一上升緣或每一下降緣轉換為脈衝串信號PT的多個脈衝。因此,脈衝串信號PT的多個脈衝的每一脈衝寬度與時脈信號CS的多個時脈週期樣本的每一時脈週期長度正相關。Specifically, the electronic circuit 100 of the embodiment includes a period-to-pulse converter 110, a pulse reduction block 120, an encoder 130, and a controller 140. The electronic circuit 100 may be a time-to-digital converter (TDC), but the invention is not limited thereto. In the embodiment of the present invention, the period-to-pulse converter 110 is coupled to the phase-locked loop 10 and receives the clock signal CS from the phase-locked loop 10. The pulse reduction block 120 is coupled to the period-to-pulse converter 110, the encoder 130 and the controller 140. The controller 140 can output a control signal or an enabling signal to the pulse reduction block 120 to control or enable the pulse reduction block 120. In an embodiment of the present invention, the period-to-pulse converter 110 may convert each of the multiple clock period samples of the clock signal CS to generate the pulse train signal PT to the pulse reduction block 120 with multiple pulses. In the embodiment of the present invention, the period-to-pulse converter 110 can convert each rising edge or each falling edge of the multiple signal waveforms of the clock signal CS into multiple pulses of the pulse train signal PT. Therefore, each pulse width of the multiple pulses of the pulse train signal PT is positively correlated with the length of each clock cycle of the multiple clock cycle samples of the clock signal CS.

在本發明的實施例中,脈衝縮減區塊120可藉由縮減脈衝串信號PT的多個脈衝來生成多個捕獲位元。編碼器130可根據多個捕獲位元來生成最小編碼及最大編碼,且將最小編碼及最大編碼輸出至電子電路100的其他處理電路,所述最小編碼指示時脈信號CS的最小時脈週期,所述最大編碼指示時脈信號CS的最大時脈週期。舉例而言,編碼器130可為水印至二進位編碼,且多個捕獲位元的數目可為64個。編碼器130藉由轉換64個捕獲位元來生成具有5個位元的二進位編碼。此外,電子電路100可減去最小編碼及最大編碼,以便生成指示時脈信號CS的峰對峰週期抖動的峰對峰抖動量編碼。另外,實施例的電子電路100可為全數位電子電路且鎖相迴路10可為全數位鎖相迴路(all-digital phase-locked loop;ADPLL),但本發明不限於此。In an embodiment of the present invention, the pulse reduction block 120 may generate a plurality of capture bits by reducing a plurality of pulses of the pulse train signal PT. The encoder 130 can generate a minimum code and a maximum code according to a plurality of captured bits, and output the minimum code and the maximum code to other processing circuits of the electronic circuit 100, and the minimum code indicates the minimum clock period of the clock signal CS, The maximum code indicates the maximum clock period of the clock signal CS. For example, the encoder 130 may be watermark to binary encoding, and the number of multiple capture bits may be 64. The encoder 130 generates a 5-bit binary code by converting 64 captured bits. In addition, the electronic circuit 100 can subtract the minimum code and the maximum code to generate a peak-to-peak jitter amount code indicating the peak-to-peak period jitter of the clock signal CS. In addition, the electronic circuit 100 of the embodiment may be an all-digital electronic circuit and the phase-locked loop 10 may be an all-digital phase-locked loop (ADPLL), but the invention is not limited thereto.

圖2為根據本發明的實施例的說明水印規則的軌跡圖。參看圖1及圖2,以下描述首先在概念上解釋如何基於水印規則來判斷時脈信號CS的最小時脈週期及最大時脈週期。在本發明的實施例中,電子電路100可將輸入脈衝縮減區塊120的脈衝串信號PT的每一脈衝的生存軌跡變成「單點水印」或簡稱水印。如圖2中所展示,存在按順序輸入脈衝縮減區塊120的脈衝串信號PT的三個輸入脈衝P1至輸入脈衝P3,且呈現三個各別脈衝縮減過程且保留三個生存軌跡201至生存軌跡203。脈衝串信號PT的三個輸入脈衝P1至輸入脈衝P3對應於時脈信號CS的三個時脈週期樣本。Fig. 2 is a trajectory diagram illustrating watermarking rules according to an embodiment of the present invention. 1 and 2, the following description first conceptually explains how to determine the minimum clock period and the maximum clock period of the clock signal CS based on the watermark rule. In the embodiment of the present invention, the electronic circuit 100 can change the survival trajectory of each pulse of the pulse train signal PT of the input pulse reduction block 120 into a "single-point watermark" or simply a watermark. As shown in FIG. 2, there are three input pulses P1 to P3 that sequentially input the pulse train signal PT of the pulse reduction block 120, and present three separate pulse reduction processes and retain three survival trajectories 201 to survive Track 203. The three input pulses P1 to P3 of the pulse train signal PT correspond to three clock cycle samples of the clock signal CS.

在本發明的實施例中,在三個生存軌跡201至生存軌跡203已由脈衝縮減區塊120處理之後,電子電路100可記錄三個水印方位201P至水印方位203P。電子電路100可進一步組合三個水印方位201P至水印方位203P以在監測會話期間在任何時候快速地報告時脈信號CS的最小時脈週期Pmin、最大時脈週期Pmax以及峰對峰抖動量編碼Pj。基於以上,脈衝縮減區塊120的具體電路實施方案將詳細描述於以下實施例中。In the embodiment of the present invention, after the three survival trajectories 201 to 203 have been processed by the pulse reduction block 120, the electronic circuit 100 can record the three watermark orientations 201P to 203P. The electronic circuit 100 may further combine the three watermark positions 201P to the watermark positions 203P to quickly report the minimum clock period Pmin, the maximum clock period Pmax, and the peak-to-peak jitter amount encoding Pj of the clock signal CS at any time during the monitoring session. . Based on the above, the specific circuit implementation of the pulse reduction block 120 will be described in detail in the following embodiments.

圖3為根據本發明的實施例的說明脈衝縮減區塊的示意圖。參考圖3,在本發明的實施例中,脈衝縮減區塊120包含多個縮減單元121_1至縮減單元121_N、多個第一層電路122_1至第一層電路122_N以及多個第二層電路123_1至第二層電路123_N,其中N為正整數。多個第一層電路122_1至第一層電路122_N以及多個第二層電路123_1至第二層電路123_N分別為正反器(flip-flop;FF)電路。縮減單元121_1由串聯耦接的兩個反相器121_1a及反相器121_1b組成,且縮減單元121_2至縮減單元121_N的內部元件與縮減單元121_1相同。更具體而言,脈衝縮減區塊120的所述電路及元件可分類為多個級,且多個級中的每一個包含一個縮減單元、一個第一層電路以及一個第二層電路。FIG. 3 is a schematic diagram illustrating a pulse reduction block according to an embodiment of the invention. 3, in an embodiment of the present invention, the pulse reduction block 120 includes a plurality of reduction units 121_1 to 121_N, a plurality of first layer circuits 122_1 to first layer circuits 122_N, and a plurality of second layer circuits 123_1 to 121_N. The second layer circuit 123_N, where N is a positive integer. The plurality of first layer circuits 122_1 to first layer circuits 122_N and the plurality of second layer circuits 123_1 to second layer circuits 123_N are flip-flop (FF) circuits, respectively. The reduction unit 121_1 is composed of two inverters 121_1a and an inverter 121_1b coupled in series, and the internal components of the reduction unit 121_2 to the reduction unit 121_N are the same as the reduction unit 121_1. More specifically, the circuits and components of the pulse reduction block 120 can be classified into multiple stages, and each of the multiple stages includes a reduction unit, a first layer circuit, and a second layer circuit.

在本發明的實施例中,第一縮減單元121_1的輸入端用以接收脈衝串信號PT,且第一縮減單元121_1的輸出端耦接至第一層電路122_1及下一級的縮減單元121_2。第一層電路122_1耦接至第二層電路123_1。對於脈衝串信號PT的一個脈衝,第一縮減單元121_1縮減脈衝串信號PT的一個脈衝以將當前縮減脈衝X[0]輸出至第一層電路122_1及下一級的縮減單元121_2。在本發明的實施例中,第一層電路122_1根據當前縮減脈衝X[0]將具有當前穩態值的當前單穩態信號Q[0]輸出至第二層電路123_1。第二層電路123_1接收具有當前穩態值的當前單穩態信號Q[0]且從下一級的第一層電路122_1接收具有下一穩態值的下一單穩態信號Q[1]。在本發明的實施例中,第二層電路123_1將當前穩態值與下一穩態值進行比較以判斷捕獲位元C[0]。因此,對於脈衝串信號102的多個脈衝,第二層電路123_1依序地比較多個當前穩態值及多個下一穩態值以決定是否將捕獲位元C[0]設置為「1」。In the embodiment of the present invention, the input end of the first reduction unit 121_1 is used to receive the burst signal PT, and the output end of the first reduction unit 121_1 is coupled to the first layer circuit 122_1 and the next level reduction unit 121_2. The first layer circuit 122_1 is coupled to the second layer circuit 123_1. For one pulse of the pulse train signal PT, the first reduction unit 121_1 reduces one pulse of the pulse train signal PT to output the current reduced pulse X[0] to the first-layer circuit 122_1 and the next-stage reduction unit 121_2. In the embodiment of the present invention, the first layer circuit 122_1 outputs the current monostable signal Q[0] with the current steady state value to the second layer circuit 123_1 according to the current reduced pulse X[0]. The second layer circuit 123_1 receives the current monostable signal Q[0] with the current steady state value and receives the next monostable signal Q[1] with the next steady state value from the first layer circuit 122_1 of the next stage. In the embodiment of the present invention, the second layer circuit 123_1 compares the current steady state value with the next steady state value to determine the capture bit C[0]. Therefore, for multiple pulses of the pulse train signal 102, the second layer circuit 123_1 sequentially compares multiple current steady-state values and multiple next steady-state values to determine whether to set the capture bit C[0] to "1 ".

接著,第一縮減單元121_2的輸入端用以從前一級(第一縮減單元121_1)接收先前縮減脈衝,且第一縮減單元121_2的輸出端耦接至第一層電路122_2及下一級的縮減單元121_3。第一層電路122_2耦接至第二層電路123_2。第一縮減單元121_2縮減前一縮減脈衝X[0]以將當前縮減脈衝X[1]輸出至第一層電路122_2及下一級的縮減單元121_3。在本發明的實施例中,第一層電路122_2根據當前縮減脈衝X[1]將具有當前穩態值的當前單穩態信號Q[1]輸出至第二層電路123_2。第二層電路123_2接收具有當前穩態值的當前單穩態信號Q[1]且從下一級的第一層電路122_3接收具有下一穩態值的下一單穩態信號Q[2]。在本發明的實施例中,第二層電路123_2將當前穩態值與下一穩態值進行比較以判斷捕獲位元C[1]。因此,以此類推,第二層電路123_1至第二層電路123_N依序地比較多個當前穩態值與多個下一穩態值以判斷多個捕獲位元C[0]至捕獲位元C[N-1]。Then, the input terminal of the first reduction unit 121_2 is used to receive the previous reduction pulse from the previous stage (the first reduction unit 121_1), and the output terminal of the first reduction unit 121_2 is coupled to the first layer circuit 122_2 and the next stage reduction unit 121_3 . The first layer circuit 122_2 is coupled to the second layer circuit 123_2. The first reduction unit 121_2 reduces the previous reduction pulse X[0] to output the current reduction pulse X[1] to the first layer circuit 122_2 and the reduction unit 121_3 of the next stage. In the embodiment of the present invention, the first layer circuit 122_2 outputs the current monostable signal Q[1] with the current steady state value to the second layer circuit 123_2 according to the current reduced pulse X[1]. The second layer circuit 123_2 receives the current monostable signal Q[1] with the current steady state value and receives the next monostable signal Q[2] with the next steady state value from the first layer circuit 122_3 of the next stage. In the embodiment of the present invention, the second layer circuit 123_2 compares the current steady state value with the next steady state value to determine the capture bit C[1]. Therefore, by analogy, the second layer circuit 123_1 to the second layer circuit 123_N sequentially compare multiple current steady-state values with multiple next steady-state values to determine multiple capture bits C[0] to capture bits C[N-1].

基於如圖3中所展示的脈衝縮減區塊120的架構,參看圖1,週期至脈衝轉換器110可不間斷地接收多個時脈信號以將多個脈衝串信號輸出至脈衝縮減區塊120,且脈衝縮減區塊120生成多個捕獲位元序列。隨後,編碼器130在多個監測週期期間輸出對應於多個捕獲位元序列的多個最小編碼及多個最大編碼,使得電子電路100可即時地判斷判斷對應於多個時脈信號的多個峰對峰抖動量編碼。Based on the structure of the pulse reduction block 120 shown in FIG. 3, referring to FIG. 1, the cycle-to-pulse converter 110 can continuously receive multiple clock signals to output multiple pulse train signals to the pulse reduction block 120. And the pulse reduction block 120 generates a plurality of capture bit sequences. Subsequently, the encoder 130 outputs multiple minimum codes and multiple maximum codes corresponding to multiple capture bit sequences during multiple monitoring periods, so that the electronic circuit 100 can instantly determine multiple signals corresponding to multiple clock signals. The amount of peak-to-peak jitter is encoded.

圖4為說明本發明的第一層電路的示意圖。參考圖4,圖3的第一層電路122_1至第一層電路122_N中的每一個可類似於第一層電路400。第一層電路400包含第一正反器單元410、兩個緩衝器420及緩衝器430以及反相器440,但本發明不限於此。在本發明的其他實施例中,可根據不同製程條件或不同電路設計需求來判斷緩衝器的數目。在本發明的實施例中,當第一正反器單元410的輸入端(資料輸入接腳)(D)接收具有高邏輯位準(「1」)的信號時,第一正反器單元410的觸發端耦接至同一級的縮減單元,第一正反器單元410的輸出端(資料輸出接腳)(Q)耦接至同一級的第二層電路,且第一正反器單元410的輸出端經由串聯耦接的兩個緩衝器420及緩衝器430以及反相器440耦接至第一正反器單元410的反相重置端(異步重置接腳)。Fig. 4 is a schematic diagram illustrating the first layer circuit of the present invention. Referring to FIG. 4, each of the first layer circuit 122_1 to the first layer circuit 122_N of FIG. 3 may be similar to the first layer circuit 400. The first layer circuit 400 includes a first flip-flop unit 410, two buffers 420 and a buffer 430, and an inverter 440, but the invention is not limited thereto. In other embodiments of the present invention, the number of buffers can be determined according to different process conditions or different circuit design requirements. In the embodiment of the present invention, when the input terminal (data input pin) (D) of the first flip-flop unit 410 receives a signal with a high logic level ("1"), the first flip-flop unit 410 The trigger terminal of is coupled to the reduction unit of the same stage, the output terminal (data output pin) (Q) of the first flip-flop unit 410 is coupled to the second layer circuit of the same stage, and the first flip-flop unit 410 The output terminal of is coupled to the inverting reset terminal (asynchronous reset pin) of the first flip-flop unit 410 via the two buffers 420, the buffer 430 and the inverter 440 coupled in series.

在本發明的實施例中,第一正反器單元440的觸發端從同一級的縮減單元接收縮減脈衝X[i],其中i在正整數與N之間。因此,當第一正反器單元410的觸發端接收縮減脈衝X[i]時,第一正反器單元410的輸出端輸出具有穩態值的高邏輯位準(「1」)的單穩態信號Q[i]。且隨後,當第一正反器單元410的反相重置端藉由反饋路徑(兩個緩衝器420及緩衝器430以及反相器440)接收經反相及經延遲單穩態信號Q[i]時,單穩態信號Q[i]經重置為低邏輯位準(「0」),由此單穩態信號具有單發脈寬。In the embodiment of the present invention, the trigger end of the first flip-flop unit 440 receives the reduction pulse X[i] from the reduction unit of the same stage, where i is between a positive integer and N. Therefore, when the trigger terminal of the first flip-flop unit 410 receives the reduced pulse X[i], the output terminal of the first flip-flop unit 410 outputs a monostable with a high logic level ("1") of the steady-state value. State signal Q[i]. And then, when the inverting reset terminal of the first flip-flop unit 410 receives the inverted and delayed monostable signal Q[ When i], the monostable signal Q[i] is reset to a low logic level ("0"), so the monostable signal has a single-shot pulse width.

圖5A為說明在本發明的第一情況下操作的第二層電路的示意圖。圖5B為說明在本發明的第二情況下操作的第二層電路的示意圖。參考圖5A及圖5B,圖3的第二層電路123_1至第二層電路123_N中的每一個可類似於第二層電路500。第二層電路500包含第二正反器單元510及OR閘520。在本發明的實施例中,第二正反器單元510的輸入端耦接至OR閘520的輸出端,反相觸發端耦接至同一級的第一正反器單元的輸出端,且第二正反器單元510的輸出端耦接至OR閘的輸入端,且OR閘的反相輸入端耦接至下一級的另一第一正反器單元的輸出端。FIG. 5A is a schematic diagram illustrating the second layer circuit operating in the first case of the present invention. FIG. 5B is a schematic diagram illustrating the second layer circuit operating in the second case of the present invention. Referring to FIGS. 5A and 5B, each of the second layer circuit 123_1 to the second layer circuit 123_N of FIG. 3 may be similar to the second layer circuit 500. The second layer circuit 500 includes a second flip-flop unit 510 and an OR gate 520. In the embodiment of the present invention, the input terminal of the second flip-flop unit 510 is coupled to the output terminal of the OR gate 520, the inverting trigger terminal is coupled to the output terminal of the first flip-flop unit of the same stage, and the first flip-flop unit The output terminal of the two flip-flop units 510 is coupled to the input terminal of the OR gate, and the inverting input terminal of the OR gate is coupled to the output terminal of another first flip-flop unit of the next stage.

在本發明的實施例中,第二正反器單元520的觸發端從同一級的第一正反器單元接收單穩態信號Q[i],且OR閘的反相輸入端從下一級接收單穩態信號Q[i+1]。因此,僅當任一捕獲位元C[i]已先前設置為高邏輯位準(「1」)時,第二正反器單元510的輸出端的捕獲位元C[i]將在單穩態信號Q[i]的下降緣處變為高邏輯位準(「1」),並且單穩態信號Q[i+1]為低邏輯位準(「0」)。In the embodiment of the present invention, the trigger terminal of the second flip-flop unit 520 receives the monostable signal Q[i] from the first flip-flop unit of the same stage, and the inverting input terminal of the OR gate receives from the next stage The monostable signal Q[i+1]. Therefore, only when any capture bit C[i] has been previously set to a high logic level ("1"), the capture bit C[i] of the output terminal of the second flip-flop unit 510 will be in the monostable state. The falling edge of the signal Q[i] becomes a high logic level ("1"), and the monostable signal Q[i+1] is a low logic level ("0").

應注意,與精細縮減單元相關聯的第二層電路500描繪於圖5A及圖5B中。其行為是為了實現前述「水印規則」,在產生其輸出時,捕獲位元C[i]黏滯。在監測會話開始時,捕獲位元C[i]經重置為「0」。隨後第二層電路500重複檢查水印規則。在捕獲位元C[i]經設置為「1」後,其在整個監測會話中保持為「1」。在第二層電路500的電路中,水印規則及黏滯需求藉由以下條件進行組合:僅當任一捕獲位元C[i]已先前設置為「1」時,捕獲位元C[i]將在單穩態信號Q[i]的下降緣處變為「1」,或單穩態信號Q[i+1]為「0」。單穩態信號Q[i]及單穩態信號Q[i+1]的波形的時序關係說明於圖5A及圖5B中。圖5A的第一情況並不為水印情形,因為在單穩態信號Q[i]及單穩態信號Q[i+1]的下降緣處為「1」。圖5B的第二情況為水印情形,因為在單穩態信號Q[i]及單穩態信號Q[i+1]的下降緣處為「0」。It should be noted that the second layer circuit 500 associated with the fine reduction unit is depicted in FIGS. 5A and 5B. Its behavior is to realize the aforementioned "watermarking rule". When generating its output, the capture bit C[i] is sticky. At the beginning of the monitoring session, the capture bit C[i] is reset to "0". Then the second layer circuit 500 repeatedly checks the watermark rules. After the capture bit C[i] is set to "1", it remains "1" throughout the monitoring session. In the circuit of the second layer circuit 500, the watermarking rules and the sticky requirements are combined by the following conditions: only when any capture bit C[i] has been previously set to "1", the capture bit C[i] It will become "1" at the falling edge of the monostable signal Q[i], or the monostable signal Q[i+1] will become "0". The timing relationship between the waveforms of the monostable signal Q[i] and the monostable signal Q[i+1] is illustrated in FIGS. 5A and 5B. The first situation in FIG. 5A is not a watermark situation, because the falling edges of the monostable signal Q[i] and the monostable signal Q[i+1] are "1". The second situation in FIG. 5B is the watermark situation, because the falling edges of the monostable signal Q[i] and the monostable signal Q[i+1] are "0".

圖6為說明本發明的縮減多個脈衝的脈衝縮減區塊的波形圖。參看圖1、圖3以及圖6,編碼器130可將捕獲位元C[0]至捕獲位元C[3]轉換為最小編碼及最大編碼,且電子電路100可減去最大編碼及最小編碼以生成峰對峰抖動量編碼。舉例而言,當縮減單元121_1接收具有一連串3個脈衝P1至脈衝P3的脈衝串信號PT時。在此例示性實施例中,第一脈衝P1為最小,因此第一脈衝P1僅在時間t0至時間t1期間在縮減單元121_1中生存,使得捕獲位元C[0]為「1」。在時間t1至時間t2期間,電子電路100可判斷最小編碼為「0」,最大編碼為「0」,且峰對峰抖動量編碼為「0」(0-0=0)。隨後,第二脈衝P2為最大,因此第二脈衝P2在時間t2至時間t3期間在三個縮減單元121_1至縮減單元121_3中生存,使得捕獲位元C[2]為「1」。在時間t3至時間t4期間,電子電路100可判斷最小編碼仍為「0」,最大編碼為「2」,且峰對峰抖動量編碼為「2」(2-0=2)。最後,第三脈衝P3在時間t4至時間t5期間在兩個縮減單元121_1至縮減單元121_2中生存,使得捕獲位元C[2]維持「1」。在時間t3至時間t4期間,電子電路100可判斷最小編碼仍為「0」,最大編碼仍為「2」,且峰對峰抖動量編碼仍為「2」(2-0=0)。FIG. 6 is a waveform diagram illustrating a pulse reduction block for reducing a plurality of pulses according to the present invention. 1, 3 and 6, the encoder 130 can convert the capture bit C[0] to the capture bit C[3] into a minimum code and a maximum code, and the electronic circuit 100 can subtract the maximum code and the minimum code To generate a peak-to-peak jitter amount encoding. For example, when the reduction unit 121_1 receives a burst signal PT having a series of 3 pulses P1 to P3. In this exemplary embodiment, the first pulse P1 is the smallest, so the first pulse P1 only survives in the reduction unit 121_1 from time t0 to time t1, so that the capture bit C[0] is "1". During the period from time t1 to time t2, the electronic circuit 100 can determine that the minimum code is "0", the maximum code is "0", and the peak-to-peak jitter amount code is "0" (0-0=0). Subsequently, the second pulse P2 is the maximum, so the second pulse P2 survives in the three reduction units 121_1 to 121_3 from time t2 to time t3, so that the capture bit C[2] is "1". During the period from time t3 to time t4, the electronic circuit 100 can determine that the minimum code is still "0", the maximum code is "2", and the peak-to-peak jitter amount code is "2" (2-0=2). Finally, the third pulse P3 survives in the two reduction units 121_1 to 121_2 from time t4 to time t5, so that the capture bit C[2] remains "1". During the period from time t3 to time t4, the electronic circuit 100 can determine that the minimum code is still “0”, the maximum code is still “2”, and the peak-to-peak jitter amount code is still “2” (2-0=0).

因此,在此例示性實施例中,每當其分別看見縮減脈衝X[0]至縮減脈衝X[3]時,單穩態信號Q[0]至單穩態信號Q[3]中的每一個與單發信號(one-shot signal)響應。由於其自更新特性,單穩態信號Q[0]至單穩態信號Q[3]中的每一個可重複響應。對於第一脈衝,水印為方位「0」,由此捕獲位元C[0]在看見第一脈衝P1之後變高。類似地,在第二脈衝P2及第三脈衝P3已行進通過脈衝縮減區塊120之後,捕獲位元C[1]及捕獲位元C[2]兩者變為黏滯「1」。在此例示性實施例中,最小編碼、最大編碼以及峰對峰抖動量編碼已在此監測製程期間動態地改變,以反映最新情形。Therefore, in this exemplary embodiment, whenever it sees the reduced pulse X[0] to the reduced pulse X[3], each of the monostable signal Q[0] to the monostable signal Q[3] One responds to a one-shot signal. Due to its self-renewal characteristic, each of the monostable signal Q[0] to the monostable signal Q[3] can respond repeatedly. For the first pulse, the watermark is azimuth "0", so the capture bit C[0] becomes high after seeing the first pulse P1. Similarly, after the second pulse P2 and the third pulse P3 have traveled through the pulse reduction block 120, both the captured bit C[1] and the captured bit C[2] become sticky "1". In this exemplary embodiment, the minimum coding, maximum coding, and peak-to-peak jitter coding have been dynamically changed during the monitoring process to reflect the latest situation.

綜上所述,本發明的電子電路能夠執行對由鎖相迴路生成的時脈信號的在線監測,且本發明的電子電路可判斷時脈信號的週期抖動。具體而言,本發明的電子電路可判斷時脈信號的最小時脈週期及最大時脈週期。因此,本發明的電子電路或其他處理電路可藉由與時脈信號的週期抖動相關的以上細節資訊來有效地執行對應操作。In summary, the electronic circuit of the present invention can perform online monitoring of the clock signal generated by the phase-locked loop, and the electronic circuit of the present invention can determine the period jitter of the clock signal. Specifically, the electronic circuit of the present invention can determine the minimum clock period and the maximum clock period of the clock signal. Therefore, the electronic circuit or other processing circuits of the present invention can effectively perform corresponding operations by using the above detailed information related to the period jitter of the clock signal.

本領域的技術人員將顯而易見,在不偏離本發明的範疇或精神的情況下,能夠對所揭露實施例作出各種修改及改變。鑒於前述內容,本發明意欲覆蓋修改及改變,前提為所述修改及改變屬於以下申請專利範圍及其等效物的範疇內。It will be obvious to those skilled in the art that various modifications and changes can be made to the disclosed embodiments without departing from the scope or spirit of the present invention. In view of the foregoing, the present invention intends to cover modifications and changes, provided that the modifications and changes fall within the scope of the following patent applications and their equivalents.

10:鎖相迴路 100:電子電路 102:脈衝串信號 110:週期至脈衝轉換器 120:脈衝縮減區塊 121_1至121_N:縮減單元 121_1a、121_1b:反相器 122_1至122_N、400:第一層電路 123_1至123_N、500:第二層電路 130:編碼器 140:控制器 201、202、203:生存軌跡 201P、202P、203P:水印方位 410:第一正反器單元 420、430:緩衝器 440:反相器 510:第二正反器單元 520:OR閘 C[0]、C[1]、C[2]、C[3]、C[i]、C[N-1]:捕獲位元 CS:時脈信號 D:輸入端 P1、P2、P3:輸入脈衝 Pj:峰對峰抖動量編碼 Pmax:最大時脈週期 Pmin:最小時脈週期 PT:脈衝串信號 Q:輸出端 Q[0]、Q[1]、Q[2]、Q[3]、Q[i]、Q[i+1]:單穩態信號 t1、t2、t3、t4、t5:時間 X[0]、X[1]、X[3]、X[i]:縮減脈衝10: Phase locked loop 100: electronic circuit 102: Burst signal 110: Period to pulse converter 120: Pulse reduction block 121_1 to 121_N: reduction unit 121_1a, 121_1b: inverter 122_1 to 122_N, 400: first layer circuit 123_1 to 123_N, 500: second layer circuit 130: encoder 140: Controller 201, 202, 203: survival trajectory 201P, 202P, 203P: watermark orientation 410: The first flip-flop unit 420, 430: Buffer 440: inverter 510: The second flip-flop unit 520: OR gate C[0], C[1], C[2], C[3], C[i], C[N-1]: capture bit CS: Clock signal D: Input P1, P2, P3: input pulse Pj: peak-to-peak jitter coding Pmax: Maximum clock period Pmin: minimum clock period PT: Burst signal Q: output Q[0], Q[1], Q[2], Q[3], Q[i], Q[i+1]: monostable signal t1, t2, t3, t4, t5: time X[0], X[1], X[3], X[i]: reduced pulse

圖1為根據本發明的實施例的說明電子電路的示意圖。 圖2為根據本發明的實施例的說明對應於多個時脈週期樣本的生存軌跡及水印的概念的軌跡圖。 圖3為根據本發明的實施例的說明脈衝縮減區塊的示意圖。 圖4為說明本發明的第一層電路的示意圖。 圖5A為說明在本發明的第一情況下操作的第二層電路的示意圖。 圖5B為說明在本發明的第二情況下操作的第二層電路的示意圖。 圖6為說明本發明的縮減多個脈衝的脈衝縮減區塊的波形圖。 Fig. 1 is a schematic diagram illustrating an electronic circuit according to an embodiment of the present invention. Fig. 2 is a trajectory diagram illustrating the concept of survival trajectories and watermarks corresponding to multiple clock period samples according to an embodiment of the present invention. FIG. 3 is a schematic diagram illustrating a pulse reduction block according to an embodiment of the invention. Fig. 4 is a schematic diagram illustrating the first layer circuit of the present invention. FIG. 5A is a schematic diagram illustrating the second layer circuit operating in the first case of the present invention. FIG. 5B is a schematic diagram illustrating the second layer circuit operating in the second case of the present invention. FIG. 6 is a waveform diagram illustrating a pulse reduction block for reducing a plurality of pulses according to the present invention.

10:鎖相迴路 10: Phase locked loop

100:電子電路 100: electronic circuit

110:週期至脈衝轉換器 110: Period to pulse converter

120:脈衝縮減區塊 120: Pulse reduction block

130:編碼器 130: encoder

140:控制器 140: Controller

CS:時脈信號 CS: Clock signal

PT:脈衝串信號 PT: Burst signal

Claims (10)

一種用於在線監測時脈信號的電子電路,包括: 一週期至脈衝轉換器,接收所述時脈信號,且轉換所述時脈信號的多個時脈週期樣本中的每一個以生成具有多個脈衝的一脈衝串信號; 一脈衝縮減區塊,耦接至所述週期至脈衝轉換器,接收所述脈衝串信號的所述多個脈衝,且藉由縮減所述脈衝串信號的所述多個脈衝來生成多個捕獲位元;以及 一編碼器,耦接至所述脈衝縮減區塊,根據所述多個捕獲位元來輸出一最小編碼及一最大編碼,所述最小編碼指示所述時脈信號的一最小時脈週期,所述最大編碼指示所述時脈信號的一最大時脈週期, 其中所述電子電路減去所述最大編碼及所述最小編碼以生成一峰對峰抖動量編碼。 An electronic circuit for online monitoring of clock signals, including: A period-to-pulse converter, receiving the clock signal, and converting each of a plurality of clock period samples of the clock signal to generate a pulse train signal with a plurality of pulses; A pulse reduction block, coupled to the period-to-pulse converter, receives the multiple pulses of the pulse train signal, and generates multiple captures by reducing the multiple pulses of the pulse train signal Bit; and An encoder is coupled to the pulse reduction block, and outputs a minimum code and a maximum code according to the plurality of capture bits, the minimum code indicating a minimum clock period of the clock signal, so The maximum code indicates a maximum clock period of the clock signal, The electronic circuit subtracts the maximum code and the minimum code to generate a peak-to-peak jitter amount code. 如請求項1所述的電子電路,其中所述脈衝縮減區塊包括多個級,且所述多個級中的每一個包括: 一縮減單元,連續接收所述脈衝串信號的所述多個脈衝或從一先前級接收多個先前縮減脈衝,且連續輸出多個當前縮減脈衝; 一第一層電路,耦接至所述縮減單元,且根據所述多個當前縮減脈衝來輸出具有多個當前穩態值的多個當前單穩態信號;以及 一第二層電路,耦接至所述第一層電路,且接收具有所述多個當前穩態值的所述多個當前單穩態信號且從下一級的另一第一層電路接收具有多個下一穩態值的多個下一單穩態信號, 其中所述第二層電路依序地比較所述多個當前穩態值與所述多個下一穩態值以判斷所述多個捕獲位元中的其中之一。 The electronic circuit according to claim 1, wherein the pulse reduction block includes a plurality of stages, and each of the plurality of stages includes: A reduction unit that continuously receives the plurality of pulses of the pulse train signal or receives a plurality of previous reduction pulses from a previous stage, and continuously outputs a plurality of current reduction pulses; A first layer circuit, coupled to the reduction unit, and output a plurality of current monostable signals with a plurality of current steady state values according to the plurality of current reduction pulses; and A second layer circuit, coupled to the first layer circuit, and receiving the plurality of current monostable signals with the plurality of current steady-state values and receiving from another first layer circuit of the next stage Multiple next monostable signals with multiple next steady state values, The second layer circuit sequentially compares the plurality of current steady state values with the plurality of next steady state values to determine one of the plurality of capture bits. 如請求項2所述的電子電路,其中當所述第二層電路判斷所述多個當前穩態值中的任一個不同於所述多個下一穩態值中的對應任一個時,所述第二層電路將所述多個捕獲位元中的所述個從「0」設置為「1」。The electronic circuit according to claim 2, wherein when the second layer circuit determines that any one of the plurality of current steady-state values is different from any corresponding one of the plurality of next steady-state values, The second layer circuit sets the one of the plurality of capture bits from "0" to "1". 如請求項3所述的電子電路,其中所述編碼器根據由具有經設置為「1」的所述捕獲位元的一最小級輸出的一捕獲位元來輸出所述最小編碼,且所述編碼器根據由具有經設置為「1」的另一捕獲位元的一最大級輸出的另一捕獲位元來輸出所述最大編碼。The electronic circuit according to claim 3, wherein the encoder outputs the minimum code according to a capture bit output by a minimum level of the capture bit set to "1", and the The encoder outputs the maximum code according to another capture bit output by a maximum level with another capture bit set to "1". 如請求項2所述的電子電路,其中所述縮減單元由串聯耦接的兩個反相器組成。The electronic circuit according to claim 2, wherein the reduction unit is composed of two inverters coupled in series. 如請求項2所述的電子電路,其中所述第一層電路包括一第一正反器單元,其中所述第一正反器單元的一輸入端接收具有一高邏輯位準的信號,所述第一正反器單元的一觸發端耦接至所述縮減單元,所述第一正反器單元的一輸出端耦接至所述第二層電路,且所述第一正反器單元的所述輸出端經由串聯耦接的一或多個緩衝器及一個反相器來耦接至所述第一正反器單元的一反相重置端。The electronic circuit according to claim 2, wherein the first layer circuit includes a first flip-flop unit, wherein an input terminal of the first flip-flop unit receives a signal with a high logic level, so A trigger end of the first flip-flop unit is coupled to the reduction unit, an output end of the first flip-flop unit is coupled to the second layer circuit, and the first flip-flop unit The output terminal of is coupled to an inverting reset terminal of the first flip-flop unit via one or more buffers and an inverter coupled in series. 如請求項6所述的電子電路,其中所述第二層電路包括一第二正反器單元及一OR閘,其中所述第二正反器單元的輸入端耦接至所述OR閘的輸出端,反相觸發端耦接至所述第一正反器單元的所述輸出端,且所述第二正反器單元的輸出端耦接至所述OR閘的一輸入端,且所述OR閘的一反相輸入端耦接至下一級的另一第一正反器單元的一輸出端。The electronic circuit according to claim 6, wherein the second layer circuit includes a second flip-flop unit and an OR gate, wherein the input end of the second flip-flop unit is coupled to the OR gate Output terminal, the inverting trigger terminal is coupled to the output terminal of the first flip-flop unit, and the output terminal of the second flip-flop unit is coupled to an input terminal of the OR gate, and An inverting input terminal of the OR gate is coupled to an output terminal of another first flip-flop unit of the next stage. 如請求項1所述的電子電路,其中所述電子電路為一全數位電子電路。The electronic circuit according to claim 1, wherein the electronic circuit is a fully digital electronic circuit. 如請求項1所述的電子電路,其中所述脈衝串信號的所述多個脈衝的每一脈衝寬度與所述時脈信號的所述多個時脈週期樣本的每一時脈週期長度正相關。The electronic circuit according to claim 1, wherein each pulse width of the plurality of pulses of the pulse train signal is positively correlated with the length of each clock period of the plurality of clock period samples of the clock signal . 如請求項1所述的電子電路,其中所述週期至脈衝轉換器不間斷地接收多個時脈信號以將多個脈衝串信號輸出至所述脈衝縮減區塊,且所述脈衝縮減區塊生成多個捕獲位元序列,其中所述編碼器在多個監測週期期間輸出對應於所述多個捕獲位元序列的多個最小編碼及多個最大編碼,使得所述電子電路即時地判斷對應於所述多個時脈信號的多個峰對峰抖動量編碼。The electronic circuit according to claim 1, wherein the cycle-to-pulse converter continuously receives a plurality of clock signals to output a plurality of pulse train signals to the pulse reduction block, and the pulse reduction block Generate multiple capture bit sequences, wherein the encoder outputs multiple minimum codes and multiple maximum codes corresponding to the multiple capture bit sequences during multiple monitoring periods, so that the electronic circuit can instantly determine the corresponding The multiple peak-to-peak jitter amounts of the multiple clock signals are encoded.
TW109134289A 2020-09-30 2020-09-30 Electronic circuit for online monitoring a clock signal TWI728920B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109134289A TWI728920B (en) 2020-09-30 2020-09-30 Electronic circuit for online monitoring a clock signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109134289A TWI728920B (en) 2020-09-30 2020-09-30 Electronic circuit for online monitoring a clock signal

Publications (2)

Publication Number Publication Date
TWI728920B true TWI728920B (en) 2021-05-21
TW202215786A TW202215786A (en) 2022-04-16

Family

ID=77036497

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134289A TWI728920B (en) 2020-09-30 2020-09-30 Electronic circuit for online monitoring a clock signal

Country Status (1)

Country Link
TW (1) TWI728920B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350879A (en) * 1979-10-29 1982-09-21 Canadian Patents & Dev. Limited Time jitter determining apparatus
US6667645B1 (en) * 1999-12-20 2003-12-23 Intel Corporation Pulsed clock signal transfer circuits with dynamic latching
US7263150B2 (en) * 2001-03-20 2007-08-28 Advantest Corp. Probability estimating apparatus and method for peak-to-peak clock skews
TW200822563A (en) * 2006-11-13 2008-05-16 Ind Tech Res Inst Digitally controlled varactors, digitally controlled oscillators, and all-digital phase-locked loops using the same
US7409617B2 (en) * 2004-09-30 2008-08-05 Credence Systems Corporation System for measuring characteristics of a digital signal
US10373671B1 (en) * 2018-04-09 2019-08-06 Micron Technology, Inc. Techniques for clock signal jitter generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350879A (en) * 1979-10-29 1982-09-21 Canadian Patents & Dev. Limited Time jitter determining apparatus
US6667645B1 (en) * 1999-12-20 2003-12-23 Intel Corporation Pulsed clock signal transfer circuits with dynamic latching
US7263150B2 (en) * 2001-03-20 2007-08-28 Advantest Corp. Probability estimating apparatus and method for peak-to-peak clock skews
US7409617B2 (en) * 2004-09-30 2008-08-05 Credence Systems Corporation System for measuring characteristics of a digital signal
TW200822563A (en) * 2006-11-13 2008-05-16 Ind Tech Res Inst Digitally controlled varactors, digitally controlled oscillators, and all-digital phase-locked loops using the same
US10373671B1 (en) * 2018-04-09 2019-08-06 Micron Technology, Inc. Techniques for clock signal jitter generation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
2009年12月30日公開文件徐仁乾 等"鎖相迴路時脈抖動之內建自我測試"國立交通大學,http://140.113.39.130/cdrfb3/record/nctu/#GT079212805
2012年5月30日公開文件Lee, Jae Wook "A BIST Circuit for Random Jitter Measurement" THE UNIVERSITY OF TEXAS AT AUSTIN, http://hdl.handle.net/2152/ETD-UT-2012-05-5513
年12月30日公開文件徐仁乾 等"鎖相迴路時脈抖動之內建自我測試"國立交通大學,http://140.113.39.130/cdrfb3/record/nctu/#年5月30日公開文件Lee, Jae Wook "A BIST Circuit for Random Jitter Measurement" THE UNIVERSITY OF TEXAS AT AUSTIN, http://hdl.handle.net/2152/ETD-UT-2012-05-5513 *

Also Published As

Publication number Publication date
TW202215786A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
US7526390B2 (en) Signal measuring circuit and signal measuring method
US7853430B2 (en) Semiconductor device, and test circuit and test method for testing semiconductor device
US7328383B2 (en) Circuit and method for testing embedded phase-locked loop circuit
US7872602B2 (en) Time to digital converting circuit and related method
US8525597B2 (en) Clock frequency overshoot detection circuit
TWI728920B (en) Electronic circuit for online monitoring a clock signal
US8847639B1 (en) Waveform generator
Chen et al. Rapid PLL monitoring by a novel min-MAX time-to-digital converter
TWI700605B (en) Clock frequency attack detectiing system of secure chip
US6960960B2 (en) Frequency detector detecting variation in frequency difference between data signal and clock signal
US9793914B2 (en) Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter
US7363568B2 (en) System and method for testing differential signal crossover using undersampling
US10547311B2 (en) Reducing glitches that occur when multiplexing of asynchronous clocks using flip-flops and logic gates
US11287471B1 (en) Electronic circuit for online monitoring a clock signal
CN110719071B (en) Frequency multiplier circuit with calibration and control method
US20120033772A1 (en) Synchroniser circuit and method
JP2013077921A (en) Clock diagnosis circuit
JP2011176521A (en) Jitter correction device of pll circuit
US10951214B1 (en) Signal analysis method and signal analysis module
JP5171379B2 (en) Frequency abnormality detection circuit
US9553594B1 (en) Delay-locked loop with false-lock detection and recovery circuit
CN110460329B (en) Fault-oriented phase-locked loop test circuit
US7173493B1 (en) Range controller circuit and method
TWI452837B (en) Clock recovery circuit and frequency detection module thereof
JPH02291722A (en) Analog/digital converter