TWI452837B - Clock recovery circuit and frequency detection module thereof - Google Patents

Clock recovery circuit and frequency detection module thereof Download PDF

Info

Publication number
TWI452837B
TWI452837B TW100119417A TW100119417A TWI452837B TW I452837 B TWI452837 B TW I452837B TW 100119417 A TW100119417 A TW 100119417A TW 100119417 A TW100119417 A TW 100119417A TW I452837 B TWI452837 B TW I452837B
Authority
TW
Taiwan
Prior art keywords
clock
node
flop
flip
signal
Prior art date
Application number
TW100119417A
Other languages
Chinese (zh)
Other versions
TW201251333A (en
Inventor
Mengchih Weng
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW100119417A priority Critical patent/TWI452837B/en
Publication of TW201251333A publication Critical patent/TW201251333A/en
Application granted granted Critical
Publication of TWI452837B publication Critical patent/TWI452837B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

時脈回復電路及其頻率偵測模組Clock recovery circuit and frequency detection module thereof

本揭示內容是有關於一種偵測電路,且特別是有關於一種可用於時脈回復電路的頻率偵測電路。The present disclosure relates to a detection circuit, and more particularly to a frequency detection circuit that can be used in a clock recovery circuit.

在通訊系統或其他電子傳輸系統(例如顯示驅動電路)之中,傳送端根據其時脈以產生資料訊號,並透過頻道將資料訊號傳送至接收端。而接收端為了正確地辨別資料訊號之邏輯準位,接收端必須根據與傳送端之時脈相互同步之時脈,來讀取資料訊號。因此,接收端必須利用時脈資料回復電路來得知傳送端所採用之時脈。In a communication system or other electronic transmission system (such as a display driving circuit), the transmitting end generates a data signal according to its clock and transmits the data signal to the receiving end through the channel. In order to correctly identify the logical level of the data signal, the receiving end must read the data signal according to the clock synchronized with the clock of the transmitting end. Therefore, the receiving end must use the clock data recovery circuit to know the clock used by the transmitting end.

一般而言,時脈資料回復技術至少可分為兩種。一種為利用一個額外的頻道,將與資料訊號相對應的時脈訊號一併傳送至接收端,然而,此技術具有必須額外增加頻道之缺點。另一種為,在接收端利用時脈資料回復電路(clock/data recovery circuit,CDR)中的頻率偵測電路,由傳遞的資料訊號本身進行判斷而直接回復資料訊號及其時脈。In general, clock data recovery techniques can be divided into at least two types. One uses an additional channel to transmit the clock signal corresponding to the data signal to the receiving end. However, this technology has the disadvantage that an additional channel must be added. The other is to use the frequency detection circuit in the clock/data recovery circuit (CDR) at the receiving end to directly respond to the data signal and its clock by judging the transmitted data signal itself.

在部份習知的時脈資料回復電路中,主要可分為兩個處理階段,首先為頻率回復階段,也就是透過頻率偵測電路,對資料訊號進行偵測以找到適合的時脈頻率。再來,是相位回復階段,利用上述取樣時脈頻率進行取樣而鎖定資料訊號的相位。In some conventional clock data recovery circuits, the main processing can be divided into two processing stages. First, the frequency recovery phase, that is, the frequency detection circuit is used to detect the data signal to find a suitable clock frequency. In addition, it is a phase recovery phase in which the phase of the data signal is locked by sampling using the sampling clock frequency.

時脈回復電路中通常設置有時脈產生器與頻率偵測電 路,時脈產生器用以產生特定頻率的取樣時脈訊號。頻率偵測電路用以偵測資料訊號,並確保上述取樣時脈訊號可以有效進行取樣。例如,當取樣時脈訊號過低,可能造成資料訊號的取樣失真時,頻率偵測電路便可產生控制訊號驅使時脈產生器提高取樣時脈訊號的頻率。The clock recovery circuit usually sets the pulse generator and the frequency detection circuit. The clock generator is used to generate a sampling clock signal of a specific frequency. The frequency detection circuit is used for detecting the data signal and ensuring that the sampling clock signal can be effectively sampled. For example, when the sampling clock signal is too low, which may cause distortion of the sampling of the data signal, the frequency detecting circuit can generate a control signal to drive the clock generator to increase the frequency of the sampling clock signal.

然而,隨著通訊技術的發展,目前頻率偵測電路需要在相當高的頻率下運作,高頻情況下習知的頻率偵測電路中的類比正反器元件其重置(reset)機制不易設計。且傳統的頻率偵測電路中的時脈訊號路徑過於複雜,使得使用上很難進行時脈校準。However, with the development of communication technology, the current frequency detection circuit needs to operate at a relatively high frequency. In the high frequency case, the reset mechanism of the analog flip-flop component in the conventional frequency detection circuit is not easy to design. . Moreover, the clock signal path in the conventional frequency detecting circuit is too complicated, which makes it difficult to perform clock calibration in use.

因此,為了解決上述問題,本發明揭露一種時脈回復電路及其頻率偵測模組,其中本揭示文件中頻率偵測模組所採用的類比正反器元件可省略重置(reset)機制,且其採用的時脈訊號之路徑與邏輯結構相對簡單,即可達到頻率比對的效果。Therefore, in order to solve the above problem, the present invention discloses a clock recovery circuit and a frequency detecting module thereof. The analog-like flip-flop component used in the frequency detecting module in the present disclosure can omit a reset mechanism. Moreover, the path and logical structure of the clock signal used by the clock signal is relatively simple, and the effect of frequency comparison can be achieved.

本發明內容之一態樣是在提供一種時脈回復電路,其包含時脈產生裝置以及頻率偵測模組。時脈產生裝置用以產生時脈訊號。頻率偵測模組用以判斷資料訊號之時脈邊緣(clock edge)與時脈訊號之時脈邊緣,當資料訊號的連續兩個時脈邊緣之間未偵測到時脈訊號之時脈邊緣時,頻率偵測模組產生控制訊號至時脈產生裝置,藉以提高時脈訊號之時脈頻率。One aspect of the present invention provides a clock recovery circuit including a clock generation device and a frequency detection module. The clock generating device is configured to generate a clock signal. The frequency detecting module is configured to determine the clock edge of the data signal and the clock edge of the clock signal, and the clock edge of the clock signal is not detected between two consecutive clock edges of the data signal. The frequency detecting module generates a control signal to the clock generating device to improve the clock frequency of the clock signal.

根據本發明之一實施例,該資料訊號之時脈邊緣與該 時脈訊號之時脈邊緣包含時脈正緣(rising edge)或時脈負緣(falling edge)。According to an embodiment of the present invention, the clock edge of the data signal and the The clock edge of the clock signal contains the rising edge of the clock or the falling edge of the clock.

根據本發明之一實施例,其中該頻率偵測模組包含第一正反器、第二正反器、第三正反器以及邏輯單元。當該資料訊號之時脈邊緣觸發時,該第一正反器用以將一第一節點之電壓準位輸出至一第二節點。當該時脈訊號之時脈邊緣觸發時,該第二正反器用以將該第二節點之電壓準位反向並輸出至該第一節點。邏輯單元判斷該第一節點之電壓準位以及該第二節點之電壓準位,當該第一節點與該第二節點之電壓準位邏輯上相同時,該邏輯單元用以產生一控制訊號。當該資料訊號之時脈邊緣觸發時,該第三正反器用以輸出該控制訊號至該時脈產生模組,藉此提高該時脈訊號之該時脈頻率。According to an embodiment of the invention, the frequency detecting module comprises a first flip flop, a second flip flop, a third flip flop, and a logic unit. When the clock edge of the data signal is triggered, the first flip-flop is used to output the voltage level of a first node to a second node. When the clock edge of the clock signal is triggered, the second flip-flop is used to invert the voltage level of the second node and output to the first node. The logic unit determines the voltage level of the first node and the voltage level of the second node. When the voltage level of the first node and the second node are logically the same, the logic unit is configured to generate a control signal. When the clock edge of the data signal is triggered, the third flip-flop is configured to output the control signal to the clock generation module, thereby increasing the clock frequency of the clock signal.

於上述實施例中,其中該邏輯單元可包含一及邏輯閘(AND gate)或一互斥或邏輯閘(exclusive-OR gate,XOR gate)。In the above embodiment, the logic unit may include an AND gate or an exclusive-OR gate (XOR gate).

於上述實施例中,其中該頻率偵測模組可更包含一延遲單元,其耦接於該資料訊號與該第三正反器之間。於此實施例中,其中該延遲單元用以對該資料訊號形成一預定延遲時間,該預定延遲時間大致等於該第二正反器與該邏輯單元之一加總延遲時間。In the above embodiment, the frequency detecting module further includes a delay unit coupled between the data signal and the third flip-flop. In this embodiment, the delay unit is configured to form a predetermined delay time for the data signal, and the predetermined delay time is substantially equal to a total delay time of the second flip-flop and the logic unit.

本發明內容之另一態樣是在提供一種頻率偵測模組,其適用於偵測時脈訊號與資料訊號之頻率相對關係。頻率偵測模組包含第一正反器、第二正反器、第三正反器以及邏輯單元。當該資料訊號之時脈邊緣觸發時,該第一正反 器用以將一第一節點之電壓準位輸出至一第二節點。當該時脈訊號之時脈邊緣觸發時,該第二正反器用以將該第二節點之電壓準位反向並輸出至該第一節點。邏輯單元判斷該第一節點之電壓準位以及該第二節點之電壓準位,當該第一節點與該第二節點之電壓準位邏輯上相同時,該邏輯單元用以產生一控制訊號。當該資料訊號之時脈邊緣觸發時,該第三正反器用以輸出該控制訊號,藉以提高該時脈訊號之一時脈頻率。Another aspect of the present invention provides a frequency detecting module adapted to detect a relative relationship between a clock signal and a data signal. The frequency detection module includes a first flip-flop, a second flip-flop, a third flip-flop, and a logic unit. When the edge of the data signal is triggered, the first positive and negative The device is configured to output a voltage level of a first node to a second node. When the clock edge of the clock signal is triggered, the second flip-flop is used to invert the voltage level of the second node and output to the first node. The logic unit determines the voltage level of the first node and the voltage level of the second node. When the voltage level of the first node and the second node are logically the same, the logic unit is configured to generate a control signal. When the edge of the data signal is triggered, the third flip-flop is used to output the control signal, thereby increasing the clock frequency of the clock signal.

根據本發明之一實施例,該資料訊號之時脈邊緣與該時脈訊號之時脈邊緣包含時脈正緣或時脈負緣。According to an embodiment of the invention, the clock edge of the data signal and the clock edge of the clock signal include a positive edge of the clock or a negative edge of the clock.

於上述實施例中,其中該邏輯單元可包含一及邏輯閘或一互斥或邏輯閘。In the above embodiment, the logic unit may include a logic gate or a mutual exclusion or logic gate.

於上述實施例中,其中該頻率偵測模組可更包含一延遲單元,其耦接於該資料訊號與該第三正反器之間。於此實施例中,其中該延遲單元用以對該資料訊號形成一預定延遲時間,該預定延遲時間大致等於該第二正反器與該邏輯單元之一加總延遲時間。In the above embodiment, the frequency detecting module further includes a delay unit coupled between the data signal and the third flip-flop. In this embodiment, the delay unit is configured to form a predetermined delay time for the data signal, and the predetermined delay time is substantially equal to a total delay time of the second flip-flop and the logic unit.

本發明內容之另一態樣是在提供一種頻率偵測模組,其適用於偵測時脈訊號與資料訊號之頻率相對關係。頻率偵測模組包含第一正反器、第二正反器、第三正反器以及邏輯單元。該第一正反器之時脈控制端耦接至該資料訊號,該第一正反器之資料輸入端耦接至一第一節點,該第一正反器之資料輸出端耦接至一第二節點。第二正反器之時脈控制端耦接至該時脈訊號,該第二正反器之資料輸入端耦接至該第二節點,該第二正反器之資料輸出端耦接至 該第一節點。該邏輯單元之輸入端分別耦接至該第一節點與該第二節點,該邏輯單元之輸出端根據該第一節點與該第二節點之電壓準位選擇性地產生一控制訊號。第三正反器之時脈控制端耦接至該資料訊號,該第三正反器之資料輸入端耦接至該邏輯單元之輸出端,該第三正反器之資料輸出端用以輸出該控制訊號。Another aspect of the present invention provides a frequency detecting module adapted to detect a relative relationship between a clock signal and a data signal. The frequency detection module includes a first flip-flop, a second flip-flop, a third flip-flop, and a logic unit. The clock control terminal of the first flip-flop is coupled to the data signal, and the data input end of the first flip-flop is coupled to a first node, and the data output end of the first flip-flop is coupled to the first The second node. The clock control end of the second flip-flop is coupled to the clock signal, the data input end of the second flip-flop is coupled to the second node, and the data output end of the second flip-flop is coupled to The first node. The input ends of the logic unit are respectively coupled to the first node and the second node, and the output end of the logic unit selectively generates a control signal according to the voltage levels of the first node and the second node. The clock control end of the third flip-flop is coupled to the data signal, and the data input end of the third flip-flop is coupled to the output end of the logic unit, and the data output end of the third flip-flop is used for output The control signal.

根據本發明之一實施例,其中該邏輯單元包含一及邏輯閘或一互斥或邏輯閘。According to an embodiment of the invention, the logic unit comprises a logic gate or a mutually exclusive or logic gate.

根據本發明之一實施例,其中該頻率偵測模組更包含一延遲單元,該延遲單元耦接於該資料訊號與該第三正反器之間。According to an embodiment of the invention, the frequency detecting module further includes a delay unit coupled between the data signal and the third flip-flop.

請參閱第1圖,第1圖繪示根據本發明之一實施例中時脈回復電路100的示意圖。此實施例中的時脈回復電路100可用於時脈資料回復電路(clock/data recovery circuit,CDR)中的時脈回復部份。Referring to FIG. 1, FIG. 1 is a schematic diagram of a clock recovery circuit 100 in accordance with an embodiment of the present invention. The clock recovery circuit 100 in this embodiment can be used for the clock recovery portion in the clock/data recovery circuit (CDR).

於此實施例中,時脈回復電路100包含時脈產生裝置120以及頻率偵測模組140。時脈產生裝置120用以根據一時脈頻率產生時脈訊號CLK。In this embodiment, the clock recovery circuit 100 includes a clock generation device 120 and a frequency detection module 140. The clock generating device 120 is configured to generate the clock signal CLK according to a clock frequency.

目前常見的時脈/資料回復電路依照取樣時脈特性分為全速(full-rate)取樣與半速(half-rate)取樣,又或者是,1/4速取樣及1/8速取樣等等。其中,全速取樣下,取樣用的時脈頻率為資料訊號的兩倍,方可正常運作。而半速取樣下,取樣用的時脈訊號頻率則大致與資料訊號頻率一致。 於此實施例中,時脈回復電路100主要採用半速取樣之時脈訊號頻率。At present, the common clock/data recovery circuit is divided into full-rate sampling and half-rate sampling according to sampling clock characteristics, or 1/4-speed sampling and 1/8-speed sampling, etc. . Among them, under full-speed sampling, the clock frequency for sampling is twice the data signal, in order to operate normally. In the case of half-speed sampling, the frequency of the clock signal used for sampling is approximately the same as the frequency of the data signal. In this embodiment, the clock recovery circuit 100 mainly uses the clock signal frequency of the half speed sampling.

其中,第1圖中的頻率偵測模組140用以根據資料訊號DATA之時脈邊緣(clock edge)與時脈訊號CLK之時脈邊緣,進而判斷目前的時脈訊號CLK的時脈頻率是否合適。The frequency detecting module 140 in FIG. 1 is configured to determine whether the clock frequency of the current clock signal CLK is based on the clock edge of the data signal DATA and the clock edge of the clock signal CLK. Suitable.

請參閱第2圖以及第3圖,第2圖繪示根據一實施例中理想情況下資料訊號DATA與時脈訊號CLK的時序示意圖。第3圖繪示根據一實施例中時脈訊號CLK之頻率低於資料訊號DATA之頻率的時序示意圖。在第2圖以及第3圖中,頻率偵測模組140係根據資料訊號DATA與時脈訊號CLK的時脈正緣(rising edge)進行判斷,但本發明並不以時脈正緣為限,於另一實施例中,亦可根據時脈負緣(falling edge)進行判斷。Please refer to FIG. 2 and FIG. 3 . FIG. 2 is a timing diagram of the ideal data signal DATA and the clock signal CLK according to an embodiment. FIG. 3 is a timing diagram showing the frequency of the clock signal CLK being lower than the frequency of the data signal DATA according to an embodiment. In the second and third figures, the frequency detecting module 140 judges based on the data edge DATA and the clock edge of the clock signal CLK, but the present invention is not limited to the positive edge of the clock. In another embodiment, the determination may also be made according to the falling edge of the clock.

如第2圖所示,在理想情況下,資料訊號DATA的連續兩個時脈正緣之間皆存在至少一個時脈訊號CLK之時脈正緣。如此一來,每一個資料訊號DATA的變換週期都至少可以被取樣一次。As shown in FIG. 2, in an ideal case, at least one clock positive edge of the clock signal CLK exists between two consecutive clock positive edges of the data signal DATA. In this way, the conversion period of each data signal DATA can be sampled at least once.

然而,如第3圖所示,若時脈產生裝置120產生的時脈訊號CLK的時脈頻率過低,則可能存在資料訊號DATA的連續兩個時脈正緣之間未存在任何一個時脈訊號CLK之時脈正緣。例如,在第3圖中的區間Er內,經過了兩個資料訊號DATA的時脈正緣,卻不存在時脈訊號CLK的時脈正緣,表示時脈訊號CLK的時脈頻率過低,此時可能造成資料訊號DATA的回復失真。However, as shown in FIG. 3, if the clock frequency of the clock signal CLK generated by the clock generating device 120 is too low, there may be no clock between the two consecutive clock edges of the data signal DATA. The positive edge of the signal CLK. For example, in the interval Er in FIG. 3, the positive edge of the two data signals DATA passes, but there is no positive edge of the clock signal CLK, indicating that the clock frequency of the clock signal CLK is too low. At this time, the response of the data signal DATA may be distorted.

於此實施例中,頻率偵測模組140用以判斷資料訊號 DATA之時脈邊緣與時脈訊號CLK之時脈邊緣,當資料訊號DATA的連續兩個時脈邊緣(如此例中為時脈正緣)之間未偵測到時脈訊號CLK之時脈邊緣(如此例中為時脈正緣)時(如第2圖中的區間Er),頻率偵測模組140便可產生控制訊號Vout至時脈產生裝置120(如第1圖所示),藉以提高時脈訊號CLK之時脈頻率。In this embodiment, the frequency detecting module 140 is configured to determine the data signal. The edge of the clock of DATA and the edge of the clock of the clock signal CLK, when the two consecutive clock edges of the data signal DATA (in this case, the positive edge of the clock), the clock edge of the clock signal CLK is not detected. (In this example, the positive edge of the clock) (such as the interval Er in FIG. 2), the frequency detecting module 140 can generate the control signal Vout to the clock generating device 120 (as shown in FIG. 1). Increase the clock frequency of the clock signal CLK.

如第1圖所示,頻率偵測模組140包含第一正反器142、第二正反器144、第三正反器146以及邏輯單元148。As shown in FIG. 1 , the frequency detecting module 140 includes a first flip flop 142 , a second flip flop 144 , a third flip flop 146 , and a logic unit 148 .

該第一正反器142之時脈控制端耦接至資料訊號DATA,該第一正反器142之資料輸入端耦接至第一節點N1,於此實施例中,第二正反器144之資料輸出端可透過回授方式耦接至第一正反器142之資料輸入端形成該第一節點N1。第一正反器142之資料輸出端耦接至第二節點N2。The clock control terminal of the first flip-flop 142 is coupled to the data signal DATA. The data input end of the first flip-flop 142 is coupled to the first node N1. In this embodiment, the second flip-flop 144 The data output end is coupled to the data input end of the first flip-flop 142 by a feedback method to form the first node N1. The data output end of the first flip-flop 142 is coupled to the second node N2.

第二正反器144之時脈控制端耦接至時脈訊號CLK,第二正反器144之資料輸入端耦接至第二節點N2,第二正反器144之資料輸出端耦接至第一節點N1。The clock control terminal of the second flip-flop 144 is coupled to the clock signal CLK, the data input terminal of the second flip-flop 144 is coupled to the second node N2, and the data output terminal of the second flip-flop 144 is coupled to The first node N1.

邏輯單元148之輸入端分別耦接至第一節點N1與第二節點N2。The input ends of the logic unit 148 are respectively coupled to the first node N1 and the second node N2.

第三正反器146之時脈控制端透過一延遲單元149耦接至資料訊號DATA,第三正反器146之資料輸入端耦接至邏輯單元148之輸出端,第三正反器146之資料輸出端用以輸出控制訊號Vout至時脈產生裝置120。The clock control terminal of the third flip-flop 146 is coupled to the data signal DATA through a delay unit 149. The data input terminal of the third flip-flop 146 is coupled to the output terminal of the logic unit 148, and the third flip-flop 146 The data output terminal is configured to output the control signal Vout to the clock generating device 120.

於此實施例中,延遲單元149耦接於資料訊號DATA與第三正反器146之間,其中延遲單元149用以對資料訊 號DATA形成預定延遲時間,預定延遲時間大致等於第二正反器144與邏輯單元148之加總延遲時間。In this embodiment, the delay unit 149 is coupled between the data signal DATA and the third flip-flop 146, wherein the delay unit 149 is used for data communication. The number DATA forms a predetermined delay time which is substantially equal to the summed delay time of the second flip-flop 144 and the logic unit 148.

其中,於正常情況下,即時脈訊號CLK之時脈頻率足夠時(即大於或等於資料訊號DATA之時脈頻率)。當資料訊號DATA之時脈正緣觸發時,第一正反器142用以將第一節點N1之電壓準位Vclrb輸出至第二節點N2;而當時脈訊號CLK之時脈正緣觸發時,第二正反器144用以將第二節點N2之電壓準位Va反向並輸出至第一節點N1。Wherein, under normal circumstances, the clock frequency of the instant pulse signal CLK is sufficient (ie, greater than or equal to the clock frequency of the data signal DATA). When the clock of the data signal DATA is triggered, the first flip-flop 142 is configured to output the voltage level Vclrb of the first node N1 to the second node N2; and when the clock edge of the pulse signal CLK is triggered, The second flip-flop 144 is configured to invert the voltage level Va of the second node N2 and output it to the first node N1.

由於第二正反器144產生的反向輸出效果,於是到下一次資料訊號DATA之時脈正緣觸發之前,正常的情況下,第一節點N1之電壓準位Vclrb與第二節點N2的電壓準位Va應具有相異的準位。如電壓準位Vclrb為高準位,則電壓準位Va為低準位;若電壓準位Vclrb為高準位,則電壓準位Va為高準位。Due to the reverse output effect generated by the second flip-flop 144, the voltage level of the first node N1 and the voltage of the second node N2 are normal under the condition that the next positive edge of the data signal DATA is triggered. The level Va should have a different level. If the voltage level Vclrb is at a high level, the voltage level Va is a low level; if the voltage level Vclrb is at a high level, the voltage level Va is at a high level.

此時,邏輯單元148判斷該第一節點N1之電壓準位Vclrb以及第二節點N2之電壓準位Va,此時,第一節點N1與第二節點N2之電壓準位邏輯上相異,於是邏輯單元148不產生控制訊號。At this time, the logic unit 148 determines the voltage level Vclrb of the first node N1 and the voltage level Va of the second node N2. At this time, the voltage levels of the first node N1 and the second node N2 are logically different, so Logic unit 148 does not generate a control signal.

接著,請一併參閱第1圖與第4圖,第4圖繪示於第1圖中的頻率偵測模組140當時脈訊號CLK之時脈頻率過低而使頻率偵測模組140產生控制訊號Vout時的時序示意圖。Then, please refer to FIG. 1 and FIG. 4 together. FIG. 4 is a diagram showing the frequency detecting module 140 of the frequency detecting module 140 in FIG. 1 when the clock frequency of the pulse signal CLK is too low, so that the frequency detecting module 140 generates Schematic diagram of the timing when the signal Vout is controlled.

如第4圖所示,若資料訊號DATA之連續兩次時脈正緣觸發(positive edge trigger)之間,存在有至少一次時脈訊號CLK之時脈正緣觸發,則會觸發第二正反器144,第二 節點N2之電壓準位Va反向並輸出至第一節點N1,即使得Vclrb =。如此一來,第一節點N1與第二節點N2的電壓準位為相反邏輯,則頻率偵測模組140不作動,如時間點T0~T1與時間點T2~T3之間。As shown in FIG. 4, if there is a clock positive edge trigger of at least one clock signal CLK between two consecutive clock edge positive signal triggers of the data signal DATA, the second positive and negative is triggered. The voltage level Va of the second node N2 is reversed and output to the first node N1, that is, Vclrb = . In this way, the voltage levels of the first node N1 and the second node N2 are opposite logics, and the frequency detecting module 140 does not operate, such as between the time points T0~T1 and the time points T2~T3.

如第4圖所示,時間點T1~T2間與時間點T3~T4間,分別有經過了兩次的資料訊號DATA之時脈正緣觸發(positive edge trigger),但並沒有時脈訊號CLK之時脈正緣觸發。As shown in Fig. 4, between the time points T1~T2 and the time points T3~T4, there are two positive signal edge signals (DATA) of the data signal DATA, but there is no clock signal CLK. The clock is triggered by the positive edge.

在此實施例中,首先討論時間點T3~T4之間的部份,時間點T3~T4經過了兩次的資料訊號DATA之時脈正緣觸發,但並沒有時脈訊號CLK之時脈正緣觸發,因此,此時電壓準位Vclrb以及第二節點N2之電壓準位Va均為高準位,此時,邏輯單元148判斷第一節點N1之電壓準位Vclrb與第二節點N2之電壓準位Va在邏輯上相同(同為高準位),於是邏輯單元148之輸出端便產生高準位的輸出電壓Vb。接著,在時間點T4,資料訊號DATA之時脈正緣觸發第三正反器146,第三正反器146便根據邏輯單元148之輸出端(高準位的輸出電壓Vb)輸出高準位的控制訊號Vout,藉此驅使時脈產生裝置120於時間點T4之後提高時脈訊號CLK之時脈頻率。In this embodiment, the portion between the time points T3 and T4 is discussed first, and the time point T3~T4 is triggered by the clock edge of the data signal DATA twice, but the clock of the clock signal CLK is not positive. The edge triggering, therefore, the voltage level Vclrb and the voltage level Va of the second node N2 are both at a high level. At this time, the logic unit 148 determines the voltage level Vclrb of the first node N1 and the voltage of the second node N2. The level Va is logically identical (same as the high level), so that the output of the logic unit 148 produces a high level output voltage Vb. Then, at the time point T4, the clock positive edge of the data signal DATA triggers the third flip-flop 146, and the third flip-flop 146 outputs the high level according to the output end of the logic unit 148 (the output voltage Vb of the high level). The control signal Vout is used to drive the clock generating device 120 to increase the clock frequency of the clock signal CLK after the time point T4.

如此一來,時脈產生裝置120便視需要而逐步提高時脈訊號CLK的時脈頻率,直到頻率偵測模組140判斷資料訊號DATA的連續兩個時脈邊緣之間皆可偵測到時脈訊號CLK之時脈邊緣。In this way, the clock generating device 120 gradually increases the clock frequency of the clock signal CLK as needed, until the frequency detecting module 140 determines that the two consecutive clock edges of the data signal DATA can be detected. The clock edge of the pulse signal CLK.

在上述實施例中,此實施例中的邏輯單元148可採用 及邏輯閘(AND gate),但本發明中的邏輯單元148並不以及邏輯閘為限。及邏輯(AND)式的邏輯單元148可對同為高準位的第一節點N1之電壓準位Vclrb與第二節點N2之電壓準位Va進行判斷,進而作為後續升頻控制之依據,但無法對同為低準位進行判斷。In the above embodiment, the logic unit 148 in this embodiment may be employed. And an AND gate, but the logic unit 148 in the present invention is not limited to the logic gate. And the logic (AND) logic unit 148 can determine the voltage level Vclrb of the first node N1 and the voltage level Va of the second node N2, which are both high-level, and then serve as a basis for subsequent up-conversion control, but It is impossible to judge the same low level.

另一方面,時間點T1~T2間的部份,在第4圖中的時間點T1至時間點T2之間經過了兩次的資料訊號DATA之時脈正緣觸發,並無時脈訊號CLK之時脈正緣觸發。此時,第一節點N1之電壓準位Vclrb與第二節點N2之電壓準位Va雖為相同邏輯,但同為低準位,故及邏輯(AND)式的邏輯單元148之輸出端的輸出電壓Vb並未改變。於此實施例中,邏輯單元148可採用及邏輯閘,及邏輯閘之結構簡單且判斷反應快,然而,此種判斷機制下,時脈回復電路100可將時脈訊號CLK之時脈頻率提升至足夠的頻率(利用第一節點N1與第二節點N2同為高準位的部份)所需的時間較長。On the other hand, the portion between the time points T1 and T2 is triggered by the clock edge of the data signal DATA that has passed twice between the time point T1 and the time point T2 in FIG. 4, and there is no clock signal CLK. The clock is triggered by the positive edge. At this time, the voltage level Vclrb of the first node N1 and the voltage level Va of the second node N2 are the same logic, but are both low level, and therefore the output voltage of the output of the logical unit 148 of the logic type Vb has not changed. In this embodiment, the logic unit 148 can adopt the logic gate, and the logic gate structure is simple and the response is fast. However, under such a judgment mechanism, the clock recovery circuit 100 can increase the clock frequency of the clock signal CLK. It takes a long time to reach a sufficient frequency (using the first node N1 and the second node N2 to be the same as the high level portion).

因此,本發明另揭露一實施例,邏輯單元可採用互斥或邏輯閘(exclusive-OR gate,XOR gate)。請參閱第5圖與第6圖,第5圖繪示根據本發明之另一實施例中時脈回復電路300的示意圖。第6圖繪示於第5圖中的頻率偵測模組340當時脈訊號CLK之時脈頻率過低而使頻率偵測模組340產生控制訊號Vout時的時序示意圖。Therefore, in another embodiment of the present invention, the logic unit may adopt an exclusive-OR gate (XOR gate). Please refer to FIG. 5 and FIG. 6. FIG. 5 is a schematic diagram of the clock recovery circuit 300 according to another embodiment of the present invention. FIG. 6 is a timing diagram of the frequency detecting module 340 in FIG. 5 when the clock frequency of the pulse signal CLK is too low and the frequency detecting module 340 generates the control signal Vout.

如第5圖所示,時脈回復電路300包含時脈產生裝置320以及頻率偵測模組340。且其中,頻率偵測模組340包含第一正反器342、第二正反器344、第三正反器346以及 邏輯單元348。須特別說明的是,於此實施例中,邏輯單元348採用互斥或(XOR)邏輯閘。As shown in FIG. 5, the clock recovery circuit 300 includes a clock generation device 320 and a frequency detection module 340. The frequency detecting module 340 includes a first flip flop 342, a second flip flop 344, and a third flip flop 346. Logic unit 348. It should be particularly noted that in this embodiment, logic unit 348 employs a mutually exclusive or (XOR) logic gate.

如第6圖所示,由於邏輯單元348採用互斥或(XOR)邏輯閘,因此當第一節點N1之電壓準位Vclrb與第二節點N2之電壓準位Va同為低準位時(如時間點T1~時間點T2),以及同為高準位時(如時間點T3~時間點T4),邏輯單元348之輸出端皆產生高準位的輸出電壓Vb,藉此,使第三正反器346便根據邏輯單元348之輸出端(高準位的輸出電壓Vb)輸出高準位的控制訊號Vout(如時間點T2與時間點T4),進而控制時脈產生裝置320。As shown in FIG. 6, since the logic unit 348 adopts a mutually exclusive or (XOR) logic gate, when the voltage level Vclrb of the first node N1 and the voltage level Va of the second node N2 are at the same low level (eg, When the time point T1 ~ time point T2), and the same high level (such as time point T3 ~ time point T4), the output of the logic unit 348 generates a high-level output voltage Vb, thereby making the third positive The inverter 346 outputs the high-level control signal Vout (such as the time point T2 and the time point T4) according to the output terminal (the high-level output voltage Vb) of the logic unit 348, thereby controlling the clock generating device 320.

如此一來,時脈產生裝置320便視需要而逐步提高時脈訊號CLK的時脈頻率,直到頻率偵測模組340判斷資料訊號DATA的連續兩個時脈邊緣之間皆可偵測到時脈訊號CLK之時脈邊緣。In this way, the clock generating device 320 gradually increases the clock frequency of the clock signal CLK as needed, until the frequency detecting module 340 determines that the consecutive two clock edges of the data signal DATA can be detected. The clock edge of the pulse signal CLK.

關於第5圖中的時脈回復電路300其他詳細電路與作動原理,可參考先前第1圖實施例中的時脈回復電路100,在此不另贅述。For the other detailed circuit and operation principle of the clock recovery circuit 300 in FIG. 5, reference may be made to the clock recovery circuit 100 in the previous embodiment of FIG. 1, which will not be further described herein.

綜上所述,本發明所揭露一種時脈回復電路及其頻率偵測模組,其中本揭示文件中頻率偵測模組所採用的正反器元件並不需要進行重置,且其採用的時脈訊號之路徑與邏輯結構相對簡單,即可達到頻率比對的效果。In summary, the present invention discloses a clock recovery circuit and a frequency detecting module thereof, wherein the flip-flop component used in the frequency detecting module in the present disclosure does not need to be reset, and the The path and logical structure of the clock signal is relatively simple, and the effect of frequency comparison can be achieved.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為 準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of the disclosure is defined by the scope of the patent application attached. quasi.

100‧‧‧時脈回復電路100‧‧‧clock recovery circuit

120‧‧‧時脈產生裝置120‧‧‧clock generator

140‧‧‧頻率偵測模組140‧‧‧Frequency detection module

142‧‧‧第一正反器142‧‧‧First forward and reverse

144‧‧‧第二正反器144‧‧‧second flip-flop

146‧‧‧第三正反器146‧‧‧ third positive and negative

148‧‧‧邏輯單元148‧‧‧Logical unit

149‧‧‧延遲單元149‧‧‧Delay unit

300‧‧‧時脈回復電路300‧‧‧clock recovery circuit

320‧‧‧時脈產生裝置320‧‧‧clock generator

340‧‧‧頻率偵測模組340‧‧‧Frequency detection module

342‧‧‧第一正反器342‧‧‧First forward and reverse

344‧‧‧第二正反器344‧‧‧second flip-flop

346‧‧‧第三正反器346‧‧‧ third positive and negative

348‧‧‧邏輯單元348‧‧‧Logical unit

349‧‧‧延遲單元349‧‧‧Delay unit

為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示根據本發明之一實施例中時脈回復電路的示意圖;第2圖繪示根據一實施例中理想情況下資料訊號與時脈訊號的時序示意圖;第3圖繪示根據一實施例中時脈訊號之頻率低於資料訊號之頻率的時序示意圖;第4圖繪示於第1圖中的頻率偵測模組當時脈訊號之時脈頻率過低而使頻率偵測模組產生控制訊號時的時序示意圖;第5圖繪示根據本發明之另一實施例中時脈回復電路的示意圖;第6圖繪示於第5圖中的頻率偵測模組當時脈訊號之時脈頻率過低而使頻率偵測模組產生控制訊號時的時序示意圖。The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a clock recovery circuit in accordance with an embodiment of the present invention. FIG. 2 is a timing diagram of the ideal data signal and the clock signal according to an embodiment; FIG. 3 is a timing diagram of the frequency of the clock signal being lower than the frequency of the data signal according to an embodiment; 4 is a timing diagram of the frequency detecting module of the frequency detecting module in FIG. 1 when the clock frequency of the pulse signal is too low to cause the frequency detecting module to generate a control signal; FIG. 5 is another schematic diagram according to the present invention. A schematic diagram of a clock recovery circuit in the embodiment; FIG. 6 is a timing diagram of the frequency detection module of the frequency detecting module in FIG. 5 when the clock frequency of the pulse signal is too low to cause the frequency detecting module to generate a control signal.

100‧‧‧時脈回復電路100‧‧‧clock recovery circuit

120‧‧‧時脈產生裝置120‧‧‧clock generator

140‧‧‧頻率偵測模組140‧‧‧Frequency detection module

142‧‧‧第一正反器142‧‧‧First forward and reverse

144‧‧‧第二正反器144‧‧‧second flip-flop

146‧‧‧第三正反器146‧‧‧ third positive and negative

148‧‧‧邏輯單元148‧‧‧Logical unit

149‧‧‧延遲單元149‧‧‧Delay unit

Claims (11)

一種時脈回復電路,包含:一時脈產生裝置,用以產生一時脈訊號;一頻率偵測模組,用以判斷一資料訊號之時脈邊緣(clock edge)與該時脈訊號之時脈邊緣,當該資料訊號的連續兩個時脈邊緣之間未偵測到該時脈訊號之時脈邊緣時,該頻率偵測模組產生一控制訊號至該時脈產生裝置,藉以提高該時脈訊號之一時脈頻率。 A clock recovery circuit includes: a clock generation device for generating a clock signal; and a frequency detection module for determining a clock edge of a data signal and a clock edge of the clock signal When the clock edge of the clock signal is not detected between two consecutive clock edges of the data signal, the frequency detecting module generates a control signal to the clock generating device, thereby improving the clock. One of the clock frequencies of the signal. 如申請專利範圍第1項所述之時脈回復電路,其中該資料訊號之時脈邊緣與該時脈訊號之時脈邊緣包含一時脈正緣(rising edge)或一時脈負緣(falling edge)。 The clock recovery circuit of claim 1, wherein the clock edge of the data signal and the clock edge of the clock signal comprise a rising edge or a falling edge of the clock. . 如申請專利範圍第1項所述之時脈回復電路,其中該頻率偵測模組包含:一第一正反器,當該資料訊號之時脈邊緣觸發時,該第一正反器用以將一第一節點之電壓準位輸出至一第二節點;一第二正反器,當該時脈訊號之時脈邊緣觸發時,該第二正反器用以將該第二節點之電壓準位反向並輸出至該第一節點;一邏輯單元,該邏輯單元判斷該第一節點之電壓準位以及該第二節點之電壓準位,當該第一節點與該第二節點之電壓準位邏輯上相同時,該邏輯單元用以 產生一控制訊號;以及一第三正反器,當該資料訊號之時脈邊緣觸發時,該第三正反器用以輸出該控制訊號至該時脈產生模組,藉此提高該時脈訊號之該時脈頻率。 The clock recovery circuit of claim 1, wherein the frequency detecting module comprises: a first flip-flop, the first flip-flop is used when the clock edge of the data signal is triggered a voltage level of the first node is output to a second node; a second flip-flop is used to trigger the voltage level of the second node when the clock edge of the clock signal is triggered Reversely outputting to the first node; a logic unit, the logic unit determining a voltage level of the first node and a voltage level of the second node, when the voltage level of the first node and the second node When logically identical, the logic unit is used And generating a control signal; and a third flip-flop, when the clock edge of the data signal is triggered, the third flip-flop is configured to output the control signal to the clock generation module, thereby improving the clock signal The clock frequency. 如申請專利範圍第3項所述之時脈回復電路,其中該邏輯單元包含一及邏輯閘(AND gate)或一互斥或邏輯閘(exclusive-OR gate,XOR gate)。 The clock recovery circuit of claim 3, wherein the logic unit comprises an AND gate or an exclusive-OR gate (XOR gate). 如申請專利範圍第3項所述之時脈回復電路,其中該頻率偵測模組更包含一延遲單元,其耦接於該資料訊號與該第三正反器之間。 The clock recovery circuit of claim 3, wherein the frequency detection module further comprises a delay unit coupled between the data signal and the third flip-flop. 如申請專利範圍第5項所述之時脈回復電路,其中該延遲單元用以對該資料訊號形成一預定延遲時間,該預定延遲時間大致等於該第二正反器與該邏輯單元之一加總延遲時間。 The clock recovery circuit of claim 5, wherein the delay unit is configured to form a predetermined delay time for the data signal, the predetermined delay time being substantially equal to one of the second flip-flop and the logic unit. Total delay time. 一種頻率偵測模組,適用於偵測一時脈訊號與一資料訊號之頻率相對關係,該頻率偵測模組包含:一第一正反器,當該資料訊號之時脈邊緣觸發時,該第一正反器用以將一第一節點之電壓準位輸出至一第二節點;一第二正反器,當該時脈訊號之時脈邊緣觸發時,該第二正反器用以將該第二節點之電壓準位反向並輸出至該第一節點; 一邏輯單元,該邏輯單元判斷該第一節點之電壓準位以及該第二節點之電壓準位,當該第一節點與該第二節點之電壓準位邏輯上相同時,該邏輯單元用以產生一控制訊號;以及一第三正反器,當該資料訊號之時脈邊緣觸發時,該第三正反器用以輸出該控制訊號,藉以提高該時脈訊號之一時脈頻率。 A frequency detecting module is configured to detect a relative relationship between a clock signal and a data signal. The frequency detecting module includes: a first flip-flop, when the clock edge of the data signal is triggered, the The first flip-flop is used to output the voltage level of a first node to a second node; a second flip-flop is used to trigger the clock edge of the clock signal when the clock edge is triggered The voltage level of the second node is reversed and output to the first node; a logic unit, the logic unit determines a voltage level of the first node and a voltage level of the second node, and when the voltage level of the first node and the second node are logically the same, the logic unit is used to: And generating a control signal; and a third flip-flop, when the clock edge of the data signal is triggered, the third flip-flop is configured to output the control signal, thereby increasing a clock frequency of the clock signal. 如申請專利範圍第7項所述之頻率偵測模組,其中該資料訊號之時脈邊緣與該時脈訊號之時脈邊緣包含一時脈正緣(rising edge)或一時脈負緣(falling edge)。 The frequency detecting module of claim 7, wherein the clock edge of the data signal and the clock edge of the clock signal comprise a rising edge or a falling edge (falling edge) ). 如申請專利範圍第7項所述之頻率偵測模組,其中該邏輯單元包含一及邏輯閘(AND gate)或一互斥或邏輯閘(exclusive-OR gate,XOR gate)。 The frequency detecting module of claim 7, wherein the logic unit comprises an AND gate or an exclusive-OR gate (XOR gate). 如申請專利範圍第7項所述之頻率偵測模組,其中該頻率偵測模組更包含一延遲單元,其耦接於該資料訊號與該第三正反器之間。 The frequency detecting module of claim 7, wherein the frequency detecting module further comprises a delay unit coupled between the data signal and the third flip-flop. 如申請專利範圍第10項所述之頻率偵測模組,其中該延遲單元用以對該資料訊號形成一預定延遲時間,該預定延遲時間大致等於該第二正反器與該邏輯單元之一加總延遲時間。 The frequency detecting module of claim 10, wherein the delay unit is configured to form a predetermined delay time for the data signal, the predetermined delay time being substantially equal to one of the second flip-flop and the logic unit Add a delay time.
TW100119417A 2011-06-02 2011-06-02 Clock recovery circuit and frequency detection module thereof TWI452837B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100119417A TWI452837B (en) 2011-06-02 2011-06-02 Clock recovery circuit and frequency detection module thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100119417A TWI452837B (en) 2011-06-02 2011-06-02 Clock recovery circuit and frequency detection module thereof

Publications (2)

Publication Number Publication Date
TW201251333A TW201251333A (en) 2012-12-16
TWI452837B true TWI452837B (en) 2014-09-11

Family

ID=48139446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119417A TWI452837B (en) 2011-06-02 2011-06-02 Clock recovery circuit and frequency detection module thereof

Country Status (1)

Country Link
TW (1) TWI452837B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509801B1 (en) * 2001-06-29 2003-01-21 Sierra Monolithics, Inc. Multi-gigabit-per-sec clock recovery apparatus and method for optical communications
US7532038B2 (en) * 2005-07-01 2009-05-12 Via Technologies, Inc. Phase detecting circuit having adjustable gain curve and method thereof
US7577193B2 (en) * 2005-06-28 2009-08-18 Intel Corporation Adaptive equalizer
US7764759B2 (en) * 2006-06-13 2010-07-27 Gennum Corporation Linear sample and hold phase detector for clocking circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509801B1 (en) * 2001-06-29 2003-01-21 Sierra Monolithics, Inc. Multi-gigabit-per-sec clock recovery apparatus and method for optical communications
US7577193B2 (en) * 2005-06-28 2009-08-18 Intel Corporation Adaptive equalizer
US7532038B2 (en) * 2005-07-01 2009-05-12 Via Technologies, Inc. Phase detecting circuit having adjustable gain curve and method thereof
US7764759B2 (en) * 2006-06-13 2010-07-27 Gennum Corporation Linear sample and hold phase detector for clocking circuits

Also Published As

Publication number Publication date
TW201251333A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
US8686773B1 (en) In-system margin measurement circuit
US10277213B1 (en) Glitch detection in input/output bus
JP5896602B2 (en) Communication circuit and sampling adjustment method
US9824731B2 (en) Data reading circuit
JP5989239B2 (en) Signal processing device
TWI654854B (en) Eye generator
US7936855B2 (en) Oversampling data recovery circuit and method for a receiver
JP2019022237A (en) Temporal digital converter with high resolution
CN107533533B (en) Communication between integrated circuits
JP2007157147A (en) Circuit and method for time-stamping event for fraction of clock cycle
US8878569B1 (en) Self-recovering bus signal detector
JP5109717B2 (en) Transmitter circuit
TWI452837B (en) Clock recovery circuit and frequency detection module thereof
US7679404B2 (en) Missing clock pulse detector
TWI488047B (en) One wire signal transmission apparatus and method
JP5519456B2 (en) Edge detection circuit and edge detection method
KR100833604B1 (en) Parity error detecting circuit
JP6055867B2 (en) Random number generator and random number generation method thereof
US7660364B2 (en) Method of transmitting serial bit-stream and electronic transmitter for transmitting a serial bit-stream
TW202023191A (en) Debounce circuit
KR101162259B1 (en) Semiconductor integrated circuit and a method of driving the semiconductor integrated circuit
TW202024649A (en) Circuit and method for measuring signal period
US8624649B2 (en) Delay measuring circuit and delay measuring method
JP5633132B2 (en) Data transmission system and method, data transmitting apparatus and receiving apparatus
JP4934980B2 (en) Bus receiver circuit and noise removing method used for the bus receiver circuit