TWI727705B - 具有降低音頻噪音之電源供應控制器及降低音頻噪音方法 - Google Patents
具有降低音頻噪音之電源供應控制器及降低音頻噪音方法 Download PDFInfo
- Publication number
- TWI727705B TWI727705B TW109108835A TW109108835A TWI727705B TW I727705 B TWI727705 B TW I727705B TW 109108835 A TW109108835 A TW 109108835A TW 109108835 A TW109108835 A TW 109108835A TW I727705 B TWI727705 B TW I727705B
- Authority
- TW
- Taiwan
- Prior art keywords
- power supply
- voltage
- positioning signal
- level
- output voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/157—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一種具有降低音頻噪音功能之電源供應控制器,用於電源供應電路中,以降低積層陶瓷電容器之音頻噪音,電源供應控制器根據電壓定位訊號與電壓感測訊號,產生控制訊號,而操作功率級電路中之功率開關,以將輸入電壓轉換為輸出電壓。電源供應控制器包含:轉換電路以及脈寬調變(pulse width modulation, PWM)控制電路。轉換電路包括數位類比轉換器以及斜率控制電路。斜率控制電路在電源供應控制器操作於降噪模式,且目前位準高於要求位準時,調整類比電壓定位訊號之下降斜率,而產生調整後類比電壓定位訊號,用以限制輸出電壓之下降速率大於0且不高於預設速率。
Description
本發明係有關一種電源供應控制器,特別是指一種具有降低音頻噪音之電源供應控制器。本發明也有關於降低音頻噪音方法。
積層陶瓷電容器(Multi-layer Ceramic Capacitor,MLCC)因其低成本和小體積而在電子產品中獲得廣泛的使用。MLCC是由平行的陶瓷材料和電極材料層疊而成,而陶瓷材料是一種具有壓電特性之材料。當在MLCC的兩端施加交流電壓,則MLCC產生形變撞擊其周圍的電路板,若撞擊頻率處在人耳可以聽到的頻率範圍內(20Hz~20kHz),則會產生音頻噪音。許多電子產品在使用時相當靠近人耳,如:筆記本電腦、平板電腦、智慧型手機等。如果這些電子產品產生音頻噪音,將會影響使用感受,故音頻噪音為電子產品設計者急需降低的問題。
一般而言,MLCC耦接於輸出電壓。為了降低音頻噪音,一種先前技術會在MLCC的兩端的電壓變化頻率(也就是輸出電壓的變化頻率)落在音頻範圍時,調整輸出電壓,使輸出電壓停止改變。如此一來,輸出電壓的變化頻率為0,藉此避免音頻噪音的產生。
這種先前技術的缺點,其中之一在於,單純將輸出電壓維持在固定的電位,使輸出電壓的變化頻率為0,雖然避免了音頻噪音的產生,但因為輸出電壓必須一直維持在較高的電位,電能的消耗相對較高,這將造成電子產品的電池續航時間(battery life)縮短,限制了電子產品的應用範圍。這種先前技術的另一個缺點在於,即使在輸出電壓的變化頻率低於音頻範圍的情況下,如果輸出電壓太快速的電壓變化,也就是輸出電壓變化具有振幅的快速暫態變化,以傅立葉轉換,頻率展開的觀點來看,此輸出電壓變化的脈波,其由各種頻率的脈波所組成,也會造成MLCC在音頻範圍內的震盪,而產生音頻噪音。
有鑑於此,本發明即針對上述先前技術之不足,提出一種具有降低音頻噪音之電源供應控制器及降低音頻噪音方法,在降低音頻噪音的情況下,延長電池續航時間,以增加電子產品的應用範圍。
就其中一個觀點言,本發明提供了一種具有降低音頻噪音之電源供應控制器,用於一電源供應電路中,以降低一積層陶瓷電容器之音頻噪音,該電源供應控制器根據一電壓定位訊號與一電壓感測訊號,產生一控制訊號,而操作一功率級電路中之一功率開關,以將一輸入電壓轉換為一輸出電壓,並用以將該輸出電壓自一目前位準朝一要求位準調整,該電源供應控制器包含:一轉換電路,包括:一數位類比轉換器,用以根據該電壓定位訊號,而產生一類比電壓定位訊號;以及一斜率控制電路,與該數位類比轉換器耦接,在該電源供應控制器操作於一降噪模式,且該目前位準高於該要求位準時,調整該類
比電壓定位訊號之一下降斜率,而產生一調整後類比電壓定位訊號,用以限制該輸出電壓之一下降速率大於0且不高於一預設速率;以及一脈寬調變(pulse width modulation,PWM)控制電路,與該轉換電路耦接,用以根據該調整後類比電壓定位訊號與該電壓感測訊號,產生該控制訊號。
在一種較佳的實施型態中,該斜率控制電路根據該目前位準與該要求位準間之一差值位準,決定是否致能該降噪模式。
在一種較佳的實施型態中,該斜率控制電路根據該類比電壓定位訊號之一動態電壓變化頻率,決定是否致能該降噪模式。
在一種較佳的實施型態中,該預設速率不高於60μV/μs。
在一種較佳的實施型態中,該預設速率為可調。
前述的實施型態中,該預設速率較佳地根據該目前位準與該要求位準間之一差值位準,及/或該類比電壓定位訊號之一動態電壓變化頻率而調整。
就另一觀點言,本發明提供了一種降低音頻噪音方法,用於一電源供應電路中,以降低一積層陶瓷電容器之音頻噪音,該降低音頻噪音方法包含:根據一電壓定位訊號與一電壓感測訊號,產生一控制訊號,而操作一功率級電路中之一功率開關,以將一輸入電壓轉換為一輸出電壓,並用以將該輸出電壓自一目前位準朝一要求位準調整;根據該電壓定位訊號,經過一類比轉換,而產生一類比電壓定位訊號;於一降噪模式,且該目前位準高於該要求位準時,調整該類比電壓定位訊號之一下降斜率,而產生一調整後類比電壓定位訊號,用以限制該輸出電壓之一下降速率大於0且不高於一預設速率;以及根據該調整後類比電壓定位訊號與該電壓感測訊號,產生該控制訊號。
在一種較佳的實施型態中,降低音頻噪音方法,更包含:根據該目前位準與該要求位準間之一差值位準,決定是否致能該降噪模式。
在一種較佳的實施型態中,降低音頻噪音方法,更包含:根據該動態電壓定位訊號之一動態電壓變化頻率,決定是否致能該降噪模式。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
1:電源供應電路
3:中央處理器
11:功率級電路
12:電源供應控制器
121:轉換電路
1211:數位類比轉換器
1213:斜率控制電路
123:PWM控制電路
GATE:控制訊號
H,H1,H2:高位準
L:低位準
MLCC:積層陶瓷電容器
SVID:電壓定位訊號
S1,S2:斜率
S1’,S2’:下降速率
t:時間
t1,t2:時間點
T1,T2,T3,T4,T5,T6:期間
Toff4~Toff6,Toff:持續期間
VDAC:類比電壓定位訊號
VDAC’:調整後類比電壓定位訊號
Vd1,Vd2:差值位準
Vin:輸入電壓
Vout:輸出電壓
VSEN:電壓感測訊號
V1,V2,V3:位準
圖1顯示一種根據本發明的一種電源供應電路示意圖。
圖2A-2C顯示根據本發明的一種實施方式之訊號波形圖示意圖。
圖3A與3B顯示根據本發明的另一種實施方式之訊號波形圖示意圖。
圖4A與4B顯示根據本發明的又一種實施方式之訊號波形圖示意圖。
圖5顯示本發明與先前技術之電池續航時間之比較示意圖。
圖6顯示本發明與先前技術之音量之比較示意圖。
圖7A-7J顯示同步或非同步之降壓型、升壓型、反壓型、升降壓型、與升反壓型功率級電路。
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。
圖1顯示一種根據本發明的具有降低音頻噪音之電源供應控制器的一種實施例(電源供應控制器12)。電源供應控制器12用於電源供應電路1中,以降低積層陶瓷電容器(Multi-layer Ceramic Capacitor,MLCC)之音頻噪音。電源供應電路1用以將輸入電壓Vin轉換為輸出電壓Vout。電源供應電路1包含功率級電路11以及電源供應控制器12。電源供應控制器12例如接收中央處理器(Central Processing Unit,CPU)3所產生的電壓定位(Voltage Identification,VID)訊號SVID以及相關於輸出電壓Vout之電壓感測訊號VSEN,產生控制訊號GATE,以操作功率級電路11中的功率開關,而將輸入電壓Vin轉換為輸出電壓Vout。電壓定位訊號SVID內含各種訊息,其中包括要求改變輸出電壓的位準的訊息,使電源供應控制器12調整輸出電壓Vout,自目前位準朝要求位準調整。
其中,CPU3產生電壓定位訊號SVID,用以對電源供應電路1提出輸出電壓Vout的電壓定位要求,使電源供應電路1動態且即時地改變輸出電壓Vout,以調整輸出電壓Vout自目前位準朝要求位準調整,而供應電源予負載電路,例如CPU 3本身。
電源供應控制器12用於電源供應電路1中,以降低MLCC之音頻噪音。電源供應控制器12包含轉換電路121以及脈寬調變(pulse width modulation,PWM)控制電路123。轉換電路121包括數位類比轉換器(digital-to-analog converter,DAC)1211以及斜率控制電路1213。數位類比轉換器1211用以根據電壓定位訊號SVID,而產生類比電壓定位訊號VDAC。電壓定位訊號SVID例如以匯流排的方式,將CPU 3的指令,包含時脈訊號、通訊相關訊息、與動態電壓定位要求等,傳達給電源供應控制器12。電源供應控制器12例如以匯流排控制電路,
接收電壓定位訊號SVID,將其轉換為數位訊號後,傳送給數位類比轉換器1211。數位類比轉換器1211接收該數位訊號,而轉換為類比電壓定位訊號VDAC。
在本實施例中,斜率控制電路1213與數位類比轉換器1211耦接,在電源供應控制器12操作於降噪模式,且輸出電壓Vout之目前位準高於類比電壓定位訊號VDAC之要求位準時,也就是當CPU 3要求電源供應控制器12將目前的輸出電壓Vout之目前位準,調降為要求位準,調整類比電壓定位訊號VDAC之下降斜率,而產生調整後類比電壓定位訊號VDAC’,用以限制輸出電壓Vout之下降速率大於0且不高於預設速率。
PWM控制電路123接收調整後類比電壓定位訊號VDAC’與電壓感測訊號VSEN,產生控制訊號GATE,以切換功率級電路11中的功率開關,而將輸入電壓Vin轉換為輸出電壓Vout。其中,電壓感測訊號VSEN相關於輸出電壓Vout,回授至PWM控制電路123。根據本發明,功率級電路11可配置為例如但不限於同步或非同步之降壓型、升壓型、反壓型、或升降壓型功率轉換電路,如圖7A-7J所示。
在本實施例中,電源供應控制器12具有降低音頻噪音的功能,用以降低積層陶瓷電容器MLCC所產生之音頻噪音;其中,積層陶瓷電容器MLCC耦接於輸出電壓Vout與接地電位之間。
圖2A-2C顯示根據本發明的一種實施方式之訊號波形圖示意圖。舉例而言,類比電壓定位訊號VDAC如圖2A中的訊號波形圖所示意,類比電壓定位訊號VDAC波形圖中,橫軸為時間t,在類比電壓定位訊號VDAC切換至高位準H時,示意要求電源供應電路1將輸出電壓Vout調節於如圖2B所示之位準
V1;在類比電壓定位訊號VDAC切換至低位準L時,示意要求電源供應電路1將輸出電壓Vout調節於如圖2B的電位V2。但由於所需要的要求位準,是視CPU 3的需求而改變,而非有規律的變化,因此類比電壓定位訊號VDAC波形的頻率,並非固定的,電源供應控制器12也無法在接收到類比電壓定位訊號VDAC之前預先得知類比電壓定位訊號VDAC波形的頻率,也就是說,類比電壓定位訊號VDAC波形的頻率並非規律的。舉例而言,如圖2A所示,在期間T1,類比電壓定位訊號VDAC波形的頻率較低,而在期間T2,類比電壓定位訊號VDAC波形的頻率較高。
在一種實施方式中,如圖2B所示,只要在類比電壓定位訊號VDAC由高位準H切換為低位準L時,也就是要求將輸出電壓Vout自目前位準,例如圖2B輸出電壓Vout訊號波形所示的位準V1,改變且朝較低的要求位準調整,如圖2B輸出電壓Vout訊號波形所示的電位V2,電源供應控制器12就致能降噪模式,而將調整後類比電壓定位訊號VDAC’的下降斜率,限制為斜率S1,使得輸出電壓Vout下降速率S1’,以大於0且不高於預設速率的緩降方式,將輸出電壓Vout向著位準V2的目標調整,但不必須在下一次類比電壓定位訊號VDAC要求改變輸出電壓Vout前(接著的由低位準L切換至高位準H),完成將輸出電壓Vout調整至位準V2,而是將輸出電壓Vout保持緩降,頂多降至要求位準。
在一般的應用中,在類比電壓定位訊號VDAC示意要求將輸出電壓Vout自相對較低的目前位準(如圖2B所示之位準V2),調節至相對較高的要求位準(如圖2B所示之位準V1)之情況下,電源供應控制器12會以相對較快的速率,將輸出電壓Vout自目前位準(如圖2B所示之位準V2)調升至較高的要求位準
(如圖2B所示之位準V1),這是因為要求位準較高,示意輸出電壓Vout所供應的負載電路(如圖1所示之CPU 3)有電能消耗的需求,因此需要以較高的調升速率,盡快將輸出電壓Vout自目前位準調升至較高的要求位準,在此情況下,較佳的方式是不降低調升速率。在類比電壓定位訊號VDAC示意要求將輸出電壓Vout自相對較高的目前位準,調節至相對較低的要求位準之情況下,一般而言,示意輸出電壓Vout所供應的負載電路沒有高電能消耗的需求,而是以節省電能為目的,因此根據本發明,調降輸出電壓Vout的下降速率S1’,以降低音頻噪音又不至於消耗太多的電能,以延長電池續航時間。
需說明的是,如果在類比電壓定位訊號VDAC示意要求將輸出電壓Vout自相對較低的目前位準,調節至相對較高的要求位準之情況下,且輸出電壓Vout所供應的負載電路也沒有快速升壓的需求,也可以較低的調升速率,在可接受的音頻噪音下,以緩升的方式,將輸出電壓Vout自目前位準調升至較高的要求位準,在此情況下,根據本發明所揭示的方式,亦可降低調升速率。
需說明的是,將調整後類比電壓定位訊號VDAC’的下降斜率,限制為斜率S1,使得輸出電壓Vout下降速率S1’,以大於0且不高於預設速率的緩降方式,將輸出電壓Vout向著要求位準的目標調整。其中,斜率S1的決定,可根據人耳可忍受的音頻噪音而調整,另外斜率S1也可根據相關音頻噪音規範而決定。
在一種實施方式中,如圖2C所示,電源供應控制器12可根據類比電壓定位訊號VDAC之動態電壓變化(Dynamic Voltage Identification,DVID)頻率,而致能降噪模式。如圖2C所示,舉例而言,當期間T1,類比電壓定位訊號
VDAC波形的頻率較低(例如在音頻範圍之外),因此電源供應控制器12不致能降噪模式;而在時間點t1後的期間T2,類比電壓定位訊號VDAC波形的頻率較高(例如在音頻範圍之內),因此電源供應控制器12致能降噪模式。在降噪模式中,將調整後類比電壓定位訊號VDAC’的下降斜率,限制為斜率S1,使得輸出電壓Vout下降速率,以大於0且不高於預設速率的緩降方式,將輸出電壓Vout向著位準V2的目標調整,但不必須在下一次類比電壓定位訊號VDAC要求改變輸出電壓Vout前(接著的由低位準L切換至高位準H),完成將輸出電壓Vout調整至位準V2,而是將輸出電壓Vout保持緩降,頂多降至要求位準。
圖3A與3B顯示根據本發明的另一種實施方式之訊號波形圖示意圖。舉例而言,類比電壓定位訊號VDAC如圖3A中的訊號波形圖所示意,類比電壓定位訊號VDAC波形圖中,橫軸為時間t,在類比電壓定位訊號VDAC切換至高位準H1時,示意要求電源供應電路1將輸出電壓Vout調節於如圖3B所示之位準V1;在類比電壓定位訊號VDAC切換至低位準L時,示意要求電源供應電路1將輸出電壓Vout調節於如圖3B的位準V2;類比電壓定位訊號VDAC切換至另一高位準H2時,示意要求電源供應電路1將輸出電壓Vout調節於如圖3B所示之位準V3。
在圖3A與3B所示意的實施方式中,與圖2C所示的實施方式不同之處,在類比電壓定位訊號VDAC由高位準H1切換為另一高位準H2時,也就是在時間點t2之後的期間T3,類比電壓定位訊號VDAC要求將輸出電壓Vout自目前位準,例如圖3B輸出電壓Vout訊號波形所示的位準V1,改變且朝較低的要求位準調節,如圖3B輸出電壓Vout訊號波形所示的電位V3;但電源供應控制器12可
以根據目前位準與要求位準間之差值位準Vd1而決定是否致能降噪模式,在一實施例中,當差值位準Vd1不大於一差值位準閾值,而決定不致能降噪模式,也就是不限制輸出電壓Vout的下降速率。這是因為目前位準與要求位準間之差值位準Vd1,不大於差值位準閾值時,其音頻噪音不明顯而可以接受,當然,差值位準閾值可以根據實際的需要而調整。
另一方面,在類比電壓定位訊號VDAC由高位準H1切換為低位準L時,也就是在時間點t1之後的期間T2,類比電壓定位訊號VDAC要求將輸出電壓Vout自目前位準,例如圖3B輸出電壓Vout訊號波形所示的位準V1,改變且朝較低的要求位準調節,如圖3B輸出電壓Vout訊號波形所示的電位V2;電源供應控制器12根據目前位準與要求位準間之差值位準Vd2,大於差值位準閾值,而決定致能降噪模式,而將調整後類比電壓定位訊號VDAC’的下降斜率,限制為斜率S1,使得輸出電壓Vout下降速率,以大於0且不高於預設速率的緩降方式,將輸出電壓Vout向著位準V2的目標調整。當然,在這種實施方式中,仍可以根據類比電壓定位訊號VDAC波形的頻率來決定是否致能降噪模式,舉例而言,在期間T1,類比電壓定位訊號VDAC波形的頻率較低(例如在音頻範圍之外),因此電源供應控制器12不致能降噪模式。也就是說,斜率控制電路1213可根據目前位準與該要求位準間之差值位準,決定是否致能該降噪模式;另一方面,斜率控制電路1213也可根據類比電壓定位訊號VDAC之動態電壓變化頻率,決定是否致能降噪模式。以上這兩種機制,可以同時採用,也可以採用其中一種,皆屬於本發明的範圍。
圖4A與4B顯示根據本發明的又一種實施方式之訊號波形圖示意圖。舉例而言,類比電壓定位訊號VDAC如圖4A中的訊號波形圖所示意,類比電壓定位訊號VDAC波形圖中,橫軸為時間t,在類比電壓定位訊號VDAC切換至高位準H時,示意要求電源供應電路1將輸出電壓Vout調節於如圖4B所示之位準V1;在類比電壓定位訊號VDAC切換至低位準L時,示意要求電源供應電路1將輸出電壓Vout如圖4B所示,朝電位V2調整。
在圖4A與4B所示意的實施方式中,期間T4、T5與T6分別顯示三種不同頻率的類比電壓定位訊號VDAC,其中,類比電壓定位訊號VDAC的頻率在期間T4時最低,在期間T6時最高。如圖4A與4B所示,電源供應控制器12在期間T4、T5與T6皆操作於降噪模式,將調整後類比電壓定位訊號VDAC’的下降斜率,限制為斜率S2,使得輸出電壓Vout下降速率S2’,以大於0且不高於預設速率的緩降方式,將輸出電壓Vout向著位準V2的目標調整。
圖4A與4B所示的實施方式,旨在說明,根據本發明,在降噪模式下,當類比電壓定位訊號VDAC的動態電壓變化頻率越高,輸出電壓Vout在較低電位的電位V2時間越短;反之,當類比電壓定位訊號VDAC的動態電壓定位變化頻率越低,輸出電壓Vout在較低電位的電位V2時間越長。如圖所示,調整後類比電壓定位訊號VDAC’的每個如期間T4、T5與T6所示的三種不同頻率,可以看出,在頻率最低的期間T4,輸出電壓Vout在較低電位的電位V2,持續期間Toff4最長;在頻率較高的期間T5,輸出電壓Vout在較低電位的電位V2,持續期間Toff5較短;在頻率最高的期間T6,輸出電壓Vout在較低電位的電位V2,持續期間Toff6最短。圖4A與4B所示的實施方式顯示根據本發明,適當的調整下降斜率S2,使
輸出電壓Vout之下降速率S2’,不高於預設速率,進而使MLCC產生的音頻噪音降低至可接受的範圍,又可以使輸出電壓Vout停留在較低電位的電位,以延長電池續航時間,增加電子產品的應用範圍。
在一種較佳的實施方式中,下降速率S2’不高於預設速率60μV/μs。在一種較佳的實施方式中,下降速率S2’不高於預設速率30μV/μs。在一種較佳的實施方式中,下降速率S2不高於預設速率12μV/μs。而在一種更佳的實施方式中,下降速率S2’調整於預設速率6μV/μs。在一種較佳的實施方式中,預設速率為可調,可根據產品的用途與產品,調整預設速率。在一種較佳的實施方式中,預設速率根據目前位準與要求位準間之差值位準,及/或類比電壓定位訊號VDAC之動態電壓變化頻率而調整。舉例而言,例如圖4B輸出電壓Vout訊號波形所示,規範下降速率S2’不高於預設速率60μV/μs,可以在音頻噪音最嚴重的頻率下(1~3kHz),使得輸出電壓Vout自位準V1,下降至較低的要求位準時,下降的幅度不超過60mV,以符合噪音規範的要求。
圖5顯示本發明與先前技術之電池續航時間之比較示意圖。如圖所示,粗虛線示意先前技術的電池續航時間與頻率關係圖。由於這種先前技術係於動態電壓定位變化頻率超過頻率f1時,就停止改變輸出電壓,維持在固定的電位,使輸出電壓的變化頻率為0,雖然避免了音頻噪音的產生,但因為輸出電壓必須一直維持在較高的電位,電能的消耗相對較高,造成電子產品的電池續航時間較短。在圖5中,粗實線示意根據本發明的電池續航時間與頻率關係圖。由於本發明採用電壓緩降的方式,調節輸出電壓,在動態電壓定位變化頻率越
低的情況下,仍可將輸出電壓調整至較低的電位,使電能消耗降低,維持較高的電池續航時間,又可以降低音頻噪音。
圖6顯示本發明與先前技術之音量之比較示意圖。粗虛線示意先前技術的音量與頻率關係圖,粗實線示意根據本發明的音量與頻率關係圖。如圖所示,根據本發明之電源供應控制器與降低音頻噪音方法,可以在不同的動態電壓定位變化頻率下,明顯降低音頻噪音,顯示本發明優於先前技術之處。
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。
1:電源供應電路
3:中央處理器
11:功率級電路
12:電源供應控制器
121:轉換電路
1211:數位類比轉換器
1213:斜率控制電路
123:PWM控制電路
GATE:控制訊號
MLCC:積層陶瓷電容器
SVID:電壓定位訊號
VDAC:類比電壓定位訊號
VDAC’:調整後類比電壓定位訊號
Vin:輸入電壓
Vout:輸出電壓
VSEN:電壓感測訊號
Claims (12)
- 一種具有降低音頻噪音之電源供應控制器,用於一電源供應電路中,以降低一積層陶瓷電容器之音頻噪音,該電源供應控制器根據一電壓定位訊號與一電壓感測訊號,產生一控制訊號,而操作一功率級電路中之一功率開關,以將一輸入電壓轉換為一輸出電壓,並用以將該輸出電壓自一目前位準朝一要求位準調整,其中該積層陶瓷電容器耦接於該輸出電壓,該電源供應控制器包含:一轉換電路,包括:一數位類比轉換器,用以根據該電壓定位訊號,而產生一類比電壓定位訊號;以及一斜率控制電路,與該數位類比轉換器耦接,在該電源供應控制器操作於一降噪模式,且該目前位準高於該要求位準時,調整該類比電壓定位訊號之一下降斜率,而產生一調整後類比電壓定位訊號,用以限制該輸出電壓之一下降速率大於0且不高於一預設速率;以及一脈寬調變(pulse width modulation,PWM)控制電路,與該轉換電路耦接,用以根據該調整後類比電壓定位訊號與該電壓感測訊號,產生該控制訊號。
- 如請求項1所述之具有降低音頻噪音之電源供應控制器,其中該斜率控制電路根據該目前位準與該要求位準間之一差值位準,決定是否致能該降噪模式。
- 如請求項1所述之具有降低音頻噪音之電源供應控制器,其中該斜率控制電路根據該類比電壓定位訊號之一動態電壓變化頻率,決定是否致能該降噪模式。
- 如請求項1所述之具有降低音頻噪音之電源供應控制器,其中該預設速率不高於60μV/μs。
- 如請求項1所述之具有降低音頻噪音之電源供應控制器,其中該預設速率為可調。
- 如請求項5所述之具有降低音頻噪音之電源供應控制器,其中該預設速率根據該目前位準與該要求位準間之一差值位準,及/或該類比電壓定位訊號之一動態電壓變化頻率而調整。
- 一種降低音頻噪音方法,用於一電源供應電路中,以降低一積層陶瓷電容器之音頻噪音,該降低音頻噪音方法包含:根據一電壓定位訊號與一電壓感測訊號,產生一控制訊號,而操作一功率級電路中之一功率開關,以將一輸入電壓轉換為一輸出電壓,並用以將該輸出電壓自一目前位準朝一要求位準調整;根據該電壓定位訊號,經過一類比轉換,而產生一類比電壓定位訊號;於一降噪模式,且該目前位準高於該要求位準時,調整該類比電壓定位訊號之一下降斜率,而產生一調整後類比電壓定位訊號,用以限制該輸出電壓之一下降速率大於0且不高於一預設速率;以及根據該調整後類比電壓定位訊號與該電壓感測訊號,產生該控制訊號。
- 如請求項7所述之降低音頻噪音方法,更包含:根據該目前位準與該要求位準間之一差值位準,決定是否致能該降噪模式。
- 如請求項7所述之降低音頻噪音方法,更包含:根據該類比電壓定位訊號之一動態電壓變化頻率,決定是否致能該降噪模式。
- 如請求項7所述之降低音頻噪音方法,其中該預設速率不高於60μV/μs。
- 如請求項7所述之降低音頻噪音方法,其中該預設速率為可調。
- 如請求項11所述之降低音頻噪音方法,其中該預設速率根據該目前位準與該要求位準間之一差值位準,及/或該類比電壓定位訊號之一動態電壓變化頻率而調整。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109108835A TWI727705B (zh) | 2020-03-17 | 2020-03-17 | 具有降低音頻噪音之電源供應控制器及降低音頻噪音方法 |
US17/145,464 US11381165B2 (en) | 2020-03-17 | 2021-01-11 | Power supply controller having reduced acoustic noise and method of reducing acoustic noise |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109108835A TWI727705B (zh) | 2020-03-17 | 2020-03-17 | 具有降低音頻噪音之電源供應控制器及降低音頻噪音方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI727705B true TWI727705B (zh) | 2021-05-11 |
TW202137713A TW202137713A (zh) | 2021-10-01 |
Family
ID=77036288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109108835A TWI727705B (zh) | 2020-03-17 | 2020-03-17 | 具有降低音頻噪音之電源供應控制器及降低音頻噪音方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11381165B2 (zh) |
TW (1) | TWI727705B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008611A (en) * | 1998-11-20 | 1999-12-28 | Texas Instruments Incorporated | Method and system for driving a three-phase motor in a mass storage device |
US7012393B2 (en) * | 2004-03-30 | 2006-03-14 | International Rectifier Corporation | Motor drive |
US7193377B2 (en) * | 2004-03-04 | 2007-03-20 | Hewlett-Packard Development Company, L.P. | System and method for controlling motor speed using a biased pulse width modulated drive signal |
US7327103B1 (en) * | 2001-08-31 | 2008-02-05 | Maxtor Corporation | Driver and method for control of voice coil motor in disk drive |
US20090059632A1 (en) * | 2007-08-28 | 2009-03-05 | Yong Li | System And Method For Controlling A Current Limit With Primary Side Sensing Using A Hybrid PWM and PFM Control |
US8432146B2 (en) * | 2005-10-03 | 2013-04-30 | Zilker Labs, Inc. | Correcting pre-bias during turn-on of switching power regulators |
US10008340B2 (en) * | 2014-07-17 | 2018-06-26 | Samsung Electro-Mechanics Co., Ltd. | Composite electronic component, board having the same, and power smoother including the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10277140B2 (en) * | 2017-08-31 | 2019-04-30 | Google Llc | High-bandwith resonant power converters |
-
2020
- 2020-03-17 TW TW109108835A patent/TWI727705B/zh active
-
2021
- 2021-01-11 US US17/145,464 patent/US11381165B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008611A (en) * | 1998-11-20 | 1999-12-28 | Texas Instruments Incorporated | Method and system for driving a three-phase motor in a mass storage device |
US7327103B1 (en) * | 2001-08-31 | 2008-02-05 | Maxtor Corporation | Driver and method for control of voice coil motor in disk drive |
US7193377B2 (en) * | 2004-03-04 | 2007-03-20 | Hewlett-Packard Development Company, L.P. | System and method for controlling motor speed using a biased pulse width modulated drive signal |
US7012393B2 (en) * | 2004-03-30 | 2006-03-14 | International Rectifier Corporation | Motor drive |
US8432146B2 (en) * | 2005-10-03 | 2013-04-30 | Zilker Labs, Inc. | Correcting pre-bias during turn-on of switching power regulators |
US20090059632A1 (en) * | 2007-08-28 | 2009-03-05 | Yong Li | System And Method For Controlling A Current Limit With Primary Side Sensing Using A Hybrid PWM and PFM Control |
US10008340B2 (en) * | 2014-07-17 | 2018-06-26 | Samsung Electro-Mechanics Co., Ltd. | Composite electronic component, board having the same, and power smoother including the same |
Also Published As
Publication number | Publication date |
---|---|
TW202137713A (zh) | 2021-10-01 |
US20210296985A1 (en) | 2021-09-23 |
US11381165B2 (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8742745B2 (en) | DC-DC converter and voltage conversion method thereof | |
TWI581547B (zh) | 用於限制轉換器之電流的裝置、調變器和方法 | |
JP6107358B2 (ja) | 電源回路、電源ic、電力増幅装置および無線通信装置 | |
US7262588B2 (en) | Method and apparatus for power supply controlling capable of effectively controlling switching operations | |
US8330442B2 (en) | DC to DC converter and method for reducing overshoot | |
TWI472132B (zh) | 恆定導通時間控制的開關電源及其控制電路和控制方法 | |
US8423800B2 (en) | Switched capacitor voltage regulator with high efficiency over a wide voltage range | |
US7501802B2 (en) | DC-DC converting method and apparatus | |
JP5507980B2 (ja) | スイッチング電源の制御回路、電子機器、及びスイッチング電源の制御方法 | |
US7489118B2 (en) | Method and apparatus for high-efficiency DC stabilized power supply capable of effectively reducing noises and ripples | |
US10141850B2 (en) | Comparator circuit, power supply control IC, and switching power supply device | |
US8294439B2 (en) | Buck-boost switching regulator and control circuit and method therefor | |
US9178417B2 (en) | DC-DC converter and voltage conversion method thereof | |
US20130200864A1 (en) | Dc-dc converter and voltage conversion method thereof | |
JP2010183722A (ja) | Dc−dcコンバータおよびスイッチング制御回路 | |
JP2011050236A (ja) | 電源用コントローラおよび電源 | |
JP2013062941A (ja) | Dc/dcコンバータの制御回路及びdc−dcコンバータ | |
TW201143263A (en) | Frequency jitter controller for power converter | |
TW202121819A (zh) | 自適應頻率調整系統 | |
US9143034B2 (en) | DC-DC controller and multi-ramp signal operating method thereof | |
TWI727705B (zh) | 具有降低音頻噪音之電源供應控制器及降低音頻噪音方法 | |
US8947062B2 (en) | Power supply circuit | |
JP2011010450A (ja) | 半導体集積回路および電源装置 | |
CN113452237B (zh) | 具有降低音频噪音的电源供应控制器及降低音频噪音方法 | |
TW202038547A (zh) | 降壓-升壓開關調節電路及其調節方法 |