TWI728358B - 壓鑄模具用鋼及壓鑄模具 - Google Patents

壓鑄模具用鋼及壓鑄模具 Download PDF

Info

Publication number
TWI728358B
TWI728358B TW108116596A TW108116596A TWI728358B TW I728358 B TWI728358 B TW I728358B TW 108116596 A TW108116596 A TW 108116596A TW 108116596 A TW108116596 A TW 108116596A TW I728358 B TWI728358 B TW I728358B
Authority
TW
Taiwan
Prior art keywords
steel
die
mold
casting
content
Prior art date
Application number
TW108116596A
Other languages
English (en)
Other versions
TW201947044A (zh
Inventor
河野正道
Original Assignee
日商大同特殊鋼股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商大同特殊鋼股份有限公司 filed Critical 日商大同特殊鋼股份有限公司
Publication of TW201947044A publication Critical patent/TW201947044A/zh
Application granted granted Critical
Publication of TWI728358B publication Critical patent/TWI728358B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

本發明係關於一種壓鑄模具,其具有由以下所組成的組成(以質量%計):0.16≦C≦0.26,0.001≦Si≦0.80,1.20≦Mn≦2.00,2.41≦Cr≦2.73,0.48≦Mo≦0.97,0.003≦V≦0.28,0.0005≦Al≦0.15,0.0002≦N≦0.050,其餘為Fe及無可避免的雜質,及具有26至43 HRC之硬度且利用雷射閃光方法於25℃下測量之導熱性λ[W/m/K]為27.0≦λ。

Description

壓鑄模具用鋼及壓鑄模具
本發明係關於一種壓鑄模具用鋼及其上施用微量脫模劑之可適當地應用於壓鑄中之壓鑄模具。
壓鑄係一種於短時間內將熔融金屬壓入配合至空腔(具有產品形狀之模具的間隙)中,及固化經壓入配合的熔融金屬以有效率地產生鑄造物的技術。將近90%的壓鑄產品係用於汽車,且壓鑄持續支援汽車品質的改良。
壓鑄模具之表面經由與熔融金屬接觸而經歷快速加熱及經由施用脫模劑而快速冷卻。結果,壓縮應力及抗拉應力週期性地作用於模具表面上,及當鑄造射注(shot)次數增加時,於模具之金屬表面上產生稱為「熱裂(heat check)」的熱疲勞裂紋。
抑制熱裂係壓鑄的一項重要議題。其係由於熱裂將轉移至鑄造產品的表面,其會減損產品的商業價值,且由於熱裂會成為總體裂紋(穿透模具的深裂紋)的起始點。
在施用脫模劑時的冷卻越弱,亦即,在施用脫模劑時的抗拉應力越弱,則熱裂越受到抑制。為此,近年來,為了抑制熱裂,傾向於進行「微量施用」,其意指減少脫模劑的施用量。對於將何種程度之施用量視作微量並無清楚定義,但已進行此「微量施 用」來避免由脫模劑施用所引起之於模具表面處的快速冷卻。
由於熱裂較不可能經由以微量施用脫模劑而發生,因此與習知模具相比,高溫強度較不具重要性。因此,可減少用於確保強度的合金元素,且可降低模具的預硬化硬度。此「節約合金元素」及「硬度降低」有效降低模具的成本。
同時,在以微量施用脫模劑的壓鑄中,由於模具的較高溫度而會發生諸如循環時間延長及鑄造品質劣化的問題。此係因為,由於脫模劑的施用量小,模具表面保持於高溫而未經充分冷卻,經壓入配合的熔融金屬要耗費更多時間來固化(循環時間延長),且經緩慢固化之鑄造產品的微結構粗(鑄造品質劣化)。為解決此等問題,需使模具的冷卻速率加快,而提高模具的導熱性係一種有效的方式。
當比較於25℃下之導熱性時,JIS SKD 61鋼(其係通用型壓鑄模具鋼)具有低至約24W/m/K之導熱性。因此,已開發出具有約27W/m/K之增加導熱性的高效能5Cr鋼。然而,即使係在此情況中,導熱性仍處於不足側,且循環時間延長及鑄造品質劣化的問題仍未充分地獲得解決。
此外,無法將用於樹脂之射出成型模具的鋼(下文在一些情況中稱為用於塑膠成型模具之鋼)轉用於其中施用微量脫模劑之壓鑄模具。然而,用於塑膠成型模具之鋼具有極低的高溫強度、會導致容易形成肥粒鐵或變韌鐵的低可硬化性、及會導致總體裂紋的低衝擊值。因此,實際上很難將用於塑膠成型模具之鋼應用於壓鑄模具。
以下的專利文件1揭示一種具有組分平衡的壓鑄模 具鋼,其中用來改良抗熱裂性之合金元素的添加量經減至最少以著重在可硬化性及高導熱性。然而,專利文件1中揭示之鋼與本發明之不同處在於Cr-Mo之組分範圍。
專利文件1:JP-A 2017-43809
本發明係考慮以上情勢作為背景來進行。本發明之一目的係提供一種壓鑄模具用鋼及可適當地應用於壓鑄之壓鑄模具,其中因施用脫模劑所引起之模具溫度的降低小,且其能夠同時達成壓鑄模具的成本降低、縮短壓鑄循環、及鑄造產品的高品質。
為解決以上問題,本發明人研究鋼組分對強度、導熱性、及衝擊值之影響。結果,其發現當C、Si、Mn、Cr、Mo、V、及N之含量界定於各別狹窄範圍內時,可解決以上問題。其亦證實經由將可選元素添加至基礎組分可進一步穩定特性。
本發明提供一種壓鑄模具用鋼,其具有由以下所組成的組成(以質量%計):0.16≦C≦0.26,0.001≦Si≦0.80,1.20≦Mn≦2.00,2.41≦Cr≦2.73,0.48≦Mo≦0.97,0.003≦V≦0.28,0.0005≦Al≦0.15,0.0002≦N≦0.050,及可選地, Cu≦1.50,Ni≦1.50,B≦0.0050,W≦4.00,Co≦3.00,Nb≦0.200,Ta≦0.200,Ti≦0.200,Zr≦0.200,S≦0.050,Ca≦0.2000,Se≦0.50,Te≦0.100,Bi≦0.50,及Pb≦0.50,其餘為Fe及無可避免的雜質,及具有26至43 HRC之硬度且利用雷射閃光方法於25℃下測量之導熱性λ[W/m/K]為27.0≦λ。
在壓鑄模具用鋼中,可以下列範圍包含下列組分作為無可避免的雜質。
P≦0.050、S≦0.008、Cu≦0.30、Ni≦0.30、W≦0.30、O≦0.05、Co≦0.10、Nb≦0.004、Ta≦0.004、Ti≦0.004、Zr≦0.004、B≦0.0001、Ca≦0.0005、Se≦0.03、Te≦0.005、Bi≦0.01、Pb≦0.03、Mg≦0.02、REM≦0.10、及其類似物。
根據本發明之壓鑄模具用鋼可包含(以質量%計)0.30<Cu≦1.50及0.30<Ni≦1.50中之至少一者。
根據本發明之壓鑄模具用鋼可包含(以質量%計)0.0001<B≦0.0050。
根據本發明之壓鑄模具用鋼可包含(以質量%計)0.30<W≦4.00及0.10<Co≦3.00中之至少一者。
根據本發明之壓鑄模具用鋼可包含(以質量%計)0.004<Nb≦0.200、0.004<Ta≦0.200、0.004<Ti≦0.200、及0.004<Zr≦0.200中之至少一者。
根據本發明之壓鑄模具用鋼可包含(以質量%計)0.008<S≦0.050、0.0005<Ca≦0.2000、0.03<Se≦0.50、0.005<Te≦0.100、0.01<Bi≦0.50、及0.03<Pb≦0.50中之至少一者。
此外,本發明提供一種由前述壓鑄模具用鋼形成之壓鑄模具。
在本發明中,「模具」不僅包括模具主體,並且亦包括組裝至主體之模具部件(諸如銷)、及其類似物。此外,「模具」包括由根據本發明之鋼製成並經過表面處理的模具。
根據如前所述之本發明,提供一種壓鑄模具用鋼及可適當地應用於壓鑄之壓鑄模具,其中因施用脫模劑所引起之模具溫度的降低小,且其能夠同時達成壓鑄模具的成本降低、縮短壓鑄循環、及鑄造產品的高品質。
10‧‧‧鋼材料
10a‧‧‧鋼材料10之內部部分
10b‧‧‧鋼材料10之角落部分
20‧‧‧模具
圖1係顯示回火溫度與回火硬度之間之關係的圖。
圖2係顯示藉以獲得目標硬度之回火溫度範圍與Cr含量之間之關係的圖。
圖3係用來解說用來自預硬化鋼材料切割出模具之製程的圖。
圖4係示意性地顯示本發明之模具用鋼之連續冷卻轉變的圖。
圖5係顯示Mo對抑制肥粒鐵沉澱之效應的圖。
圖6係顯示模具表面之溫度轉變的圖。
本發明將說明於下。在本說明書中,除非另外指示,否則各化學組分之值係以質量%基礎表示。
通用的5Cr模具鋼SKD61包含(以質量%計)4.50≦Cr≦5.50、1.00≦Mo≦1.50、及0.80≦V≦1.20。相對地,根據本發明之鋼包含(以質量%計)2.41≦Cr≦2.73、0.48≦Mo≦0.97、及0.003≦V≦0.28。與SKD61鋼相比,根據本發明之鋼的稀有金屬含量大大地降低。高效能5Cr模具鋼具有1.80質量%或更高之Mo含量。與此相比,降低Mo的效應在本發明中變得更大。
在根據本發明之鋼中,為了即使利用此等具有節約量之合金元素之組分使肥粒鐵或變韌鐵難以沉澱,將Mn含量設定為(以質量%計)1.20≦Mn≦2.00,其較5Cr模具鋼之0.20≦Mn≦1.20高。由於Mn不是昂貴元素,因此由於Mn含量增加所引起的成本增加相當有限,而降低Cr、Mo及V含量之成本降低效應明顯。考慮到晶體粒度及預硬化硬度,將根據本發明之鋼的N含量設定為0.0002≦N≦0.0500,其與SKD61鋼相當。
在如前所述之根據本發明的鋼中,經由節約合金元素之量而降低模具用鋼的成本。此外,在習知技術中,已將機械加工 分成粗機器加工及細機器加工,並進行兩次。然而,可於已經進一步預硬化至預定硬度(26至43 HRC)之根據本發明的鋼中立刻進行機械加工。換言之,在根據本發明之鋼中不需要習知之粗機器加工、淬火及回火,且模具之成本經由省略此等製程而進一步降低。此外,由於在淬火期間不存在龜裂或變形的問題,因此不需要歸因於該等問題而重新製造模具。由此觀點,模具的成本進一步地降低。關於前述含量,如下比較模具的製造過程。在習知的製造過程中,使模具材料(退火狀態)經受鑽孔加工、第一機器加工(粗)、淬火及回火(43至52 HRC)、及第二機器加工(細)。相對地,在本發明之製造過程中,使模具材料(26至43 HRC)經受鑽孔加工及機器加工(集體的)。
分別地,具43 HRC之預硬化材料於25℃下的導熱性就SKD 61鋼而言為約23至24W/m/K及就高導熱性類型5Cr模具鋼而言為約27W/m/K。相對於此,根據本發明之鋼於25℃下的導熱性高至27W/m/K或更高。此一高導熱性係經由最佳化固體溶解於基質中之元素與作為碳化物、氮化物或碳氮化物沉澱之元素之間的平衡來達成。當將本發明之鋼應用於壓鑄中時,其中因施用脫模劑所引起之模具溫度的降低小,模具具有足夠的抗熱裂性、且亦可能縮短壓鑄循環並達成鑄造產品的高品質。
本說明中所提及之JIS標準係基於最新資訊(2018年5月15日)。
接下來,將於下文說明於本發明中限制化學組分及其類似者的理由。根據本發明之壓鑄模具用鋼包含C、Si、Mn、Cr、Mo、V、Al、N、及Fe作為基本組分。在下文所述之化學組分中, 除基本組分外的組分為可選的。除非另外指示,否則各化學組分之值係以質量%基礎表示。
0.16≦C≦0.26:
在C含量低於0.16之情況中,當回火溫度高時,很難穩定地獲得26 HRC或更高之硬度。當將本發明應用於粉末之加成製造時,亦很難獲得26 HRC或更高之硬度。此外,對熔融鋁合金之抗侵蝕性顯著地劣化。另一方面,在C含量大於0.26之情況中,可熔接性減損。此外,導熱性大大地劣化。C含量較佳在0.17≦C≦0.25之範圍內,且更佳為0.18≦C≦0.24。
0.001≦Si≦0.80:
在Si含量低於0.001之情況中,於機械加工期間之機器加工性顯著地劣化。此外,當回火溫度高時,很難穩定地獲得26 HRC或更高之硬度。另一方面,在Si含量大於0.80之情況中,導熱性及衝擊值皆大大地劣化。Si含量較佳在0.005≦Si≦0.70之範圍內,且更佳為0.010≦Si≦0.60。
下表1顯示Si含量對25℃下之導熱性的影響。
使用包含0.26C-1.67Mn-2.41Cr-0.73Mo-0.16V-0.0084N作為基礎組分且Si含量改變的鋼材料,並使鋼材料於淬火後回火至36 HRC。藉由雷射閃光方法測量經回火材料於25℃下之導熱性。
如表1所示,在Si含量為0.8%之情況中,導熱性λ為27W/m/K,及在Si含量大於0.80之情況中,λ小於27。此係將Si含量之上限界定為0.8%的一個理由。
Figure 108116596-A0101-12-0009-1
1.20≦Mn≦2.00:
在Mn含量低於1.20之情況中,可硬化性不足,從而導致硬度因混合肥粒鐵而不足且韌度因混合變韌鐵而降低。另一方面,在Mn含量大於2.00之情況中,退火性質嚴重劣化,及當進行退火時,用來軟化的熱處理複雜且要耗費長時間,其導致製造成本增加。此外,在Mn含量大於2.00之情況中,導熱性大大地劣化。此外,當回火溫度高時,衝擊值劣化。在Si或P之含量大的情況中,此尤其顯著。
Mn含量較佳在1.30≦Mn≦1.95之範圍內,且更佳為1.40≦Mn≦1.90。
下表2顯示Mn含量對25℃下之導熱性的影響。
使用包含0.26C-0.60Si-2.73Cr-0.73Mo-0.16V-0.0084N作為基礎組分且Mn含量改變的鋼材料,並使鋼材料於淬火後回火至36 HRC。藉由雷射閃光方法測量經回火材料於25℃下之導熱性。
如表2所示,在Mn含量為2.00%之情況中,導熱性λ為27W/m/K,及在Mn含量大於2.00之情況中,λ小於27。此係將Mn含量之上限界定為2.00%的一個理由。
Figure 108116596-A0101-12-0009-2
2.41≦Cr≦2.73:
在Cr含量低於2.41之情況中,高溫強度低。此外,可硬化性 不足,從而導致硬度因混合肥粒鐵而不足且韌度因混合變韌鐵而降低。此外,抗腐蝕性極差,且模具內部的水冷卻孔顯著地鏽蝕。另一方面,在Cr含量大於2.73之情況中,導熱性大大地劣化。此外,回火硬度的溫度相依性增加,且很難使材料橫截面中之所有部分的硬度皆落於狹窄範圍內。Cr含量較佳在2.43≦Cr≦2.70之範圍內,且更佳為2.45≦Cr≦2.68。
下表3顯示Cr含量對25℃下之導熱性的影響。
使用包含0.26C-0.65Si-1.76Mn-0.73Mo-0.16V-0.0084N作為基礎組分且Cr含量改變的鋼材料,並使鋼材料於淬火後回火至36 HRC。藉由雷射閃光方法測量經回火材料於25℃下之導熱性。
如表3所示,在Cr含量為2.73%之情況中,導熱性λ為27W/m/K,及在Cr含量大於2.73之情況中,λ小於27。此係將Cr含量之上限界定為2.73%的一個理由。
Figure 108116596-A0101-12-0010-3
Cr含量之上限亦係考慮淬火硬度的容易調整來確定。待淬火之材料的尺寸從小變化至大。淬火速率於小材料中高(快速冷卻),及於大材料中低(緩慢冷卻)。此外,淬火速率於材料之表面中高(快速冷卻),及於材料內部低(緩慢冷卻)。因此,在淬火速率於快速冷卻與緩慢冷卻之間不同的情況中,即使當回火係於相同條件下進行時,回火硬度亦變得不同。此係由於抗回火軟化性在經由快速冷卻獲得之麻田散鐵與經由緩慢冷卻獲得之變韌鐵之間不同。其之一實例顯示於圖1。
在此,不管淬火速率為何,一重要參數係可獲得33至37 HRC之目標硬度的「溫度範圍」(見圖1)。
一般而言,由於此「溫度範圍」並非極寬,因此在使具有不同淬火速率之材料回火的情況中,很難使所有產品之橫截面中之所有部分的硬度皆落於目標硬度範圍內。
此外,在回火爐中之溫度波動及由於爐中之位置差異所引起的溫度差亦係使得難以使硬度落於目標硬度範圍內的重要因素。傾向於維持在預定溫度之爐溫隨時間經過通常並非完全為恆定,而係存在約±5℃之波動。換言之,於最低溫度與最高溫度之間產生約10℃的差。此外,可由於爐中之位置差異(中心或角落)而產生5至15℃之溫度差。
鑑於上述,可說需要具有15℃或更高之「溫度範圍」的鋼來使具有不同淬火速率及尺寸之所有產品的硬度落於目標硬度範圍內。圖2顯示鋼材料之溫度範圍與Cr含量之間的關聯,且可發現在Cr含量為約2.73或更小之情況中,溫度範圍成為15℃或更高。此係將Cr含量之上限界定為2.73%的另一理由。
0.48≦Mo≦0.97:
在Mo含量低於0.48之情況中,二次固化僅對硬度具有小的貢獻,且當回火溫度高時很難穩定地獲得26 HRC或更高之高硬度。此外,在Mo含量低於0.48之情況中,可硬化性不足,從而導致硬度因混合肥粒鐵而不足且韌度因混合變韌鐵而降低。另一方面,在Mo含量大於0.97之情況中,衝擊值及破裂韌度劣化,且存在於模具上發生總體裂紋的增加風險。此外,材料成本顯著地增加。Mo含量較佳在0.50≦Mo≦0.95之範圍內,且更佳為0.52≦Mo≦0.90。
同時,根據本發明之鋼係屬於「預硬化鋼材料」。此係已經由淬火及回火預硬化,從而具有可進行直接集體加工之26至43 HRC之低硬度的鋼材料。舉例而言,模具使用者如圖3所示自鋼材料10切割出模具20,且使鋼材料10之內部部分10a暴露作為成形之模具20的表面。
如圖4所示,在淬火中,淬火速率低之鋼材料的內部部分10a較淬火速率高之鋼材料10的表面側(例如,圖3之角落部分10b)具有更高的沉澱肥粒鐵之可能性。當肥粒鐵沉澱於鋼材料10之內部部分10a時,該部分可經由如前所述之機械加工暴露成為模具之表面。當於此狀態進行壓鑄時,容易在沉澱肥粒鐵之部分中產生裂紋,此乃因肥粒鐵具有低強度,且模具的使用壽命顯著地縮短。因此,根據本發明之預硬化鋼需具有即使係在具有低淬火速率之鋼材料內部部分中肥粒鐵亦不會沉澱的可硬化性。
一般而言,由於淬火速率在大鋼材料之內部部分中降低至約9℃/min,因此需防止肥粒鐵在9℃/min之速率下沉澱。添加Mo有效地抑制肥粒鐵沉澱,其顯示於圖5中。
在此,經由使用包含0.16C-0.2Si-1.35Mn-2.41Cr-0.19V-0.0092N作為基礎組分且Mo含量改變的鋼材料來檢測肥粒鐵沉澱時的淬火速率。在圖5中,「o」意指肥粒鐵未沉澱,及「x」意指肥粒鐵沉澱,當然,「o」為較佳。在Mo含量為0.48或更高之情況中,即使在2℃/min之淬火速率中結果亦為「o」。因此,在本發明中將Mo含量界定為0.48%或更高。
0.003≦V≦0.28:
在V含量低於0.003之情況中,由於氮化物或碳氮化物降低, 因此抑制沃斯田鐵晶粒變粗的效應差,從而歸因於晶粒變粗導致衝擊值劣化。此外,二次固化僅對硬度具有小的貢獻,且當回火溫度高時很難穩定地獲得26 HRC或更高之高硬度。另一方面,在V含量高於0.28之情況中,成本顯著地增加。此外,粗氮化物或碳氮化物增加,其成為龜裂的起始點,使得衝擊值及疲勞強度劣化。V含量較佳在0.008≦V≦0.27之範圍內,且更佳為0.01≦V≦0.25。
0.0005≦Al≦0.15:
在Al含量低於0.0005之情況中,由於AlN降低,因此抑制沃斯田鐵晶粒變粗的效應差,從而歸因於晶粒變粗導致衝擊值劣化。因此,在將氮化物用於表面處理之情況中,表面層的固化可能不足。另一方面,在Al含量高於0.15之情況中,導熱性劣化。此外,Al之氧化物增加,其成為龜裂的起始點,使得衝擊值及疲勞強度劣化。Al含量較佳在0.0008≦Al≦0.13之範圍內,且更佳為0.001≦Al≦0.11。
0.0002≦N≦0.050:
在N含量低於0.0002之情況中,由於氮化物或碳氮化物降低,因此抑制沃斯田鐵晶粒變粗的效應差,從而歸因於晶粒變粗導致衝擊值劣化。另一方面,在N含量高於0.050之情況中,N添加所需之精煉的時間及成本增加,從而導致材料成本增加。此外,粗氮化物及碳氮化物增加,其成為龜裂的起始點,使得衝擊值及疲勞強度劣化。由各種特性之優異平衡的觀點來看,N含量較佳在0.0008≦N≦0.040之範圍內,且更佳為0.0012≦N≦0.030。
導熱性λ[W/m/K]為27.0或更高。
為快速冷卻產品及降低由熱應力所導致之對模具的損傷,需提 高模具的導熱性。用於壓鑄之通用鋼SKD61或其類似物具有約24W/m/K之在25℃下的導熱性λ。為快速冷卻產品及降低對模具的損傷,導熱性λ需為27W/m/K或更高,及更佳為28W/m/K或更高。雖然導熱性λ之上限並無特定限制,但當導熱性增加超過44W/m/K時,效應達到飽和而無許多實際效益。
硬度為26至43 HRC。
模具需具有良好的耐磨性及抗變形性。因此,硬度對於模具而言重要。在硬度為26 HRC或更高之情況中,當將模具應用於壓鑄中時,歸因於施用脫模劑所引起之模具溫度的降低小,而較不可能發生磨損及變形的問題。硬度較佳為27 HRC或更高。另一方面,在硬度過高的情況中,很難自鋼材料切割出模具。因此,亦須使硬度保持為43 HRC或更低。
與SKD61鋼(其係通用型壓鑄模具用鋼)相比,根據本發明之鋼具有合計小含量的Mn及Cr。因此,根據本發明之鋼不具有極高的可硬化性。添加Cu或Ni有效地改良可硬化性。明確言之,包含0.30<Cu≦1.50及0.30<Ni≦1.50中之至少一者為較佳。
此等元素不僅使肥粒鐵鼻部(nose)並且使變韌鐵鼻部位移至長期間側,藉此穩定地改良可硬化性。
Cu亦具有抑制於淬火期間由於溶質拖曳效應所引起之沃斯田鐵晶粒生長的效應。然而,在過量Cu含量之情況中,存在於熱加工時龜裂且成本增加的問題。在過高Ni含量之情況中,存在成本增加的問題。
添加B亦為改良可硬化性的有效措施。明確言之,包含0.0001<B≦0.0050為較佳。
B具有藉由微量添加使肥粒鐵鼻部位移至長期間側的大效應。另一方面,添加B對變韌鐵鼻部的位置不具有太多影響。
當B形成BN時,改良可硬化性的效應喪失。因此,B必須單獨存在於鋼中。明確言之,此可經由與對N較對B具有更強親和力之元素形成氮化物,藉此防止B結合至N來達成。該等元素之實例包括Nb、Ta、Ti及Zr。此等元素即使係以雜質水平含量亦具有固定N之效果,但此等元素可視N含量而以下述之各別範圍添加。
儘管B於鋼中結合至N形成BN,但若過量B單獨存在於鋼中,則過量B增進可硬化性。B對機器加工性的改良亦有效。在改良機器加工性之情況中,形成BN。BN具有與石墨相似的性質,其減小切削阻力,且另外地改良斷屑率(chip breakability)。在B及BN存在於鋼中的情況中,可硬化性及機器加工性同時獲得改良。
與SKD61鋼(其係通用型壓鑄模具用鋼)相比,根據本發明之鋼具有小含量的Cr、Mo及V。因此,根據本發明之鋼不具有極高的高溫強度。為確保高溫強度,選擇性添加W或Co有效。明確言之,包含0.30<W≦4.00及0.10<Co≦3.00中之至少一者為較佳。
W經由沉澱碳化物而改良強度。Co經由固體溶解至基質中,及同時透過改變碳化物形式促進沉澱硬化而改良強度。此等元素亦具有抑制於淬火期間由於溶質拖曳效應所引起之沃斯田鐵晶粒生長的效應。然而,若任何元素超過各別預定含量,則特性達到飽和且成本顯著地增加。
為抑制於淬火期間的沃斯田鐵晶粒生長,選擇性添加 Nb、Ta、Ti、及Zr亦有效。明確言之,包含0.004<Nb≦0.200、0.004<Ta≦0.200、0.004<Ti≦0.200、及0.004<Zr≦0.200中之至少一者為較佳。經由與此等元素結合所產生之碳化物或碳氮化物抑制沃斯田鐵晶粒邊界的移動。然而,若任何元素超過各別預定含量,則過量產生碳化物、氮化物或氧化物,其成為模具龜裂之起始點。
與SKD61鋼(其係通用型壓鑄模具鋼)相比,根據本發明之鋼具有小的Si含量。因此,根據本發明之鋼不具有極高的機器加工性。為改良機器加工性,選擇性添加S、Ca、Se、Te、Bi、及Pb亦有效。明確言之,包含0.0080<S≦0.0500、0.0005<Ca≦0.2000、0.03<Se≦0.50、0.005<Te≦0.100、0.01<Bi≦0.50、及0.03<Pb≦0.50中之至少一者為較佳。若任何元素超過各別預定含量,則熱加工性及衝擊值大大地劣化。
[實施例]
針對下表4中顯示的16種發明鋼及5種比較鋼(總共21種鋼)評估材料成本及特性。比較鋼1為JIS SCM420鋼。雖然通常不將比較鋼1用於壓鑄模具中,但將其加入評估作為Cr-Mo系材料之代表。比較鋼2為3Cr系JIS SKD7鋼。比較鋼3為用於壓鑄模具之通用鋼JIS SKD61。比較鋼4為用於壓鑄模具之高效能鋼(商業產品)。比較鋼5係較其他比較鋼與本發明更相似的一種鋼。
Figure 108116596-A0101-12-0017-4
材料成本評估:
材料成本係由與成本直接相關之Cr+Mo+V的量來評估。在Cr+Mo+V之量低於2.0的情況中將材料成本評估為「A」;及在該量為2.0或更高且低於5.0的情況中評估為「B」。另一方面,在該量為5.0或更高的情況中,其實質上等於或大於SKD61鋼(比較鋼3),將材料成本評估為「C」。
結果顯示於下表5。可發現與用於壓鑄模具之通用鋼JIS SKD61(比較鋼3)相比,根據本發明之鋼在材料成本方面具有優勢。
Figure 108116596-A0101-12-0019-5
針對少量熔融材料進行關於各種基本特性的特性評估及使用工業尺寸之材料進行壓鑄試驗。
首先,描述針對少量熔融材料的各種基本特性。將熔融鋼鑄造成150kg的鑄錠,然後在1,240℃下均質化24小時。然後,經由熱煅將材料形成為具有60mm×45mm之矩形橫截面的棒狀。隨後,將材料加熱至1,020℃及冷卻至室溫藉此進行標準化,及在690℃下維持12小時藉此進行回火。自經回火材料製備試件並進行評估。
針對淬火期間之肥粒鐵沉澱的評估:
自以上製備之材料切割出具有直徑4mm×長度10mm之外部形狀的試件,並將所得試件加熱至淬火溫度,維持60分鐘,然後以12℃/min之冷卻速率冷卻至100℃或更低。針對16種發明鋼及比較鋼1及5淬火溫度係900℃,及針對比較鋼2至4係1,030℃。
12℃/min之冷卻速率係對應於在具有530mm寬度及250mm厚度及650mm長度之鋼材料之中心部分之高溫區域處的冷卻速率,當鋼材料係利用鼓風淬火時,該處的冷卻速率變得最慢。於冷卻後,切割試件,腐蝕所得橫截面以觀察其微結構,藉此確認肥粒鐵相的存在與否。在未觀察到產生肥粒鐵相的情況中,將肥粒鐵沉澱評估為「B」;及在觀察到產生肥粒鐵相的情況中,評估為「C」。
結果顯示於表5。在比較鋼1及5中肥粒鐵沉澱。在可硬化性顯著不足的比較鋼1中,肥粒鐵的量相當大。比較鋼5之肥粒鐵的量亦係處於當模具由其形成時將會有不利影響的水平。清楚可見比較鋼1及5不適用於具有大橫截面的預硬化鋼材料。在使比較鋼1或5於大橫截面處經受預硬化淬火的情況中,肥粒鐵沉澱於內側。當自此一預硬化鋼材料切割出模具時,肥粒鐵已沉澱的部分可成為模具的設計表面(於鑄造中與熔融金屬接觸的表面),且在 肥粒鐵已沉澱作為起始點的部分中,將於早期階段產生熱裂。
可發現其他鋼不具有肥粒鐵且具有適用於具有大橫截面之預硬化鋼材料的可硬化性。在以下的評估中,將不適用於具有大橫截面之預硬化鋼材料的比較鋼1及5自評估對象中排除。
回火硬度評估:
自以上製備之材料切割出15mm×15mm×20mm之小塊,並將所得之小塊加熱至淬火溫度,維持60分鐘,然後以12℃/min之冷卻速率冷卻至100℃或更低。針對16種發明鋼淬火溫度係900℃,及針對比較鋼2至4係1,030℃。此外,將小塊於620℃下維持2小時然後冷卻至室溫藉此進行回火,並測量經回火小塊的HRC硬度。
結果顯示於表5。所有種類的鋼(未進一步評估的比較鋼1及5除外)具有34 HRC或更高之硬度,其適用於預硬化鋼材料。換言之,即使在回火係於較高溫度下進行且進行較長時間的情況中,亦可獲得26 HRC或更高之硬度。當然,如回火係在較低溫度下進行且進行較短時間,則可獲得諸如43 HRC之高硬度。發明鋼可經由調整回火條件而具有26至43 HRC之硬度。
導熱性評估:
使經回火小塊於各種條件下進行額外的回火並預硬化至具有34 HRC之硬度。自小塊製備用來測量導熱性之具有直徑10mm×厚度2mm之形狀的試件。經由雷射閃光方法測量試件於25℃下之導熱性。由增加模具之使用壽命及改良鑄造品質的觀點來看,較高導熱性為較佳。在導熱性[W/m/K]之值超過32之情況中,將導熱性評估為「A」;在該值超過27且為32或更小之情況中評估為「B」;在該值超過24且為27或更小之情況中評估為「C」;及在該值為 24或更小之情況中評估為「D」。
結果顯示於表5。在表中,導熱性[W/m/K]的實際測量值連同A、B、C、及D之評估一起顯示於括號中。
比較鋼3及4(其係用於壓鑄模具之習知鋼)具有低導熱性。特定言之,具有高Si含量之比較鋼3之導熱性未達到24W/m/K。相對地,發明鋼具有大約30至44W/m/K之高導熱性。
衝擊值評估:
自以上製備之材料切割出11mm×11mm×55mm之方形棒,並將所得之方形棒加熱至淬火溫度,維持60分鐘,然後以12℃/min之冷卻速率冷卻至100℃或更低。針對16種發明鋼淬火溫度係900℃,及針對比較鋼2至4係1,030℃。此外,使方形棒於各種回火條件下預硬化至具有34 HRC之硬度。然後,將方形棒加工成10mm×10mm×55mm之衝擊試件(U型缺口底部半徑:1mm,缺口下方高度:8mm,及缺口下方之橫截面積:0.8cm2)。衝擊值意指經由將衝擊試驗中之吸收能量[J]除以試件之橫截面積(0.8cm2)得到的值。室溫下之衝擊值係由10個試件之平均值評估。
在衝擊值為70J/cm2或更高之情況中,除非模具設計存在問題,否則幾乎不會產生總體裂紋。因此,在經由平均值評估之衝擊值[J/cm2]為70或更高之情況中,將衝擊值評估為「B」;在衝擊值為60或更高且低於70之情況中評估為「C」;及在衝擊值低於60之情況中評估為「D」。
結果顯示於表5。在表中,實際測量的衝擊值[J/cm2]連同B、C、及D之評估一起顯示於括號中。
在比較鋼2中,增進可硬化性之Mn+Cr的量低,且降低韌度之Mo的含量大至約3%,使得衝擊值低。雖然比較鋼3不具有極 低的衝擊值,但由於衝擊值未超過70J/cm2,因而存在產生總體裂紋的顧慮。相對地,發明鋼具有83J/cm2或更高之高衝擊值。
鑽孔機器加工性評估:
自以上製備之材料切割出40mm×55mm×200mm之塊狀物,並將塊狀物加熱至淬火溫度,維持60分鐘,然後以12℃/min之冷卻速率冷卻至100℃或更低。針對16種發明鋼淬火溫度係900℃,及針對比較鋼2至4係1,030℃。此外,使塊狀物於各種回火條件下預硬化至具有34 HRC之硬度。
利用直徑5mm之高速鋼鑽頭於塊狀物中逐一地打開深度20mm之孔,及將鑽頭破壞之時間點視作鑽頭使用壽命。經由改變鑽孔速率來評估鑽頭使用壽命。獲得孔之累積深度成為1000mm(即50個孔)的鑽孔速率,並將此速率設定為鑽孔機器加工性的指數(VL1000)。
VL 1000代表加工效率,因此在VL 1000之值超過30之情況中,將鑽孔機器加工性評估為「A」;在該值超過23且為30或更低之情況中評估為「B」;在該值超過21且為23或更低之情況中評估為「C」;及在該值為21或更低之情況中評估為「D」。
結果顯示於表5。在表中,VL 1000的實際測量值連同A、B、C、及D之評估一起顯示於括號中。
各發明鋼具有24m/min或更大之大的VL 1000值且機器加工性優異。特定言之,含有S之發明鋼16的機器加工性優異。據認為當機器加工由發明鋼製成之模具時,與具有相同硬度之習知鋼的情況相比,切割工具之使用壽命將不會極短。比較鋼4歸因於大的Cr+Mo之量(其增加高溫強度)而具有不良的機器加工性。
於確認前述五個基本特性後,使用具有工業尺寸之材 料利用壓鑄試驗連續評估實際效能。評估對象係表4中的19種鋼(不包括比較鋼1及5)。將此等鋼之熔融鋼各自鑄造成10噸的鑄錠。經由在1,240℃下維持24小時使鑄錠各自均質化,然後經由鍛造形成為具有570mm×270mm之矩形橫截面的形狀。將經鍛造的材料加熱至視組分而定的淬火溫度(針對16種發明鋼為900℃;及針對比較鋼2至4為1,030℃),及經由浸泡於60℃熱水中來淬火。隨後,使經焠火材料於視組分而定之回火條件下預硬化至具有34 HRC之硬度,藉此獲得預硬化鋼材料。
抗熱裂性評估:
自預硬化鋼材料之內側(接近中心)製造包括活動模具及固定模具之一對壓鑄模具,將模具併入於具有135噸之扣夾力的壓鑄機器中,及在當鑄造具有600g質量之鑄造產品持續5,000次射注作為鑄造試驗時評估模具的熱裂。熔融金屬係於700℃下之ADC 12。為抑制熱裂,將脫模劑之施用量設定為小。使用水溶性脫模劑並以霧狀形式以每循環3cc施用。3cc之施用量係指自所有噴嘴施用至該對模具之設計表面之脫模劑量的總和,而非每一噴嘴的施用量。
由於以此方式的脫模劑施用量小,因此在藉由溫度觀測器(thermos-viewer)評估最外部表面溫度時,在穩態中,模具溫度保持於高溫區域中,其中與熔融金屬接觸之模具表面的最小達成溫度(於施用脫模劑後)為201℃或更高。
模具表面的溫度轉變顯示於圖6。此圖顯示藉由所負載之熱電偶獲得之於距表面1mm深度處的溫度。由於使用細的射擊銷(shooting pin),因此溫度於約第7個射注時快速地達到穩態(最大溫度及最小溫度兩者趨於各別特定值的狀態)。在7個射注之後的穩態中,最小達成溫度超過200℃。在利用大脫模劑施用量的一般壓 鑄中,與熔融金屬接觸之模具表面的最小達成溫度在穩態中達到低於150℃之低溫係相當常見的。
在模具表面上存在一外凸部分,且評估於成為應力集中部分之外凸部分的基底處是否發生熱裂。發生熱裂的確定係經由於模具上進行穿透檢查及經由同時觸診熱裂之轉移至鍛造產品來進行。在未觀察到熱裂發生的情況中,將抗熱裂性評估為「A」;在熱裂之發生微小的情況中,評估為「B」;在雖然熱裂之發生相當顯著,但對產品沒有負面影響的情況中,評估為「C」;及在對產品的損害顯著且轉移至產品導致問題的情況中,評估為「D」。
結果顯示於表5。在比較鋼3及4中,熱裂的發生明顯,及特定言之,具有低導熱性之比較鋼3顯著地受損。相對地,發明鋼具有相當良好的抗熱裂性,且於外凸部分之基底中未發生熱裂。然而,在具有稍低之導熱性的發明鋼3及10中發生相當輕微的熱裂。
循環縮短評估:
在前述的鍛造中,亦檢測循環縮短。在使用由比較鋼3之JIS SKD61鋼形成之模具的情況中,自注入至開模耗時10秒。當較早打開模具時,熔融金屬會自未固化部分流出,且陷入於未固化部分中之空氣會由於釋放壓力膨脹,而使未固化部分破裂。
在此,自注入至開模之時間縮短的評估係經由改變模具之鋼類型來進行。就發明鋼而言,即使在自注入至開模之時間較JIS SKD61鋼縮短2秒或更長的情況中,亦未發生以上問題。儘管比較鋼4可在某種程度上縮短循環時間,但效果不足。
鑄造微結構評估:
在前述鑄造中,評估利用縮短循環時間製得之鑄造產品的微結 構。在孔隙之大小及數目相當小且微結構極細的情況中,將鑄造微結構評估為「A」;在儘管存在孔隙,但其小且微結構細的情況中評估為「B」;在孔隙小但微結構粗的情況中評估為「C」;及在存在許多孔隙且微結構粗的情況中評估為「D」。
結果顯示於表5。在使用比較鋼3之JIS SKD61鋼之模具的情況中,鑄造產品的微結構粗且存在許多孔隙。其有存在機械性質及氣密性之問題的顧慮。另一方面,在使用由發明鋼形成之模具的情況中,儘管鑄造的循環時間縮短,但鑄造產品的微結構細。特定而言,在具高導熱性之發明鋼中,小型化微結構的效果大。在比較鋼4中,鑄造產品的微結構在某種程度上經小型化,但改良效果不足。
根據上述評估結果,儘管發明鋼具有小的Cr+Mo+V之量(其與成本直接相關,且因此廉價),但其在所有特性評估中皆被評定為B或A。可看見發明鋼在材料成本及抗熱裂性方面優異,可降低壓鑄模具的成本,且同時,可同時達成壓鑄循環之縮短及鑄造產品的高品質。此外,由於發明鋼具有節約量的合金元素,因此其有助於降低環境負荷。
另一方面,可看見具有大的Cr+Mo+V之量的比較鋼經評定為D及C,且儘管其高成本,但性質卻低。
如於本發明之實施例中詳細說明,根據本發明之鋼適用於壓鑄,其中歸因於施用脫模劑所引起之模具表面溫度的降低小。在此一壓鑄中,模具係處於較尋常壓鑄高的溫度範圍內。在於穩態中,在剛施用脫模劑之後,「與熔融金屬接觸之模具表面」之溫度係150℃或更高的情況中,本發明的效果尤其明顯。與熔融金屬接觸之模具表面係指與待成為鑄造產品之產品之一部分接觸之 模具的表面。由於鑄造產品中的「流路」、「溢流」或「毛邊」不為「待成為產品之部分」,因此對應於流路、溢流或毛邊部分的模具表面不被包括在「與熔融金屬接觸之模具表面」中。
在前述實施例中,針對脫模劑選擇「水溶性液體」,且脫模劑係以霧狀形式少量施用(模具表面未快速冷卻),且與熔融金屬接觸之模具表面的最小達成溫度保持於150℃或更高之高溫範圍。
如與熔融金屬接觸之模具表面的最小達成溫度為150℃或更高,則可經由使用本發明之鋼達成如同前述實施例中之相同效果。舉例來說,可以霧狀方式少量施用油性液體類型之脫模劑或可施用粉末類型之脫模劑,作為不會快速冷卻模具表面的類似脫模劑施用方法。
亦可有效地在使用前於根據本發明之鋼上進行珠擊、氮化處理、PVD處理、CVD處理、PCVD處理、電鍍處理、及其他表面改質處理。由於根據本發明之鋼僅具有少量碳化物,因此該鋼易與熔融金屬反應,但與熔融金屬之反應可經由表面改質來抑制。根據本發明之鋼,例如,亦可經由利用粉末或板之加成製造應用至用於模具形成之粉末或板,且可用於熔接修復作為棒條形狀之模具的主體或部件。因此,可不脫離本發明之主旨而以各種經修改形式實施本發明。
本申請案係基於2018年5月15日提出申請之日本專利申請案第2018-094066號,將其內容以引用的方式併入本文。

Claims (7)

  1. 一種壓鑄模具用鋼,其具有由以下所組成的組成(以質量%計):0.18≦C≦0.24,0.001≦Si≦0.80,1.60≦Mn≦2.00,2.41≦Cr≦2.73,0.48≦Mo≦0.97,0.003≦V≦0.28,0.0005≦Al≦0.15,及0.0002≦N≦0.040,亦可含有(以質量%計)選自下述之1種以上:Cu≦1.50,Ni≦0.3,B≦0.0050,W≦4.00,Co≦3.00,Nb≦0.200,Ta≦0.200,Ti≦0.200,Zr≦0.200,S≦0.050,Ca≦0.2000,Se≦0.50, Te≦0.100,Bi≦0.50,及Pb≦0.50,其餘為Fe及無可避免的雜質,及具有26至43 HRC之硬度且利用雷射閃光方法於25℃下測量之導熱性λ[W/m/K]為35.1≦λ。
  2. 如請求項1之壓鑄模具用鋼,其包含(以質量%計)下列至少一者:0.30<Cu≦1.50。
  3. 如請求項1之壓鑄模具用鋼,其包含(以質量%計)0.0001<B≦0.0050。
  4. 如請求項1之壓鑄模具用鋼,其包含(以質量%計)下列至少一者:0.30<W≦4.00,及0.10<Co≦3.00。
  5. 如請求項1之壓鑄模具用鋼,其包含(以質量%計)下列至少一者:0.004<Nb≦0.200,0.004<Ta≦0.200,0.004<Ti≦0.200,及0.004<Zr≦0.200。
  6. 如請求項1至5中任一項之壓鑄模具用鋼,其包含(以質量%計)下列至少一者:0.008<S≦0.050, 0.0005<Ca≦0.2000,0.03<Se≦0.50,0.005<Te≦0.100,0.01<Bi≦0.50,及0.03<Pb≦0.50。
  7. 一種由請求項1至6中任一項之鋼形成之壓鑄模具。
TW108116596A 2018-05-15 2019-05-14 壓鑄模具用鋼及壓鑄模具 TWI728358B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-094066 2018-05-15
JP2018094066A JP7167483B2 (ja) 2018-05-15 2018-05-15 ダイカスト金型用鋼及びダイカスト金型

Publications (2)

Publication Number Publication Date
TW201947044A TW201947044A (zh) 2019-12-16
TWI728358B true TWI728358B (zh) 2021-05-21

Family

ID=66542113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116596A TWI728358B (zh) 2018-05-15 2019-05-14 壓鑄模具用鋼及壓鑄模具

Country Status (6)

Country Link
US (1) US20190352751A1 (zh)
EP (1) EP3569719B1 (zh)
JP (1) JP7167483B2 (zh)
KR (1) KR102253469B1 (zh)
CN (1) CN110484813A (zh)
TW (1) TWI728358B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695218A (zh) * 2020-12-15 2021-04-23 青岛可健可康负离子技术股份有限公司 一种石墨炔负氧离子发射针的制备工艺
CN116024500A (zh) * 2023-02-10 2023-04-28 攀钢集团江油长城特殊钢有限公司 一种热锻模用钢及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828137A1 (fr) * 2001-08-01 2003-02-07 France Design Systeme de toit rigide retractable pour vehicule automobile

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250910A (ja) * 1988-08-15 1990-02-20 Nippon Steel Corp 熱疲労特性の良い金型鋼板の製造方法
JP2881869B2 (ja) * 1989-12-06 1999-04-12 大同特殊鋼株式会社 溶接性にすぐれたプラスチック成形金型用鋼
FR2726287B1 (fr) * 1994-10-31 1997-01-03 Creusot Loire Acier faiblement allie pour la fabrication de moules pour matieres plastiques ou pour caoutchouc
FR2748037B1 (fr) * 1996-04-29 1998-05-22 Creusot Loire Acier reparable par soudure pour la fabrication de moules pour matieres plastiques
FR2764308B1 (fr) * 1997-06-04 1999-07-23 Thyssen France Sa Procede de fabrication d'un acier pour moules de grandes dimensions
FR2838138B1 (fr) * 2002-04-03 2005-04-22 Usinor Acier pour la fabrication de moules d'injection de matiere plastique ou pour la fabrication de pieces pour le travail des metaux
FR2838137A1 (fr) * 2002-04-03 2003-10-10 Usinor Acier pour la fabrication de moules pour le moulage par injection de matieres plastiques ou pour la fabrication d'outils pour le travail des metaux
JP4179024B2 (ja) * 2003-04-09 2008-11-12 日立金属株式会社 高速度工具鋼及びその製造方法
JP4605695B2 (ja) * 2004-04-19 2011-01-05 本田技研工業株式会社 ダイカスト金型用プリハードン鋼
CN101294259A (zh) * 2007-04-23 2008-10-29 大同特殊钢株式会社 压铸用热作模具钢
JP5444938B2 (ja) * 2009-08-24 2014-03-19 大同特殊鋼株式会社 金型用鋼
US10975460B2 (en) * 2015-01-28 2021-04-13 Daido Steel Co., Ltd. Steel powder and mold using the same
JP6601051B2 (ja) * 2015-01-28 2019-11-06 大同特殊鋼株式会社 鋼の粉末
JP6593032B2 (ja) 2015-08-27 2019-10-23 大同特殊鋼株式会社 ダイカスト金型用鋼
CN105385953A (zh) * 2015-12-07 2016-03-09 重庆擎一模具制造有限公司 模具用钢
JP6825897B2 (ja) 2016-12-13 2021-02-03 東芝ライフスタイル株式会社 洗濯機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828137A1 (fr) * 2001-08-01 2003-02-07 France Design Systeme de toit rigide retractable pour vehicule automobile

Also Published As

Publication number Publication date
CN110484813A (zh) 2019-11-22
JP2019199634A (ja) 2019-11-21
TW201947044A (zh) 2019-12-16
KR20190130979A (ko) 2019-11-25
EP3569719B1 (en) 2022-05-11
US20190352751A1 (en) 2019-11-21
KR102253469B1 (ko) 2021-05-17
JP7167483B2 (ja) 2022-11-09
EP3569719A1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6790610B2 (ja) 金型用鋼及び成形具
JP4992344B2 (ja) 熱疲労特性に優れた金型用鋼
TWI680187B (zh) 模具用鋼及成形模
JP6601051B2 (ja) 鋼の粉末
JP2015209588A (ja) 金型用鋼及び金型
EP3050649B1 (en) Steel powder and mold using the same
JP6647771B2 (ja) 金型用鋼及び金型
JP2009242820A (ja) 鋼、金型用鋼及びこれを用いた金型
JP2015224363A (ja) 金型用鋼及び金型
JP2016017200A (ja) 金型用鋼及び温熱間金型
JP2009013465A (ja) 工具鋼及びこれを用いた成型用部材、工具鋼の品質検証方法
TWI728358B (zh) 壓鑄模具用鋼及壓鑄模具
TWI687524B (zh) 模具用鋼材及模具
WO2017043446A1 (ja) 金型用鋼及び成形具
JP5402529B2 (ja) 金型用鋼
JP2015081356A (ja) 金型用鋼
JP2017166066A (ja) 金型用鋼及び金型
JP2016069661A (ja) 金型用鋼及び金型
JP2012153919A (ja) ダイカスト金型用鋼及びダイカスト用金型