TWI723541B - Sheet metal identification method - Google Patents
Sheet metal identification method Download PDFInfo
- Publication number
- TWI723541B TWI723541B TW108133245A TW108133245A TWI723541B TW I723541 B TWI723541 B TW I723541B TW 108133245 A TW108133245 A TW 108133245A TW 108133245 A TW108133245 A TW 108133245A TW I723541 B TWI723541 B TW I723541B
- Authority
- TW
- Taiwan
- Prior art keywords
- sheet metal
- feature
- feature point
- model
- point data
- Prior art date
Links
Images
Landscapes
- Image Analysis (AREA)
Abstract
一種板金辨識方法係由一處理裝置執行,包括下列步驟:A.接收一板金影像;B.將該影像進行正規化轉換,以得到一轉換影像圖檔;C.根據該轉換影像圖檔取得一影像特徵點資料;D.將該影像特徵點資料與一資料庫中的複數個板金特徵模型對比,以得到至少一目標板金特徵模型;E.輸出該目標板金特徵模型的識別標記。一種板金辨識系統包括有:一平台、一影像模組以及前述之處理裝置,以擷取板金影像,並輸出板金影像至該處理裝置。 A sheet metal identification method is executed by a processing device and includes the following steps: A. Receive a sheet metal image; B. Normalize the image to obtain a converted image file; C. Obtain a converted image file based on the converted image file Image feature point data; D. Compare the image feature point data with a plurality of sheet metal feature models in a database to obtain at least one target sheet metal feature model; E. Output the identification mark of the target sheet metal feature model. A sheet metal identification system includes: a platform, an image module, and the aforementioned processing device to capture sheet metal images and output the sheet metal images to the processing device.
Description
本發明係與板金辨識有關;特別是指一種自動化的板金辨識方法及辨識系統。 The present invention is related to sheet metal identification; in particular, it refers to an automated sheet metal identification method and identification system.
板金工作屬機械加工的一種,其作業係將金屬經裁剪、切割等製程,做成各種不同形狀的半成品後,再將半成品加工或組裝以供使用,板金成品的應用範圍非常廣泛,與人們日常生活也有相當密切關連。而隨著科學與工業的進步,板金加工作業亦趨向於精密化、自動化的製造與發展,以提高產品品質及生產力。 Sheet metal work is a type of mechanical processing. The work involves cutting and cutting the metal into semi-finished products of various shapes, and then processing or assembling the semi-finished products for use. The application range of finished sheet metal is very wide. Life is also very closely related. With the advancement of science and industry, sheet metal processing operations tend to be sophisticated and automated manufacturing and development to improve product quality and productivity.
習用之板金辨識是採用人工辨識,當板金經前製程做成各種不同形狀的半成品後,作業人員根據板金的外觀資料手冊將各式各樣的板金進行辨識,判斷該些板金後續須進行的製程,然而此法不僅耗費時間,也缺乏效率,且目前板金廠為因應各式不同的需求,板金之形狀種類變化甚多,利用人工辨識辨識,顯然需耗費許多人力成本及時間成本,故,如何提供一種自動辨識板金的系統,是發明人的潛心研究的方向之一。 The conventional sheet metal identification is manual identification. After the sheet metal is made into semi-finished products of various shapes through the previous process, the operator will identify the various sheet metal according to the sheet metal appearance data manual, and determine the subsequent process of the sheet metal. However, this method is not only time-consuming, but also inefficient. In addition, in order to meet various needs, the shape of the sheet metal has changed a lot. The use of manual identification and identification obviously requires a lot of labor and time costs. So, how Providing a system for automatically identifying sheet metal is one of the directions of the inventor's painstaking research.
有鑑於此,本發明之目的在於提供一種板金辨識方法及辨識系統,可自動將板金辨識,改善人工辨識板金缺乏效率的問題。 In view of this, the purpose of the present invention is to provide a sheet metal identification method and identification system, which can automatically identify sheet metal and improve the problem of inefficiency of manual sheet metal identification.
緣以達成上述目的,本發明提供一種板金辨識方法,係由一處理裝置執行,其包括下列步驟:A.接收一板金影像;B.將該影像進行正規化轉換,以得到一轉換影像圖檔;C.根據該轉換影像圖檔取得一影像特徵點資料;D.將該影像特徵點資料與一資料庫中的複數個板金特徵模型對比,以得到至少一目標板金特徵模型,其中,該些板金特徵模型分別對應對複數個板金,且各該板金特徵模型包括一特徵點資料與一識別標記,該特徵點資料係供與該影像特徵點資料對比者;該目標板金特徵模型為該些板金特徵模型的特徵點資料與該影像特徵點資料相符或相近似的至少一該板金特徵模型;E.輸出該目標板金特徵模型的識別標記。 To achieve the above objective, the present invention provides a sheet metal identification method, which is executed by a processing device, which includes the following steps: A. Receive a sheet metal image; B. Normalize the image to obtain a converted image file C. Obtain an image feature point data according to the converted image file; D. Compare the image feature point data with a plurality of sheet metal feature models in a database to obtain at least one target sheet metal feature model, wherein the The sheet metal feature model corresponds to a plurality of sheet metals, and each of the sheet metal feature models includes a feature point data and an identification mark, the feature point data is for comparison with the image feature point data; the target sheet metal feature model is the sheet metal At least one sheet metal feature model whose feature point data of the feature model matches or is similar to the image feature point data; E. Output the identification mark of the target sheet metal feature model.
本發明再提供一種板金辨識系統,包括一平台及一影像模組,其中該平台具有一頂面用以供放置至少一板金;該影像模組設置於該平台上方,用以擷取該至少一板金影像,並輸出該板金影像;以及上述之該處理裝置,該處理裝置電性連接該影像模組。 The present invention further provides a sheet metal identification system, including a platform and an image module, wherein the platform has a top surface for placing at least one sheet metal; the image module is arranged on the platform to capture the at least one sheet metal Sheet metal image, and output the sheet metal image; and the above-mentioned processing device, which is electrically connected to the image module.
本發明之效果在於,藉由將板金之影像特徵點資料與資料庫中的複數個板金特徵模型進行對比,進而得到目標板金特徵模型,如此一來,使用者根據該目標板金特徵模型,即可辨識出該板金之身分,以利進行後續製程。 The effect of the present invention is that by comparing the image feature point data of the sheet metal with a plurality of sheet metal feature models in the database, the target sheet metal feature model is obtained. In this way, the user can obtain the target sheet metal feature model according to the target sheet metal feature model. Identify the identity of the sheet metal to facilitate subsequent manufacturing processes.
1:板金辨識系統 1: Sheet metal identification system
10:平台 10: Platform
12:頂面 12: Top surface
20:光源 20: light source
30:影像模組 30: Image module
40:處理裝置 40: processing device
41:列印裝置 41: printing device
50:板金 50: sheet metal
60:遮光件 60: Shading parts
70:轉換模型圖形 70: Convert model graphics
80:轉換影像圖形 80: Convert image graphics
90:螢幕 90: screen
92:列印按鍵 92: Print button
S01~S04、S1~S5:步驟 S01~S04, S1~S5: steps
A1、A2、A3:面積 A1, A2, A3: area
L1:短邊 L1: short side
L2:長邊 L2: Long side
圖1為本發明一較佳實施例之板金辨識系統的示意圖。 FIG. 1 is a schematic diagram of a sheet metal identification system according to a preferred embodiment of the present invention.
圖2為本發明一較佳實施例之板金辨識方法的流程圖。 FIG. 2 is a flowchart of a sheet metal identification method according to a preferred embodiment of the present invention.
圖3為上述較佳實施例之較佳實施例之板金辨識方法的流程圖。 FIG. 3 is a flowchart of the sheet metal identification method of the preferred embodiment of the above-mentioned preferred embodiment.
圖4為本發明一較佳實施例之板金示意圖。 Fig. 4 is a schematic diagram of a sheet metal of a preferred embodiment of the present invention.
圖5為本發明一較佳實施例之目標板金特徵模型依照比對值依序排列示意圖 5 is a schematic diagram of the target sheet metal feature models arranged in order according to the comparison value according to a preferred embodiment of the present invention
為能更清楚地說明本發明,茲舉以下一較佳實施例並配合圖式詳細說明如後。請參圖1所示,為本發明較佳實施例之板金辨識系統1,包含有平台10、影像模組30及處理裝置40,其中:
In order to explain the present invention more clearly, a preferred embodiment is given below in conjunction with the drawings in detail as follows. Please refer to FIG. 1, which is a sheet
該平台10具有一頂面12,用以供放置至少一板金50。該影像模組30設置於該平台10上方,且包含一攝影機,用以擷取該至少一板金50之影像,並輸出該板金50影像。該處理裝置40電性連接該影像模組30,以接收該影像模組30所輸出的板金50之影像;較佳者,該板金辨識系統包含光源20,該光源20設置於該平台10下方,該光源20可為一LED發光板,其包括有複數個LED,而上述之平台可以是一具有透光功能的平台,如此一來,設置於平台上方的影像模組,一樣可以達到擷取放置於平台上之板金的影像之功效,並不以上述實施例為限。
The
於本實施例中,該板金辨識系統1包含有遮光件60,該遮光件60設置於該平台10上且位於該平台10的周圍,以防止該平台10之外部光線的干擾,於實務上,該板金辨識系統1也可不設置該遮光件60。藉此,當使用者將一塊板金50放置於該平台10上時,該LED發光板之光線可穿過該平台,部分被板金50所遮擋,未被板金50遮擋的光線進入攝影機,藉此,該影像模組30之攝影機中,可以得到一清晰的板金影像,
且板金影像中具有板金50之外輪廓。若板金50具有鏤空區域(例如穿孔或開口),板金影像中更具有板金50之內輪廓。
In this embodiment, the sheet
請參圖2所示,為本發明所提供之板金辨識方法,係由上述之處理裝置40執行,該板金辨識方法包含有一資料庫建立步驟,該資料庫建立步驟如下:S01.接收一板金之一二維模型圖檔;使用者將該板金之二維模型圖檔輸入該處理裝置40,該處理裝置40接收該板金之二維模型圖檔,其中該二維模型圖檔為利用一工程繪圖軟體產生之二維向量圖形檔案,也就是說使用者係根據該二維模型圖檔而加工製作出該板金50,其檔案格式可為DWG檔案格式、DXF檔案格式或是其他檔案格式。
Please refer to FIG. 2, which is the sheet metal identification method provided by the present invention, which is executed by the above-mentioned
該資料庫建立步驟還包含S02.將該二維模型圖檔進行長度單位之正規化轉換,以得到一轉換模型圖檔;該處理裝置40將該二維模型圖檔進行如邊長之長度單位正規化轉換,舉例來說,不同的二維模型圖檔中的長度單位可能會標示得不一致,例如有些是以cm表示長度,有些是以mm表示長度,因此,該處理裝置40將該二維模型圖檔之圖形之長度單位轉換為一致的單位(例如以mm作為一致的長度單位),而後得到具有相同的一長度單位的一轉換模型圖檔,該轉換模型圖檔之檔案格式可為BMP、JPG、或PNG檔案格式或是其他影像檔案格式。
The database creation step further includes S02. Performing the normalized conversion of the length unit of the two-dimensional model drawing file to obtain a converted model drawing file; the
接著執行步驟S03.根據該轉換模型圖檔取得一該特徵點資料;較佳者,該特徵點資料包含至少一特徵點項目,該至少一特徵點項目包含板金之面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比、板金之Hu矩不變量及中心至外框距離之至少一者,請配合圖3所示,其中該矩型度為板金周緣所圍成之面積A1與能包圍板金輪廓的最小矩形的面積A2比值,孔洞比為板金周緣所圍成之面積A1扣除板金上的孔洞面積A3後與板金周緣所圍成之面積A1的比值,最小外接矩型長寬 比為能包圍板金外輪廓之最小矩形的短邊L1與長邊L2的比值,而所述Hu矩不變量是Hu,M.K.在1962年提出矩不變量的概念,使用幾何矩的非線性組合得出一組具有期望的尺度不變性、平移不變性和旋轉不變性的矩不變量,一般稱之為Hu矩不變量,Hu矩不變量具有不隨圖像的位置和方向而變化的特點,也就是即使圖像進行旋轉、縮放或平移後,Hu矩都是不變的。 Then perform step S03. Obtain a feature point data according to the conversion model drawing file; preferably, the feature point data includes at least one feature point item, and the at least one feature point item includes the area, perimeter, center of mass, and At least one of rectangle degree, hole ratio, minimum external rectangle aspect ratio, Hu moment invariant of sheet metal, and distance from center to outer frame, please refer to Figure 3, where the rectangle degree is enclosed by the periphery of the sheet metal The ratio of the area A1 to the area A2 of the smallest rectangle that can enclose the contour of the sheet metal. The hole ratio is the ratio of the area enclosed by the periphery of the sheet metal A1 minus the area A3 of the holes on the sheet metal to the area enclosed by the periphery of the sheet metal A1, the minimum external moment Type length and width The ratio is the ratio of the short side L1 to the long side L2 of the smallest rectangle that can enclose the outer contour of the sheet metal, and the Hu moment invariant is Hu. MK proposed the concept of moment invariant in 1962, using the nonlinear combination of geometric moments. A set of moment invariants with desired scale invariance, translation invariance, and rotation invariance are generally called Hu moment invariants. Hu moment invariants have the characteristic of not changing with the position and direction of the image. That is, even after the image is rotated, zoomed, or translated, the Hu moment remains unchanged.
而後執行步驟S04.將對應步驟S01之板金的一識別標記連結步驟S03中的特徵點資料,以形成一板金特徵模型並儲存至該資料庫,其中該識別標記可包含該板金50之產品編號等可供使用者識別該板金50之產品資料;較佳者,於步驟S04中更包括將步驟S02中的該轉換模型圖檔加入該板金特徵模型中。最後,執行步驟S05.重複步驟S01至S04複數次,以將多個不同板金的板金特徵模型儲存於資料庫中;如此一來,即完成該資料庫之建立。
Then perform step S04. Connect an identification mark corresponding to the sheet metal of step S01 to the feature point data in step S03 to form a sheet metal feature model and store it in the database, where the identification mark may include the product number of the
請配合圖4所示,於完成上述之資料庫建立步驟後,執行下列步驟:步驟S1.接收一板金影像;於本實施例中,使用者將待辨識之板金50放置於該平台10上,並由該影像模組30擷取該待辨識板金50之外觀影像後,該處理裝置40接收自該影像模組30輸出之一板金影像。
Please cooperate with FIG. 4, after completing the above database creation steps, perform the following steps: Step S1. Receive a sheet metal image; in this embodiment, the user places the
步驟S2.將該影像進行轉換(亦可稱為正規化轉換),以得到具有該長度單位的一轉換影像圖檔。本實施例中,該處理裝置40接收自該影像模組30輸出之板金影像後,將該影像進行正規化轉換,前述之正規化轉換可包含灰階二值化處理,即該處理裝置將該影像大於一臨界灰階值的像素之灰階值設為灰階極大值,把小於臨界灰階值的像素之灰階值設為灰階極小值,以得到具有該長度單位的該轉換影像圖檔,該長度單與轉換模型圖檔的長度單位相同(例如皆為mm)。於步驟S2中
可包含將該影像進行一前處理,該前處理如去除影像雜訊、增強影像完整度等。
Step S2. Convert the image (also referred to as normalized conversion) to obtain a converted image file with the length unit. In this embodiment, after the
步驟S3.根據該轉換影像圖檔取得一影像特徵點資料;較佳者,該影像特徵點資料均包含至少一特徵點項目,該至少一特徵點項目包含板金之面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比、板金之Hu矩不變量及中心至外框距離之至少一者,其中矩型度、孔洞比及最小外接矩型長寬比之計算方法如前所述,於此不再贅述。 Step S3. Obtain an image feature point data according to the converted image file; preferably, the image feature point data includes at least one feature point item, and the at least one feature point item includes the area, perimeter, center of mass, and At least one of rectangle degree, hole ratio, minimum external rectangle aspect ratio, Hu moment invariant of sheet metal and distance from center to outer frame, among which the calculation method of rectangle degree, hole ratio and minimum external rectangle aspect ratio As mentioned before, I will not repeat it here.
步驟S4.將該影像特徵點資料與該資料庫中的複數個板金特徵模型對比,以得到至少一目標板金特徵模型,其中,該些板金特徵模型分別對應對複數個板金,且各該板金特徵模型包括一個特徵點資料與一個識別標記,該特徵點資料係供與該影像特徵點資料對比者;該目標板金特徵模型為該些板金特徵模型的特徵點資料與該影像特徵點資料相符或相近似的至少一該板金特徵模型;舉例來說,該處理裝置40將該板金50的影像特徵點資料如面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比及板金之Hu矩不變量之特徵點項目與該資料庫中的複數個板金特徵模型的特徵點資料如面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比及板金之Hu矩不變量之特徵點項目進行對比後,根據該對比結果,得到一個目標板金特徵模型,其中該目標板金特徵模型即為該資料庫中,與該板金影像最相似的板金特徵模型,如此一來,使用者藉由該目標板金特徵模型之識別標記,即可識別該板金50之產品資料。 Step S4. Compare the image feature point data with a plurality of sheet metal feature models in the database to obtain at least one target sheet metal feature model, wherein the sheet metal feature models correspond to a plurality of sheet metals, and each of the sheet metal features The model includes a feature point data and an identification mark, the feature point data is for comparison with the image feature point data; the target sheet metal feature model is that the feature point data of the sheet metal feature models match or match the image feature point data Approximately at least one feature model of the sheet metal; for example, the processing device 40 includes image feature point data of the sheet metal 50 such as area, perimeter, centroid, rectangle degree, hole ratio, minimum circumscribed rectangle aspect ratio, and The feature point item of Hu moment invariant of sheet metal and the feature point data of multiple sheet metal feature models in the database, such as area, circumference, centroid, rectangle degree, hole ratio, minimum external rectangle aspect ratio, and sheet metal After comparing the feature point items of Hu moment invariants, a target sheet metal feature model is obtained according to the comparison result, where the target sheet metal feature model is the most similar sheet metal feature model in the database to the sheet metal image, so First, the user can identify the product data of the sheet metal 50 by using the identification mark of the target sheet metal feature model.
最後執行步驟S5.輸出該目標板金特徵模型的識別標記,識別標記可包含文字、數字、符號之至少一者或二者以上之組合,於一實施例中,處理裝置40透過一列印裝置41將該目標板金特徵模型的識別
標記列印為一識別標籤,該識別標籤可供貼於該板金上,該識別標籤用以供一讀取工具讀取,該識別標籤可為一維條碼或二維條碼,該讀取工具可以是一條碼掃描器;該處理裝置也可透過一投影裝置將該目標板金特徵模型的識別標記輸出為一影像識別標籤,投影於板金上,以供辨識;該處理裝置亦可透一顯示裝置輸出識別標記。
Finally, step S5 is performed. The identification mark of the target sheet metal feature model is output. The identification mark may include at least one of characters, numbers, and symbols, or a combination of two or more. In one embodiment, the
於一實施例中,步驟S4中各該板金特徵模型更包括對應的一該轉換模型圖檔;以及步驟S4、S5之間包含有將該至少一目標板金特徵模型的轉換模型圖檔以轉換模型圖形70顯示於一螢幕90上,較佳者,該待辨識之板金之轉換影像圖檔也以轉換影像圖形80顯示於該螢幕上,如此一來,使用者可同時於該螢幕上確認該目標板金特徵模型的轉換模型圖檔及該待辨識之板金之轉換影像圖檔。
In one embodiment, each of the sheet metal feature models in step S4 further includes a corresponding conversion model image file; and steps S4 and S5 include the conversion model image file of the at least one target sheet metal feature model to convert the model The graphic 70 is displayed on a
於一實施例中,步驟S4中之該至少一目標板金特徵模型的數量為複數個;步驟S4、S5之間係將該些目標板金特徵模型的轉換模型圖檔與該轉換影像圖檔以轉換影像圖形80顯示該螢幕90上;步驟S5中包含由人員選擇該些目標板金特徵模型之其中一者,並列印所選擇的一該目標板金特徵模型的識別標記,也就是說,該些目標板金特徵模型即為該資料庫中,與該板金影像較為相似的數個板金特徵模型,使用者可自行於該些目標板金特徵模型中選擇一個目標板金特徵模型,並列印所選擇的該目標板金特徵模型的識別標記。
In one embodiment, the number of the at least one target sheet metal feature model in step S4 is plural; between steps S4 and S5, the conversion model image files of the target sheet metal feature models and the conversion image file are converted The image graphic 80 is displayed on the
於一實施例中,步驟S4中係依據該影像特徵點資料中與幾何特徵相關的特徵點項目,如面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比之特徵點項目分別與該些板金特徵模型的特徵點資料的特徵點項目對比,以分別得到複數個比對值,於本實施例中,比對值是板金特徵模型的特徵點項目之值減去影像特徵點資料的特徵點項
目之值後取絕對值後再除以影像特徵點資料的特徵點項目之值;且將該些比對值之中小於一門檻值所對應的至少一該板金特徵模型設定為至少一該目標板金特徵模型,例如,使用者設定該門檻值為0.5,而該資料庫中的其中一板金特徵模型的特徵點項目如面積、周長及質心與該影像特徵點資料的特徵點項目之比對值皆小於該門檻值(0.5),該處理裝置40即判斷該資料庫中的該板金特徵模型為該目標板金特徵模型,當該資料庫中的複數個板金特徵模型的特徵點項目如面積、周長及質心與該影像特徵點資料的特徵點項目之比對值皆符合小於0.5之條件時,該處理裝置40即判斷該資料庫中的該些板金特徵模型皆為目標板金特徵模型。
In one embodiment, step S4 is based on the feature point items related to geometric features in the image feature point data, such as area, perimeter, centroid, rectangle degree, hole ratio, and minimum circumscribed rectangle aspect ratio. The feature point items are respectively compared with the feature point items of the feature point data of the sheet metal feature models to obtain a plurality of comparison values. In this embodiment, the comparison value is the value of the feature point items of the sheet metal feature model minus Feature point item of image feature point data
After the target value, the absolute value is taken and then divided by the value of the feature point item of the image feature point data; and among the comparison values, at least one sheet metal feature model corresponding to a threshold value less than a threshold value is set as at least one target Sheet metal feature model, for example, the user sets the threshold value to 0.5, and the ratio of feature point items such as area, perimeter, and centroid of one of the sheet metal feature models in the database to the feature point items of the image feature point data If the pair values are all less than the threshold value (0.5), the
於一實施例中,步驟S4中係依據該影像特徵點資料的Hu矩不變量分別與該些板金特徵模型的特徵點資料的Hu矩不變量,以歐氏距離演算法計算得到複數個相似度值;且根據該些相似度值將與該影像特徵點資料相符或相近似的該至少一該板金特徵模型設定為至少一該目標板金特徵模型,實務上,步驟S4中,可先依據該影像特徵點資料的Hu矩不變量分別與該些板金特徵模型的特徵點資料的Hu矩不變量進行比對並根據相似度值依序排列後,選定數個最相似的板金特徵模型,該處理裝置40再依據該影像特徵點資料與幾何特徵相關的特徵點項目,如面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比之特徵點項目分別與該資料庫中被選定之該些板金特徵模型的特徵點資料的特徵點項目進行對比,以分別得到複數個比對值,且該處理裝置40將該些比對值之中小於門檻值所對應的板金特徵模型設定為目標板金特徵模型,如此,可在Hu矩不變量比對後的數量太多時,再以幾何特徵去進一步篩選,以減少數量。如圖5所示,該些目標板金特徵模型根據比對值
依序排列,並顯示於該螢幕90上。圖5中該些目標板金特徵模型之比對值分別為(0.1、0.2、0.3)。使用者點擊相似度0.1的目標板金特徵模型,再點擊一列印按鍵92後,處理裝置40透過列印裝置41將識別標記列印為識別標籤。
In one embodiment, in step S4, according to the Hu moment invariants of the image feature point data and the Hu moment invariants of the feature point data of the sheet metal feature models, respectively, a plurality of similarities are calculated by the Euclidean distance algorithm. Value; and according to the similarity values, the at least one sheet metal feature model that matches or is similar to the image feature point data is set as at least one target sheet metal feature model. In practice, in step S4, the image can be first based on The Hu moment invariants of the feature point data are respectively compared with the Hu moment invariants of the feature point data of the sheet metal feature models and arranged in sequence according to the similarity value, and several most similar sheet metal feature models are selected, and the
此外,於步驟S4中,該處理裝置40也可以先依據該影像特徵點資料與幾何特徵相關的特徵點項目,如面積、周長、質心、矩型度、孔洞比、最小外接矩型長寬比之特徵點項目分別與該資料庫中之該些板金特徵模型的特徵點資料的特徵點項目進行對比,以分別得到複數個比對值,並選定比對值小於該門檻值之板金特徵模型,再依據該影像特徵點資料的Hu矩不變量分別與該資料庫中被選定之該些板金特徵模型的特徵點資料的Hu矩不變量進行比對並根據相似度值依序排列,該處理裝置40判斷該資料庫中的數個最相似的板金特徵模型為目標板金特徵模型,如此,可在幾何特徵比對後的數量太多時,再以Hu矩不變量進一步篩選,以減少數量。於一實施例中,該處理裝置40可以重複進行與幾何特徵相關的特徵點項目及Hu矩不變量之比對。
In addition, in step S4, the
於一實施例中,該處理裝置40可根據該影像特徵點資料的特徵點項目依序與該些板金特徵模型的特徵點項目對比,舉例來說,該處理裝置40可先針對其中一特徵點項目進行對比,並選定比對值小於該門檻值之板金特徵模型,而後再根據該影像特徵點資料的另一特徵點項目與該資料庫中被選定之板金特徵模型的特徵點項目對比,並重複上述之步驟後得到至少一目標板金特徵模型。
In one embodiment, the
舉例而言,使用者設定一門檻值,該處理裝置40首先針對面積特徵點項目進行對比,該處理裝置40將該影像特徵點資料的面積特徵點項目與資料庫中的該些板金特徵模型的面積特徵點項目對比,得到
對應面積特徵點項目的複數個比對值,其中,比對值愈小,代表面積特徵點項目愈相近。接著選定比對值小於該門檻值之板金特徵模型,若前述篩選出的之板金特徵模型之數量大於一設定數量,該處理裝置40再針對該影像特徵點資料的中心至外框距離特徵點項目與該資料庫中被選定之板金特徵模型的中心值外框距離特徵點項目進行對比,得到對應中心至外框距離特徵點項目的複數個比對值,其中,比對值愈小,代表中心至外框距離特徵點項目愈相近。接著並選定比對值小於該門檻值之板金特徵模型,若再次篩選出的比對值小於該門檻值之板金特徵模型之數量仍大於該設定數量,該處理裝置40則繼續重複前述步驟以其它不同的特徵點項目進行對比,直到篩選出的之板金特徵模型之數量小於或等於該設定數量,或者直到對比完所有該影像特徵點資料的特徵點項目,最後,將被選定之板金特徵模型設定為目標板金特徵模型。如此一來,可節省大量的對比時間,以增進工作效率。
For example, if the user sets a threshold value, the
於一實施例中,使用者可針對各種不同的特徵點項目分別設定不同的門檻值,以達到較佳的對比結果。舉例而言,使用者可根據每一個特徵點項目設定一個對應的門檻值,例如,面積特徵點項目之門檻值為一第一門檻值,中心至外框距離特徵點項目之門檻值為一第二門檻值,該處理裝置40於對比面積特徵點項目時,該處理裝置40將該影像特徵點資料的面積特徵點項目與資料庫中的該些板金特徵模型的面積特徵點項目對比,得到對應面積特徵點項目的複數個比對值,並選定比對值小於該第一門檻值之板金特徵模型,若前述篩選出的板金特徵模型的數量大於一設定數量,該處理裝置40再針對該影像特徵點資料的中心至外框距離特徵點項目與該資料庫中被選定之板金特徵模型的中心值外框距離特徵點項目進行對比,得到對應中心至外框距離特徵點項目的
複數個比對值,並選定比對值小於該第二門檻值之板金特徵模型,以再次篩選出更相似的板金特徵模型,如此一來,一樣可以達到節省對比時間,增進工作效率之目的。
In one embodiment, the user can set different threshold values for various feature point items to achieve a better comparison result. For example, the user can set a corresponding threshold value according to each feature point item. For example, the threshold value for the area feature point item is a first threshold value, and the threshold value for the distance feature point item from the center to the outer frame is a first threshold value. Two threshold values. When the
綜上所述,本發明的功效在於,使用者可藉由將板金之影像特徵點資料與資料庫中的複數個板金特徵模型進行對比,進而得到目標板金特徵模型,如此一來,使用者根據該目標板金特徵模型,即可辨識出該板金之身分,以利進行後續製程,再者,本發明之資料庫不需利用大量的板金影像進行智慧訓練,本發明之資料庫是由輸入二維模型圖檔建立,其提供一較有效率之資料庫建立方法。實務上,若已有資料庫存在則不需再進行S01~S05之資料庫建立步驟,只要進行步驟S1~S5即可辨識板金。 In summary, the effect of the present invention is that the user can compare the image feature point data of the sheet metal with a plurality of sheet metal feature models in the database to obtain the target sheet metal feature model. In this way, the user can obtain the target sheet metal feature model according to The target sheet metal feature model can identify the identity of the sheet metal to facilitate subsequent manufacturing processes. Furthermore, the database of the present invention does not need to use a large number of sheet metal images for smart training. The database of the present invention is inputted by two-dimensional Model drawing file creation, which provides a more efficient database creation method. In practice, if there is an existing database, there is no need to perform the database creation steps of S01~S05, just perform steps S1~S5 to identify the sheet metal.
以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。 The above are only the preferred and feasible embodiments of the present invention. Any equivalent changes made by applying the specification of the present invention and the scope of the patent application should be included in the patent scope of the present invention.
1:板金辨識系統 1: Sheet metal identification system
10:平台 10: Platform
12:頂面 12: Top surface
20:光源 20: light source
30:影像模組 30: Image module
40:處理裝置 40: processing device
41:列印裝置 41: printing device
50:板金 50: sheet metal
60:遮光件 60: Shading parts
90:螢幕 90: screen
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108133245A TWI723541B (en) | 2019-09-16 | 2019-09-16 | Sheet metal identification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108133245A TWI723541B (en) | 2019-09-16 | 2019-09-16 | Sheet metal identification method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202113684A TW202113684A (en) | 2021-04-01 |
TWI723541B true TWI723541B (en) | 2021-04-01 |
Family
ID=76604233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108133245A TWI723541B (en) | 2019-09-16 | 2019-09-16 | Sheet metal identification method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI723541B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834689A (en) * | 2010-04-01 | 2012-12-19 | 新日本制铁株式会社 | Particle measuring system and particle measuring method |
CN105642781A (en) * | 2015-12-31 | 2016-06-08 | 徐州德坤电气科技有限公司 | Artificial intelligence sheet metal part producing system |
CN108535278A (en) * | 2018-04-18 | 2018-09-14 | 常州市安视智能科技有限公司 | Metal plate eyelet work product line punching defect detecting device based on machine vision and method |
TWM577525U (en) * | 2019-01-15 | 2019-05-01 | 廣達電腦股份有限公司 | Electronic device and camera module thereof |
-
2019
- 2019-09-16 TW TW108133245A patent/TWI723541B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834689A (en) * | 2010-04-01 | 2012-12-19 | 新日本制铁株式会社 | Particle measuring system and particle measuring method |
CN105642781A (en) * | 2015-12-31 | 2016-06-08 | 徐州德坤电气科技有限公司 | Artificial intelligence sheet metal part producing system |
CN108535278A (en) * | 2018-04-18 | 2018-09-14 | 常州市安视智能科技有限公司 | Metal plate eyelet work product line punching defect detecting device based on machine vision and method |
TWM577525U (en) * | 2019-01-15 | 2019-05-01 | 廣達電腦股份有限公司 | Electronic device and camera module thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202113684A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210217129A1 (en) | Detection of encoded signals and icons | |
JP5879725B2 (en) | Sheet metal work support system | |
US11257198B1 (en) | Detection of encoded signals and icons | |
US10803272B1 (en) | Detection of encoded signals and icons | |
JP5505409B2 (en) | Feature point generation system, feature point generation method, and feature point generation program | |
WO2019214169A1 (en) | Multicolor bar code and color calibration method therefor | |
EP3016028B1 (en) | System and method for recognizing distorted machine-readable symbols | |
CN112740223A (en) | Tire sidewall imaging method | |
US10599943B2 (en) | Circuit board text recognition | |
US7980473B2 (en) | Camera based code reading | |
Susanto et al. | A high performace of local binary pattern on classify Javanese character classification | |
CN112801232A (en) | Scanning identification method and system applied to prescription entry | |
CN107403179B (en) | Registration method and device for article packaging information | |
JP7076772B2 (en) | Authentication system and authentication method | |
JP2012150552A (en) | Object recognition processing device and object recognition processing method | |
TWI723541B (en) | Sheet metal identification method | |
CN110596118A (en) | Print pattern detection method and print pattern detection device | |
JP2019021100A (en) | Image search device, merchandise recognition device, and image search program | |
CN111598100A (en) | Vehicle frame number identification method and device, computer equipment and storage medium | |
CN111353324A (en) | Method for reading two-dimensional code of dot matrix in glass | |
EP4156119A1 (en) | Collation device, program, and collation method | |
KR20220071480A (en) | Method of Machine Learning of Marking Character of Steel Material of Optical Character Reading System for Monitoring Place of Piling Up Steel Material | |
TWI833525B (en) | Abnormality detection method, abnormality detection apparatus and abnormality detection system | |
JPH0877293A (en) | Character recognition device and generating method for dictionary for character recognition | |
CN115759146A (en) | Two-dimensional bar code identification method and device, electronic equipment and storage medium |