TWI727504B - 量測地熱流體潛能的設備 - Google Patents

量測地熱流體潛能的設備 Download PDF

Info

Publication number
TWI727504B
TWI727504B TW108141640A TW108141640A TWI727504B TW I727504 B TWI727504 B TW I727504B TW 108141640 A TW108141640 A TW 108141640A TW 108141640 A TW108141640 A TW 108141640A TW I727504 B TWI727504 B TW I727504B
Authority
TW
Taiwan
Prior art keywords
geothermal
measuring
flow
gas
liquid
Prior art date
Application number
TW108141640A
Other languages
English (en)
Other versions
TW202120966A (zh
Inventor
顏志偉
黃子鴻
李宜宸
范愷軍
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108141640A priority Critical patent/TWI727504B/zh
Application granted granted Critical
Publication of TWI727504B publication Critical patent/TWI727504B/zh
Publication of TW202120966A publication Critical patent/TW202120966A/zh

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

一種量測地熱流體潛能的設備具有一設備本體,包括:地熱井進水管,用以連結一地熱井以取得地熱流體;氣液分離裝置,用以將該地熱流體分離成液體與氣體;固相匯集區,用以沉積該地熱流體之固相雜質;迴流水道,用以改變該液體流向;排氣管,用以排出該氣體;排液管,用以排出該液體;量測元件,用以量測該氣體與該液體之流量、溫度及壓力;以及監測器,用以記錄該氣體與該液體之流量、溫度及壓力;其中該地熱井進水管、該氣液分離裝置、該固相匯集區、該迴流水道、該排氣管、該排液管、該量測元件與該監測器是設置於該設備本體內。

Description

量測地熱流體潛能的設備
本發明係有關於一種地熱產能評估裝置,特別是有關於一種量測地熱流體潛能的設備。
由於地熱產能評估階段為發電廠設計建置的初期評估作業,因此多半為尚未開發之荒郊野嶺,環境與交通皆較不便利,在過去的產能評估設備中,需攜帶大量的附屬設備及人力,花費長時間的安裝與人力維護產能評估裝置,並利用人力手工記錄其流量大小,其花費人力資源多及精度較大之現象。而本發明創新設計一整合式設備本體,將地熱產能評估所需要的所有元件及裝置整合其中,並利用自動化系統將量測資料自動遠端紀錄於監控站中,使其達到方便運輸、安裝、高精準度…等目的。
習知使用的地熱產能評估裝置包含了水平噴流管、膨脹管、消音器(氣液分離器)、流量堰等主結構,需獨立安置於現場後進行系統配管安裝,並採用人力監測流量堰液位高低,紀錄液體流量值,再透過經驗公式(James lip pressure method)反算出地熱潛能。此方式除需花費大量的運輸安裝人力成本及土地面積外,量測精準度容易因為人為誤差而導致地熱產能評估誤差較大。使用James Lip Pressure Method,進行兩相流流量量測,蒸氣流率為經驗公式推估,並非實際測得,Karamaraker and Cheng (1980)以統計法評估James Lip Pressure Method之理論誤差接近8%。
台灣位處板塊接觸帶,地質活動頻繁,擁有大量的地熱及溫泉資源,適合發展地熱發電。而經濟部能源局訂下在2025年前,目標建置200 MW裝置容量的地熱發電。其中更以大屯山佔其中約150MW,因此需要大量的相關技術支援,才能順利地使台灣電力結構成功轉型提高再生能源發電占比。其中本項技術為應用於地熱發電機的前端產能評估階段,需精準的評估所要開發的地熱潛能,才能設計與計算出該場址的經濟價值。因此本發明在地熱產能評估上,建立一套容易運輸安裝、量測準確度高,又可降低長期監測成本的設備。其地熱廠址開發順序為產能評估再進行發電廠容量規格制定,錯誤的產能評估會導致機組設計容量高估或低估的現象,皆會使發電廠無法到達預期的經濟效益,造成莫大的損失,本發明即是解決地熱產能評估準確度及現場環境施作困難之問題,確保地熱發電廠可獲得該有的經濟效益,為台灣再生能源發展創造新里程碑,解決能源問題。
本發明之目的是提供一種量測地熱流體潛能的設備,可以達到方便運輸及組裝需求,並採用自動化監測記錄,使用包含液體流量計、氣體流量計、溫度感應器、壓力感應器等量測元件,自動連續紀錄於監控系統中。
本發明為達成上述目的提供一種量測地熱流體潛能的設備具有設備本體、地熱井進水管、氣液分離裝置、固相匯集區、迴流水道、排氣管、排液管、量測元件以及監測器。該地熱井進水管、該氣液分離裝置、該固相匯集區、該迴流水道、該排氣管、該排液管、該量測元件與該監測器是設置於該設備本體內。地熱井進水管用以連結一地熱井以取得地熱流體。氣液分離裝置用以將該地熱流體分離成液體與氣體。固相匯集區用以沉積該地熱流體之固相雜質。迴流水道用以改變該液體流向,以增進該固相雜質沉澱。排氣管用以排出該氣體。排液管用以排出該液體。量測元件用以量測該氣體與該液體之流量、溫度及壓力。監測器用以記錄該氣體與該液體之流量、溫度及壓力。
與習知之大面積無窗氣流式比例計數器比較,本發明具有以下優點: 1.本發明將量測地熱流體潛能之相關零組件及感應元件,整合於單一設備本體中,因此可以達到方便運輸及組裝需求,並採用自動化監測記錄,使用包含液體流量計、氣體流量計、溫度感應器、壓力感應器等量測元件,自動連續紀錄於監控系統中,以達到降低長期量測成本與量測精準度及維護容易之需求。 2. 本發明可大幅提升量測準確度,採用直接儀器量測地熱氣體與液體流量,再經由計算公式將地熱潛能計算出來,在量測儀器誤差的疊加之下可達3%以下精度。而習知技術採用唇壓管方式量測,僅量測液體流量,再經由經驗公式查表來推估地熱潛能,其誤差值約為8~10%左右。
地熱發電場建設初期,需評估該場址地熱潛能,如此才能準確評估出該電廠的經濟效益,並對後續發電系統設計定義規格,影響範圍甚大,故需一套準確又經濟的量測地熱流體潛能的設備。
第1圖至第7圖顯示本發明之量測地熱流體潛能的設備之結構示意圖,並包含第2圖排水側與第3圖進水側之相關配置。如第1圖至第7圖所示,量測地熱流體潛能的設備100,具有一設備本體102、地熱井進水管104、氣液分離裝置112、固相匯集區118、迴流水道130、排氣管138、排液管124、量測元件128以及監測器140。該地熱井進水管104、該氣液分離裝置112、該固相匯集區118、該迴流水道130、該排氣管138、該排液管124、該量測元件128與該監測器140是設置於該設備本體102內。
地熱井進水管104用以將該地熱流體分離成液體與氣體。氣液分離裝置112具有第一擋板106、第二擋板108以及第三擋板110,用以將該地熱流體分離成液體與氣體。固相匯集區118具有第一固相匯集區114以及第二固相匯集區116,用以沉積該地熱流體之固相雜質。迴流水道130用以改變該液體流向,以增進該固相雜質沉澱。排氣管138用以排出該氣體,排氣管138具有氣體流量計142。排氣管138可為拆卸組裝式、收折式或固定式連結,並使用螺栓法蘭144固定該排氣管138。排液管124具有第一排液管120以及第二排液管122,用以排出該液體。第一排液管120具有第一可拆裝機構121;第二排液管122具有第二可拆裝機構123。
量測元件128用以量測該氣體與該液體之流量、溫度及壓力。量測元件128包括是一種渦流液體流量計。監測器140用以記錄該氣體與該液體之流量、溫度及壓力。監測器140亦可採用分離式設計。
量測地熱流體潛能的設備100更包括一調整流量閥105設置於該地熱井進水管104用以控制輸入地熱流量之大小。該調整流量閥105可以是伺服閥、比例閥、開關閥、球閥、蝶閥等,該調整流量閥105之驅動方式可以採用氣壓驅動與電動驅動。
量測地熱流體潛能的設備100之作動方式為運輸到地熱評估場址後,將地熱井聯結至地熱井進水管104,並且將排液管124則排入水溝或重新注入地熱井。接著開啟調整流量閥105,調整流量閥105可為自動或手動控制。使得地熱流體注入設備本體102內,若為180℃以上地熱流體,有機會使得地熱井管路內原壓力達10bar或以上,當體積放大壓力釋放時,地熱流體會進行汽化現象,使其分離成液體與氣體,而地熱流體中的固態雜質也一同進入結構設備本體102中,使其達到三相狀態,藉由設備本體102的幾何結構設計,將固態的雜質集中於固相匯集區118,再定期排出固相雜質,避免管路淤積及影響量測精準度。第4圖為設備本體內進水側流體流動示意圖,地熱井進水管104的地熱流體在體積放大釋放壓力後,先撞擊第一擋板106,使其氣液分離更為完整,氣體會由此區上升至設備本體102上側,液體則會由下方累積並流動至迴流區,使其流道轉向,提升固相分離沉澱效果,如第4圖所示。第5圖為排水側流體流動示意圖,利用垂直穩流板160及水平穩流板162,使液體穩定流入排液管124,排液管124上方裝有防漩渦吸入擋板164,避免空氣由此吸入,如第5圖所示。
第6圖顯示本發明之量測地熱流體潛能的設備之排水管裝設方式,量測地熱流體潛能的設備100可裝設第一排液管120以及第二排液管122,如第6圖所示,目的為配合裝設適合的流量量測元件128,以降低量測誤差值。在量測元件128排水出口處裝置一鵝頸U形彎頭129,目的為使量測元件128保持滿水狀態,避免空氣進入量測元件128,影響量測誤差。而氣體則流動至設備本體102上方排氣管138,藉由氣體流量計142量測其流量值。再將所擷取之參數資料包含井頭溫度壓力、進水管溫度壓力、排氣管流量溫度壓力、排水管流量進行資料分析作業,計算出地熱潛能,可以評估地熱發電廠經濟效益多寡。
量測地熱流體潛能的設備100之地熱潛能估算方法是根據地熱井的流量、壓力和溫度進行地熱潛能估算,首先量測地熱井頭的壓力和溫度。其次,透過分離器將蒸氣和飽和水分離,透過流體減速與轉彎將不同相的流體分開。再其次,分別量測蒸氣和飽和水的流量。依據流量透過自動閥門控制選擇適當流量範圍之流量計,以及採用即時量測記錄的方式降低操作成本。最後,透過量測資料估算地熱井的產能。本發明之流體總潛能流體潛能(焓值) 的計算公式如下, 流體總潛能(焓值) = 蒸氣值量流率 x 蒸氣焓 + 水值量流率x 水焓 流體總潛能(焓值)是等於蒸氣值量流率乘以蒸氣焓再加水值量流率乘以水焓,前述未知的參數包含蒸氣值量流率、水值量流率、蒸氣溫度、蒸氣壓力、水溫度,僅有蒸氣溫度和蒸氣壓力由地熱井頭量測,其餘皆可透過本發明之系統量測取得。蒸氣焓為蒸氣溫度與蒸氣壓力的函數,需查詢熱力學性質表。水焓為飽和液態水溫度的函數需查詢熱力學性質表。
量測地熱流體潛能的設備100為達到運輸及維修便利性,排氣管138為可拆裝置設計,在運輸過程會將其排氣管138拆卸,待機組到量測現地後再進行排氣管138組裝作業,採用螺栓法蘭144組裝,並連結氣體流量計142。第7圖為量測地熱流體潛能的設備之排液管拆裝機構,為考量到量測元件128及開關閥日後維修與檢查,第一排液管120具有第一可拆裝機構121以及第二排液管122具有第二可拆裝機構123。拆裝方法為使用一滑槽機構,使其管路可以水平移動,待需要拆卸時,則拆卸聯結法蘭將管路水平分離,待要組裝時,在水平聯結其管路使其法蘭密合,如第7圖所示。為避免發生流量過大使其設備本體102液位滿出,在本設備上安裝過載排水管168,此過載排水管168可以使用閥體自動或手動控制,或是直接引導至排水處,將過載排水管168末入排水液面,避免氣體由過載排水管168排出。監測器140安裝位置於地熱井進水管104 之管口旁,此監測器140可採獨立分離式,與設備本體102非直接接觸,除可避免高溫影響,更可裝設於人員便於操作之場地。
量測地熱流體潛能的設備100經由模型比尺實驗驗證,如第8圖所顯示之實驗水槽,比尺模型設計為1/4,長度為1米;寬0.6米;高0.5米的壓克力模型進行設備本體102流道實驗,其驗證項目如下:1.流量大小與液位上升現象;2.水流迴流固相淤積現象;3.排水管氣體捲入現象。此3項現象皆達成如此證明該設備本體102之可行性。將水透過抽水馬達由進水管注入模型水槽內,並觀察液位、排水、空氣捲入、固相沉澱之現象,如第9圖所顯示之排水管原空氣捲入之情形,上方加裝防漩渦吸入擋板後,解決氣體混入現象。而排水管徑會決定實驗水槽液位高低,透過該實驗可確保液位上升範圍在設備本體高度之內,如第10圖所顯示之流量變化與液位上升之關係實驗。第11圖為水槽實驗流量與比尺關係對照圖,如圖11所示,在使用設備本體102原尺寸之實驗水槽4米的條件下,液體流量可達130噸/小時。因此只要單一機組幾乎可滿足台灣地熱井條件,具有極高的開發價值與經濟性。
100:量測地熱流體潛能的設備 102:設備本體 120:第一排液管 121:第一可拆裝機構 122:第二排液管 123:第二可拆裝機構 124:排液管 128:量測元件 142:氣體流量計 144:螺栓法蘭 138:排氣管 168:過載排水管 104:地熱井進水管 105:調整流量閥 112:氣液分離裝置 118:固相匯集區 114:第一固相匯集區 116:第二固相匯集區 130:迴流水道 140:監測器 106:第一擋板 108:第二擋板 110:第三擋板 160:垂直穩流板 162:水平穩流板
第1圖顯示本發明之量測地熱流體潛能的設備之結構示意圖。 第2圖顯示本發明之量測地熱流體潛能的設備之排水側結構示意圖。 第3圖顯示本發明之量測地熱流體潛能的設備之進水側結構示意圖。 第4圖顯示本發明之量測地熱流體潛能的設備之進水側流體流動示意圖。 第5圖顯示本發明之量測地熱流體潛能的設備之排水側流體流動示意圖。 第6圖顯示本發明之量測地熱流體潛能的設備之排水管裝設方式。 第7圖為量測地熱流體潛能的設備之排液管拆裝機構。 第8圖為量測地熱流體潛能的設備之水槽模型實驗主體。 第9圖為水槽模型實驗排水管空氣捲入排除試驗。 第10圖為水槽模型實驗流量與液位上升實驗。 第11圖為水槽實驗流量與比尺關係對照圖。
100:量測地熱流體潛能的設備
102:設備本體
120:第一排液管
121:第一可拆裝機構
122:第二排液管
123:第二可拆裝機構
124:排液管
128:量測元件
142:氣體流量計
144:螺栓法蘭
138:排氣管
168:過載排水管

Claims (7)

  1. 一種量測地熱流體潛能的設備,具有一設備本體,包括:一地熱井進水管,用以連結一地熱井以取得地熱流體;一氣液分離裝置,用以將該地熱流體分離成液體與氣體;一固相匯集區,用以沉積該地熱流體之固相雜質;一迴流水道,用以改變該液體流向,以增進該固相雜質沉澱;一排氣管,用以排出該氣體,該排氣管具有一氣體流量計直接量測該氣體之流量;一排液管,用以排出該液體;一量測元件,用以量測該設備本體內之該氣體與該液體之流量、溫度及壓力,其中,該量測元件具有一渦流液體流量計直接量測該液體之流量;以及一監測器,用以記錄該氣體與該液體之流量、溫度及壓力;其中該地熱井進水管、該氣液分離裝置、該固相匯集區、該迴流水道、該排氣管、該排液管、該量測元件與該監測器是設置於該設備本體內。
  2. 如請求項1所述之量測地熱流體潛能的設備,更包括第一排液管以及第二排液管,依流量的多寡,可自動或手動地啟用適合的該第一排液管以及第二排液管,以獲取最佳的量測範圍並降低量測誤差值。
  3. 如請求項1所述之量測地熱流體潛能的設備,更包括一調整流量閥設置於該地熱井進水管,用以控制輸入地熱流量之大小。
  4. 如請求項3所述之量測地熱流體潛能的設備,其中,該調整流量閥可以是伺服閥、比例閥、開關閥、球閥、蝶閥等,該調整流量閥之驅動方式可以採用氣壓驅動與電動驅動。
  5. 如請求項1所述之量測地熱流體潛能的設備,其中,該排氣管可為拆卸組裝式、收折式或固定式連結,並使用螺栓法蘭固定該排氣管。
  6. 如請求項1所述之量測地熱流體潛能的設備,其中,該排液管具有可拆裝機構,可拆裝機構是法蘭、滑軌或螺栓。
  7. 如請求項1所述之量測地熱流體潛能的設備,其中,該監測器可採用分離式設計。
TW108141640A 2019-11-15 2019-11-15 量測地熱流體潛能的設備 TWI727504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108141640A TWI727504B (zh) 2019-11-15 2019-11-15 量測地熱流體潛能的設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108141640A TWI727504B (zh) 2019-11-15 2019-11-15 量測地熱流體潛能的設備

Publications (2)

Publication Number Publication Date
TWI727504B true TWI727504B (zh) 2021-05-11
TW202120966A TW202120966A (zh) 2021-06-01

Family

ID=77036232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141640A TWI727504B (zh) 2019-11-15 2019-11-15 量測地熱流體潛能的設備

Country Status (1)

Country Link
TW (1) TWI727504B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283767A (ja) * 2003-03-24 2004-10-14 Mitsubishi Materials Corp 地熱水処理方法および装置
CN101303367A (zh) * 2008-07-09 2008-11-12 上海理工大学 标准流量式微风速标定装置及标定方法
CN104132962A (zh) * 2014-06-26 2014-11-05 姜再新 中高温地热单井换热量测定的试验方法和试验测试系统
EP2333331B1 (en) * 2008-10-03 2018-09-05 Fuji Electric Co., Ltd. Steam characteristics automatic measuring device and geothermal power generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283767A (ja) * 2003-03-24 2004-10-14 Mitsubishi Materials Corp 地熱水処理方法および装置
CN101303367A (zh) * 2008-07-09 2008-11-12 上海理工大学 标准流量式微风速标定装置及标定方法
EP2333331B1 (en) * 2008-10-03 2018-09-05 Fuji Electric Co., Ltd. Steam characteristics automatic measuring device and geothermal power generating device
CN104132962A (zh) * 2014-06-26 2014-11-05 姜再新 中高温地热单井换热量测定的试验方法和试验测试系统

Also Published As

Publication number Publication date
TW202120966A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2013102312A1 (zh) 一种蒸汽流量计量装置及计量方法
CN104897188B (zh) 一种分析排水管道淤积特性的方法及实验装置
CN203420702U (zh) 煤层气井筒气液两相流模拟装置
CN104776971A (zh) 一种气流携液携砂可视化实验装置
CN203811492U (zh) 一种封闭式管道循环冲蚀试验装置
WO2021208171A1 (zh) 一种海水淡化泵能量回收一体机试验检测装置及试验方法
CN107587586A (zh) 一种用于管路上的装置及基于该装置的流量控制方法和防倒灌方法
CN206311153U (zh) 一种撬装化气液两相质量流量计量装置
CN103438931B (zh) 湿蒸汽流量干度一体化测量装置及测量方法
TWI727504B (zh) 量測地熱流體潛能的設備
CN204458305U (zh) 一种双液注浆泵的检测设备
CN204666329U (zh) 一种气流携液携砂可视化实验装置
CN205607469U (zh) 利用小直径管道流量计算大直径管道流量的实验装置
CN108731760B (zh) 一种在线检测虹吸式出水流道启动和停机阶段流量的装置及其在线检测方法
CN205861140U (zh) 一种气液两相质量流量计
RU66779U1 (ru) Установка поскважинного учета углеводородной продукции
CN202013214U (zh) 压差-微波式油气水三相流量计
CN215860130U (zh) 一种油水井口计量装置
CN201991517U (zh) 油井多相连续分测装置
CN107844150A (zh) 一种装置和基于该装置的流量监测和最大流量控制方法及防倒灌方法
CN211262372U (zh) 一种分级测量式流量监测井
CN204831423U (zh) 一种油水两相精确计量装置
CN108254034A (zh) 一种新型油气水分相流量在线计量装置及其计量方法
CN114674380A (zh) 一种基于喷嘴的低产气井湿气两相流量计量方法
CN207761027U (zh) 一种用于管路上的装置及包括该装置的管路系统