TWI724467B - The diagnosis method of machine ageing - Google Patents

The diagnosis method of machine ageing Download PDF

Info

Publication number
TWI724467B
TWI724467B TW108125676A TW108125676A TWI724467B TW I724467 B TWI724467 B TW I724467B TW 108125676 A TW108125676 A TW 108125676A TW 108125676 A TW108125676 A TW 108125676A TW I724467 B TWI724467 B TW I724467B
Authority
TW
Taiwan
Prior art keywords
value
algorithm
guide rod
coefficient
loop
Prior art date
Application number
TW108125676A
Other languages
Chinese (zh)
Other versions
TW202105104A (en
Inventor
李慶鴻
林建佑
李格非
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW108125676A priority Critical patent/TWI724467B/en
Publication of TW202105104A publication Critical patent/TW202105104A/en
Application granted granted Critical
Publication of TWI724467B publication Critical patent/TWI724467B/en

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

The present invention provides the diagnosis method of machine ageing, which excites responses of a drive systems for machine tools by the output of sweep signal to obtain the frequency responses of a velocity loop and a position loop. Through transfer function of the velocity loop and transfer function of the position loop, it calculates and identifies values of variation such as Rotary Inertia—J M, damping coefficient of the rotary motion—B M, table mass—M t,damping coefficient of the lead-screw—C tand stiffness coefficient of the lead-screw—K. It can procced to record the value of variation through time point. When deviation of the value of variation is greater than parameters, it can diagnose that the drive system of machine tool has aged. Thereby, the present invention can detect immediately vibration of machine tool, variation of bandwidth, variation of frequency response or other circumstances, which can rapidly diagnose the device of actual aging to instantly proceed with servo tuning, maintenance or replacement that can reduce the vibration circumstance of drive system of machine tool to guarantee its function and precision requirements.

Description

機台老化診斷方法Machine aging diagnosis method

本發明係提供一種機台老化診斷方法,尤指一種可對工具驅動系統進行鑑別出各參數,並於其變異超過該閥值時診斷該工具驅動系統已老化,以利及時進行調機、維護保養或更換,以減少其震動,並確保其性能及工作精度者。 The present invention provides a method for diagnosing machine aging, especially a method that can identify various parameters of a tool drive system, and diagnose that the tool drive system is aging when its variation exceeds the threshold, so as to facilitate timely adjustment and maintenance. Maintenance or replacement to reduce its vibration and ensure its performance and work accuracy.

按,現今製造產業對成品的精度要求日漸增加,除要求一定的加工品質外,縮短加工週期也是一個重要的目標;因此,如何使電腦數值控制(Computer Numerical Control;CNC)工具機在不同加工環境或條件下維持高速及高精度是一個重要的議題;目前已有諸多文獻探討CNC工具機中之機械結構、運動控制、進給驅動系統、主軸、CNC伺服控制器及插補器等研究,並提出不同方法來改善加工性能;在傳統的設計過程中,工程師需要花費很多的時間和成本來製造和測試實物原型,以檢測需改善的地方藉以優化其設計;而現今的設計過程,機台是透過電腦採用模擬原型技術,與傳統設計方式相比,減少了許多時間和成本,惟對於調機仍須仰賴經驗或試誤法進行,此方法效率低且無法判斷伺服參數是否已達到最佳化。 According to the fact that the manufacturing industry’s requirements for the precision of finished products are increasing day by day, in addition to requiring certain processing quality, shortening the processing cycle is also an important goal; therefore, how to make computer numerical control (CNC) machine tools in different processing environments It is an important issue to maintain high speed and high precision under other conditions. At present, there are many documents discussing the mechanical structure, motion control, feed drive system, spindle, CNC servo controller and interpolator in CNC machine tools. Propose different methods to improve processing performance; in the traditional design process, engineers need to spend a lot of time and cost to manufacture and test physical prototypes to detect areas that need improvement to optimize the design; and in the current design process, the machine is Compared with the traditional design method, the simulation prototype technology is adopted through the computer, which reduces a lot of time and cost. However, it is still necessary to rely on experience or trial and error to adjust the machine. This method is inefficient and cannot determine whether the servo parameters have been optimized. .

由於工具機系統之性能將直接影響加工質量,因此,研究五軸進給驅動模型對於虛擬系統開發具有重要意義。目前已有許多文獻探討虛擬驅動系統的議題,並提出了虛擬進給模型,包含了馬達結構、摩擦力與背隙等非線性特性及噪音檢測,但其假設導螺桿是剛體,並忽略了工作台結構特徵,故仍降低虛擬進給驅動系統模型的性能。 Since the performance of the machine tool system will directly affect the processing quality, the study of the five-axis feed drive model is of great significance for the development of virtual systems. At present, many documents have discussed the topic of virtual drive system, and proposed a virtual feed model, including motor structure, friction and backlash and other nonlinear characteristics and noise detection, but it assumes that the lead screw is a rigid body, and ignores the work Due to the characteristics of the table structure, the performance of the virtual feed drive system model is still reduced.

此外,習知並無針對老化問題進行進一步之研究,而機台老化會導致頻寬、共振頻和輪廓誤差的變異進而影響到加工品質。 In addition, the conventional knowledge has not conducted further research on the aging problem, and the aging of the machine will cause the variation of the bandwidth, resonance frequency and contour error, which will affect the processing quality.

有鑑於此,吾等發明人乃潛心進一步研究工具機系統之老化診斷,並著手進行研發及改良,期以一較佳發明以解決上述問題,且在經過不斷試驗及修改後而有本發明之問世。 In view of this, our inventors have devoted themselves to further research on the aging diagnosis of the machine tool system, and proceeded to develop and improve, hoping to provide a better invention to solve the above problems, and after continuous testing and modification, the present invention come out.

爰是,本發明之目的係為解決前述問題,為達致以上目的,吾等發明人提供一種機台老化診斷方法,其步驟包含:(A)輸出一掃頻訊號於一工具驅動系統進行掃頻,藉以激發該工具驅動系統響應,並取得一速度迴路及一位置迴路之頻率響應,並記錄其頻寬BW及第一共振頻率Fr;其中,該工具驅動系統具有至少一伺服控制器,其控制至少一馬達,至少一分別受所述馬達驅動旋轉之導桿,及至少一分別從動於所述導桿之驅動平台;(B)建立一速度迴路轉移函數,並經運算以鑑別並記錄該工具驅動系統中具有之馬達的轉動慣量Jm及旋轉運動之阻尼係數Bm; (C)建立一位置迴路轉移函數,並將該轉動慣量及旋轉運動之阻尼係數代入該位置迴路轉移函數,並經運算鑑別一導桿之阻尼係數Ct及導桿之剛性K;(D)界定一變動值及一閥值,該變動值係選自至少其一由所述頻寬BW、第一共振頻率Fr、轉動慣量Jm、阻尼係數Bm、阻尼係數Ct及剛性K所組成之群組;(E)重複步驟(A)至步驟(C),並分別記錄所述變動值;且於所述變動值之變化量大於該閥值時診斷該工具驅動系統已老化。 The purpose of the present invention is to solve the aforementioned problems. In order to achieve the above objectives, our inventors provide a machine aging diagnosis method, the steps of which include: (A) outputting a sweep signal to a tool drive system for sweeping , In order to stimulate the response of the tool driving system, and obtain the frequency response of a speed loop and a position loop, and record the bandwidth BW and the first resonance frequency F r ; wherein, the tool driving system has at least one servo controller, which Control at least one motor, at least one guide rod driven and rotated by the motor, and at least one drive platform respectively driven by the guide rod; (B) establish a speed loop transfer function, and perform calculations to identify and record The rotational inertia J m of the motor and the damping coefficient B m of the rotational motion in the tool drive system; (C) Establish a position loop transfer function, and substitute the rotational inertia and the damping coefficient of the rotational motion into the position loop transfer function, The damping coefficient C t of a guide rod and the stiffness K of the guide rod are identified through calculation; (D) a variable value and a threshold value are defined, and the variable value is selected from at least one of the bandwidth BW and the first resonance The group consisting of frequency F r , moment of inertia J m , damping coefficient B m , damping coefficient C t and rigidity K; (E) repeat steps (A) to (C), and record the variation values respectively; and When the variation of the variation value is greater than the threshold value, it is diagnosed that the tool driving system is aging.

如申請專利範圍第1項所述之機台老化診斷方法,其中,該速度迴路轉移函數

Figure 108125676-A0305-02-0005-199
Figure 108125676-A0305-02-0005-1
;其中,Kp、Kvp、Kvi為伺服控制器之參數,Kt為馬達轉矩常數,
Figure 108125676-A0305-02-0005-4
為馬達轉動慣量之演算法估測值,而
Figure 108125676-A0305-02-0005-5
為馬達旋轉運動阻尼係數之演算法估測值;且其係經演算法計算以鑑別該轉動慣量Jm及阻尼係數Bm。 The machine aging diagnosis method described in item 1 of the scope of patent application, wherein the speed loop transfer function
Figure 108125676-A0305-02-0005-199
for
Figure 108125676-A0305-02-0005-1
; Among them, K p , K vp , K vi are the parameters of the servo controller, K t is the motor torque constant,
Figure 108125676-A0305-02-0005-4
Is the estimated value of the motor's moment of inertia by the algorithm, and
Figure 108125676-A0305-02-0005-5
It is the estimated value of the damping coefficient of the motor's rotating motion; and it is calculated by the algorithm to identify the moment of inertia J m and the damping coefficient B m .

據上所述之機台老化診斷方法,其中,該演算法為PSO(粒子群優化)演算法,且界定優化問題為

Figure 108125676-A0305-02-0005-231
;並限制
Figure 108125676-A0305-02-0005-8
,
Figure 108125676-A0305-02-0005-9
>0;其中,G v ( i )| dB 及∠G v ( i )| dB 為速度迴路之頻率響應,
Figure 108125676-A0305-02-0005-200
Figure 108125676-A0305-02-0005-202
為速度迴路之頻率響應之演算法估測值,Nv為速度迴路之頻率響應數據之長度、w v1w v2分別為速度迴路之頻率響應的大小及相位權重值。 According to the machine aging diagnosis method described above, the algorithm is a PSO (Particle Swarm Optimization) algorithm, and the optimization problem is defined as
Figure 108125676-A0305-02-0005-231
; And limit
Figure 108125676-A0305-02-0005-8
,
Figure 108125676-A0305-02-0005-9
>0; where G v ( i )| dB and ∠ G v ( i )| dB are the frequency response of the speed loop,
Figure 108125676-A0305-02-0005-200
and
Figure 108125676-A0305-02-0005-202
Is the algorithmic estimation value of the frequency response of the speed loop, N v is the length of the frequency response data of the speed loop, w v 1 and w v 2 are the magnitude and phase weight value of the frequency response of the speed loop, respectively.

據上所述之機台老化診斷方法,其中,該工具驅動系統之所述馬達、導桿及驅動平台係呈線性軸設置,且該線性軸之位置迴路轉移函數

Figure 108125676-A0305-02-0006-203
Figure 108125676-A0305-02-0006-13
其中,
Figure 108125676-A0305-02-0006-14
According to the machine aging diagnosis method described above, the motor, the guide rod and the driving platform of the tool driving system are arranged in a linear axis, and the position loop transfer function of the linear axis
Figure 108125676-A0305-02-0006-203
for
Figure 108125676-A0305-02-0006-13
among them,
Figure 108125676-A0305-02-0006-14

Figure 108125676-A0305-02-0006-15
Figure 108125676-A0305-02-0006-15

Figure 108125676-A0305-02-0006-16
且其係經演算法計算以鑑別該驅動平台之質量Mt、導桿之阻尼係數Ct及導桿之剛性K,其中,
Figure 108125676-A0305-02-0006-17
為該驅動平台質量之演算法估測值,
Figure 108125676-A0305-02-0006-18
為導桿阻尼係數之演算法估測值,
Figure 108125676-A0305-02-0006-19
為導桿之剛性之演算法估測值。
Figure 108125676-A0305-02-0006-16
And it is calculated by an algorithm to identify the mass M t of the drive platform, the damping coefficient C t of the guide rod and the rigidity K of the guide rod, among which,
Figure 108125676-A0305-02-0006-17
Is the estimated value of the algorithm for the quality of the driving platform,
Figure 108125676-A0305-02-0006-18
Is the calculated value of the guide rod damping coefficient,
Figure 108125676-A0305-02-0006-19
It is the estimated value of the rigidity of the guide rod by the algorithm.

據上所述之機台老化診斷方法,其中,該工具驅動系統之所述導桿係接設於所述驅動平台一端,藉以令所述驅動平台繞所述導桿進行旋轉運動,藉以形成搖床之旋轉軸A之設置,且該旋轉軸A之位置迴路轉移函數

Figure 108125676-A0305-02-0006-226
Figure 108125676-A0305-02-0006-21
且其係經演算法計算以鑑別該驅動平台質量Mt。 According to the aforementioned method for diagnosing machine aging, wherein the guide rod of the tool driving system is connected to one end of the driving platform, so that the driving platform rotates around the guide rod to form a rocker The setting of the rotary axis A of the bed, and the position loop transfer function of the rotary axis A
Figure 108125676-A0305-02-0006-226
for
Figure 108125676-A0305-02-0006-21
And it is calculated by an algorithm to identify the quality of the driving platform M t .

據上所述之機台老化診斷方法,其中,該工具驅動系統之所述導桿係接設於所述驅動平台中心,藉以令所述驅動平台以所述導桿為旋轉軸C而進行旋轉,且該旋轉軸C之位置迴路轉移函數

Figure 108125676-A0305-02-0006-204
Figure 108125676-A0305-02-0007-23
且其係經演算法計算以鑑別該轉動慣量JM及阻尼係數BM。 According to the aforementioned method for diagnosing machine aging, wherein the guide rod of the tool driving system is connected to the center of the driving platform, so that the driving platform rotates with the guide rod as the rotation axis C , And the position loop transfer function of the rotation axis C
Figure 108125676-A0305-02-0006-204
for
Figure 108125676-A0305-02-0007-23
And it is calculated by an algorithm to identify the moment of inertia J M and the damping coefficient B M.

據上所述之機台老化診斷方法,其中,該演算法為PSO(粒子群優化)演算法,且界定優化問題為

Figure 108125676-A0305-02-0007-24
According to the machine aging diagnosis method described above, the algorithm is a PSO (Particle Swarm Optimization) algorithm, and the optimization problem is defined as
Figure 108125676-A0305-02-0007-24

限制

Figure 108125676-A0305-02-0007-227
,
Figure 108125676-A0305-02-0007-228
,
Figure 108125676-A0305-02-0007-229
>0;以及
Figure 108125676-A0305-02-0007-28
limit
Figure 108125676-A0305-02-0007-227
,
Figure 108125676-A0305-02-0007-228
,
Figure 108125676-A0305-02-0007-229
>0; and
Figure 108125676-A0305-02-0007-28

限制

Figure 108125676-A0305-02-0007-29
,
Figure 108125676-A0305-02-0007-30
,
Figure 108125676-A0305-02-0007-31
>0;其中,G p ( i )| dB 及∠G p ( i )為位置迴路之頻率響應,
Figure 108125676-A0305-02-0007-205
Figure 108125676-A0305-02-0007-206
為位置迴路之頻率響應之演算法估測值,Np為位置迴路之頻率響應數據長度、wp1及wp2分別為位置迴路的頻率響應之大小及相位權重值。 limit
Figure 108125676-A0305-02-0007-29
,
Figure 108125676-A0305-02-0007-30
,
Figure 108125676-A0305-02-0007-31
>0; where G p ( i )| dB and ∠ G p ( i ) are the frequency response of the position loop,
Figure 108125676-A0305-02-0007-205
and
Figure 108125676-A0305-02-0007-206
Is the algorithmic estimation value of the frequency response of the position loop, N p is the data length of the frequency response of the position loop, w p1 and w p2 are the magnitude and phase weight value of the frequency response of the position loop, respectively.

據上所述之機台老化診斷方法,其中,該變動值包含剛性K、速度迴路及位置迴路頻率響應之頻寬BW及第一共振頻率FrAccording to the machine aging diagnosis method described above, the variation value includes the rigidity K, the frequency response bandwidth BW of the speed loop and the position loop, and the first resonance frequency F r .

據上所述之機台老化診斷方法,其中,該閥值為-20%。 According to the machine aging diagnosis method mentioned above, the threshold value is -20%.

據上所述之機台老化診斷方法,其步驟更包含:(F)界定一路徑令該工具驅動系統運行;(G)記錄並比對該工具驅動系統運行之軌跡;以及 (H)設定一誤差值;並於該軌跡比對該路徑之誤差大於該誤差值時診斷該工具驅動系統已老化。 According to the above-mentioned machine aging diagnosis method, the steps further include: (F) define a path for the tool drive system to run; (G) record and compare the running track of the tool drive system; and (H) Set an error value; and diagnose that the tool driving system is aging when the error of the trajectory compared to the path is greater than the error value.

據上所述之機台老化診斷方法,其步驟更包含:(I)設定一路徑供該工具驅動系統進行變體速度運行;(J)擷取所述伺服控制器生成命令至所述馬達之電流數據以及對應之速度數據;(K)建立一穩態摩擦力函數,並經演算法鑑別正轉時之黏滯摩擦係數f a 、負轉時之黏滯摩擦係數f b 、黏滯摩擦之初始係數f d 及靜摩擦係數f h ,且該變動值包含該穩態摩擦力,並於該穩態摩擦力大於該閥值時診斷該工具驅動系統已老化。 According to the machine aging diagnosis method described above, the steps further include: (I) setting a path for the tool drive system to perform variable speed operation; (J) capturing the command generated by the servo controller to the motor Current data and corresponding speed data; (K) Establish a steady-state friction force function, and use an algorithm to identify the viscous friction coefficient f a during forward rotation, the viscous friction coefficient f b during negative rotation, and the difference between viscous friction The initial coefficient f d and the static friction coefficient f h , and the variable value includes the steady-state friction force, and when the steady-state friction force is greater than the threshold value, it is diagnosed that the tool driving system is aging.

據上所述之機台老化診斷方法,其中,該穩態摩擦力函數Fss,new

Figure 108125676-A0305-02-0008-37
其中,v為該工具驅動系統之速度,dv為受靜摩擦影響之低速範圍;透過演算法計算以鑑別該正轉時之黏滯摩擦係數f a 、負轉時之黏滯摩擦係數f b 、黏滯摩擦之初始係數f d及靜摩擦係數f h 。 According to the machine aging diagnosis method described above, the steady-state friction function F ss,new is
Figure 108125676-A0305-02-0008-37
Wherein, v for the speed of the tool drive system, dv is the low speed range is limited by the influence of static friction; Based upon identification of the stick forward stagnation algorithmically friction coefficient f a, the negative rotation of the lag time of sticky friction coefficient f b, sticky The initial coefficient of hysteretic friction f d and the coefficient of static friction f h .

據上所述之系統鑑別方法,其中,該演算法為PSO(粒子群優化)演算法,且界定優化問題之目標函數Enew

Figure 108125676-A0305-02-0008-38
subject to
Figure 108125676-A0305-02-0009-40
,
Figure 108125676-A0305-02-0009-41
,
Figure 108125676-A0305-02-0009-42
,
Figure 108125676-A0305-02-0009-43
,and dv>0 According to the system identification method described above, the algorithm is a PSO (particle swarm optimization) algorithm, and the objective function E new that defines the optimization problem is
Figure 108125676-A0305-02-0008-38
subject to
Figure 108125676-A0305-02-0009-40
,
Figure 108125676-A0305-02-0009-41
,
Figure 108125676-A0305-02-0009-42
,
Figure 108125676-A0305-02-0009-43
,and dv >0

Figure 108125676-A0305-02-0009-219
-
Figure 108125676-A0305-02-0009-220
>0;其中,w 1,及w 2為誤差權重,
Figure 108125676-A0305-02-0009-46
為工具驅動系統速度之演算法估測值,
Figure 108125676-A0305-02-0009-48
為正轉時之黏滯摩擦係數之演算法估測值,
Figure 108125676-A0305-02-0009-49
為負轉時之黏滯摩擦係數之演算法估測值,
Figure 108125676-A0305-02-0009-50
為黏滯摩擦初始係數之演算法估測值,
Figure 108125676-A0305-02-0009-51
為靜摩擦係數之演算法估測值。
Figure 108125676-A0305-02-0009-219
-
Figure 108125676-A0305-02-0009-220
>0; where w 1 and w 2 are error weights,
Figure 108125676-A0305-02-0009-46
Is the estimated value of the algorithm for the speed of the tool drive system,
Figure 108125676-A0305-02-0009-48
Is the calculated value of the viscous friction coefficient during forward rotation,
Figure 108125676-A0305-02-0009-49
Is the calculated value of the viscous friction coefficient at the time of negative rotation,
Figure 108125676-A0305-02-0009-50
Is the estimated value of the algorithm for the initial coefficient of viscous friction,
Figure 108125676-A0305-02-0009-51
It is the calculated value of static friction coefficient.

據上所述之機台老化診斷方法,其中,該閥值為20%。 According to the machine aging diagnosis method mentioned above, the threshold is 20%.

是由上述說明及設置,顯見本發明主要具有下列數項優點及功效,茲逐一詳述如下: Based on the above description and settings, it is obvious that the present invention mainly has the following advantages and effects, which are described in detail as follows:

1.本發明係藉由輸出掃頻訊號激發工具驅動系統響應,取得一速度迴路及一位置迴路之頻率響應;並藉由速度迴路轉移函數及位置迴路轉移函數,透過演算法以運算並鑑別工具驅動系統之馬達轉動慣量JM、旋轉運動之阻尼係數BM、驅動平台質量Mt、導桿之阻尼係數Ct及導桿之剛性K,且可偵測震動、頻寬改變及系統響應改變等現象,並予記錄每一時點之前述變動值,藉以於前述變動值之變化量大於閥值時,診斷工具驅動系統具體老化之零件,藉可盡速且精確地進行調機、維護保養或更換,藉以減少工具驅動系統之振動現象,確保其性能及工作精度者。 1. The present invention stimulates the response of the tool drive system by outputting a frequency sweep signal to obtain the frequency response of a speed loop and a position loop; and uses the transfer function of the speed loop and the transfer function of the position loop to calculate and identify the tool through an algorithm The motor inertia J M of the driving system, the damping coefficient B M of rotational motion, the mass of the driving platform M t , the damping coefficient C t of the guide rod and the rigidity K of the guide rod, and can detect vibration, bandwidth changes and system response changes And other phenomena, and record the aforementioned variation value at each point in time, so that when the variation of the aforementioned variation value is greater than the threshold, the specific aging parts of the diagnostic tool drive system can be adjusted, maintained or maintained as quickly and accurately as possible. Replacement to reduce the vibration of the tool drive system and ensure its performance and working accuracy.

1:工具驅動系統 1: Tool drive system

11:主計算機 11: main computer

12:伺服控制器 12: Servo controller

121:PID控制器 121: PID controller

122:前饋控制單元 122: Feedforward control unit

13:機械結構 13: Mechanical structure

131:馬達 131: Motor

132:導桿 132: guide rod

133:驅動平台 133: drive platform

第1圖係本發明工具驅動系統之基本架構示意圖。 Figure 1 is a schematic diagram of the basic structure of the tool drive system of the present invention.

第2圖係本發明線性軸模型之結構示意圖。 Figure 2 is a schematic diagram of the structure of the linear axis model of the present invention.

第3圖係本發明A軸旋轉軸模型之結構示意圖。 Figure 3 is a schematic diagram of the structure of the A-axis rotating shaft model of the present invention.

第4圖係本發明C軸旋轉軸模型之結構示意圖。 Figure 4 is a schematic diagram of the structure of the C-axis rotating shaft model of the present invention.

第5圖係本發明工具驅動系統之架構示意圖。 Figure 5 is a schematic diagram of the structure of the tool drive system of the present invention.

第6a圖係X軸分別於位置迴路及速度迴路之輸入訊號與輸出訊號之訊號圖。 Figure 6a is the signal diagram of the input signal and output signal of the position loop and the speed loop of the X axis.

第6b圖係Y軸分別於位置迴路及速度迴路之輸入訊號與輸出訊號之訊號圖。 Figure 6b is the signal diagram of the input signal and output signal of the Y-axis in the position loop and the speed loop.

第6c圖係Z軸分別於位置迴路及速度迴路之輸入訊號與輸出訊號之訊號圖。 Figure 6c is the signal diagram of the input signal and output signal of the Z axis in the position loop and the speed loop.

第6d圖係A軸分別於位置迴路及速度迴路之輸入訊號與輸出訊號之訊號圖。 Figure 6d is the signal diagram of the input signal and output signal of the A axis in the position loop and the speed loop.

第6e圖係C軸分別於位置迴路及速度迴路之輸入訊號與輸出訊號之訊號圖。 Figure 6e is the signal diagram of the input signal and output signal of the C axis in the position loop and the speed loop.

第7圖係本發明簡化之摩擦力模型示意圖。 Figure 7 is a schematic diagram of the simplified friction model of the present invention.

第8圖係本發明導桿與驅動平台間之背隙示意圖。 Figure 8 is a schematic diagram of the backlash between the guide rod and the driving platform of the present invention.

第9圖係本發明伺服調機方法之簡易流程示意圖。 Figure 9 is a simplified flow chart of the servo tuning method of the present invention.

第10a.1圖係本發明X軸於速度迴路之調機前後訊號比較圖。 Figure 10a.1 is a comparison diagram of signals before and after adjustment of the X axis in the speed loop of the present invention.

第10a.2圖係本發明X軸於位置迴路之調機前後訊號比較圖。 Figure 10a.2 is a comparison diagram of the signals before and after adjustment of the X axis in the position loop of the present invention.

第10a.3圖係本發明X軸於前饋位置迴路之調機前後訊號比較圖。 Figure 10a.3 is a comparison diagram of signals before and after tuning of the X-axis in the feedforward position loop of the present invention.

第10b.1圖係本發明Y軸於速度迴路之調機前後訊號比較圖。 Figure 10b.1 is a comparison diagram of the signals before and after adjustment of the Y-axis in the speed loop of the present invention.

第10b.2圖係本發明Y軸於位置迴路之調機前後訊號比較圖。 Figure 10b.2 is a comparison diagram of signals before and after adjustment of the Y-axis in the position loop of the present invention.

第10b.3圖係本發明Y軸於前饋位置迴路之調機前後訊號比較圖。 Figure 10b.3 is a comparison diagram of signals before and after adjustment of the Y-axis in the feedforward position loop of the present invention.

第10c.1圖係本發明Z軸於速度迴路之調機前後訊號比較圖。 Figure 10c.1 is a comparison diagram of signals before and after adjustment of the Z axis in the speed loop of the present invention.

第10c.2圖係本發明Z軸於位置迴路之調機前後訊號比較圖。 Figure 10c.2 is a comparison diagram of signals before and after adjustment of the Z axis in the position loop of the present invention.

第10c.3圖係本發明Z軸於前饋位置迴路之調機前後訊號比較圖。 Figure 10c.3 is a comparison diagram of signals before and after adjustment of the Z axis in the feedforward position loop of the present invention.

第10d.1圖係本發明A軸於速度迴路之調機前後訊號比較圖。 Figure 10d.1 is a comparison diagram of the signals before and after adjustment of the A-axis in the speed loop of the present invention.

第10d.2圖係本發明A軸於位置迴路之調機前後訊號比較圖。 Figure 10d.2 is a comparison diagram of the signals before and after adjustment of the A-axis in the position loop of the present invention.

第10d.3圖係本發明A軸於前饋位置迴路之調機前後訊號比較圖。 Figure 10d.3 is a comparison diagram of signals before and after adjustment of the A-axis in the feedforward position loop of the present invention.

第10e.1圖係本發明C軸於速度迴路之調機前後訊號比較圖。 Figure 10e.1 is a comparison diagram of the signals before and after adjustment of the C axis in the speed loop of the present invention.

第10e.2圖係本發明C軸於位置迴路之調機前後訊號比較圖。 Figure 10e.2 is a comparison diagram of signals before and after adjustment of the C axis in the position loop of the present invention.

第10e.3圖係本發明C軸於前饋位置迴路之調機前後訊號比較圖。 Figure 10e.3 is a comparison diagram of signals before and after adjustment of the C-axis in the feedforward position loop of the present invention.

第11a圖係本發明於XY平面循圓於調機前後之軌跡輪廓誤差之比較圖。 Figure 11a is a comparison diagram of the contour error of the trajectory of the present invention in the XY plane before and after the adjustment of the machine.

第11b圖係本發明於XZ平面循圓於調機前後之軌跡輪廓誤差之比較圖。 Figure 11b is a comparison diagram of the contour error of the trajectory before and after adjusting the machine in the XZ plane of the present invention.

第11c圖係本發明於YZ平面循圓於調機前後之軌跡輪廓誤差之比較圖。 Figure 11c is a comparison diagram of the contour error of the trajectory of the present invention in the YZ plane before and after the adjustment of the machine.

第12a圖係本發明馬達阻尼係數衰減之訊號比較圖。 Figure 12a is a signal comparison diagram of the attenuation of the damping coefficient of the motor of the present invention.

第12b圖係本發明導桿阻尼係數衰減之訊號比較圖。 Figure 12b is a signal comparison diagram of the attenuation of the damping coefficient of the guide rod of the present invention.

第12c圖係本發明導桿剛性衰減之訊號比較圖。 Figure 12c is a signal comparison diagram of the attenuation of the rigidity of the guide rod of the present invention.

關於吾等發明人之技術手段,茲舉數種較佳實施例配合圖式於下文進行詳細說明,俾供 鈞上深入了解並認同本發明。 Regarding the technical means of our inventors, several preferred embodiments are described in detail below in conjunction with the drawings, so as to provide a thorough understanding and approval of the present invention.

本發明係提供一種系統鑑別與伺服調機方法,在一具體之實施例中,主要係用以鑑別一工具驅動系統1,就工具驅動系統1而言,其係可為五軸CNC工具機,其包含三個線性軸(X軸、Y軸和Z軸)及二個旋轉軸(A軸和C軸),如第1圖所示,其主要包含一主計算機11、一伺服控制器12及一機械結構13;其中,就主計算機11而言,其主要係透過數控控制(NC)程序由操作員或使用CAD/CAM應用程序創建,為各伺服控制器12生成離散數值位置命令;伺服控制器12可分為PID(Proportional Integral Derivative,比例積分微分)控制器121和前饋控制單元122;在一實施例中,伺服控制器12基於三個迴路控制,包含電流迴路 控制,速度迴路控制和位置迴路控制,故藉由調整伺服控制器12之參數可提供高性能運動控制;機械結構13可分為馬達131、導桿132及驅動平台133,伺服控制器12係耦接並將命令傳送到馬達131以產生扭矩,使驅動導桿132旋轉,進而傳動於驅動平台133,其中,導桿132可為一螺桿;而工具驅動系統1之線性軸模型係概如第2圖所示,其中T為馬達131轉矩[Nm],J m 為馬達131轉動慣量[kgm2],B m 為旋轉運動的阻尼係數[Ns/m],M t 為驅動平台133質量[kg],C t 為導桿132的阻尼係數[Ns/m],K為導桿132的剛性[N/m],R為從馬達131旋轉角度到驅動平台133位置的轉換比[mm/rev],θ m 是馬達131旋轉角度[rad],x act 是驅動平台133位置[m];就旋轉軸模型而言,A軸的機械結構13是搖床結構,如第3圖所示,所述導桿132係接設於所述驅動平台133一端,其中,第3圖所示之m為驅動平台133之質量、g為重力加速度、T為馬達131之扭矩、θ為機械結構13之角度,而1為驅動平台133之質心至導桿132軸心之垂直長度,藉以令所述驅動平台133繞所述導桿132進行旋轉運動,藉以形成搖床結構之旋轉軸A之設置,C軸的機械結構13是直接驅動機構的旋轉平台,如第4圖所示,所述導桿132係接設於所述驅動平台133中心,藉以令所述驅動平台133以所述導桿132為旋轉軸C而進行旋轉。 The present invention provides a system identification and servo adjustment method. In a specific embodiment, it is mainly used to identify a tool drive system 1. As far as the tool drive system 1 is concerned, it can be a five-axis CNC machine tool. It contains three linear axes (X-axis, Y-axis, and Z-axis) and two rotary axes (A-axis and C-axis). As shown in Figure 1, it mainly includes a host computer 11, a servo controller 12, and A mechanical structure 13; among them, as far as the host computer 11 is concerned, it is mainly created by the operator through a numerical control (NC) program or using a CAD/CAM application program to generate discrete numerical position commands for each servo controller 12; servo control The controller 12 can be divided into a PID (Proportional Integral Derivative) controller 121 and a feedforward control unit 122; in one embodiment, the servo controller 12 is based on three loop control, including current loop control, speed loop control and Position loop control, so high-performance motion control can be provided by adjusting the parameters of the servo controller 12; the mechanical structure 13 can be divided into a motor 131, a guide rod 132 and a drive platform 133. The servo controller 12 is coupled and sends commands to The motor 131 generates torque to rotate the driving guide rod 132 and then drive it to the driving platform 133. The guide rod 132 can be a screw rod; and the linear axis model of the tool driving system 1 is as shown in Figure 2, where T Is the torque of the motor 131 [Nm], J m is the moment of inertia of the motor 131 [kgm 2 ], B m is the damping coefficient of the rotary motion [Ns/m], M t is the mass of the drive platform 133 [kg], and C t is the guide The damping coefficient of the rod 132 [Ns/m], K is the rigidity of the guide rod 132 [N/m], R is the conversion ratio from the rotation angle of the motor 131 to the position of the drive platform 133 [mm/rev], and θ m is the motor 131 Rotation angle [rad], x act is the position of the drive platform 133 [m]; in terms of the rotation axis model, the mechanical structure 13 of the A axis is a shaker structure, as shown in Figure 3, the guide rod 132 is connected At one end of the driving platform 133, where m shown in Figure 3 is the mass of the driving platform 133, g is the acceleration of gravity, T is the torque of the motor 131, θ is the angle of the mechanical structure 13, and 1 is the driving platform 133 The vertical length from the center of mass to the axis of the guide rod 132, so that the driving platform 133 rotates around the guide rod 132, thereby forming the setting of the rotation axis A of the rocking table structure. The mechanical structure 13 of the C axis is directly The rotating platform of the driving mechanism, as shown in FIG. 4, the guide rod 132 is connected to the center of the driving platform 133, so that the driving platform 133 rotates with the guide rod 132 as the rotation axis C.

在一實施例中,完整的五軸CNC之工具驅動系統1如第5圖所示,其中,K p 係位置控制器,本實施例中係使用比例(P)控制器,K v 為速度控制器,本實施例中係使用比例積分(PI)控制器,K i 是電流控制器,本實施例中係使用PI控制器,L a 是電樞電感,R a 是電樞電阻,K t 是轉矩常數,K e 是電磁干擾和電場(EMF)常數,ω cmd 是角速度命令,x cmd 是位置命令,θ cmd 是角度指令,θ act 是驅 動平台133角度,θ act 是角速度指令,ω act 是表角速度;該工具驅動系統1包含前饋控制單元122,其係可用於改善伺服系統性能,前饋控制單元122包括速度及加速度前饋控制,其中VF是前饋控制系統的開關;VF的值為1或0,如果VF=1,則表示打開前饋控制系統;反之,如果VF=0,則意味著關閉前饋控制系統;AF是加速度前饋控制系統的常數係數。 In one embodiment, a complete five-axis CNC tool drive system 1 is shown in Figure 5, where K p is a position controller, in this embodiment a proportional ( P ) controller is used, and K v is a speed control , a system using the present embodiment, proportional-integral (PI) controller, K i is a current controller according to the present embodiment based PI controller is used, L a is the armature inductance, R a is the armature resistance, K t is Torque constant, K e is the electromagnetic interference and electric field (EMF) constant, ω cmd is the angular velocity command, x cmd is the position command, θ cmd is the angle command, θ act is the angle of the drive platform 133, θ act is the angular velocity command, ω act Is the surface angular velocity; the tool driving system 1 includes a feedforward control unit 122, which can be used to improve the performance of the servo system, the feedforward control unit 122 includes speed and acceleration feedforward control, where VF is the switch of the feedforward control system; VF The value is 1 or 0. If VF =1, it means that the feedforward control system is turned on; on the contrary, if VF =0, it means that the feedforward control system is turned off; AF is the constant coefficient of the acceleration feedforward control system.

在一實施中,本發明之工具驅動系統1為Microcut-MCU-5X五軸工具機,其配備有海德漢控制器及TNC640,並透過使用TNCOPT、TNCSCOPE、TNCREMO等海德漢軟件,電腦可直接連接控制器,獲取馬達131主軸轉速、驅動平台133位置、各軸速度及加速度等運行數據。 In one implementation, the tool drive system 1 of the present invention is a Microcut-MCU-5X five-axis machine tool, which is equipped with a HEIDENHAIN controller and TNC640, and by using HEIDENHAIN software such as TNCOPT, TNCSCOPE, TNCREMO, etc., the computer can be directly connected The controller obtains operating data such as the spindle speed of the motor 131, the position of the driving platform 133, the speed and acceleration of each axis, and so on.

[速度迴路及位置迴路之鑑別] [Identification of speed loop and position loop]

藉此,本發明使用正弦掃頻訊號進行系統鑑別,並通過伺服導向軟件TNCOPT獲得相應的頻率響應,且正弦掃頻功能不包括前饋控制器;其實施步驟如下: Therefore, the present invention uses a sinusoidal frequency sweep signal for system identification, and obtains the corresponding frequency response through the servo-oriented software TNCOPT, and the sinusoidal frequency sweep function does not include a feedforward controller; the implementation steps are as follows:

S001:輸出一掃頻訊號於一工具驅動系統1進行掃頻,藉以激發該工具驅動系統1響應,並取得各軸之一速度迴路及一位置迴路之頻率響應;如第6a至6e圖所示。 S001: Output a frequency sweep signal to sweep the frequency of a tool driving system 1 so as to stimulate the response of the tool driving system 1 and obtain the frequency response of a speed loop and a position loop of each axis; as shown in Figures 6a to 6e.

S002:建立一速度迴路轉移函數,並經運算以鑑別該工具驅動系統1中具有之馬達131的轉動慣量JM及旋轉運動之阻尼係數BM;在一實施例中,速度迴路轉移函數

Figure 108125676-A0305-02-0013-207
Figure 108125676-A0305-02-0013-57
;其中,Kp、Kvp、Kvi為伺服控制器12之參數,Kt為馬達131轉矩常數,
Figure 108125676-A0305-02-0013-58
為馬達131轉動 慣量之演算法估測值,而
Figure 108125676-A0305-02-0014-59
為馬達131旋轉運動阻尼係數之演算法估測值;且其係經演算法計算以鑑別該轉動慣量JM及阻尼係數BM;本發明主要係透過PSO(粒子群優化)演算法進行演算,由於PSO演算法易於實現,並且具有較少的選擇參數以提供計算效率,其主要係藉由定義優化問題及粒子更新標準,其中,粒子更新主要由三部分組成;第一部分係當前的速度影響慣性運動的效果;第二部分是認知部分,根據粒子自己的判斷;第三部分是社會部分,根據群體的最佳解決方案來搜索解空間;本發明係使用PSO演算法的學習因素的線性調整,學習因素的線性調整表示為:c 1=c 1b +(c 1s -c 1b )/G max×g S002: Establish a speed loop transfer function, and perform calculations to identify the moment of inertia J M of the motor 131 and the damping coefficient B M of the rotary motion in the tool drive system 1; in one embodiment, the speed loop transfer function
Figure 108125676-A0305-02-0013-207
for
Figure 108125676-A0305-02-0013-57
; Among them, K p , K vp , K vi are the parameters of the servo controller 12, and K t is the torque constant of the motor 131,
Figure 108125676-A0305-02-0013-58
Is the calculated value of the motor 131 moment of inertia, and
Figure 108125676-A0305-02-0014-59
It is the algorithmic estimated value of the damping coefficient of the rotating motion of the motor 131; and it is calculated by the algorithm to identify the moment of inertia J M and the damping coefficient B M ; the present invention is mainly calculated by the PSO (Particle Swarm Optimization) algorithm, Since the PSO algorithm is easy to implement and has fewer selection parameters to provide computational efficiency, it is mainly based on the definition of optimization problems and particle update standards. Among them, the particle update is mainly composed of three parts; the first part is that the current speed affects the inertia The effect of movement; the second part is the cognitive part, based on the particle’s own judgment; the third part is the social part, searching for the solution space according to the best solution of the group; the present invention uses the linear adjustment of the learning factors of the PSO algorithm, The linear adjustment of learning factors is expressed as: c 1 = c 1 b +( c 1 s - c 1 b )/ G max × g

c 2=c 2s +(c 2b -c 2s )/G max×g c 2 = c 2 s +( c 2 b - c 2 s )/ G max × g

其中,c 1b c 1s c 2b c 2s 為正常數;c 1b >c 1s c 2b >c 2s G max是允許的最大迭代數,g是粒子的當前迭代次數。 Among them, c 1 b , c 1 s , c 2 b and c 2 s are normal numbers; c 1 b > c 1 s and c 2 b > c 2 s . G max is the maximum number of iterations allowed, and g is the current number of iterations of the particle.

將每顆粒子的當前適應值作為每顆粒子的局部最佳適應值(F i,best );並且將每顆粒子的當前解作為其局部最優解(P i,best );在初始群體粒子中,找到適應值的極值作為群體最優適應值(F gbest );並將具有群體最優適應值的粒子的位置作為群體最優解(g best );在每次迭代後,更新粒子參數時,重新計算粒子適應值;比較適應值的變化並更新最佳適應值和解決方案。 The current fitness value of each particle is taken as the local best fitness value ( F i,best ) of each particle; and the current solution of each particle is taken as its local optimal solution ( P i,best ); in the initial population of particles Find the extreme value of the fitness value as the optimal fitness value of the group ( F gbest ); use the position of the particle with the optimal fitness value of the group as the optimal solution of the group ( g best ); update the particle parameters after each iteration When, recalculate the fitness value of the particle; compare the changes in the fitness value and update the best fitness value and solution.

故,就速度迴路轉移函數,優化問題將可表述為

Figure 108125676-A0305-02-0014-60
並限制
Figure 108125676-A0305-02-0014-61
,
Figure 108125676-A0305-02-0014-62
>0; 其中,G v ( i )| dB 及∠G v ( i )| dB 為TNCOPT測量速度迴路之頻率響應,
Figure 108125676-A0305-02-0015-209
Figure 108125676-A0305-02-0015-210
為速度迴路之頻率響應之演算法估測值,Nv為速度迴路之頻率響應數據之長度、w v1w v2分別為速度迴路之頻率響應的大小及相位權重值;藉此,即可鑑別速度迴路中之轉動慣量JM及阻尼係數BM。 Therefore, regarding the speed loop transfer function, the optimization problem can be expressed as
Figure 108125676-A0305-02-0014-60
And limit
Figure 108125676-A0305-02-0014-61
,
Figure 108125676-A0305-02-0014-62
>0; where G v ( i )| dB and ∠ G v ( i )| dB are the frequency response of the TNCOPT measurement speed loop,
Figure 108125676-A0305-02-0015-209
and
Figure 108125676-A0305-02-0015-210
Is the algorithmic estimation value of the frequency response of the speed loop, N v is the length of the frequency response data of the speed loop, w v 1 and w v 2 are the magnitude and phase weight value of the frequency response of the speed loop respectively; It can identify the moment of inertia J M and the damping coefficient B M in the speed loop.

對於速度迴路,系統鑑別採用1-300[rad/s]的頻率響應,因為該頻率響應範圍主要用於加工。 For the speed loop, the system uses a frequency response of 1-300 [rad/s], because this frequency response range is mainly used for processing.

S003:建立一位置迴路轉移函數,並將該轉動慣量及旋轉運動之阻尼係數代入該位置迴路轉移函數,並經運算鑑別一驅動平台133質量Mt、導桿132之阻尼係數Ct及導桿132之剛性K;在一實施例中,依據線性軸之模型,位置迴路轉移函數

Figure 108125676-A0305-02-0015-230
Figure 108125676-A0305-02-0015-67
;其中,
Figure 108125676-A0305-02-0015-68
,
Figure 108125676-A0305-02-0015-69
,
Figure 108125676-A0305-02-0015-70
,
Figure 108125676-A0305-02-0015-74
S003: Establish a position loop transfer function, and substitute the rotational inertia and the damping coefficient of the rotational motion into the position loop transfer function, and the mass M t of a driving platform 133, the damping coefficient Ct of the guide rod 132, and the guide rod 132 are identified by calculation The rigidity K; in one embodiment, according to the linear axis model, the position loop transfer function
Figure 108125676-A0305-02-0015-230
for
Figure 108125676-A0305-02-0015-67
;among them,
Figure 108125676-A0305-02-0015-68
,
Figure 108125676-A0305-02-0015-69
,
Figure 108125676-A0305-02-0015-70
,
Figure 108125676-A0305-02-0015-74

Figure 108125676-A0305-02-0015-75
;且其係經演算法計算以鑑別該驅動平台133質量Mt、導桿132之阻尼係數Ct及導桿132之剛性K,其中,
Figure 108125676-A0305-02-0015-76
為該驅動平台133質量之演算法估測值,
Figure 108125676-A0305-02-0015-78
為導桿132阻尼係數之演算法估測值,
Figure 108125676-A0305-02-0015-79
為導桿132之剛性之演算法估測值。
Figure 108125676-A0305-02-0015-75
; And it is calculated by an algorithm to identify the mass M t of the drive platform 133, the damping coefficient C t of the guide rod 132 and the rigidity K of the guide rod 132, where,
Figure 108125676-A0305-02-0015-76
Is the estimated value of the algorithm for the quality of the drive platform 133,
Figure 108125676-A0305-02-0015-78
Is the calculated value of the damping coefficient of the guide rod 132,
Figure 108125676-A0305-02-0015-79
It is the estimated value of the rigidity of the guide rod 132 by the algorithm.

旋轉軸(A軸和C軸)的結構與線性軸不同;A軸的機械結構13是搖床結構;且該旋轉軸A之位置迴路轉移函數

Figure 108125676-A0305-02-0015-211
Figure 108125676-A0305-02-0015-81
The structure of the rotary axis (A axis and C axis) is different from that of the linear axis; the mechanical structure 13 of the A axis is a shaker structure; and the position loop transfer function of the rotary axis A
Figure 108125676-A0305-02-0015-211
for
Figure 108125676-A0305-02-0015-81

C軸的機械結構13是直接驅動的機構,來自馬達131的動力沒有任何減少,故僅能鑑別轉動慣量JM及阻尼係數BM,該旋轉軸C之位置迴路轉移函數

Figure 108125676-A0305-02-0016-212
Figure 108125676-A0305-02-0016-84
The mechanical structure 13 of the C-axis is a direct drive mechanism, and the power from the motor 131 is not reduced, so it can only identify the moment of inertia J M and the damping coefficient B M , the position loop transfer function of the rotating axis C
Figure 108125676-A0305-02-0016-212
for
Figure 108125676-A0305-02-0016-84

通過使用PSO演算法,可以鑑別位置迴路的參數;此外,線性軸和旋轉軸的相應優化問題為

Figure 108125676-A0305-02-0016-85
By using the PSO algorithm, the parameters of the position loop can be identified; in addition, the corresponding optimization problems for the linear axis and the rotary axis are
Figure 108125676-A0305-02-0016-85

限制

Figure 108125676-A0305-02-0016-86
,
Figure 108125676-A0305-02-0016-87
,
Figure 108125676-A0305-02-0016-88
>0;以及
Figure 108125676-A0305-02-0016-89
limit
Figure 108125676-A0305-02-0016-86
,
Figure 108125676-A0305-02-0016-87
,
Figure 108125676-A0305-02-0016-88
>0; and
Figure 108125676-A0305-02-0016-89

限制

Figure 108125676-A0305-02-0016-90
,
Figure 108125676-A0305-02-0016-91
,
Figure 108125676-A0305-02-0016-92
>0;其中,G p ( i )| dB 及∠G p ( i )為位置迴路之頻率響應,
Figure 108125676-A0305-02-0016-213
Figure 108125676-A0305-02-0016-214
為位置迴路之頻率響應之演算法估測值,Np為位置迴路之頻率響應數據長度、wp1及wp2分別為位置迴路的頻率響應之大小及相位權重值;藉此,即可鑑別驅動平台133質量Mt、導桿132之阻尼係數Ct及導桿132之剛性K。 limit
Figure 108125676-A0305-02-0016-90
,
Figure 108125676-A0305-02-0016-91
,
Figure 108125676-A0305-02-0016-92
>0; where G p ( i )| dB and ∠ G p ( i ) are the frequency response of the position loop,
Figure 108125676-A0305-02-0016-213
and
Figure 108125676-A0305-02-0016-214
Is the algorithmic estimation value of the frequency response of the position loop, N p is the frequency response data length of the position loop, w p1 and w p2 are the magnitude and phase weight value of the frequency response of the position loop respectively; by this, the drive can be identified The mass M t of the platform 133, the damping coefficient Ct of the guide rod 132 and the rigidity K of the guide rod 132.

鑑別目標是為了確保整體頻率響應,頻寬和共振頻率正確,為加速鑑別,使用速度迴路鑑別結果的轉動慣量JM及阻尼係數BM作為已知知識來鑑別位置迴路參數。 The goal of identification is to ensure that the overall frequency response, bandwidth and resonance frequency are correct. To speed up identification, use the moment of inertia J M and the damping coefficient B M of the speed loop identification result as known knowledge to identify the position loop parameters.

其中,本發明使用PSO演算法的參數設置如下表1所示:

Figure 108125676-A0305-02-0017-95
Among them, the parameter settings of the PSO algorithm used in the present invention are shown in Table 1 below:
Figure 108125676-A0305-02-0017-95

各軸的鑑別結果參數如下表2所示:

Figure 108125676-A0305-02-0017-96
The identification result parameters of each axis are shown in Table 2 below:
Figure 108125676-A0305-02-0017-96

[摩擦力之鑑別] [Identification of Friction]

由於非線性現象影響工具驅動系統1的性能,故在進給驅動系統中,非線性現象的摩擦力和背隙不可忽略;本發明在一實施例中係使用圓形測試獲得的變速度數據以鑑別摩擦力,故無需如習知需獲取大量之每種不同速度下的速度數據和電流數據,而係僅設定一路徑供該工具驅動系統1進行變體速度運行;擷取所述伺服控制器12生成命令至所述馬達131之電流數據以及對應之速度數據;建立一穩態摩擦力函數,並經演算法鑑別正轉時之黏滯摩擦係數f a 、負轉時之黏滯摩擦係數f b 、黏滯摩擦之初始係數f d及靜摩擦係數f h Since the nonlinear phenomenon affects the performance of the tool drive system 1, in the feed drive system, the friction and backlash of the nonlinear phenomenon cannot be ignored; in one embodiment of the present invention, the variable speed data obtained by the circular test is used to To identify friction, it is not necessary to obtain a large amount of speed data and current data at each different speed as known, but only one path is set for the tool drive system 1 to perform variable speed operation; capture the servo controller 12 generates a current command to the motor 131 of the data rate and corresponding data; establishing a steady friction function, and by the algorithm when the differential rotation orthomyxovirus lag coefficient of friction f a, sticky lag time of negative rotation coefficient of friction f b . The initial coefficient of viscous friction f d and the coefficient of static friction f h .

在一具體之實施例中,本發明使用簡化之摩擦力模型,如第7圖所示,並可將該簡化之穩態摩擦力函數Fss,new表示為

Figure 108125676-A0305-02-0018-97
;其中,v為該工具驅動系統1之速度,dv為受靜摩擦影響之低速範圍;此外,摩擦力在運動轉向時具有更明顯的影響,因此,本發明係於不同速度使用不同的學習權重予以鑑別之,即對於較低速度使用較大的權重並且對較高速度使用較小的權重。因此,選擇優化的目標函數Enew
Figure 108125676-A0305-02-0018-98
subject to
Figure 108125676-A0305-02-0018-99
,
Figure 108125676-A0305-02-0018-100
,
Figure 108125676-A0305-02-0018-101
,
Figure 108125676-A0305-02-0018-102
,and dv>0 In a specific embodiment, the present invention uses a simplified friction force model, as shown in Figure 7, and the simplified steady-state friction force function F ss,new can be expressed as
Figure 108125676-A0305-02-0018-97
; Among them, v is the speed of the tool drive system 1, dv is the low-speed range affected by static friction; in addition, friction has a more obvious impact on the movement and steering, therefore, the present invention uses different learning weights for different speeds Identify it, that is, use larger weights for lower speeds and use smaller weights for higher speeds. Therefore, the optimized objective function E new is selected as
Figure 108125676-A0305-02-0018-98
subject to
Figure 108125676-A0305-02-0018-99
,
Figure 108125676-A0305-02-0018-100
,
Figure 108125676-A0305-02-0018-101
,
Figure 108125676-A0305-02-0018-102
,and dv >0

Figure 108125676-A0305-02-0018-103
-
Figure 108125676-A0305-02-0018-105
>0;其中,w 1,及w 2是誤差權重,
Figure 108125676-A0305-02-0018-215
為工具驅動系統1速度之演算法估測值,
Figure 108125676-A0305-02-0018-106
為正轉時之黏滯摩擦係數之演算法估測值,
Figure 108125676-A0305-02-0018-107
為負轉時之黏滯摩擦係數 之演算法估測值,
Figure 108125676-A0305-02-0019-108
為黏滯摩擦初始係數之演算法估測值,
Figure 108125676-A0305-02-0019-109
為靜摩擦係數之演算法估測值。
Figure 108125676-A0305-02-0018-103
-
Figure 108125676-A0305-02-0018-105
>0; where w 1 and w 2 are error weights,
Figure 108125676-A0305-02-0018-215
Is the estimated value of the algorithm for the speed of the tool drive system 1,
Figure 108125676-A0305-02-0018-106
Is the calculated value of the viscous friction coefficient during forward rotation,
Figure 108125676-A0305-02-0018-107
Is the calculated value of the viscous friction coefficient at the time of negative rotation,
Figure 108125676-A0305-02-0019-108
Is the estimated value of the algorithm for the initial coefficient of viscous friction,
Figure 108125676-A0305-02-0019-109
It is the calculated value of static friction coefficient.

用於摩擦力鑑別的PSO演算法參數設置如下表3所示:

Figure 108125676-A0305-02-0019-110
The PSO algorithm parameter settings for friction identification are shown in Table 3 below:
Figure 108125676-A0305-02-0019-110

本發明摩擦力鑑別結果下表4所示:

Figure 108125676-A0305-02-0019-111
The friction identification results of the present invention are shown in Table 4 below:
Figure 108125676-A0305-02-0019-111

[背隙之鑑別] [Identification of Backlash]

透過工具驅動系統1的單軸來回移動,可以藉由線性刻度和旋轉編碼器獲得驅動平台133位置訊號及馬達131速度訊號。因此,通過計算馬達131 速度得到導導桿132位置訊號,可以得到導桿132位置訊號和驅動平台133位置訊號之間的關係;如第8圖所示,其係導桿132與驅動平台133間之背隙示意,其中x act 是驅動平台133的位置,x l 是導桿132的位置,D b 是背隙值;並可說明驅動平台133的及導桿132在向前或向後移動時的誤差理論值是背隙值的一半,為確保導桿132及平台之間的誤差保持在背隙值的一半,故移動速度需要很慢,在前後往返運動過程中,擷取驅動平台133位置數據及馬達131速度數據,當馬達131到達相同位置時,比較前後平台的位置誤差,將驅動平台133及導桿132之間之位置相減,並透過最小平方法鑑別一背隙值,其係可表示為:

Figure 108125676-A0305-02-0020-112
Through the single-axis back and forth movement of the tool driving system 1, the position signal of the driving platform 133 and the speed signal of the motor 131 can be obtained by the linear scale and the rotary encoder. Therefore, by calculating the speed of the motor 131 to obtain the position signal of the guide rod 132, the relationship between the position signal of the guide rod 132 and the position signal of the driving platform 133 can be obtained; as shown in Figure 8, the relationship between the guide rod 132 and the driving platform 133 The backlash indicates that x act is the position of the driving platform 133, x l is the position of the guide rod 132, and D b is the backlash value; it can also indicate the driving platform 133 and the guide rod 132 when moving forward or backward The theoretical error value is half of the backlash value. In order to ensure that the error between the guide rod 132 and the platform remains at half of the backlash value, the moving speed needs to be very slow. During the back and forth movement, the position data of the drive platform 133 is captured. And motor 131 speed data. When the motor 131 reaches the same position, compare the position error of the front and rear platforms, subtract the position between the driving platform 133 and the guide rod 132, and identify a backlash value through the least square method. Expressed as:
Figure 108125676-A0305-02-0020-112

其中,(△s)為驅動平台133及導桿132之間之位置差值,L是路徑數據的長度。 Among them, (Δ s ) is the position difference between the driving platform 133 and the guide rod 132, and L is the length of the path data.

[伺服調機方法一速度迴路] [Servo Tuning Method 1 Speed Loop]

由於工具驅動系統1的響應過快往往會導致結構振動,故透過調整其參數可與提升其穩定度、性能及工作之精度。 Since the response of the tool driving system 1 is too fast, it will often cause structural vibration, so by adjusting its parameters, its stability, performance and working accuracy can be improved.

如第9圖所示,本發明另提供一種伺服調機方法,其係應用於據上所述之系統鑑別方法,並在一實施例中係實際應用於MCU-5X搭配海德漢控制器,使用速度迴路的頻率響應來調整速度控制器的參數,其目在於最大化閉迴路的速度迴路的系統頻寬,從而獲得更好的響應性能並改善穩態誤差;其速度迴路之調機步驟包含:界定求得最大化閉迴路之速度迴路之系統頻寬Bwvel; 限制一相依於該速度迴路頻率響應之共振峰值;在一實施例中,該共振峰值Mvp為速度迴路頻率響應之最大值,且界定Mvp

Figure 108125676-A0305-02-0021-232
1.5,限制共振峰值之目的在於避免更大的過衝及振動情形;界定一相依於該速度迴路頻率響應之增益邊限及相位邊限,增益邊限和相位邊限用於確認整體系統之穩定性和穩健性;在一實施例中,該增益邊限GM
Figure 108125676-A0305-02-0021-114
;其中,GH v ()為所述工具驅動系統1速度迴路之開迴路轉移函數,ω c 為相位交叉頻率;並限制增益邊限GM>10Db;該相位邊限PMP M =180°+∠[GH v ( g )];其中,GH v ()為所述工具驅動系統1速度迴路之開迴路轉移函數,ω g 為增益交叉頻率;並限制相位邊限PM>45°。 As shown in Figure 9, the present invention also provides a servo tuning method, which is applied to the system identification method described above, and in one embodiment is actually applied to MCU-5X with a HEIDENHAIN controller. The frequency response of the speed loop is used to adjust the parameters of the speed controller, and its purpose is to maximize the system bandwidth of the closed loop speed loop, so as to obtain better response performance and improve the steady-state error; the adjustment steps of the speed loop include: Define the system bandwidth Bw vel of the speed loop that maximizes the closed loop; limit a resonance peak that depends on the speed loop frequency response; in one embodiment, the resonance peak M vp is the maximum value of the speed loop frequency response, And define M vp
Figure 108125676-A0305-02-0021-232
1.5. The purpose of limiting the resonance peak is to avoid greater overshoot and vibration; define a gain margin and phase margin that depend on the frequency response of the speed loop. The gain margin and phase margin are used to confirm the stability of the overall system Performance and robustness; in one embodiment, the gain margin G M is
Figure 108125676-A0305-02-0021-114
; Among them, GH v ( ) is the open-loop transfer function of the speed loop of the tool drive system 1, and ω c is the phase cross frequency; and the gain margin G M >10Db is restricted; the phase margin P M is P M = 180 ° +∠[ GH v ( g )]; where GH v ( ) is the open-loop transfer function of the speed loop of the tool drive system 1, and ω g is the gain crossover frequency; and the phase margin P M > 45°.

界定伺服控制器12之參數中之比例增益值Kvp及積分增益值Kvi之間的比率;在一實施例中,,比例增益值Kvp及積分增益值Kvi之間的比率R pi R pi =K vi /K vp =100±5%。 Defines the ratio between the proportional gain value K vp and the integral gain value K vi in the parameters of the servo controller 12; in one embodiment, the ratio R pi between the proportional gain value K vp and the integral gain value Kvi is R pi = K vi / K vp =100±5%.

在符合上述約束條件的情況下,求得比例增益值Kvp及積分增益值Kvi,並調整輸入於該伺服控制器12,即可達致優化工具驅動系統1速度迴路之目的。 Under the condition that the above constraint conditions are met, the proportional gain value K vp and the integral gain value K vi are obtained , and the adjustment input is input to the servo controller 12 to achieve the goal of optimizing the speed loop of the tool drive system 1.

[伺服調機方法-位置迴路] [Servo Tuning Method-Position Loop]

本發明之伺服調機方法更包含一位置迴路之步驟,位置迴路的頻率響應數據用於調整位置控制器的參數,其步驟包含:界定優化問題是求得最大化閉迴路之位置迴路之系統頻寬Bwpos; 限制為伺服控制器12之參數Kp;在一實施例中,伺服控制器12之參數Kp限制為K P

Figure 108125676-A0305-02-0022-224
100,Kp增加的目標為提高響應速度;惟,Kp過大會導致位置迴路的共振峰變大甚至使系統變得不穩定,故須予限定;限制一相依於該位置迴路頻率響應之共振峰值;在一實施例中,相依於該位置迴路頻率響應之共振峰值Mpp之限制為M PP
Figure 108125676-A0305-02-0022-225
1,其中,共振峰值Mpp為位置迴路頻率響應之最大值;其中,限制共振峰值係可避免更大的過衝和振動情形;由於位置迴路將直接影響產品的軌跡和質量,故過衝的限制比速度迴路更嚴謹。 The servo tuning method of the present invention further includes a position loop step. The frequency response data of the position loop is used to adjust the parameters of the position controller. The steps include: defining the optimization problem to maximize the system frequency of the position loop of the closed loop Width Bw pos ; limited to the parameter K p of the servo controller 12; in one embodiment, the parameter K p of the servo controller 12 is limited to K P
Figure 108125676-A0305-02-0022-224
100. The goal of increasing K p is to increase the response speed; however, if K p is too large, the resonance peak of the position loop will become larger or even make the system unstable, so it must be limited; limit a resonance dependent on the frequency response of the position loop Peak; In one embodiment, the resonance peak M pp of the frequency response of the loop depends on the position, and the limit is M PP
Figure 108125676-A0305-02-0022-225
1. Among them, the resonance peak M pp is the maximum value of the frequency response of the position loop; among them, limiting the resonance peak can avoid greater overshoot and vibration; because the position loop will directly affect the trajectory and quality of the product, the overshoot is The restriction is more stringent than the speed loop.

界定一相依於該位置迴路頻率響應之增益邊限及相位邊限;在一實施例中,係限制增益邊限GM>15dB,且限制相位邊限PM>45°;位置迴路的增益邊限和相位邊限用於確認系統穩定性和穩健性,在加工中,外部負載將直接影響位置迴路的增益邊限和相位邊限,因此,增益邊限和相位邊限的限制比速度迴路更寬容。 Define a gain margin and phase margin that depend on the frequency response of the position loop; in one embodiment, limit the gain margin G M > 15dB and limit the phase margin P M >45°; the gain margin of the position loop The limit and phase limit are used to confirm the stability and robustness of the system. During processing, the external load will directly affect the gain limit and phase limit of the position loop. Therefore, the gain limit and phase limit are more limited than the speed loop. tolerant.

限制最大化閉迴路之位置迴路的系統頻寬

Figure 108125676-A0305-02-0022-115
;在符合上述約束條件的情況下,求得伺服控制器12之參數Kp,並調整輸入於該伺服控制器12,藉以優化工具驅動系統1之位置迴路。 Limit the system bandwidth of the position loop that maximizes the closed loop
Figure 108125676-A0305-02-0022-115
; Under the condition that the above-mentioned constraint conditions are met, the parameter K p of the servo controller 12 is obtained and adjusted and input to the servo controller 12 to optimize the position loop of the tool drive system 1.

[伺服調機方法-具有前饋控制單元122的位置迴路] [Servo Tuning Method-Position Loop with Feedforward Control Unit 122]

前述之伺服調機方法係於無前饋控制單元122的情況下調整速度控制器和位置控制器的參數,在此考慮前饋控制單元122對位置迴路的頻率響應的影響,並調整前饋控制單元122的參數,故優化問題是使頻率響應接近水平,透過適當設置前饋參數,可避免響應失真並消除伺服落後,其步驟更包含:界 定該前饋控制單元122相依且控制速度及加速度之一常數係數AF;令位置迴路的頻率響應接近水平,並界定優化問題之函數E之最小值為

Figure 108125676-A0305-02-0023-116
;擷取函數E為最小值時之常數係數AF,並對應輸入於該前饋控制單元122;前饋控制單元122之功能可以改善伺服落後和響應衰減,故加工頻率在位置迴路的頻寬內,藉可避免響應失真。 The aforementioned servo tuning method is to adjust the parameters of the speed controller and the position controller without the feedforward control unit 122. Here, consider the influence of the feedforward control unit 122 on the frequency response of the position loop, and adjust the feedforward control. Therefore, the optimization problem of the parameters of the unit 122 is to make the frequency response close to the level. By appropriately setting the feedforward parameters, the response distortion can be avoided and the servo lag can be eliminated. The steps further include: defining the feedforward control unit 122 dependent and controlling the speed and acceleration A constant coefficient AF; make the frequency response of the position loop close to the level, and define the minimum value of the function E of the optimization problem as
Figure 108125676-A0305-02-0023-116
; Capture the constant coefficient AF when the function E is the minimum value, and correspondingly input it to the feedforward control unit 122; the function of the feedforward control unit 122 can improve the servo lag and response attenuation, so the processing frequency is within the bandwidth of the position loop , Which can avoid response distortion.

本發明用於伺服調機方法之PSO演算法的參數設置如下表5所示:

Figure 108125676-A0305-02-0023-117
The parameter settings of the PSO algorithm used in the servo tuning method of the present invention are shown in Table 5 below:
Figure 108125676-A0305-02-0023-117

調機前各軸之預設參數如下表6所示:

Figure 108125676-A0305-02-0023-118
Figure 108125676-A0305-02-0024-119
The preset parameters of each axis before adjustment are shown in Table 6 below:
Figure 108125676-A0305-02-0023-118
Figure 108125676-A0305-02-0024-119

調機前各軸之頻寬值如下表7所示:

Figure 108125676-A0305-02-0024-120
The bandwidth values of each axis before tuning are shown in Table 7 below:
Figure 108125676-A0305-02-0024-120

調機後各軸之伺服控制器12參數如下表8所示:

Figure 108125676-A0305-02-0024-122
The servo controller 12 parameters of each axis after adjustment are shown in Table 8 below:
Figure 108125676-A0305-02-0024-122

調機後各軸之頻寬值如下表9所示:

Figure 108125676-A0305-02-0024-123
Figure 108125676-A0305-02-0025-127
The bandwidth values of each axis after tuning are shown in Table 9 below:
Figure 108125676-A0305-02-0024-123
Figure 108125676-A0305-02-0025-127

並請參閱第10a.1至10e.3圖所示,可以觀察到速度迴路和位置迴路的頻寬得到改善,最終伺服調機結果之頻率響應比調機前更佳。 Please also refer to the figures 10a.1 to 10e.3. It can be observed that the bandwidth of the speed loop and the position loop has been improved, and the frequency response of the final servo tuning result is better than before the tuning.

為驗證伺服調機方法的優化可以有效地應用於工具驅動系統1,故利用時域實驗來證明伺服調機結果,在此採用循圓測試,設定進給速率1200[mm/min]和半徑1[mm]進行驗證,如第11a至11c圖之循圓軌跡實驗的輪廓誤差及下表10所示:

Figure 108125676-A0305-02-0025-128
In order to verify that the optimization of the servo adjustment method can be effectively applied to the tool drive system 1, the time domain experiment is used to prove the result of the servo adjustment, and the circular test is used here, and the feed rate is 1200 [mm/min] and the radius 1 is set. [mm] Perform verification, as shown in the contour error of the circular trajectory experiment in Figures 11a to 11c and Table 10 below:
Figure 108125676-A0305-02-0025-128

由前述者可觀察到輪廓誤差明顯改善,而追蹤誤差略有改善,且經比較輪廓誤差和跟踪的改進程度,顯見本發明伺服調機結果是具可靠性的。 From the foregoing, it can be observed that the contour error is significantly improved, while the tracking error is slightly improved. After comparing the contour error and the degree of improvement of the tracking, it is obvious that the servo tuning result of the present invention is reliable.

[機台老化診斷方法] [Machine aging diagnosis method]

由於當機台老化時,機台通常會更容易有震動現象的發生,頻寬改變,系統響應改變的現象,故透過前述之鑑別方法中之參數的變動以診斷機台是否老化,其步驟如下:S004:界定一變動值及一閥值,該變動值係選自至少其一由所述頻寬BW、第一共振頻率Fr、轉動慣量Jm、阻尼係數Bm、阻尼係數Ct及剛性K所組成之群組;S005:重複紀錄前述之鑑別方法中,每一時點之變動值,並於所述變動值之變化量大於該閥值時診斷該工具驅動系統1已老化。 When the machine is aging, the machine is usually more prone to vibration, bandwidth changes, and system response changes. Therefore, the change of the parameters in the aforementioned identification method can be used to diagnose whether the machine is aging. The steps are as follows : S004: Define a variation value and a threshold value. The variation value is selected from at least one of the bandwidth BW, the first resonance frequency F r , the moment of inertia J m , the damping coefficient B m , the damping coefficient C t and Group consisting of rigidity K; S005: Repeatedly record the variation value at each time point in the aforementioned identification method, and diagnose that the tool drive system 1 is aging when the variation value of the variation value is greater than the threshold.

在一具體之實施例中,如第12a至12c圖所示,其分別為馬達131阻尼係數Bm變異、導桿132阻尼係數Ct變異及導桿132剛性K變異之系統響應,藉可觀察到當馬達131阻尼係數Bm變異對應到系統響應變差;當導桿132阻尼係數Ct變異對應到系統共振峰值變大;當導桿132剛性K變異對應到系統共振頻變小和共振峰值變大,因此可以透過鑑別參數的變異來判定機台老化。 In a specific embodiment, as shown in Figures 12a to 12c, they are the system response of the variation of the damping coefficient B m of the motor 131, the variation of the damping coefficient C t of the guide rod 132, and the variation of the stiffness K of the guide rod 132, which can be observed When the variation of the damping coefficient B m of the motor 131 corresponds to the deterioration of the system response; when the variation of the damping coefficient C t of the guide rod 132 corresponds to the increase of the system resonance peak; when the variation of the stiffness K of the guide rod 132 corresponds to the decrease of the system resonance frequency and the resonance peak It becomes larger, so the aging of the machine can be judged by identifying the variation of the parameters.

此外,從頻域訊號可以觀察到頻寬、共振頻與共振峰值的改變,另外,從時域訊號可以觀察到輪廓誤差與追蹤誤差變差;故在一具體之實施例中,係將該變動值包含剛性K、速度迴路及位置迴路頻率響應之頻寬BW及第一共振頻率Fr,且設定該閥值為-20%;藉以於剛性K、頻寬BW及第一共振頻率Fr同時下降20%時,則判斷其已老化,建議進行調機或維護。 In addition, the changes in bandwidth, resonance frequency, and resonance peak can be observed from the frequency domain signal. In addition, the profile error and tracking error deterioration can be observed from the time domain signal; therefore, in a specific embodiment, the change is The value includes the rigid K, the bandwidth BW of the frequency response of the speed loop and the position loop, and the first resonant frequency F r , and the threshold is set to -20%; so that the rigid K, the bandwidth BW and the first resonant frequency F r are simultaneously When it drops by 20%, it is judged to be aging and it is recommended to adjust or maintain the machine.

在另一實施例中,亦可藉由界定一路徑令該工具驅動系統1運行,如:循圓測試;並記錄並比對該工具驅動系統1運行之軌跡;且透過設定一誤差值;並於該軌跡比對該路徑之誤差大於該誤差值時診斷該工具驅動系統1已老化。 In another embodiment, the tool driving system 1 can also be operated by defining a path, such as a circular test; and recording and comparing the running trajectory of the tool driving system 1; and by setting an error value; and It is diagnosed that the tool driving system 1 is aging when the error of the trajectory compared to the path is greater than the error value.

在另一實施例中,亦可藉由如前述鑑別穩態摩擦力,並於其大於該閥值時診斷該工具驅動系統1已老化。 In another embodiment, it is also possible to identify the steady-state friction force as described above, and diagnose that the tool driving system 1 is aging when it is greater than the threshold.

而當診斷為老化時,可執行前述之伺服調機方法,或進行相關維護,藉以改善老化後之性能及精度。 When it is diagnosed as aging, the aforementioned servo tuning method or related maintenance can be performed to improve the performance and accuracy after aging.

綜上所述,本發明所揭露之技術手段確能有效解決習知等問題,並達致預期之目的與功效,且申請前未見諸於刊物、未曾公開使用且具長遠進步性,誠屬專利法所稱之發明無誤,爰依法提出申請,懇祈 鈞上惠予詳審並賜准發明專利,至感德馨。 In summary, the technical means disclosed in the present invention can indeed effectively solve the problems of the prior art and achieve the expected purpose and effect. It has not been seen in the publications, has not been used publicly, and has long-term progress before the application. The patent law claims that the invention is correct. Yan filed an application in accordance with the law and prayed for the detailed examination and grant of the invention patent.

惟以上所述者,僅為本發明之數種較佳實施例,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 However, the above are only a few preferred embodiments of the present invention, and should not be used to limit the scope of implementation of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the description of the invention are all It should still fall within the scope of the invention patent.

Claims (13)

一種機台老化診斷方法,其步驟包含:(A)輸出一掃頻訊號於一工具驅動系統進行掃頻,藉以激發該工具驅動系統響應,並取得一速度迴路及一位置迴路之頻率響應,並記錄其頻寬BW及第一共振頻率Fr;其中,該工具驅動系統具有至少一伺服控制器,其控制至少一馬達,至少一分別受所述馬達驅動旋轉之導桿,及至少一分別從動於所述導桿之驅動平台;(B)建立一速度迴路轉移函數,該速度迴路轉移函數
Figure 108125676-A0305-02-0029-216
Figure 108125676-A0305-02-0029-130
;其中,Kp、Kvp、Kvi為伺服控制器之參數,Kt為馬達轉矩常數,
Figure 108125676-A0305-02-0029-131
為馬達轉動慣量之演算法估測值,而
Figure 108125676-A0305-02-0029-132
為馬達旋轉運動阻尼係數之演算法估測值;並經演算法運算以鑑別並記錄該工具驅動系統中具有之馬達的轉動慣量Jm及旋轉運動之阻尼係數Bm;(C)建立一位置迴路轉移函數,並將該轉動慣量及旋轉運動之阻尼係數代入該位置迴路轉移函數,並經運算鑑別一導桿之阻尼係數Ct及導桿之剛性K;(D)界定一變動值及一閥值,該變動值係選自至少其一由所述頻寬BW、第一共振頻率Fr、轉動慣量Jm、阻尼係數Bm、阻尼係數Ct及剛性K所組成之群組;(E)重複步驟(A)至步驟(C),並分別記錄所述變動值;且於所述變動值之變化量大於該閥值時診斷該工具驅動系統已老化。
A method for diagnosing machine aging. The steps include: (A) outputting a frequency sweep signal in a tool driving system for frequency scanning, so as to stimulate the tool driving system to respond, and obtain the frequency response of a speed loop and a position loop, and record Its bandwidth BW and first resonance frequency F r ; wherein, the tool driving system has at least one servo controller, which controls at least one motor, at least one guide rod that is driven to rotate by the motor, and at least one respectively driven On the driving platform of the guide rod; (B) establish a speed loop transfer function, the speed loop transfer function
Figure 108125676-A0305-02-0029-216
for
Figure 108125676-A0305-02-0029-130
; Among them, K p , K vp , K vi are the parameters of the servo controller, K t is the motor torque constant,
Figure 108125676-A0305-02-0029-131
Is the estimated value of the motor's moment of inertia by the algorithm, and
Figure 108125676-A0305-02-0029-132
It is the algorithmic estimated value of the damping coefficient of the motor's rotational motion; and the algorithmic operation is used to identify and record the moment of inertia J m of the motor and the damping coefficient B m of the rotational motion in the tool drive system; (C) establish a position Loop transfer function, and substitute the rotational inertia and the damping coefficient of the rotational motion into the position loop transfer function, and the damping coefficient C t of a guide rod and the stiffness K of the guide rod are identified by calculation; (D) define a variable value and a Threshold, the variation value is selected from at least one group consisting of the bandwidth BW, the first resonance frequency F r , the moment of inertia J m , the damping coefficient B m , the damping coefficient C t and the rigidity K; E) Repeat steps (A) to (C), and record the variation values respectively; and diagnose that the tool driving system is aging when the variation of the variation value is greater than the threshold value.
如請求項1所述之機台老化診斷方法,其中,該演算法為PSO(粒子群優化)演算法,且界定優化問題為
Figure 108125676-A0305-02-0029-134
; 並限制
Figure 108125676-A0305-02-0030-135
,
Figure 108125676-A0305-02-0030-136
>0;其中,G v ( i )| dB 及∠G v ( i )| dB 為速度迴路之頻率響應,
Figure 108125676-A0305-02-0030-154
Figure 108125676-A0305-02-0030-155
為速度迴路之頻率響應之演算法估測值,Nv為速度迴路之頻率響應數據之長度、w v1w v2分別為速度迴路之頻率響應的大小及相位權重值。
The machine aging diagnosis method according to claim 1, wherein the algorithm is a PSO (particle swarm optimization) algorithm, and the optimization problem is defined as
Figure 108125676-A0305-02-0029-134
; And limit
Figure 108125676-A0305-02-0030-135
,
Figure 108125676-A0305-02-0030-136
>0; where G v ( i )| dB and ∠ G v ( i )| dB are the frequency response of the speed loop,
Figure 108125676-A0305-02-0030-154
and
Figure 108125676-A0305-02-0030-155
Is the algorithmic estimation value of the frequency response of the speed loop, N v is the length of the frequency response data of the speed loop, w v 1 and w v 2 are the magnitude and phase weight value of the frequency response of the speed loop, respectively.
如請求項1所述之機台老化診斷方法,其中,該工具驅動系統之所述馬達、導桿及驅動平台係呈線性軸設置,且該線性軸之位置迴路轉移函數
Figure 108125676-A0305-02-0030-156
Figure 108125676-A0305-02-0030-157
;其中,
Figure 108125676-A0305-02-0030-158
,
Figure 108125676-A0305-02-0030-159
,
Figure 108125676-A0305-02-0030-160
,
Figure 108125676-A0305-02-0030-161
Figure 108125676-A0305-02-0030-162
且其係經演算法計算以鑑別該驅動平台之質量Mt、導桿之阻尼係數Ct及導桿之剛性K,其中,
Figure 108125676-A0305-02-0030-163
為該驅動平台質量之演算法估測值,
Figure 108125676-A0305-02-0030-164
為導桿阻尼係數之演算法估測值,
Figure 108125676-A0305-02-0030-165
為導桿之剛性之演算法估測值。
The machine aging diagnosis method according to claim 1, wherein the motor, the guide rod and the driving platform of the tool driving system are arranged in a linear axis, and the position loop transfer function of the linear axis
Figure 108125676-A0305-02-0030-156
for
Figure 108125676-A0305-02-0030-157
;among them,
Figure 108125676-A0305-02-0030-158
,
Figure 108125676-A0305-02-0030-159
,
Figure 108125676-A0305-02-0030-160
,
Figure 108125676-A0305-02-0030-161
Figure 108125676-A0305-02-0030-162
And it is calculated by an algorithm to identify the mass M t of the drive platform, the damping coefficient C t of the guide rod and the rigidity K of the guide rod, among which,
Figure 108125676-A0305-02-0030-163
Is the estimated value of the algorithm for the quality of the driving platform,
Figure 108125676-A0305-02-0030-164
Is the calculated value of the guide rod damping coefficient,
Figure 108125676-A0305-02-0030-165
It is the estimated value of the rigidity of the guide rod by the algorithm.
如請求項1所述之機台老化診斷方法,其中,該工具驅動系統之所述導桿係接設於所述驅動平台一端,藉以令所述驅動平台繞所述導桿進行旋轉運動,藉以形成搖床之旋轉軸A之設置,且該旋轉軸A之位置迴路轉移函數
Figure 108125676-A0305-02-0030-166
Figure 108125676-A0305-02-0030-167
且其係經演算法計算以鑑別該驅動平台質量Mt
The machine aging diagnosis method according to claim 1, wherein the guide rod of the tool driving system is connected to one end of the driving platform, so that the driving platform rotates around the guide rod, thereby Form the setting of the rotary axis A of the shaker, and the position loop transfer function of the rotary axis A
Figure 108125676-A0305-02-0030-166
for
Figure 108125676-A0305-02-0030-167
And it is calculated by an algorithm to identify the quality of the driving platform M t .
如請求項1所述之機台老化診斷方法,其中,該工具驅動系統之所述導桿係接設於所述驅動平台中心,藉以令所述驅動平台以所述導桿為旋轉軸C而進行旋轉,且該旋轉軸C之位置迴路轉移函數
Figure 108125676-A0305-02-0031-168
Figure 108125676-A0305-02-0031-217
且其係經演算法計算以鑑別該轉動慣量JM及阻尼係數BM
The machine aging diagnosis method according to claim 1, wherein the guide rod of the tool driving system is connected to the center of the driving platform, so that the driving platform uses the guide rod as the rotation axis C Rotate, and the position loop transfer function of the rotation axis C
Figure 108125676-A0305-02-0031-168
for
Figure 108125676-A0305-02-0031-217
And it is calculated by an algorithm to identify the moment of inertia J M and the damping coefficient B M.
如請求項3所述之機台老化診斷方法,其中,該演算法為PSO(粒子群優化)演算法,且界定優化問題為
Figure 108125676-A0305-02-0031-170
限制
Figure 108125676-A0305-02-0031-171
,
Figure 108125676-A0305-02-0031-172
,
Figure 108125676-A0305-02-0031-173
>0;以及
Figure 108125676-A0305-02-0031-175
限制
Figure 108125676-A0305-02-0031-176
,
Figure 108125676-A0305-02-0031-177
,
Figure 108125676-A0305-02-0031-178
>0;其中,G p ( i )| dB 及∠G p ( i )為位置迴路之頻率響應,
Figure 108125676-A0305-02-0031-179
Figure 108125676-A0305-02-0031-180
為位置迴路之頻率響應之演算法估測值,Np為位置迴路之頻率響應數據長度、wp1及wp2分別為位置迴路的頻率響應之大小及相位權重值。
The machine aging diagnosis method according to claim 3, wherein the algorithm is a PSO (Particle Swarm Optimization) algorithm, and the optimization problem is defined as
Figure 108125676-A0305-02-0031-170
limit
Figure 108125676-A0305-02-0031-171
,
Figure 108125676-A0305-02-0031-172
,
Figure 108125676-A0305-02-0031-173
>0; and
Figure 108125676-A0305-02-0031-175
limit
Figure 108125676-A0305-02-0031-176
,
Figure 108125676-A0305-02-0031-177
,
Figure 108125676-A0305-02-0031-178
>0; where G p ( i )| dB and ∠ G p ( i ) are the frequency response of the position loop,
Figure 108125676-A0305-02-0031-179
and
Figure 108125676-A0305-02-0031-180
Is the algorithmic estimation value of the frequency response of the position loop, N p is the data length of the frequency response of the position loop, w p1 and w p2 are the magnitude and phase weight value of the frequency response of the position loop, respectively.
如請求項1至請求項6中任一項所述之機台老化診斷方法,其中,該變動值包含剛性K、速度迴路及位置迴路頻率響應之頻寬BW及第一共振頻率FrThe machine aging diagnosis method according to any one of claim 1 to claim 6, wherein the variable value includes the rigidity K, the frequency bandwidth BW of the speed loop and the position loop frequency response, and the first resonance frequency F r . 如請求項7所述之機台老化診斷方法,其中,該閥值為-20%。 The machine aging diagnosis method according to claim 7, wherein the threshold value is -20%. 如請求項1至請求項6中任一項所述之機台老化診斷方法,其步驟更包含:(F)界定一路徑令該工具驅動系統運行;(G)記錄並比對該工具驅動系統運行之軌跡;以及(H)設定一誤差值;並於該軌跡比對該路徑之誤差大於該誤差值時診斷該工具驅動系統已老化。 For the machine aging diagnosis method described in any one of claim 1 to claim 6, the steps further include: (F) define a path for the tool drive system to run; (G) record and compare the tool drive system The running track; and (H) set an error value; and diagnose that the tool driving system is aging when the error of the track compared to the path is greater than the error value. 如請求項1至請求項6中任一項所述之機台老化診斷方法,其步驟更包含:(I)設定一路徑供該工具驅動系統進行變體速度運行;(J)擷取所述伺服控制器生成命令至所述馬達之電流數據以及對應之速度數據;(K)建立一穩態摩擦力函數,並經演算法鑑別正轉時之黏滯摩擦係數f a 、負轉時之黏滯摩擦係數f b 、黏滯摩擦之初始係數f d及靜摩擦係數f h ,且該變動值包含該穩態摩擦力,並於該穩態摩擦力大於該閥值時診斷該工具驅動系統已老化。 According to the method for diagnosing machine aging according to any one of claim 1 to claim 6, the steps further include: (I) setting a path for the tool drive system to perform variant speed operation; (J) capturing the said The servo controller generates commands to the current data of the motor and the corresponding speed data; (K) establishes a steady-state friction force function, and uses an algorithm to identify the viscous friction coefficient f a during forward rotation and the viscosity during negative rotation The coefficient of hysteretic friction f b , the initial coefficient of viscous friction f d and the coefficient of static friction f h , and the variable value includes the steady-state friction force. When the steady-state friction force is greater than the threshold value, it is diagnosed that the tool drive system is aging . 如請求項10所述之機台老化診斷方法,其中,該穩態摩擦力函數Fss,new
Figure 108125676-A0305-02-0032-181
;其中,v為該工具驅動系統之速度,dv為受靜摩擦影響之低速範圍;透過演算法計算以鑑別該正轉時之黏滯摩擦係數f a 、負轉時之黏滯摩擦係數f b 、黏滯摩擦之初始係數f d及靜摩擦係數f h
The machine aging diagnosis method according to claim 10, wherein the steady-state friction function F ss,new is
Figure 108125676-A0305-02-0032-181
; Wherein, v for the speed of the tool drive system, dv is the low speed range is limited by the influence of static friction; Based upon identification of the stick forward stagnation algorithmically friction coefficient f a, the negative rotation of the lag time of sticky friction coefficient f b, The initial coefficient of viscous friction f d and the coefficient of static friction f h .
如請求項11所述之系統鑑別方法,其中,該演算法為PSO(粒子群優化)演算法,且界定優化問題之目標函數Enew
Figure 108125676-A0305-02-0033-182
subject to
Figure 108125676-A0305-02-0033-183
,
Figure 108125676-A0305-02-0033-184
,
Figure 108125676-A0305-02-0033-188
,
Figure 108125676-A0305-02-0033-190
,and dv>0
Figure 108125676-A0305-02-0033-221
-
Figure 108125676-A0305-02-0033-222
>0;其中,w 1,及w 2為誤差權重,
Figure 108125676-A0305-02-0033-194
為工具驅動系統速度之演算法估測值,
Figure 108125676-A0305-02-0033-195
為正轉時之黏滯摩擦係數之演算法估測值,
Figure 108125676-A0305-02-0033-196
為負轉時之黏滯摩擦係數之演算法估測值,
Figure 108125676-A0305-02-0033-197
為黏滯摩擦初始係數之演算法估測值,
Figure 108125676-A0305-02-0033-198
為靜摩擦係數之演算法估測值。
The system identification method according to claim 11, wherein the algorithm is a PSO (particle swarm optimization) algorithm, and the objective function E new that defines the optimization problem is
Figure 108125676-A0305-02-0033-182
subject to
Figure 108125676-A0305-02-0033-183
,
Figure 108125676-A0305-02-0033-184
,
Figure 108125676-A0305-02-0033-188
,
Figure 108125676-A0305-02-0033-190
,and dv >0
Figure 108125676-A0305-02-0033-221
-
Figure 108125676-A0305-02-0033-222
>0; where w 1 and w 2 are error weights,
Figure 108125676-A0305-02-0033-194
Is the estimated value of the algorithm for the speed of the tool drive system,
Figure 108125676-A0305-02-0033-195
Is the calculated value of the viscous friction coefficient during forward rotation,
Figure 108125676-A0305-02-0033-196
Is the calculated value of the viscous friction coefficient at the time of negative rotation,
Figure 108125676-A0305-02-0033-197
Is the estimated value of the algorithm for the initial coefficient of viscous friction,
Figure 108125676-A0305-02-0033-198
It is the calculated value of static friction coefficient.
如請求項10所述之機台老化診斷方法,其中,該閥值為20%。 The machine aging diagnosis method according to claim 10, wherein the threshold value is 20%.
TW108125676A 2019-07-19 2019-07-19 The diagnosis method of machine ageing TWI724467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108125676A TWI724467B (en) 2019-07-19 2019-07-19 The diagnosis method of machine ageing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108125676A TWI724467B (en) 2019-07-19 2019-07-19 The diagnosis method of machine ageing

Publications (2)

Publication Number Publication Date
TW202105104A TW202105104A (en) 2021-02-01
TWI724467B true TWI724467B (en) 2021-04-11

Family

ID=75745367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125676A TWI724467B (en) 2019-07-19 2019-07-19 The diagnosis method of machine ageing

Country Status (1)

Country Link
TW (1) TWI724467B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011918A2 (en) * 2008-07-24 2010-01-28 University Of Cincinnati Methods for prognosing mechanical systems
WO2013096909A2 (en) * 2011-12-21 2013-06-27 Deka Products Limited Partnership System, method, and apparatus for infusing fluid
CN103776901A (en) * 2013-12-30 2014-05-07 西安交通大学 Visco-elastic interlayer structure aging state identification method based on vibration response message
TWI514497B (en) * 2012-09-04 2015-12-21 Taiwan Semiconductor Mfg Co Ltd Qualitative fault detection and classification system for tool condition monitoring and associated methods
WO2016109161A1 (en) * 2014-12-30 2016-07-07 Qualcomm Incorporated Systems, methods, and apparatus for detecting foreign objects
TW201835722A (en) * 2017-03-24 2018-10-01 國立成功大學 System and method for machine tool maintenance and repair
WO2019118060A1 (en) * 2017-12-13 2019-06-20 Medtronic Minimed, Inc. Methods and systems for continuous glucose monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011918A2 (en) * 2008-07-24 2010-01-28 University Of Cincinnati Methods for prognosing mechanical systems
WO2013096909A2 (en) * 2011-12-21 2013-06-27 Deka Products Limited Partnership System, method, and apparatus for infusing fluid
TWI514497B (en) * 2012-09-04 2015-12-21 Taiwan Semiconductor Mfg Co Ltd Qualitative fault detection and classification system for tool condition monitoring and associated methods
CN103776901A (en) * 2013-12-30 2014-05-07 西安交通大学 Visco-elastic interlayer structure aging state identification method based on vibration response message
WO2016109161A1 (en) * 2014-12-30 2016-07-07 Qualcomm Incorporated Systems, methods, and apparatus for detecting foreign objects
TW201835722A (en) * 2017-03-24 2018-10-01 國立成功大學 System and method for machine tool maintenance and repair
WO2019118060A1 (en) * 2017-12-13 2019-06-20 Medtronic Minimed, Inc. Methods and systems for continuous glucose monitoring

Also Published As

Publication number Publication date
TW202105104A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
Zanotto et al. Experimental validation of minimum time-jerk algorithms for industrial robots
JP6774637B2 (en) Control device and control method
US10824121B2 (en) Machine learning device, servo motor controller, servo motor control system, and machine learning method
CN110460277A (en) Single motor servo system friction non-linear compensation method based on particle swarm algorithm
JP6499720B2 (en) Machine learning device, servo control device, servo control system, and machine learning method
Lin et al. An adaptive recurrent-neural-network motion controller for XY table in CNC machine
TWI649648B (en) Processing machine thermal compensation control system and method thereof
CN106873383B (en) Online control method for reducing vibration of industrial robot
TWI719544B (en) The method of system identification and servo tuning
CN110875703B (en) Machine learning device, control system, and machine learning method
CN108983595B (en) Automatic setting method for parameters of feedforward controller
Chang et al. Big data analysis of a mini three-axis CNC machine tool based on the tuning operation of controller parameters
TWI724467B (en) The diagnosis method of machine ageing
CN107678276A (en) A kind of adaptive composite control method based on turning table control
CN105892294B (en) A kind of servo system control Parameters design of parallel architecture main tapping
CN115042209A (en) Robot joint module servo controller with digital twin model
CN115422698A (en) Servo drive variable-period online inertia identification method
Khairudin et al. The characteristics of TB6600 motor driver in producing optimal movement for the Nema23 stepper motor on CNC machine
CN111722530B (en) Machine learning device, control system, and machine learning method
CN111152213B (en) Mechanical arm vibration compensation method and device based on hybrid control
CN110888398B (en) Control device, CNC device and control method
JP2006277652A (en) Servo gain computing method, program and device
WO2022030346A1 (en) Control assistance device, control system, and control assistance method
CN113126538B (en) Electronic apparatus and control method thereof
Wang et al. Thermal error modeling and compensation of long-travel nanopositioning stage