CN110460277A - Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization - Google Patents

Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization Download PDF

Info

Publication number
CN110460277A
CN110460277A CN201910661720.5A CN201910661720A CN110460277A CN 110460277 A CN110460277 A CN 110460277A CN 201910661720 A CN201910661720 A CN 201910661720A CN 110460277 A CN110460277 A CN 110460277A
Authority
CN
China
Prior art keywords
friction
motor
particle
stribeck
servo system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910661720.5A
Other languages
Chinese (zh)
Inventor
吴益飞
张翠艳
刘洋
郭健
陈庆伟
高熠
李胜
宋恺
高珺宁
靳懿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910661720.5A priority Critical patent/CN110460277A/en
Publication of CN110460277A publication Critical patent/CN110460277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,包括以下过程:离线获取单电机伺服系统的转速与摩擦力矩数据;根据离线获得的转速与摩擦力矩数据,利用粒子群算法对Stribeck摩擦模型进行参数辨识,获得辨识后的Stribeck摩擦模型;在线运行单电机伺服系统,根据辨识后的Stribeck摩擦模型实时获取摩擦力矩,并将摩擦力矩通过前馈系数补偿至电流信号,构建基于Stribeck摩擦模型的前馈补偿结构,利用该结构即可实现单电机伺服系统摩擦非线性补偿。本发明方法提高了电机伺服系统在跟踪正弦信号时的跟踪精度,能有效解决由于摩擦非线性导致系统存在静态跟踪误差的问题,整体方法简单,方便应用。

The invention discloses a friction nonlinear compensation method for a single-motor servo system based on a particle swarm algorithm, which includes the following process: obtaining the speed and friction torque data of the single-motor servo system off-line; according to the speed and friction torque data obtained off-line, using particle The group algorithm is used to identify the parameters of the Stribeck friction model to obtain the identified Stribeck friction model; run the single-motor servo system online, obtain the friction torque in real time according to the identified Stribeck friction model, and compensate the friction torque to the current signal through the feedforward coefficient. A feed-forward compensation structure based on the Stribeck friction model is constructed, and the friction nonlinear compensation of the single-motor servo system can be realized by using this structure. The method of the invention improves the tracking accuracy of the motor servo system when tracking sinusoidal signals, can effectively solve the problem of static tracking errors in the system due to non-linear friction, and the overall method is simple and convenient for application.

Description

基于粒子群算法的单电机伺服系统摩擦非线性补偿方法Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization

技术领域technical field

本发明涉及电机控制领域,特别涉及一种基于粒子群算法的单电机伺服系统摩擦非线性补偿方法。The invention relates to the field of motor control, in particular to a friction nonlinear compensation method for a single motor servo system based on particle swarm algorithm.

背景技术Background technique

在电机伺服系统中,由于传动装置存在的一些固有机械特性,系统常常会显现出摩擦非线性的状况。对于伺服系统而言,摩擦非线性对系统的动态性能和稳态精度都会产生一定的影响。并且对于一些高精度伺服系统而言,摩擦非线性造成的影响将会更大。In the motor servo system, due to some inherent mechanical characteristics of the transmission device, the system often exhibits friction nonlinearity. For the servo system, friction nonlinearity will have a certain influence on the dynamic performance and steady-state accuracy of the system. And for some high-precision servo systems, the impact caused by friction nonlinearity will be even greater.

摩擦非线性因素主要是由于轴承部件之间或是两个有接触面的零部件之间产生了相对运动而造成的。摩擦模型可以分为两大类:静态模型和动态模型。The non-linear factor of friction is mainly caused by relative motion between bearing components or between two parts with contact surfaces. Friction models can be divided into two categories: static models and dynamic models.

在伺服系统中,摩擦非线性会对系统控制性能造成很大影响。摩擦会增加系统的静差,在低速换向运动时会造成系统抖动。为了降低摩擦非线性对系统的影响,许多关于摩擦非线性的补偿算法被提出。In a servo system, the friction nonlinearity will have a great influence on the control performance of the system. Friction will increase the static difference of the system and cause system jitter during low-speed reversing movements. In order to reduce the impact of friction nonlinearity on the system, many compensation algorithms for friction nonlinearity have been proposed.

现有的摩擦补偿主要有两种方法:一种方法是只考虑摩擦的线性部分,也就是只补偿库仑摩擦力和粘性摩擦力;另一种方法是将摩擦当作外部扰动处理,用扰动观测器估计补偿。随着控制精度要求的提高,这两种方法都很难达到满意的效果。前一种方法没有考虑静摩擦力的影响,论文“On the modeling of coulomb frinction”中提到的库仑摩擦模型是理想状态下的时延模型,没有描述零速度时刻的摩擦力矩大小,且认为摩擦力大小和速度大小无关;后一种方法的局限性在于扰动观测器基于线性系统理论,论文“摩擦非线性环节的特性、建模与控制补偿综述”实现了基于线性理论的扰动观测器,但难以有效的估计出精确的摩擦力矩。There are two main methods for existing friction compensation: one method is to only consider the linear part of the friction, that is, to only compensate Coulomb friction and viscous friction; the other method is to treat friction as an external disturbance and use the disturbance observation tor estimate compensation. With the improvement of control precision requirements, it is difficult for these two methods to achieve satisfactory results. The former method does not consider the influence of static friction. The Coulomb friction model mentioned in the paper "On the modeling of coulomb frinction" is a time-delay model in an ideal state. It does not describe the friction torque at zero speed, and it is considered that the friction The size and speed have nothing to do; the limitation of the latter method is that the disturbance observer is based on the linear system theory. Effectively estimate the precise friction torque.

发明内容Contents of the invention

本发明的目的在于提供一种基于粒子群算法的单电机伺服系统摩擦非线性补偿方法。The purpose of the present invention is to provide a friction nonlinear compensation method for a single-motor servo system based on particle swarm algorithm.

实现本发明目的的技术方案为:基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,包括以下步骤:The technical solution for realizing the object of the present invention is: a friction nonlinear compensation method for a single-motor servo system based on particle swarm algorithm, comprising the following steps:

步骤1、离线获取单电机伺服系统的转速与摩擦力矩数据;Step 1. Obtain the speed and friction torque data of the single-motor servo system offline;

步骤2、根据离线获得的转速与摩擦力矩数据,利用粒子群算法对Stribeck摩擦模型进行参数辨识,获得辨识后的Stribeck摩擦模型;Step 2. According to the rotational speed and friction torque data obtained off-line, use the particle swarm algorithm to identify the parameters of the Stribeck friction model, and obtain the identified Stribeck friction model;

步骤3、在线运行单电机伺服系统,根据辨识后的Stribeck摩擦模型实时获取摩擦力矩,并将摩擦力矩通过前馈系数补偿至电流信号,构建基于Stribeck摩擦模型的前馈补偿结构,利用该结构即可实现单电机伺服系统摩擦非线性补偿。Step 3. Run the single-motor servo system online, obtain the friction torque in real time according to the identified Stribeck friction model, and compensate the friction torque to the current signal through the feed-forward coefficient, and construct a feed-forward compensation structure based on the Stribeck friction model. Using this structure, It can realize friction nonlinear compensation of single motor servo system.

本发明与现有技术相比,其显著优点为:1)采用Stribeck摩擦模型,能很好的反映预滑动位移、摩擦滞后、变化的临界摩擦力和粘性滑动等摩擦非线性特性,提高非线性补偿的可靠性;2)采用Stribeck摩擦模型能克服由摩擦非线性引起的爬行运动和极限环现象,提高非线性补偿的可靠性;3)采用粒子群算法对系统的Stribeck摩擦模型进行参数辨识,辨识精度更高,进而提高补偿效果;4)提高电机伺服系统在跟踪正弦信号时的跟踪精度,有效解决由于摩擦非线性导致系统存在静态跟踪误差的问题;5)方法简单,方便应用。Compared with the prior art, the present invention has the remarkable advantages as follows: 1) the Stribeck friction model is adopted, which can well reflect the non-linear characteristics of friction such as pre-sliding displacement, friction hysteresis, changing critical friction force and viscous sliding, and improve the non-linear Reliability of compensation; 2) Using the Stribeck friction model can overcome the crawling motion and limit cycle phenomenon caused by friction nonlinearity, and improve the reliability of nonlinear compensation; 3) Use the particle swarm algorithm to identify the parameters of the Stribeck friction model of the system, The identification accuracy is higher, and then the compensation effect is improved; 4) The tracking accuracy of the motor servo system is improved when tracking the sinusoidal signal, and the problem of static tracking error in the system due to friction nonlinearity is effectively solved; 5) The method is simple and convenient for application.

附图说明Description of drawings

图1为本发明基于粒子群算法的单电机伺服系统摩擦非线性补偿结构图。Fig. 1 is a structural diagram of the present invention based on the particle swarm algorithm for friction nonlinear compensation of a single-motor servo system.

图2为本发明粒子群算法的实现原理流程图。Fig. 2 is a flowchart of the realization principle of the particle swarm optimization algorithm of the present invention.

图3为本发明单电机伺服系统控制系统简化框图。Fig. 3 is a simplified block diagram of the control system of the single-motor servo system of the present invention.

图4为本发明实施例中实际测量的转速与摩擦力矩曲线图。Fig. 4 is a curve diagram of actually measured rotation speed and friction torque in the embodiment of the present invention.

图5为本发明实施例中不含摩擦补偿的位置误差曲线图。FIG. 5 is a graph of position error without friction compensation in an embodiment of the present invention.

图6为本发明实施例中含摩擦补偿的位置误差曲线图。FIG. 6 is a graph of position error including friction compensation in an embodiment of the present invention.

具体实施方式Detailed ways

本发明基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,包括以下步骤:The friction nonlinear compensation method of single motor servo system based on particle swarm algorithm in the present invention comprises the following steps:

步骤1、离线获取单电机伺服系统的转速与摩擦力矩数据;Step 1. Obtain the speed and friction torque data of the single-motor servo system offline;

步骤2、根据离线获得的转速与摩擦力矩数据,利用粒子群算法对Stribeck摩擦模型进行参数辨识,获得辨识后的Stribeck摩擦模型;Step 2. According to the rotational speed and friction torque data obtained off-line, use the particle swarm algorithm to identify the parameters of the Stribeck friction model, and obtain the identified Stribeck friction model;

步骤3、在线运行单电机伺服系统,根据辨识后的Stribeck摩擦模型实时获取摩擦力矩,并将摩擦力矩通过前馈系数补偿至电流信号,构建基于Stribeck摩擦模型的前馈补偿结构,利用该结构即可实现单电机伺服系统摩擦非线性补偿。图1所示为基于粒子群算法的单电机伺服系统摩擦非线性补偿结构图。Step 3. Run the single-motor servo system online, obtain the friction torque in real time according to the identified Stribeck friction model, and compensate the friction torque to the current signal through the feed-forward coefficient, and construct a feed-forward compensation structure based on the Stribeck friction model. Using this structure, It can realize friction nonlinear compensation of single motor servo system. Figure 1 shows the structure diagram of friction nonlinear compensation of single motor servo system based on particle swarm optimization algorithm.

进一步地,步骤1离线获取单电机伺服系统的转速与摩擦力矩数据,具体为:Further, step 1 obtains the speed and friction torque data of the single-motor servo system offline, specifically:

步骤1-1、在离线情况下,控制电机跟踪恒定转速vm,测量速度控制器的输出,获得电流值IqStep 1-1. In the offline situation, control the motor to track a constant speed v m , measure the output of the speed controller, and obtain the current value I q ;

步骤1-2、根据Iq获取当前时刻摩擦力矩F:Step 1-2. Obtain the friction torque F at the current moment according to I q :

F=CtIq F=C t I q

式中,Ct为电机转矩系数;In the formula, C t is the motor torque coefficient;

由此获得转速vm与摩擦力矩F的数据。The data of the rotational speed v m and the friction torque F are thus obtained.

进一步地,步骤2利用粒子群算法对Stribeck摩擦模型进行参数辨识,获得辨识后的Stribeck摩擦模型,结合图2,具体为:Further, step 2 uses the particle swarm algorithm to identify the parameters of the Stribeck friction model, and obtains the identified Stribeck friction model. Combined with Figure 2, the details are as follows:

Stribeck摩擦模型为:The Stribeck friction model is:

其中,in,

式中,F为摩擦力,v为相对运动速度,Fc为库仑力,Fs为最大静摩擦力,vs为Stribeck速度,B为粘滞摩擦系数,δs为经验参数;In the formula, F is the friction force, v is the relative motion velocity, F c is the Coulomb force, F s is the maximum static friction force, v s is the Stribeck velocity, B is the viscous friction coefficient, and δ s is an empirical parameter;

步骤2-1、设定粒子的种群规模为n,学习因子c1、c2,参数运动范围为[s1,s2]、最大迭代次数M,并随机初始化粒子的位置向量为以及速度向量速度范围为[v1,v2];Step 2-1. Set the population size of particles as n, learning factors c 1 and c 2 , parameter movement range as [s 1 , s 2 ], maximum number of iterations M, and randomly initialize the position vector of particles as and the velocity vector The speed range is [v 1 ,v 2 ];

步骤2-2、根据粒子的初始位置计算粒子的适应值f(xi),并以适应值最优的粒子的位置向量初始化种群的最优位置;Step 2-2. Calculate the fitness value f( xi ) of the particle according to the initial position of the particle, and initialize the optimal position of the population with the position vector of the particle with the best fitness value;

步骤2-3、选取惯性算法因子ω,更新粒子的速度和位置向量,产生新的种群,并判断粒子的位置和速度是否越界即是否超出所述参数运动范围,若超出将舍弃该粒子信息;Step 2-3, select the inertia algorithm factor ω, update the velocity and position vector of the particle, generate a new population, and judge whether the position and velocity of the particle are out of bounds, that is, whether it exceeds the range of motion of the parameter, and if it exceeds, the particle information will be discarded;

其中,粒子的更新公式为:Among them, the particle update formula is:

vid=ωvid+c1s1(pid-xid)+c2s2(pgd-xid)v id =ωv id +c 1 s 1 (p id -x id )+c 2 s 2 (p gd -x id )

xid=xid+vid x id = x id +v id

式中i=1,2,...,n,d=1,2,...,D,c1、c2为学习因子,vid为粒子的速度,xid为当前粒子的位置,s1、s2为介于(0,1)之间的随机数,pid为粒子i在搜索D维空间的解时搜索到的最优位置,pgd为种群最优位置,惯性算法因子ω采用线性递减的方式;In the formula, i=1,2,...,n, d=1,2,...,D, c 1 and c 2 are the learning factors, v id is the velocity of the particle, x id is the position of the current particle, s 1 and s 2 are random numbers between (0, 1), p id is the optimal position searched by particle i when searching for the solution of D-dimensional space, p gd is the optimal position of the population, and the inertial algorithm factor ω adopts a linear decreasing method;

步骤2-4、将粒子当前的适应值f(xi)与自身历史最优值进行比较,若当前的适应值f(xi)优于历史最优值,则更新自身最优值为f(xi)以及粒子位置;Step 2-4. Compare the particle’s current fitness value f( xi ) with its own historical optimal value. If the current fitness value f( xi ) is better than the historical optimal value, update its own optimal value to f ( xi ) and particle position;

步骤2-5、将粒子当前的适应值f(xi)与种群最优值进行比较,若当前的适应值f(xi)优于种群最优值,则更新种群最优值为f(xi)以及粒子位置;Step 2-5. Compare the current fitness value f( xi ) of the particle with the optimal value of the population. If the current fitness value f( xi ) is better than the optimal value of the population, update the optimal value of the population to f( x i ) and particle position;

步骤2-6、判断迭代次数是否达到最大迭代次数,若是,则结束迭代过程,获得粒子最优解即辨识后的Stribeck摩擦模型的参数根据辨识出的参数即可获得辨识后的Stribeck摩擦模型;若不满足,跳转至步骤2-3。Step 2-6. Determine whether the number of iterations reaches the maximum number of iterations. If so, end the iterative process and obtain the optimal solution of the particle, which is the parameters of the identified Stribeck friction model. According to the identified parameters, the identified Stribeck friction model can be obtained; if not satisfied, skip to step 2-3.

示例性优选地,粒子的种群规模n为80,最大迭代次数M=500;四个参数的参数运动范围[s1,s2]均为(0,1),速度范围[v1,v2]为[-1,1];学习因子c1=1.2、c2=1.8。Exemplarily preferably, the population size n of particles is 80, and the maximum number of iterations M=500; four parameters The motion range [s 1 , s 2 ] of the parameters is (0, 1), and the speed range [v 1 , v 2 ] is [-1, 1]; learning factors c 1 =1.2, c 2 =1.8.

进一步地,步骤3根据辨识后的Stribeck摩擦模型实时获取摩擦力矩,并将摩擦力矩通过前馈系数补偿至电流信号,构建基于Stribeck摩擦模型的前馈补偿结构,具体为:Further, step 3 obtains the friction torque in real time according to the identified Stribeck friction model, and compensates the friction torque to the current signal through the feedforward coefficient to construct a feedforward compensation structure based on the Stribeck friction model, specifically:

步骤3-1、将转速作为输入变量,根据辨识后的Stribeck摩擦模型实时获取摩擦力矩F,并将摩擦力矩F通过前馈系数补偿至电流信号,所用公式为:Step 3-1. Taking the speed as an input variable, the friction torque F is obtained in real time according to the identified Stribeck friction model, and the friction torque F is compensated to the current signal through the feedforward coefficient. The formula used is:

其中,前馈摩擦补偿电流IF(t)=kF×F,kF为摩擦反馈系数,Iq(t)为施加前馈补偿后的电流,为未施加前馈补偿前的电流;Among them, feed-forward friction compensation current I F (t) = k F × F, k F is the friction feedback coefficient, I q (t) is the current after applying feed-forward compensation, is the current before no feed-forward compensation is applied;

步骤3-2、将代入单电机动力学模型获得基于Stribeck摩擦模型的前馈补偿结构的动力学模型为:Step 3-2, will Substituting the single-motor dynamic model to obtain the dynamic model of the feed-forward compensation structure based on the Stribeck friction model is:

其中,单电机动力学模型为:Among them, the single-motor dynamic model is:

式中,Uq(t)为电机在q轴的等效电压;Iq(t)为电机在q轴的等效电流;Rq为电机在q轴的等效电阻;Lq为电机在q轴的等效电感,Ce为电机反电动势系数;θm(t)为电机角度;为电机角速度;为电机角加速度;Ct为电机转矩系数;ks为电机的刚度系数;im为小齿轮与大齿轮之间的减速比;Jm和bm分别为电机的转动惯量和粘性系数;JL和bL为负载的转动惯量和粘性系数;τm为电机与负载之间的弹性力矩;θL(t)为负载角度;为负载角速度;为负载角加速度;TL为负载转矩。In the formula, U q (t) is the equivalent voltage of the motor on the q-axis; I q (t) is the equivalent current of the motor on the q-axis; R q is the equivalent resistance of the motor on the q-axis; L q is the motor on the q-axis The equivalent inductance of the q-axis, C e is the back electromotive force coefficient of the motor; θ m (t) is the angle of the motor; is the angular velocity of the motor; is the angular acceleration of the motor; C t is the torque coefficient of the motor; k s is the stiffness coefficient of the motor; i m is the reduction ratio between the pinion and the gear; J m and b m are the moment of inertia and viscosity coefficient of the motor, respectively; J L and b L are the moment of inertia and viscosity coefficient of the load; τ m is the elastic moment between the motor and the load; θ L (t) is the load angle; is the load angular velocity; is the load angular acceleration; T L is the load torque.

下面结合实施例对本发明作进一步详细的描述。Below in conjunction with embodiment the present invention is described in further detail.

实施例Example

根据单电机伺服系统的Stribeck摩擦模型可知需要辨识的参数为在离线情况下,将一组恒定转速作为输入指令输入到单电机伺服系统中,系统中的速度控制器采用PI控制器,选择输入速度区间为-1rad/s~1rad/s,采样周期为0.03rad/s,获得一组摩擦力矩值,如图4所示。According to the Stribeck friction model of the single-motor servo system, the parameters to be identified are In the offline situation, a set of constant speed is input into the single-motor servo system as an input command. The speed controller in the system adopts a PI controller, and the input speed range is selected to be -1rad/s~1rad/s, and the sampling period is 0.03 rad/s to obtain a set of friction torque values, as shown in Figure 4.

初始化粒子群的各项参数为粒子的种群规模n为80;最大迭代次数M=500;四个参数参数运动范围[s1,s2]均为(0,1),速度范围[v1,v2]为[-1,1];学习因子c1=1.2、c2=1.8,通过粒子群算法离线辨识Stribeck摩擦模型结果如下表1所示:The parameters of initializing the particle swarm are the particle population size n is 80; the maximum number of iterations M=500; four parameters Parameter motion range [s 1 , s 2 ] is (0, 1), speed range [v 1 , v 2 ] is [-1, 1]; learning factors c 1 = 1.2, c 2 = 1.8, through particle swarm The results of the offline identification of the Stribeck friction model by the algorithm are shown in Table 1 below:

表1辨识Stribeck摩擦模型结果Table 1 Identification results of Stribeck friction model

由表1可知,通过粒子群算法辨识得到的Stribeck摩擦模型误差小,模型辨识精确。It can be seen from Table 1 that the Stribeck friction model identified by particle swarm optimization algorithm has small error and accurate model identification.

获得辨识后的Stribeck摩擦模型后,将其添加到单电机系统中,系统中的电流环PI控制器为P=17.90,I=0.009;速度环PI控制器的参数为P=0.2,I=0.45,位置控制器采用基于特征模型的前馈控制与离散二阶滑模的符合控制器,摩擦补偿系数为kF=0.3。输入60°/s,60°/s2等效正弦信号,在线运行单电机伺服系统,根据辨识后的摩擦模型实时获取摩擦力矩,根据式将实时的摩擦力矩通过前馈系数补偿到电流信号。After obtaining the identified Stribeck friction model, add it to the single motor system, the current loop PI controller in the system is P=17.90, I=0.009; the parameters of the speed loop PI controller are P=0.2, I=0.45 , the position controller adopts the feedforward control based on the characteristic model and the consistent controller of the discrete second-order sliding mode, and the friction compensation coefficient is k F =0.3. Input 60°/s, 60°/s2 equivalent sinusoidal signal, run the single motor servo system online, and obtain the friction torque in real time according to the identified friction model, according to the formula Compensate the real-time friction torque to the current signal through the feed-forward coefficient.

不含摩擦补偿的位置误差曲线、含摩擦补偿的位置误差曲线分别图5和图6所示,由图可知,含摩擦补偿的位置误差明显减小。The position error curves without friction compensation and the position error curves with friction compensation are shown in Figure 5 and Figure 6 respectively. It can be seen from the figure that the position error with friction compensation is significantly reduced.

本发明采用Stribeck摩擦模型能很好克服由摩擦非线性引起的爬行运动和极限环现象,反映多种摩擦非线性特性,且采用粒子群算法对系统的Stribeck摩擦模型进行参数辨识,辨识精度更高,进而提高非线性补偿的精度。此外,本发明方法提高了电机伺服系统在跟踪正弦信号时的跟踪精度,能有效解决由于摩擦非线性导致系统存在静态跟踪误差的问题,整体方法简单,方便应用。The invention uses the Stribeck friction model to well overcome the creeping motion and limit cycle phenomenon caused by non-linear friction, and reflects various non-linear characteristics of friction, and uses the particle swarm algorithm to identify the parameters of the Stribeck friction model of the system, with higher identification accuracy , thereby improving the accuracy of nonlinear compensation. In addition, the method of the invention improves the tracking accuracy of the motor servo system when tracking sinusoidal signals, and can effectively solve the problem of static tracking errors in the system due to non-linear friction. The overall method is simple and convenient for application.

Claims (5)

1.一种基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,其特征在于,包括以下步骤:1. A single motor servo system friction nonlinear compensation method based on particle swarm algorithm, is characterized in that, comprises the following steps: 步骤1、离线获取单电机伺服系统的转速与摩擦力矩数据;Step 1. Obtain the speed and friction torque data of the single-motor servo system offline; 步骤2、根据离线获得的转速与摩擦力矩数据,利用粒子群算法对Stribeck摩擦模型进行参数辨识,获得辨识后的Stribeck摩擦模型;Step 2. According to the rotational speed and friction torque data obtained off-line, use the particle swarm algorithm to identify the parameters of the Stribeck friction model, and obtain the identified Stribeck friction model; 步骤3、在线运行单电机伺服系统,根据辨识后的Stribeck摩擦模型实时获取摩擦力矩,并将摩擦力矩通过前馈系数补偿至电流信号,构建基于Stribeck摩擦模型的前馈补偿结构,利用该结构即可实现单电机伺服系统摩擦非线性补偿。Step 3. Run the single-motor servo system online, obtain the friction torque in real time according to the identified Stribeck friction model, and compensate the friction torque to the current signal through the feed-forward coefficient, and construct a feed-forward compensation structure based on the Stribeck friction model. Using this structure, It can realize friction nonlinear compensation of single motor servo system. 2.根据权利要求1所述的基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,其特征在于,步骤1所述离线获取单电机伺服系统的转速与摩擦力矩数据,具体为:2. The non-linear compensation method for friction of a single-motor servo system based on the particle swarm optimization algorithm according to claim 1, wherein the offline acquisition of the speed and friction torque data of the single-motor servo system described in step 1 is specifically: 步骤1-1、在离线情况下,控制电机跟踪恒定转速vm,测量速度控制器的输出,获得电流值IqStep 1-1. In the offline situation, control the motor to track a constant speed v m , measure the output of the speed controller, and obtain the current value I q ; 步骤1-2、根据Iq获取当前时刻摩擦力矩F:Step 1-2. Obtain the friction torque F at the current moment according to I q : F=CtIq F=C t I q 式中,Ct为电机转矩系数;In the formula, C t is the motor torque coefficient; 由此获得转速vm与摩擦力矩F的数据。The data of the rotational speed v m and the friction torque F are thus obtained. 3.根据权利要求1所述的基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,其特征在于,步骤2所述利用粒子群算法对Stribeck摩擦模型进行参数辨识,获得辨识后的Stribeck摩擦模型,具体为:3. the single-motor servo system friction nonlinear compensation method based on particle swarm algorithm according to claim 1, it is characterized in that, the described step 2 utilizes particle swarm algorithm to carry out parameter identification to Stribeck friction model, obtains the Stribeck friction after identification model, specifically: Stribeck摩擦模型为:The Stribeck friction model is: 其中,in, 式中,F为摩擦力,v为相对运动速度,Fc为库仑力,Fs为最大静摩擦力,vs为Stribeck速度,B为粘滞摩擦系数,δs为经验参数;In the formula, F is the friction force, v is the relative motion velocity, F c is the Coulomb force, F s is the maximum static friction force, v s is the Stribeck velocity, B is the viscous friction coefficient, and δ s is an empirical parameter; 步骤2-1、设定粒子的种群规模为n,学习因子c1、c2,参数运动范围为[s1,s2]、最大迭代次数M,并随机初始化粒子的位置向量为以及速度向量速度范围为[v1,v2];Step 2-1. Set the population size of particles as n, learning factors c 1 and c 2 , parameter movement range as [s 1 , s 2 ], maximum number of iterations M, and randomly initialize the position vector of particles as and the velocity vector The speed range is [v 1 ,v 2 ]; 步骤2-2、根据粒子的初始位置计算粒子的适应值f(xi),并以适应值最优的粒子的位置向量初始化种群的最优位置;Step 2-2. Calculate the fitness value f( xi ) of the particle according to the initial position of the particle, and initialize the optimal position of the population with the position vector of the particle with the best fitness value; 步骤2-3、选取惯性算法因子ω,更新粒子的速度和位置向量,产生新的种群,并判断粒子的位置和速度是否越界即是否超出所述参数运动范围,若超出将舍弃该粒子信息;Step 2-3, select the inertia algorithm factor ω, update the velocity and position vector of the particle, generate a new population, and judge whether the position and velocity of the particle are out of bounds, that is, whether it exceeds the range of motion of the parameter, and if it exceeds, the particle information will be discarded; 其中,粒子的更新公式为:Among them, the particle update formula is: vid=ωvid+c1s1(pid-xid)+c2s2(pgd-xid)v id =ωv id +c 1 s 1 (p id -x id )+c 2 s 2 (p gd -x id ) xid=xid+vid x id = x id +v id 式中i=1,2,...,n,d=1,2,...,D,c1、c2为学习因子,vid为粒子的速度,xid为当前粒子的位置,s1、s2为介于(0,1)之间的随机数,pid为粒子i在搜索D维空间的解时搜索到的最优位置,pgd为种群最优位置,惯性算法因子ω采用线性递减的方式;In the formula, i=1,2,...,n, d=1,2,...,D, c 1 and c 2 are the learning factors, v id is the velocity of the particle, x id is the position of the current particle, s 1 and s 2 are random numbers between (0, 1), p id is the optimal position searched by particle i when searching for the solution of D-dimensional space, p gd is the optimal position of the population, and the inertial algorithm factor ω adopts a linear decreasing method; 步骤2-4、将粒子当前的适应值f(xi)与自身历史最优值进行比较,若当前的适应值f(xi)优于历史最优值,则更新自身最优值为f(xi)以及粒子位置;Step 2-4. Compare the particle’s current fitness value f( xi ) with its own historical optimal value. If the current fitness value f( xi ) is better than the historical optimal value, update its own optimal value to f ( xi ) and particle position; 步骤2-5、将粒子当前的适应值f(xi)与种群最优值进行比较,若当前的适应值f(xi)优于种群最优值,则更新种群最优值为f(xi)以及粒子位置;Step 2-5. Compare the current fitness value f( xi ) of the particle with the optimal value of the population. If the current fitness value f( xi ) is better than the optimal value of the population, update the optimal value of the population to f( x i ) and particle position; 步骤2-6、判断迭代次数是否达到最大迭代次数,若是,则结束迭代过程,获得粒子最优解即辨识后的Stribeck摩擦模型的参数根据辨识出的参数即可获得辨识后的Stribeck摩擦模型;若不满足,跳转至步骤2-3。Step 2-6. Determine whether the number of iterations reaches the maximum number of iterations. If so, end the iterative process and obtain the optimal solution of the particle, which is the parameters of the identified Stribeck friction model. According to the identified parameters, the identified Stribeck friction model can be obtained; if not satisfied, skip to step 2-3. 4.根据权利要求3所述的基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,其特征在于,所述粒子的种群规模n为80,最大迭代次数M=500;四个参数的参数运动范围[s1,s2]均为(0,1),速度范围[v1,v2]为[-1,1];学习因子c1=1.2、c2=1.8。4. the single motor servo system friction nonlinear compensation method based on particle swarm optimization algorithm according to claim 3, is characterized in that, the population size n of described particle is 80, and maximum number of iterations M=500; Four parameters The motion range [s 1 , s 2 ] of the parameters is (0, 1), and the speed range [v 1 , v 2 ] is [-1, 1]; learning factors c 1 =1.2, c 2 =1.8. 5.根据权利要求1所述的基于粒子群算法的单电机伺服系统摩擦非线性补偿方法,其特征在于,步骤3所述根据辨识后的Stribeck摩擦模型实时获取摩擦力矩,并将摩擦力矩通过前馈系数补偿至电流信号,构建基于Stribeck摩擦模型的前馈补偿结构,具体为:5. The friction nonlinear compensation method for single-motor servo system based on particle swarm optimization algorithm according to claim 1, characterized in that, step 3 obtains the friction torque in real time according to the identified Stribeck friction model, and passes the friction torque through the front The feed coefficient is compensated to the current signal, and a feedforward compensation structure based on the Stribeck friction model is constructed, specifically: 步骤3-1、将转速作为输入变量,根据辨识后的Stribeck摩擦模型实时获取摩擦力矩F,并将摩擦力矩F通过前馈系数补偿至电流信号,所用公式为:Step 3-1. Taking the speed as an input variable, the friction torque F is obtained in real time according to the identified Stribeck friction model, and the friction torque F is compensated to the current signal through the feedforward coefficient. The formula used is: 其中,前馈摩擦补偿电流IF(t)=kF×F,kF为摩擦反馈系数,Iq(t)为施加前馈补偿后的电流,为未施加前馈补偿前的电流;Among them, feed-forward friction compensation current I F (t) = k F × F, k F is the friction feedback coefficient, I q (t) is the current after applying feed-forward compensation, is the current before no feed-forward compensation is applied; 步骤3-2、将代入单电机动力学模型获得基于Stribeck摩擦模型的前馈补偿结构的动力学模型为:Step 3-2, will Substituting the single-motor dynamic model to obtain the dynamic model of the feed-forward compensation structure based on the Stribeck friction model is: 其中,单电机动力学模型为:Among them, the single-motor dynamic model is: 式中,Uq(t)为电机在q轴的等效电压;Iq(t)为电机在q轴的等效电流;Rq为电机在q轴的等效电阻;Lq为电机在q轴的等效电感,Ce为电机反电动势系数;θm(t)为电机角度;为电机角速度;为电机角加速度;Ct为电机转矩系数;ks为电机的刚度系数;im为小齿轮与大齿轮之间的减速比;Jm和bm分别为电机的转动惯量和粘性系数;JL和bL为负载的转动惯量和粘性系数;τm为电机与负载之间的弹性力矩;θL(t)为负载角度;为负载角速度;为负载角加速度;TL为负载转矩。In the formula, U q (t) is the equivalent voltage of the motor on the q-axis; I q (t) is the equivalent current of the motor on the q-axis; R q is the equivalent resistance of the motor on the q-axis; L q is the motor on the q-axis The equivalent inductance of the q-axis, C e is the back electromotive force coefficient of the motor; θ m (t) is the angle of the motor; is the angular velocity of the motor; is the angular acceleration of the motor; C t is the torque coefficient of the motor; k s is the stiffness coefficient of the motor; i m is the reduction ratio between the pinion and the gear; J m and b m are the moment of inertia and viscosity coefficient of the motor, respectively; J L and b L are the moment of inertia and viscosity coefficient of the load; τ m is the elastic moment between the motor and the load; θ L (t) is the load angle; is the load angular velocity; is the load angular acceleration; T L is the load torque.
CN201910661720.5A 2019-07-22 2019-07-22 Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization Pending CN110460277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910661720.5A CN110460277A (en) 2019-07-22 2019-07-22 Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910661720.5A CN110460277A (en) 2019-07-22 2019-07-22 Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization

Publications (1)

Publication Number Publication Date
CN110460277A true CN110460277A (en) 2019-11-15

Family

ID=68481665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910661720.5A Pending CN110460277A (en) 2019-07-22 2019-07-22 Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization

Country Status (1)

Country Link
CN (1) CN110460277A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462611A (en) * 2020-11-30 2021-03-09 华中科技大学 Sliding friction modeling method for precise electromechanical system
CN112504297A (en) * 2020-11-08 2021-03-16 中国航空工业集团公司洛阳电光设备研究所 Airborne photoelectric detection equipment visual axis disturbance compensation method based on measurement
CN112799304A (en) * 2021-01-06 2021-05-14 武汉理工大学 A dual-motor synchronous control method and device based on time-varying friction compensation
CN112816118A (en) * 2021-02-25 2021-05-18 安徽大学 Three-degree-of-freedom spherical motor friction parameter identification experimental device and method
CN113051673A (en) * 2020-12-14 2021-06-29 华南理工大学 Robot improved Stribeck friction model identification method
CN113110305A (en) * 2021-04-30 2021-07-13 华中科技大学 Friction modeling method of electromechanical system and application thereof
CN113283090A (en) * 2021-05-28 2021-08-20 中国民航大学 Airplane steering engine electric servo system friction compensation method based on bee colony algorithm
CN113283063A (en) * 2021-05-10 2021-08-20 珠海格力电器股份有限公司 Friction force identification method, module, equipment and computer readable medium
CN113341702A (en) * 2021-06-25 2021-09-03 中国民航大学 Composite control method for electric servo system of airplane steering engine
CN113890446A (en) * 2021-10-18 2022-01-04 哈尔滨工业大学 Parameter identification method of servo control system based on LuGre model
CN113934138A (en) * 2021-10-21 2022-01-14 苏州科技大学 A Friction Compensation Feedforward Controller for Servo System
WO2022047935A1 (en) * 2020-09-01 2022-03-10 瑞声声学科技(深圳)有限公司 Electric motor friction compensation method and system, and computer-readable storage medium therefor
CN114544057A (en) * 2021-12-31 2022-05-27 河海大学 Calculation method of electrical contact friction force of brush-slip ring system of DFIG in marine environment
CN114750167A (en) * 2022-06-02 2022-07-15 成都卡诺普机器人技术股份有限公司 Industrial robot joint friction compensation method based on disturbance observation
CN115622462A (en) * 2022-09-09 2023-01-17 福州大学 Method for identifying friction force of permanent magnet synchronous linear motor with separation of constant-speed motion state and variable-acceleration motion state
CN116442220A (en) * 2023-03-30 2023-07-18 之江实验室 Parameter identification method and device for robot joint friction model and moment estimation method and device
WO2024036651A1 (en) * 2022-08-18 2024-02-22 北京华卓精科科技股份有限公司 Friction force compensation method and compensation apparatus for linear guide rail displacement system
CN117991719A (en) * 2024-04-03 2024-05-07 华中科技大学 Dynamic friction modeling and compensation method and system for robot grinding and polishing force control
CN118276450A (en) * 2024-05-31 2024-07-02 西安理工大学 A vibration analysis method for silicon single crystal pulling servo system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208891A (en) * 2010-11-18 2011-10-05 东南大学 Method for controlling PMSM (permanent magnet synchronous motor) servo system based on friction and disturbance compensation
CN107203184A (en) * 2017-06-20 2017-09-26 南京理工大学 The dynamic control method of straight line steering wheel Electric Loading System
US20180119048A1 (en) * 2013-12-23 2018-05-03 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
CN108073074A (en) * 2017-12-15 2018-05-25 西安交通大学 A kind of assembling quality evaluating method based on Machine Tool Feeding System kinetic characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208891A (en) * 2010-11-18 2011-10-05 东南大学 Method for controlling PMSM (permanent magnet synchronous motor) servo system based on friction and disturbance compensation
US20180119048A1 (en) * 2013-12-23 2018-05-03 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
CN107203184A (en) * 2017-06-20 2017-09-26 南京理工大学 The dynamic control method of straight line steering wheel Electric Loading System
CN108073074A (en) * 2017-12-15 2018-05-25 西安交通大学 A kind of assembling quality evaluating method based on Machine Tool Feeding System kinetic characteristic

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG WENJING: "《Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm》", 《PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE》 *
息晓琳: "《农业惯导测试转台方位轴系的低速稳定性研究》", 《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047935A1 (en) * 2020-09-01 2022-03-10 瑞声声学科技(深圳)有限公司 Electric motor friction compensation method and system, and computer-readable storage medium therefor
CN112504297A (en) * 2020-11-08 2021-03-16 中国航空工业集团公司洛阳电光设备研究所 Airborne photoelectric detection equipment visual axis disturbance compensation method based on measurement
CN112462611A (en) * 2020-11-30 2021-03-09 华中科技大学 Sliding friction modeling method for precise electromechanical system
CN112462611B (en) * 2020-11-30 2022-05-20 华中科技大学 Sliding friction modeling method for precision electromechanical system
CN113051673B (en) * 2020-12-14 2023-09-26 华南理工大学 Improved Stribeck friction model identification method for robot
CN113051673A (en) * 2020-12-14 2021-06-29 华南理工大学 Robot improved Stribeck friction model identification method
CN112799304B (en) * 2021-01-06 2022-06-14 武汉理工大学 A dual-motor synchronous control method and device based on time-varying friction compensation
CN112799304A (en) * 2021-01-06 2021-05-14 武汉理工大学 A dual-motor synchronous control method and device based on time-varying friction compensation
CN112816118A (en) * 2021-02-25 2021-05-18 安徽大学 Three-degree-of-freedom spherical motor friction parameter identification experimental device and method
CN112816118B (en) * 2021-02-25 2024-05-17 安徽大学 Three-degree-of-freedom spherical motor friction parameter identification experimental device and method
CN113110305A (en) * 2021-04-30 2021-07-13 华中科技大学 Friction modeling method of electromechanical system and application thereof
CN113110305B (en) * 2021-04-30 2022-07-05 华中科技大学 A Friction Modeling Method for Electromechanical Systems and Its Application
CN113283063A (en) * 2021-05-10 2021-08-20 珠海格力电器股份有限公司 Friction force identification method, module, equipment and computer readable medium
CN113283063B (en) * 2021-05-10 2024-03-08 珠海格力电器股份有限公司 Friction force identification method, module, device and computer readable medium
CN113283090A (en) * 2021-05-28 2021-08-20 中国民航大学 Airplane steering engine electric servo system friction compensation method based on bee colony algorithm
CN113283090B (en) * 2021-05-28 2023-07-11 中国民航大学 Friction compensation method for electric servo system of airplane steering engine based on bee colony algorithm
CN113341702B (en) * 2021-06-25 2023-02-03 中国民航大学 Composite control method for electric servo system of airplane steering engine
CN113341702A (en) * 2021-06-25 2021-09-03 中国民航大学 Composite control method for electric servo system of airplane steering engine
CN113890446A (en) * 2021-10-18 2022-01-04 哈尔滨工业大学 Parameter identification method of servo control system based on LuGre model
CN113934138B (en) * 2021-10-21 2024-02-23 苏州科技大学 Friction compensation feedforward controller for servo system
CN113934138A (en) * 2021-10-21 2022-01-14 苏州科技大学 A Friction Compensation Feedforward Controller for Servo System
CN114544057A (en) * 2021-12-31 2022-05-27 河海大学 Calculation method of electrical contact friction force of brush-slip ring system of DFIG in marine environment
CN114750167A (en) * 2022-06-02 2022-07-15 成都卡诺普机器人技术股份有限公司 Industrial robot joint friction compensation method based on disturbance observation
WO2024036651A1 (en) * 2022-08-18 2024-02-22 北京华卓精科科技股份有限公司 Friction force compensation method and compensation apparatus for linear guide rail displacement system
CN115622462A (en) * 2022-09-09 2023-01-17 福州大学 Method for identifying friction force of permanent magnet synchronous linear motor with separation of constant-speed motion state and variable-acceleration motion state
CN116442220A (en) * 2023-03-30 2023-07-18 之江实验室 Parameter identification method and device for robot joint friction model and moment estimation method and device
CN117991719A (en) * 2024-04-03 2024-05-07 华中科技大学 Dynamic friction modeling and compensation method and system for robot grinding and polishing force control
CN118276450A (en) * 2024-05-31 2024-07-02 西安理工大学 A vibration analysis method for silicon single crystal pulling servo system

Similar Documents

Publication Publication Date Title
CN110460277A (en) Friction nonlinearity compensation method for single motor servo system based on particle swarm optimization
CN107561935B (en) Motor position servo system friction compensation control method based on multilayer neural network
CN103780188B (en) Based on the permanent magnetism spherical rotor adaptive control system of dynamic frictional compensation
Lu et al. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model
CN106067747B (en) A kind of design method of sliding formwork disturbance observer for servo system control
Cui et al. Friction compensation based on time-delay control and internal model control for a gimbal system in magnetically suspended CMG
CN102385342B (en) Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion
CN105171758B (en) Self-adaptive finite time convergence sliding-mode control method of robot
CN105629727B (en) A kind of motor position servo system adaptively exports feedback robust control method
CN107193211B (en) Single-arm manipulator controller based on active disturbance rejection and inversion technology and design method thereof
CN104614984B (en) High-precision control method of motor position servo system
JPH03118618A (en) Control system applying sliding mode control having damping effect
Yao et al. Adaptive Robust Motion Control of Direct‐Drive DC Motors with Continuous Friction Compensation
CN105045103B (en) One kind is based on LuGre friction models servo manipulator friciton compensation control system and method
CN109940609B (en) A Robot Dynamics Modeling Method Based on Centrosymmetric Static Friction Model
CN110572093A (en) An ARC Control Method Based on Expected Trajectory and Disturbance Compensation of Motor Position Servo System
CN111546346B (en) A flexible joint disturbance observation method, torque control method and device
CN107577146B (en) Neural network self-adaptive control method of servo system based on friction integral approximation
CN104730922B (en) Servo-drive system linear Feedback Control and POLE PLACEMENT USING based on extended state observer determine parametric technique
CN105790668A (en) Double ring auto-disturbances rejection controller capable of overcoming transmission clearance nonlinearity
CN108155833A (en) Consider the motor servo system Asymptotic Stability control method of electrical characteristic
CN107621783A (en) Adaptive Robust Control Method for Launch Platform Based on Friction Compensation
CN113093538A (en) Non-zero and game neural-optimal control method of modular robot system
JP2017211829A (en) Parameter identification device, motor control system, parameter identification method and program
CN107363832A (en) A kind of industrial robot feedforward torque real-time computing technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191115

RJ01 Rejection of invention patent application after publication