TWI721790B - Laminated body, electrolytic cell, manufacturing method of electrolytic cell, renewal method of laminated body, and manufacturing method of wound body - Google Patents

Laminated body, electrolytic cell, manufacturing method of electrolytic cell, renewal method of laminated body, and manufacturing method of wound body Download PDF

Info

Publication number
TWI721790B
TWI721790B TW109105584A TW109105584A TWI721790B TW I721790 B TWI721790 B TW I721790B TW 109105584 A TW109105584 A TW 109105584A TW 109105584 A TW109105584 A TW 109105584A TW I721790 B TWI721790 B TW I721790B
Authority
TW
Taiwan
Prior art keywords
electrolysis
electrode
electrolytic cell
anode
laminate
Prior art date
Application number
TW109105584A
Other languages
Chinese (zh)
Other versions
TW202020231A (en
Inventor
船川明恭
角佳典
蜂谷敏徳
古池潤
Original Assignee
日商旭化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018053149A external-priority patent/JP7072413B2/en
Priority claimed from JP2018053145A external-priority patent/JP7109220B2/en
Priority claimed from JP2018053139A external-priority patent/JP7073152B2/en
Priority claimed from JP2018053146A external-priority patent/JP7075792B2/en
Priority claimed from JP2018053217A external-priority patent/JP7058152B2/en
Priority claimed from JP2018053231A external-priority patent/JP7075793B2/en
Priority claimed from JP2018053144A external-priority patent/JP7104533B2/en
Application filed by 日商旭化成股份有限公司 filed Critical 日商旭化成股份有限公司
Publication of TW202020231A publication Critical patent/TW202020231A/en
Application granted granted Critical
Publication of TWI721790B publication Critical patent/TWI721790B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本發明係關於電解用電極、積層體、捲繞體、電解槽、電解槽之製造方法、電極之更新方法、積層體之更新方法、及捲繞體之製造方法。本發明之一態樣之電解用電極之每單位面積之質量為48 mg/cm2 以下,每單位質量·單位面積所承受之力為0.08 N/mg・cm2 以上。The present invention relates to an electrode for electrolysis, a laminated body, a wound body, an electrolytic cell, a method of manufacturing an electrolytic cell, a method of renewing an electrode, a method of renewing a laminated body, and a method of manufacturing a wound body. In one aspect of the present invention, the mass per unit area of the electrode for electrolysis is 48 mg/cm 2 or less, and the force per unit mass·unit area is 0.08 N/mg·cm 2 or more.

Description

積層體、電解槽、電解槽之製造方法、積層體之更新方法、及捲繞體之製造方法Laminated body, electrolytic cell, manufacturing method of electrolytic cell, renewal method of laminated body, and manufacturing method of wound body

本發明係關於一種電解用電極、積層體、捲繞體、電解槽、電解槽之製造方法、電極之更新方法、積層體之更新方法、及捲繞體之製造方法。The present invention relates to an electrode for electrolysis, a laminate, a winding body, an electrolytic cell, a method for manufacturing an electrolytic cell, a method for renewing an electrode, a method for renewing a laminate, and a method for manufacturing a winding body.

於食鹽水等鹼金屬氯化物水溶液之電性分解及水之電性分解(以下稱為「電解」)中,利用使用具備隔膜、更具體而言為離子交換膜或微多孔膜之電解槽之方法。該電解槽於較多情形時於其內部具備多個串聯連接之電解池。將隔膜介置於各電解池之間而進行電解。於電解池中,將具有陰極之陰極室與具有陽極之陽極室介隔間隔壁(背面板)或經由壓製壓力、藉由螺栓緊固等獲得之推壓而背對背配置。 目前用於該等電解槽之陽極、陰極係藉由焊接、折入等方法而固定於電解池之各陽極室、陰極室,其後,保管並向顧客處輸送。另一方面,隔膜係於其本身單獨捲繞於氯乙烯(vinyl chloride)製之管等之狀態下保管並向顧客處輸送。於顧客處將電解池排列於電解槽之架上,將隔膜夾於電解池之間而組裝電解槽。由此實施電解池之製造及顧客處之電解槽之組裝。作為可應用於此種電解槽之結構物,於專利文獻1、2中揭示有隔膜與電極成為一體之結構物。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開昭58-048686 [專利文獻2]日本專利特開昭55-148775In the electrical decomposition of aqueous solutions of alkali metal chlorides such as salt water and the electrical decomposition of water (hereinafter referred to as "electrolysis"), the use of electrolytic cells equipped with diaphragms, more specifically, ion exchange membranes or microporous membranes is used. method. In most cases, the electrolytic cell is provided with a plurality of electrolytic cells connected in series inside. The diaphragm is interposed between the electrolytic cells to perform electrolysis. In the electrolytic cell, the cathode chamber with the cathode and the anode chamber with the anode are arranged back-to-back through the partition wall (back plate) or through pressing pressure, pressing obtained by bolt fastening, or the like. The anodes and cathodes currently used in these electrolytic cells are fixed to the anode and cathode chambers of the electrolytic cells by welding, folding and other methods, and thereafter, they are stored and transported to customers. On the other hand, the separator is stored in a state where it is individually wound around a vinyl chloride (vinyl chloride) pipe, etc., and is transported to customers. Arrange the electrolytic cells on the shelf of the electrolytic cell at the customer's place, and assemble the electrolytic cell by sandwiching the diaphragm between the electrolytic cells. In this way, the manufacture of electrolytic cells and the assembly of electrolytic cells at the customer's site are implemented. As a structure applicable to such an electrolytic cell, Patent Documents 1 and 2 disclose a structure in which a diaphragm and an electrode are integrated. [Prior Technical Literature] [Patent Literature] [Patent Document 1] Japanese Patent Laid-Open No. Sho 58-048686 [Patent Document 2] Japanese Patent Laid-Open No. Sho 55-148775

[發明所欲解決之問題] 若啟動電解運轉並持續,則因各種要因,各零件劣化,電解性能降低,而於某一時點將各零件更換。藉由將隔膜從電解池之間抽出,並插入新隔膜,而可將隔膜簡單地更新。另一方面,由於陽極或陰極係被固定於電解池,因此存在產生如下非常繁雜之作業之課題:於電極更新時,從電解槽取出電解池,將其搬出至專用之更新工場,解除焊接等之固定並剝離取下舊電極後,設置新電極,藉由焊接等方法將其固定並搬運至電解工場,移回至電解槽。此處,考慮將專利文獻1、2所記載之藉由熱壓接使隔膜與電極成為一體之結構物用於上述更新,但該結構物即使於實驗室等級能夠相對較容易地製造,符合實際之商業尺寸之電解池(例如,縱1.5 m、橫3 m)進行製造並不容易。又,電解性能(電解電壓、電流效率、苛性鈉中食鹽濃度等)、耐久性顯著較差,於隔膜與界面之電極上會產生氯氣或氫氣,因此若長期用於電解,則會完全剝離,實用上無法使用。 本發明係鑒於上述先前技術所具有之課題而完成者,其目的在於提供以下之電解用電極、積層體、捲繞體、電解槽、電解槽之製造方法、電極之更新方法、積層體之更新方法、及捲繞體之製造方法。 (第1目的) 本發明之目的之一在於提供一種輸送或操作變得容易、能夠大幅地簡化啟動新品之電解槽時或更新劣化之電極時之作業、進而亦能夠維持或提高電解性能之電解用電極、積層體及捲繞體。 (第2目的) 本發明之目的之一在於提供一種能夠提高電解槽中之電極更新時之作業效率、進而更新後亦能夠表現出優異之電解性能之積層體。 (第3目的) 基於上述第2目的以外之另一觀點,本發明之目的之一在於提供一種能夠提高電解槽中之電極更新時之作業效率、進而更新後亦能夠表現出優異之電解性能之積層體。 (第4目的) 本發明之目的之一在於提供一種電解性能優異並且能夠防止隔膜之損傷之電解槽、電解槽之製造方法及積層體之更新方法。 (第5目的) 本發明之目的之一在於提供一種能夠提高電解槽中之電極更新時之作業效率的電解槽之製造方法、電極之更新方法、及捲繞體之製造方法。 (第6目的) 基於上述第5目的以外之另一觀點,本發明之目的之一在於提供一種能夠提高電解槽中之電極更新時之作業效率的電解槽之製造方法。 (第7目的) 基於上述第5及第6目的以外之另一觀點,本發明之目的之一在於提供一種能夠提高電解槽中之電極更新時之作業效率的電解槽之製造方法。 [解決問題之技術手段] 本發明者等人為了達成第1目的而反覆進行銳意研究,結果發現,藉由製作每單位面積之質量較小、能夠以較弱之力與離子交換膜及微多孔膜等隔膜或劣化之電極接著之電解用電極,輸送、操作變得容易,能夠大幅地簡化啟動新品之電解槽時或更新劣化之零件時之作業,進而,與先前技術之電解性能相比,能夠大幅地提高性能。又,能夠使其電解性能與更新作業繁雜之先前之電解池的電解性能相同或有所提高,從而完成本發明。 即,本發明包含以下。 [1]一種電解用電極,其每單位面積之質量為48 mg/cm2 以下,每單位質量·單位面積所承受之力為0.08 N/mg・cm2 以上。 [2]如[1]所記載之電解用電極,其中上述電解用電極包含電解用電極基材及觸媒層,電解用電極基材之厚度為300 μm以下。 [3]如[1]或[2]所記載之電解用電極,其中藉由以下之方法(3)所測得之比率為75%以上。 [方法(3)] 將於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之膜(170 mm見方)與電解用電極樣品(130 mm見方)依序加以積層。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電解用電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,1分鐘後測定於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之膜與電解用電極樣品密接之部分之面積的比率(%)。 [4]如[1]至[3]中任一項所記載之電解用電極,其係多孔結構,開孔率為5~90%。 [5]如[1]至[4]中任一項所記載之電解用電極,其係多孔結構,開孔率為10~80%。 [6]如[1]至[5]中任一項所記載之電解用電極,其中電解用電極之厚度為315 μm以下。 [7]如[1]至[6]中任一項所記載之電解用電極,其中藉由以下之方法(A)對電解用電極進行測定而獲得之值為40 mm以下。 [方法(A)] 於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L1 及L2 ,以該等之平均值作為測定值。 [8]如[1]至[7]中任一項所記載之電解用電極,其中將上述電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm2 /s之情形時之通氣阻力為24 kPa・s/m以下。 [9]如[1]至[8]中任一項所記載之電解用電極,其中電極含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 [10]一種積層體,其含有如[1]至[9]中任一項所記載之電解用電極。 [11]一種捲繞體,其含有如[1]至[9]中任一項所記載之電解用電極、或如[10]所記載之積層體。 本發明者等人為了達成第2目的而反覆進行銳意研究,結果發現,藉由具備離子交換膜及微多孔膜等隔膜或劣化之既有電極等饋電體及以較弱之力與其進行接著之電極的積層體,輸送、操作變得容易,能夠大幅地簡化啟動新品之電解槽時或更新劣化之零件時之作業,進而,亦能夠維持或提高電解性能,從而完成本發明。 即,本發明包含以下之態樣。 [2-1] 一種積層體,其具備 電解用電極、及 與上述電解用電極相接之隔膜或饋電體, 針對上述隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 。 [2-2] 如[2-1]所記載之積層體,其中針對上述隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力超過0.005 N/mg・cm2 。 [2-3] 如[2-1]或[2-2]所記載之積層體,其中上述饋電體為金屬絲網、金屬不織布、沖孔金屬、多孔金屬、或發泡金屬。 [2-4] 如[2-1]至[2-3]中任一項所記載之積層體,其具有含有親水性氧化物粒子與導入有離子交換基之聚合物之混合物的層作為上述隔膜之至少一表面層。 [2-5] 如[2-1]至[2-4]中任一項所記載之積層體,其中於上述電解用電極與上述隔膜或饋電體之間介置液體。 本發明者等人為了達成第3目的而反覆進行銳意研究,結果發現,藉由局部固定有隔膜與電解用電極之積層體,能夠解決上述課題,從而完成本發明。 即,本發明包含以下之態樣。 [3-1] 一種積層體,其具有 隔膜、及 固定於上述隔膜之表面之至少一區域之電解用電極, 上述隔膜之表面中之上述區域之比率超過0%且未達93%。 [3-2] 如[3-1]所記載之積層體,其中上述電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 [3-3] 如[3-1]或[3-2]所記載之積層體,其中於上述區域,上述電解用電極之至少一部分貫通上述隔膜而被固定。 [3-4] 如[3-1]至[3-3]中任一項所記載之積層體,其中於上述區域,上述電解用電極之至少一部分位於上述隔膜之內部而被固定。 [3-5] 如[3-1]至[3-4]中任一項所記載之積層體,其進而具有用以將上述隔膜與上述電解用電極加以固定之固定用構件。 [3-6] 如[3-5]所記載之積層體,其中上述固定用構件之至少一部分從外部將上述隔膜與上述電解用電極固持。 [3-7] 如[3-5]或[3-6]所記載之積層體,其中上述固定用構件之至少一部分藉由磁力將上述隔膜與上述電解用電極加以固定。 [3-8] 如[3-1]至[3-7]中任一項所記載之積層體,其中上述隔膜包含於表面層含有有機樹脂之離子交換膜,且 上述有機樹脂存在於上述區域。 [3-9] 如[3-1]至[3-8]中任一項所記載之積層體,其中上述隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之EW之第2離子交換樹脂層。 [3-10] 如[3-1]至[3-8]中任一項所記載之積層體,其中上述隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。 本發明者等人為了達成第4目的而反覆進行銳意研究,結果發現,藉由將隔膜與電解用電極之積層體之至少一部分夾持於陽極側墊片及陰極側墊片,能夠解決上述課題,從而完成本發明。 即,本發明包含以下之態樣。 [4-1] 一種電解槽,其具備 陽極、 支持上述陽極之陽極框、 配置於上述陽極框上之陽極側墊片、 與上述陽極相對向之陰極、 支持上述陰極之陰極框、 配置於上述陰極框上且與上述陽極側墊片相對向之陰極側墊片、及 配置於上述陽極側墊片與上述陰極側墊片之間之隔膜與電解用電極之積層體,且 上述積層體之至少一部分由上述陽極側墊片及上述陰極側墊片所夾持, 將上述電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm2 /s之情形時之通氣阻力為24 kPa・s/m以下。 [4-2] 如[4-1]所記載之電解槽,其中上述電解用電極之厚度為315 μm以下。 [4-3] 如[4-1]或[4-2]所記載之電解槽,其中藉由以下之方法(A)對上述電解用電極進行測定而獲得之值為40 mm以下。 [4-方法(A)] 於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L1 及L2 ,以該等之平均值作為測定值。 [4-4] 如[4-1]至[4-3]中任一項所記載之電解槽,其中上述電解用電極之每單位面積之質量為48 mg/cm2 以下。 [4-5] 如[4-1]至[4-4]中任一項所記載之電解槽,其中上述電解用電極之每單位質量·單位面積所承受之力超過0.005 N/mg・cm2 。 [4-6] 如[4-1]至[4-5]中任一項所記載之電解槽,其中上述積層體之最外周緣位於較上述陽極側墊片及陰極側墊片之最外周緣更靠通電面方向外側之位置。 [4-7] 如[4-1]至[4-6]中任一項所記載之電解槽,上述電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 [4-8] 如[4-1]至[4-7]中任一項所記載之電解槽,其中於上述積層體中,上述電解用電極之至少一部分貫通上述隔膜而被固定。 [4-9] 如[4-1]至[4-7]中任一項所記載之電解槽,其中於上述積層體中,上述電解用電極之至少一部分位於上述隔膜之內部而被固定。 [4-10] 如[4-1]至[4-9]中任一項所記載之電解槽,其中於上述積層體中進而具有用以將上述隔膜與上述電解用電極加以固定之固定用構件。 [4-11] 如[4-10]所記載之電解槽,其中於上述積層體中,上述固定用構件之至少一部分貫通上述隔膜與上述電解用電極而加以固定。 [4-12] 如[4-10]或[4-11]所記載之電解槽,其中於上述積層體中,上述固定用構件含有可溶於電解液之可溶材料。 [4-13] 如[4-10]至[4-12]中任一項所記載之電解槽,其中於上述積層體中,上述固定用構件之至少一部分從外部將上述隔膜與上述電解用電極固持。 [4-14] 如[4-10]至[4-13]中任一項所記載之電解槽,其中於上述積層體中,上述固定用構件之至少一部分藉由磁力將上述隔膜與上述電解用電極加以固定。 [4-15] 如[4-1]至[4-14]中任一項所記載之電解槽,其中上述隔膜包含於表面層含有有機樹脂之離子交換膜,且 於上述有機樹脂中固定有上述電解用電極。 [4-16] 如[4-1]至[4-15]中任一項所記載之電解槽,其中上述隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之EW之第2離子交換樹脂層。 [4-17] 一種如[4-1]至[4-16]中任一項所記載之電解槽之製造方法, 其具有於上述陽極側墊片與陰極側墊片之間夾持上述積層體之步驟。 [4-18] 一種如[4-1]至[4-16]中任一項所記載之電解槽中之積層體之更新方法,其具有 藉由將上述積層體從上述陽極側墊片及上述陰極側墊片分離而將該積層體從電解槽取出之步驟;及 於上述陽極側墊片與陰極側墊片之間夾持新的上述積層體之步驟。 本發明者等人為了達成第5目的而反覆進行銳意研究,結果發現,藉由使用電解用電極或該電解用電極與新隔膜之積層體之捲繞體,能夠解決上述課題,從而完成本發明。 即,本發明包含以下之態樣。 [5-1] 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置電解用電極或該電解用電極與新隔膜之積層體而製造新電解槽之方法,並且 使用上述電解用電極或上述積層體之捲繞體。 [5-2] 如[5-1]所記載之電解槽之製造方法,其具有將上述電解用電極或上述積層體保持為捲繞狀態而獲得上述捲繞體之步驟(A)。 [5-3] 如[5-1]或[5-2]所記載之電解槽之製造方法,其具有解除上述捲繞體之捲繞狀態之步驟(B)。 [5-4] 如[5-3]所記載之電解槽之製造方法,其具有於上述步驟(B)後於上述陽極及上述陰極之至少一者之表面上配置上述電解用電極或上述積層體之步驟(C)。 [5-5] 一種電極之更新方法,其係用以藉由使用電解用電極而更新既有之電極之方法,並且 使用上述電解用電極之捲繞體。 [5-6] 如[5-5]所記載之電極之更新方法,其具有將上述電解用電極保持為捲繞狀態而獲得上述捲繞體之步驟(A')。 [5-7] 如[5-5]或[5-6]所記載之電極之更新方法,其具有解除上述電解用電極之捲繞狀態之步驟(B')。 [5-8] 如[5-7]所記載之電極之更新方法,其具有於上述步驟(B')後於既有電極之表面上配置上述電解用電極之步驟(C')。 [5-9] 一種捲繞體之製造方法,其係用以更新具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽的捲繞體之製造方法,並且 具有將電解用電極或該電解用電極與新隔膜之積層體捲繞而獲得上述捲繞體之步驟。 本發明者等人為了達成第6目的而反覆進行銳意研究,結果發現,藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,可解決上述課題,從而完成本發明。 即,本發明包含以下之態樣。 [6-1] 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置積層體而製造新電解槽之方法,並且具有 藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,而獲得上述積層體之步驟(A);及 於上述步驟(A)後將既有電解槽中之上述隔膜更換為上述積層體之步驟(B)。 [6-2] 如[6-1]所記載之電解槽之製造方法,其中上述一體化係於常壓下進行。 本發明者等人為了達成第7目的而反覆進行銳意研究,結果發現,藉由電解槽架內之操作,能夠解決上述課題,從而完成本發明。 即,本發明包含以下之態樣。 [7-1] 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置包含電解用電極及新隔膜之積層體而製造新電解槽之方法,並且具有: 於上述電解槽架內解除上述隔膜之固定之步驟(A);及 於上述步驟(A)後將上述隔膜與上述積層體交換之步驟(B)。 [7-2] 如[7-1]所記載之電解槽之製造方法,其中上述步驟(A)係藉由使上述陽極及上述陰極分別沿該等之排列方向滑動而進行。 [7-3] 如[7-1]或[7-2]所記載之電解槽之製造方法,其係於上述步驟(B)後,藉由來自上述陽極及上述陰極之按壓,而將上述積層體固定於上述電解槽架內。 [7-4] 如[7-1]至[7-3]中任一項所記載之電解槽之製造方法,其中於上述步驟(B)中,於上述積層體不熔融之溫度下將該積層體固定於上述陽極及上述陰極之至少一者之表面上。 [7-5] 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置電解用電極而製造新電解槽之方法,並且具有: 於上述電解槽架內解除上述隔膜之固定之步驟(A);及 於上述步驟(A)後,於上述隔膜與上述陽極或上述陰極之間配置上述電解用電極之步驟(B')。 [發明之效果] (1)根據本發明之電解用電極,輸送或操作變得容易,能夠大幅地簡化啟動新品之電解槽時或更新劣化之電極時之作業,進而亦能夠維持或提高電解性能。 (2)根據本發明之積層體,能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。 (3)根據本發明之積層體,基於上述(2)以外之另一觀點,能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。 (4)根據本發明之電解槽,電解性能優異,並且能夠防止隔膜之損傷。 (5)根據本發明之電解槽之製造方法,能夠提高電解槽中之電極更新時之作業效率。 (6)根據本發明之電解槽之製造方法,基於上述(5)以外之另一觀點,能夠提高電解槽中之電極更新時之作業效率。 (7)根據本發明之電解槽之製造方法,基於上述(5)及(6)以外之另一觀點,能夠提高電解槽中之電極更新時之作業效率。[Problem to be solved by the invention] If the electrolysis operation is started and continued, due to various factors, the parts are deteriorated and the electrolysis performance is reduced, and the parts are replaced at a certain point in time. By withdrawing the diaphragm from between the electrolytic cells and inserting a new diaphragm, the diaphragm can be simply renewed. On the other hand, since the anode or the cathode is fixed to the electrolytic cell, there is a problem that the following very complicated operations are generated: when the electrode is renewed, the electrolytic cell is taken out from the electrolytic cell, carried out to a dedicated renewal workshop, and the welding is released. After removing the old electrode, set a new electrode, fix it by welding and other methods, transport it to the electrolysis workshop, and move it back to the electrolysis cell. Here, it is considered that the structure described in Patent Documents 1 and 2 in which the diaphragm and the electrode are integrated by thermocompression bonding is used for the above-mentioned update. However, the structure can be manufactured relatively easily even at the laboratory level, which is in line with reality. It is not easy to manufacture a commercial size electrolytic cell (for example, 1.5 m in length and 3 m in width). In addition, electrolysis performance (electrolysis voltage, current efficiency, salt concentration in caustic soda, etc.) and durability are significantly poor. Chlorine or hydrogen is generated on the electrode between the diaphragm and the interface. Therefore, if it is used for electrolysis for a long time, it will be completely peeled off, which is practical. Cannot be used on. The present invention was completed in view of the above-mentioned problems of the prior art, and its purpose is to provide the following electrolysis electrodes, laminates, wound bodies, electrolytic cells, electrolytic cell manufacturing methods, electrode renewal methods, and laminate renewal Method, and manufacturing method of winding body. (First objective) One of the objectives of the present invention is to provide an electrolysis that is easy to transport or operate, can greatly simplify the operation when starting a new electrolytic cell or when replacing a deteriorated electrode, and furthermore can maintain or improve the electrolysis performance. Use electrodes, laminates and rolls. (Second Object) One of the objects of the present invention is to provide a laminate that can improve the work efficiency during the renewal of the electrodes in the electrolytic cell, and furthermore can exhibit excellent electrolytic performance even after the renewal. (Third Objective) Based on another point of view other than the above-mentioned second objective, one of the objectives of the present invention is to provide a method that can improve the operating efficiency during the renewal of the electrode in the electrolytic cell, and can also exhibit excellent electrolytic performance after the renewal. Layered body. (Fourth Object) One of the objects of the present invention is to provide an electrolytic cell that has excellent electrolytic performance and can prevent damage to the diaphragm, a method for manufacturing the electrolytic cell, and a method for renewing the laminate. (Fifth Object) One of the objects of the present invention is to provide a method for manufacturing an electrolytic cell, a method for renewing an electrode, and a method for manufacturing a wound body that can improve the operating efficiency when the electrode in the electrolytic cell is renewed. (Sixth Object) Based on another point of view other than the above-mentioned fifth object, one of the objects of the present invention is to provide a method for manufacturing an electrolytic cell that can improve the operating efficiency when the electrodes in the electrolytic cell are renewed. (Seventh Object) Based on another point of view other than the above-mentioned fifth and sixth objects, one of the objects of the present invention is to provide a method for manufacturing an electrolytic cell that can improve the operating efficiency when the electrodes in the electrolytic cell are renewed. [Technical Means to Solve the Problem] The inventors of the present invention have repeatedly conducted researches in order to achieve the first objective. As a result, they have found that by making the mass per unit area smaller, they can interact with ion exchange membranes and microporous membranes with weaker force. Membrane and other diaphragms or electrodes for electrolysis followed by deteriorated electrodes can be easily transported and operated, which greatly simplifies the operation when starting up a new electrolytic cell or when replacing deteriorated parts. Furthermore, compared with the electrolysis performance of the prior art, Can greatly improve performance. In addition, the electrolytic performance can be made the same as or improved to that of the previous electrolytic cell with complicated renewal operations, thereby completing the present invention. That is, the present invention includes the following. [1] An electrode for electrolysis whose mass per unit area is 48 mg/cm 2 or less, and the force per unit mass and unit area is 0.08 N/mg·cm 2 or more. [2] The electrode for electrolysis according to [1], wherein the electrode for electrolysis includes an electrode substrate for electrolysis and a catalyst layer, and the thickness of the electrode substrate for electrolysis is 300 μm or less. [3] The electrode for electrolysis as described in [1] or [2], wherein the ratio measured by the following method (3) is 75% or more. [Method (3)] The membrane (170 mm square) and the electrode sample for electrolysis (130 mm square) coated with inorganic particles and binding agent on both sides of the membrane with ion exchange group perfluorocarbon polymer introduced in sequence To be layered. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the laminate is placed on the curved surface of a polyethylene tube (outer diameter 145 mm) so that the electrode sample for electrolysis in the laminate becomes the outside. Fully impregnate the laminate and the tube with pure water to remove the excess water adhering to the surface of the laminate and the tube. After 1 minute, it is measured that the inorganic substance is coated on both sides of the membrane of the perfluorocarbon polymer with ion-exchange groups introduced. The ratio (%) of the area of the part where the film of particles and binder is in close contact with the electrode sample for electrolysis. [4] The electrode for electrolysis as described in any one of [1] to [3], which has a porous structure and an open porosity of 5 to 90%. [5] The electrode for electrolysis as described in any one of [1] to [4], which has a porous structure and an open porosity of 10 to 80%. [6] The electrode for electrolysis according to any one of [1] to [5], wherein the thickness of the electrode for electrolysis is 315 μm or less. [7] The electrode for electrolysis according to any one of [1] to [6], wherein the value obtained by measuring the electrode for electrolysis by the following method (A) is 40 mm or less. [Method (A)] Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the sample composed of the laminated ion exchange membrane and the electrode for electrolysis is wound and fixed to a vinyl chloride with an outer diameter of ϕ32 mm On the curved surface of the core material, after standing for 6 hours, the electrode for electrolysis is separated and placed on a horizontal plate. At this time, the heights L 1 and L 2 of the two ends of the electrode for electrolysis in the vertical direction are measured, and the The average value is used as the measured value. [8] The electrode for electrolysis as described in any one of [1] to [7], wherein the electrode for electrolysis has a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, and a piston When the speed is 0.2 cm/s and the ventilation volume is 0.4 cc/cm 2 /s, the ventilation resistance is 24 kPa·s/m or less. [9] The electrode for electrolysis according to any one of [1] to [8], wherein the electrode contains at least one element selected from nickel (Ni) and titanium (Ti). [10] A laminate comprising the electrode for electrolysis as described in any one of [1] to [9]. [11] A wound body comprising the electrode for electrolysis as described in any one of [1] to [9], or the layered body as described in [10]. In order to achieve the second objective, the inventors of the present invention have conducted intensive research, and found that the use of a power feeder such as an ion-exchange membrane and a microporous membrane or a degraded existing electrode and the like is used to adhere to it The layered body of the electrode can be easily transported and operated, and can greatly simplify the operation when starting a new electrolytic cell or when renewing deteriorated parts, and furthermore, can maintain or improve the electrolysis performance, thereby completing the present invention. That is, the present invention includes the following aspects. [2-1] A laminated body comprising an electrode for electrolysis, and a diaphragm or a power feeder connected to the electrode for electrolysis, and the amount per unit mass and unit area of the electrode for electrolysis of the diaphragm or power feeder is The bearing force is less than 1.5 N/mg·cm 2 . [2-2] The laminate as described in [2-1], in which the force per unit mass and unit area of the electrode for electrolysis of the separator or feeder exceeds 0.005 N/mg·cm 2 . [2-3] The laminate as described in [2-1] or [2-2], wherein the power feeder is a wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal. [2-4] The laminate as described in any one of [2-1] to [2-3], which has a layer containing a mixture of hydrophilic oxide particles and a polymer having ion exchange groups introduced as the above At least one surface layer of the diaphragm. [2-5] The laminate according to any one of [2-1] to [2-4], wherein a liquid is interposed between the electrode for electrolysis and the separator or power feeder. In order to achieve the third object, the inventors of the present invention conducted intensive research and found that the above-mentioned problems can be solved by a laminate in which a separator and an electrode for electrolysis are partially fixed, and the present invention has been completed. That is, the present invention includes the following aspects. [3-1] A laminate having a separator and an electrode for electrolysis fixed to at least one area of the surface of the separator, the ratio of the area on the surface of the separator exceeds 0% and does not reach 93%. [3-2] The laminate as described in [3-1], wherein the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni , Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, Si, P, S, La At least one catalyst component from the group consisting of, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb and Dy. [3-3] The laminate as described in [3-1] or [3-2], in which at least a part of the electrode for electrolysis penetrates through the separator and is fixed in the region. [3-4] The layered product according to any one of [3-1] to [3-3], in which at least a part of the electrode for electrolysis is located inside the separator and is fixed in the region. [3-5] The laminate according to any one of [3-1] to [3-4], which further has a fixing member for fixing the separator and the electrode for electrolysis. [3-6] The laminate according to [3-5], wherein at least a part of the fixing member externally holds the separator and the electrode for electrolysis. [3-7] The laminate according to [3-5] or [3-6], wherein at least a part of the fixing member fixes the separator and the electrode for electrolysis by a magnetic force. [3-8] The laminate according to any one of [3-1] to [3-7], wherein the separator is included in a surface layer of an ion exchange membrane containing an organic resin, and the organic resin is present in the region . [3-9] The laminate according to any one of [3-1] to [3-8], wherein the separator includes a first ion exchange resin layer and an EW that is different from the first ion exchange resin layer The second ion exchange resin layer. [3-10] The laminate according to any one of [3-1] to [3-8], wherein the separator includes a first ion exchange resin layer and has a different function from the first ion exchange resin layer The second ion exchange resin layer of the base. In order to achieve the fourth objective, the inventors have conducted intensive research and found that the above-mentioned problem can be solved by sandwiching at least a part of the laminate of the separator and the electrode for electrolysis between the anode side gasket and the cathode side gasket. , Thereby completing the present invention. That is, the present invention includes the following aspects. [4-1] An electrolytic cell comprising an anode, an anode frame supporting the anode, an anode side gasket arranged on the anode frame, a cathode facing the anode, a cathode frame supporting the cathode, and The cathode side gasket on the cathode frame and facing the anode side gasket, the laminate of the separator and the electrode for electrolysis arranged between the anode side gasket and the cathode side gasket, and at least the laminate Part of it is sandwiched by the anode side gasket and the cathode side gasket. The electrode for electrolysis has a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, a piston speed of 0.2 cm/s, and When the ventilation rate is 0.4 cc/cm 2 /s, the ventilation resistance is 24 kPa·s/m or less. [4-2] The electrolytic cell described in [4-1], wherein the thickness of the electrode for electrolysis is 315 μm or less. [4-3] The electrolytic cell described in [4-1] or [4-2], wherein the value obtained by measuring the electrode for electrolysis by the following method (A) is 40 mm or less. [4-Method (A)] Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the sample formed by the laminated ion exchange membrane and the electrode for electrolysis is wound and fixed to a chlorine with an outer diameter of ϕ32 mm After standing for 6 hours on the curved surface of the ethylene core material, the electrolysis electrode was separated and placed on a horizontal plate. At this time, the vertical heights L 1 and L 2 of the two ends of the electrolysis electrode were measured to The average value of these is used as the measured value. [4-4] The electrolytic cell described in any one of [4-1] to [4-3], wherein the mass per unit area of the electrode for electrolysis is 48 mg/cm 2 or less. [4-5] The electrolytic cell described in any one of [4-1] to [4-4], wherein the force per unit mass and unit area of the electrode for electrolysis exceeds 0.005 N/mg·cm 2 . [4-6] The electrolytic cell described in any one of [4-1] to [4-5], wherein the outermost periphery of the laminate is located on the outermost periphery of the anode side gasket and the cathode side gasket The edge is closer to the outer side in the direction of the energized surface. [4-7] The electrolytic cell described in any one of [4-1] to [4-6], wherein the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, At least one catalyst component from the group consisting of O, Si, P, S, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. [4-8] The electrolytic cell according to any one of [4-1] to [4-7], wherein in the laminate, at least a part of the electrode for electrolysis penetrates the separator and is fixed. [4-9] The electrolytic cell according to any one of [4-1] to [4-7], wherein in the laminate, at least a part of the electrode for electrolysis is located inside the separator and is fixed. [4-10] The electrolytic cell according to any one of [4-1] to [4-9], wherein the laminate further has a fixing device for fixing the diaphragm and the electrode for electrolysis. member. [4-11] The electrolytic cell according to [4-10], wherein in the laminate, at least a part of the fixing member penetrates the separator and the electrode for electrolysis to be fixed. [4-12] The electrolytic cell according to [4-10] or [4-11], wherein in the laminate, the fixing member contains a soluble material that is soluble in an electrolyte. [4-13] The electrolytic cell according to any one of [4-10] to [4-12], wherein in the laminate, at least a part of the fixing member externally connects the separator and the electrolysis The electrode is held. [4-14] The electrolytic cell according to any one of [4-10] to [4-13], wherein in the laminate, at least a part of the fixing member magnetically connects the separator and the electrolysis Fix it with electrodes. [4-15] The electrolytic cell according to any one of [4-1] to [4-14], wherein the above-mentioned diaphragm is contained in an ion exchange membrane containing an organic resin on the surface layer, and the above-mentioned organic resin is fixed with The above-mentioned electrode for electrolysis. [4-16] The electrolytic cell described in any one of [4-1] to [4-15], wherein the diaphragm includes a first ion exchange resin layer and an EW that is different from the first ion exchange resin layer The second ion exchange resin layer. [4-17] A method for manufacturing an electrolytic cell as described in any one of [4-1] to [4-16], comprising sandwiching the laminate between the anode side gasket and the cathode side gasket The steps of the body. [4-18] A method for renewing the laminate in an electrolytic cell as described in any one of [4-1] to [4-16], which comprises removing the laminate from the anode side gasket and The step of separating the cathode side gasket and taking out the laminate from the electrolytic cell; and the step of sandwiching the new laminate between the anode side gasket and the cathode side gasket. In order to achieve the fifth objective, the inventors have conducted intensive research and found that the above-mentioned problems can be solved by using an electrode for electrolysis or a wound body of a laminate of the electrode for electrolysis and a new separator, thereby completing the present invention. . That is, the present invention includes the following aspects. [5-1] A method of manufacturing an electrolytic cell by arranging electrolysis in an existing electrolytic cell having an anode, a cathode facing the anode, and a diaphragm arranged between the anode and the cathode. A method of manufacturing a new electrolytic cell using an electrode or a laminate of the electrode for electrolysis and a new separator, and the use of the electrode for electrolysis or the wound body of the laminate. [5-2] The method for producing an electrolytic cell as described in [5-1], which includes the step (A) of obtaining the wound body by keeping the electrode for electrolysis or the layered body in a wound state. [5-3] The method for manufacturing an electrolytic cell as described in [5-1] or [5-2], which has the step (B) of releasing the wound state of the wound body. [5-4] The method for manufacturing an electrolytic cell as described in [5-3], which comprises arranging the electrode for electrolysis or the laminated layer on the surface of at least one of the anode and the cathode after the step (B) Body of the step (C). [5-5] An electrode renewal method, which is a method for renewing an existing electrode by using an electrode for electrolysis, and uses the winding body of the electrode for electrolysis. [5-6] The method for renewing an electrode as described in [5-5], which has a step (A') of maintaining the electrode for electrolysis in a wound state to obtain the wound body. [5-7] The method for renewing the electrode as described in [5-5] or [5-6], which includes the step (B') of releasing the coiled state of the electrode for electrolysis. [5-8] The electrode renewal method described in [5-7] includes the step (C') of arranging the electrode for electrolysis on the surface of the existing electrode after the step (B'). [5-9] A method of manufacturing a wound body, which is used to renew the wound body of an existing electrolytic cell having an anode, a cathode facing the anode, and a diaphragm arranged between the anode and the cathode The manufacturing method has the step of winding the electrode for electrolysis or the laminate of the electrode for electrolysis and the new separator to obtain the wound body. In order to achieve the sixth objective, the inventors have conducted intensive research and found that by integrating an electrode for electrolysis and a new separator at a temperature at which the separator does not melt, the above-mentioned problems can be solved and the present invention has been completed. That is, the present invention includes the following aspects. [6-1] A method of manufacturing an electrolytic cell by arranging a laminated body in an existing electrolytic cell having an anode, a cathode facing the anode, and a diaphragm arranged between the anode and the cathode The method of manufacturing a new electrolytic cell includes the step (A) of obtaining the laminate by integrating the electrode for electrolysis and the new diaphragm at a temperature at which the diaphragm does not melt; and after the step (A) Step (B) of replacing the above-mentioned diaphragm in the existing electrolytic cell with the above-mentioned laminate. [6-2] The method for manufacturing an electrolytic cell as described in [6-1], wherein the integration is performed under normal pressure. In order to achieve the seventh objective, the inventors have conducted intensive research, and as a result, they have found that the above-mentioned problems can be solved by the operation in the electrolytic cell frame, thereby completing the present invention. That is, the present invention includes the following aspects. [7-1] A method for manufacturing an electrolytic cell, which is used to support the anode, the cathode, and the cathode with an anode facing the anode, a separator fixed between the anode and the cathode, and The method of manufacturing a new electrolytic cell by configuring the existing electrolytic cell of the electrolytic cell frame of the above-mentioned diaphragm to include a laminate of electrodes for electrolysis and a new diaphragm, and comprising: the step (A) of releasing the fixing of the above-mentioned diaphragm in the electrolytic cell frame; And the step (B) of exchanging the above-mentioned separator and the above-mentioned laminate after the above-mentioned step (A). [7-2] The method for manufacturing an electrolytic cell as described in [7-1], wherein the step (A) is performed by sliding the anode and the cathode in the arrangement directions, respectively. [7-3] The method for manufacturing an electrolytic cell as described in [7-1] or [7-2], after the step (B), by pressing from the anode and the cathode, the The laminated body is fixed in the above-mentioned electrolytic cell frame. [7-4] The method for manufacturing an electrolytic cell as described in any one of [7-1] to [7-3], wherein in the above step (B), the layered body is not melted at a temperature The laminate is fixed on the surface of at least one of the anode and the cathode. [7-5] A method of manufacturing an electrolytic cell, which is used to provide an anode, a cathode facing the anode, a separator fixed between the anode and the cathode, and supporting the anode, the cathode, and The method for manufacturing a new electrolytic cell by arranging the electrodes for electrolysis in the existing electrolytic cell of the electrolytic cell frame of the above-mentioned diaphragm, and has: the step (A) of releasing the fixing of the above-mentioned diaphragm in the above-mentioned electrolytic cell frame; and in the above step (A) Then, the step (B') of arranging the electrode for electrolysis between the separator and the anode or the cathode. [Effects of the Invention] (1) According to the electrode for electrolysis of the present invention, transportation or operation becomes easy, and the operation when starting a new electrolytic cell or replacing a deteriorated electrode can be greatly simplified, and the electrolysis performance can be maintained or improved. . (2) According to the laminated body of the present invention, the working efficiency during the renewal of the electrodes in the electrolytic cell can be improved, and the renewal can also exhibit excellent electrolytic performance. (3) According to the laminate of the present invention, based on another point of view other than the above (2), the work efficiency during the renewal of the electrodes in the electrolytic cell can be improved, and the renewal can also exhibit excellent electrolytic performance. (4) According to the electrolytic cell of the present invention, the electrolytic performance is excellent and the diaphragm can be prevented from being damaged. (5) According to the manufacturing method of the electrolytic cell of the present invention, the work efficiency during the renewal of the electrodes in the electrolytic cell can be improved. (6) According to the manufacturing method of the electrolytic cell of the present invention, based on another viewpoint other than the above (5), it is possible to improve the work efficiency during the renewal of the electrode in the electrolytic cell. (7) According to the manufacturing method of the electrolytic cell of the present invention, based on another viewpoint other than the above (5) and (6), it is possible to improve the work efficiency during the renewal of the electrode in the electrolytic cell.

以下,關於本發明之實施形態(以下亦稱為本實施形態),視需要一邊參照圖式一邊逐個對<第1實施形態>~<第7實施形態>進行詳細說明。以下之實施形態係用以說明本發明之例示,本發明並不限定於以下之內容。又,隨附圖式係表示實施形態之一例者,形態並不限定於此進行解釋。本發明可於其主旨之範圍內適當地變形而實施。再者,只要無特別說明,則圖式中上下左右等位置關係係基於圖式所示之位置關係。圖式之尺寸及比率並不限於所圖示者。 <第1實施形態> 此處,一邊參照圖1~21一邊對本發明之第1實施形態進行詳細說明。 [電解用電極] 第1實施形態(以下於<第1實施形態>之項中簡稱為「本實施形態」)之電解用電極可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力,進而,就經濟性之觀點而言,每單位面積之質量為48 mg/cm2 以下。又,就上述方面而言,較佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 本實施形態之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力為0.08 N/(mg・cm2 )以上。又,就上述方面而言,較佳為0.1 N/(mg・cm2 )以上,更佳為0.14 N/(mg・cm2 )以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,進而較佳為0.2 N/(mg・cm2 )以上。上限值並無特別限定,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 若本實施形態之電解用電極為彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 藉由本實施形態之電解用電極,如上所述,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力,能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,於更新電極時,無需伴隨將固定於電解池之電極剝離等繁雜之更換貼附作業,而可藉由與隔膜之更新相同之簡單之作業更新電極,因此作業效率大幅提高。又,即使於在新品之電解池僅設置有饋電體之情形時(即,設置有無觸媒層之電極),亦可僅藉由將本實施形態之電解用電極貼附於饋電體而使其作為電極發揮作用,因此亦可大幅地減少觸媒塗層,或者甚至無觸媒塗層。 進而,藉由本實施形態之電解用電極,能夠使電解性能與新品時之性能相同或有所提高。 本實施形態之電解用電極例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。 承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但任一值均為0.08 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電解用電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電解用電極樣品以10 mm/分鐘沿垂直方向上升,測定電解用電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電解用電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電解用電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,為0.08 N/(mg・cm2 )以上,較佳為0.1 N/(mg・cm2 )以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,更佳為0.2 N/(mg・cm2 )以上。上限值並無特別限定,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 若本實施形態之電解用電極滿足承受力(1),則例如能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用,因此於更新電極時,無需藉由焊接等方法固定於電解池之陰極及陽極之更換貼附作業,作業效率大幅提高。又,藉由將本實施形態之電解用電極用作與離子交換膜一體化而成之電極,能夠使電解性能與新品時之性能相同或有所提高。 於出貨新品之電解池時,先前對固定於電解池之電極施加有觸媒塗層,但僅藉由使未形成有觸媒塗層之電極與本實施形態之電解用電極組合,而可用作電極,因此能夠大幅地減少用以形成觸媒塗層之製造步驟或觸媒之量或者甚至不存在該等。觸媒塗層大幅減少或不存在之先前之電極與本實施形態之電解用電極電性連接,而可使其作為用以流通電流之饋電體發揮功能。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電解用電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電解用電極樣品以10 mm/分鐘沿垂直方向上升,測定電解用電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電解用電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電解用電極樣品之質量,算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,為0.08 N/(mg・cm2 )以上,較佳為0.1 N/(mg・cm2 )以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,更佳為0.14 N/(mg・cm2 )以上。上限值並無特別限定,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 若本實施形態之電解用電極滿足承受力(2),則例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。又,藉由對劣化之電極貼附本實施形態之電解用電極,能夠使電解性能與新品時之性能相同或有所提高。 於本實施形態中,存在於離子交換膜或微多孔膜等隔膜與電解用電極、或者饋電體(劣化之電極或未形成有觸媒塗層之電極)與電解用電極之間之液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對隔膜與電解用電極、或金屬板與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體之表面張力)。 己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)、水(72.76 mN/m) 若為表面張力較大之液體,則隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極成為一體(成為積層體),電極更新變得容易。隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。 就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為20 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,隔膜與電解用電極、或金屬板與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限制,可使用離子性界面活性劑、非離子性界面活性劑之任一種。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電解用電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電解用電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電解用電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電解用電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電解用電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電解用電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整係藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 本實施形態中之電解用電極就操作性之觀點而言,藉由以下之方法(A)所測得之值較佳為40 mm以下,更佳為29 mm以下,進而較佳為10 mm以下,進而更佳為6.5 mm以下。再者,具體之測定方法如實施例所記載。 [方法(A)] 於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L1 及L2 ,以該等之平均值作為測定值。 本實施形態中之電解用電極較佳為將該電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm2 /s之情形時(以下亦稱為「測定條件1」)之通氣阻力(以下亦稱為「通氣阻力1」)為24 kPa・s/m以下。通氣阻力較大意指空氣難以流動,指密度較高之狀態。於該狀態下,電解之產物停留於電極中,反應基質難以擴散至電極內部,因此有電解性能(電壓等)變差之傾向。又,有膜表面之濃度提高之傾向。具體而言,有陰極面苛性濃度提高而陽極面鹽水之供給性降低之傾向。其結果為,由於產物以高濃度滯留於隔膜與電極相接之界面,因此有導致隔膜之損傷,亦導致陰極面上之電壓上升及膜損傷、陽極面上之膜損傷之傾向。於本實施形態中,為了防止該等異常,較佳為將通氣阻力設為24 kPa・s/m以下。就上述同樣之觀點而言,更佳為未達0.19 kPa・s/m,進而較佳為0.15 kPa・s/m以下,進而更佳為0.07 kPa・s/m以下。 再者,於本實施形態中,若通氣阻力大至一定程度以上,則於陰極之情形時有電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度之傾向,於陽極之情形時有鹽水供給性降低而鹽水濃度成為低濃度之傾向,就將可能因此種滯留產生之對隔膜之損傷防患於未然之方面而言,較佳為未達0.19 kPa・s/m,更佳為0.15 kPa・s/m以下,進而較佳為0.07 kPa・s/m以下。 另一方面,於通氣阻力較低之情形時,由於電極之面積變小,因此有電解面積變小而電解性能(電壓等)變差之傾向。於通氣阻力為零之情形時,由於未設置電解用電極,因此有饋電體作為電極發揮功能而電解性能(電壓等)顯著變差之傾向。就該方面而言,作為通氣阻力1而特定出之較佳之下限值並無特別限定,較佳為超過0 kPa・s/m,更佳為0.0001 kPa・s/m以上,進而較佳為0.001 kPa・s/m以上。 再者,通氣阻力1就其測定法方面而言,若為0.07 kPa・s/m以下,則存在無法獲得充分之測定精度之情形。就該觀點而言,相對於通氣阻力1為0.07 kPa・s/m以下之電解用電極,亦可實現藉由以下之測定方法(以下亦稱為「測定條件2」)獲得之通氣阻力(以下亦稱為「通氣阻力2」)之評價。即,通氣阻力2係將電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度2 cm/s及通氣量4 cc/cm2 /s之情形時之通氣阻力。 具體之通氣阻力1及2之測定方法如實施例所記載。 上述通氣阻力1及2例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則有通氣阻力1及2變小之傾向,若減小開孔率,則有通氣阻力1及2變大之傾向。 以下,對本實施形態之電解用電極之一形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖1所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖1所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、進而以鈦等為代表之閥金屬(valve metal)。較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。即,較佳為電解用電極基材含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於表面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁砂等於上述表面形成凹凸,其後藉由酸處理而增加表面積。較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒(cut wire shot)、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~5 μm。 繼而,對使用本實施形態之電解用電極作為食鹽電解用陽極之情形進行說明。 (第一層) 於圖1中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對使用本實施形態之電解用電極作為食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Digimatic Thickness Gauge)(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極之厚度同樣地進行測定。觸媒層之厚度可藉由電極之厚度減去電解用電極基材之厚度而求出。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。其中,由於熱分解法、鍍覆法、離子鍍敷法能夠抑制電解用電極基材之變形,並且形成觸媒層,故而較佳。進而加入生產性之觀點,進而較佳為鍍覆法、熱分解法。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,於熱分解法中,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電解用電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (陽極之第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及乙醇、丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步長時間燒成後,於350℃~650℃之範圍內進行1分鐘~90分鐘之加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液而僅於300℃~580℃之範圍內將基材加熱1分鐘~60分鐘,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 本實施形態之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。 本實施形態之電解用電極藉由與離子交換膜或微多孔膜等隔膜形成積層體,製成隔膜與電極之一體物,而能夠使電解性能與新品時之性能相同或有所提高。該隔膜只要可與電極製成積層體,則無特別限定,以下進行詳細說明。 [離子交換膜] 離子交換膜具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,能夠發揮出穩定之電解性能。 上述離子交換膜具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖2係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備磺酸層3與羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖2之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜於膜本體之至少一面上具有塗佈層。又,如圖2所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機(vertical shaft impactor mill,立軸式衝擊磨機)、威利磨機(Wiley mill)、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲(slit yarn)等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織(seersucker)等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖3係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖3係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A)   …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide,二甲基亞碸)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖4(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖4(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖4(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM(field emission-scanning electron microscope,場發射掃描式電子顯微鏡)觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 [積層體] 本實施形態之積層體具備本實施形態之電解用電極及與上述電解用電極相接之隔膜或饋電體。由於以上述方式構成,因此本實施形態之積層體能夠提高電解槽中之電極更新時之作業效率,進而於更新後亦能夠表現出優異之電解性能。 即,藉由本實施形態之積層體,於更新電極時,無需伴隨剝離固定於電解池之電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。 進而,藉由本發明之積層體,對於電解性能,能夠維持新品時之性能或有所提高。又,即使於在新品之電解池僅設置有饋電體之情形時(即,設置有無觸媒層之電極),亦可僅藉由將本實施形態之電解用電極貼附於饋電體而使其作為電極發揮作用,因此亦可大幅地減少觸媒塗層或者甚至無觸媒塗層。 本實施形態之積層體例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。 再者,作為本實施形態中之饋電體,可應用劣化之電極(即既有電極)或未形成有觸媒塗層之電極等下文所述之各種基材。 於本實施形態之積層體中,針對上述隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力較佳為0.08 N/(mg・cm2 )以上,更佳為0.1 N/(mg・cm2 )以上,進而較佳為0.14 N/(mg・cm2 )以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。上限值並無特別限定,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 [捲繞體] 本實施形態之捲繞體包含本實施形態之電解用電極、或本實施形態之積層體。即,本實施形態之捲繞體係將本實施形態之電解用電極、或本實施形態之積層體捲繞而成者。如本實施形態之捲繞體般,藉由將本實施形態之電解用電極、或本實施形態之積層體進行捲繞並減小尺寸,能夠進一步提高操作性。 [電解槽] 本實施形態之電解槽包含本實施形態之電解用電極。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。 [電解池] 圖5係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖9所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖6係電解槽4內鄰接之2個電解池1之剖面圖。圖7表示電解槽4。圖8表示組裝電解槽4之步驟。如圖6所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖7所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖8所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。於將本實施形態之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖5之電解池1中之上方向,所謂下方意指圖5之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖5並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD(chemical vapor deposition,化學氣相沈積)、PVD(physical vapor deposition,物理氣相沈積)、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 又,饋電體21可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本發明之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖5、6)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖6),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 (離子交換膜2) 作為離子交換膜2,如上述離子交換膜之項所記載。 (水電解) 本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 <第2實施形態> 此處,一邊參照圖22~42一邊對本發明之第2實施形態進行詳細說明。 [積層體] 第2實施形態(以下於<第2實施形態>之項中簡稱為「本實施形態」)之積層體具備電解用電極、及與上述電解用電極相接之隔膜或饋電體,針對上述隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 。由於以上述方式構成,因此本實施形態之積層體能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。 即,藉由本實施形態之積層體,於更新電極時,無需伴隨剝離固定於電解池之既有電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。 進而,藉由本發明之積層體,對於電解性能,能夠維持新品時之性能或有所提高。因此,固定於先前之新品之電解池且作為陽極、陰極發揮功能之電極僅作為饋電體發揮功能即可,能夠大幅地減少觸媒塗層或者甚至無觸媒塗層。 本實施形態之積層體例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。 再者,作為本實施形態中之饋電體,可應用劣化之電極(即既有電極)、或未形成有觸媒塗層之電極等下文所述之各種基材。 又,本實施形態之積層體只要具有上述構成,則可為一部分具有固定部者。即,於本實施形態之積層體具有固定部之情形時,將不具有該固定部之部分供於測定,所獲得之電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 即可。 [電解用電極] 本實施形態之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 ,較佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而較佳為1.1 N/mg・cm2 以下,進而較佳為1.10 N/mg・cm2 以下,更佳為1.0 N/mg・cm2 以下,進而更佳為1.00 N/mg・cm2 以下。 就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/mg・cm2 以上,進而更佳為0.14 N/(mg・cm2 )以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm2 以下,更佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但任一值均未達1.5 N/mg・cm2 。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,未達1.5 N/mg・cm2 ,較佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下,進而較佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,更佳為1.0 N/mg・cm2 以下,進而更佳為1.00 N/mg・cm2 以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 ),更佳為0.2 N/(mg・cm2 )以上。 若本實施形態之電解用電極滿足承受力(1),則例如可與離子交換膜或微多孔膜等隔膜或饋電體進行一體化(即製成積層體)使用,因此於更新電極時,無需藉由焊接等方法固定於電解池之陰極及陽極之更換貼附作業,作業效率大幅提高。又,藉由將本實施形態之電解用電極用作與離子交換膜或微多孔膜或饋電體進行一體化而成之積層體,而能夠使電解性能與新品時之性能相同或有所提高。 於出貨新品之電解池時,先前對固定於電解池之電極施加有觸媒塗層,但僅藉由使未形成有觸媒塗層之電極與本實施形態之電解用電極組合,而可用作電極,因此能夠大幅地減少用以形成觸媒塗層之製造步驟或觸媒之量或者甚至不存在該等。觸媒塗層大幅減少或不存在之先前之電極與本實施形態之電解用電極電性連接,而可使其作為用以流通電流之饋電體發揮功能。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,未達1.5 N/mg・cm2 ,較佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下,進而較佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,更佳為1.0 N/mg・cm2 以下,進而更佳為1.00 N/mg・cm2 以下。就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 )以上。 若本實施形態之電解用電極滿足承受力(2),則例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。又,藉由對劣化之既有電極貼附本實施形態之電解用電極而製成積層體,能夠使電解性能與新品時之性能相同或有所提高。 若本實施形態之電解用電極為彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於本實施形態中,較佳為於離子交換膜或微多孔膜等隔膜與電極、或者劣化之既有電極或未形成有觸媒塗層之電極等金屬多孔板或金屬板(即饋電體)與電解用電極之間介置液體。該液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對隔膜與電解用電極、或者金屬多孔板或金屬板與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體於20℃下之表面張力)。 己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)水(72.76 mN/m) 若為表面張力較大之液體,則隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極成為一體(成為積層體),電極更新變得容易。隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。 就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為24 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限制,可使用離子性界面活性劑、非離子性界面活性劑之任一種。 本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整係藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 本實施形態中之電解用電極就操作性之觀點而言,藉由以下之方法(A)所測得之值較佳為40 mm以下,更佳為29 mm以下,進而較佳為10 mm以下,進而更佳為6.5 mm以下。再者,具體之測定方法如實施例所記載。 [方法(A)] 於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L1 及L2 ,以該等之平均值作為測定值。 本實施形態中之電解用電極較佳為將該電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm2 /s之情形時(以下亦稱為「測定條件1」)之通氣阻力(以下亦稱為「通氣阻力1」)為24 kPa・s/m以下。通氣阻力較大意指空氣難以流動,指密度較高之狀態。於該狀態下,電解之產物停留於電極中,反應基質難以擴散至電極內部,因此有電解性能(電壓等)變差之傾向。又,有膜表面之濃度提高之傾向。具體而言,有陰極面苛性濃度提高而陽極面鹽水之供給性降低之傾向。其結果為,由於產物以高濃度滯留於隔膜與電極相接之界面,因此有導致隔膜之損傷,亦導致陰極面上之電壓上升及膜損傷、陽極面上之膜損傷之傾向。於本實施形態中,為了防止該等異常,較佳為將通氣阻力設為24 kPa・s/m以下。就上述同樣之觀點而言,更佳為未達0.19 kPa・s/m,進而較佳為0.15 kPa・s/m以下,進而更佳為0.07 kPa・s/m以下。 再者,於本實施形態中,若通氣阻力大至一定程度以上,則於陰極之情形時有電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度之傾向,於陽極之情形時有鹽水供給性降低而鹽水濃度成為低濃度之傾向,就將可能因此種滯留產生之對隔膜之損傷防患於未然之方面而言,較佳為未達0.19 kPa・s/m,更佳為0.15 kPa・s/m以下,進而較佳為0.07 kPa・s/m以下。 另一方面,於通氣阻力較低之情形時,由於電極之面積變小,因此有電解面積變小而電解性能(電壓等)變差之傾向。於通氣阻力為零之情形時,由於未設置電解用電極,因此有饋電體作為電極發揮功能而電解性能(電壓等)顯著變差之傾向。就該方面而言,作為通氣阻力1而特定出之較佳之下限值並無特別限定,較佳為超過0 kPa・s/m,更佳為0.0001 kPa・s/m以上,進而較佳為0.001 kPa・s/m以上。 再者,通氣阻力1就其測定法方面而言,若為0.07 kPa・s/m以下,則存在無法獲得充分之測定精度之情形。就該觀點而言,相對於通氣阻力1為0.07 kPa・s/m以下之電解用電極,亦可實現藉由以下之測定方法(以下亦稱為「測定條件2」)獲得之通氣阻力(以下亦稱為「通氣阻力2」)之評價。即,通氣阻力2係將電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度2 cm/s及通氣量4 cc/cm2 /s之情形時之通氣阻力。 具體之通氣阻力1及2之測定方法如實施例所記載。 上述通氣阻力1及2例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則有通氣阻力1及2變小之傾向,若減小開孔率,則有通氣阻力1及2變大之傾向。 本實施形態之電解用電極如上所述,針對隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 。由此,本實施形態之電解用電極藉由以適度之接著力與隔膜或饋電體(例如,電解槽中之既有之陽極或陰極等)相接,而可構成與隔膜或饋電體之積層體。即,無需藉由熱壓接等繁雜之方法將隔膜或饋電體與電解用電極牢固地接著,例如即使藉由如源自離子交換膜或微多孔膜等隔膜可含之水分之表面張力的相對較弱之力亦接著而成為積層體,因此無論為何種規模均可容易地構成積層體。進而,此種積層體表現出優異之電解性能,因此本實施形態之積層體適於電解用途,例如,可尤佳地用於與電解槽之構件或該構件之更新相關之用途。 以下,對本實施形態之電解用電極之一形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖22所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖22所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。 繼而,對使用本實施形態之電解用電極作為食鹽電解用陽極之情形進行說明。 (第一層) 於圖22中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對使用本實施形態之電解用電極作為食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電解用電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電解用電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度可與電解用電極之厚度同樣地進行測定。觸媒層之厚度可藉由電解用電極之厚度減去電解用電極基材之厚度而求出。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 本實施形態之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。 又,藉由與離子交換膜或微多孔膜等隔膜之一體電極,能夠使電解性能與新品時之性能相同或有所提高。 以下,對離子交換膜進行詳細說明。 [離子交換膜] 離子交換膜具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,能夠發揮出穩定之電解性能。 上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖23係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖23之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜於膜本體之至少一面上具有塗佈層。又,如圖23所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖24係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖24係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A) …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖25(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖25(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖25(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 推測本實施形態之與隔膜之積層體表現出優異之電解性能之原因如下。於作為先前技術之藉由熱壓接等方法將隔膜與電極牢固地接著之情形時,成為電極嵌入隔膜之狀態而物理性地接著。該接著部分會妨礙鈉離子之膜內之移動,電壓大幅地上升。另一方面,藉由如本實施形態般利用適度之接著力使電解用電極與隔膜或饋電體相接,而消除先前技術中作為問題之妨礙鈉離子之膜內移動之情況。藉此,於隔膜或饋電體與電解用電極藉由適度之接著力相接之情形時,為隔膜或饋電體與電解用電極之一體物,並且能夠表現出優異之電解性能。 [捲繞體] 本實施形態之捲繞體包含本實施形態之積層體。即,本實施形態之捲繞體係將本實施形態之積層體捲繞而成者。如本實施形態之捲繞體般,藉由將本實施形態之積層體進行捲繞並減小尺寸,能夠進一步提高操作性。 [電解槽] 本實施形態之電解槽包含本實施形態之積層體。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。 [電解池] 圖26係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖30所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖27係電解槽4內鄰接之2個電解池1之剖面圖。圖28表示電解槽4。圖29表示組裝電解槽4之步驟。如圖27所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖28所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖29所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。於將本實施形態之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖26之電解池1中之上方向,所謂下方意指圖26之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖26並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體承受之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖26、27)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖27),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 (離子交換膜) 作為離子交換膜2,如上述離子交換膜之項所記載。 (水電解) 本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 (積層體之用途) 本實施形態之積層體如上文所述,能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。換言之,本實施形態之積層體能夠適宜地用作電解槽之構件更換用之積層體。再者,應用於該用途時之積層體特別地稱為「膜電極接合體」。 (包裝體) 本實施形態之積層體較佳為於封入至包裝材中之狀態下進行搬運等。即,本實施形態之包裝體具備本實施形態之積層體、及包裝上述積層體之包裝材。由於本實施形態之包裝體以上述方式構成,因此能夠防止於搬運本實施形態之積層體等時可能產生之污垢之附著或破損。於用於電解槽之構件更換之情形時,尤佳為以本實施形態之包裝體之形式進行搬運等。作為本實施形態中之包裝材,並無特別限定,可應用各種公知之包裝材。又,本實施形態之包裝體並不限定於以下,但例如可藉由以潔淨狀態之包裝材包裝本實施形態之積層體、繼而封入等方法而製造。 <第3實施形態> 此處一邊參照圖43~62一邊對本發明之第3實施形態進行詳細地說明。 [積層體] 第3實施形態(以下於<第3實施形態>之項中簡稱為「本實施形態」)之積層體具有隔膜、及固定於上述隔膜之表面之至少一區域(以下亦簡稱為「固定區域」)之電解用電極,且上述隔膜之表面中之上述區域之比率超過0%且未達93%。由於以上述方式構成,因此本實施形態之積層體能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。 即,藉由本實施形態之積層體,於更新電極時,無需伴隨剝離固定於電解池之既有電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。 進而,藉由本實施形態之積層體,能夠將既有電解池之電解性能維持為與新品時之性能相同或有所提高。因此,固定於既有之電解池且作為陽極、陰極發揮功能之電極僅作為饋電體發揮功能即可,能夠大幅地減少觸媒塗層或者甚至無觸媒塗層。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。 [電解用電極] 本實施形態中之電解用電極只要為可用於電解之電極,則無特別限定,較佳為電解用電極與隔膜相對向之面之面積(與下文所述之通電面之面積S2相對應)為0.01 m2 以上。所謂「與隔膜相對向之面」意指電解用電極所具有之表面中隔膜所存在一側之表面。即,電解用電極中與隔膜相對向之面亦可稱為與隔膜之表面相接之面。於電解用電極中之上述與隔膜相對向之面之面積為0.01 m2 以上之情形時,能夠確保充分之生產性,尤其是於實施工業上之電解之方面有可獲得充分之生產性之傾向。由此,就確保充分之生產性,確保作為更新電解池所使用之積層體之實用性之觀點而言,電解用電極中之上述與隔膜相對向之面之面積更佳為0.1 m2 以上,進而較佳為1 m2 以上。該面積例如可藉由實施例所記載之方法進行測定。 本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/mg・cm2 以上,進而更佳為0.14 N/(mg・cm2 )以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm2 以下,更佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 承受力可藉由以下之方法(i)或(ii)進行測定,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm2 。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 ),更佳為0.2 N/(mg・cm2 )以上。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 )以上。 本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整係藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 以下,對本實施形態中之電解用電極之一形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖43所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖43所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。 (第一層) 於圖43中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。 於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 本實施形態中之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,本實施形態之積層體可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。 又,藉由與離子交換膜或微多孔膜等隔膜之一體電極,能夠使電解性能與新品時之性能相同或有所提高。 以下,對離子交換膜進行詳細說明。 [離子交換膜] 作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。 上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖44係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖44之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖44所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖45係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖45係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A) …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖46(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖46(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖46(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。 [固定區域] 於本實施形態中,電解用電極係固定於隔膜之表面之至少一區域,於<第3實施形態>之項中,亦將該1個或2個以上之區域稱為固定區域。本實施形態中之固定區域只要為具有抑制電解用電極與隔膜之分離之功能、且將電解用電極固定於隔膜之部分,則無特別限定,例如,亦存在藉由電解用電極本身成為固定機構而構成固定區域之情形,又,亦存在藉由與電解用電極不同體之固定用構件成為固定機構而構成固定區域之情形。再者,本實施形態中之固定區域可僅存在於與電解時之通電面相對應之位置,亦可延伸至與非通電面相對應之位置。再者,「通電面」與以於陽極室與陰極室之間進行電解質之移動之方式設計之部分相對應。又,所謂「非通電面」意指通電面以外之部分。 進而,於本實施形態中,隔膜之表面中之固定區域之比率(以下亦簡稱為「比率α」)超過0%且未達93%。上述比率可作為固定區域之面積(以下亦簡稱為「面積S3」)相對於隔膜之表面之面積(以下亦簡稱為「面積S1」)的比率而求出。於本實施形態中,所謂「隔膜之表面」意指隔膜所具有之表面中電解用電極所存在之側之表面。再者,於上述隔膜之表面中,未由電解用電極覆蓋之部分之面積亦算作面積S1。 就作為隔膜與電解用電極之積層體而更穩定之觀點而言,上述比率α(=100×S3/S1)超過0%,較佳為0.00000001%以上,更佳為0.0000001%以上。另一方面,如先前技術中所存在般,於藉由熱壓接等方法將隔膜與電極之接觸面之整個面牢固地接著之情形時(即,上述比率成為100%之情形時),成為電極中之接觸面之整個面嵌入隔膜之狀態而物理性地接著。此種接著部分會妨礙鈉離子之膜內之移動,電壓大幅地上升。於本實施形態中,就充分確保離子可自由移動之空間之觀點而言,上述比率未達93%,較佳為90%以下,更佳為70%以下,進而較佳為未達60%。 於本實施形態中,就獲得更良好之電解性能之觀點而言,較佳為對固定區域之面積(面積S3)中僅與通電面相對應之部分之面積(以下亦簡稱為「面積S3'」)進行調整。即,較佳為對面積S3'相對於通電面之面積(以下亦簡稱為「面積S2」)之比率(以下亦簡稱為「比率β」)進行調整。再者,面積S2可作為電解用電極之表面積而特定出(下文對詳細內容進行說明)。具體而言,於本實施形態中,比率β(=100×S3'/S2)較佳為超過0%且未達100%,更佳為0.0000001%以上且未達83%,進而較佳為0.000001%以上且70%以下,進而更佳為0.00001%以上且25%以下。 上述比率α及β例如可以如下方式進行測定。 首先,算出隔膜之表面之面積S1。其次,算出電解用電極之面積S2。此處,面積S1及S2可作為從電解用電極側觀察隔膜與電解用電極之積層體時(參照圖57)之面積而特定出。 再者,電解用電極之形狀並無特別限定,可具有開孔,於形狀為網狀等具有開孔者且(i)開孔率未達90%之情形時,關於S2,其開孔部分亦算入面積S2中,另一方面,於形狀為網狀等具有開孔者且(ii)開孔率為90%以上之情形時,為了充分確保電解性能,而以去除該開孔部分之面積算出S2。此處所謂開孔率係電解用電極中之開孔部分之合計面積S'除以將該開孔部分算入面積中所獲得之電解用電極中之面積S''所獲得之數值(%,100×S'/S'')。 下文對固定區域之面積(面積S3及面積S3')進行說明。 如上所述,隔膜之表面中之上述區域之比率α(%)可藉由算出100×(S3/S1)而求出。又,作為僅與固定區域之通電面相對應之部分之面積相對於通電面之面積之比率β(%),可藉由算出100×(S3'/S2)而求出。 更具體而言,可藉由下文所述之實施例所記載之方法進行測定。 以上述方式特定出之隔膜之表面之面積S1並無特別限定,較佳為通電面之面積S2之1倍以上且5倍以下,更佳為1倍以上且4倍以下,進而較佳為1倍以上且3倍以下。 於本實施形態中,並非對固定區域中之固定結構進行限定,但例如可採用以下所例示之固定結構。再者,各固定結構可僅採用1種,亦可組合2種以上而採用。 於本實施形態中,較佳為於固定區域中電解用電極之至少一部分貫通隔膜而被固定。使用圖47A對該態樣進行說明。 於圖47A中,電解用電極2之至少一部分貫通隔膜3而被固定。如圖47A所示,電解用電極2之一部分為貫通隔膜3之狀態。於圖47A中,係示出電解用電極2為金屬多孔電極之例。即,於圖47A中將複數個電解用電極2之部分獨立表示,但該等相連而表示一體之金屬多孔電極之剖面(於以下之圖48~51中亦相同)。 於此種電極結構下,例如若將特定位置(應成為固定區域之位置)之隔膜3壓抵於電解用電極2,則隔膜3之一部分進入至電解用電極2之表面之凹凸結構內或孔結構內,電極表面之凹部或孔之周圍之凸部分貫通隔膜3,較佳為如圖47A所示,穿透至隔膜3之外表面3b。 如上所述,圖47A之固定結構可藉由將隔膜3壓抵於電解用電極2而製造,於該情形時,於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸。藉此,電解用電極2將隔膜3貫通。或者,亦可於將隔膜3熔融之狀態下進行。於該情形時,較佳為於圖47B所示之狀態下從電解用電極2之外表面2b側(背面側)抽吸隔膜3。再者,將隔膜3壓抵於電解用電極2之區域構成「固定區域」。 圖47A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。又,藉由電解用電極2將隔膜3貫通,利用隔膜3之外表面3b與電解用電極2之外表面2b之間的使用測試機等之導通檢查,可推測出圖47A之固定結構。 於圖47A中,較佳為由隔膜隔開之陽極室、陰極室之電解液不會透過貫通部。因此,較佳為貫通之部分之孔徑小至電解液不會透過之程度。具體而言,較佳為於實施電解試驗時發揮出與不具有貫通部之隔膜相同之性能。或者,較佳為對貫通之部分實施防止電解液之透過之加工。較佳為貫通之部分使用不會因陽極室電解液、陽極室中產生之產物、陰極室電解液、陰極室中產生之產物而溶出、分解之材料。例如較佳為EPDM、氟系之樹脂。更佳為具有離子交換基之氟樹脂。 於本實施形態中,較佳為於固定區域中電解用電極之至少一部分位於隔膜之內部而被固定。使用圖48A對該態樣進行說明。 如上所述,電解用電極2之表面被設為凹凸結構或孔結構。於圖48A所示之實施形態中,電極表面之一部分插入並被固定於特定位置(應成為固定區域之位置)之隔膜3。圖48A所示之固定結構可藉由將隔膜3壓抵於電解用電極2而製造。於該情形時,較佳為於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸而形成圖48A之固定結構。或者,亦可將隔膜3熔融而形成圖48A之固定結構。於該情形時,較佳為從電解用電極2之外表面2b側(背面側)抽吸隔膜3。 圖48A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。再者,於圖48A所示之固定結構中,由於電解用電極2未貫通隔膜3,因此並不確認隔膜3之外表面3b與電解用電極2之外表面2b之間的利用導通檢查之導通。 於本實施形態中,較佳為進一步具有用以將隔膜與電解用電極加以固定之固定用構件。使用圖49A~C對該態樣進行說明。 圖49A所示之固定結構係使用與電解用電極2及隔膜3不同體之固定用構件7,且固定用構件7將電解用電極2與隔膜3貫通而加以固定之結構。電解用電極2未必一定被固定用構件7所貫通,以不與隔膜2分離之方式藉由固定用構件7進行固定即可。固定用構件7之材質並無特別限定,作為固定用構件7,例如可使用包含金屬或樹脂等者。於金屬之情形時,可列舉鎳、鎳鉻合金、鈦、不鏽鋼(SUS)等。亦可為該等之氧化物。作為樹脂,可使用氟樹脂(例如,PTFE(聚四氟乙烯)、PFA(四氟乙烯與全氟烷氧基乙烯之共聚物)、ETFE(四氟乙烯與乙烯之共聚物)或下述所記載之隔膜3之材質)或PVDF(聚偏二氟乙烯)、EPDM(乙烯-丙烯-二烯橡膠)、PP(聚乙烯)、PE(聚丙烯)、尼龍、芳香族聚醯胺等。 於本實施形態中,例如使用紗狀之固定用構件(紗狀之金屬或樹脂),如圖49B、49C所示般對電解用電極2與隔膜3之外表面2b、3b間之特定位置(應成為固定區域之位置)進行縫製,藉此亦可進行固定。作為紗狀之樹脂,並無特別限定,例如可列舉PTFE之紗等。又,亦可使用如活褶縫製器(tucker)之固定機構將電解用電極2與隔膜3加以固定。 於圖49A~C中,較佳為由隔膜隔開之陽極室、陰極室之電解液不會透過貫通部。因此,較佳為貫通之部分之孔徑小至電解液不會透過之程度。具體而言,較佳為於實施電解試驗時發揮出與不具有貫通部之隔膜相同之性能。或者,較佳為對貫通之部分實施防止電解液之透過之加工。較佳為貫通之部分使用不會因陽極室電解液、陽極室中產生之產物、陰極室電解液、陰極室中產生之產物而溶出、分解之材料。例如較佳為EPDM、氟系之樹脂。更佳為具有離子交換基之氟樹脂。 圖50所示之固定結構係於電解用電極2與隔膜3之間介置有機樹脂(接著層)進行固定之結構。即,於圖50中係將作為固定用構件7之有機樹脂配置於電解用電極2與隔膜3之間之特定位置(應成為固定區域之位置)而藉由接著進行固定之結構。例如,於電解用電極2之內表面2a、或隔膜3之內表面3a、或電解用電極2及隔膜3之內表面2a、3a之兩者或其中一者塗佈有機樹脂。然後,將電解用電極2與隔膜3貼合,藉此可形成圖50所示之固定結構。有機樹脂之材質並無特別限定,例如可使用氟樹脂(例如,PTFE、PFA、ETFE)、或與上文所述之構成隔膜3之材料相同之樹脂等。又,亦可適當地使用市售之氟系接著劑、PTFE分散液等。進而,亦可使用通用之乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。 於本實施形態中,可使用溶於電解液或於電解中溶解、分解之有機樹脂。作為溶於電解液或於電解中溶解、分解之有機樹脂,並不限定於以下,例如可列舉:乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。 圖50所示之固定結構可藉由光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。 於本實施形態中,較佳為固定用構件之至少一部分從外部將隔膜與電解用電極固持。使用圖51A對該態樣進行說明。 圖51A所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。即,藉由作為固定用構件7之固持構件將電解用電極2之外表面2b與隔膜3之外表面3b之間夾持並固定。於圖51A所示之固定結構中,亦包括固持構件陷入電解用電極2或隔膜3之狀態。作為固持構件,例如可列舉膠帶、夾具等。 於本實施形態中,亦可使用溶於電解液之固持構件。作為溶於電解液之固持構件,例如可列舉PET製之膠帶、夾具、PVA(polyvinyl alcohol,聚乙烯醇)製之膠帶、夾具等。 圖51A所示之固定結構與圖47~圖50不同,並非將電解用電極2與隔膜3之界面接合者,電解用電極2與隔膜3之各內表面2a、3a僅處於接觸或相對向之狀態,藉由去除固持構件,可將電解用電極2與隔膜3之固定狀態加以解除而分離。 圖51A並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。 例如可以回折PTFE製之膠帶夾住隔膜與電極之方式進行固定。 又,於本實施形態中,較佳為固定用構件之至少一部分藉由磁力將隔膜與電解用電極進行固定。使用圖51B對該態樣進行說明。 圖51B所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。與圖51A之區別在於使用1對磁石作為用作固定用構件之固持構件之方面。於圖51B所示之固定結構之態樣中,於將積層體1安裝於電解槽後,於電解槽運轉時可將固持構件直接殘留,亦可將其從積層體1去除。 圖51B並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。又,於電解池之材質之一部分使用與磁石接著之磁性材料之情形時,亦可將1種固持材料設置於隔膜面側,將電解池、電解用電極2及隔膜3夾住而固定。 再者,亦可設置複數列固定區域。即,可從積層體1之輪廓側起朝向內側配置1、2、3、…n條固定區域。n為1以上之整數。又,第m號(m<n)固定區域與第L號(m<L≦n)固定區域可藉由不同之固定圖案形成。 形成於通電部之固定區域較佳為線對稱之形狀。藉此,有能夠抑制應力集中之傾向。例如,若將正交之2個方向設為X方向與Y方向,則可於X方向與Y方向之各方向各配置1條、或於X方向與Y方向之各方向等間隔地各配置複數條而構成固定區域。並非對X方向及Y方向之固定區域之條數進行限定,但較佳為於X方向及Y方向分別設為100條以下。又,就確保通電部之面性之觀點而言,X方向及Y方向之固定區域之條數宜分別為50條以下。 於本實施形態中之固定區域中,於具有圖47A或圖49所示之固定結構之情形時,就防止由陽極與陰極接觸引起之短路之觀點而言,較佳為於固定區域之膜面上塗佈密封材。作為密封材,例如可使用上述接著劑中所說明之素材。 於使用固定用構件之情形時,於求面積S3及面積S3'時,關於該固定用構件重複之部分,並不將重複量算入面積S3及面積S3'中。例如,於將上文所述之PTFE紗作為固定用構件進行固定時,PTFE紗彼此交叉之部分作為重複量而不算入面積中。又,於將上文所述之PTFE膠帶作為固定用構件進行固定時,PTFE膠帶彼此重疊之部分作為重複量而不算入面積中。 又,於將上文所述之PTFE紗或接著劑作為固定用構件進行固定之情形時,存在於電解用電極及/或隔膜之背面側之面積亦算入面積S3及面積S3'中。 本實施形態中之積層體可如上所述,於各種位置具有各種固定區域,但較佳為尤其是於不存在固定區域之部分(非固定區域),電解用電極滿足上述「承受力」。即,較佳為電解用電極之非固定區域中之每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 。 [電解槽] 本實施形態之電解槽包含本實施形態之積層體。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。 [電解池] 圖52係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖56所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖53係電解槽4內鄰接之2個電解池1之剖面圖。圖54表示電解槽4。圖55表示組裝電解槽4之步驟。如圖53所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖54所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖55所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖52之電解池1中之上方向,所謂下方意指圖52之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖52並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖52、53)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖53),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 (離子交換膜2) 作為離子交換膜2,如上述離子交換膜之項所記載。 (水電解) 本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 <第4實施形態> 此處,一邊參照圖63~90一邊對本發明之第4實施形態進行詳細地說明。 [電解槽] 第4實施形態(以下於<第4實施形態>之項中簡稱為「本實施形態」)之電解槽具備陽極、支持上述陽極之陽極框、配置於上述陽極框上之陽極側墊片、與上述陽極相對向之陰極、支持上述陰極之陰極框、配置於上述陰極框上且與上述陽極側墊片相對向之陰極側墊片、配置於上述陽極側墊片與上述陰極側墊片之間之隔膜與電解用電極之積層體,且上述積層體之至少一部分由上述陽極側墊片及上述陰極側墊片所夾持,將上述電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm2 /s之情形時之通氣阻力為24 kPa・s/m以下。由於以上述方式構成,因此本實施形態之電解槽之電解性能優異並且能夠防止隔膜之損傷。 本實施形態之電解槽係包含上述構成構件者,換言之,係包含電解池者。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。 [電解池] 首先,對可用作本實施形態之電解槽之構成單元的電解池進行說明。圖63係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖67所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖64係電解槽4內鄰接之2個電解池1之剖面圖。圖65表示電解槽4。圖66表示組裝電解槽4之步驟。 於先前之電解槽中,如圖64A所示,將電解池1、隔膜(此處為陽離子交換膜)2、電解池1依序串聯排列,於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,於電解槽中,通常電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。 另一方面,於本實施形態中,如圖64B所示,將電解池1、具有隔膜(此處為陽離子交換膜)2與電解用電極(此處為更新用陰極)21a之積層體25、電解池1依序串聯排列,積層體25於其一部分(圖64B中為上端部)中係被夾持於陽極墊片12及陰極墊片13之間。 又,如圖65所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖66所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 如上文所述,電解槽中之隔膜、陰極及陽極通常伴隨電解槽之運轉,其性能會劣化,最終必須更換為新品,於僅更換隔膜之情形時,可藉由將既有之隔膜從電解池之間抽出並插入新隔膜而簡單地更新,但於藉由焊接進行陽極或陰極之更換之情形時,必需專用之設備,因此較繁雜。 另一方面,於本實施形態中,如上所述,積層體25於其一部分(圖64B中為上端部)中係被夾持於陽極墊片12及陰極墊片13之間。尤其是於圖64B所示之例中,隔膜(此處為陽離子交換膜)2與電解用電極(此處為更新用陰極)21a至少於該等之積層體之上端部可藉由對從陽極墊片12朝向積層體25之方向之按壓、及對從陰極墊片13朝向積層體25之方向之按壓進行固定。於該情形時,無需藉由焊接將積層體25(尤其是電解用電極)固定於既有之構件(例如既有陰極),故而較佳。即,於電解用電極及隔膜之兩者被陽極側墊片及上述陰極側墊片所夾持之情形時,有提高電解槽中之電極更新時之作業效率的傾向,故而較佳。 進而,根據本實施形態之電解槽之構成,隔膜與電解用電極以積層體之形式被充分固定,因此能夠獲得優異之電解性能。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖63之電解池1中之上方向,所謂下方意指圖63之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖63並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持積層體25之方式將電解池彼此連接(參照圖64B)。藉由該等墊片,於介隔積層體25將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。藉由以陽極墊片及陰極墊片夾持積層體25,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 [積層體] 本實施形態中之積層體具有隔膜與電解用電極。本實施形態中之積層體能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。即,藉由本實施形態中之積層體,於更新電極時,無需伴隨剝離固定於電解池之既有電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。 進而,藉由本實施形態中之積層體,能夠將既有電解池之電解性能維持為與新品時之性能相同或有所提高。因此,固定於既有之電解池且作為陽極、陰極發揮功能之電極僅作為饋電體發揮功能即可,能夠大幅地減少觸媒塗層或者甚至無觸媒塗層。 [電解用電極] 本實施形態中之電解用電極於將該電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm2 /s之情形時(以下亦稱為「測定條件1」)之通氣阻力(以下亦稱為「通氣阻力1」)為24 kPa・s/m以下。通氣阻力較大意指空氣難以流動,指密度較高之狀態。於該狀態下,電解之產物停留於電極中,反應基質難以擴散至電極內部,因此電解性能(電壓等)變差。又,膜表面之濃度提高。具體而言,於陰極面苛性濃度提高,於陽極面鹽水之供給性降低。其結果為,由於產物以高濃度滯留於隔膜與電極相接之界面,因此導致隔膜之損傷,亦導致陰極面上之電壓上升及膜損傷、陽極面上之膜損傷。於本實施形態中,為了防止該等異常,而將通氣阻力設為24 kPa・s/m以下。 再者,於本實施形態中,若通氣阻力大至一定程度以上,則於陰極之情形時有電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度之傾向,於陽極之情形時有鹽水供給性降低而鹽水濃度成為低濃度之傾向,就將可能因此種滯留產生之對隔膜之損傷防患於未然之方面而言,較佳為未達0.19 kPa・s/m,更佳為0.15 kPa・s/m以下,進而較佳為0.07 kPa・s/m以下。 另一方面,於通氣阻力較低之情形時,由於電極之面積變小,因此通電面積變小而電解性能(電壓等)變差。於通氣阻力為零之情形時,由於未設置電解用電極,因此饋電體作為電極發揮功能而電解性能(電壓等)顯著變差。就該方面而言,作為通氣阻力1而特定出之較佳之下限值並無特別限定,較佳為超過0 kPa・s/m,更佳為0.0001 kPa・s/m以上,進而較佳為0.001 kPa・s/m以上。 再者,通氣阻力1就其測定法方面而言,若為0.07 kPa・s/m以下,則存在無法獲得充分之測定精度之情形。就該觀點而言,相對於通氣阻力1為0.07 kPa・s/m以下之電解用電極,亦可實現藉由以下之測定方法(以下亦稱為「測定條件2」)獲得之通氣阻力(以下亦稱為「通氣阻力2」)之評價。即,通氣阻力2係將電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度2 cm/s及通氣量4 cc/cm2 /s之情形時之通氣阻力。 具體之通氣阻力1及2之測定方法如實施例所記載。 上述通氣阻力1及2例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則有通氣阻力1及2變小之傾向,若減小開孔率,則有通氣阻力1及2變大之傾向。 本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/mg・cm2 以上,進而更佳為0.14 N/(mg・cm2 )以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm2 以下,更佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm2 。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 ),更佳為0.2 N/(mg・cm2 )以上。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 )以上。 本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極就操作性之觀點而言,藉由以下之方法(A)所測得之值較佳為40 mm以下,更佳為29 mm以下,進而較佳為19 mm以下。 [方法(A)] 於溫度23±2℃、相對濕度30±5%之條件下,將積層於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L1 及L2 ,以該等之平均值作為測定值。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 以下,對本實施形態中之電解用電極之一形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖68所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖68所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。 (第一層) 於圖68中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。 於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 本實施形態中之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,本實施形態中之積層體可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。 又,藉由與離子交換膜或微多孔膜等隔膜之一體電極,能夠使電解性能與新品時之性能相同或有所提高。 以下,對離子交換膜進行詳細說明。 [離子交換膜] 作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。 上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖69係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖69之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖69所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖70係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖70係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A) …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖71(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖71(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖71(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。 於本實施形態中,夾持於陽極墊片12及陰極墊片13之間之積層體25之部分較佳為非通電面。再者,「通電面」與以於陽極室與陰極室之間進行電解質之移動之方式設計之部分相對應,「非通電面」係不屬於通電面之部分。 又,於本實施形態中,積層體之最外周緣與陽極側墊片及陰極側墊片之最外周緣相比,可位於通電面方向內側,亦可位於外側,較佳為位於外側。於以此種方式構成之情形時,可抓持位於外側之最外周緣,因此有組裝電解槽時之作業性提高之傾向。此處,積層體之最外周緣係將隔膜與電解用電極組合之狀態下之最外周緣。即,若與隔膜之最外周緣相比,電解用電極之最外周緣處於互相之接觸面外側,則意指電解用電極之最外周緣,又,若與隔膜之最外周緣相比,電解用電極之最外周緣處於互相之接觸面內側,則意指隔膜之最外周緣。 使用圖72、73對該位置關係進行說明。圖72、73係表示於例如從圖64B所示之α方向觀察2個電解池之情形時尤其是墊片及積層體之位置關係。於圖72、73中,中央具有開口部之長方形狀之墊片A位於最靠近前之位置。長方形狀之隔膜B位於其背側,進而長方形狀之電解用電極C位於其背側。即,墊片A之開口部係與積層體之通電面相對應之部分。 於圖72中,墊片A之最外周緣A1與隔膜B之最外周緣B1及電解用電極C之最外周緣C1相比,位於通電面方向內側。 又,於圖73中,墊片A之最外周緣A1與電解用電極C之最外周緣C1相比,位於通電面方向外側,但隔膜B之最外周緣B1與墊片A之最外周緣A1相比,位於通電面方向外側。 再者,於本實施形態中,作為積層體,被陽極側墊片及陰極側墊片夾持即可,電解用電極本身亦可不被陽極側墊片及陰極側墊片直接夾持。即,只要將電解用電極本身固定於隔膜,則亦可僅隔膜被陽極側墊片及陰極側墊片直接夾持。於本實施形態中,就於電解槽中將電解用電極更穩定地固定之觀點而言,較佳為電解用電極及隔膜之兩者被陽極側墊片及陰極側墊片夾持。 於本實施形態中,隔膜與電解用電極至少由陽極墊片及陰極墊片所固定,以積層體之形式存在,但亦可具有其他固定結構,例如可採用以下所例示之固定結構。再者,各固定結構可僅採用1種,亦可組合2種以上而採用。 於本實施形態中,較佳為電解用電極之至少一部分貫通隔膜而被固定。使用圖74A對該態樣進行說明。 於圖74A中,電解用電極2之至少一部分貫通隔膜3而被固定。於圖74A中係示出電解用電極2為金屬多孔電極之例。即,於圖74A中將複數個電解用電極2之部分獨立表示,但該等相連而表示一體之金屬多孔電極之剖面(於以下之圖75~78中亦相同)。 於此種電極結構下,例如若將特定位置(應成為固定部之位置)之隔膜3壓抵於電解用電極2,則隔膜3之一部分進入至電解用電極2之表面之凹凸結構內或孔結構內,電極表面之凹部或孔之周圍之凸部分貫通隔膜3,較佳為如圖74A所示,穿透至隔膜3之外表面3b。 如上所述,圖74A之固定結構可藉由將隔膜3壓抵於電解用電極2而製造,於該情形時,於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸。藉此,電解用電極2將隔膜3貫通。或者,亦可於將隔膜3熔融之狀態下進行。於該情形時,較佳為於圖74B所示之狀態下從電解用電極2之外表面2b側(背面側)抽吸隔膜3。再者,將隔膜3壓抵於電解用電極2之區域構成「固定部」。 圖74A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。又,藉由電解用電極2將隔膜3貫通,利用隔膜3之外表面3b與電解用電極2之外表面2b之間的使用測試機等之導通檢查,可推測出圖74A之固定結構。 於本實施形態中,較佳為於固定部中電解用電極之至少一部分位於隔膜之內部而被固定。使用圖75A對該態樣進行說明。 如上所述,電解用電極2之表面被設為凹凸結構或孔結構。於圖75A所示之實施形態中,電極表面之一部分插入並被固定於特定位置(應成為固定部之位置)之隔膜3。圖75A所示之固定結構可藉由將隔膜3壓抵於電解用電極2而製造。於該情形時,較佳為於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸而形成圖75A之固定結構。或者,亦可將隔膜3熔融而形成圖75A之固定結構。於該情形時,較佳為從電解用電極2之外表面2b側(背面側)抽吸隔膜3。 圖75A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。再者,於圖75A所示之固定結構中,由於電解用電極2未貫通隔膜3,因此並不確認隔膜3之外表面3b與電解用電極2之外表面2b之間的利用導通檢查之導通。 於本實施形態中,較佳為於積層體中進一步具有用以將隔膜與電解用電極加以固定之固定用構件。使用圖76A~C對該態樣進行說明。 圖76A所示之固定結構係使用與電解用電極2及隔膜3不同體之固定用構件7,且固定用構件7將電解用電極2與隔膜3貫通而加以固定之結構。電解用電極2未必一定被固定用構件7所貫通,以不與隔膜2分離之方式藉由固定用構件7進行固定即可。固定用構件7之材質並無特別限定,作為固定用構件7,例如可使用包含金屬或樹脂等者。於金屬之情形時,可列舉鎳、鎳鉻合金、鈦、不鏽鋼(SUS)等。亦可為該等之氧化物。作為樹脂,可使用氟樹脂(例如,PTFE(聚四氟乙烯)、PFA(四氟乙烯與全氟烷氧基乙烯之共聚物)、ETFE(四氟乙烯與乙烯之共聚物)或下述所記載之隔膜3之材質)或PVDF(聚偏二氟乙烯)、EPDM(乙烯-丙烯-二烯橡膠)、PP(聚乙烯)、PE(聚丙烯)、尼龍、芳香族聚醯胺等。 於本實施形態中,例如使用紗狀之金屬或樹脂,如圖76B、76C所示般,對電解用電極2與隔膜3之外表面2b、3b間之特定位置(應成為固定部之位置)進行縫製,藉此亦可進行固定。又,亦可使用如活褶縫製器之固定機構將電解用電極2與隔膜3加以固定。 圖77所示之固定結構係於電解用電極2與隔膜3之間介置有機樹脂(接著層)進行固定之結構。即,於圖77中係將作為固定用構件7之有機樹脂配置於電解用電極2與隔膜3之間之特定位置(應成為固定部之位置)而藉由接著進行固定之結構。例如,於電解用電極2之內表面2a、或隔膜3之內表面3a、或電解用電極2及隔膜3之內表面2a、3a之兩者或其中一者塗佈有機樹脂。然後,將電解用電極2與隔膜3貼合,藉此可形成圖77所示之固定結構。有機樹脂之材質並無特別限定,例如可使用氟樹脂(例如,PTFE、PFE(Polyfluoroethylene,聚氟乙烯)、PFPE(perfluoropolyether,全氟聚醚))、或與上文所述之構成隔膜3之材料相同之樹脂等。又,亦可適當地使用市售之氟系接著劑、PTFE分散液等。進而,亦可使用通用之乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。 於本實施形態中,可使用溶於電解液或於電解中溶解、分解之有機樹脂。作為溶於電解液或於電解中溶解、分解之有機樹脂,並不限定於以下,例如可列舉:乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。 圖77所示之固定結構可藉由光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。 於本實施形態中,較佳為固定用構件之至少一部分從外部將隔膜與電解用電極固持。使用圖78A對該態樣進行說明。 圖78A所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。即,藉由作為固定用構件7之固持構件將電解用電極2之外表面2b與隔膜3之外表面3b之間夾持並固定。於圖78A所示之固定結構中,亦包括固持構件陷入電解用電極2或隔膜3之狀態。作為固持構件,例如可列舉膠帶、夾具等。 於本實施形態中,亦可使用溶於電解液之固持構件。作為溶於電解液之固持構件,例如可列舉PET製之膠帶、夾具、PVA製之膠帶、夾具等。 圖78A所示之固定結構與圖74~圖77不同,並非將電解用電極2與隔膜3之界面接合者,電解用電極2與隔膜3之各內表面2a、3a僅處於接觸或相對向之狀態,藉由去除固持構件,可將電解用電極2與隔膜3之固定狀態加以解除而分離。 圖78A並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。 又,於本實施形態中,較佳為固定用構件之至少一部分藉由磁力將隔膜與電解用電極進行固定。使用圖78B對該態樣進行說明。 圖78B所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。與圖78A之區別在於使用1對磁石作為用作固定用構件之固持構件之方面。於圖78B所示之固定結構之態樣中,於將積層體1安裝於電解槽後,於電解槽運轉時可將固持構件直接殘留,亦可將其從積層體1去除。 圖78B並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。又,於電解池之材質之一部分使用與磁石接著之磁性材料之情形時,亦可將1種固持材料設置於隔膜面側,將電解池、電解用電極2及隔膜3夾住而固定。 再者,亦可設置複數列固定部。即,可從積層體1之輪廓側起朝向內側配置1、2、3、…n條固定部。n為1以上之整數。又,第m號(m<n)固定部與第L號(m<L≦n)固定部可藉由不同之固定圖案形成。 形成於通電面之固定部較佳為線對稱之形狀。藉此,有能夠抑制應力集中之傾向。例如,若將正交之2個方向設為X方向與Y方向,則可於X方向與Y方向之各方向各配置1條、或於X方向與Y方向之各方向等間隔地各配置複數條而構成固定部。並非對X方向及Y方向之固定部之條數進行限定,但較佳為於X方向及Y方向分別設為100條以下。又,就確保通電面之面性之觀點而言,X方向及Y方向之固定部之條數宜分別為50條以下。 於本實施形態中之固定部中,於具有圖74A或圖76所示之固定結構之情形時,就防止由陽極與陰極接觸引起之短路之觀點而言,較佳為於固定部之膜面上塗佈密封材。作為密封材,例如可使用上述接著劑中所說明之素材。 本實施形態中之積層體可如上所述,於各種位置具有各種固定部,就充分確保電解性能之觀點而言,該等固定部較佳為存在於非通電面。 本實施形態中之積層體可如上所述,於各種位置具有各種固定部,但較佳為尤其是於不存在固定部之部分(非固定部),電解用電極滿足上述「承受力」。即,較佳為電解用電極之非固定部中之每單位質量·單位面積所承受之力未達1.5 N/mg・cm2 。 又,於本實施形態中,較佳為隔膜包含於表面層含有有機樹脂之離子交換膜,且於該有機樹脂中電解用電極被固定。該有機樹脂如上所述,可藉由各種公知之方法作為離子交換膜之表面層而形成。 (水電解) 本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 (電解槽之製造方法及積層體之更新方法) 本實施形態之電解槽中之積層體之更新方法具有:藉由將本實施形態中之積層體從陽極側墊片及陰極側墊片分離而將該積層體從電解槽取出之驟;及於陽極側墊片與陰極側墊片之間夾持新的積層體之步驟。再者,所謂新積層體意指本實施形態中之積層體,電解用電極及隔膜之至少一者為新品即可。 於上述夾持積層體之步驟中,就於電解槽中將電解用電極更穩定地固定之觀點而言,較佳為電解用電極及隔膜之兩者被陽極側墊片及陰極側墊片夾持。 又,本實施形態之電解槽之製造方法具有於陽極側墊片與陰極側墊片之間夾持本實施形態中之積層體之步驟。 本實施形態之電解槽之製造方法及積層體之更新方法由於以上述方式構成,因此能夠提高電解槽中之電極更新時之作業效率,進而更新後亦可獲得優異之電解性能。 於上述夾持積層體之步驟中,就於電解槽中將電解用電極更穩定地固定之觀點而言,亦較佳為電解用電極及隔膜之兩者被陽極側墊片及陰極側墊片夾持。 <第5實施形態> 此處,一邊參照圖91~102一邊對本發明之第5實施形態進行詳細地說明。 [電解槽之製造方法] 第5實施形態(以下於<第5實施形態>之項中簡稱為「本實施形態」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置電解用電極或該電解用電極與新隔膜之積層體而製造新電解槽之方法,並且使用上述電解用電極或上述積層體之捲繞體。如上所述,根據本實施形態之電解槽之製造方法,由於使用電解用電極或該電解用電極與新隔膜之積層體之捲繞體,因此能夠減小用作電解槽之構件時之電解用電極或積層體之尺寸後進行搬運等,能夠提高電解槽中之電極更新時之作業效率。 於本實施形態中,既有電解槽包含陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜作為構成構件,換言之,其包含電解池。既有電解槽只要包含上述構成構件,則無特別限定,可應用各種公知之構成。 於本實施形態中,新電解槽係除了於既有電解槽中已作為陽極或陰極而發揮功能之構件以外,進而具備電解用電極或積層體者。即,於製造新電解槽時所配置之「電解用電極」係作為陽極或陰極而發揮功能者,與既有電解槽中之陰極及陽極不同體。於本實施形態中,即使於伴隨既有電解槽之運轉陽極及/或陰極之電解性能劣化之情形時,藉由配置與該等不同體之電解用電極,亦可更新陽極及/或陰極之性能。又,於本實施形態中使用積層體之情形時,由於一併配置新離子交換膜,因此伴隨運轉性能劣化之離子交換膜之性能亦可同時更新。此處所謂「更新性能」意指設為與將既有電解槽供於運轉前所具有之初始性能相同之性能、或高於該初始性能之性能。 於本實施形態中,假定既有電解槽係「已供於運轉之電解槽」,又,假定新電解槽係「尚未供於運轉之電解槽」。即,若將作為新電解槽所製造之電解槽供於運轉一次,則成為「本實施形態中之既有電解槽」,對該既有電解槽配置電解用電極或積層體而成者成為「本實施形態中之新電解槽」。 以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。再者,於<第5實施形態>之項中,只要無特別說明,則「本實施形態中之電解槽」包含「本實施形態中之既有電解槽」及「本實施形態中之新電解槽」之兩者。 [電解池] 首先,對可用作本實施形態中之電解槽之構成單元的電解池進行說明。圖91係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖95所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖92係電解槽4內鄰接之2個電解池1之剖面圖。圖93表示電解槽4。圖94表示組裝電解槽4之步驟。 如圖92所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖93所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖94所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖91之電解池1中之上方向,所謂下方意指圖91之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖91並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖92)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖92),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 [使用捲繞體之步驟] 本實施形態中之捲繞體可為電解用電極之捲繞體,亦可為電解用電極與新隔膜之積層體之捲繞體。於本實施形態之電解槽之製造方法中,使用該捲繞體。作為使用捲繞體之步驟之具體例,並不限定於以下,可列舉如下方法等:首先,於既有電解槽中將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,於該電解池及離子交換膜之間形成空隙,其次,將解除電解用電極之捲繞體之捲繞狀態而成者插入至該空隙,再次藉由壓製器將各構件連結。再者,於使用積層體之捲繞體之情形時,例如可列舉如下方法等:以上述方式於電解池及離子交換膜之間形成空隙後,去除成為更新對象之既有之離子交換膜,其次,將解除積層體之捲繞體之捲繞狀態而成者插入至該空隙,再次藉由壓製器將各構件連結。藉由此種方法,能夠將電解用電極或積層體配置於既有電解槽中之陽極或陰極之表面上,而能夠更新離子交換膜、陽極及/或陰極之性能。 如上所述,於本實施形態中,較佳為使用捲繞體之步驟具有將捲繞體之捲繞狀態加以解除之步驟(B),又,更佳為具有於步驟(B)之後將電解用電極或積層體配置於陽極及陰極之至少一者之表面上之步驟(C)。 又,於本實施形態中,較佳為使用捲繞體之步驟具有將電解用電極或積層體保持為捲繞狀態而獲得捲繞體之步驟(A)。於步驟(A)中,可將電解用電極或積層體本身進行捲繞而製成捲繞體,亦可將電解用電極或積層體纏繞至芯而製成捲繞體。作為此處可使用之芯,並無特別限定,例如可使用具有大致圓柱形狀且與電解用電極或積層體相適應之尺寸之構件。 [電解用電極] 於本實施形態中,電解用電極只要如上所述可用作捲繞體、即為能夠捲繞者,則無特別限定。電解用電極可為於電解槽中作為陰極而發揮功能者,亦可為作為陽極而發揮功能者。又,關於電解用電極之材質或形狀等,可考慮本實施形態中之使用捲繞體之步驟或電解槽之構成等,適當選擇於製成捲繞體之方面合適者。以下,對本實施形態中之電解用電極之較佳之態樣進行說明,但該等終歸僅為於製成捲繞體之方面較佳之態樣之例示,亦可適當採用下文所述之態樣以外之電解用電極。 本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/mg・cm2 以上,進而更佳為0.14 N/(mg・cm2 )以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm2 以下,更佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm2 。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 ),更佳為0.2 N/(mg・cm2 )以上。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 )以上。 本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,可藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而實測重量W,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 以下,對本實施形態中之電解用電極之更具體之實施形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖96所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖96所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。 (第一層) 於圖96中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。 於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 [積層體] 本實施形態中之電解用電極可作為與離子交換膜或微多孔膜等隔膜之積層體而使用。即,本實施形態中之積層體係包含電解用電極與新隔膜者。所謂新隔膜,只要與既有電解槽中之隔膜不同體,則無特別限定,可應用各種公知之隔膜。又,新隔膜可為材質、形狀、物性等與既有電解槽中之隔膜相同者。 以下,對隔膜之一態樣之離子交換膜進行詳細說明。 [離子交換膜] 作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。 上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖97係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖97之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖97所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖98係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖98係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A) …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖99(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖99(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖99(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。 (水電解) 本實施形態中之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 [電極之更新方法] 本實施形態之電解槽之製造方法亦可作為電極(陽極及/或陰極)之更新方法而實施。即,本實施形態之電極之更新方法係用以藉由使用電解用電極而更新既有之電極之方法,並且使用上述電解用電極之捲繞體。 作為使用捲繞體之步驟之具體例,並不限定於以下,可列舉將解除電解用電極之捲繞體之捲繞狀態而成者配置於既有之電極之表面上的方法等。藉由此種方法,能夠將電解用電極配置於既有之陽極或陰極之表面上,而能夠更新陽極及/或陰極之性能。 如上所述,於本實施形態中,較佳為使用捲繞體之步驟具有將捲繞體之捲繞狀態加以解除之步驟(B'),又,更佳為具有於步驟(B')之後將電解用電極配置於既有之電極之表面上的步驟(C')。 又,於本實施形態之電極之更新方法中,較佳為使用捲繞體之步驟具有將電解用電極保持為捲繞狀態而獲得捲繞體之步驟(A')。於步驟(A')中,可將電解用電極本身進行捲繞而製成捲繞體,亦可將電解用電極纏繞至芯而製成捲繞體。作為此處可使用之芯,並無特別限定,例如可使用具有大致圓柱形狀且與電解用電極相適應之尺寸之構件。 [捲繞體之製造方法] 於本實施形態之電解槽之製造方法及本實施形態之電極之更新方法中,可實施之步驟(A)或(A')亦可作為捲繞體之製造方法而實施。即,本實施形態之捲繞體之製造方法係用以更新具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽的捲繞體之製造方法,並且具有將電解用電極或該電解用電極與新隔膜之積層體捲繞而獲得上述捲繞體之步驟。於獲得捲繞體之步驟中,可將電解用電極本身進行捲繞而製成捲繞體,亦可將電解用電極纏繞至芯而製成捲繞體。作為此處可使用之芯,並無特別限定,例如可使用具有大致圓柱形狀且與電解用電極相適應之尺寸之構件。 <第6實施形態> 此處,一邊參照圖103~111一邊對本發明之第6實施形態進行詳細地說明。 [電解槽之製造方法] 第6實施形態(以下於<第6實施形態>之項中簡稱為「本實施形態」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置積層體而製造新電解槽之方法,並且具有:藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,而獲得上述積層體之步驟(A);及於上述步驟(A)後將既有電解槽中之上述隔膜更換為上述積層體之步驟(B)。 如上所述,根據本實施形態之電解槽之製造方法,不藉由熱壓接之類之不實用之方法而能夠將電解用電極與隔膜進行一體化使用,因此能夠提高電解槽中之電極更新時之作業效率。 於本實施形態中,既有電解槽包含陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜作為構成構件,換言之,其包含電解池。既有電解槽只要包含上述構成構件,則無特別限定,可應用各種公知之構成。 於本實施形態中,新電解槽係除了於既有電解槽中已作為陽極或陰極而發揮功能之構件以外,進而具備電解用電極或積層體者。即,於製造新電解槽時所配置之「電解用電極」係作為陽極或陰極而發揮功能者,與既有電解槽中之陰極及陽極不同體。於本實施形態中,即使於伴隨既有電解槽之運轉陽極及/或陰極之電解性能劣化之情形時,藉由配置與該等不同體之電解用電極,亦可更新陽極及/或陰極之性能。進而,由於亦一併配置構成積層體之新離子交換膜,因此伴隨運轉性能劣化之離子交換膜之性能亦可同時更新。此處所謂「更新性能」意指設為與將既有電解槽供於運轉前所具有之初始性能相同之性能、或高於該初始性能之性能。 於本實施形態中,假定既有電解槽係「已供於運轉之電解槽」,又,假定新電解槽係「尚未供於運轉之電解槽」。即,若將作為新電解槽所製造之電解槽供於運轉一次,則成為「本實施形態中之既有電解槽」,對該既有電解槽配置電解用電極或積層體而成者成為「本實施形態中之新電解槽」。 以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。再者,於<第6實施形態>之項中,只要無特別說明,則「本實施形態中之電解槽」包含「本實施形態中之既有電解槽」及「本實施形態中之新電解槽」之兩者。 [電解池] 首先,對可用作本實施形態中之電解槽之構成單元的電解池進行說明。圖103係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖107所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖104係電解槽4內鄰接之2個電解池1之剖面圖。圖105表示電解槽4。圖106表示組裝電解槽4之步驟。 如圖104所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖105所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖106所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖103之電解池1中之上方向,所謂下方意指圖103之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖103並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖104)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖104),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 [積層體] 本實施形態中之電解用電極係作為與離子交換膜或微多孔膜等隔膜之積層體而使用。即,本實施形態中之積層體係包含電解用電極與新隔膜者。所謂新隔膜,只要與既有電解槽中之隔膜不同體,則無特別限定,可應用各種公知之隔膜。又,新隔膜可為材質、形狀、物性等與既有電解槽中之隔膜相同者。對電解用電極及隔膜之具體例追加詳細說明。 (步驟(A)) 於本實施形態中之步驟(A)中,藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,而獲得積層體。 「隔膜不熔融之溫度」可作為新隔膜之軟化點而特定出。該溫度可根據構成隔膜之材料而變動,較佳為0~100℃,更佳為5~80℃,進而較佳為10~50℃。 又,上述一體化較佳為於常壓下進行。 作為上述一體化之具體之方法,可使用除了熱壓接等將隔膜熔融之典型之方法以外之所有方法,並無特別限定。作為較佳之一例,可列舉下文所述之將液體介置於電解用電極與隔膜之間而藉由該液體之表面張力進行一體化之方法等。 [步驟(B)] 於本實施形態中之步驟(B)中,於步驟(A)之後,將既有電解槽中之隔膜與積層體交換。作為交換之方法,並無特別限定,例如可列舉如下方法等:首先,於既有電解槽中將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,於該電解池及離子交換膜之間形成空隙,其次將成為更新對象之既有之離子交換膜去除,繼而,將積層體插入至該空隙,再次藉由壓製器將各構件連結。藉由此種方法,能夠將積層體配置於既有電解槽中之陽極或陰極之表面上,而能夠更新離子交換膜、陽極及/或陰極之性能。 [電解用電極] 於本實施形態中,電解用電極只要如上所述可與新隔膜進行一體化、即為能夠一體化者,則無特別限定。電解用電極可為於電解槽中作為陰極而發揮功能者,亦可為作為陽極而發揮功能者。又,關於電解用電極之材質或形狀等,可考慮本實施形態中之步驟(A)、(B)或電解槽之構成等而適當選擇合適者。以下,對本實施形態中之電解用電極之較佳之態樣進行說明,但該等終歸僅為於與新隔膜進行一體化之方面較佳之態樣之例示,亦可適當採用下文所述之態樣以外之電解用電極。 本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/mg・cm2 以上,進而更佳為0.14 N/(mg・cm2 )以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm2 以下,更佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm2 。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 ),更佳為0.2 N/(mg・cm2 )以上。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 )以上。 本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於本實施形態中,較佳為將新隔膜與電解用電極進行一體化後,於該等之間介置液體。該液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對新隔膜與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體於20℃下之表面張力)。 己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)水(72.76 mN/m) 若為表面張力較大之液體,則新隔膜與電解用電極成為一體(成為積層體),有電極更新變得更容易之傾向。新隔膜與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。 就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為24 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,新隔膜與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限定,可使用離子性界面活性劑、非離子性界面活性劑之任一種。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,可藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而實測重量W,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 以下,對本實施形態中之電解用電極之更具體之實施形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖108所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖108所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。 (第一層) 於圖108中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。 於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 以下,對隔膜之一態樣之離子交換膜進行詳細說明。 [離子交換膜] 作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。 上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖109係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖109之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖109所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖110係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖110係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A) …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖111(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖111(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖111(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。 (水電解) 本實施形態中之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 <第7實施形態> 此處,一邊參照圖112~122一邊對本發明之第7實施形態進行詳細地說明。 [電解槽之製造方法] 第7實施形態(以下於<第7實施形態>之項中簡稱為「本實施形態」)之第1態樣(以下亦簡稱為「第1態樣」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置包含電解用電極及新隔膜之積層體而製造新電解槽之方法,並且具有於上述電解槽架內解除上述隔膜之固定之步驟(A)、及於上述步驟(A)後將上述隔膜與上述積層體交換之步驟(B)。 如上所述,根據第1態樣之電解槽之製造方法,能夠於不將各構件取出至電解槽架之外側之情況下更新電極,而能夠提高電解槽中之電極更新時之作業效率。 又,本實施形態之第2態樣(以下亦簡稱為「第2態樣」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置電解用電極而製造新電解槽之方法,並且具有於上述電解槽架內解除上述隔膜之固定之步驟(A)、及於上述步驟(A)後於上述隔膜與上述陽極或上述陰極之間配置上述電解用電極之步驟(B')。 如上所述,根據第2態樣之電解槽之製造方法,亦能夠於不將各構件取出至電解槽架之外側之情況下更新電極,而能夠提高電解槽中之電極更新時之作業效率。 以下,於稱為「本實施形態之電解槽之製造方法」時,包括第1態樣之電解槽之製造方法及第2態樣之電解槽之製造方法。 於本實施形態之電解槽之製造方法中,既有電解槽包含陽極、與上述陽極相對向之陰極、配置於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架作為構成構件。換言之,既有電解槽包含隔膜、電解池、及支持該等之電解槽架。既有電解槽只要包含上述構成構件,則無特別限定,可應用各種公知之構成。 於本實施形態之電解槽之製造方法中,新電解槽係除了於既有電解槽中已作為陽極或陰極而發揮功能之構件以外,進而具備電解用電極或積層體者。即,於第1態樣及第2態樣中,於製造新電解槽時所配置之「電解用電極」係作為陽極或陰極而發揮功能者,與既有電解槽中之陰極及陽極不同體。於本實施形態之電解槽之製造方法中,即使於伴隨既有電解槽之運轉陽極及/或陰極之電解性能劣化之情形時,藉由配置與該等不同體之電解用電極,亦可更新陽極及/或陰極之性能。又,於使用積層體之第1態樣中,由於一併配置新離子交換膜,因此伴隨運轉性能劣化之離子交換膜之性能亦可同時更新。此處所謂「更新性能」意指設為與將既有電解槽供於運轉前所具有之初始性能相同之性能、或高於該初始性能之性能。 於本實施形態之電解槽之製造方法中,假定既有電解槽係「已供於運轉之電解槽」,又,假定新電解槽係「尚未供於運轉之電解槽」。即,若將作為新電解槽所製造之電解槽供於運轉一次,則成為「本實施形態中之既有電解槽」,對該既有電解槽配置電解用電極或積層體而成者成為「本實施形態中之新電解槽」。 以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。再者,於<第7實施形態>之項中,只要無特別說明,則「本實施形態中之電解槽」包含「本實施形態中之既有電解槽」及「本實施形態中之新電解槽」之兩者。 [電解池] 首先,對可用作本實施形態中之電解槽之構成單元的電解池進行說明。圖112係電解池1之剖面圖。 電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖116所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。 圖113係電解槽4內鄰接之2個電解池1之剖面圖。圖114表示作為既有電解槽之電解槽4。圖115表示組裝電解槽4之步驟(與步驟(A)~(B)及步驟(A')~(B')不同)。 如圖113所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖114所示,電解槽4係以藉由電解槽架8支持介隔離子交換膜2而串聯連接之複數個電解池1之形式構成。即,電解槽4係具備串聯配置之複數個電解池1、配置於鄰接之電解池1之間之離子交換膜2、及支持該等之電解槽架8之複極式電解槽。如圖115所示,電解槽4係藉由介隔離子交換膜2串聯配置複數個電解池1並利用電解槽架8中之壓製器5連結而組裝。再者,作為電解槽架,只要可支持各構件並且可連結,則無特別限定,可應用各種公知之形態。作為電解槽架所具備之連結各構件之機構,亦無特別限定,例如,可列舉利用油壓之壓製機構、或具備連接桿作為機構者。 電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。 於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。 (陽極室) 陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。 (陽極) 於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極饋電體) 於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陽極側電解液供給部) 陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。 (陽極側氣液分離部) 陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖112之電解池1中之上方向,所謂下方意指圖112之電解池1中之下方向。 電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。 (擋板) 擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。 再者,於圖112並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。 (間隔壁) 間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。 (陰極室) 陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。 (陰極) 於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (陰極饋電體) 於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。 作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。 (逆向電流吸收層) 可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。 (集電體) 陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。 作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。 (金屬彈性體) 藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。 作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。 (支持體) 陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。 支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。 (陽極側墊片、陰極側墊片) 陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖113)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。 所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖113),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。 [積層體] 於本實施形態之電解槽之製造方法中,電解用電極可作為與離子交換膜或微多孔膜等隔膜之積層體而使用。即,本實施形態中之積層體係包含電解用電極與新隔膜者。新隔膜只要與既有電解槽中之隔膜不同體,則無特別限定,可應用各種公知之隔膜。又,新隔膜可為材質、形狀、物性等與既有電解槽中之隔膜相同者。對電解用電極及隔膜之具體例追加詳細說明。 (步驟(A)) 於第1態樣中之步驟(A)中,於電解槽架內解除隔膜之固定。所謂「於電解槽架內」意指一邊保持電解池(即,包含陽極及陰極之構件)及隔膜由電解槽架所支持之狀態一邊進行步驟(A),將電解池從電解槽架去除之態樣除外。作為解除隔膜之固定之方法,並無特別限定,例如可列舉解除利用電解槽架中之壓製器之按壓,於電解池與隔膜之間形成空隙,設為將隔膜取出至電解槽架之外之狀態之方法等。於步驟(A)中,較佳為藉由使陽極及陰極分別沿該等之排列方向滑動,而於電解槽架內解除隔膜之固定。藉由此種操作,可設為能夠於不將電解池取出至電解槽架之外之情況下將隔膜取出至電解槽架之外之狀態。 [步驟(B)] 於第1態樣中之步驟(B)中,於步驟(A)之後,將既有電解槽中之隔膜與積層體交換。作為交換之方法,並無特別限定,例如可列舉於該電解池及離子交換膜之間形成空隙後,將成為更新對象之既有之隔膜去除,繼而將積層體插入至該空隙之方法等。藉由此種方法,能夠將積層體配置於既有電解槽中之陽極或陰極之表面上,而能夠更新離子交換膜、陽極及/或陰極之性能。 於實施步驟(B)後,較佳為藉由從陽極及陰極進行按壓,而將上述積層體固定於上述電解槽架內。具體而言,可將既有電解槽中之隔膜與積層體交換後,再次藉由壓製器對積層體與電解池等既有電解槽中之各構件進行按壓而加以連結。藉由此種方法,能夠將積層體固定於既有電解槽中之陽極或陰極之表面上。 基於圖117(A)及(B),對第1態樣中之步驟(A)~(B)之具體例進行說明。首先,解除利用壓製器5之按壓,使複數個電解池1及離子交換膜2沿該等之排列方向α滑動。藉此,能夠在不將電解池1取出至電解槽架8之外之情況下於電解池1及離子交換膜2之間形成空隙S,離子交換膜2成為可取出至電解槽架8之外之狀態。繼而,將成為交換對象之既有電解槽之離子交換膜2從電解槽架8取出,取而代之,將新離子交換膜2a與電解用電極100之積層體9插入至鄰接之電解池1之間(即,空隙S)。由此,於鄰接之電解池1之間配置積層體9,該等成為由電解槽架8所支持之狀態。繼而,利用壓製器5沿排列方向α進行按壓,藉此將複數個電解池1與積層體9連結。 (步驟(A')) 於第2態樣中之步驟(A')中,亦與第1態樣同樣地於電解槽架內解除隔膜之固定。於步驟(A')中,亦較佳為藉由使陽極及陰極分別沿該等之排列方向滑動,而於電解槽架內解除隔膜之固定。藉由此種操作,可設為能夠於不將電解池取出至電解槽架之外之情況下將隔膜取出至電解槽架之外之狀態。 [步驟(B')] 於第2態樣中之步驟(B')中,於步驟(A')之後,於隔膜與陽極或陰極之間配置電解用電極。作為配置電解用電極之方法,並無特別限定,例如可列舉於電解池及離子交換膜之間形成空隙後,將電解用電極插入至該空隙之方法等。藉由此種方法,能夠將電解用電極配置於既有電解槽中之陽極或陰極之表面上,而能夠更新陽極或陰極之性能。 於實施步驟(B')後,較佳為藉由從陽極及陰極進行按壓,而將電解用電極固定於電解槽架內。具體而言,可將電解用電極配置於既有電解槽中之陽極或陰極之表面上後,再次藉由壓製器對電解用電極與電解池等既有電解槽中之各構件進行按壓而加以連結。藉由此種方法,能夠將積層體固定於既有電解槽中之陽極或陰極之表面上。 基於圖118(A)及(B),對第2態樣中之步驟(A')~(B')之具體例進行說明。首先,解除利用壓製器5之按壓,使複數個電解池1及離子交換膜2沿該等之排列方向α滑動。藉此,能夠於不將電解池1取出至電解槽架8之外之情況下於電解池1與離子交換膜2之間形成空隙S。繼而,將電解用電極100插入至鄰接之電解池1之間(即,空隙S)。由此,於鄰接之電解池1之間配置電解用電極100,該等成為由電解槽架8所支持之狀態。繼而,利用壓製器5沿排列方向α進行按壓,藉此將複數個電解池1與電解用電極100連結。 再者,於第1態樣中之步驟(B)中,較佳為於積層體不熔融之溫度下,將該積層體固定於陽極及陰極之至少一者之表面上。 「積層體不熔融之溫度」可作為新隔膜之軟化點而特定出。該溫度可根據構成隔膜之材料而變動,較佳為0~100℃,更佳為5~80℃,進而較佳為10~50℃。 又,上述之固定較佳為於常壓下進行。 較佳為進而藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,獲得積層體後用於步驟(B)。 作為上述一體化之具體之方法,可使用除了熱壓接等將隔膜熔融之典型之方法以外之所有方法,並無特別限定。作為較佳之一例,可列舉下文所述之將液體介置於電解用電極與隔膜之間而藉由該液體之表面張力進行一體化之方法等。 [電解用電極] 於本實施形態之電解槽之製造方法中,電解用電極只要為可用於電解者,則無特別限定。電解用電極可為於電解槽中作為陰極而發揮功能者,亦可為作為陽極而發揮功能者。又,關於電解用電極之材質或形狀等,可考慮電解槽之構成等而適當選擇合適者。以下,對本實施形態中之電解用電極之較佳之態樣進行說明,但該等僅為對於第1態樣中與新隔膜進行一體化而製成積層體之情形而言較佳之態樣之例示,亦可適當採用下文所述之態樣以外之電解用電極。 本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。 就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/mg・cm2 以上,進而更佳為0.14 N/(mg・cm2 )以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm2 )以上。 上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。 又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm2 以下,更佳為30 mg/cm2 以下,進而較佳為20 mg/cm2 以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm2 以下。下限值並無特別限定,例如為1 mg/cm2 左右。 上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。 承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm2 。 [方法(i)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。 於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm2 )。 藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 ),更佳為0.2 N/(mg・cm2 )以上。 [方法(ii)] 依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm2 )。 藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm2 )以下,更佳為未達1.6 N/(mg・cm2 ),進而較佳為未達1.5 N/(mg・cm2 ),進而更佳為1.2 N/mg・cm2 以下,更佳為1.20 N/mg・cm2 以下。進而更佳為1.1 N/mg・cm2 以下,進而更佳為1.10 N/mg・cm2 以下,尤佳為1.0 N/mg・cm2 以下,特佳為1.00 N/mg・cm2 以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm2 ),更佳為0.08 N/(mg・cm2 )以上,進而較佳為0.1 N/(mg・cm2 )以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm2 )以上。 本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於本實施形態之電解槽之製造方法中,較佳為將新隔膜與電解用電極進行一體化後,於該等之間介置液體。該液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對新隔膜與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體於20℃下之表面張力)。 己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)水(72.76 mN/m) 若為表面張力較大之液體,則新隔膜與電解用電極成為一體(成為積層體),有電極更新變得更容易之傾向。新隔膜與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。 就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為24 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,新隔膜與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限定,可使用離子性界面活性劑、非離子性界面活性劑之任一種。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。 [方法(2)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。 [方法(3)] 依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。 本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。 再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,可藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而實測重量W,而利用下述之式算出開孔率A。 A=(1-(W/(V×ρ))×100 ρ係電極之材質之密度(g/cm3 )。例如於鎳之情形時為8.908 g/cm3 ,於鈦之情形時為4.506 g/cm3 。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。 以下,對本實施形態中之電解用電極之更具體之實施形態進行說明。 本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。 如圖119所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。 又,如圖119所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。 (電解用電極基材) 作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。 於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。 又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。 電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。 關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。 作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。 作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。 又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。 於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。 為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。 (第一層) 於圖119中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO2 等。作為銥氧化物,可列舉IrO2 等。作為鈦氧化物,可列舉TiO2 等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。 於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。 於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。 除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。 第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。 (第二層) 第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。 第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。 繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。 (第一層) 作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。 於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。 作為鉑族金屬,較佳為含有鉑。 作為鉑族金屬氧化物,較佳為含有釕氧化物。 作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。 作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。 較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。 作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。 較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。 藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。 作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。 於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。 較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。 作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。 作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。 視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。 作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。 (第二層) 作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。 可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。 作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。 作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。 於本實施形態之電解槽之製造方法中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。 (電解用電極之製造方法) 其次,對電解用電極100之製造方法之一實施形態進行詳細說明。 於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。 (陽極之第一層之形成) (塗佈步驟) 第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (第二層之形成) 第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。 (利用熱分解法之陰極之第一層之形成) (塗佈步驟) 第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。 作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。 作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。 (乾燥步驟、熱分解步驟) 將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。 重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。 (中間層之形成) 中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。 (利用離子鍍敷之陰極之第一層之形成) 第一層20亦可藉由離子鍍敷而形成。 作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。 (利用鍍覆之陰極之第一層之形成) 第一層20亦可藉由鍍覆法而形成。 作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。 (利用熱熔射之陰極之第一層之形成) 第一層20亦可藉由熱熔射法而形成。 作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。 以下,對隔膜之一態樣之離子交換膜進行詳細說明。 [離子交換膜] 作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態之電解槽之製造方法中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m2 /g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。 上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。 以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。 圖120係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。 於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO3 - 表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO2 - 表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。 再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖120之例。 (膜本體) 首先,對構成離子交換膜1之膜本體10進行說明。 膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。 膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。 含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。 作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。 作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF2 =CF(OCF2 CYF)s -O(CZF)t -COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF3 ,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。 該等中,較佳為以CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF3 ,R表示CH3 、C2 H5 、或C3 H7 。 再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。 作為第2群之單體,於上述中,更佳為下述所表示之單體。 CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 、 CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 、 CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 、 CF2 =CFO(CF2 )2 COOCH3 、 CF2 =CFO(CF2 )3 COOCH3 。 作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF2 =CFO-X-CF2 -SO2 F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。 CF2 =CFOCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、 CF2 =CF(CF2 )2 SO2 F、 CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F、 CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F。 該等中,更佳為CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F、及CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F。 由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。 於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。 含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。 於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。 於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。 磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。 羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。 作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F作為第3群之單體所獲得之聚合物。 作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 作為第2群之單體所獲得之聚合物。 (塗佈層) 離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖120所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。 塗佈層含有無機物粒子與結合劑。 無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。 又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。 此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。 無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。 無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。 該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。 作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。 塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。 作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。 塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。 離子交換膜中之塗佈層之分佈密度較佳為每1 cm2 為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm2 為0.5~2 mg。 作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。 (強化芯材) 離子交換膜較佳為具有配置於膜本體之內部之強化芯材。 強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。 強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。 強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。 作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。 強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。 織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。 膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。 例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。 尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。 強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。 強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。 所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。 圖121係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖121係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。 藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。 開口率=(B)/(A)=((A)-(C))/(A) …(I) 於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。 作為強化紗之形狀,可列舉圓紗、帶狀紗等。 (連通孔) 離子交換膜較佳為於膜本體之內部具有連通孔。 所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。 藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。 連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。 連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。 [製造方法] 作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。 (1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。 (2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。 (3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。 (4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。 (5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。 (6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。 以下,對各步驟進行詳細說明。 (1)步驟:製造含氟系聚合物之步驟 於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。 (2)步驟:補強材之製造步驟 所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。 犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。 再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。 (3)步驟:膜化步驟 於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。 作為膜化之方法,例如可列舉以下者。 分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。 藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。 再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。 (4)步驟:獲得膜本體之步驟 於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。 作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。 此處,將第一層與第二層共擠出有助於提高界面之接著強度。 又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。 再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。 再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。 第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。 於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。 於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。 又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。 (5)水解步驟 於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。 又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。 犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。 (5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。 該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。 作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。 作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。 此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖122(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 於圖122(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。 首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。 藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。 於圖122(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。 (6)塗佈步驟 於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。 作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H+ 而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。 將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。 塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。 又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。 藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。 [微多孔膜] 作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。 本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。 氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100 本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。 本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。 作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。 於本實施形態之電解槽之製造方法中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。 (水電解) 本實施形態中之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。 [實施例] 藉由以下之實施例及比較例進一步詳細地說明本發明,但本發明並不受以下之實施例任何限定。 <第1實施形態之驗證> 如下所述準備與第1實施形態相對應之實驗例(於以下之<第1實施形態之驗證>之項中簡稱為「實施例」)、及不與第1實施形態相對應之實驗例(於以下之<第1實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖10~21一邊對其詳細內容進行說明。 [評價方法] (1)開孔率 將電極切成130 mm×100 mm之尺寸。使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點,並算出平均值。以其作為電極之厚度(量規厚度)而算出體積。其後,利用電子天平測定質量,根據金屬之比重(鎳之比重=8.908 g/cm3 、鈦之比重=4.506 g/cm3 )算出開孔率或空隙率。 開孔率(空隙率)(%)=(1-(電極質量)/(電極體積×金屬之比重))×100 (2)每單位面積之質量(mg/cm2 ) 將電極切成130 mm×100 mm之尺寸,利用電子天平測定質量。用該值除以面積(130 mm×100 mm)而算出每單位面積之質量。 (3)每單位質量·單位面積所承受之力(1)(接著力)(N/mg・cm2 )) [方法(i)] 測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。 藉由粒編號320之氧化鋁對厚度1.2 mm、200 mm見方之鎳板實施噴擊加工。噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。此處,表面粗糙度測定係使用觸針式之表面粗糙度測定機SJ-310(Mitutoyo股份有限公司)。將測定樣品設置於與地面平行之平台上,於下述之測定條件下測定算術平均粗糙度Ra。將測定實施6次時,記載其平均值。 <觸針之形狀>圓錐,錐角度=60°,前端半徑=2 μm,靜態測定力=0.75 mN <粗糙度標準>JIS2001 <評價曲線>R <濾波>GAUSS <臨界值 λc>0.8 mm <臨界值 λs>2.5 μm <區間數>5 <前掃、後掃>有 將該鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。 使用下述之離子交換膜A作為隔膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。再者,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。 將上述所獲得之離子交換膜(隔膜)於純水中浸漬12小時以上後用於試驗。使其與以純水充分濡濕之上述鎳板接觸,藉由水之張力進行接著。此時,以鎳板與離子交換膜之上端之位置對齊之方式設置。 測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。 使拉伸壓縮試驗機之上側夾頭下降,利用純水之表面張力使電解用電極樣品接著於離子交換膜表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及離子交換膜整體,製成隔膜、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之純水去除。輥僅施加1次。 以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與隔膜之重疊部分成為橫130 mm、縱100 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極與離子交換膜之重疊部分之面積、及與離子交換膜重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(1)。與離子交換膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm2 )中所獲得之值,藉由比例計算而求出。 測定室之環境係溫度23±2℃、相對濕度30±5%。 再者,實施例、比較例中所使用之電極於接著於藉由表面張力接著於鉛直地固定之鎳板之離子交換膜時,可不下垂或剝離而獨立地接著。 再者,將承受力(1)之評價方法之模式圖示於圖10。 再者,拉伸試驗機之測定下限為0.01(N)。 (4)每單位質量·單位面積所承受之力(2)(接著力)(N/mg・cm2 )) [方法(ii)] 測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。 將與方法(i)相同之鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。 測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。 使拉伸壓縮試驗機之上側夾頭下降,藉由溶液之表面張力使電解用電極樣品接著於鎳板表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及鎳板整體,製成鎳板、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之溶液去除。輥僅施加1次。 以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與鎳板之縱向之重疊部分成為100 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極與鎳板之重疊部分之面積、及與鎳板重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(2)。與隔膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm2 )中所獲得之值,藉由比例計算而求出。 又,測定室之環境係溫度23±2℃、相對濕度30±5%。 再者,實施例、比較例中所使用之電極於藉由表面張力接著於鉛直地固定之鎳板時,可不下垂或剝離而獨立地接著。 再者,拉伸試驗機之測定下限為0.01(N)。 (5)直徑280 mm圓柱捲繞評價方法(1)(%) (膜與圓柱) 按照以下之順序實施評價方法(1)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。比較例10及11中電極藉由熱壓製而與離子交換膜成為一體,因此準備離子交換膜與電極之一體物(電極係130 mm見方)。將離子交換膜於純水中充分浸漬後,置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,藉由將厚度5 mm之獨立發泡型之EPDM海綿橡膠捲繞於氯乙烯管(外徑38 mm)而成之輥將多餘之溶液去除。輥係從圖11所示之模式圖之左側向右側於離子交換膜上滾動。輥僅施加1次。1分鐘後,測定離子交換膜與外徑280 mm之塑膠製之管電極密接之部分之比率。 (6)直徑280 mm圓柱捲繞評價方法(2)(%) (膜與電極) 按照以下之順序實施評價方法(2)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖12所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。 (7)直徑145 mm圓柱捲繞評價方法(3)(%) (膜與電極) 按照以下之順序實施評價方法(3)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑145 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖13所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。 (8)操作性(感應評價) (A)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。 (B)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。 1:操作良好 2:能夠操作 3:操作困難 4:大體無法操作 此處,對於比較例5之樣品,以與電極為1.3 m×2.5 m、離子交換膜為1.5 m×2.8 m之尺寸之大型電解池相同之尺寸實施操作。比較例5之評價結果(如下文所述為「3」)係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦無問題。 (9)電解評價(電壓(V)、電流效率(%)、苛性鈉中食鹽濃度(ppm,50%換算)) 藉由下述電解實驗評價電解性能。 使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將積層體(離子交換膜A與電解用電極之積層體)夾於一對墊片間。然後,使陽極池、墊片、積層體、墊片及陰極密接而獲得電解池,準備包含該電解池之電解槽。 作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而成為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用[方法(i)]中製作之離子交換膜A(160 mm見方)。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m2 下實施食鹽電解,測定電壓、電流效率、苛性鈉中食鹽濃度。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。苛性鈉中食鹽濃度表示將苛性鈉濃度換算為50%所得之值。 再者,將實施例、比較例中所使用之電極及饋電體之規格示於表1。 (11)觸媒層之厚度、電解用電極基材、電極之厚度測定 電解用電極基材之厚度係使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點並算出平均值。以此作為電解用電極基材之厚度(量規厚度)。電極之厚度係與電極基材同樣地藉由電子數顯厚度計於面內均勻地測定10點並算出平均值。以此作為電極之厚度(量規厚度)。觸媒層之厚度係藉由電極之厚度減去電解用電極基材之厚度而求出。 (12)電極之彈性變形試驗 將[方法(i)]中製作之離子交換膜A(隔膜)及電極切割成110 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。於溫度23±2℃、相對濕度30±5%之條件下,將離子交換膜與電極重疊而製作積層體後,如圖14所示般以不產生間隙之方式捲繞至外徑ϕ32 mm、長度20 cm之PVC製管。為了避免捲繞之積層體從PVC製管剝離或鬆動,而使用聚乙烯製之捆束帶加以固定。於該狀態下保持6小時。其後,去除捆束帶,將積層體從PVC製管解捲。僅將電極置於平台上,測定從平台隆起之部分之高度L1 、L2 並求出平均值。以該值作為電極變形之指標。即,值較小意指難以變形。 再者,於使用多孔金屬之情形時,於捲繞時存在SW方向、LW方向之兩種。於本試驗中係沿SW方向捲繞。 又,對於產生變形之電極(未恢復為原來平坦之狀態之電極),藉由如圖15所示之方法對塑性變形後之柔軟程度進行評價。即,將產生變形之電極置於在純水中充分浸漬之隔膜上,將一端固定,將浮起之相反之端部壓抵於隔膜,將力解除,對產生變形之電極是否追隨隔膜進行評價。 (13)膜損傷評價 使用下述之離子交換膜B作為隔膜。 作為強化芯材,使用為聚四氟乙烯(PTFE)且將100丹尼之帶狀紗線以900次/m撚絞而製成紗狀者(以下稱為PTFE紗)。作為經紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。又,作為緯紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以將PTFE紗以24根/英吋配置、將犧牲紗於鄰接之PTFE紗間配置2根之方式進行平織,而獲得厚度100 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.92 mg當量/g之乾燥樹脂之聚合物(A1)、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B1)。使用該等聚合物(A1)及(B1),藉由共擠出T模法獲得聚合物(A1)層之厚度為25 μm、聚合物(B1)層之厚度為89 μm之2層膜X。再者,各聚合物之離子交換容量表示將各聚合物之離子交換基前驅物水解而轉換為離子交換基時之離子交換容量。 又,另行準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B2)。將該聚合物單層擠出而獲得20 μm之膜Y。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙、膜Y、補強材及膜X,於加熱板溫度225℃、減壓度0.022 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)與氫氧化鉀(KOH)之水溶液中浸漬1小時而進行皂化後,於0.5 N之NaOH中浸漬1小時,將離子交換基所附離子取代為Na,繼而進行水洗。進而於60℃下加以乾燥。 又,將以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.05 mg當量/g之乾燥樹脂之聚合物(B3)水解後,藉由鹽酸使其成為酸型。於將該酸型之聚合物(B3')以5質量%之比率溶解於水及乙醇之50/50(質量比)混合液中而成之溶液中,以聚合物(B3')與氧化鋯粒子之質量比成為20/80之方式添加一次粒子之平均粒徑為0.02 μm之氧化鋯粒子。其後,藉由球磨機使其於氧化鋯粒子之懸浮液中分散而獲得懸浮液。 利用噴射法將該懸浮液塗佈於離子交換膜之兩表面並加以乾燥,藉此獲得具有含有聚合物(B3')與氧化鋯粒子之塗佈層之離子交換膜B。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.35 mg/cm2 。 陽極係使用與(9)電解評價相同者。 陰極係使用各實施例、比較例所記載者。陰極室之集電體、墊及饋電體係使用與(9)電解評價相同者。即,以Ni網作為饋電體,利用作為金屬彈性體之墊之反彈力而成為零間距結構。墊片亦使用與(9)電解評價相同者。作為隔膜,使用藉由上述方法所製作之離子交換膜B。即,除了將離子交換膜B與電解用電極之積層體夾持於一對墊片間以外,準備與(9)相同之電解槽。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為70℃之方式調節陽極室及陰極室之各溫度。於電流密度8 kA/m2 下實施食鹽電解。從電解開始起12小時後停止電解,取出離子交換膜B並觀察損傷狀態。 「0」意指無損傷。「1至3」意指存在損傷,數字越大,意指損傷之程度越大。 (14)電極之通氣阻力 使用通氣性試驗機KES-F8(商品名,Kato Tech股份有限公司)測定電極之通氣阻力。通氣阻力值之單位為kPa・s/m。將測定實施5次,將其平均值記載於表2。測定係於以下之兩個條件下實施。再者,測定室之溫度設為24℃,相對濕度設為32%。 ・測定條件1(通氣阻力1) 活塞速度:0.2 cm/s 通氣量:0.4 cc/cm2 /s 測定範圍:SENSE L(低) 樣品尺寸:50 mm×50 mm ・測定條件2(通氣阻力2) 活塞速度:2 cm/s 通氣量:4 cc/cm2 /s 測定範圍:SENSE M(中)或H(高) 樣品尺寸:50 mm×50 mm [實施例1] 作為陰極電解用電極基材,準備量規厚度為16 μm之電解鎳箔。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為49%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例1中所製作之電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。又,為氧化釕與氧化鈰之合計厚度。 將藉由上述方法所製作之電極之接著力之測定結果示於表2。觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之[方法(i)]中所製作之離子交換膜A(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向,藉由水溶液之表面張力使其等密接。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。 對所獲得之電極進行電解評價。將其結果示於表2。 表現出較低之電壓、較高之電流效率及較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF(螢光X射線分析)測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例2] 實施例2係使用量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為29 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0033(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例3] 實施例3係使用量規厚度為30 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為1.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為38 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例4] 實施例4係使用量規厚度為16 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為75%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例5] 實施例5係準備量規厚度為20 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之兩面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。兩面均為相同之粗糙度。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為49%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則兩面均殘存大致100%塗層。若對比實施例1~4進行考慮,則說明即使不與膜相對向之相反面中塗層較少或不存在,亦能夠發揮出良好之電解性能。 [實施例6] 實施例6除了藉由離子鍍敷實施對陰極電解用電極基材之塗佈以外,與實施例1同樣地實施評價,並將結果示於表2。再者,離子鍍敷係於加熱溫度200℃下使用Ru金屬靶,於氬氣/氧氣環境下以成膜壓力7×10-2 Pa進行製膜。所形成之塗層為氧化釕。 電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例7] 實施例7係藉由電成形法製作陰極電解用電極基材。光罩之形狀係設為將0.485 mm×0.485 mm之正方形以0.15 mm為間隔縱、橫排列而成之形狀。藉由依序實施曝光、顯影、電鍍,獲得量規厚度為20 μm、開孔率56%之鎳多孔箔。表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為37 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為17 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例8] 實施例8中作為陰極電解用電極基材,係藉由電成形法製作,量規厚度為50 μm,開孔率為56%。表面之算術平均粗糙度Ra為0.73 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為60 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例9] 實施例9係使用量規厚度為150 μm、空隙率為76%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為300 g/m2 。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為165 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為29 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0612(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例10] 實施例10係使用量規厚度為200 μm、空隙率為72%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為500 g/m2 。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為215 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為40 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0164(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例11] 實施例11係使用量規厚度為200 μm、空隙率為72%之發泡鎳(Mitsubishi Materials股份有限公司製造)作為陰極電解用電極基材。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 又,電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為17 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0402(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例12] 實施例12係使用線徑50 μm、200目、量規厚度為100 μm、開孔率為37%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例12中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。1根金屬絲網之算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0154(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例13] 實施例13係使用線徑65 μm、150目、量規厚度為130 μm、開孔率為38%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例13中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.66 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施上述評價,並將結果示於表2。 電極之厚度為133 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為3 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為6.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0124(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價亦為「0」而較良好。 [實施例14] 實施例14係使用與實施例3相同之基材(量規厚度30 μm、開孔率44%)作為陰極電解用電極基材。除了未設置鎳網饋電體以外,以與實施例1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、膜一體電極、陽極而形成零間距結構,墊作為饋電體發揮功能。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例15] 實施例15係使用與實施例3相同之基材(量規厚度30 μm、開孔率44%)作為陰極電解用電極基材。設置參考例1中使用之劣化且電解電壓變高之陰極代替鎳網饋電體。除此以外,以與實施例1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、劣化且電解電壓變高之陰極(作為饋電體發揮功能)、電解用電極(陰極)、隔膜、陽極而形成零間距結構,劣化且電解電壓變高之陰極作為饋電體發揮功能。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例16] 作為陽極電解用電極基材,準備量規厚度為20 μm之鈦箔。對鈦箔之兩面實施粗面化處理。對該鈦箔實施打孔加工,開出圓形之孔而製成多孔箔。孔之直徑為1 mm,開孔率為14%。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。藉由水溶液之表面張力使其密接於利用0.1 N之NaOH水溶液平衡之[方法(i)]中製作之離子交換膜A(尺寸為160 mm×160 mm)之磺酸層側的大致中央之位置。 陰極係按照以下之順序製備。首先,準備線徑150 μm、40目之鎳製金屬絲網作為基材。作為預處理而藉由氧化鋁實施噴擊處理後,於6 N之鹽酸中浸漬5分鐘,並利用純水充分洗淨、乾燥。 繼而,以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、氯化鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於300℃下實施3分鐘之預燒成,於550℃下實施10分鐘之燒成。其後,於550℃下實施1小時之燒成。重複進行該等塗佈、乾燥、預燒成、燒成之一系列之操作。 作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋藉由上述方法製作之陰極,藉由利用鐵氟龍(註冊商標)製作之繩將網之四角固定於集電體。 即使抓持膜與陽極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 藉由焊接將參考例3中所使用之劣化且電解電壓變高之陽極固定於陽極池,將上述膜一體電極以附著有電極之面成為陽極室側之方式夾於陽極池與陰極池之間。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、陰極、隔膜、電解用電極(鈦多孔箔陽極)、劣化且電解電壓變高之陽極,形成零間距結構。劣化且電解電壓變高之陽極作為饋電體發揮功能。再者,鈦多孔箔陽極與劣化且電解電壓變高之陽極之間僅係物理接觸,並未藉由焊接進行固定。 藉由該構成,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為6 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為4 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0060(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例17] 實施例17係使用量規厚度20 μm、開孔率30%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。 電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例18] 實施例18係使用量規厚度20 μm、開孔率42%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。 電極之厚度為32 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為12 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為2.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0022(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例19] 實施例19係使用量規厚度50 μm、開孔率47%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.40 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。 電極之厚度為69 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為19 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為8 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0024(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例20] 實施例20係使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m2 、開孔率78%之鈦不織布作為陽極電解用電極基材。除此以外,與實施例16同樣地實施評價,並將結果示於表2。 電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為2 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例21] 實施例21係使用量規厚度120 μm、鈦纖維直徑約為60 μm、150目之鈦金屬絲網作為陽極電解用電極基材。開孔率為42%。藉由粒編號320之氧化鋁實施噴擊處理。由於難以測定金屬絲網表面之粗糙度,因此於實施例21中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。 電極之厚度為140 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為20 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為10 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0132(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例22] 實施例22係與實施例16同樣地使用劣化且電解電壓變高之陽極作為陽極饋電體,使用與實施例20相同之鈦不織布作為陽極。與實施例15同樣地使用劣化且電解電壓變高之陰極作為陰極饋電體,使用與實施例3相同之鎳箔電極作為陰極。電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電壓變高之陰極、鎳多孔箔陰極、隔膜、鈦不織布陽極、劣化且電解電壓變高之陽極而形成零間距結構,劣化且電解電壓變高之陰極及陽極作為饋電體發揮功能。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極(陽極)之厚度為114 μm,觸媒層之厚度係電極(陽極)之厚度減去電解用電極基材之厚度而為14 μm。又,電極(陰極)之厚度為38 μm,觸媒層之厚度係電極(陰極)之厚度減去電解用電極基材之厚度而為8 μm。 於陽極及陰極均觀測到充分之接著力。 實施電極(陽極)之變形試驗,結果L1 、L2 之平均值為2 mm。實施電極(陰極)之變形試驗,結果L1 、L2 之平均值為0 mm。 測定電極(陽極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。測定電極(陰極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。陽極及陰極中膜損傷評價均亦為「0」而較良好。再者,於實施例22中,於隔膜之單面貼附陰極,於相反之面貼附陽極,將陰極及陽極組合進行膜損傷評價。 [實施例23] 於實施例23中係使用Agfa公司製造之微多孔膜「Zirfon Perl UTP 500」。 Zirfon膜係於純水中浸漬12小時以上後用於試驗。除此以外,與實施例3同樣地實施上述評價,並將結果示於表2。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 與使用離子交換膜作為隔膜時相同,觀測到充分之接著力,微多孔膜與電極藉由表面張力而密接,操作性為「1」而較良好。 [實施例24] 作為陰極電解用電極基材,準備量規厚度為566 μm之紡織碳纖維而成之碳布。按照以下之順序製備用以於該碳布形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為570 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為4 μm。觸媒層之厚度為氧化釕與氧化鈰之合計厚度。 對所獲得之電極進行電解評價。將其結果示於表2。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。 測定電極之通氣阻力,結果於測定條件1下為0.19(kPa・s/m),於測定條件2下為0.176(kPa・s/m)。 又,操作性為「2」,可判斷能夠作為大型積層體進行操作。 電壓較高,膜損傷評價為「1」,確認到膜損傷。認為其原因在於:由於實施例24之電極之通氣阻力較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。 [參考例1] 於參考例1中,作為陰極而使用於大型電解槽中使用8年、劣化且電解電壓變高之陰極。於陰極室之墊上設置上述陰極代替鎳網饋電體,隔著[方法(i)]中製作之離子交換膜A實施電解評價。於參考例1中不使用膜一體電極,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極、離子交換膜A、陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.04 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為20 ppm。由於陰極劣化,因此結果為電壓較高 [參考例2] 於參考例2中,使用鎳網饋電體作為陰極。即,藉由未形成觸媒塗層之鎳網實施電解。 將鎳網陰極設置於陰極室之墊上,隔著[方法(i)]中製作之離子交換膜A實施電解評價。參考例2之電池之剖面結構係從陰極室側起,依序排列集電體、墊、鎳網、離子交換膜A、陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.38 V,電流效率為97.7%,苛性鈉中食鹽濃度(50%換算值)為24 ppm。由於未塗佈陰極觸媒,因此結果為電壓較高。 [參考例3] 於參考例3中,作為陽極而使用於大型電解槽中使用約8年、劣化且電解電壓變高之陽極。 參考例3之電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、[方法(i)]中製作之離子交換膜A、劣化且電解電壓變高之陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.18 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為22 ppm。由於陽極劣化,因此結果為電壓較高。 [比較例1] 於比較例1中,使用全滾筒加工後之量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例1中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.68 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 每單位面積之質量為67.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.05(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為64%,直徑145 mm圓柱捲繞評價(3)之結果為22%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為13 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。 [比較例2] 於比較例2中,使用全滾筒加工後之量規厚度100 μm、開孔率16%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例2中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為107 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。 每單位面積之質量為78.1(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.04(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為37%,直徑145 mm圓柱捲繞評價(3)之結果為25%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為18.5 mm。測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0176(kPa・s/m)。 [比較例3] 比較例3係使用全滾筒加工後之量規厚度為100 μm、開孔率為40%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例3中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.70 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。對電解用電極基材之塗佈係藉由與實施例6同樣之離子鍍敷實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。 電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 每單位質量·單位面積所承受之力(1)為0.07(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為80%,直徑145 mm圓柱捲繞評價(3)之結果為32%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為11 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。 [比較例4] 比較例4係使用全滾筒加工後之量規厚度為100 μm、開孔率為58%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例4中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,將結果示於表2。 電極之厚度為109 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為9 μm。 每單位質量·單位面積所承受之力(1)為0.06(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為69%,直徑145 mm圓柱捲繞評價(3)之結果為39%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為11.5 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 [比較例5] 比較例5係使用量規厚度為300 μm、開孔率為56%之鎳金屬絲網作為陰極電解用電極基材。由於難以測定金屬絲網之表面粗糙度,因此於比較例5中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,將結果示於表2。 電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為49.2(mg/cm2 )。因此,直徑280 mm圓柱捲繞評價(2)之結果為88%,直徑145 mm圓柱捲繞評價(3)之結果為42%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。實際中以大型尺寸進行操作,可評價為「3」。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為23 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。 [比較例6] 於比較例6中使用量規厚度200 μm、開孔率37%之鎳金屬絲網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定金屬絲網之表面粗糙度,因此於比較例6中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.65 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施電極電解評價、接著力之測定結果、密接性。將結果示於表2。 電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 每單位面積之質量為56.4 mg/cm2 。因此,直徑145 mm圓柱捲繞評價方法(3)之結果為63%,電極與隔膜之密接性較差。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為19 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0096(kPa・s/m)。 [比較例7] 於比較例7中使用全滾筒加工後之量規厚度500 μm、開孔率17%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例7中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。 又,電極之厚度為508 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為152.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0072(kPa・s/m)。 [比較例8] 於比較例8中,使用全滾筒加工後之量規厚度800 μm、開孔率8%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例8中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.61 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施上述評價,並將結果示於表2。 電極之厚度為808 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為251.3(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0172(kPa・s/m)。 [比較例9] 於比較例9中,使用全滾筒加工後之量規厚度1000 μm、開孔率46%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例9中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.59 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施上述評價,並將結果示於表2。 又,電極之厚度為1011 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為11 μm。 每單位面積之質量為245.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 [比較例10] 於比較例10中,以先前文獻(日本專利特開昭58-48686之實施例)為參考,製作將電極熱壓接於隔膜而成之膜電極接合體。 使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例1同樣地實施電極塗佈。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。 製作由末端官能基為「-COOCH3 」之全氟碳聚合物(C聚合物)與末端基為「-SO2 F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。 使具有羧酸基作為離子交換基之面與經惰性化之電極面相對向,並實施熱壓製,而將離子交換膜與電極一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。 其後,為了抑制電解中產生之氣泡對膜之附著,將導入有氧化鋯與磺基之全氟碳聚合物混合物塗佈於兩面。由此製作比較例10之膜電極接合體。 使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.50(N/mg・cm2 )之力時,膜之一部分破裂。比較例10之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.50(N/mg・cm2 ),被強力地接合。 實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。膜損傷評價為「0」。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度(50%換算值)變高,電解性能變差。 又,電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 實施電極之變形試驗,結果L1 、L2 之平均值為13 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。 [比較例11] 比較例11係使用線徑150 μm、40目、量規厚度300 μm、開孔率58%之鎳網作為陰極電解用電極基材。除此以外,與比較例10同樣地製作膜電極接合體。 使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.60(N/mg・cm2 )之力時,膜之一部分破裂。比較例11之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.60(N/mg・cm2 ),被強力地接合。 使用該膜電極接合體實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度變高,電解性能變差。 又,電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 實施電極之變形試驗,結果L1 、L2 之平均值為23 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。 [比較例12] (觸媒之製備) 將硝酸銀(和光純藥股份有限公司)0.728 g、硝酸鈰6水合物(和光純藥股份有限公司)1.86 g添加至純水150 ml中,製作金屬鹽水溶液。於15%氫氧化四甲基銨水溶液(和光純藥股份有限公司)100 g中添加純水240 g而製作鹼性溶液。一邊使用磁攪拌器攪拌鹼性溶液,一邊使用滴定管以5 ml/分鐘滴加添加上述金屬鹽水溶液。對含有所生成之金屬氫氧化物微粒之懸浮液進行抽氣過濾後,進行水洗而去除鹼性成分。其後,將過濾物轉移至200 ml之2-丙醇(Kishida Chemical股份有限公司)中,藉由超音波分散機(US-600T,日本精機製作所股份有限公司)再分散10分鐘,而獲得均勻之懸浮液。 將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名),電氣化學工業股份有限公司)0.36 g、親水性碳黑(科琴黑(註冊商標)EC-600JD(商品名),三菱化學股份有限公司)0.84 g分散於2-丙醇100 ml中,藉由超音波分散機分散10分鐘,而獲得碳黑之懸浮液。將金屬氫氧化物前驅物之懸浮液與碳黑之懸浮液混合,藉由超音波分散機分散10分鐘。將該懸浮液進行抽氣過濾,於室溫下乾燥半天,而獲得分散固定有金屬氫氧化物前驅物之碳黑。繼而,使用惰性氣體燒成爐(VMF165型,山田電機股份有限公司),於氮氣環境、400℃下進行1小時之燒成,而獲得將電極觸媒分散固定化之碳黑A。 (反應層用之粉末製作) 於將電極觸媒分散固定化之碳黑A 1.6 g中添加利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名,ICN Biomedical公司)0.84 ml、純水15 ml,藉由超音波分散機分散10分鐘。於該分散液中添加PTFE(聚四氟乙烯)分散液(PTFE30J(商品名),DuPont-Mitsui Fluorochemicals股份有限公司)0.664 g,並攪拌5分鐘後,進行抽氣過濾。進而,於乾燥機中在80℃下乾燥1小時,藉由研磨機進行粉碎,而獲得反應槽用粉末A。 (氣體擴散層用粉末之製作) 藉由超音波分散機將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名))20 g、利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名)50 ml、純水360 ml分散10分鐘。於所獲得之分散液中添加PTFE分散液22.32 g,並攪拌5分鐘後,進行過濾。進而,於80℃之乾燥機中乾燥1小時,藉由研磨機實施粉碎,而獲得氣體擴散層用粉末A。 (氣體擴散電極之製作) 於氣體擴散層用粉末A 4 g中添加乙醇8.7 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之氣體擴散層用粉末成形為片狀,埋入銀網(SW=1,LW=2,厚度=0.3 mm)作為集電體,最終成形為1.8 mm之片狀。於反應層用粉末A 1 g中添加乙醇2.2 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之反應層用粉末成形為厚度0.2 mm之片狀。進而,將所製作之使用氣體擴散層用粉末A所獲得之片材及使用反應層用粉末A所獲得之片材之2片片材進行積層,藉由滾筒成形機成形為1.8 mm之片狀。將該積層而成之片材於室溫下乾燥一晝夜,而將乙醇去除。進而,為了將殘存之界面活性劑去除,於空氣中在300℃下進行1小時之熱分解處理。包於鋁箔中,藉由熱壓機(SA303(商品名),TESTER SANGYO股份有限公司),於360℃下以50 kgf/cm2 進行1分鐘熱壓,而獲得氣體擴散電極。氣體擴散電極之厚度為412 μm。 使用所獲得之電極,進行電解評價。電解池之剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。將其結果示於表2。 實施電極之變形試驗,結果L1 、L2 之平均值為19 mm。 測定電極之通氣阻力,結果於測定條件1下為25.88(kPa・s/m)。 又,操作性為「3」,存在問題。又,實施電解評價,結果電流效率變低,苛性鈉中之食鹽濃度變高,電解性能顯著變差。膜損傷評價為「3」,亦存在問題。 根據該等結果可知,若使用比較例12中獲得之氣體擴散電極,則電解性能顯著較差。又,於離子交換膜之大致整個面確認到損傷。認為其原因在於:由於比較例12之氣體擴散電極之通氣阻力顯著較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。 [比較例13] 準備量規厚度為150 μm之鎳線作為陰極電解用電極基材。實施利用該鎳線之粗面化處理。由於難以測定鎳線之表面粗糙度,因此於比較例13中於噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為鎳線之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。算術平均粗糙度Ra為0.64 μm。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。比較例13中所製作之鎳線1根之厚度為158 μm。 將藉由上述方法所製作之鎳線切成110 mm及95 mm之長度。如圖16所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表2。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.7%。 電極之每單位面積之質量為0.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為15 mm。 測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力值為0.0002(kPa・s/m)。 又,對於電極,使用圖17所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓成為3.16 V,較高。 [比較例14] 於比較例14中,使用比較例13中所製作之電極,如圖18所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表2。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.4%。 電極之每單位面積之質量為0.9(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為16 mm。 測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0004(kPa・s/m)。 又,對於電極,使用圖19所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。 [比較例15] 於比較例15中,使用比較例13中所製作之電極,如圖20所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表2。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為98.8%。 電極之每單位面積之質量為1.9(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為14 mm。 又,測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0005(kPa・s/m)。 又,對於電極,使用圖21所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。 [表1]

Figure 109105584-A0304-0001
[表2]
Figure 109105584-A0304-0002
於表2中,全部樣品於「每單位質量·單位面積所承受之力(1)」及「每單位質量·單位面積所承受之力(2)」之測定前可藉由表面張力而自立(即,不存在下垂之情況)。 比較例1、2、7~9由於每單位面積之質量較大,每單位質量·單位面積所承受之力(1)較小,因此與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),於操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。 比較例3、4由於每單位質量·單位面積所承受之力(1)較小,因此與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。 比較例5、6每單位面積之質量較大,與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。 比較例10、11由於藉由熱壓製將膜與電極強力地接合,因此不存在如比較例1、2、7~9般於操作時從膜發生剝離之情況。然而,由於與電極強力地接合,因此喪失高分子膜之柔軟性,難以捲繞成滾筒狀、或加以彎折,操作性較差,無法承受實用。 進而,比較例10、11中電解性能大幅地變差。認為電壓大幅上升之原因在於:因成為將電極埋入至離子交換膜中之狀態,導致離子之流動受到阻礙。認為電流效率之降低、苛性鈉中食鹽濃度變差之原因在於如下要因:因將電極埋入至具有表現出較高之電流效率、離子選擇性之效果之羧酸層中,導致產生羧酸層之厚度不均,埋入羧酸層之一部分之電極發生貫通等。 進而,於比較例10、11中,於隔膜或電極之某一者產生問題而必須更換之情形時,由於強力地接合,故而無法僅更換其中一者,導致成本變高。 比較例12中電解性能大幅地變差。認為電壓大幅上升之原因在於產物滯留於隔膜與電極之界面。 比較例13~15由於每單位質量·單位面積所承受之力(1)及(2)均較小(為測定下限以下),因此與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。 本實施形態中,膜與電極藉由適度之力密接於表面,因此操作中不存在電極剝離等問題,不存在阻礙膜內之離子流動之情況,因此表現出良好之電解性能。 <第2實施形態之驗證> 如下所述準備與第2實施形態相對應之實驗例(於以下之<第2實施形態之驗證>之項中簡稱為「實施例」)、及不與第2實施形態相對應之實驗例(於以下之<第2實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖31~42一邊對其詳細內容進行說明。 [評價方法] (1)開孔率 將電極切成130 mm×100 mm之尺寸。使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點,並算出平均值。以其作為電極之厚度(量規厚度)而算出體積。其後,利用電子天平測定質量,根據金屬之比重(鎳之比重=8.908 g/cm3 、鈦之比重=4.506 g/cm3 )算出開孔率或空隙率。 開孔率(空隙率)(%)=(1-(電極質量)/(電極體積×金屬之比重))×100 (2)每單位面積之質量(mg/cm2 ) 將電極切成130 mm×100 mm之尺寸,利用電子天平測定質量。用該值除以面積(130 mm×100 mm)而算出每單位面積之質量。 (3)每單位質量·單位面積所承受之力(1)(接著力)(N/mg・cm2 )) [方法(i)] 測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。 利用粒編號320之氧化鋁對厚度1.2 mm、200 mm見方之鎳板實施噴擊加工。噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。此處,表面粗糙度測定係使用觸針式之表面粗糙度測定機SJ-310(Mitutoyo股份有限公司)。將測定樣品設置於與地面平行之平台上,於下述之測定條件下測定算術平均粗糙度Ra。將測定實施6次時,記載其平均值。 <觸針之形狀>圓錐,錐角度=60°,前端半徑=2 μm,靜態測定力=0.75 mN <粗糙度標準>JIS2001 <評價曲線>R <濾波>GAUSS <臨界值 λc>0.8 mm <臨界值 λs>2.5 μm <區間數>5 <前掃、後掃>有 將該鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。 使用下述之離子交換膜A作為隔膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。再者,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。 將上述所獲得之離子交換膜(隔膜)於純水中浸漬12小時以上後用於試驗。使其與以純水充分濡濕之上述鎳板接觸,藉由水之張力進行接著。此時,以鎳板與離子交換膜之上端之位置對齊之方式設置。 測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。 使拉伸壓縮試驗機之上側夾頭下降,利用純水之表面張力使電解用電極樣品接著於離子交換膜表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及離子交換膜整體,製成隔膜、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之純水去除。輥僅施加1次。 以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與隔膜之重疊部分成為橫130 mm、縱100 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極與離子交換膜之重疊部分之面積、及與離子交換膜重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(1)。與離子交換膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm2 )中所獲得之值,藉由比例計算而求出。 測定室之環境係溫度23±2℃、相對濕度30±5%。 再者,實施例、比較例中所使用之電極於接著於藉由表面張力接著於鉛直地固定之鎳板之離子交換膜時,可不下垂或剝離而獨立地接著。 再者,將承受力(1)之評價方法之模式圖示於圖31。 再者,拉伸試驗機之測定下限為0.01(N)。 (4)每單位質量·單位面積所承受之力(2)(接著力)(N/mg・cm2 )) [方法(ii)] 測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。 將與方法(i)相同之鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。 測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。 使拉伸壓縮試驗機之上側夾頭下降,藉由溶液之表面張力使電解用電極樣品接著於鎳板表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及鎳板整體,製成鎳板、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之溶液去除。輥僅施加1次。 以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與鎳板之縱向之重疊部分成為100 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極與鎳板之重疊部分之面積、及與鎳板重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(2)。與隔膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm2 )中所獲得之值,藉由比例計算而求出。 又,測定室之環境係溫度23±2℃、相對濕度30±5%。 再者,實施例、比較例中所使用之電極於藉由表面張力接著於鉛直地固定之鎳板時,可不下垂或剝離而獨立地接著。 再者,拉伸試驗機之測定下限為0.01(N)。 (5)直徑280 mm圓柱捲繞評價方法(1)(%) (膜與圓柱) 按照以下之順序實施評價方法(1)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。比較例1及2中電極藉由熱壓製而與離子交換膜成為一體,因此準備離子交換膜與電極之一體物(電極係130 mm見方)。將離子交換膜於純水中充分浸漬後,置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,藉由將厚度5 mm之獨立發泡型之EPDM海綿橡膠捲繞於氯乙烯管(外徑38 mm)而成之輥將多餘之溶液去除。輥係從圖32所示之模式圖之左側向右側於離子交換膜上滾動。輥僅施加1次。1分鐘後,測定離子交換膜與外徑280 mm之塑膠製之管電極密接之部分之比率。 (6)直徑280 mm圓柱捲繞評價方法(2)(%) (膜與電極) 按照以下之順序實施評價方法(2)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖33所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。 (7)直徑145 mm圓柱捲繞評價方法(3)(%) (膜與電極) 按照以下之順序實施評價方法(3)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑145 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖34所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。 (8)操作性(感應評價) (A)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。 (B)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。 1:操作良好 2:能夠操作 3:操作困難 4:大體無法操作 此處,對於比較例2-5之樣品,以與電極為1.3 m×2.5 m、離子交換膜為1.5 m×2.8 m之尺寸之大型電解池相同之尺寸實施操作。比較例5之評價結果(如下文所述為「3」)係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦無問題。 (9)電解評價(電壓(V)、電流效率(%)、苛性鈉中食鹽濃度(ppm,50%換算)) 藉由下述電解實驗評價電解性能。 使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將積層體(離子交換膜A與電解用電極之積層體)夾於一對墊片間。然後,使陽極池、墊片、積層體、墊片及陰極密接而獲得電解池,準備包含該電解池之電解槽。 作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而成為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用[方法(i)]中製作之離子交換膜A(160 mm見方)。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m2 下實施食鹽電解,測定電壓、電流效率、苛性鈉中食鹽濃度。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。苛性鈉中食鹽濃度表示將苛性鈉濃度換算為50%所得之值。 再者,將實施例、比較例中所使用之電極及饋電體之規格示於表3。 (11)觸媒層之厚度、電解用電極基材、電極之厚度測定 電解用電極基材之厚度係使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點並算出平均值。以此作為電解用電極基材之厚度(量規厚度)。電極之厚度係與電極基材同樣地藉由電子數顯厚度計於面內均勻地測定10點並算出平均值。以此作為電極之厚度(量規厚度)。觸媒層之厚度係藉由電極之厚度減去電解用電極基材之厚度而求出。 (12)電極之彈性變形試驗 將[方法(i)]中製作之離子交換膜A(隔膜)及電極切割成110 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。於溫度23±2℃、相對濕度30±5%之條件下,將離子交換膜與電極重疊而製作積層體後,如圖35所示般以不產生間隙之方式捲繞至外徑ϕ32 mm、長度20 cm之PVC製管。為了避免捲繞之積層體從PVC製管剝離或鬆動,而使用聚乙烯製之捆束帶加以固定。於該狀態下保持6小時。其後,去除捆束帶,將積層體從PVC製管解捲。僅將電極置於平台上,測定從平台隆起之部分之高度L1 、L2 並求出平均值。以該值作為電極變形之指標。即,值較小意指難以變形。 再者,於使用多孔金屬之情形時,於捲繞時存在SW方向、LW方向之兩種。於本試驗中係沿SW方向捲繞。 又,對於產生變形之電極(未恢復為原來平坦之狀態之電極),藉由如圖36所示之方法對塑性變形後之柔軟程度進行評價。即,將產生變形之電極置於在純水中充分浸漬之隔膜上,將一端固定,將浮起之相反之端部壓抵於隔膜,將力解除,對產生變形之電極是否追隨隔膜進行評價。 (13)膜損傷評價 使用下述之離子交換膜B作為隔膜。 作為強化芯材,使用為聚四氟乙烯(PTFE)且將100丹尼之帶狀紗線以900次/m撚絞而製成紗狀者(以下稱為PTFE紗)。作為經紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。又,作為緯紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以將PTFE紗以24根/英吋配置、將犧牲紗於鄰接之PTFE紗間配置2根之方式進行平織,而獲得厚度100 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.92 mg當量/g之乾燥樹脂之聚合物(A1)、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B1)。使用該等聚合物(A1)及(B1),藉由共擠出T模法獲得聚合物(A1)層之厚度為25 μm、聚合物(B1)層之厚度為89 μm之2層膜X。再者,各聚合物之離子交換容量表示將各聚合物之離子交換基前驅物水解而轉換為離子交換基時之離子交換容量。 又,另行準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B2)。將該聚合物單層擠出而獲得20 μm之膜Y。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙、膜Y、補強材及膜X,於加熱板溫度225℃、減壓度0.022 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)與氫氧化鉀(KOH)之水溶液中浸漬1小時而進行皂化後,於0.5 N之NaOH中浸漬1小時,將離子交換基所附離子取代為Na,繼而進行水洗。進而於60℃下加以乾燥。 又,將以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.05 mg當量/g之乾燥樹脂之聚合物(B3)水解後,藉由鹽酸使其成為酸型。於將該酸型之聚合物(B3')以5質量%之比率溶解於水及乙醇之50/50(質量比)混合液中而成之溶液中,以聚合物(B3')與氧化鋯粒子之質量比成為20/80之方式添加一次粒子之平均粒徑為0.02 μm之氧化鋯粒子。其後,藉由球磨機使其於氧化鋯粒子之懸浮液中分散而獲得懸浮液。 利用噴射法將該懸浮液塗佈於離子交換膜之兩表面並加以乾燥,藉此獲得具有含有聚合物(B3')與氧化鋯粒子之塗佈層之離子交換膜B。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.35 mg/cm2 。 陽極係使用與(9)電解評價相同者。 陰極係使用各實施例、比較例所記載者。陰極室之集電體、墊及饋電體係使用與(9)電解評價相同者。即,以Ni網作為饋電體,利用作為金屬彈性體之墊之反彈力而成為零間距結構。墊片亦使用與(9)電解評價相同者。作為隔膜,使用藉由上述方法所製作之離子交換膜B。即,除了將離子交換膜B與電解用電極之積層體夾持於一對墊片間以外,準備與(9)相同之電解槽。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為70℃之方式調節陽極室及陰極室之各溫度。於電流密度8 kA/m2 下實施食鹽電解。從電解開始起12小時後停止電解,取出離子交換膜B並觀察損傷狀態。 「0」意指無損傷。「1至3」意指存在損傷,數字越大,意指損傷之程度越大。 (14)電極之通氣阻力 使用通氣性試驗機KES-F8(商品名,Kato Tech股份有限公司)測定電極之通氣阻力。通氣阻力值之單位為kPa・s/m。將測定實施5次,將其平均值記載於表4。測定係於以下之兩個條件下實施。再者,測定室之溫度設為24℃,相對濕度設為32%。 ・測定條件1(通氣阻力1) 活塞速度:0.2 cm/s 通氣量:0.4 cc/cm2 /s 測定範圍:SENSE L(低) 樣品尺寸:50 mm×50 mm ・測定條件2(通氣阻力2) 活塞速度:2 cm/s 通氣量:4 cc/cm2 /s 測定範圍:SENSE M(中)或H(高) 樣品尺寸:50 mm×50 mm [實施例2-1] 作為陰極電解用電極基材,準備量規厚度為16 μm之電解鎳箔。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為49%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例2-1中所製作之電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。又,為氧化釕與氧化鈰之合計厚度。 將藉由上述方法所製作之電極之接著力之測定結果示於表4。觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之[方法(i)]中所製作之離子交換膜A(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向,藉由水溶液之表面張力使其等密接。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。 對所獲得之電極進行電解評價。將其結果示於表4。 表現出較低之電壓、較高之電流效率及較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF(螢光X射線分析)測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例2-2] 實施例2-2係使用量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為29 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0033(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例2-3] 實施例2-3係使用量規厚度為30 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為1.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為38 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例2-4] 實施例2-4係使用量規厚度為16 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為75%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例2-5] 實施例2-5係準備量規厚度為20 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之兩面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。兩面均為相同之粗糙度。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為49%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則兩面均殘存大致100%塗層。若對比實施例2-1~2-4進行考慮,則說明即使不與膜相對向之相反面中塗層較少或不存在,亦能夠發揮出良好之電解性能。 [實施例2-6] 實施例2-6除了藉由離子鍍敷實施對陰極電解用電極基材之塗佈以外,與實施例2-1同樣地實施評價,並將結果示於表4。再者,離子鍍敷係於加熱溫度200℃下使用Ru金屬靶,於氬氣/氧氣環境下以成膜壓力7×10-2 Pa進行製膜。所形成之塗層為氧化釕。 電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-7] 實施例2-7係藉由電成形法製作陰極電解用電極基材。光罩之形狀係設為將0.485 mm×0.485 mm之正方形以0.15 mm為間隔縱、橫排列而成之形狀。藉由依序實施曝光、顯影、電鍍,獲得量規厚度為20 μm、開孔率56%之鎳多孔箔。表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為37 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為17 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-8] 實施例2-8中作為陰極電解用電極基材,係藉由電成形法製作,量規厚度為50 μm,開孔率為56%。表面之算術平均粗糙度Ra為0.73 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為60 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-9] 實施例2-9係使用量規厚度為150 μm、空隙率為76%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為300 g/m2 。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為165 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為29 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0612(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例2-10] 實施例2-10係使用量規厚度為200 μm、空隙率為72%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為500 g/m2 。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為215 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為40 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0164(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例2-11] 實施例2-11係使用量規厚度為200 μm、空隙率為72%之發泡鎳(Mitsubishi Materials股份有限公司製造)作為陰極電解用電極基材。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 又,電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為17 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0402(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例2-12] 實施例2-12係使用線徑50 μm、200目、量規厚度為100 μm、開孔率為37%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例2-12中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。1根金屬絲網之算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0154(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-13] 實施例2-13係使用線徑65 μm、150目、量規厚度為130 μm、開孔率為38%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例2-13中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.66 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施上述評價,並將結果示於表4。 電極之厚度為133 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為3 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為6.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0124(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價亦為「0」而較良好。 [實施例2-14] 實施例2-14係使用與實施例2-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。除了未設置鎳網饋電體以外,以與實施例2-1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、膜一體電極、陽極而形成零間距結構,墊作為饋電體發揮功能。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-15] 實施例2-15係使用與實施例2-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。設置參考例1中使用之劣化且電解電壓變高之陰極代替鎳網饋電體。除此以外,以與實施例2-1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、劣化且電解電壓變高之陰極(作為饋電體發揮功能)、電解用電極(陰極)、隔膜、陽極而形成零間距結構,劣化且電解電壓變高之陰極作為饋電體發揮功能。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-16] 作為陽極電解用電極基材,準備量規厚度為20 μm之鈦箔。對鈦箔之兩面實施粗面化處理。對該鈦箔實施打孔加工,開出圓形之孔而製成多孔箔。孔之直徑為1 mm,開孔率為14%。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。藉由水溶液之表面張力使其密接於利用0.1 N之NaOH水溶液平衡之[方法(i)]中製作之離子交換膜A(尺寸為160 mm×160 mm)之磺酸層側的大致中央之位置。 陰極係按照以下之順序製備。首先,準備線徑150 μm、40目之鎳製金屬絲網作為基材。作為預處理而藉由氧化鋁實施噴擊處理後,於6 N之鹽酸中浸漬5分鐘,並利用純水充分洗淨、乾燥。 繼而,以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、氯化鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於300℃下實施3分鐘之預燒成,於550℃下實施10分鐘之燒成。其後,於550℃下實施1小時之燒成。重複進行該等塗佈、乾燥、預燒成、燒成之一系列之操作。 作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋藉由上述方法製作之陰極,藉由利用鐵氟龍(註冊商標)製作之繩將網之四角固定於集電體。 即使抓持膜與陽極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 藉由焊接將參考例3中所使用之劣化且電解電壓變高之陽極固定於陽極池,將上述膜一體電極以附著有電極之面成為陽極室側之方式夾於陽極池與陰極池之間。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、陰極、隔膜、電解用電極(鈦多孔箔陽極)、劣化且電解電壓變高之陽極,形成零間距結構。劣化且電解電壓變高之陽極作為饋電體發揮功能。再者,鈦多孔箔陽極與劣化且電解電壓變高之陽極之間僅係物理接觸,並未藉由焊接進行固定。 藉由該構成,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為6 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為4 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0060(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-17] 實施例2-17係使用量規厚度20 μm、開孔率30%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。 電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-18] 實施例2-18係使用量規厚度20 μm、開孔率42%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。 電極之厚度為32 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為12 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為2.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0022(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-19] 實施例2-19係使用量規厚度50 μm、開孔率47%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.40 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。 電極之厚度為69 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為19 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為8 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0024(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-20] 實施例2-20係使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m2 、開孔率78%之鈦不織布作為陽極電解用電極基材。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。 電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為2 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-21] 實施例2-21係使用量規厚度120 μm、鈦纖維直徑約為60 μm、150目之鈦金屬絲網作為陽極電解用電極基材。開孔率為42%。藉由粒編號320之氧化鋁實施噴擊處理。由於難以測定金屬絲網表面之粗糙度,因此於實施例2-21中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。 電極之厚度為140 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為20 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為10 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0132(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例2-22] 實施例2-22係與實施例2-16同樣地使用劣化且電解電壓變高之陽極作為陽極饋電體,使用與實施例2-20相同之鈦不織布作為陽極。與實施例2-15同樣地使用劣化且電解電壓變高之陰極作為陰極饋電體,使用與實施例2-3相同之鎳箔電極作為陰極。電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電壓變高之陰極、鎳多孔箔陰極、隔膜、鈦不織布陽極、劣化且電解電壓變高之陽極而形成零間距結構,劣化且電解電壓變高之陰極及陽極作為饋電體發揮功能。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極(陽極)之厚度為114 μm,觸媒層之厚度係電極(陽極)之厚度減去電解用電極基材之厚度而為14 μm。又,電極(陰極)之厚度為38 μm,觸媒層之厚度係電極(陰極)之厚度減去電解用電極基材之厚度而為8 μm。 於陽極及陰極均觀測到充分之接著力。 實施電極(陽極)之變形試驗,結果L1 、L2 之平均值為2 mm。實施電極(陰極)之變形試驗,結果L1 、L2 之平均值為0 mm。 測定電極(陽極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。測定電極(陰極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。陽極及陰極中膜損傷評價均亦為「0」而較良好。再者,於實施例2-22中,於隔膜之單面貼附陰極,於相反之面貼附陽極,將陰極及陽極組合進行膜損傷評價。 [實施例2-23] 於實施例2-23中係使用Agfa公司製造之微多孔膜「Zirfon Perl UTP 500」。 Zirfon膜係於純水中浸漬12小時以上後用於試驗。除此以外,與實施例2-3同樣地實施上述評價,並將結果示於表4。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 與使用離子交換膜作為隔膜時相同,觀測到充分之接著力,微多孔膜與電極藉由表面張力而密接,操作性為「1」而較良好。 [實施例2-24] 作為陰極電解用電極基材,準備量規厚度為566 μm之紡織碳纖維而成之碳布。按照以下之順序製備用以於該碳布形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為570 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為4 μm。觸媒層之厚度為氧化釕與氧化鈰之合計厚度。 對所獲得之電極進行電解評價。將其結果示於表4。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。 測定電極之通氣阻力,結果於測定條件1下為0.19(kPa・s/m),於測定條件2下為0.176(kPa・s/m)。 又,操作性為「2」,可判斷能夠作為大型積層體進行操作。 電壓較高,膜損傷評價為「1」,確認到膜損傷。認為其原因在於:由於實施例2-24之電極之通氣阻力較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。 [參考例1] 於參考例1中,作為陰極而使用於大型電解槽中使用8年、劣化且電解電壓變高之陰極。於陰極室之墊上設置上述陰極代替鎳網饋電體,隔著[方法(i)]中製作之離子交換膜A實施電解評價。於參考例1中不使用膜一體電極,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極、離子交換膜A、陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.04 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為20 ppm。由於陰極劣化,因此結果為電壓較高 [參考例2] 於參考例2中,使用鎳網饋電體作為陰極。即,藉由未形成觸媒塗層之鎳網實施電解。 將鎳網陰極設置於陰極室之墊上,隔著[方法(i)]中製作之離子交換膜A實施電解評價。參考例2之電池之剖面結構係從陰極室側起,依序排列集電體、墊、鎳網、離子交換膜A、陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.38 V,電流效率為97.7%,苛性鈉中食鹽濃度(50%換算值)為24 ppm。由於未塗佈陰極觸媒,因此結果為電壓較高。 [參考例3] 於參考例3中,作為陽極而使用於大型電解槽中使用約8年、劣化且電解電壓變高之陽極。 參考例3之電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、[方法(i)]中製作之離子交換膜A、劣化且電解電壓變高之陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.18 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為22 ppm。由於陽極劣化,因此結果為電壓較高。 [實施例2-25] 於實施例2-25中,使用全滾筒加工後之量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-25中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.68 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 每單位面積之質量為67.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.05(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為64%,直徑145 mm圓柱捲繞評價(3)之結果為22%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為13 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。 [實施例2-26] 於實施例2-26中,使用全滾筒加工後之量規厚度100 μm、開孔率16%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-26中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為107 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。 每單位面積之質量為78.1(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.04(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為37%,直徑145 mm圓柱捲繞評價(3)之結果為25%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為18.5 mm。測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0176(kPa・s/m)。 [實施例2-27] 實施例2-27係使用全滾筒加工後之量規厚度為100 μm、開孔率為40%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-27中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.70 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。對電解用電極基材之塗佈係藉由與實施例2-6同樣之離子鍍敷實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 每單位質量·單位面積所承受之力(1)為0.07(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為80%,直徑145 mm圓柱捲繞評價(3)之結果為32%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為11 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。 [實施例2-28] 實施例2-28係使用全滾筒加工後之量規厚度為100 μm、開孔率為58%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-28中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為109 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為9 μm。 每單位質量·單位面積所承受之力(1)為0.06(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為69%,直徑145 mm圓柱捲繞評價(3)之結果為39%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為11.5 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 [實施例2-29] 實施例2-29係使用量規厚度為300 μm、開孔率為56%之鎳金屬絲網作為陰極電解用電極基材。由於難以測定金屬絲網之表面粗糙度,因此於實施例2-29中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。 電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為49.2(mg/cm2 )。因此,直徑280 mm圓柱捲繞評價(2)之結果為88%,直徑145 mm圓柱捲繞評價(3)之結果為42%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。實際中以大型尺寸進行操作,可評價為「3」。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為23 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。 [實施例2-30] 於實施例2-30中使用量規厚度200 μm、開孔率37%之鎳金屬絲網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定金屬絲網之表面粗糙度,因此於實施例2-30中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.65 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施電極電解評價、接著力之測定結果、密接性。將結果示於表4。 電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 每單位面積之質量為56.4 mg/cm2 。因此,直徑145 mm圓柱捲繞評價方法(3)之結果為63%,電極與隔膜之密接性較差。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為19 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0096(kPa・s/m)。 [實施例2-31] 於實施例2-31中使用全滾筒加工後之量規厚度500 μm、開孔率17%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-31中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。 又,電極之厚度為508 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為152.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0072(kPa・s/m)。 [實施例2-32] 於實施例2-32中,使用全滾筒加工後之量規厚度800 μm、開孔率8%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-32中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.61 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施上述評價,並將結果示於表4。 電極之厚度為808 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為251.3(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0172(kPa・s/m)。 [實施例2-33] 於實施例2-33中,使用全滾筒加工後之量規厚度1000 μm、開孔率46%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-33中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.59 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施上述評價,並將結果示於表4。 又,電極之厚度為1011 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為11 μm。 每單位面積之質量為245.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 [實施例2-34] 準備量規厚度為150 μm之鎳線作為陰極電解用電極基材。實施利用該鎳線之粗面化處理。由於難以測定鎳線之表面粗糙度,因此於實施例2-34中於噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為鎳線之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。算術平均粗糙度Ra為0.64 μm。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例2-34中所製作之鎳線1根之厚度為158 μm。 將藉由上述方法所製作之鎳線切成110 mm及95 mm之長度。如圖37所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表4。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.7%。 電極之每單位面積之質量為0.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為15 mm。 測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力值為0.0002(kPa・s/m)。 又,對於電極,使用圖38所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓成為3.16 V,較高。 [實施例2-35] 於實施例2-35中,使用實施例2-34中所製作之電極,如圖39所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表4。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.4%。 電極之每單位面積之質量為0.9(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為16 mm。 測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0004(kPa・s/m)。 又,對於電極,使用圖40所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。 [實施例2-36] 於實施例2-36中,使用實施例2-34中所製作之電極,如圖41所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表4。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為98.8%。 電極之每單位面積之質量為1.9(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為14 mm。 又,測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0005(kPa・s/m)。 又,對於電極,使用圖42所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。 [比較例2-1] 於比較例2-1中以先前文獻(日本專利特開昭58-48686之實施例)作為參考,製作將電極熱壓接於隔膜之熱壓接接合體。 使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例2-1同樣地實施電極塗佈。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。 製作由末端官能基為「-COOCH3 」之全氟碳聚合物(C聚合物)與末端基為「-SO2 F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。 使具有羧酸基作為離子交換基之面與經惰性化之電極面相對向,並實施熱壓製,而將離子交換膜與電極一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。 其後,為了抑制電解中產生之氣泡對膜之附著,將導入有氧化鋯與磺基之全氟碳聚合物混合物塗佈於兩面。由此製作比較例2-1之熱壓接接合體。 使用該熱壓接接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.50(N/mg・cm2 )之力時,膜之一部分破裂。比較例2-1之熱壓接接合體之每單位質量·單位面積所承受之力(1)至少為1.50(N/mg・cm2 ),被強力地接合。 實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。膜損傷評價為「0」。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度(50%換算值)變高,電解性能變差。 又,電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 實施電極之變形試驗,結果L1 、L2 之平均值為13 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。 [比較例2-2] 比較例2-2係使用線徑150 μm、40目、量規厚度300 μm、開孔率58%之鎳網作為陰極電解用電極基材。除此以外,與比較例2-1同樣地製作熱壓接接合體。 使用該熱壓接接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.60(N/mg・cm2 )之力時,膜之一部分破裂。比較例2-2之熱壓接接合體之每單位質量·單位面積所承受之力(1)至少為1.60(N/mg・cm2 ),被強力地接合。 使用該熱壓接接合體實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度變高,電解性能變差。 又,電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 實施電極之變形試驗,結果L1 、L2 之平均值為23 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。 [表3]
Figure 109105584-A0304-0003
[表4]
Figure 109105584-A0304-0004
於表4中,全部樣品於「每單位質量·單位面積所承受之力(1)」及「每單位質量·單位面積所承受之力(2)」之測定前可藉由表面張力而自立(即,不存在下垂之情況)。 <第3實施形態之驗證> 如下所述準備與第3實施形態相對應之實驗例(於以下之<第3實施形態之驗證>之項中簡稱為「實施例」)、及不與第3實施形態相對應之實驗例(於以下之<第3實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖57~62一邊對其詳細內容進行說明。 (1)電解評價(電壓(V)、電流效率(%)) 藉由下述電解實驗評價電解性能。 使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將離子交換膜夾於一對墊片間。然後,使陽極池、墊片、離子交換膜、墊片及陰極密接而獲得電解池。 作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而設為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用下述之離子交換膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF2 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液添加平均粒徑(1次粒子徑)1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。再者,平均粒徑係利用粒度分佈計(例如,島津製作所製造之「SALD(註冊商標)2200」)進行測定。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m2 下實施食鹽電解,測定電壓、電流效率。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。 (2)操作性(感應評價) (A)將上文所述之離子交換膜(隔膜)切割成170 mm見方之尺寸,將下文所述之實施例及比較例中獲得之電極切割成95×110 mm。將離子交換膜與電極積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。 (B)與上述(A)同樣地將積層體靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。 1:操作良好 2:能夠操作 3:操作困難 4:大體無法操作 此處,對於實施例3-4、3-6之樣品,如下文所述,即使為與大型電解池相同之尺寸亦對操作性進行評價。實施例3-4、3-6之評價結果係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦良好。 (3)固定區域之比率 以離子交換膜中之與電解用電極相反之面之面積(與通電面相對應之部分及與非通電面相對應之部分之合計)作為面積S1而算出。繼而,以電解用電極之面積作為通電面之面積S2而算出。面積S1及S2係以從電解用電極側觀察離子交換膜與電解用電極之積層體時(參照圖57)之面積特定出。再者,由於電解用電極之形狀即使具有開孔,開孔率亦未達90%,因此將該電解用電極視為平板(開孔部分亦算入面積)。 關於固定區域之面積S3,亦如圖57般作為俯視積層體時之面積而特定出(僅與通電面相對應之部分之面積S3'亦同樣)。再者,於將下文所述之PTFE膠帶作為固定用構件進行固定之情形時,膠帶之重複部分並不算入面積中。又,於將下文所述之PTFE紗或接著劑作為固定用構件進行固定之情形時,亦將存在於電極、隔膜之背面側之面積包含在內算入面積中。 如上所述,作為離子交換膜中之固定區域之面積相對於與電解用電極相反之面之面積的比率α(%),算出100×(S3/S1)。進而,作為固定區域之僅與通電面相對應之部分之面積相對於通電面之面積之比率β,算出100×S3'/S2。 [實施例3-1] 準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例3-1中所製作之電極之厚度為24 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。使用PTFE膠帶(日東電工製造),如圖57所示般(但圖57僅為用以說明之概要圖,尺寸未必準確。以下之圖亦同樣),以夾著離子交換膜與電極之方式將4邊固定。於實施例3-1中,PTFE膠帶係固定用構件,比率α為60%,比率β為1.0%。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。 對所獲得之電極進行評價。將其結果示於表5。 表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。 [實施例3-2] 如圖58所示,除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。即,於實施例3-2中,由於設為PTFE膠帶之面積沿電解用電極之面內方向增加,因此電解用電極中之電解面之面積與實施例3-1相比有所減少。於實施例3-2中,比率α為69%,比率β為23%。將評價之結果示於表5。 表現出較低之電壓、較高之電流效率。操作性亦為「1」而較良好。 [實施例3-3] 如圖59所示,除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。即,於實施例3-3中,由於設為PTFE膠帶之面積沿電解用電極之面內方向增加,因此電解用電極中之電解面之面積與實施例3-1相比有所減少。於實施例3-3中,比率α為87%,比率β為67%。將評價之結果示於表5。 表現出較低之電壓、較高之電流效率。操作性亦為「1」而較良好。 [實施例3-4] 準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。使用PTFE製之紗,如圖60所示,以使電極之左側縱向延伸之方式縫製離子交換膜與電極。從距電極之角部縱向10 mm、橫向10 mm之部分起,使PTFE紗從圖60之紙面背面側向正面側貫通,於縱向35 mm、橫向10 mm之部分從紙面正面側向背面側貫通,於縱向60 mm、橫向10 mm之部分再次使紗從紙面背面側向正面側貫通,於縱向85 mm、橫向10 mm之部分從紙面正面側向背面側貫通。於紗貫通離子交換膜之部分塗佈將以CF2 =CF2 與CF2 =CFOCF2 CF(CF2 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之樹脂之酸型樹脂S以成為5質量%之方式分散於乙醇中而成之溶液。 如上所述,於實施例3-4中,比率α為0.35%,比率β為0.86%。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。 對所獲得之電極進行評價。將其結果示於表5。 表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。 進而,於實施例3-4中,準備變更為大型尺寸之離子交換膜、電極。準備4片縱1.5 m、橫2.5 m之離子交換膜、及縱0.3 m、橫2.4 m之陰極。以無間隙之方式將陰極排列於離子交換膜之羧酸層側,藉由PTFE紗將陰極與離子交換膜接著而製作積層體。於該例中,比率α為0.013%,比率β為0.017%。 實施將膜與電極成為一體之膜一體電極安裝於大型電解槽之操作,能夠順利地安裝。 [實施例3-5] 準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。使用圖61所示之聚丙烯製之固定用樹脂,將離子交換膜與電極加以固定。即,設置於距電極之角部縱向20 mm、橫向20 mm之部分中1處、距位於其下方之角部縱向20 mm、橫向20 mm之部分中進而1處之合計2處。於固定用樹脂貫通離子交換膜之部分塗佈與實施例3-4相同之溶液。 如上所述,於實施例3-5中,固定用樹脂及樹脂S成為固定用構件,比率α為0.47%,比率β為1.1%。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。 對所獲得之電極進行評價。將其結果示於表5。 表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。 [實施例3-6] 準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。如圖62所示,使用氰基丙烯酸酯系接著劑(商品名:Aron Alpha,東亞合成股份有限公司),將離子交換膜與電極加以固定。即,藉由接著劑於電極之縱向之1邊中5處(均為等間隔)、及電極之橫向之1邊中8處(均為等間隔)進行固定。 如上所述,於實施例3-6中,接著劑成為固定用構件,比率α為0.78%,比率β為1.9%。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。 對所獲得之電極進行評價。將其結果示於表5。 表現出較低之電壓、較高之電流效率。操作性為「1」,亦相對較良好。 進而,於實施例3-6中,準備變更為大型尺寸之離子交換膜、電極。準備4片縱1.5 m、橫2.5 m之離子交換膜、及縱0.3 m、橫2.4 m之陰極。藉由上述接著劑將4片陰極之橫向之1邊彼此之緣部分相連,製成1片大型陰極(縱1.2 m、橫2.4 m)。藉由Aron Alpha將該大型陰極接著於離子交換膜之羧酸層側中央部分而製作積層體。即,與圖62同樣地,藉由接著劑於電極之縱向之1邊中5處(均為等間隔)、及於電極之橫向之1邊中8處(均為等間隔)進行固定。於該例中,比率α為0.019%,比率β為0.024%。 實施將膜與電極成為一體之膜一體電極安裝於大型電解槽之操作,能夠順利地安裝。 [實施例3-7] 準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。塗佈與實施例3-4相同之溶液,將離子交換膜與電極固定。即,設置於距電極之角部縱向20 mm、橫向20 mm之部分中1處、距位於其下方之角部縱向20 mm、橫向20 mm之部分進而1處之合計2處(參照圖61)。 如上所述,於實施例3-7中,樹脂S成為固定用構件,比率α為2.0%,比率β為4.8%。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。 對所獲得之電極進行評價。將其結果示於表5。 表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。 [比較例3-1] 除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。即,於比較例3-1中,由於設為PTFE膠帶之面積沿電解用電極之面內方向增加,因此電解用電極中之電解面之面積與實施例3-1相比有所減少。於比較例3-1中,比率α為93%,比率β為83%。將評價之結果示於表5。 電壓較高,電流效率亦較低。操作性為「1」,較良好。 [比較例3-2] 除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。將評價之結果示於表5。即,於比較例3-2中,使PTFE膠帶之面積沿電解用電極之面內方向增加。 於比較例3-2中,比率α及比率β為100%,電解面整個面為由PTFE覆蓋之固定區域,因此無法供給電解液而無法進行電解。操作性為「1」,較良好。 [比較例3-3] 除了不使用PTFE膠帶、即比率α及比率β為0%以外,與實施例3-1同樣地實施評價。將評價之結果示於表5。 表現出較低之電壓、較高之電流效率。另一方面,由於不存在隔膜與電極之固定區域,因此無法將隔膜與電極作為積層體(一體物)進行處理,操作性為「4」。 將實施例3-1~7及比較例3-1~3之評價結果合併示於下述之表5。 [表5]
Figure 109105584-A0304-0005
<第4實施形態之驗證> 如下所述準備與第4實施形態相對應之實驗例(於以下之<第4實施形態之驗證>之項中簡稱為「實施例」)、及不與第4實施形態相對應之實驗例(於以下之<第4實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖79~90一邊對其詳細內容進行說明。 [評價方法] (1)開孔率 將電極切成130 mm×100 mm之尺寸。使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點,並算出平均值。以其作為電極之厚度(量規厚度)而算出體積。其後,利用電子天平測定質量,根據金屬之比重(鎳之比重=8.908 g/cm3 、鈦之比重=4.506 g/cm3 )算出開孔率或空隙率。 開孔率(空隙率)(%)=(1-(電極質量)/(電極體積×金屬之比重))×100 (2)每單位面積之質量(mg/cm2 ) 將電極切成130 mm×100 mm之尺寸,利用電子天平測定質量。用該值除以面積(130 mm×100 mm)而算出每單位面積之質量。 (3)每單位質量·單位面積所承受之力(1)(接著力)(N/mg・cm2 )) [方法(i)] 測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。 藉由粒編號320之氧化鋁對厚度1.2 mm、200 mm見方之鎳板實施噴擊加工。噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。此處,表面粗糙度測定係使用觸針式之表面粗糙度測定機SJ-310(Mitutoyo股份有限公司)。將測定樣品設置於與地面平行之平台上,於下述之測定條件下測定算術平均粗糙度Ra。將測定實施6次時,記載其平均值。 <觸針之形狀>圓錐,錐角度=60°,前端半徑=2 μm,靜態測定力=0.75 mN <粗糙度標準>JIS2001 <評價曲線>R <濾波>GAUSS <臨界值 λc>0.8 mm <臨界值 λs>2.5 μm <區間數>5 <前掃、後掃>有 將該鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。 使用下述之離子交換膜A作為隔膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。再者,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。 將上述所獲得之離子交換膜(隔膜)於純水中浸漬12小時以上後用於試驗。使其與以純水充分濡濕之上述鎳板接觸,藉由水之張力進行接著。此時,以鎳板與離子交換膜之上端之位置對齊之方式設置。 測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。 使拉伸壓縮試驗機之上側夾頭下降,利用純水之表面張力使電解用電極樣品接著於離子交換膜表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及離子交換膜整體,製成隔膜、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之純水去除。輥僅施加1次。 以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與隔膜之重疊部分成為橫130 mm、縱100 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極與離子交換膜之重疊部分之面積、及與離子交換膜重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(1)。與離子交換膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm2 )中所獲得之值,藉由比例計算而求出。 測定室之環境係溫度23±2℃、相對濕度30±5%。 再者,實施例、比較例中所使用之電極於接著於藉由表面張力接著於鉛直地固定之鎳板之離子交換膜時,可不下垂或剝離而獨立地接著。 再者,將承受力(1)之評價方法之模式圖示於圖79。 再者,拉伸試驗機之測定下限為0.01(N)。 (4)每單位質量·單位面積所承受之力(2)(接著力)(N/mg・cm2 )) [方法(ii)] 測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。 將與方法(i)相同之鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。 測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。 使拉伸壓縮試驗機之上側夾頭下降,藉由溶液之表面張力使電解用電極樣品接著於鎳板表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及鎳板整體,製成鎳板、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之溶液去除。輥僅施加1次。 以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與鎳板之縱向之重疊部分成為100 mm時之負荷。將該測定實施3次並算出平均值。 該平均值除以電極與鎳板之重疊部分之面積、及與鎳板重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(2)。與隔膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm2 )中所獲得之值,藉由比例計算而求出。 又,測定室之環境係溫度23±2℃、相對濕度30±5%。 再者,實施例、比較例中所使用之電極於藉由表面張力接著於鉛直地固定之鎳板時,可不下垂或剝離而獨立地接著。 再者,拉伸試驗機之測定下限為0.01(N)。 (5)直徑280 mm圓柱捲繞評價方法(1)(%) (膜與圓柱) 按照以下之順序實施評價方法(1)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。實施例33及34中電極藉由熱壓製而與離子交換膜成為一體,因此準備離子交換膜與電極之一體物(電極係130 mm見方)。將離子交換膜於純水中充分浸漬後,置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,藉由將厚度5 mm之獨立發泡型之EPDM海綿橡膠捲繞於氯乙烯管(外徑38 mm)而成之輥將多餘之溶液去除。輥係從圖80所示之模式圖之左側向右側於離子交換膜上滾動。輥僅施加1次。1分鐘後,測定離子交換膜與外徑280 mm之塑膠製之管電極密接之部分之比率。 (6)直徑280 mm圓柱捲繞評價方法(2)(%) (膜與電極) 按照以下之順序實施評價方法(2)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖81所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。 (7)直徑145 mm圓柱捲繞評價方法(3)(%) (膜與電極) 按照以下之順序實施評價方法(3)。 將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑145 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖82所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。 (8)操作性(感應評價) (A)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。 (B)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。 1:操作良好 2:能夠操作 3:操作困難 4:大體無法操作 此處,對於實施例4-28之樣品,以與電極為1.3 m×2.5 m、離子交換膜為1.5 m×2.8 m之尺寸之大型電解池相同之尺寸實施操作。實施例28之評價結果(如下文所述為「3」)係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦無問題。 (9)電解評價(電壓(V)、電流效率(%)、苛性鈉中食鹽濃度(ppm,50%換算)) 藉由下述電解實驗評價電解性能。 使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將積層體(離子交換膜A與電解用電極之積層體)夾於一對墊片間。此處,使離子交換膜A與電解用電極之兩者直接夾於墊片間。然後,使陽極池、墊片、積層體、墊片及陰極密接而獲得電解池,準備包含該電解池之電解槽。 作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而成為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用[方法(i)]中製作之離子交換膜A(160 mm見方)。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m2 下實施食鹽電解,測定電壓、電流效率、苛性鈉中食鹽濃度。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。苛性鈉中食鹽濃度表示將苛性鈉濃度換算為50%所得之值。 再者,將實施例、比較例中所使用之電極及饋電體之規格示於表6。 (11)觸媒層之厚度、電解用電極基材、電極之厚度測定 電解用電極基材之厚度係使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點並算出平均值。以此作為電解用電極基材之厚度(量規厚度)。電極之厚度係與電極基材同樣地藉由電子數顯厚度計於面內均勻地測定10點並算出平均值。以此作為電極之厚度(量規厚度)。觸媒層之厚度係藉由電極之厚度減去電解用電極基材之厚度而求出。 (12)電極之彈性變形試驗 將[方法(i)]中製作之離子交換膜A(隔膜)及電極切割成110 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。於溫度23±2℃、相對濕度30±5%之條件下,將離子交換膜與電極重疊而製作積層體後,如圖83所示般以不產生間隙之方式捲繞至外徑ϕ32 mm、長度20 cm之PVC製管。為了避免捲繞之積層體從PVC製管剝離或鬆動,而使用聚乙烯製之捆束帶加以固定。於該狀態下保持6小時。其後,去除捆束帶,將積層體從PVC製管解捲。僅將電極置於平台上,測定從平台隆起之部分之高度L1 、L2 並求出平均值。以該值作為電極變形之指標。即,值較小意指難以變形。 再者,於使用多孔金屬之情形時,於捲繞時存在SW方向、LW方向之兩種。於本試驗中係沿SW方向捲繞。 又,對於產生變形之電極(未恢復為原來平坦之狀態之電極),藉由如圖84所示之方法對塑性變形後之柔軟程度進行評價。即,將產生變形之電極置於在純水中充分浸漬之隔膜上,將一端固定,將浮起之相反之端部壓抵於隔膜,將力解除,對產生變形之電極是否追隨隔膜進行評價。 (13)膜損傷評價 使用下述之離子交換膜B作為隔膜。 作為強化芯材,使用為聚四氟乙烯(PTFE)且將100丹尼之帶狀紗線以900次/m撚絞而製成紗狀者(以下稱為PTFE紗)。作為經紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。又,作為緯紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以將PTFE紗以24根/英吋配置、將犧牲紗於鄰接之PTFE紗間配置2根之方式進行平織,而獲得厚度100 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.92 mg當量/g之乾燥樹脂之聚合物(A1)、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B1)。使用該等聚合物(A1)及(B1),藉由共擠出T模法獲得聚合物(A1)層之厚度為25 μm、聚合物(B1)層之厚度為89 μm之2層膜X。再者,各聚合物之離子交換容量表示將各聚合物之離子交換基前驅物水解而轉換為離子交換基時之離子交換容量。 又,另行準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B2)。將該聚合物單層擠出而獲得20 μm之膜Y。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙、膜Y、補強材及膜X,於加熱板溫度225℃、減壓度0.022 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)與氫氧化鉀(KOH)之水溶液中浸漬1小時而進行皂化後,於0.5 N之NaOH中浸漬1小時,將離子交換基所附離子取代為Na,繼而進行水洗。進而於60℃下加以乾燥。 又,將以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.05 mg當量/g之乾燥樹脂之聚合物(B3)水解後,藉由鹽酸使其成為酸型。於將該酸型之聚合物(B3')以5質量%之比率溶解於水及乙醇之50/50(質量比)混合液中而成之溶液中,以聚合物(B3')與氧化鋯粒子之質量比成為20/80之方式添加一次粒子之平均粒徑為0.02 μm之氧化鋯粒子。其後,藉由球磨機使其於氧化鋯粒子之懸浮液中分散而獲得懸浮液。 利用噴射法將該懸浮液塗佈於離子交換膜之兩表面並加以乾燥,藉此獲得具有含有聚合物(B3')與氧化鋯粒子之塗佈層之離子交換膜B。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.35 mg/cm2 。 陽極係使用與(9)電解評價相同者。 陰極係使用各實施例、比較例所記載者。陰極室之集電體、墊及饋電體係使用與(9)電解評價相同者。即,以Ni網作為饋電體,利用作為金屬彈性體之墊之反彈力而成為零間距結構。墊片亦使用與(9)電解評價相同者。作為隔膜,使用藉由上述方法所製作之離子交換膜B。即,除了將離子交換膜B與電解用電極之積層體夾持於一對墊片間以外,準備與(9)相同之電解槽。 使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為70℃之方式調節陽極室及陰極室之各溫度。於電流密度8 kA/m2 下實施食鹽電解。從電解開始起12小時後停止電解,取出離子交換膜B並觀察損傷狀態。 「○」意指無損傷。「×」意指於離子交換膜之大致整個面存在損傷。 (14)電極之通氣阻力 使用通氣性試驗機KES-F8(商品名,Kato Tech股份有限公司)測定電極之通氣阻力。通氣阻力值之單位為kPa・s/m。將測定實施5次,將其平均值記載於表7。測定係於以下之兩個條件下實施。再者,測定室之溫度設為24℃,相對濕度設為32%。 ・測定條件1(通氣阻力1) 活塞速度:0.2 cm/s 通氣量:0.4 cc/cm2 /s 測定範圍:SENSE L(低) 樣品尺寸:50 mm×50 mm ・測定條件2(通氣阻力2) 活塞速度:2 cm/s 通氣量:4 cc/cm2 /s 測定範圍:SENSE M(中)或H(高) 樣品尺寸:50 mm×50 mm [實施例4-1] 作為陰極電解用電極基材,準備量規厚度為16 μm之電解鎳箔。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為49%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例4-1中所製作之電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。又,為氧化釕與氧化鈰之合計厚度。 將藉由上述方法所製作之電極之接著力之測定結果示於表7。觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之[方法(i)]中所製作之離子交換膜A(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向,藉由水溶液之表面張力使其等密接。 即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。 對所獲得之電極進行電解評價。將其結果示於表7。 表現出較低之電壓、較高之電流效率及較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF(螢光X射線分析)測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例4-2] 實施例4-2係使用量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為29 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0033(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例4-3] 實施例4-3係使用量規厚度為30 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為1.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為38 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例4-4] 實施例4-4係使用量規厚度為16 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為75%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。 [實施例4-5] 實施例4-5係準備量規厚度為20 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之兩面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。兩面均為相同之粗糙度。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為49%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。塗層亦形成於未經粗面化之面。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 又,若藉由XRF測定電解後之塗佈量,則兩面均殘存大致100%塗層。若對比實施例4-1~4-4進行考慮,則說明即使不與膜相對向之相反面中塗層較少或不存在,亦能夠發揮出良好之電解性能。 [實施例4-6] 實施例4-6除了藉由離子鍍敷實施對陰極電解用電極基材之塗佈以外,與實施例4-1同樣地實施評價,並將結果示於表7。再者,離子鍍敷係於加熱溫度200℃下使用Ru金屬靶,於氬氣/氧氣環境下以成膜壓力7×10-2 Pa進行製膜。所形成之塗層為氧化釕。 電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-7] 實施例4-7係藉由電成形法製作陰極電解用電極基材。光罩之形狀係設為將0.485 mm×0.485 mm之正方形以0.15 mm為間隔縱、橫排列而成之形狀。藉由依序實施曝光、顯影、電鍍,獲得量規厚度為20 μm、開孔率56%之鎳多孔箔。表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為37 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為17 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-8] 實施例4-8中作為陰極電解用電極基材,係藉由電成形法製作,量規厚度為50 μm,開孔率為56%。表面之算術平均粗糙度Ra為0.73 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為60 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-9] 實施例4-9係使用量規厚度為150 μm、空隙率為76%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為300 g/m2 。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為165 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為29 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0612(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例4-10] 實施例4-10係使用量規厚度為200 μm、空隙率為72%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為500 g/m2 。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為215 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為40 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0164(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例4-11] 實施例4-11係使用量規厚度為200 μm、空隙率為72%之發泡鎳(Mitsubishi Materials股份有限公司製造)作為陰極電解用電極基材。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 又,電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為17 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0402(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。 [實施例4-12] 實施例4-12係使用線徑50 μm、200目、量規厚度為100 μm、開孔率為37%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例4-12中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。1根金屬絲網之算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0154(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-13] 實施例4-13係使用線徑65 μm、150目、量規厚度為130 μm、開孔率為38%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例4-13中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.66 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施上述評價,並將結果示於表7。 電極之厚度為133 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為3 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為6.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0124(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價亦為「0」而較良好。 [實施例4-14] 實施例4-14係使用與實施例4-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。除了未設置鎳網饋電體以外,以與實施例4-1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、膜一體電極、陽極而形成零間距結構,墊作為饋電體發揮功能。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-15] 實施例4-15係使用與實施例4-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。設置參考例1中使用之劣化且電解電壓變高之陰極代替鎳網饋電體。除此以外,以與實施例4-1相同之構成實施電解評價。即,電解池之剖面結構從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極(作為饋電體發揮功能)、陰極、隔膜、陽極而形成零間距結構,劣化且電解電壓變高之陰極作為饋電體發揮功能。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-16] 作為陽極電解用電極基材,準備量規厚度為20 μm之鈦箔。對鈦箔之兩面實施粗面化處理。對該鈦箔實施打孔加工,開出圓形之孔而製成多孔箔。孔之直徑為1 mm,開孔率為14%。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。 為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。藉由水溶液之表面張力使其密接於利用0.1 N之NaOH水溶液平衡之[方法(i)]中製作之離子交換膜A(尺寸為160 mm×160 mm)之磺酸層側的大致中央之位置。 陰極係按照以下之順序製備。首先,準備線徑150 μm、40目之鎳製金屬絲網作為基材。作為預處理而藉由氧化鋁實施噴擊處理後,於6 N之鹽酸中浸漬5分鐘,並利用純水充分洗淨、乾燥。 繼而,以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、氯化鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於300℃下實施3分鐘之預燒成,於550℃下實施10分鐘之燒成。其後,於550℃下實施1小時之燒成。重複進行該等塗佈、乾燥、預燒成、燒成之一系列之操作。 作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋藉由上述方法製作之陰極,藉由利用鐵氟龍(註冊商標)製作之繩將網之四角固定於集電體。 即使抓持膜與陽極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。 藉由焊接將參考例3中所使用之劣化且電解電壓變高之陽極固定於陽極池,將上述膜一體電極以附著有電極之面成為陽極室側之方式夾於陽極池與陰極池之間。即,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、隔膜、鈦多孔箔陽極、劣化且電解電壓變高之陽極,形成零間距結構。劣化且電解電壓變高之陽極作為饋電體發揮功能。再者,鈦多孔箔陽極與劣化且電解電壓變高之陽極之間僅係物理接觸,並未藉由焊接進行固定。 藉由該構成,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為6 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為4 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0060(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-17] 實施例4-17係使用量規厚度20 μm、開孔率30%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。 電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-18] 實施例4-18係使用量規厚度20 μm、開孔率42%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。 電極之厚度為32 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為12 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為2.5 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0022(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-19] 實施例4-19係使用量規厚度50 μm、開孔率47%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.40 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。 電極之厚度為69 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為19 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為8 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0024(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-20] 實施例4-20係使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m2 、開孔率78%之鈦不織布作為陽極電解用電極基材。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。 電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為2 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-21] 實施例4-21係使用量規厚度120 μm、鈦纖維直徑約為60 μm、150目之鈦金屬絲網作為陽極電解用電極基材。開孔率為42%。藉由粒編號320之氧化鋁實施噴擊處理。由於難以測定金屬絲網表面之粗糙度,因此於實施例4-21中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。 電極之厚度為140 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為20 μm。 觀測到充分之接著力。 實施電極之變形試驗,結果L1 、L2 之平均值為10 mm。可知為彈性變形區域較廣之電極。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0132(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。 [實施例4-22] 實施例4-22係與實施例4-16同樣地使用劣化且電解電壓變高之陽極作為陽極饋電體,使用與實施例4-20相同之鈦不織布作為陽極。與實施例4-15同樣地使用劣化且電解電壓變高之陰極作為陰極饋電體,使用與實施例4-3相同之鎳箔電極作為陰極。電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電壓變高之陰極、鎳多孔箔陰極、隔膜、鈦不織布陽極、劣化且電解電壓變高之陽極而形成零間距結構,劣化且電解電壓變高之陰極及陽極作為饋電體發揮功能。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極(陽極)之厚度為114 μm,觸媒層之厚度係電極(陽極)之厚度減去電解用電極基材之厚度而為14 μm。又,電極(陰極)之厚度為38 μm,觸媒層之厚度係電極(陰極)之厚度減去電解用電極基材之厚度而為8 μm。 於陽極及陰極均觀測到充分之接著力。 實施電極(陽極)之變形試驗,結果L1 、L2 之平均值為2 mm。實施電極(陰極)之變形試驗,結果L1 、L2 之平均值為0 mm。 測定電極(陽極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。測定電極(陰極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。陽極及陰極中膜損傷評價均亦為「0」而較良好。再者,於實施例4-22中,於隔膜之單面貼附陰極,於相反之面貼附陽極,將陰極及陽極組合進行膜損傷評價。 [實施例4-23] 於實施例4-23中係使用Agfa公司製造之微多孔膜「Zirfon Perl UTP 500」。 Zirfon膜係於純水中浸漬12小時以上後用於試驗。除此以外,與實施例4-3同樣地實施上述評價,並將結果示於表7。 實施電極之變形試驗,結果L1 、L2 之平均值為0 mm。可知為彈性變形區域較廣之電極。 與使用離子交換膜作為隔膜時相同,觀測到充分之接著力,微多孔膜與電極藉由表面張力而密接,操作性為「1」而較良好。 [參考例1] 於參考例1中,作為陰極而使用於大型電解槽中使用8年、劣化且電解電壓變高之陰極。於陰極室之墊上設置上述陰極代替鎳網饋電體,隔著[方法(i)]中製作之離子交換膜A實施電解評價。於參考例1中不使用膜一體電極,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極、離子交換膜A、陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.04 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為20 ppm。由於陰極劣化,因此結果為電壓較高 [參考例2] 於參考例2中,使用鎳網饋電體作為陰極。即,藉由未形成觸媒塗層之鎳網實施電解。 將鎳網陰極設置於陰極室之墊上,隔著[方法(i)]中製作之離子交換膜A實施電解評價。參考例2之電池之剖面結構係從陰極室側起,依序排列集電體、墊、鎳網、離子交換膜A、陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.38 V,電流效率為97.7%,苛性鈉中食鹽濃度(50%換算值)為24 ppm。由於未塗佈陰極觸媒,因此結果為電壓較高。 [參考例3] 於參考例3中,作為陽極而使用於大型電解槽中使用約8年、劣化且電解電壓變高之陽極。 參考例3之電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、[方法(i)]中製作之離子交換膜A、劣化且電解電壓變高之陽極而形成零間距結構。 藉由該構成實施電解評價,結果電壓為3.18 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為22 ppm。由於陽極劣化,因此結果為電壓較高。 [實施例4-24] 於實施例4-24中,使用全滾筒加工後之量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-24中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.68 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 每單位面積之質量為67.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.05(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為64%,直徑145 mm圓柱捲繞評價(3)之結果為22%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為13 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。 [實施例4-25] 於實施例4-25中,使用全滾筒加工後之量規厚度100 μm、開孔率16%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-25中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為107 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。 每單位面積之質量為78.1(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.04(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為37%,直徑145 mm圓柱捲繞評價(3)之結果為25%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為18.5 mm。測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0176(kPa・s/m)。 [實施例4-26] 實施例4-26係使用全滾筒加工後之量規厚度為100 μm、開孔率為40%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-26中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.70 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。對電解用電極基材之塗佈係藉由與實施例4-6同樣之離子鍍敷實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 每單位質量·單位面積所承受之力(1)為0.07(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為80%,直徑145 mm圓柱捲繞評價(3)之結果為32%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為11 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。 [實施例4-27] 實施例4-27係使用全滾筒加工後之量規厚度為100 μm、開孔率為58%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-27中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為109 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為9 μm。 每單位質量·單位面積所承受之力(1)為0.06(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為69%,直徑145 mm圓柱捲繞評價(3)之結果為39%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為11.5 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。 [實施例4-28] 實施例4-28係使用量規厚度為300 μm、開孔率為56%之鎳金屬絲網作為陰極電解用電極基材。由於難以測定金屬絲網之表面粗糙度,因此於實施例4-28中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。 電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為49.2(mg/cm2 )。因此,直徑280 mm圓柱捲繞評價(2)之結果為88%,直徑145 mm圓柱捲繞評價(3)之結果為42%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。實際中以大型尺寸進行操作,可評價為「3」。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為23 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。 [實施例4-29] 於實施例4-29中使用量規厚度200 μm、開孔率37%之鎳金屬絲網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定金屬絲網之表面粗糙度,因此於實施例4-29中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.65 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施電極電解評價、接著力之測定結果、密接性。將結果示於表7。 電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。 每單位面積之質量為56.4 mg/cm2 。因此,直徑145 mm圓柱捲繞評價方法(3)之結果為63%,電極與隔膜之密接性較差。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為19 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0096(kPa・s/m)。 [實施例4-30] 於實施例4-30中使用全滾筒加工後之量規厚度500 μm、開孔率17%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-30中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。 又,電極之厚度為508 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為152.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0072(kPa・s/m)。 [實施例4-31] 於實施例4-31中,使用全滾筒加工後之量規厚度800 μm、開孔率8%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-31中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.61 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施上述評價,並將結果示於表7。 電極之厚度為808 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 每單位面積之質量為251.3(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0172(kPa・s/m)。 [實施例4-32] 於實施例4-32中,使用全滾筒加工後之量規厚度1000 μm、開孔率46%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-32中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.59 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施上述評價,並將結果示於表7。 又,電極之厚度為1011 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為11 μm。 每單位面積之質量為245.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm2 ),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L1 、L2 之值。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。 [實施例4-33] 實施例4-33中,以先前文獻(日本專利特開昭58-48686之實施例)為參考,製作將電極熱壓接於隔膜而成之膜電極接合體。 使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例4-1同樣地實施電極塗佈。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。 製作由末端官能基為「-COOCH3 」之全氟碳聚合物(C聚合物)與末端基為「-SO2 F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。 使具有羧酸基作為離子交換基之面與經惰性化之電極面相對向,並實施熱壓製,而將離子交換膜與電極一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。 其後,為了抑制電解中產生之氣泡對膜之附著,將導入有氧化鋯與磺基之全氟碳聚合物混合物塗佈於兩面。由此製作實施例4-33之膜電極接合體。 使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.50(N/mg・cm2 )之力時,膜之一部分破裂。實施例4-33之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.50(N/mg・cm2 ),被強力地接合。 實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。膜損傷評價為「0」。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度(50%換算值)變高,電解性能變差。 又,電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。 實施電極之變形試驗,結果L1 、L2 之平均值為13 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。 [實施例4-34] 實施例4-34係使用線徑150 μm、40目、量規厚度300 μm、開孔率58%之鎳網作為陰極電解用電極基材。除此以外,與實施例4-33同樣地製作膜電極接合體。 使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.60(N/mg・cm2 )之力時,膜之一部分破裂。實施例4-34之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.60(N/mg・cm2 ),被強力地接合。 使用該膜電極接合體實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度變高,電解性能變差。 又,電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。 實施電極之變形試驗,結果L1 、L2 之平均值為23 mm。 測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。 [實施例4-35] 準備量規厚度為150 μm之鎳線作為陰極電解用電極基材。實施利用該鎳線之粗面化處理。由於難以測定鎳線之表面粗糙度,因此於實施例4-35中於噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為鎳線之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。算術平均粗糙度Ra為0.64 μm。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例4-35中所製作之鎳線1根之厚度為158 μm。 將藉由上述方法所製作之鎳線切成110 mm及95 mm之長度。如圖85所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由Aron Alpha將交點部分接著而製作電極。對電極實施評價,將其結果示於表7。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.7%。 電極之每單位面積之質量為0.5(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為15 mm。 測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力值為0.0002(kPa・s/m)。 又,對於電極,使用圖86所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓成為3.16 V,較高。 [實施例4-36] 於實施例4-36中,使用實施例4-35中所製作之電極,如圖87所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由Aron Alpha將交點部分接著而製作電極。對電極實施評價,將其結果示於表7。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.4%。 電極之每單位面積之質量為0.9(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為16 mm。 測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0004(kPa・s/m)。 又,對於電極,使用圖88所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。 [實施例4-37] 於實施例4-37中,使用實施例4-35中所製作之電極,如圖89所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由Aron Alpha將交點部分接著而製作電極。對電極實施評價,將其結果示於表7。 電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為98.8%。 電極之每單位面積之質量為1.9(mg/cm2 )。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。 實施電極之變形試驗,結果L1 、L2 之平均值為14 mm。 又,測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0005(kPa・s/m)。 又,對於電極,使用圖90所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。 [比較例4-1] (觸媒之製備) 將硝酸銀(和光純藥股份有限公司)0.728 g、硝酸鈰6水合物(和光純藥股份有限公司)1.86 g添加至純水150 ml中,製作金屬鹽水溶液。於15%氫氧化四甲基銨水溶液(和光純藥股份有限公司)100 g中添加純水240 g而製作鹼性溶液。一邊使用磁攪拌器攪拌鹼性溶液,一邊使用滴定管以5 ml/分鐘滴加添加上述金屬鹽水溶液。對含有所生成之金屬氫氧化物微粒之懸浮液進行抽氣過濾後,進行水洗而去除鹼性成分。其後,將過濾物轉移至200 ml之2-丙醇(Kishida Chemical股份有限公司)中,藉由超音波分散機(US-600T,日本精機製作所股份有限公司)再分散10分鐘,而獲得均勻之懸浮液。 將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名),電氣化學工業股份有限公司)0.36 g、親水性碳黑(科琴黑(註冊商標)EC-600JD(商品名),三菱化學股份有限公司)0.84 g分散於2-丙醇100 ml中,藉由超音波分散機分散10分鐘,而獲得碳黑之懸浮液。將金屬氫氧化物前驅物之懸浮液與碳黑之懸浮液混合,藉由超音波分散機分散10分鐘。將該懸浮液進行抽氣過濾,於室溫下乾燥半天,而獲得分散固定有金屬氫氧化物前驅物之碳黑。繼而,使用惰性氣體燒成爐(VMF165型,山田電機股份有限公司),於氮氣環境、400℃下進行1小時之燒成,而獲得將電極觸媒分散固定化之碳黑A。 (反應層用之粉末製作) 於將電極觸媒分散固定化之碳黑A 1.6 g中添加利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名,ICN Biomedical公司)0.84 ml、純水15 ml,藉由超音波分散機分散10分鐘。於該分散液中添加PTFE(聚四氟乙烯)分散液(PTFE30J(商品名),DuPont-Mitsui Fluorochemicals股份有限公司)0.664 g,並攪拌5分鐘後,進行抽氣過濾。進而,於乾燥機中在80℃下乾燥1小時,藉由研磨機進行粉碎,而獲得反應槽用粉末A。 (氣體擴散層用粉末之製作) 藉由超音波分散機將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名))20 g、利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名)50 ml、純水360 ml分散10分鐘。於所獲得之分散液中添加PTFE分散液22.32 g,並攪拌5分鐘後,進行過濾。進而,於80℃之乾燥機中乾燥1小時,藉由研磨機實施粉碎,而獲得氣體擴散層用粉末A。 (氣體擴散電極之製作) 於氣體擴散層用粉末A 4 g中添加乙醇8.7 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之氣體擴散層用粉末成形為片狀,埋入銀網(SW=1,LW=2,厚度=0.3 mm)作為集電體,最終成形為1.8 mm之片狀。於反應層用粉末A 1 g中添加乙醇2.2 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之反應層用粉末成形為厚度0.2 mm之片狀。進而,將所製作之使用氣體擴散層用粉末A所獲得之片材及使用反應層用粉末A所獲得之片材之2片片材進行積層,藉由滾筒成形機成形為1.8 mm之片狀。將該積層而成之片材於室溫下乾燥一晝夜,而將乙醇去除。進而,為了將殘存之界面活性劑去除,於空氣中在300℃下進行1小時之熱分解處理。包於鋁箔中,藉由熱壓機(SA303(商品名),TESTER SANGYO股份有限公司),於360℃下以50 kgf/cm2 進行1分鐘熱壓,而獲得氣體擴散電極。氣體擴散電極之厚度為412 μm。 使用所獲得之電極,進行電解評價。電解池之剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。將其結果示於表7。 實施電極之變形試驗,結果L1 、L2 之平均值為19 mm。 測定電極之通氣阻力,結果於測定條件1下為25.88(kPa・s/m)。 又,操作性為「3」,存在問題。又,實施電解評價,結果電流效率變低,苛性鈉中之食鹽濃度變高,電解性能顯著變差。膜損傷評價為「3」,亦存在問題。 根據該等結果可知,若使用比較例4-1中獲得之氣體擴散電極,則電解性能顯著較差。又,於離子交換膜之大致整個面確認到損傷。認為其原因在於:由於比較例4-1之氣體擴散電極之通氣阻力顯著較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。 [表6]
Figure 109105584-A0304-0006
[表7]
Figure 109105584-A0304-0007
於表7中,全部樣品於「每單位質量·單位面積所承受之力(1)」及「每單位質量·單位面積所承受之力(2)」之測定前可藉由表面張力而自立(即,不存在下垂之情況)。 <第5實施形態之驗證> 如下所述準備與第5實施形態相對應之實驗例(於以下之<第5實施形態之驗證>之項中簡稱為「實施例」)、及不與第5實施形態相對應之實驗例(於以下之<第5實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖93~94,100~102一邊對其詳細內容進行說明。 使用以下述方式製造之離子交換膜A作為隔膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 其次,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散,而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。此處,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。 使用下述之陰極、陽極作為電極。 準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.95 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為29 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。 使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m2 、開孔率78%之鈦不織布作為陽極電解用電極基材。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。 [實施例5-1] (使用陰極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。 將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,而製作陰極與離子交換膜之積層體(參照圖100)。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。如圖101所示,將所獲得之積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑84 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。 繼而,於既有之大型電解槽(具有與圖93、94所示者相同之結構之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例5-2] (使用陽極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。 將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,按照與實施例5-1相同之要領將陽極無間隙地排列於磺酸層側,而製作陽極與離子交換膜之積層體。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。按照與實施例5-1相同之要領將所獲得之積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑86 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。 繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例5-3] (使用陽極/陰極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法各準備4片縱0.3 m、橫2.4 m之陽極及陽極。 將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,按照與實施例5-1相同之要領,將陰極無間隙地排列於羧酸層側,將陽極無間隙地排列於磺酸層側,而製作陰極、陽極與離子交換膜之積層體。若將陰極、陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極、陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。按照與實施例5-1相同之要領將所獲得之積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑88 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。 繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例5-4] (使用陰極之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陰極無間隙地排列。為了避免陰極彼此分開,如圖102所示般,使PTFE繩通過陰極之開孔部分(未圖示),藉此將相鄰之陰極彼此繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。按照與實施例5-1相同之要領將該陰極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑78 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。 繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陰極之方式解除捲繞狀態。此時,係將陰極維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將陰極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換陰極。若於電解運轉中預先準備陰極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陰極之更新。 [實施例5-5] (使用陽極之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陽極無間隙地排列。為了避免陽極彼此分開,按照與實施例5-4相同之要領,藉由PTFE繩將相鄰之陽極彼此繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。按照與實施例5-1相同之要領將該陽極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑81 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。 繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陽極之方式解除捲繞狀態。此時,係將陽極維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將陽極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換陽極。若於電解運轉中預先準備陽極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陽極之更新。 [比較例5-1] (先前之電極更新) 於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,藉由升降機從大型電解槽吊起電解池。將取出之電解池搬運至能夠進行焊接施工之工場。 將藉由焊接固定於電解池之肋部之陽極剝離取下後,使用磨機等研磨所剝離取下之部分之毛邊等,使其變得平滑。關於陰極,將折入集電體中並固定之部分去除而剝離陰極。 其後,於陽極室之肋部上設置新陽極,藉由點焊將新陽極固定於電解池。關於陰極,亦同樣地將新陰極設置於陰極側,折入集電體中並加以固定。 將完成更新之電解池搬運至大型電解槽之場所,使用升降機將電解池放回電解槽中。 從將電解池及離子交換膜之固定狀態解除起至再次固定電解池所需之時間為1天以上。 <第6實施形態之驗證> 如下所述準備與第6實施形態相對應之實驗例(於以下之<第6實施形態之驗證>之項中簡稱為「實施例」)、及不與第6實施形態相對應之實驗例(於以下之<第6實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖105~106一邊對其詳細內容進行說明。 使用以下述方式製造之離子交換膜b作為隔膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。此處,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。 使用下述之陰極、陽極作為電極。 準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.95 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為29 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。 使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m2 、開孔率78%之鈦不織布作為陽極電解用電極基材。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。 [實施例6-1] (使用陰極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備縱1.5 m、橫2.5 m之離子交換膜b。又,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。 將離子交換膜b於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,而製作陰極與離子交換膜b之積層體。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。再者,為了將離子交換膜b熔融,必須為200℃以上,於本實施例中進行一體化時離子交換膜不熔融。 繼而,於既有之大型電解槽(具有與圖105、106所示者相同之結構之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例6-2] (使用陽極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備縱1.5 m、橫2.5 m之離子交換膜b。又,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。 將離子交換膜b於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陽極無間隙地排列於磺酸層側,而製作陽極與離子交換膜之積層體。若將陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(與實施例6-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例6-3] (使用陽極/陰極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備縱1.5 m、橫2.5 m之離子交換膜b。又,藉由上述所記載之方法各準備4片縱0.3 m、橫2.4 m之陽極及陽極。 將離子交換膜b於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,將陽極無間隙地排列於磺酸層側,而製作陰極、陽極與離子交換膜b之積層體。若將陰極、陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極、陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(與實施例6-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [比較例6-1] 如下所述,以日本專利特開昭58-48686號公報之實施例作為參考,製作將電極熱壓接於隔膜而成之膜電極積層體。 使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例6-1同樣地實施電極塗佈。電極之尺寸為200 mm×200 mm,片數為72片。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。 製作由末端官能基為「-COOCH3 」之全氟碳聚合物(C聚合物)與末端基為「-SO2 F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。所獲得之離子交換膜之大小與實施例6-1相同。 使具有羧酸基作為離子交換基之面與上述電極之經惰性化之電極面相對向,並實施熱壓製(熱壓接),而將離子交換膜與電極一體化。即,於離子交換膜熔融之溫度下,對1片縱1500 mm、橫2500 mm之離子交換膜進行200 mm見方之電極72片之一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。 於1500 mm×2500 mm之大型尺寸下,藉由熱壓接將離子交換膜與電極進行一體化之步驟需要一天以上之時間。即,於電極更新及隔膜之更換時,於比較例6-1中評價為需要多於實施例之時間。 <第7實施形態之驗證> 如下所述準備與第7實施形態相對應之實驗例(於以下之<第7實施形態之驗證>之項中簡稱為「實施例」)、及不與第7實施形態相對應之實驗例(於以下之<第7實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖114~115一邊對其詳細內容進行說明。 使用以下述方式製造之離子交換膜作為隔膜。 作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。 繼而,準備以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF2 =CF2 與CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。 使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。 繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。 藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。 進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm2 。此處,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。 使用下述之陰極、陽極作為電極。 準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.95 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。 藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為29 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。 使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m2 、開孔率78%之鈦不織布作為陽極電解用電極基材。 按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。 於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。 [實施例7-1] (使用陰極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。 將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,而製作陰極與離子交換膜之積層體。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(具有與圖114、115所示者相同之結構之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例7-2] (使用陽極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。 將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陽極無間隙地排列於磺酸層側,而製作陽極與離子交換膜之積層體。若將陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例7-3] (使用陽極/陰極-膜積層體之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法各準備4片縱0.3 m、橫2.4 m之陽極及陽極。 將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,將陽極無間隙地排列於磺酸層側,而製作陰極、陽極與離子交換膜之積層體。若將陰極、陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極、陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。 [實施例7-4] (使用陰極之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陰極無間隙地排列。為了避免陰極彼此分開,藉由PTFE繩將相鄰之陰極繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。將該陰極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陰極之方式解除捲繞狀態。此時,係將陰極維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將陰極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換陰極。若於電解運轉中預先準備陰極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陰極之更新。 [實施例7-5] (使用陽極之例) 以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陽極無間隙地排列。為了避免陽極彼此分開,藉由PTFE繩將相鄰之陽極繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。將該陽極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。 繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陽極之方式解除捲繞狀態。此時,係將陽極維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將陽極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。 與先前相比,能夠容易地更換陽極。若於電解運轉中預先準備陽極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陽極之更新。 [比較例7-1] (先前之電極更新) 於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,藉由升降機從大型電解槽吊起電解池。將取出之電解池搬運至能夠進行焊接施工之工場。 將藉由焊接固定於電解池之肋部之陽極剝離取下後,使用磨機等研磨所剝離取下之部分之毛邊等,使其變得平滑。關於陰極,將折入集電體中並固定之部分去除而剝離陰極。 其後,於陽極室之肋部上設置新陽極,藉由點焊將新陽極固定於電解池。關於陰極,亦同樣地將新陰極設置於陰極側,折入集電體中並加以固定。 將完成更新之電解池搬運至大型電解槽之場所,使用升降機將電解池放回電解槽中。 從將電解池及離子交換膜之固定狀態解除起至再次固定電解池所需之時間為1天以上。 本申請案係基於2017年3月22日提出申請之日本專利申請案(日本專利特願2017-056524號及日本專利特願2017-056525號)、以及2018年3月20日提出申請之日本專利申請案(日本專利特願2018-053217號、日本專利特願2018-053146號、日本專利特願2018-053144號、日本專利特願2018-053231號、日本專利特願2018-053145號、日本專利特願2018-053149號及日本專利特願2018-053139號),該等之內容係作為參照而併入至本文。Hereinafter, regarding an embodiment of the present invention (hereinafter also referred to as this embodiment), the <1st embodiment> to <seventh embodiment> will be described in detail one by one while referring to the drawings as necessary. The following embodiments are examples for explaining the present invention, and the present invention is not limited to the following contents. In addition, the accompanying drawings show an example of the embodiment, and the form is not limited to this for explanation. The present invention can be suitably modified and implemented within the scope of its gist. Furthermore, unless otherwise specified, the positional relationship of up, down, left, and right in the drawing is based on the positional relationship shown in the drawing. The size and ratio of the drawings are not limited to those shown. <The first embodiment> Here, the first embodiment of the present invention will be described in detail with reference to FIGS. 1-21. [Electrode for Electrolysis] The electrode for electrolysis of the first embodiment (hereinafter referred to as "this embodiment" in the section of the <1st embodiment>) can achieve good operability, and is compatible with membranes such as ion exchange membranes or microporous membranes, and degraded electrodes. The feeder, etc. without a catalyst coating has good adhesion, and from the viewpoint of economy, the mass per unit area is 48 mg/cm2 the following. Also, in terms of the above aspects, 30 mg/cm is preferred2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is preferably 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The electrode for electrolysis of this embodiment can obtain good operability, and it has good adhesion with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders without catalyst coatings. In other words, the force per unit mass and unit area is 0.08 N/(mg·cm2 )the above. Also, in terms of the above, it is preferably 0.1 N/(mg·cm2 ) Above, more preferably 0.14 N/(mg·cm2 ) Above, from the viewpoint of easier handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm2 )the above. The upper limit is not particularly limited, but 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. If the electrode for electrolysis of this embodiment is an electrode with a wider elastic deformation area, better operability can be obtained. It can be used with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and those without a catalyst coating. From the viewpoint that the feeder and the like have better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, further preferably 170 μm or less, and even more preferably 150 μm or less, It is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. According to the electrode for electrolysis of this embodiment, as described above, it has good adhesion with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders without catalyst coatings, and can exchange with ions. Separator such as membrane or microporous membrane is integrated and used. Therefore, when replacing the electrode, there is no need to accompany the complicated replacement and attachment work such as peeling off the electrode fixed in the electrolytic cell, and the electrode can be renewed by the same simple operation as the replacement of the diaphragm, so the work efficiency is greatly improved. Moreover, even in the case where only the power feeder is provided in the new electrolytic cell (that is, an electrode without a catalyst layer is provided), it is possible to simply attach the electrode for electrolysis of this embodiment to the power feeder. Make it function as an electrode, so it can also greatly reduce the catalyst coating, or even no catalyst coating. Furthermore, with the electrode for electrolysis of this embodiment, it is possible to make the electrolysis performance the same as or improve the performance of the new product. The electrode for electrolysis of the present embodiment can be wound around a tube made of vinyl chloride (roller shape, etc.), stored, transported to customers, etc., and handling is greatly facilitated. The endurance can be measured by the following method (i) or (ii), in detail, as described in the examples. Regarding endurance, the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the measurement of method (ii) (also called "endurance (2) )”) can be the same or different, but any value is 0.08 N/(mg·cm2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles And the ion exchange membrane of the binder (170 mm square, the details of the so-called ion exchange membrane here are as described in the examples) and the electrode sample for electrolysis (130 mm square), after fully immersing the laminate in pure water, The excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment was 0.7 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2°C and a relative humidity of 30±5%, use a tensile compression tester to only make the electrode sample for electrolysis in the measurement sample rise in the vertical direction at 10 mm/min to measure the electrode for electrolysis The load when the sample rises 10 mm in the vertical direction. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the overlapped part of the electrode sample for electrolysis and the ion exchange membrane, and the mass of the electrode sample for electrolysis at the overlapped portion of the ion exchange membrane, to calculate the force per unit mass·unit area (1)( N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is 0.08 N/(mg·cm2 ) Above, preferably 0.1 N/(mg·cm2 ) Above, from the viewpoint of easier handling in large size (for example, size 1.5 m×2.5 m), 0.2 N/(mg·cm2 )the above. The upper limit is not particularly limited, but 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. If the electrode for electrolysis of this embodiment satisfies the endurance (1), it can be integrated with a diaphragm such as an ion exchange membrane or a microporous membrane for use. Therefore, it is not necessary to fix the electrode to the electrolytic cell by welding or other methods when replacing the electrode. The replacement and attachment of the cathode and anode greatly improves the efficiency of the operation. In addition, by using the electrode for electrolysis of the present embodiment as an electrode integrated with an ion exchange membrane, the electrolysis performance can be made the same as that of a new product or improved. When shipping a new electrolytic cell, a catalyst coating was previously applied to the electrode fixed in the electrolytic cell, but it can be used only by combining an electrode that is not formed with a catalyst coating and the electrode for electrolysis of this embodiment As an electrode, it is possible to greatly reduce the manufacturing steps or the amount of catalyst used to form the catalyst coating, or even none of them. The previous electrode whose catalyst coating is greatly reduced or absent is electrically connected to the electrode for electrolysis of this embodiment, so that it can function as a feeder for current flow. [Method (ii)] The nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and the electrode sample for electrolysis (130 mm square) obtained by spraying with the alumina grain number 320 are sequentially laminated, After the laminate is sufficiently immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2°C and a relative humidity of 30±5%, use a tensile compression tester to only make the electrode sample for electrolysis in the measurement sample rise in the vertical direction at 10 mm/min to measure the electrode for electrolysis The load when the sample rises 10 mm in the vertical direction. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the overlapping part of the electrode sample for electrolysis and the nickel plate, and the mass of the electrode sample for electrolysis in the overlapping part of the nickel plate, and calculate the adhesive force per unit mass•unit area (2) (N/mg)・Cm2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is 0.08 N/(mg·cm2 ) Above, preferably 0.1 N/(mg·cm2 ) Above, from the viewpoint of easier handling under large size (for example, size 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. The upper limit is not particularly limited, but 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. If the electrode for electrolysis of this embodiment satisfies the endurance (2), it can be wound in a state (roller shape, etc.) made of vinyl chloride, for example, in a state (roller shape, etc.), stored, transported to customers, etc., and handling is greatly facilitated. In addition, by attaching the electrode for electrolysis of this embodiment to the degraded electrode, the electrolysis performance can be made the same as that of the new product or improved. In this embodiment, the liquid existing between the membrane such as ion exchange membrane or microporous membrane and the electrode for electrolysis, or the feeder (degraded electrode or electrode without a catalyst coating) and the electrode for electrolysis only Any liquid can be used for those that generate surface tension for water, organic solvents, etc. The greater the surface tension of the liquid, the greater the force it bears between the diaphragm and the electrode for electrolysis, or between the metal plate and the electrode for electrolysis, and therefore the liquid with a larger surface tension is preferred. Examples of the liquid include the following (the value in parentheses is the surface tension of the liquid). Hexane (20.44 mN/m), acetone (23.30 mN/m), methanol (24.00 mN/m), ethanol (24.05 mN/m), ethylene glycol (50.21 mN/m), water (72.76 mN/m) If it is a liquid with a large surface tension, the separator and the electrode for electrolysis, or the metal porous plate or metal plate (power feeder) and the electrode for electrolysis are integrated (to become a laminated body), and the electrode renewal becomes easy. The liquid between the diaphragm and the electrode for electrolysis, or the metal porous plate or metal plate (feeder) and the electrode for electrolysis only needs to be in an amount that adheres to each other by surface tension. As a result, the amount of liquid is small. Therefore, even if the laminate is installed in the electrolytic cell and mixed into the electrolytic solution, it will not affect the electrolysis itself. From a practical point of view, as the liquid, it is preferable to use a liquid having a surface tension of 20 mN/m to 80 mN/m, such as ethanol, ethylene glycol, and water. Particularly preferably, it is water or an alkaline aqueous solution is made by dissolving caustic soda, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, etc. in water. In addition, these liquids may contain a surfactant to adjust the surface tension. By containing the surfactant, the adhesion between the separator and the electrode for electrolysis, or the adhesion between the metal plate and the electrode for electrolysis is changed, and the operability can be adjusted. The surfactant is not particularly limited, and any one of ionic surfactants and nonionic surfactants can be used. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders without catalyst coatings. The electric body has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m), preferably 300 μm Hereinafter, it is more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more preferably 100 μm or less, just operate From the viewpoint of performance and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. The electrode for electrolysis of this embodiment is not particularly limited, and good operability can be obtained. It has good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders without catalyst coatings. From the viewpoint of strength, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more, and furthermore, for large size (for example, size 1.5 m×2.5 m) From the viewpoint of easy handling, it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Laminate ion exchange membranes (170 mm square) and electrode samples for electrolysis (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the laminate is placed on the curved surface of a polyethylene tube (outer diameter 280 mm) so that the electrode sample for electrolysis in the laminate becomes the outside. Fully immerse the laminate and tube with pure water to remove the excess water adhering to the surface of the laminate and the tube. After 1 minute, remove the part where the ion exchange membrane (170 mm square) is in close contact with the electrode sample for electrolysis. The area ratio (%) is measured. The electrode for electrolysis of this embodiment is not particularly limited, and good operability can be obtained. It has good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders without catalyst coatings. From the viewpoint that it can be wound into a roll shape and bends well, the ratio measured by the following method (3) is preferably 75% or more, more preferably 80% or more, and furthermore, From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Laminate ion exchange membranes (170 mm square) and electrode samples for electrolysis (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the laminate is placed on the curved surface of a polyethylene tube (outer diameter 145 mm) so that the electrode sample for electrolysis in the laminate becomes the outside. Fully immerse the laminate and tube with pure water to remove the excess water adhering to the surface of the laminate and the tube. After 1 minute, remove the part where the ion exchange membrane (170 mm square) is in close contact with the electrode sample for electrolysis. The area ratio (%) is measured. The electrode for electrolysis of this embodiment is not particularly limited, and good operability can be obtained. It has good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders without catalyst coatings. From the viewpoint of preventing the gas generated during electrolysis from stagnating, it is preferable to have a porous structure with an open porosity or porosity of 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In the present embodiment, the volume V is calculated from the value of the gauge thickness, width, and length of the electrode, and the weight W is actually measured, and the porosity A is calculated by the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio is adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. From the viewpoint of operability, the electrode for electrolysis in this embodiment is preferably 40 mm or less, more preferably 29 mm or less, and still more preferably 10 mm or less, as measured by the following method (A) , And more preferably 6.5 mm or less. Furthermore, the specific measurement method is as described in the examples. [Method (A)] Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the sample formed by the laminated ion exchange membrane and the electrode for electrolysis is wound and fixed on the curved surface of a vinyl chloride core material with an outer diameter of ϕ32 mm. After standing for 6 hours, the electrode for electrolysis is separated and placed on a horizontal plate. At this time, the height L of the two ends of the electrode for electrolysis in the vertical direction is measured.1 And L2 , Take the average of these as the measured value. The electrode for electrolysis in this embodiment preferably has a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, a piston speed of 0.2 cm/s, and an air flow rate of 0.4 cc/cm.2 In the case of /s (hereinafter also referred to as "measurement condition 1"), the ventilation resistance (hereinafter also referred to as "ventilation resistance 1") is 24 kPa·s/m or less. Larger ventilation resistance means that the air is difficult to flow, and refers to a state of higher density. In this state, the product of electrolysis stays in the electrode, and it is difficult for the reaction matrix to diffuse into the inside of the electrode, so the electrolysis performance (voltage, etc.) tends to deteriorate. In addition, there is a tendency for the concentration of the film surface to increase. Specifically, there is a tendency that the caustic concentration on the cathode surface increases and the supply of brine on the anode surface decreases. As a result, because the product stays at the interface between the diaphragm and the electrode at a high concentration, it tends to cause damage to the diaphragm, increase the voltage on the cathode surface, damage the membrane, and damage the membrane on the anode surface. In this embodiment, in order to prevent such abnormalities, it is preferable to set the ventilation resistance to 24 kPa·s/m or less. From the same viewpoint as described above, it is more preferably less than 0.19 kPa·s/m, still more preferably 0.15 kPa·s/m or less, and still more preferably 0.07 kPa·s/m or less. Furthermore, in the present embodiment, if the ventilation resistance is greater than a certain level, in the case of the cathode, the NaOH generated in the electrode tends to stay at the interface between the electrode and the diaphragm and become a high concentration. In the case of the anode, there is a tendency The saline water supply is reduced and the salt water concentration tends to become low. In terms of preventing the damage to the diaphragm that may be caused by this kind of retention, it is preferably less than 0.19 kPa·s/m, more preferably 0.15 kPa·s/m or less, more preferably 0.07 kPa·s/m or less. On the other hand, when the ventilation resistance is low, since the area of the electrode becomes smaller, the electrolysis area becomes smaller and the electrolysis performance (voltage, etc.) tends to deteriorate. When the ventilation resistance is zero, since the electrode for electrolysis is not provided, the power feeder functions as an electrode and the electrolysis performance (voltage, etc.) tends to be significantly deteriorated. In this respect, the preferred lower limit specified as the ventilation resistance 1 is not particularly limited, and it is preferably more than 0 kPa·s/m, more preferably 0.0001 kPa·s/m or more, and still more preferably 0.001 kPa·s/m or more. Furthermore, in terms of the measurement method, the ventilation resistance 1 may not be able to obtain sufficient measurement accuracy if it is 0.07 kPa·s/m or less. From this point of view, an electrode for electrolysis with a ventilation resistance 1 of 0.07 kPa·s/m or less can also achieve the ventilation resistance obtained by the following measurement method (hereinafter also referred to as "measurement condition 2") (hereinafter Also known as "Ventilation Resistance 2") evaluation. That is, the ventilation resistance 2 is the size of the electrode for electrolysis with a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, a piston speed of 2 cm/s, and a ventilation rate of 4 cc/cm.2 Ventilation resistance in the case of /s. The specific measurement methods of ventilation resistance 1 and 2 are as described in the examples. The above-mentioned ventilation resistances 1 and 2 can be set to the above-mentioned ranges, for example, by appropriately adjusting the porosity, the thickness of the electrode, etc. described below. More specifically, for example, if the thickness is the same, if the aperture ratio is increased, the ventilation resistances 1 and 2 tend to decrease, and if the aperture ratio is decreased, the ventilation resistances 1 and 2 tend to increase. . Hereinafter, one aspect of the electrode for electrolysis of this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 1, the electrode for electrolysis 100 of this embodiment includes an electrode base material 10 for electrolysis and a pair of first layers 20 covering both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. Moreover, as shown in FIG. 1, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, and valve metals represented by titanium and the like can be used. It is preferable to contain at least one element selected from nickel (Ni) and titanium (Ti). That is, it is preferable that the electrode base material for electrolysis contains at least one element selected from nickel (Ni) and titanium (Ti). When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. Examples of the electrode substrate 10 for electrolysis include metal foil, metal wire mesh, metal nonwoven fabric, punched metal, porous metal, or foamed metal. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on the surface. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina grit to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. It is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As a treatment to increase the surface area, blasting treatment using cut wire shot, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, plating treatment using the same elements as the base material, etc. . The arithmetic mean surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-5 μm. Next, the case where the electrode for electrolysis of this embodiment is used as the anode for salt electrolysis is demonstrated. (level one) In FIG. 1, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis of this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode, that is, the total thickness of the electrode substrate for electrolysis and the catalyst layer, is preferably 315 μm or less, more preferably 220 μm or less, and even more preferably 170 μm in terms of the operability of the electrode Hereinafter, it is more preferably 150 μm or less, even more preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Digimatic Thickness Gauge) (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis is measured in the same manner as the thickness of the electrode. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Among them, the thermal decomposition method, the plating method, and the ion plating method are preferable because they can suppress the deformation of the electrode substrate for electrolysis and form a catalyst layer. Furthermore, in view of productivity, plating method and thermal decomposition method are more preferable. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, in the thermal decomposition method, a coating step of applying a coating solution containing a catalyst, a drying step of drying the coating solution, and a thermal decomposition step of thermal decomposition are performed on the electrode substrate for electrolysis. The catalyst layer is formed. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes for electrolysis, thermal decomposition is usually carried out in air, and metal oxides or metal hydroxides are formed in most cases. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer of anode) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and water, alcohols such as ethanol and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, after firing for a longer period of time, heating is performed in the range of 350° C. to 650° C. for 1 minute to 90 minutes, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, without applying the solution, the substrate may be heated only in the range of 300°C to 580°C for 1 minute to 60 minutes, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. The electrode for electrolysis of this embodiment can be used by being integrated with a separator such as an ion exchange membrane or a microporous membrane. Therefore, it can be used as a membrane-integrated electrode, and there is no need to replace and attach the cathode and anode when renewing the electrode, and the work efficiency is greatly improved. The electrode for electrolysis of this embodiment forms a laminate with a membrane such as an ion exchange membrane or a microporous membrane to form a body of the membrane and the electrode, so that the electrolytic performance can be the same as or improved in the new product. This separator is not particularly limited as long as it can be formed into a laminate with an electrode, and will be described in detail below. [Ion Exchange Membrane] The ion exchange membrane has a membrane body containing a hydrocarbon polymer or a fluorine-containing polymer having an ion exchange group, and a coating layer provided on at least one surface of the membrane body. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure in the electrolysis has less influence on the electrolysis performance, and can exert stable electrolysis performance. The above-mentioned ion exchange membrane has ion exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 2 is a schematic cross-sectional view showing an embodiment of the ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 is provided with a sulfonic acid layer 3 and a carboxylic acid layer 2, and the strength and dimensional stability are enhanced by the reinforcing core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as an ion exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example in FIG. 2. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane has a coating layer on at least one surface of the membrane body. Moreover, as shown in FIG. 2, in the ion exchange membrane 1, coating layers 11 a and 11 b are respectively formed on both surfaces of the membrane body 10. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine (vertical shaft impactor mill), Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Woven or knitted fabrics can use monofilament, multifilament or these yarns, slit yarns, etc. The weaving method can use plain weave, leno weave, knitting, rib weave, crepe striped thin weave (seersucker ) And other textile methods. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. Fig. 3 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 3 enlarges a part of the ion exchange membrane and only shows the arrangement of the reinforced core materials 21 and 22 in this area, and the other components are omitted. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. 4(a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 4(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the membrane body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Figure 4(a), the reinforcing material for plain weaving is illustrated in the paper in which the reinforcing yarn 52 and the sacrificial yarn 504a are woven in the longitudinal and transverse directions on the paper. The arrangement of the reinforcing yarn 52 and the sacrificial yarn 504a in the reinforcing material can be changed as needed . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The above-mentioned average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM (field emission-scanning electron microscope). The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. As a specific example of the above-mentioned microporous membrane, Zilfon Perl UTP 500 (also referred to as Zilfon membrane in this embodiment) manufactured by Agfa, International Publication No. 2013-183584 Specification, International Publication No. 2016-203701 Those recorded in the manual, etc. [Layered body] The laminated body of this embodiment is equipped with the electrode for electrolysis of this embodiment, and the diaphragm or power feeder which is connected to the electrode for electrolysis mentioned above. Due to the structure described above, the laminate of the present embodiment can improve the work efficiency during the renewal of the electrodes in the electrolytic cell, and can also exhibit excellent electrolytic performance after renewal. That is, with the laminate of the present embodiment, when replacing the electrode, there is no need to peel off the electrode fixed in the electrolytic cell and other complicated operations, and the electrode can be replaced by the same simple operation as the replacement of the diaphragm, so the work efficiency is greatly improved. . Furthermore, with the laminate of the present invention, the electrolytic performance can be maintained or improved as a new product. Moreover, even in the case where only the power feeder is provided in the new electrolytic cell (that is, an electrode without a catalyst layer is provided), it is possible to simply attach the electrode for electrolysis of this embodiment to the power feeder. Make it function as an electrode, so it can also greatly reduce the catalyst coating or even no catalyst coating. The laminated body of this embodiment can be wound in a state (roller shape etc.) made of vinyl chloride, for example, and can be stored, transported to customers, etc., and the handling is greatly facilitated. Furthermore, as the power feeder in this embodiment, various substrates described below, such as a deteriorated electrode (ie, an existing electrode) or an electrode without a catalyst coating layer, can be used. In the laminated body of this embodiment, the force per unit mass and unit area of the electrode for electrolysis of the diaphragm or the feeder is preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, more preferably 0.14 N/(mg·cm2 ) Above, from the viewpoint of easier handling under large size (for example, size 1.5 m×2.5 m), it is more preferably 0.2 N/(mg·cm2 )the above. The upper limit is not particularly limited, but 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. [Winding body] The wound body of this embodiment includes the electrode for electrolysis of this embodiment or the layered body of this embodiment. That is, the winding system of this embodiment is obtained by winding the electrode for electrolysis of this embodiment or the laminate of this embodiment. Like the wound body of this embodiment, by winding the electrode for electrolysis of this embodiment or the layered body of this embodiment and reducing the size, the operability can be further improved. [Electrolyzer] The electrolytic cell of this embodiment includes the electrode for electrolysis of this embodiment. Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. [Cell] Figure 5 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. The reverse current absorber 18 as shown in FIG. 9 has a substrate 18a and formed thereon. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. FIG. 6 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. FIG. 7 shows the electrolytic cell 4. FIG. 8 shows the steps of assembling the electrolytic cell 4. As shown in Figure 6, the electrolytic cell 1, the cation exchange membrane 2, and the electrolytic cell 1 are arranged in series in sequence. An ion exchange membrane 2 is arranged between the anode chamber of one electrolytic cell 1 and the cathode chamber of the other electrolytic cell 1 among the two adjacent electrolytic cells in the electrolytic cell. That is, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the adjacent electrolytic cell 1 are separated by the cation exchange membrane 2. As shown in FIG. 7, the electrolytic cell 4 includes a plurality of electrolytic cells 1 connected in series through the separator exchange membrane 2. That is, the electrolytic cell 4 is a bipolar electrolytic cell provided with a plurality of electrolytic cells 1 arranged in series and an ion exchange membrane 2 arranged between adjacent electrolytic cells 1. As shown in FIG. 8, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series through a separator exchange membrane 2 and connecting them by a presser 5. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. When the electrode for electrolysis of this embodiment is inserted into the anode side, 11 functions as an anode power feeder. When the electrode for electrolysis of this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis of this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10. As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis of this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. Furthermore, unless otherwise specified, the term "upper" means the upper direction in the electrolytic cell 1 of FIG. 5, and "lower" means the lower direction in the electrolytic cell 1 of FIG. 5. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 of this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 5, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrolysis electrode of this embodiment is inserted into the cathode side, and 21 functions as a cathode when the electrolysis electrode of this embodiment is not inserted into the cathode side. . In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis of this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20. The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals, and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include: plating, alloy plating, dispersion/composite plating, CVD (chemical vapor deposition), PVD (physical vapor deposition), thermal decomposition And spray. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis of this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals, and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. In addition, the power feeder 21 may use nickel, nickel alloy, iron or stainless steel plated with nickel without a catalyst coating. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage applied to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. Furthermore, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis of the present invention is installed in an electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis. Start position. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell connect the electrolytic cells to each other by sandwiching the ion exchange membrane 2 (refer to FIGS. 5 and 6). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the separator exchange membrane 2, airtightness can be given to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. In addition, for example, when the separator exchange membrane 2 is connected to two electrolytic cells 1 (refer to FIG. 6), the separator exchange membrane 2 may fasten each electrolytic cell 1 to which a gasket is attached. Thereby, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. (Ion exchange membrane 2) As the ion exchange membrane 2, it is as described in the item of the ion exchange membrane mentioned above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. <The second embodiment> Here, the second embodiment of the present invention will be described in detail with reference to FIGS. 22 to 42. [Layered body] The laminate of the second embodiment (hereinafter referred to as "this embodiment" in the section of the "second embodiment") includes an electrode for electrolysis, and a diaphragm or a power feeder connected to the electrode for electrolysis. Or the force per unit mass and unit area of the above-mentioned electrolysis electrode of the feeder is less than 1.5 N/mg·cm2 . Due to the structure described above, the laminate of the present embodiment can improve the work efficiency during the renewal of the electrodes in the electrolytic cell, and can also exhibit excellent electrolytic performance after renewal. That is, with the laminate of the present embodiment, when replacing the electrode, there is no need to peel off the existing electrode fixed to the electrolytic cell and other complicated operations, and the electrode can be replaced by the same simple operation as the replacement of the diaphragm, so the work efficiency A substantial increase. Furthermore, with the laminate of the present invention, the electrolytic performance can be maintained or improved as a new product. Therefore, the electrode that is fixed to the previous new electrolytic cell and functions as an anode and a cathode can only function as a feeder, which can greatly reduce the catalyst coating or even no catalyst coating. The laminated body of this embodiment can be wound in a state (roller shape etc.) made of vinyl chloride, for example, and can be stored, transported to customers, etc., and the handling is greatly facilitated. Furthermore, as the power feeder in this embodiment, various substrates described below, such as a deteriorated electrode (ie, an existing electrode), an electrode without a catalyst coating layer, and the like can be used. Moreover, as long as the laminated body of this embodiment has the said structure, it may have a fixed part in part. That is, when the laminate of this embodiment has a fixed part, the part without the fixed part is used for measurement, and the force per unit mass and unit area of the obtained electrode for electrolysis is less than 1.5 N/ mg・cm2 That's it. [Electrode for Electrolysis] The electrode for electrolysis of this embodiment can achieve good operability, and has good adhesion to membranes such as ion exchange membranes or microporous membranes, and power feeders (degraded electrodes and electrodes without a catalyst coating). In terms of the point of view, the force per unit mass and unit area is less than 1.5 N/mg·cm2 , Preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg·cm2 Below, it is more preferably 1.10 N/mg·cm2 Below, more preferably 1.0 N/mg·cm2 Below, more preferably 1.00 N/mg·cm2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/mg·cm2 Above, and more preferably 0.14 N/(mg·cm2 )the above. From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm is more preferable2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. In addition, good operability can be obtained, and good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders that are not formed with a catalyst coating, etc., is the point of view, and furthermore, it is economical. From a viewpoint, the mass per unit area is preferably 48 mg/cm2 Below, more preferably 30 mg/cm2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is preferably 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The endurance can be measured by the following method (i) or (ii), in detail, as described in the examples. Regarding endurance, the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the measurement of method (ii) (also called "endurance (2) )”) can be the same or different, but neither value reaches 1.5 N/mg·cm2 . [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles The ion exchange membrane (170 mm square, the details of the so-called ion exchange membrane here are as described in the examples) and the electrode sample (130 mm square) of the bonding agent. After the laminate is fully immersed in pure water, the adhesion is removed The excess water on the surface of the laminate is used to obtain a sample for measurement. Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.5-0.8 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the electrode sample overlapped with the ion exchange membrane and the mass of the electrode sample overlapped with the ion exchange membrane to calculate the force per unit mass·unit area (1)(N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has good adhesion, it is less than 1.5 N/mg·cm2 , Preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 Below, it is more preferably 1.1 N/mg·cm2 Below, more preferably 1.10 N/mg·cm2 Below, more preferably 1.0 N/mg·cm2 Below, more preferably 1.00 N/mg·cm2 the following. Also, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 ), more preferably 0.2 N/(mg·cm2 )the above. If the electrode for electrolysis of this embodiment satisfies the endurance (1), it can be integrated with a diaphragm or feeder such as an ion exchange membrane or a microporous membrane (that is, a laminate). Therefore, when renewing the electrode, There is no need to replace and attach the cathode and anode fixed to the electrolytic cell by welding or other methods, and the work efficiency is greatly improved. In addition, by using the electrode for electrolysis of this embodiment as a laminated body integrated with an ion exchange membrane, a microporous membrane, or a power feeder, the electrolysis performance can be made the same as that of the new product or improved . When shipping a new electrolytic cell, a catalyst coating was previously applied to the electrode fixed in the electrolytic cell, but it can be used only by combining an electrode that is not formed with a catalyst coating and the electrode for electrolysis of this embodiment As an electrode, it is possible to greatly reduce the manufacturing steps or the amount of catalyst used to form the catalyst coating, or even none of them. The previous electrode whose catalyst coating is greatly reduced or absent is electrically connected to the electrode for electrolysis of this embodiment, so that it can function as a feeder for current flow. [Method (ii)] Stack the nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and electrode sample (130 mm square) obtained by spraying with the alumina grain number 320 in order, After the laminate is fully immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapping part of the electrode sample and the nickel plate, and the mass of the electrode sample in the overlapping part of the nickel plate, to calculate the adhesive force per unit mass•unit area (2) (N/mg·cm)2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has good adhesion, it is less than 1.5 N/mg·cm2 , Preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 Below, it is more preferably 1.1 N/mg·cm2 Below, more preferably 1.10 N/mg·cm2 Below, more preferably 1.0 N/mg·cm2 Below, more preferably 1.00 N/mg·cm2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. If the electrode for electrolysis of this embodiment satisfies the endurance (2), it can be wound in a state (roller shape, etc.) made of vinyl chloride, for example, in a state (roller shape, etc.), stored, transported to customers, etc., and handling is greatly facilitated. In addition, by attaching the electrode for electrolysis of the present embodiment to the degraded existing electrode to form a laminate, the electrolysis performance can be made the same as or improved in the new product. If the electrode for electrolysis of this embodiment is an electrode with a wider elastic deformation area, better operability can be obtained. It can be used with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and those without a catalyst coating. From the viewpoint that the feeder and the like have better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, further preferably 170 μm or less, and even more preferably 150 μm or less, It is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and non-contact formation. The media-coated electrode (feeder) has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m) In particular, it is preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more It is preferably 100 μm or less, and from the viewpoint of operability and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In this embodiment, it is preferable to use metal porous plates or metal plates such as ion-exchange membranes or microporous membranes and electrodes, or deteriorated existing electrodes or electrodes without catalyst coatings, or metal plates (ie, feeders). A liquid is interposed between the electrode and the electrode for electrolysis. Any liquid can be used as long as the liquid is one that generates surface tension such as water or organic solvent. The greater the surface tension of the liquid, the greater the force it bears between the diaphragm and the electrode for electrolysis, or between the porous metal plate or metal plate and the electrode for electrolysis. Therefore, a liquid with a larger surface tension is preferred. Examples of the liquid include the following (the value in parentheses is the surface tension of the liquid at 20°C). Hexane (20.44 mN/m), acetone (23.30 mN/m), methanol (24.00 mN/m), ethanol (24.05 mN/m), ethylene glycol (50.21 mN/m), water (72.76 mN/m) If it is a liquid with a large surface tension, the separator and the electrode for electrolysis, or the metal porous plate or metal plate (power feeder) and the electrode for electrolysis are integrated (to become a laminated body), and the electrode renewal becomes easy. The liquid between the diaphragm and the electrode for electrolysis, or the metal porous plate or metal plate (feeder) and the electrode for electrolysis only needs to be in an amount that adheres to each other by surface tension. As a result, the amount of liquid is small. Therefore, even if the laminate is installed in the electrolytic cell and mixed into the electrolytic solution, it will not affect the electrolysis itself. From a practical point of view, as the liquid, it is preferable to use a liquid having a surface tension of 24 mN/m to 80 mN/m, such as ethanol, ethylene glycol, and water. Particularly preferably, it is water or an alkaline aqueous solution is made by dissolving caustic soda, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, etc. in water. In addition, these liquids may contain a surfactant to adjust the surface tension. By containing the surfactant, the adhesion between the separator and the electrode for electrolysis, or the adhesion between the porous metal plate or the metal plate (power feeder) and the electrode for electrolysis is changed, and the operability can be adjusted. The surfactant is not particularly limited, and any one of ionic surfactants and nonionic surfactants can be used. The electrode for electrolysis of this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (power feeders), and electrodes without a catalyst coating ( From the viewpoint that the feeder has good adhesive force, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more, and furthermore, for large sizes (e.g., size From the viewpoint of ease of handling under 1.5 m×2.5 m), it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 280 mm) with the electrode sample in the layered body as the outside, and pure Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis of this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (power feeders), and electrodes without a catalyst coating ( The feeder) has good adhesion and can be suitably wound into a roll and bends well. The ratio measured by the following method (3) is preferably 75% or more, more preferably It is 80% or more, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 145 mm) in such a way that the electrode sample in the layered body becomes the outside. Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis of this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (power feeders), and electrodes without a catalyst coating ( The feeder) has good adhesion and prevents the gas generated during electrolysis from stagnating, preferably a porous structure, and its open porosity or porosity is 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In the present embodiment, the volume V is calculated from the value of the gauge thickness, width, and length of the electrode, and the weight W is actually measured, and the porosity A is calculated by the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio is adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. From the viewpoint of operability, the electrode for electrolysis in this embodiment is preferably 40 mm or less, more preferably 29 mm or less, and still more preferably 10 mm or less, as measured by the following method (A) , And more preferably 6.5 mm or less. Furthermore, the specific measurement method is as described in the examples. [Method (A)] Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the sample formed by the laminated ion exchange membrane and the electrode for electrolysis is wound and fixed on the curved surface of a vinyl chloride core material with an outer diameter of ϕ32 mm. After standing for 6 hours, the electrode for electrolysis is separated and placed on a horizontal plate. At this time, the height L of the two ends of the electrode for electrolysis in the vertical direction is measured.1 And L2 , Take the average of these as the measured value. The electrode for electrolysis in this embodiment preferably has a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, a piston speed of 0.2 cm/s, and an air flow rate of 0.4 cc/cm.2 In the case of /s (hereinafter also referred to as "measurement condition 1"), the ventilation resistance (hereinafter also referred to as "ventilation resistance 1") is 24 kPa·s/m or less. Larger ventilation resistance means that the air is difficult to flow, and refers to a state of higher density. In this state, the product of electrolysis stays in the electrode, and it is difficult for the reaction matrix to diffuse into the inside of the electrode, so the electrolysis performance (voltage, etc.) tends to deteriorate. In addition, there is a tendency for the concentration of the film surface to increase. Specifically, there is a tendency that the caustic concentration on the cathode surface increases and the supply of brine on the anode surface decreases. As a result, because the product stays at the interface between the diaphragm and the electrode at a high concentration, it tends to cause damage to the diaphragm, increase the voltage on the cathode surface, damage the membrane, and damage the membrane on the anode surface. In this embodiment, in order to prevent such abnormalities, it is preferable to set the ventilation resistance to 24 kPa·s/m or less. From the same viewpoint as described above, it is more preferably less than 0.19 kPa·s/m, still more preferably 0.15 kPa·s/m or less, and still more preferably 0.07 kPa·s/m or less. Furthermore, in the present embodiment, if the ventilation resistance is greater than a certain level, in the case of the cathode, the NaOH generated in the electrode tends to stay at the interface between the electrode and the diaphragm and become a high concentration. In the case of the anode, there is a tendency The saline water supply is reduced and the salt water concentration tends to become low. In terms of preventing the damage to the diaphragm that may be caused by this kind of retention, it is preferably less than 0.19 kPa·s/m, more preferably 0.15 kPa·s/m or less, more preferably 0.07 kPa·s/m or less. On the other hand, when the ventilation resistance is low, since the area of the electrode becomes smaller, the electrolysis area becomes smaller and the electrolysis performance (voltage, etc.) tends to deteriorate. When the ventilation resistance is zero, since the electrode for electrolysis is not provided, the power feeder functions as an electrode and the electrolysis performance (voltage, etc.) tends to be significantly deteriorated. In this respect, the preferred lower limit specified as the ventilation resistance 1 is not particularly limited, and it is preferably more than 0 kPa·s/m, more preferably 0.0001 kPa·s/m or more, and still more preferably 0.001 kPa·s/m or more. Furthermore, in terms of the measurement method, the ventilation resistance 1 may not be able to obtain sufficient measurement accuracy if it is 0.07 kPa·s/m or less. From this point of view, an electrode for electrolysis with a ventilation resistance 1 of 0.07 kPa·s/m or less can also achieve the ventilation resistance obtained by the following measurement method (hereinafter also referred to as "measurement condition 2") (hereinafter Also known as "Ventilation Resistance 2") evaluation. That is, the ventilation resistance 2 is the size of the electrode for electrolysis with a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, a piston speed of 2 cm/s, and a ventilation rate of 4 cc/cm.2 Ventilation resistance in the case of /s. The specific measurement methods of ventilation resistance 1 and 2 are as described in the examples. The above-mentioned ventilation resistances 1 and 2 can be set to the above-mentioned ranges, for example, by appropriately adjusting the porosity, the thickness of the electrode, etc. described below. More specifically, for example, if the thickness is the same, if the aperture ratio is increased, the ventilation resistances 1 and 2 tend to decrease, and if the aperture ratio is decreased, the ventilation resistances 1 and 2 tend to increase. . The electrode for electrolysis of this embodiment is as described above, and the force per unit mass and unit area of the electrode for electrolysis of the diaphragm or feeder is less than 1.5 N/mg·cm2 . Therefore, the electrode for electrolysis of the present embodiment can be formed with the diaphragm or the power feeder (for example, the existing anode or cathode in the electrolytic cell) by connecting with the diaphragm or the power feeder with a moderate adhesive force. The multi-layered body. That is, there is no need to use complicated methods such as thermocompression bonding to firmly bond the separator or the power feeder to the electrode for electrolysis, for example, even by the surface tension of the water that can be contained in the separator such as ion exchange membranes or microporous membranes. The relatively weak force then becomes a layered body, so the layered body can be easily formed regardless of the scale. Furthermore, this type of laminate exhibits excellent electrolytic performance, and therefore the laminate of this embodiment is suitable for electrolysis applications, for example, it can be particularly preferably used for applications related to the component of an electrolytic cell or the renewal of the component. Hereinafter, one aspect of the electrode for electrolysis of this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 22, the electrode for electrolysis 100 of this embodiment is equipped with the electrode base material 10 for electrolysis, and a pair of 1st layer 20 which covers both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode for electrolysis can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. Moreover, as shown in FIG. 22, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, or valve metals represented by titanium can be used, and it is preferable to contain one selected from the group consisting of nickel (Ni) and titanium (Ti). At least 1 element. When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, metal wire mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. As the electrode base material 10 for electrolysis, a metal porous foil, a metal wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal can be mentioned. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on one or both sides. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina powder to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. Alternatively, it is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As the treatment to increase the surface area, blasting treatment using steel wire grains, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, and plating treatment using the same elements as the substrate can be mentioned. The arithmetic average surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-8 μm. Next, the case where the electrode for electrolysis of this embodiment is used as the anode for salt electrolysis is demonstrated. (level one) In FIG. 22, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis of this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode for electrolysis, that is, the total thickness of the electrode substrate and the catalyst layer for electrolysis, is preferably 315 μm or less, more preferably 220 μm or less, in terms of the operability of the electrode for electrolysis. It is preferably 170 μm or less, more preferably 150 μm or less, particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and even more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis can be measured in the same manner as the thickness of the electrode for electrolysis. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode base material for electrolysis from the thickness of the electrode for electrolysis. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, a catalyst layer is formed on the electrode substrate for electrolysis by a coating step of applying a coating liquid containing a catalyst, a drying step of drying the coating liquid, and a thermal decomposition step of performing thermal decomposition. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes, thermal decomposition is usually carried out in the air, and in most cases metal oxides or metal hydroxides are formed. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, the solution may not be applied and only the substrate is heated, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. The electrode for electrolysis of this embodiment can be used by being integrated with a separator such as an ion exchange membrane or a microporous membrane. Therefore, it can be used as a membrane-integrated electrode, and there is no need to replace and attach the cathode and anode when renewing the electrode, and the work efficiency is greatly improved. In addition, by using a bulk electrode with a diaphragm such as an ion exchange membrane or a microporous membrane, the electrolytic performance can be made the same as or improved to that of the new product. Hereinafter, the ion exchange membrane will be described in detail. [Ion Exchange Membrane] The ion exchange membrane has a membrane body containing a hydrocarbon polymer or a fluorine-containing polymer having an ion exchange group, and a coating layer provided on at least one surface of the membrane body. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure in the electrolysis has less influence on the electrolysis performance, and can exert stable electrolysis performance. The membrane system of the above-mentioned so-called perfluorocarbon polymer with ion-exchange groups introduced has ion-exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 23 is a schematic cross-sectional view showing an embodiment of the ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 has an ion exchange group derived from a sulfonic group (with -SO3 - The group represented by the sulfonic acid layer 3, which is also referred to as "sulfonic acid group" hereinafter, and the ion exchange group (with -CO) derived from the carboxyl group2 - The indicated group (hereinafter also referred to as "carboxylic acid group") of the carboxylic acid layer 2 strengthens the strength and dimensional stability by strengthening the core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as a cation exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example shown in FIG. 23. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane has a coating layer on at least one surface of the membrane body. Furthermore, as shown in FIG. 23, in the ion exchange membrane 1, coating layers 11a and 11b are formed on both surfaces of the membrane body 10, respectively. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine, Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Monofilament, multifilament or these yarns, cut film yarns, etc. can be used for woven or knitted fabrics, and various weaving methods such as plain weaving, leno weaving, knitting, rib weaving, crepe stripe thin weaving, etc. can be used as the weaving method. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. Fig. 24 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. FIG. 24 enlarges a part of the ion exchange membrane and only shows the arrangement of the reinforced core materials 21 and 22 in this area, and the other components are omitted. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. Fig. 25 (a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 25(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the membrane body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Figure 25(a), an example is shown as a reinforcing material for plain weaving in which the reinforcing yarn 52 and the sacrificial yarn 504a are woven in the longitudinal and transverse directions on the paper. The arrangement of the reinforcing yarn 52 and the sacrificial yarn 504a in the reinforcing material can be changed as needed . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM. The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. As a specific example of the above-mentioned microporous membrane, Zilfon Perl UTP 500 (also referred to as Zilfon membrane in this embodiment) manufactured by Agfa, International Publication No. 2013-183584 Specification, International Publication No. 2016-203701 Those recorded in the manual, etc. It is estimated that the reason why the laminate with the separator of the present embodiment exhibits excellent electrolytic performance is as follows. In the case where the separator and the electrode are firmly bonded by a method such as thermocompression bonding as the prior art, the electrode is embedded in the separator and physically bonded. This adjoining part hinders the movement of sodium ions in the membrane, and the voltage rises greatly. On the other hand, by connecting the electrode for electrolysis with the separator or the feeder with a moderate adhesive force as in the present embodiment, the problem of the prior art that hinders the movement of sodium ions in the membrane is eliminated. Thereby, when the diaphragm or the power feeder and the electrode for electrolysis are connected by a moderate adhesive force, it is a body of the diaphragm or the power feeder and the electrode for electrolysis, and can exhibit excellent electrolytic performance. [Winding body] The wound body of this embodiment includes the layered body of this embodiment. That is, the winding system of the present embodiment is formed by winding the laminate of the present embodiment. Like the wound body of this embodiment, by winding and reducing the size of the laminate body of this embodiment, operability can be further improved. [Electrolyzer] The electrolytic cell of this embodiment includes the laminate of this embodiment. Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. [Cell] FIG. 26 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. The reverse current absorber 18 has a substrate 18a as shown in FIG. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. FIG. 27 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. FIG. 28 shows the electrolytic cell 4. Fig. 29 shows the steps of assembling the electrolytic cell 4. As shown in Figure 27, the electrolytic cell 1, the cation exchange membrane 2, and the electrolytic cell 1 are arranged in series in sequence. An ion exchange membrane 2 is arranged between the anode chamber of one electrolytic cell 1 and the cathode chamber of the other electrolytic cell 1 among the two adjacent electrolytic cells in the electrolytic cell. That is, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the adjacent electrolytic cell 1 are separated by the cation exchange membrane 2. As shown in FIG. 28, the electrolytic cell 4 includes a plurality of electrolytic cells 1 connected in series through the separator exchange membrane 2. That is, the electrolytic cell 4 is a bipolar electrolytic cell provided with a plurality of electrolytic cells 1 arranged in series and an ion exchange membrane 2 arranged between adjacent electrolytic cells 1. As shown in FIG. 29, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series through the separator exchange membrane 2 and connecting them with the presser 5. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. When the electrode for electrolysis of this embodiment is inserted into the anode side, 11 functions as an anode power feeder. When the electrode for electrolysis of this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis of this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10. As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis of this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. In addition, unless otherwise specified, the term "upward" means the upper direction in the electrolytic cell 1 of FIG. 26, and the term "lower" means the lower direction in the electrolytic cell 1 of FIG. 26. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 of this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 26, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrolysis electrode of this embodiment is inserted into the cathode side, and 21 functions as a cathode when the electrolysis electrode of this embodiment is not inserted into the cathode side. . In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis of this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20. The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis of this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, nickel, nickel alloy, nickel-plated iron or stainless steel without a catalyst coating can be used. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. In addition, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis of the present embodiment is installed in the electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis at starting point. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell are connected to each other by sandwiching the ion exchange membrane 2 (refer to FIGS. 26 and 27). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the separator exchange membrane 2, airtightness can be given to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. In addition, for example, when the separator exchange membrane 2 is connected to two electrolytic cells 1 (refer to FIG. 27), the separator exchange membrane 2 may fasten each electrolytic cell 1 to which gaskets are attached. Thereby, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. (Ion exchange membrane) As the ion exchange membrane 2, it is as described in the item of the ion exchange membrane mentioned above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. (Use of laminated body) As described above, the laminate of this embodiment can improve the work efficiency during the renewal of the electrodes in the electrolytic cell, and can also exhibit excellent electrolytic performance after the renewal. In other words, the layered body of this embodiment can be suitably used as a layered body for replacing parts of an electrolytic cell. In addition, the laminate when applied to this application is particularly called a "membrane electrode assembly". (Package) The laminated body of this embodiment is preferably transported in a state enclosed in a packaging material. That is, the packaging body of this embodiment is equipped with the laminated body of this embodiment, and the packaging material which packs the said laminated body. Since the packaging body of this embodiment is configured in the above-mentioned manner, it is possible to prevent adhesion or damage of dirt that may be generated when the layered body of this embodiment or the like is transported. In the case of replacing the components of the electrolytic cell, it is particularly preferable to transport it in the form of a package of this embodiment. The packaging material in this embodiment is not particularly limited, and various well-known packaging materials can be applied. In addition, the packaging body of this embodiment is not limited to the following, but it can be manufactured by packaging the laminate of this embodiment with a packaging material in a clean state, and then enclosing it, for example. <The third embodiment> Here, the third embodiment of the present invention will be described in detail with reference to FIGS. 43 to 62. [Layered body] The laminate of the third embodiment (hereinafter referred to as "this embodiment" in the section of the <3rd embodiment>) has a diaphragm and at least one area fixed to the surface of the diaphragm (hereinafter also referred to as "fixed area" ) Of the electrode for electrolysis, and the ratio of the above-mentioned area on the surface of the above-mentioned diaphragm exceeds 0% and does not reach 93%. Due to the structure described above, the laminate of the present embodiment can improve the work efficiency during the renewal of the electrodes in the electrolytic cell, and can also exhibit excellent electrolytic performance after renewal. That is, with the laminate of the present embodiment, when replacing the electrode, there is no need to peel off the existing electrode fixed to the electrolytic cell and other complicated operations, and the electrode can be replaced by the same simple operation as the replacement of the diaphragm, so the work efficiency A substantial increase. Furthermore, with the laminate of the present embodiment, the electrolytic performance of the existing electrolytic cell can be maintained at the same or improved as that of the new product. Therefore, the electrode that is fixed to the existing electrolytic cell and functions as an anode and a cathode only needs to function as a feeder, which can greatly reduce the catalyst coating or even no catalyst coating. As used herein, the power feeder means a deteriorated electrode (that is, an existing electrode) or an electrode without a catalyst coating. [Electrode for Electrolysis] The electrode for electrolysis in this embodiment is not particularly limited as long as it is an electrode that can be used for electrolysis. Preferably, the area of the surface of the electrode for electrolysis facing the diaphragm (corresponding to the area S2 of the energizing surface described below) is 0.01 m2 the above. The so-called "surface facing the diaphragm" refers to the surface of the surface of the electrode for electrolysis on the side where the diaphragm exists. That is, the surface of the electrode for electrolysis facing the separator may also be referred to as the surface in contact with the surface of the separator. The area of the above-mentioned surface facing the diaphragm in the electrode for electrolysis is 0.01 m2 Under the above circumstances, sufficient productivity can be ensured, especially in the implementation of industrial electrolysis, there is a tendency to obtain sufficient productivity. Therefore, from the viewpoint of ensuring sufficient productivity and ensuring the practicality of the laminate used as a renewal electrolytic cell, the area of the above-mentioned surface facing the separator in the electrode for electrolysis is more preferably 0.1 m2 Above, more preferably 1 m2 the above. This area can be measured by the method described in the Example, for example. The electrode for electrolysis in this embodiment can achieve good operability, and has good adhesion to membranes such as ion exchange membranes or microporous membranes, and power feeders (degraded electrodes and electrodes without catalyst coating). From the viewpoint of force, the force per unit mass·unit area is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/mg·cm2 Above, and more preferably 0.14 N/(mg·cm2 )the above. From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm is more preferable2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. In addition, good operability can be obtained, and good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders that are not formed with a catalyst coating, etc., is the point of view, and furthermore, it is economical. From a viewpoint, the mass per unit area is preferably 48 mg/cm2 Below, more preferably 30 mg/cm2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The endurance can be measured by the following methods (i) or (ii), the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the method (ii) The value obtained by the measurement (also called "endurance (2)") can be the same or different, but it is preferable that neither value reaches 1.5 N/mg·cm2 . [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles Ion exchange membrane (170 mm square) and electrode sample (130 mm square) of the bonding agent. After the laminate is fully immersed in pure water, the excess water adhering to the surface of the laminate is removed to obtain a sample for measurement . Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.5-0.8 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the electrode sample overlapped with the ion exchange membrane and the mass of the electrode sample overlapped with the ion exchange membrane to calculate the force per unit mass·unit area (1)(N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Also, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 ), more preferably 0.2 N/(mg·cm2 )the above. [Method (ii)] Stack the nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and electrode sample (130 mm square) obtained by spraying with the alumina grain number 320 in order, After the laminate is fully immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapping part of the electrode sample and the nickel plate, and the mass of the electrode sample in the overlapping part of the nickel plate, to calculate the adhesive force per unit mass•unit area (2) (N/mg·cm)2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Furthermore, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. The electrode for electrolysis in this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and non-contact formation. The media-coated electrode (feeder) has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m) In particular, it is preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more It is preferably 100 μm or less, and from the viewpoint of operability and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Feeder) From the viewpoint of good adhesive force, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more. Furthermore, for large sizes (for example, From the viewpoint of ease of handling under a size of 1.5 m×2.5 m), it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 280 mm) with the electrode sample in the layered body as the outside, and pure Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Power feeder) has good adhesive force, can be wound into a roll shape and bends well, the ratio measured by the following method (3) is preferably 75% or more, more It is preferably 80% or more, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 145 mm) in such a way that the electrode sample in the layered body becomes the outside. Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (The feeder) has a good adhesive force and prevents the gas generated during electrolysis from stagnating, preferably a porous structure, and its open porosity or porosity is 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In the present embodiment, the volume V is calculated from the value of the gauge thickness, width, and length of the electrode, and the weight W is actually measured, and the porosity A is calculated by the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio is adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. Hereinafter, one aspect of the electrode for electrolysis in this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 43, the electrode for electrolysis 100 of this embodiment is equipped with the electrode base material 10 for electrolysis, and a pair of 1st layer 20 which covers both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode for electrolysis can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. Moreover, as shown in FIG. 43, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, or valve metals represented by titanium can be used, and it is preferable to contain one selected from the group consisting of nickel (Ni) and titanium (Ti). At least 1 element. When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, metal wire mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. As the electrode base material 10 for electrolysis, a metal porous foil, a metal wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal can be mentioned. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on one or both sides. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina powder to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. Alternatively, it is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As the treatment to increase the surface area, blasting treatment using steel wire grains, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, and plating treatment using the same elements as the substrate can be mentioned. The arithmetic average surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-8 μm. Next, the case where the electrode for electrolysis in this embodiment is used as an anode for salt electrolysis is demonstrated. (level one) In FIG. 43, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis in this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode, that is, the total thickness of the electrode substrate for electrolysis and the catalyst layer, is preferably 315 μm or less, more preferably 220 μm or less, and even more preferably 170 μm in terms of the operability of the electrode Hereinafter, it is more preferably 150 μm or less, even more preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis is measured in the same manner as the thickness of the electrode. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. In this embodiment, from the viewpoint of ensuring sufficient electrolytic performance, it is preferable that the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, Si, P, S, At least one catalyst component from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. In this embodiment, if the electrode for electrolysis is an electrode with a wider elastic deformation region, better operability can be obtained, and it is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and no catalyst coating. From the viewpoint that the feeder of the layer has better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, still more preferably 170 μm or less, and even more preferably 150 μm Hereinafter, it is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, a catalyst layer is formed on the electrode substrate for electrolysis by a coating step of applying a coating liquid containing a catalyst, a drying step of drying the coating liquid, and a thermal decomposition step of performing thermal decomposition. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes, thermal decomposition is usually carried out in the air, and in most cases metal oxides or metal hydroxides are formed. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, the solution may not be applied and only the substrate is heated, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. The electrode for electrolysis in this embodiment can be used by being integrated with a separator such as an ion exchange membrane or a microporous membrane. Therefore, the laminate of the present embodiment can be used as a membrane-integrated electrode, and there is no need to replace and attach the cathode and anode when the electrode is replaced, and the work efficiency is greatly improved. In addition, by using a bulk electrode with a diaphragm such as an ion exchange membrane or a microporous membrane, the electrolytic performance can be made the same as or improved to that of the new product. Hereinafter, the ion exchange membrane will be described in detail. [Ion Exchange Membrane] The ion exchange membrane is not particularly limited as long as it can be formed into a laminate with the electrode for electrolysis, and various ion exchange membranes can be applied. In this embodiment, it is preferable to use an ion exchange membrane having a membrane body containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups and a coating layer provided on at least one surface of the membrane body. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is preferably 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure during electrolysis has less influence on electrolysis performance, and has a tendency to exert stable electrolysis performance. The membrane system of the above-mentioned so-called perfluorocarbon polymer with ion-exchange groups introduced has ion-exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 44 is a schematic cross-sectional view showing an embodiment of the ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 has an ion exchange group derived from a sulfonic group (with -SO3 - The group represented by the sulfonic acid layer 3, which is also referred to as "sulfonic acid group" hereinafter, and the ion exchange group (with -CO) derived from the carboxyl group2 - The indicated group (hereinafter also referred to as "carboxylic acid group") of the carboxylic acid layer 2 strengthens the strength and dimensional stability by strengthening the core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as a cation exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example shown in FIG. 44. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane preferably has a coating layer on at least one surface of the membrane body. Furthermore, as shown in FIG. 44, in the ion exchange membrane 1, coating layers 11a and 11b are formed on both surfaces of the membrane body 10, respectively. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine, Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Monofilament, multifilament or these yarns, cut film yarns, etc. can be used for woven or knitted fabrics, and various weaving methods such as plain weaving, leno weaving, knitting, rib weaving, crepe stripe thin weaving, etc. can be used as the weaving method. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. Fig. 45 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. FIG. 45 enlarges a part of the ion exchange membrane and only shows the arrangement of the reinforced core materials 21 and 22 in this area, and the other components are omitted from the illustration. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. Fig. 46 (a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 46(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the membrane body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Figure 46(a), the reinforcing material for plain weaves in which the reinforcing yarn 52 and the sacrificial yarn 504a are woven in the longitudinal and transverse directions on the paper is illustrated. The arrangement of the reinforcing yarn 52 and the sacrificial yarn 504a in the reinforcing material can be changed as needed . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM. The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. As a specific example of the above-mentioned microporous membrane, Zilfon Perl UTP 500 (also referred to as Zilfon membrane in this embodiment) manufactured by Agfa, International Publication No. 2013-183584 Specification, International Publication No. 2016-203701 Those recorded in the manual, etc. In this embodiment, the separator preferably includes a first ion exchange resin layer and a second ion exchange resin layer having an EW (ion exchange equivalent) different from the first ion exchange resin layer. Furthermore, it is preferable that the separator includes a first ion exchange resin layer and a second ion exchange resin layer having a functional group different from the first ion exchange resin layer. The ion exchange equivalent can be adjusted by the introduced functional group, and the introduced functional group is as described above. [Fixed area] In this embodiment, the electrode for electrolysis is fixed to at least one area of the surface of the diaphragm. In the item of <3rd embodiment>, this one or two or more areas are also referred to as fixed areas. The fixing area in this embodiment is not particularly limited as long as it has the function of suppressing the separation of the electrode for electrolysis from the diaphragm and fixes the electrode for electrolysis to the diaphragm. For example, there is also a case where the electrode for electrolysis itself becomes a fixing mechanism. In the case of forming a fixed area, there is also a case in which a fixing member, which is different from the electrode for electrolysis, becomes a fixing mechanism to form a fixed area. Furthermore, the fixed area in this embodiment may only exist at a position corresponding to the energized surface during electrolysis, or it may extend to a position corresponding to the non-energized surface. Furthermore, the "energized surface" corresponds to the part designed to move the electrolyte between the anode chamber and the cathode chamber. In addition, the so-called "non-energized surface" means the part other than the energized surface. Furthermore, in this embodiment, the ratio of the fixed area on the surface of the diaphragm (hereinafter also referred to as "ratio α") exceeds 0% and does not reach 93%. The above ratio can be obtained as the ratio of the area of the fixed area (hereinafter also referred to as "area S3") to the area of the diaphragm surface (hereinafter also referred to as "area S1"). In this embodiment, the "surface of the diaphragm" refers to the surface of the surface where the electrode for electrolysis exists among the surfaces of the diaphragm. Furthermore, in the surface of the above-mentioned diaphragm, the area of the part not covered by the electrode for electrolysis is also counted as the area S1. From the viewpoint of being more stable as a laminate of a separator and an electrode for electrolysis, the above-mentioned ratio α (=100×S3/S1) exceeds 0%, preferably 0.00000001% or more, and more preferably 0.0000001% or more. On the other hand, as in the prior art, when the entire surface of the contact surface between the separator and the electrode is firmly bonded by a method such as thermocompression bonding (that is, when the above ratio becomes 100%), it becomes The entire surface of the contact surface in the electrode is embedded in the diaphragm and physically connected. This bonding part hinders the movement of sodium ions in the membrane, and the voltage rises greatly. In this embodiment, from the viewpoint of sufficiently ensuring a space in which ions can move freely, the above-mentioned ratio is less than 93%, preferably 90% or less, more preferably 70% or less, and still more preferably less than 60%. In this embodiment, from the viewpoint of obtaining better electrolysis performance, it is preferable to determine the area of the fixed area (area S3) that corresponds only to the energized surface (hereinafter also referred to as "area S3'" ) To make adjustments. That is, it is preferable to adjust the ratio of the area S3' to the area of the energized surface (hereinafter also referred to as "area S2") (hereinafter also referred to as "ratio β"). Furthermore, the area S2 can be specified as the surface area of the electrode for electrolysis (details will be described below). Specifically, in the present embodiment, the ratio β (=100×S3'/S2) is preferably more than 0% and less than 100%, more preferably 0.0000001% or more and less than 83%, and still more preferably 0.000001 % Or more and 70% or less, more preferably 0.00001% or more and 25% or less. The above-mentioned ratios α and β can be measured as follows, for example. First, calculate the surface area S1 of the diaphragm. Next, the area S2 of the electrode for electrolysis is calculated. Here, the areas S1 and S2 can be specified as the areas when the laminate of the separator and the electrolysis electrode is viewed from the side of the electrolysis electrode (see FIG. 57). Furthermore, the shape of the electrode for electrolysis is not particularly limited. It can have openings. In the case of mesh-like shapes with openings and (i) the opening rate is less than 90%, regarding S2, the openings It is also included in the area S2. On the other hand, when the shape is a mesh with openings and (ii) the opening ratio is 90% or more, in order to fully ensure the electrolytic performance, the area of the openings is removed Calculate S2. The so-called open porosity here is the value obtained by dividing the total area S'of the open portion of the electrode for electrolysis by the area S'' of the electrode for electrolysis obtained by calculating the open portion into the area (%, 100 ×S'/S''). The area of the fixed area (area S3 and area S3') will be described below. As mentioned above, the ratio α (%) of the above-mentioned area on the surface of the diaphragm can be obtained by calculating 100×(S3/S1). In addition, the ratio β (%) of the area of only the portion corresponding to the energized surface of the fixed region to the area of the energized surface can be obtained by calculating 100×(S3'/S2). More specifically, it can be measured by the method described in the Examples described below. The area S1 of the surface of the diaphragm specified in the above manner is not particularly limited, but it is preferably 1 time or more and 5 times or less of the area S2 of the energized surface, more preferably 1 time or more and 4 times or less, and more preferably 1 Times or more and 3 times or less. In this embodiment, the fixing structure in the fixing area is not limited, but for example, the fixing structure exemplified below can be adopted. In addition, only one type of each fixing structure may be used, or a combination of two or more types may be used. In this embodiment, it is preferable that at least a part of the electrode for electrolysis in the fixing region penetrates through the separator and is fixed. This aspect will be described using FIG. 47A. In FIG. 47A, at least a part of the electrode 2 for electrolysis penetrates through the separator 3 and is fixed. As shown in FIG. 47A, a part of the electrode 2 for electrolysis penetrates through the diaphragm 3. As shown in FIG. FIG. 47A shows an example in which the electrode 2 for electrolysis is a porous metal electrode. That is, in FIG. 47A, the parts of the plurality of electrolysis electrodes 2 are shown independently, but the sections of the connected and integrated porous metal electrodes are shown (the same applies to the following FIGS. 48 to 51). Under this type of electrode structure, for example, if a diaphragm 3 at a specific position (a position that should become a fixed area) is pressed against the electrolysis electrode 2, a part of the diaphragm 3 enters the uneven structure or hole on the surface of the electrolysis electrode 2 In the structure, the concave portion on the electrode surface or the convex portion around the hole penetrates through the diaphragm 3, preferably as shown in FIG. 47A, penetrates to the outer surface 3b of the diaphragm 3. As described above, the fixing structure of FIG. 47A can be manufactured by pressing the diaphragm 3 against the electrode 2 for electrolysis. In this case, heat compression bonding and heat suction are performed in a state where the diaphragm 3 is softened by heating. . Thereby, the electrode 2 for electrolysis penetrates the separator 3. Alternatively, it may be performed in a state where the separator 3 is melted. In this case, it is preferable to suck the separator 3 from the outer surface 2b side (rear side) of the electrode 2 for electrolysis in the state shown in FIG. 47B. Furthermore, the area where the diaphragm 3 is pressed against the electrode 2 for electrolysis constitutes a "fixed area". The fixed structure shown in FIG. 47A can be observed with a loupe, an optical microscope or an electron microscope. In addition, by penetrating the diaphragm 3 with the electrode 2 for electrolysis, and using a continuity inspection between the outer surface 3b of the diaphragm 3 and the outer surface 2b of the electrode 2 for electrolysis using a tester or the like, the fixed structure of FIG. 47A can be estimated. In FIG. 47A, it is preferable that the electrolyte in the anode chamber and the cathode chamber separated by a diaphragm does not pass through the through portion. Therefore, it is preferable that the pore diameter of the penetrating part be so small that the electrolyte does not pass through. Specifically, it is preferable to exhibit the same performance as a separator having no penetrating part when performing an electrolysis test. Alternatively, it is preferable to perform processing to prevent the penetration of the electrolyte on the penetrating part. It is preferable to use a material that does not dissolve or decompose due to the electrolyte in the anode compartment, the product produced in the anode compartment, the electrolyte in the cathode compartment, and the product produced in the cathode compartment. For example, EPDM and fluorine-based resins are preferred. More preferably, it is a fluororesin having an ion exchange group. In this embodiment, it is preferable that at least a part of the electrode for electrolysis in the fixing area is located inside the diaphragm and is fixed. This aspect will be described using FIG. 48A. As described above, the surface of the electrode 2 for electrolysis is provided with an uneven structure or a hole structure. In the embodiment shown in FIG. 48A, a part of the electrode surface is inserted and fixed to the diaphragm 3 at a specific position (a position that should be the fixed area). The fixing structure shown in FIG. 48A can be manufactured by pressing the diaphragm 3 against the electrode 2 for electrolysis. In this case, it is preferable to perform thermocompression bonding and heat suction in a state where the diaphragm 3 is softened by heating to form the fixing structure of FIG. 48A. Alternatively, the diaphragm 3 may be melted to form the fixing structure of FIG. 48A. In this case, it is preferable to suck the separator 3 from the outer surface 2b side (back side) of the electrode 2 for electrolysis. The fixed structure shown in FIG. 48A can be observed with a loupe, an optical microscope or an electron microscope. Particularly preferred is a method of making a cross section by a microtome and observing the sample after embedding the sample. Furthermore, in the fixing structure shown in FIG. 48A, since the electrode 2 for electrolysis does not penetrate the diaphragm 3, the continuity between the outer surface 3b of the diaphragm 3 and the outer surface 2b of the electrode 2 for electrolysis by the continuity check is not confirmed. . In this embodiment, it is preferable to further have a fixing member for fixing the diaphragm and the electrode for electrolysis. This aspect will be described using FIGS. 49A to 49C. The fixing structure shown in FIG. 49A uses a fixing member 7 that is different from the electrolysis electrode 2 and the diaphragm 3, and the fixing member 7 penetrates the electrolysis electrode 2 and the diaphragm 3 to fix it. The electrode 2 for electrolysis does not necessarily need to be penetrated by the fixing member 7, and it may be fixed by the fixing member 7 so as not to be separated from the diaphragm 2. The material of the fixing member 7 is not particularly limited, and as the fixing member 7, for example, one containing metal, resin, or the like can be used. In the case of metal, nickel, nickel-chromium alloy, titanium, stainless steel (SUS), etc. can be mentioned. It can also be these oxides. As the resin, fluororesin (for example, PTFE (polytetrafluoroethylene), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), ETFE (copolymer of tetrafluoroethylene and ethylene) or the following can be used The material of the diaphragm 3) or PVDF (polyvinylidene fluoride), EPDM (ethylene-propylene-diene rubber), PP (polyethylene), PE (polypropylene), nylon, aromatic polyamide, etc. In the present embodiment, for example, a yarn-shaped fixing member (a yarn-shaped metal or resin) is used, as shown in Figs. 49B and 49C, for specific positions between the electrode 2 for electrolysis and the outer surfaces 2b, 3b of the diaphragm 3 ( Should be the position of the fixed area) for sewing, which can also be fixed. The yarn-like resin is not particularly limited, and examples thereof include PTFE yarn. In addition, a fixing mechanism such as a tucker can also be used to fix the electrode 2 for electrolysis and the diaphragm 3. In FIGS. 49A-C, it is preferable that the electrolyte in the anode chamber and the cathode chamber separated by a diaphragm does not pass through the through portion. Therefore, it is preferable that the pore diameter of the penetrating part be so small that the electrolyte does not pass through. Specifically, it is preferable to exhibit the same performance as a separator having no penetrating part when performing an electrolysis test. Alternatively, it is preferable to perform processing to prevent the penetration of the electrolyte on the penetrating part. It is preferable to use a material that does not dissolve or decompose due to the electrolyte in the anode compartment, the product produced in the anode compartment, the electrolyte in the cathode compartment, and the product produced in the cathode compartment. For example, EPDM and fluorine-based resins are preferred. More preferably, it is a fluororesin having an ion exchange group. The fixing structure shown in FIG. 50 is a structure in which an organic resin (adhesive layer) is interposed between the electrode 2 for electrolysis and the diaphragm 3 for fixing. That is, in FIG. 50, the organic resin as the fixing member 7 is arranged at a specific position between the electrolysis electrode 2 and the diaphragm 3 (a position that should be the fixing area), and is subsequently fixed. For example, the inner surface 2a of the electrode 2 for electrolysis, the inner surface 3a of the diaphragm 3, or both or one of the inner surfaces 2a and 3a of the electrode 2 and the diaphragm 3 for electrolysis are coated with an organic resin. Then, the electrode 2 for electrolysis and the separator 3 are bonded together, thereby forming the fixing structure shown in FIG. 50. The material of the organic resin is not particularly limited. For example, fluororesin (for example, PTFE, PFA, ETFE), or the same resin as the material constituting the diaphragm 3 described above can be used. In addition, commercially available fluorine-based adhesives, PTFE dispersions, and the like can also be suitably used. Furthermore, general-purpose vinyl acetate-based adhesives, ethylene-vinyl acetate copolymerized adhesives, acrylic resin-based adhesives, α-olefin-based adhesives, styrene butadiene rubber-based latex adhesives, Vinyl chloride resin-based adhesives, chloroprene-based adhesives, nitrile rubber-based adhesives, urethane rubber-based adhesives, epoxy-based adhesives, silicone resin-based adhesives, modified polysiloxanes Adhesives, epoxy-modified silicone resin adhesives, silylated urethane resin adhesives, cyanoacrylate adhesives, etc. In this embodiment, an organic resin that dissolves in an electrolyte or dissolves and decomposes in electrolysis can be used. The organic resin that dissolves in the electrolyte or dissolves and decomposes in the electrolysis is not limited to the following. Examples include: vinyl acetate-based adhesives, ethylene-vinyl acetate copolymer-based adhesives, and acrylic resin-based adhesives , Α-olefin-based adhesives, styrene butadiene rubber-based latex adhesives, vinyl chloride resin-based adhesives, chloroprene-based adhesives, nitrile rubber-based adhesives, urethane rubber-based adhesives, Epoxy-based adhesives, silicone resin-based adhesives, modified silicone-based adhesives, epoxy-modified silicone resin-based adhesives, silylated urethane resin-based adhesives, cyano groups Acrylic adhesives, etc. The fixed structure shown in Figure 50 can be observed with an optical microscope or an electron microscope. Particularly preferred is a method of making a cross section by a microtome and observing the sample after embedding the sample. In this embodiment, it is preferable that at least a part of the fixing member holds the separator and the electrode for electrolysis from the outside. This aspect will be described using FIG. 51A. The fixing structure shown in FIG. 51A is a structure in which the electrode 2 for electrolysis and the diaphragm 3 are held and fixed from the outside. That is, the outer surface 2b of the electrode for electrolysis 2 and the outer surface 3b of the separator 3 are sandwiched and fixed by the holding member as the fixing member 7. The fixing structure shown in FIG. 51A also includes a state in which the holding member is trapped in the electrode 2 or the diaphragm 3 for electrolysis. As the holding member, for example, a tape, a jig, etc. can be cited. In this embodiment, a holding member soluble in electrolyte can also be used. Examples of the holding member dissolved in the electrolyte include PET tapes, clamps, PVA (polyvinyl alcohol, polyvinyl alcohol) tapes, clamps, and the like. The fixing structure shown in Fig. 51A is different from Figs. 47-50. It is not the one that joins the interface between the electrode 2 for electrolysis and the diaphragm 3. The inner surfaces 2a, 3a of the electrode 2 for electrolysis and the diaphragm 3 are only in contact or opposite to each other. In the state, by removing the holding member, the fixed state of the electrode 2 for electrolysis and the separator 3 can be released and separated. It is not shown in FIG. 51A, but a holding member may also be used to fix the electrode 2 for electrolysis and the diaphragm 3 to the electrolytic cell. For example, a PTFE tape can be folded back to clamp the diaphragm and the electrode to fix it. Moreover, in this embodiment, it is preferable that at least a part of the fixing member fixes the separator and the electrode for electrolysis by a magnetic force. This aspect will be described using FIG. 51B. The fixing structure shown in FIG. 51B is a structure in which the electrode 2 for electrolysis and the diaphragm 3 are held and fixed from the outside. The difference from FIG. 51A lies in the use of a pair of magnets as a holding member used as a fixing member. In the aspect of the fixing structure shown in FIG. 51B, after the laminate 1 is installed in the electrolytic cell, the holding member may be left directly or removed from the laminate 1 during the operation of the electrolytic cell. It is not shown in FIG. 51B, but a holding member may be used to fix the electrode 2 for electrolysis and the diaphragm 3 to the electrolytic cell. In addition, when a magnetic material bonded to the magnet is used as part of the material of the electrolytic cell, one type of holding material may be provided on the side of the diaphragm, and the electrolytic cell, the electrode 2 for electrolysis and the diaphragm 3 can be clamped and fixed. Furthermore, it is also possible to set a fixed area for a plurality of rows. That is, 1, 2, 3,... N fixed regions can be arranged from the contour side of the layered body 1 toward the inner side. n is an integer of 1 or more. In addition, the m-th (m<n) fixed area and the L-th (m<L≦n) fixed area can be formed by different fixed patterns. The fixed area formed in the energizing part preferably has a line-symmetrical shape. By this, there is a tendency that stress concentration can be suppressed. For example, if the two orthogonal directions are set as the X direction and the Y direction, one can be arranged in each of the X direction and the Y direction, or a plurality of them can be arranged at equal intervals in each of the X direction and the Y direction. Strips constitute a fixed area. The number of fixed areas in the X direction and the Y direction is not limited, but it is preferable to set 100 or less in the X direction and the Y direction. In addition, from the viewpoint of ensuring the flatness of the energized part, the number of fixed areas in the X direction and the Y direction should be 50 or less. In the fixed area in this embodiment, in the case of the fixed structure shown in FIG. 47A or FIG. 49, from the viewpoint of preventing the short circuit caused by the contact between the anode and the cathode, it is preferably on the film surface of the fixed area Coated with sealing material. As the sealing material, for example, the materials described in the above-mentioned adhesive can be used. In the case of using a fixing member, when calculating the area S3 and the area S3', the overlapping amount of the fixing member is not included in the area S3 and the area S3'. For example, when the above-mentioned PTFE yarn is used as a fixing member for fixing, the part where the PTFE yarn crosses each other is regarded as the repetition amount and is not included in the area. In addition, when the above-mentioned PTFE tape is used as a fixing member for fixing, the overlapping portion of the PTFE tape is not included in the area as the overlap amount. In addition, when the above-mentioned PTFE yarn or adhesive is fixed as a fixing member, the area existing on the back side of the electrode and/or separator for electrolysis is also included in the area S3 and the area S3'. The laminate in this embodiment can have various fixed regions at various positions as described above, but it is preferable that the electrode for electrolysis satisfies the above-mentioned "resistance force" especially in the portion where there is no fixed region (non-fixed region). That is, it is preferable that the force per unit mass·unit area in the non-fixed area of the electrode for electrolysis is less than 1.5 N/mg·cm2 . [Electrolyzer] The electrolytic cell of this embodiment includes the laminate of this embodiment. Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. [Cell] Figure 52 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. The reverse current absorber 18 has a substrate 18a as shown in FIG. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. FIG. 53 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. Figure 54 shows the electrolytic cell 4. Fig. 55 shows the steps of assembling the electrolytic cell 4. As shown in Figure 53, the electrolytic cell 1, the cation exchange membrane 2, and the electrolytic cell 1 are arranged in series in sequence. An ion exchange membrane 2 is arranged between the anode chamber of one electrolytic cell 1 and the cathode chamber of the other electrolytic cell 1 among the two adjacent electrolytic cells in the electrolytic cell. That is, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the adjacent electrolytic cell 1 are separated by the cation exchange membrane 2. As shown in FIG. 54, the electrolytic cell 4 includes a plurality of electrolytic cells 1 connected in series via separator exchange membrane 2. That is, the electrolytic cell 4 is a bipolar electrolytic cell provided with a plurality of electrolytic cells 1 arranged in series and an ion exchange membrane 2 arranged between adjacent electrolytic cells 1. As shown in FIG. 55, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series through a separator exchange membrane 2 and connecting them by a presser 5. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. When the electrode for electrolysis in this embodiment is inserted into the anode side, 11 functions as an anode feeder. When the electrode for electrolysis in this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis in this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10. As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis in this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. Furthermore, unless otherwise specified, the term "upper" means the upper direction in the electrolytic cell 1 of FIG. 52, and "lower" means the lower direction in the electrolytic cell 1 of FIG. 52. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 in this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 52, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrode for electrolysis in this embodiment is inserted on the cathode side, and when the electrode for electrolysis in this embodiment is not inserted on the cathode side, 21 serves as a cathode Function. In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis in this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20. The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis in this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, nickel, nickel alloy, nickel-plated iron or stainless steel without a catalyst coating can be used. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage applied to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. In addition, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis of the present embodiment is installed in the electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis at starting point. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell connect the electrolytic cells to each other by sandwiching the ion exchange membrane 2 (refer to FIGS. 52 and 53). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the separator exchange membrane 2, airtightness can be given to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. In addition, for example, when the separator exchange membrane 2 is connected to two electrolytic cells 1 (refer to FIG. 53), the separator exchange membrane 2 may fasten each electrolytic cell 1 to which gaskets are attached. Thereby, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. (Ion exchange membrane 2) As the ion exchange membrane 2, it is as described in the item of the ion exchange membrane mentioned above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. <The fourth embodiment> Here, the fourth embodiment of the present invention will be described in detail with reference to FIGS. 63 to 90. [Electrolyzer] The electrolytic cell of the fourth embodiment (hereinafter referred to as "this embodiment" in the section of the <4th embodiment>) includes an anode, an anode frame supporting the anode, an anode side gasket arranged on the anode frame, and The cathode facing the anode, the cathode frame supporting the cathode, the cathode side gasket arranged on the cathode frame and facing the anode side gasket, arranged between the anode side gasket and the cathode side gasket A laminate of the separator and electrode for electrolysis, and at least a part of the laminate is sandwiched by the anode side gasket and the cathode side gasket, and the electrolysis electrode is set to a size of 50 mm×50 mm Temperature 24℃, relative humidity 32%, piston speed 0.2 cm/s and ventilation volume 0.4 cc/cm2 In the case of /s, the ventilation resistance is 24 kPa·s/m or less. Due to the structure described above, the electrolytic cell of this embodiment has excellent electrolytic performance and can prevent damage to the diaphragm. The electrolytic cell of this embodiment includes the above-mentioned structural members, in other words, includes the electrolytic cell. Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. [Cell] First, an electrolytic cell that can be used as a constituent unit of the electrolytic cell of this embodiment will be described. Figure 63 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. As shown in FIG. 67, the reverse current absorber 18 has a substrate 18a and formed thereon. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. Fig. 64 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. Figure 65 shows the electrolytic cell 4. FIG. 66 shows the steps of assembling the electrolytic cell 4. In the previous electrolytic cell, as shown in Figure 64A, the electrolytic cell 1, the diaphragm (herein, the cation exchange membrane) 2, and the electrolytic cell 1 are arranged in series in sequence, and one of the two adjacent electrolytic cells in the electrolytic cell An ion exchange membrane 2 is arranged between the anode compartment of the electrolytic cell 1 and the cathode compartment of the other electrolytic cell 1. That is, in the electrolytic cell, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the electrolytic cell 1 adjacent thereto are usually separated by the cation exchange membrane 2. On the other hand, in this embodiment, as shown in FIG. 64B, the electrolytic cell 1, a laminated body 25 having a diaphragm (here, a cation exchange membrane) 2 and an electrode for electrolysis (here, a cathode for regeneration) 21a, The electrolytic cells 1 are arranged in series in order, and the laminated body 25 is sandwiched between the anode gasket 12 and the cathode gasket 13 in a part thereof (the upper end in FIG. 64B). In addition, as shown in FIG. 65, the electrolytic cell 4 includes a plurality of electrolytic cells 1 connected in series via the separator exchange membrane 2. That is, the electrolytic cell 4 is a bipolar electrolytic cell provided with a plurality of electrolytic cells 1 arranged in series and an ion exchange membrane 2 arranged between adjacent electrolytic cells 1. As shown in FIG. 66, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series through the separator exchange membrane 2 and connecting them with the presser 5. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. As mentioned above, the diaphragm, cathode, and anode in the electrolytic cell usually accompany the operation of the electrolytic cell, and their performance will deteriorate, and eventually they must be replaced with new ones. When only the diaphragm is replaced, the existing diaphragm can be removed from the electrolysis. A new diaphragm is drawn out and inserted between the cells for simple replacement. However, when the anode or cathode is replaced by welding, special equipment is required, so it is more complicated. On the other hand, in this embodiment, as described above, the layered body 25 is sandwiched between the anode gasket 12 and the cathode gasket 13 in a part thereof (the upper end in FIG. 64B). Especially in the example shown in FIG. 64B, the diaphragm (here, the cation exchange membrane) 2 and the electrode for electrolysis (here, the cathode for renewal) 21a at least on the upper end of these laminates can be opposed to the anode The pressing of the gasket 12 in the direction toward the laminate 25 and the pressing in the direction from the cathode gasket 13 toward the laminate 25 fix. In this case, it is not necessary to fix the laminate 25 (especially the electrode for electrolysis) to an existing member (for example, an existing cathode) by welding, which is preferable. That is, when both the electrode for electrolysis and the separator are sandwiched by the anode side gasket and the cathode side gasket, there is a tendency to improve the work efficiency when the electrode in the electrolytic cell is renewed, which is preferable. Furthermore, according to the structure of the electrolytic cell of this embodiment, the diaphragm and the electrode for electrolysis are sufficiently fixed in the form of a laminate, so that excellent electrolytic performance can be obtained. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. As used herein, the power feeder means a deteriorated electrode (that is, an existing electrode) or an electrode without a catalyst coating. When the electrode for electrolysis in this embodiment is inserted into the anode side, 11 functions as an anode feeder. When the electrode for electrolysis in this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis in this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10 (that is, the anode frame). As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis in this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. In addition, unless otherwise specified, the term "upward" means the upper direction in the electrolytic cell 1 of FIG. 63, and the term "lower" means the lower direction in the electrolytic cell 1 of FIG. 63. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 in this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 63, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrode for electrolysis in this embodiment is inserted on the cathode side, and when the electrode for electrolysis in this embodiment is not inserted on the cathode side, 21 serves as a cathode Function. In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis in this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20 (that is, the cathode frame). The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis in this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, nickel, nickel alloy, nickel-plated iron or stainless steel without a catalyst coating can be used. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage applied to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. In addition, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis in the present embodiment is installed in the electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis. At the starting position. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell connect the electrolytic cells to each other by sandwiching the laminate 25 (see FIG. 64B). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the laminated body 25, airtightness can be provided to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. By sandwiching the layered body 25 with the anode gasket and the cathode gasket, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. [Layered body] The laminate in this embodiment has a separator and an electrode for electrolysis. The layered body in this embodiment can improve the work efficiency during the renewal of the electrode in the electrolytic cell, and can also exhibit excellent electrolytic performance after the renewal. That is, with the laminate in this embodiment, when replacing the electrode, there is no need to peel off the existing electrode fixed to the electrolytic cell and other complicated operations, and the electrode can be replaced by the same simple operation as the replacement of the diaphragm. Therefore, the operation The efficiency is greatly improved. Furthermore, with the layered body in this embodiment, the electrolytic performance of the existing electrolytic cell can be maintained at the same or improved as that of the new product. Therefore, the electrode that is fixed to the existing electrolytic cell and functions as an anode and a cathode only needs to function as a feeder, which can greatly reduce the catalyst coating or even no catalyst coating. [Electrode for Electrolysis] The electrode for electrolysis in this embodiment is the size of the electrode for electrolysis is 50 mm×50 mm, the temperature is 24°C, the relative humidity is 32%, the piston speed is 0.2 cm/s, and the air flow rate is 0.4 cc/cm.2 In the case of /s (hereinafter also referred to as "measurement condition 1"), the ventilation resistance (hereinafter also referred to as "ventilation resistance 1") is 24 kPa·s/m or less. Larger ventilation resistance means that the air is difficult to flow, and refers to a state of higher density. In this state, the product of electrolysis stays in the electrode, and the reaction matrix is difficult to diffuse into the inside of the electrode, so the electrolysis performance (voltage, etc.) deteriorates. In addition, the concentration on the surface of the film increases. Specifically, the caustic concentration on the cathode surface increases, and the supply of brine on the anode surface decreases. As a result, because the product stays at the interface between the diaphragm and the electrode at a high concentration, the diaphragm is damaged, and the voltage on the cathode surface is increased, the membrane is damaged, and the membrane on the anode surface is damaged. In this embodiment, in order to prevent these abnormalities, the ventilation resistance is set to 24 kPa·s/m or less. Furthermore, in the present embodiment, if the ventilation resistance is greater than a certain level, in the case of the cathode, the NaOH generated in the electrode tends to stay at the interface between the electrode and the diaphragm and become a high concentration. In the case of the anode, there is a tendency The saline water supply is reduced and the salt water concentration tends to become low. In terms of preventing the damage to the diaphragm that may be caused by this kind of retention, it is preferably less than 0.19 kPa·s/m, more preferably 0.15 kPa·s/m or less, more preferably 0.07 kPa·s/m or less. On the other hand, when the ventilation resistance is low, since the area of the electrode becomes smaller, the current-carrying area becomes smaller and the electrolysis performance (voltage, etc.) deteriorates. When the ventilation resistance is zero, since the electrode for electrolysis is not provided, the power feeder functions as an electrode, and the electrolysis performance (voltage, etc.) significantly deteriorates. In this respect, the preferred lower limit specified as the ventilation resistance 1 is not particularly limited, and it is preferably more than 0 kPa·s/m, more preferably 0.0001 kPa·s/m or more, and still more preferably 0.001 kPa·s/m or more. Furthermore, in terms of the measurement method, the ventilation resistance 1 may not be able to obtain sufficient measurement accuracy if it is 0.07 kPa·s/m or less. From this point of view, an electrode for electrolysis with a ventilation resistance 1 of 0.07 kPa·s/m or less can also achieve the ventilation resistance obtained by the following measurement method (hereinafter also referred to as "measurement condition 2") (hereinafter Also known as "Ventilation Resistance 2") evaluation. That is, the ventilation resistance 2 is the size of the electrode for electrolysis with a size of 50 mm×50 mm, a temperature of 24°C, a relative humidity of 32%, a piston speed of 2 cm/s, and a ventilation rate of 4 cc/cm.2 Ventilation resistance in the case of /s. The specific measurement methods of ventilation resistance 1 and 2 are as described in the examples. The above-mentioned ventilation resistances 1 and 2 can be set to the above-mentioned ranges, for example, by appropriately adjusting the porosity, the thickness of the electrode, etc. described below. More specifically, for example, if the thickness is the same, if the aperture ratio is increased, the ventilation resistances 1 and 2 tend to decrease, and if the aperture ratio is decreased, the ventilation resistances 1 and 2 tend to increase. . The electrode for electrolysis in this embodiment can achieve good operability, and has good adhesion to membranes such as ion exchange membranes or microporous membranes, and power feeders (degraded electrodes and electrodes without catalyst coating). From the viewpoint of force, the force per unit mass·unit area is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/mg·cm2 Above, and more preferably 0.14 N/(mg·cm2 )the above. From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm is more preferable2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. In addition, good operability can be obtained, and good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders that are not formed with a catalyst coating, etc., is the point of view, and furthermore, it is economical. From a viewpoint, the mass per unit area is preferably 48 mg/cm2 Below, more preferably 30 mg/cm2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is preferably 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The endurance can be measured by the following method (i) or (ii), in detail, as described in the examples. Regarding endurance, the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the measurement of method (ii) (also called "endurance (2) )”) can be the same or different, but preferably any value is less than 1.5 N/mg·cm2 . [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles The ion exchange membrane (170 mm square, the details of the so-called ion exchange membrane here are as described in the examples) and the electrode sample (130 mm square) of the bonding agent. After the laminate is fully immersed in pure water, the adhesion is removed The excess water on the surface of the laminate is used to obtain a sample for measurement. Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.5-0.8 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the electrode sample overlapped with the ion exchange membrane and the mass of the electrode sample overlapped with the ion exchange membrane to calculate the force per unit mass·unit area (1)(N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Also, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 ), more preferably 0.2 N/(mg·cm2 )the above. [Method (ii)] Stack the nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and electrode sample (130 mm square) obtained by spraying with the alumina grain number 320 in order, After the laminate is fully immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapping part of the electrode sample and the nickel plate, and the mass of the electrode sample in the overlapping part of the nickel plate, to calculate the adhesive force per unit mass•unit area (2) (N/mg·cm)2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Furthermore, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. The electrode for electrolysis in this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and non-contact formation. The media-coated electrode (feeder) has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m) In particular, it is preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more It is preferably 100 μm or less, and from the viewpoint of operability and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Feeder) From the viewpoint of good adhesive force, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more. Furthermore, for large sizes (for example, From the viewpoint of ease of handling under a size of 1.5 m×2.5 m), it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 280 mm) with the electrode sample in the layered body as the outside, and pure Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Power feeder) has good adhesive force, can be wound into a roll shape and bends well, the ratio measured by the following method (3) is preferably 75% or more, more It is preferably 80% or more, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 145 mm) in such a way that the electrode sample in the layered body becomes the outside. Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. From the viewpoint of operability, the electrode for electrolysis in this embodiment is preferably 40 mm or less, more preferably 29 mm or less, and even more preferably 19 mm or less as measured by the following method (A) . [Method (A)] Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are laminated on both sides of the ion exchange membrane coated with inorganic particles and binding agent (170 mm See the square, the details of the so-called ion exchange membrane here are as described in the Examples) The sample formed with the electrode for electrolysis is wound and fixed on the curved surface of a vinyl chloride core material with an outer diameter of ϕ32 mm. Separate the electrode for electrolysis and place it on a horizontal plate, and measure the height L of the two ends of the electrode for electrolysis in the vertical direction at this time1 And L2 , Take the average of these as the measured value. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (The feeder) has a good adhesive force and prevents the gas generated during electrolysis from stagnating, preferably a porous structure, and its open porosity or porosity is 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In the present embodiment, the volume V is calculated from the value of the gauge thickness, width, and length of the electrode, and the weight W is actually measured, and the porosity A is calculated by the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio can be adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. Hereinafter, one aspect of the electrode for electrolysis in this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 68, the electrode for electrolysis 100 of this embodiment is equipped with the electrode base material 10 for electrolysis, and the 1st layer 20 which covers both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode for electrolysis can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. In addition, as shown in FIG. 68, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, or valve metals represented by titanium can be used, and it is preferable to contain one selected from the group consisting of nickel (Ni) and titanium (Ti). At least 1 element. When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, metal wire mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. As the electrode base material 10 for electrolysis, a metal porous foil, a metal wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal can be mentioned. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on one or both sides. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina powder to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. Alternatively, it is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As the treatment to increase the surface area, blasting treatment using steel wire grains, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, and plating treatment using the same elements as the substrate can be mentioned. The arithmetic average surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-8 μm. Next, the case where the electrode for electrolysis in this embodiment is used as an anode for salt electrolysis is demonstrated. (level one) In FIG. 68, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis in this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode, that is, the total thickness of the electrode substrate for electrolysis and the catalyst layer, is preferably 315 μm or less, more preferably 220 μm or less, and even more preferably 170 μm in terms of the operability of the electrode Hereinafter, it is more preferably 150 μm or less, even more preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis is measured in the same manner as the thickness of the electrode. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. In this embodiment, from the viewpoint of ensuring sufficient electrolytic performance, it is preferable that the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, Si, P, S, At least one catalyst component from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. In this embodiment, if the electrode for electrolysis is an electrode with a wider elastic deformation region, better operability can be obtained, and it is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and no catalyst coating. From the viewpoint that the feeder of the layer has better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, still more preferably 170 μm or less, and even more preferably 150 μm Hereinafter, it is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, a catalyst layer is formed on the electrode substrate for electrolysis by a coating step of applying a coating liquid containing a catalyst, a drying step of drying the coating liquid, and a thermal decomposition step of performing thermal decomposition. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes, thermal decomposition is usually carried out in the air, and in most cases metal oxides or metal hydroxides are formed. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, the solution may not be applied and only the substrate is heated, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. The electrode for electrolysis in this embodiment can be used by being integrated with a separator such as an ion exchange membrane or a microporous membrane. Therefore, the laminate in this embodiment can be used as a membrane-integrated electrode, and there is no need to replace and attach the cathode and anode when replacing the electrode, and the work efficiency is greatly improved. In addition, by using a bulk electrode with a diaphragm such as an ion exchange membrane or a microporous membrane, the electrolytic performance can be made the same as or improved to that of the new product. Hereinafter, the ion exchange membrane will be described in detail. [Ion Exchange Membrane] The ion exchange membrane is not particularly limited as long as it can be formed into a laminate with the electrode for electrolysis, and various ion exchange membranes can be applied. In this embodiment, it is preferable to use an ion exchange membrane having a membrane body containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups and a coating layer provided on at least one surface of the membrane body. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is preferably 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure during electrolysis has less influence on electrolysis performance, and has a tendency to exert stable electrolysis performance. The membrane system of the above-mentioned so-called perfluorocarbon polymer with ion-exchange groups introduced has ion-exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 69 is a schematic cross-sectional view showing an embodiment of an ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 has an ion exchange group derived from a sulfonic group (with -SO3 - The group represented by the sulfonic acid layer 3, which is also referred to as "sulfonic acid group" hereinafter, and the ion exchange group (with -CO) derived from the carboxyl group2 - The indicated group (hereinafter also referred to as "carboxylic acid group") of the carboxylic acid layer 2 strengthens the strength and dimensional stability by strengthening the core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as a cation exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example shown in FIG. 69. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane preferably has a coating layer on at least one surface of the membrane body. In addition, as shown in FIG. 69, in the ion exchange membrane 1, coating layers 11a and 11b are formed on both surfaces of the membrane body 10, respectively. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine, Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Monofilament, multifilament or these yarns, cut film yarns, etc. can be used for woven or knitted fabrics, and various weaving methods such as plain weaving, leno weaving, knitting, rib weaving, crepe stripe thin weaving, etc. can be used as the weaving method. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. Fig. 70 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. FIG. 70 enlarges a part of the ion exchange membrane, and only shows the arrangement of the reinforced core materials 21 and 22 in this area, and the other components are omitted from the illustration. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. Fig. 71 (a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 71(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the film body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Figure 71 (a), an example is shown on the paper in the longitudinal and transverse directions of the reinforcement yarn 52 and the sacrificial yarn 504a woven into the plain weave reinforcing material, the reinforcement yarn 52 and the sacrificial yarn 504a in the reinforcing material can be changed as needed. . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM. The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. As a specific example of the above-mentioned microporous membrane, Zilfon Perl UTP 500 (also referred to as Zilfon membrane in this embodiment) manufactured by Agfa, International Publication No. 2013-183584 Specification, International Publication No. 2016-203701 Those recorded in the manual, etc. In this embodiment, the separator preferably includes a first ion exchange resin layer and a second ion exchange resin layer having an EW (ion exchange equivalent) different from the first ion exchange resin layer. Furthermore, it is preferable that the separator includes a first ion exchange resin layer and a second ion exchange resin layer having a functional group different from the first ion exchange resin layer. The ion exchange equivalent can be adjusted by the introduced functional group, and the introduced functional group is as described above. In this embodiment, the part of the laminate 25 sandwiched between the anode gasket 12 and the cathode gasket 13 is preferably a non-current-carrying surface. Furthermore, the "energized surface" corresponds to the part designed to move the electrolyte between the anode chamber and the cathode chamber, and the "non-energized surface" is the part that does not belong to the energized surface. Furthermore, in this embodiment, the outermost periphery of the laminated body may be located on the inner side or the outer side in the direction of the energizing surface compared to the outermost periphery of the anode side gasket and the cathode side gasket, and is preferably on the outer side. When constructed in this way, the outermost periphery can be grasped, so there is a tendency to improve workability when assembling the electrolytic cell. Here, the outermost edge of the laminate is the outermost edge in a state where the diaphragm and the electrode for electrolysis are combined. That is, if the outermost periphery of the electrode for electrolysis is outside the contact surface with each other compared to the outermost periphery of the diaphragm, it means the outermost periphery of the electrode for electrolysis, and if compared with the outermost periphery of the diaphragm, electrolysis The outermost periphery of the electrode is inside the mutual contact surface, which means the outermost periphery of the diaphragm. This positional relationship will be described using FIGS. 72 and 73. Figs. 72 and 73 show the positional relationship between the gasket and the laminate when viewing two electrolytic cells from the α direction shown in Fig. 64B, for example. In Figures 72 and 73, the rectangular spacer A with an opening in the center is located closest to the front. The rectangular diaphragm B is located on the back side, and the rectangular electrolytic electrode C is located on the back side. That is, the opening of the gasket A is a part corresponding to the energized surface of the laminate. In FIG. 72, the outermost peripheral edge A1 of the gasket A is located inward in the direction of the energizing surface compared to the outermost peripheral edge B1 of the diaphragm B and the outermost peripheral edge C1 of the electrode C for electrolysis. In addition, in FIG. 73, the outermost peripheral edge A1 of the gasket A is located outside of the outermost peripheral edge C1 of the electrode C for electrolysis in the direction of the energizing surface, but the outermost peripheral edge B1 of the diaphragm B and the outermost peripheral edge of the gasket A Compared with A1, it is located outside in the direction of the energized surface. In addition, in this embodiment, as a laminate, it is only necessary to be sandwiched by the anode side gasket and the cathode side gasket, and the electrode for electrolysis itself may not be directly sandwiched by the anode side gasket and the cathode side gasket. That is, as long as the electrode for electrolysis itself is fixed to the separator, only the separator may be directly sandwiched between the anode side gasket and the cathode side gasket. In this embodiment, from the viewpoint of more stably fixing the electrode for electrolysis in the electrolytic cell, it is preferable that both the electrode for electrolysis and the separator are sandwiched between the anode side gasket and the cathode side gasket. In this embodiment, the diaphragm and the electrode for electrolysis are fixed by at least the anode gasket and the cathode gasket, and exist in the form of a laminate. However, other fixing structures may be used, for example, the fixing structures illustrated below can be adopted. In addition, only one type of each fixing structure may be used, or a combination of two or more types may be used. In this embodiment, it is preferable that at least a part of the electrode for electrolysis penetrates through the separator and is fixed. This aspect will be described using FIG. 74A. In FIG. 74A, at least a part of the electrode 2 for electrolysis penetrates through the separator 3 and is fixed. FIG. 74A shows an example in which the electrode 2 for electrolysis is a porous metal electrode. That is, in FIG. 74A, the parts of the plurality of electrolysis electrodes 2 are shown independently, but the sections of the connected and integrated porous metal electrodes are shown (the same in the following FIGS. 75 to 78). Under such an electrode structure, for example, if the diaphragm 3 at a specific position (the position that should be the fixed part) is pressed against the electrolysis electrode 2, a part of the diaphragm 3 enters the uneven structure or hole on the surface of the electrolysis electrode 2 In the structure, the concave portion of the electrode surface or the convex portion around the hole penetrates through the diaphragm 3, preferably as shown in FIG. 74A, penetrates to the outer surface 3b of the diaphragm 3. As described above, the fixing structure of FIG. 74A can be manufactured by pressing the diaphragm 3 against the electrode 2 for electrolysis. In this case, heat compression bonding and heat suction are performed in a state where the diaphragm 3 is softened by heating. . Thereby, the electrode 2 for electrolysis penetrates the separator 3. Alternatively, it may be performed in a state where the separator 3 is melted. In this case, it is preferable to suck the separator 3 from the outer surface 2b side (rear side) of the electrode 2 for electrolysis in the state shown in FIG. 74B. Furthermore, the area where the diaphragm 3 is pressed against the electrode 2 for electrolysis constitutes a "fixed portion". The fixed structure shown in FIG. 74A can be observed with a loupe, an optical microscope, or an electron microscope. In addition, by penetrating the separator 3 with the electrode 2 for electrolysis, the continuity inspection between the outer surface 3b of the separator 3 and the outer surface 2b of the electrode 2 for electrolysis is performed by a tester or the like, and the fixed structure of FIG. 74A can be estimated. In this embodiment, it is preferable that at least a part of the electrode for electrolysis in the fixing portion is located inside the diaphragm and is fixed. This aspect will be described using FIG. 75A. As described above, the surface of the electrode 2 for electrolysis is provided with an uneven structure or a hole structure. In the embodiment shown in FIG. 75A, a part of the electrode surface is inserted and fixed to the diaphragm 3 at a specific position (the position that should be the fixed portion). The fixing structure shown in FIG. 75A can be manufactured by pressing the diaphragm 3 against the electrode 2 for electrolysis. In this case, it is preferable to perform thermocompression bonding and heat suction in a state where the diaphragm 3 is softened by heating to form the fixing structure of FIG. 75A. Alternatively, the diaphragm 3 may be melted to form the fixing structure shown in FIG. 75A. In this case, it is preferable to suck the separator 3 from the outer surface 2b side (back side) of the electrode 2 for electrolysis. The fixed structure shown in FIG. 75A can be observed with a loupe, an optical microscope or an electron microscope. Particularly preferred is a method of making a cross section by a microtome and observing the sample after embedding the sample. Furthermore, in the fixing structure shown in FIG. 75A, since the electrode 2 for electrolysis does not penetrate the diaphragm 3, the continuity between the outer surface 3b of the diaphragm 3 and the outer surface 2b of the electrode 2 for electrolysis by the continuity check is not confirmed. . In this embodiment, it is preferable that the laminated body further has a fixing member for fixing the diaphragm and the electrode for electrolysis. This aspect will be described using FIGS. 76A-C. The fixing structure shown in FIG. 76A uses a fixing member 7 that is different from the electrolysis electrode 2 and the diaphragm 3, and the fixing member 7 penetrates the electrolysis electrode 2 and the diaphragm 3 to fix it. The electrode 2 for electrolysis does not necessarily need to be penetrated by the fixing member 7, and it may be fixed by the fixing member 7 so as not to be separated from the diaphragm 2. The material of the fixing member 7 is not particularly limited, and as the fixing member 7, for example, one containing metal, resin, or the like can be used. In the case of metal, nickel, nickel-chromium alloy, titanium, stainless steel (SUS), etc. can be mentioned. It can also be these oxides. As the resin, fluororesin (for example, PTFE (polytetrafluoroethylene), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), ETFE (copolymer of tetrafluoroethylene and ethylene) or the following can be used The material of the diaphragm 3) or PVDF (polyvinylidene fluoride), EPDM (ethylene-propylene-diene rubber), PP (polyethylene), PE (polypropylene), nylon, aromatic polyamide, etc. In this embodiment, for example, a yarn-like metal or resin is used, as shown in Figs. 76B and 76C, to a specific position between the electrode 2 for electrolysis and the outer surface 2b, 3b of the diaphragm 3 (should be the position of the fixed part) Sewing can also be used to fix it. In addition, a fixing mechanism such as a live pleat sewing device can also be used to fix the electrode 2 for electrolysis and the diaphragm 3. The fixing structure shown in FIG. 77 is a structure in which an organic resin (adhesive layer) is interposed between the electrode 2 for electrolysis and the diaphragm 3 for fixing. That is, in FIG. 77, the organic resin as the fixing member 7 is arranged at a specific position between the electrolysis electrode 2 and the diaphragm 3 (the position that should be the fixing portion), and the structure is then fixed. For example, the inner surface 2a of the electrode 2 for electrolysis, the inner surface 3a of the diaphragm 3, or both or one of the inner surfaces 2a and 3a of the electrode 2 and the diaphragm 3 for electrolysis are coated with an organic resin. Then, the electrode 2 for electrolysis and the diaphragm 3 are bonded together, thereby forming the fixing structure shown in FIG. 77. The material of the organic resin is not particularly limited. For example, fluororesin (for example, PTFE, PFE (Polyfluoroethylene, polyfluoroethylene), PFPE (perfluoropolyether, perfluoropolyether)) can be used, or it can be used in conjunction with the above-mentioned composing diaphragm 3 Resin of the same material, etc. In addition, commercially available fluorine-based adhesives, PTFE dispersions, and the like can also be suitably used. Furthermore, general-purpose vinyl acetate-based adhesives, ethylene-vinyl acetate copolymerized adhesives, acrylic resin-based adhesives, α-olefin-based adhesives, styrene butadiene rubber-based latex adhesives, Vinyl chloride resin-based adhesives, chloroprene-based adhesives, nitrile rubber-based adhesives, urethane rubber-based adhesives, epoxy-based adhesives, silicone resin-based adhesives, modified polysiloxanes Adhesives, epoxy-modified silicone resin adhesives, silylated urethane resin adhesives, cyanoacrylate adhesives, etc. In this embodiment, an organic resin that dissolves in an electrolyte or dissolves and decomposes in electrolysis can be used. The organic resin that dissolves in the electrolyte or dissolves and decomposes in the electrolysis is not limited to the following. Examples include: vinyl acetate-based adhesives, ethylene-vinyl acetate copolymer-based adhesives, and acrylic resin-based adhesives , Α-olefin-based adhesives, styrene butadiene rubber-based latex adhesives, vinyl chloride resin-based adhesives, chloroprene-based adhesives, nitrile rubber-based adhesives, urethane rubber-based adhesives, Epoxy-based adhesives, silicone resin-based adhesives, modified silicone-based adhesives, epoxy-modified silicone resin-based adhesives, silylated urethane resin-based adhesives, cyano groups Acrylic adhesives, etc. The fixed structure shown in Figure 77 can be observed with an optical microscope or an electron microscope. Particularly preferred is a method of making a cross section by a microtome and observing the sample after embedding the sample. In this embodiment, it is preferable that at least a part of the fixing member holds the separator and the electrode for electrolysis from the outside. This aspect will be described using FIG. 78A. The fixing structure shown in FIG. 78A is a structure in which the electrode 2 for electrolysis and the diaphragm 3 are held and fixed from the outside. That is, the outer surface 2b of the electrode for electrolysis 2 and the outer surface 3b of the separator 3 are sandwiched and fixed by the holding member as the fixing member 7. The fixing structure shown in FIG. 78A also includes a state in which the holding member is trapped in the electrode 2 or the diaphragm 3 for electrolysis. As the holding member, for example, a tape, a jig, etc. can be cited. In this embodiment, a holding member soluble in electrolyte can also be used. Examples of the holding member dissolved in the electrolyte include PET tapes, clamps, PVA tapes, clamps, and the like. The fixing structure shown in Fig. 78A is different from Fig. 74 to Fig. 77 in that it is not the one that joins the interface between the electrode 2 for electrolysis and the diaphragm 3. The inner surfaces 2a, 3a of the electrode 2 for electrolysis and the diaphragm 3 are only in contact or opposite to each other. In the state, by removing the holding member, the fixed state of the electrode 2 for electrolysis and the separator 3 can be released and separated. It is not shown in FIG. 78A, but a holding member may be used to fix the electrode 2 for electrolysis and the diaphragm 3 to the electrolytic cell. Moreover, in this embodiment, it is preferable that at least a part of the fixing member fixes the separator and the electrode for electrolysis by a magnetic force. This aspect will be described using FIG. 78B. The fixing structure shown in FIG. 78B is a structure in which the electrode 2 for electrolysis and the diaphragm 3 are held and fixed from the outside. The difference from Fig. 78A lies in the use of a pair of magnets as a holding member used as a fixing member. In the aspect of the fixing structure shown in FIG. 78B, after the laminate 1 is installed in the electrolytic cell, the holding member can be left directly or removed from the laminate 1 during the operation of the electrolytic cell. It is not shown in FIG. 78B, but a holding member may be used to fix the electrode 2 for electrolysis and the diaphragm 3 to the electrolytic cell. In addition, when a magnetic material bonded to the magnet is used as part of the material of the electrolytic cell, one type of holding material may be provided on the side of the diaphragm, and the electrolytic cell, the electrode 2 for electrolysis and the diaphragm 3 can be clamped and fixed. Furthermore, a plurality of fixed parts may be provided. That is, 1, 2, 3,... N fixed portions can be arranged from the profile side of the layered body 1 toward the inner side. n is an integer of 1 or more. In addition, the m-th (m<n) fixing portion and the L-th (m<L≦n) fixing portion can be formed by different fixing patterns. The fixing portion formed on the energized surface is preferably a line-symmetrical shape. By this, there is a tendency that stress concentration can be suppressed. For example, if the two orthogonal directions are set as the X direction and the Y direction, one can be arranged in each of the X direction and the Y direction, or a plurality of them can be arranged at equal intervals in each of the X direction and the Y direction. The strip constitutes the fixed part. The number of fixing portions in the X direction and the Y direction is not limited, but it is preferable to set 100 or less in the X direction and the Y direction. In addition, from the viewpoint of ensuring the flatness of the energized surface, the number of fixed portions in the X direction and the Y direction is preferably 50 or less. In the fixing part in this embodiment, when it has the fixing structure shown in FIG. 74A or FIG. 76, from the viewpoint of preventing the short circuit caused by the contact between the anode and the cathode, it is preferably on the film surface of the fixing part Coated with sealing material. As the sealing material, for example, the materials described in the above-mentioned adhesive can be used. The laminate in this embodiment may have various fixed portions at various positions as described above. From the viewpoint of ensuring sufficient electrolytic performance, these fixed portions are preferably present on the non-current-carrying surface. The laminate in this embodiment may have various fixed portions at various positions as described above, but it is preferable that the electrode for electrolysis satisfies the above-mentioned "resistance force" especially in the portion where there is no fixed portion (non-fixed portion). That is, it is preferable that the force per unit mass and unit area in the non-fixed part of the electrode for electrolysis is less than 1.5 N/mg·cm2 . Furthermore, in this embodiment, it is preferable that the separator includes an ion exchange membrane containing an organic resin in the surface layer, and the electrode for electrolysis is fixed in the organic resin. The organic resin can be formed as the surface layer of the ion exchange membrane by various known methods as described above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. (Manufacturing method of electrolytic cell and updating method of laminate) The method for renewing the laminate in the electrolytic cell of the present embodiment includes: removing the laminate from the electrolytic cell by separating the laminate in the present embodiment from the anode side gasket and the cathode side gasket; and A step of sandwiching a new laminate between the anode side gasket and the cathode side gasket. In addition, the so-called new laminate means the laminate in this embodiment, and at least one of the electrode for electrolysis and the separator may be a new product. In the step of sandwiching the laminate, from the viewpoint of more stably fixing the electrode for electrolysis in the electrolytic cell, it is preferable that both the electrode for electrolysis and the separator are sandwiched by the anode side gasket and the cathode side gasket. hold. Moreover, the manufacturing method of the electrolytic cell of this embodiment has the process of clamping the laminated body in this embodiment between an anode side gasket and a cathode side gasket. The manufacturing method of the electrolytic cell and the renewal method of the laminate of this embodiment are constructed in the above-mentioned manner, so that the work efficiency during the renewal of the electrode in the electrolytic cell can be improved, and the excellent electrolytic performance can be obtained after the renewal. In the step of sandwiching the laminate, from the viewpoint of more stably fixing the electrode for electrolysis in the electrolytic cell, it is also preferable that both the electrode for electrolysis and the separator are covered by the anode side gasket and the cathode side gasket. Clamp. <Fifth Embodiment> Here, the fifth embodiment of the present invention will be described in detail with reference to FIGS. 91 to 102. [Manufacturing method of electrolytic cell] The manufacturing method of the electrolytic cell of the fifth embodiment (hereinafter referred to as "this embodiment" in the item of the "5th embodiment") A method of manufacturing a new electrolytic cell by arranging an electrode for electrolysis or a laminate of the electrode for electrolysis and a new diaphragm in an existing electrolytic cell of the separator between the anode and the cathode, and using the electrode for electrolysis or the winding of the laminate body. As described above, according to the manufacturing method of the electrolytic cell of this embodiment, since the electrode for electrolysis or the wound body of the laminated body of the electrode for electrolysis and the new diaphragm is used, it is possible to reduce the use of electrolysis when used as a member of the electrolytic cell. The size of the electrodes or laminates can be transported afterwards, which can improve the work efficiency during the renewal of the electrodes in the electrolytic cell. In this embodiment, the existing electrolytic cell includes an anode, a cathode facing the anode, and a separator disposed between the anode and the cathode as constituent members, in other words, it includes an electrolytic cell. The existing electrolytic cell is not particularly limited as long as it includes the above-mentioned structural members, and various known structures can be applied. In the present embodiment, the new electrolytic cell is one that has an electrode for electrolysis or a laminate in addition to a member that has already functioned as an anode or a cathode in an existing electrolytic cell. That is, the "electrode for electrolysis" arranged when a new electrolytic cell is manufactured is one that functions as an anode or a cathode, which is different from the cathode and anode in the existing electrolytic cell. In this embodiment, even when the electrolysis performance of the anode and/or cathode is deteriorated due to the operation of the existing electrolytic cell, by arranging different electrolysis electrodes from these, the anode and/or cathode can be renewed. performance. In addition, in the case of using a laminate in the present embodiment, since a new ion exchange membrane is arranged at the same time, the performance of the ion exchange membrane accompanying the deterioration of the running performance can also be updated at the same time. The so-called "renewal performance" here means that the performance is set to be the same as or higher than the initial performance of the existing electrolytic cell before operation. In this embodiment, it is assumed that the existing electrolytic cell is an "electrolytic cell that has been in operation", and the new electrolytic cell is assumed to be an "electrolytic cell that has not yet been in operation." That is, if the electrolytic cell manufactured as a new electrolytic cell is operated once, it becomes the "existing electrolytic cell in this embodiment", and the one formed by arranging electrolysis electrodes or laminates in the existing electrolytic cell becomes " The new electrolytic cell in this embodiment". Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. In addition, in the item of <5th embodiment>, unless otherwise specified, "the electrolytic cell in this embodiment" includes "the existing electrolytic cell in this embodiment" and "the new electrolysis cell in this embodiment" Both of the "slot". [Cell] First, an electrolytic cell that can be used as a constituent unit of the electrolytic cell in this embodiment will be described. Figure 91 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. As shown in FIG. 95, the reverse current absorber 18 has a substrate 18a and is formed thereon. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. FIG. 92 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. Figure 93 shows the electrolytic cell 4. Fig. 94 shows the steps of assembling the electrolytic cell 4. As shown in Figure 92, the electrolytic cell 1, the cation exchange membrane 2, and the electrolytic cell 1 are arranged in series in sequence. An ion exchange membrane 2 is arranged between the anode chamber of one electrolytic cell 1 and the cathode chamber of the other electrolytic cell 1 among the two adjacent electrolytic cells in the electrolytic cell. That is, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the adjacent electrolytic cell 1 are separated by the cation exchange membrane 2. As shown in FIG. 93, the electrolytic cell 4 includes a plurality of electrolytic cells 1 connected in series via the separator exchange membrane 2. That is, the electrolytic cell 4 is a bipolar electrolytic cell provided with a plurality of electrolytic cells 1 arranged in series and an ion exchange membrane 2 arranged between adjacent electrolytic cells 1. As shown in FIG. 94, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series through the separator exchange membrane 2 and connecting them with the presser 5. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. As used herein, the power feeder means a deteriorated electrode (that is, an existing electrode) or an electrode without a catalyst coating. When the electrode for electrolysis in this embodiment is inserted into the anode side, 11 functions as an anode feeder. When the electrode for electrolysis in this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis in this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10 (that is, the anode frame). As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis in this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. Furthermore, unless otherwise specified, the term "upward" means the upper direction in the electrolytic cell 1 of FIG. 91, and the term "lower" means the lower direction in the electrolytic cell 1 of FIG. 91. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 in this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 91, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrode for electrolysis in this embodiment is inserted on the cathode side, and when the electrode for electrolysis in this embodiment is not inserted on the cathode side, 21 serves as a cathode Function. In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis in this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20 (that is, the cathode frame). The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis in this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, nickel, nickel alloy, nickel-plated iron or stainless steel without a catalyst coating can be used. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage applied to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. In addition, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis in the present embodiment is installed in the electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis. At the starting position. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell connect the electrolytic cells to each other by sandwiching the ion exchange membrane 2 (refer to FIG. 92). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the separator exchange membrane 2, airtightness can be given to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. In addition, for example, when the separator exchange membrane 2 is connected to two electrolytic cells 1 (refer to FIG. 92), the separator exchange membrane 2 may fasten each electrolytic cell 1 to which gaskets are attached. Thereby, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. [Steps to use jellyroll] The wound body in this embodiment may be a wound body of an electrode for electrolysis, or a wound body of a laminate of an electrode for electrolysis and a new separator. In the manufacturing method of the electrolytic cell of this embodiment, this winding body is used. As a specific example of the step of using the wound body, it is not limited to the following, and the following methods can be cited: First, the adjacent electrolytic cell and the ion exchange membrane formed by the press are fixed in an existing electrolytic cell. To release, a gap is formed between the electrolysis cell and the ion exchange membrane, and then the wound state of the wound body of the electrode for electrolysis is released into the gap, and the components are connected again by the press. Furthermore, in the case of using the wound body of the laminate, for example, the following method can be cited: after forming a gap between the electrolytic cell and the ion exchange membrane in the above-mentioned manner, the existing ion exchange membrane that is the object of renewal is removed, Next, the wound state of the wound body of the laminated body is released into the gap, and the members are connected again by the press. By this method, the electrode or laminate for electrolysis can be arranged on the surface of the anode or cathode in the existing electrolytic cell, and the performance of the ion exchange membrane, anode and/or cathode can be updated. As described above, in this embodiment, it is preferable that the step of using the wound body has the step (B) of releasing the wound state of the wound body, and it is more preferable that the step (B) is followed by electrolysis. Step (C) of arranging electrodes or laminates on the surface of at least one of the anode and the cathode. In addition, in the present embodiment, it is preferable that the step of using the wound body includes the step (A) of obtaining the wound body by keeping the electrode for electrolysis or the layered body in a wound state. In step (A), the electrode for electrolysis or the layered body itself may be wound to form a wound body, or the electrode for electrolysis or the layered body may be wound around the core to form a wound body. The core that can be used here is not particularly limited. For example, a member having a substantially cylindrical shape and a size suitable for the electrode for electrolysis or the laminate can be used. [Electrode for Electrolysis] In this embodiment, the electrode for electrolysis is not particularly limited as long as it can be used as a wound body as described above, that is, it can be wound. The electrode for electrolysis may function as a cathode in an electrolytic cell, or may function as an anode. In addition, regarding the material or shape of the electrode for electrolysis, the step of using the wound body in this embodiment or the structure of the electrolytic cell in this embodiment can be considered, and the one that is suitable for making the wound body can be appropriately selected. Hereinafter, the preferred aspects of the electrode for electrolysis in the present embodiment will be described, but these are only examples of preferred aspects in terms of making the wound body, and the aspects other than those described below may also be appropriately adopted. Electrode for electrolysis. The electrode for electrolysis in this embodiment can achieve good operability, and has good adhesion to membranes such as ion exchange membranes or microporous membranes, and power feeders (degraded electrodes and electrodes without catalyst coating). From the viewpoint of force, the force per unit mass·unit area is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/mg·cm2 Above, and more preferably 0.14 N/(mg·cm2 )the above. From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm is more preferable2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. In addition, good operability can be obtained, and good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders that are not formed with a catalyst coating, etc., is the point of view, and furthermore, it is economical. From a viewpoint, the mass per unit area is preferably 48 mg/cm2 Below, more preferably 30 mg/cm2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is preferably 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The endurance can be measured by the following method (i) or (ii), in detail, as described in the examples. Regarding endurance, the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the measurement of method (ii) (also called "endurance (2) )”) can be the same or different, but preferably any value is less than 1.5 N/mg·cm2 . [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles The ion exchange membrane (170 mm square, the details of the so-called ion exchange membrane here are as described in the examples) and the electrode sample (130 mm square) of the bonding agent. After the laminate is fully immersed in pure water, the adhesion is removed The excess water on the surface of the laminate is used to obtain a sample for measurement. Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.5-0.8 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the electrode sample overlapped with the ion exchange membrane and the mass of the electrode sample overlapped with the ion exchange membrane to calculate the force per unit mass·unit area (1)(N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Also, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 ), more preferably 0.2 N/(mg·cm2 )the above. [Method (ii)] Stack the nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and electrode sample (130 mm square) obtained by spraying with the alumina grain number 320 in order, After the laminate is fully immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapping part of the electrode sample and the nickel plate, and the mass of the electrode sample in the overlapping part of the nickel plate, to calculate the adhesive force per unit mass•unit area (2) (N/mg·cm)2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Furthermore, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. The electrode for electrolysis in this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and non-contact formation. The media-coated electrode (feeder) has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m) In particular, it is preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more It is preferably 100 μm or less, and from the viewpoint of operability and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Feeder) From the viewpoint of good adhesive force, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more. Furthermore, for large sizes (for example, From the viewpoint of ease of handling under a size of 1.5 m×2.5 m), it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 280 mm) with the electrode sample in the layered body as the outside, and pure Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Power feeder) has good adhesive force, can be wound into a roll shape and bends well, the ratio measured by the following method (3) is preferably 75% or more, more It is preferably 80% or more, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 145 mm) in such a way that the electrode sample in the layered body becomes the outside. Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (The feeder) has a good adhesive force and prevents the gas generated during electrolysis from stagnating, preferably a porous structure, and its open porosity or porosity is 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In this embodiment, the volume V can be calculated from the value of the gauge thickness, width, and length of the electrode, and then the weight W can be actually measured, and the porosity A can be calculated using the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio can be adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. Hereinafter, a more specific embodiment of the electrode for electrolysis in this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 96, the electrode for electrolysis 100 of this embodiment is equipped with the electrode base material 10 for electrolysis, and a pair of 1st layer 20 which covers both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode for electrolysis can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. In addition, as shown in FIG. 96, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, or valve metals represented by titanium can be used, and it is preferable to contain one selected from the group consisting of nickel (Ni) and titanium (Ti). At least 1 element. When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, metal wire mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. As the electrode base material 10 for electrolysis, a metal porous foil, a metal wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal can be mentioned. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on one or both sides. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina powder to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. Alternatively, it is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As the treatment to increase the surface area, blasting treatment using steel wire grains, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, and plating treatment using the same elements as the substrate can be mentioned. The arithmetic average surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-8 μm. Next, the case where the electrode for electrolysis in this embodiment is used as an anode for salt electrolysis is demonstrated. (level one) In FIG. 96, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis in this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode, that is, the total thickness of the electrode substrate for electrolysis and the catalyst layer, is preferably 315 μm or less, more preferably 220 μm or less, and even more preferably 170 μm in terms of the operability of the electrode Hereinafter, it is more preferably 150 μm or less, even more preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis is measured in the same manner as the thickness of the electrode. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. In this embodiment, from the viewpoint of ensuring sufficient electrolytic performance, it is preferable that the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, Si, P, S, At least one catalyst component from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. In this embodiment, if the electrode for electrolysis is an electrode with a wider elastic deformation region, better operability can be obtained, and it is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and no catalyst coating. From the viewpoint that the feeder of the layer has better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, still more preferably 170 μm or less, and even more preferably 150 μm Hereinafter, it is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, a catalyst layer is formed on the electrode substrate for electrolysis by a coating step of applying a coating liquid containing a catalyst, a drying step of drying the coating liquid, and a thermal decomposition step of performing thermal decomposition. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes, thermal decomposition is usually carried out in the air, and in most cases metal oxides or metal hydroxides are formed. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, the solution may not be applied and only the substrate is heated, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. [Layered body] The electrode for electrolysis in this embodiment can be used as a laminate with a separator such as an ion exchange membrane or a microporous membrane. That is, the laminated system in this embodiment includes an electrode for electrolysis and a new separator. The so-called new diaphragm is not particularly limited as long as it is different from the diaphragm in the existing electrolytic cell, and various well-known diaphragms can be applied. In addition, the new diaphragm may be of the same material, shape, and physical properties as the diaphragm in the existing electrolytic cell. Hereinafter, the ion exchange membrane, which is one aspect of the diaphragm, will be described in detail. [Ion Exchange Membrane] The ion exchange membrane is not particularly limited as long as it can be formed into a laminate with the electrode for electrolysis, and various ion exchange membranes can be applied. In this embodiment, it is preferable to use an ion exchange membrane having a membrane body containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups and a coating layer provided on at least one surface of the membrane body. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is preferably 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure during electrolysis has less influence on electrolysis performance, and has a tendency to exert stable electrolysis performance. The membrane system of the above-mentioned so-called perfluorocarbon polymer with ion-exchange groups introduced has ion-exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 97 is a schematic cross-sectional view showing an embodiment of an ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 has an ion exchange group derived from a sulfonic group (with -SO3 - The group represented by the sulfonic acid layer 3, which is also referred to as "sulfonic acid group" hereinafter, and the ion exchange group (with -CO) derived from the carboxyl group2 - The indicated group (hereinafter also referred to as "carboxylic acid group") of the carboxylic acid layer 2 strengthens the strength and dimensional stability by strengthening the core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as a cation exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example shown in FIG. 97. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane preferably has a coating layer on at least one surface of the membrane body. In addition, as shown in FIG. 97, in the ion exchange membrane 1, coating layers 11a and 11b are formed on both surfaces of the membrane body 10, respectively. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine, Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Monofilament, multifilament or these yarns, cut film yarns, etc. can be used for woven or knitted fabrics, and various weaving methods such as plain weaving, leno weaving, knitting, rib weaving, crepe stripe thin weaving, etc. can be used as the weaving method. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. Fig. 98 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. In FIG. 98, a part of the ion exchange membrane is enlarged and only the arrangement of the reinforced core materials 21 and 22 in this area is shown, and the other components are omitted. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. Fig. 99 (a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 99(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the film body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Fig. 99(a), the reinforcing material of the plain weave in which the reinforcing yarn 52 and the sacrificial yarn 504a are woven in the longitudinal and transverse directions on the paper is illustrated. The arrangement of the reinforcing yarn 52 and the sacrificial yarn 504a in the reinforcing material can be changed as needed . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM. The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. As a specific example of the above-mentioned microporous membrane, Zilfon Perl UTP 500 (also referred to as Zilfon membrane in this embodiment) manufactured by Agfa, International Publication No. 2013-183584 Specification, International Publication No. 2016-203701 Those recorded in the manual, etc. In this embodiment, the separator preferably includes a first ion exchange resin layer and a second ion exchange resin layer having an EW (ion exchange equivalent) different from the first ion exchange resin layer. Furthermore, it is preferable that the separator includes a first ion exchange resin layer and a second ion exchange resin layer having a functional group different from the first ion exchange resin layer. The ion exchange equivalent can be adjusted by the introduced functional group, and the introduced functional group is as described above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. [How to update electrodes] The manufacturing method of the electrolytic cell of this embodiment can also be implemented as a method of renewing electrodes (anode and/or cathode). That is, the electrode renewal method of this embodiment is a method for renewing an existing electrode by using the electrode for electrolysis, and uses the winding body of the electrode for electrolysis mentioned above. The specific example of the step of using the wound body is not limited to the following, and a method of disposing the wound body of the electrode for electrolysis on the surface of an existing electrode and the like can be mentioned. By this method, the electrode for electrolysis can be arranged on the surface of the existing anode or cathode, and the performance of the anode and/or cathode can be updated. As described above, in this embodiment, it is preferable that the step of using the wound body has the step (B') of releasing the wound state of the wound body, and it is more preferable to have the step (B') after the step (B'). The step of arranging the electrode for electrolysis on the surface of the existing electrode (C'). Furthermore, in the electrode renewal method of this embodiment, it is preferable that the step of using the wound body has a step (A') of maintaining the electrode for electrolysis in a wound state to obtain the wound body. In step (A'), the electrode for electrolysis itself may be wound to form a wound body, or the electrode for electrolysis may be wound to a core to form a wound body. The core that can be used here is not particularly limited. For example, a member having a substantially cylindrical shape and a size suitable for the electrode for electrolysis can be used. [Manufacturing method of winding body] In the method of manufacturing the electrolytic cell of this embodiment and the method of renewing the electrode of this embodiment, the steps (A) or (A') that can be implemented can also be implemented as a method of manufacturing a wound body. That is, the manufacturing method of the wound body of this embodiment is to renew the manufacturing of the wound body of an existing electrolytic cell having an anode, a cathode facing the anode, and a separator disposed between the anode and the cathode. The method has a step of winding the electrode for electrolysis or the laminate of the electrode for electrolysis and the new separator to obtain the above-mentioned wound body. In the step of obtaining the wound body, the electrode for electrolysis itself may be wound to form a wound body, or the electrode for electrolysis may be wound to the core to form a wound body. The core that can be used here is not particularly limited. For example, a member having a substantially cylindrical shape and a size suitable for the electrode for electrolysis can be used. <The sixth embodiment> Here, the sixth embodiment of the present invention will be described in detail with reference to FIGS. 103 to 111. [Manufacturing method of electrolytic cell] The manufacturing method of the electrolytic cell of the sixth embodiment (hereinafter referred to as "this embodiment" in the item of the "6th embodiment") The existing electrolytic cell of the separator between the anode and the cathode is a method of arranging a laminated body to produce a new electrolytic cell, and it has the method of integrating the electrode for electrolysis and the new separator at a temperature at which the separator does not melt, and The step (A) of obtaining the laminate; and the step (B) of replacing the diaphragm in the existing electrolytic cell with the laminate after the step (A). As described above, according to the manufacturing method of the electrolytic cell of this embodiment, the electrode for electrolysis and the diaphragm can be used integrally without using an impractical method such as thermocompression bonding, so that the renewal of the electrode in the electrolytic cell can be improved. Operational efficiency of the time. In this embodiment, the existing electrolytic cell includes an anode, a cathode facing the anode, and a separator disposed between the anode and the cathode as constituent members, in other words, it includes an electrolytic cell. The existing electrolytic cell is not particularly limited as long as it includes the above-mentioned structural members, and various known structures can be applied. In the present embodiment, the new electrolytic cell is one that has an electrode for electrolysis or a laminate in addition to a member that has already functioned as an anode or a cathode in an existing electrolytic cell. That is, the "electrode for electrolysis" arranged when a new electrolytic cell is manufactured is one that functions as an anode or a cathode, which is different from the cathode and anode in the existing electrolytic cell. In this embodiment, even when the electrolysis performance of the anode and/or cathode is deteriorated due to the operation of the existing electrolytic cell, by arranging different electrolysis electrodes from these, the anode and/or cathode can be renewed. performance. Furthermore, since the new ion exchange membrane constituting the laminate is also arranged, the performance of the ion exchange membrane accompanying the deterioration of the running performance can also be renewed at the same time. The so-called "renewal performance" here means that the performance is set to be the same as or higher than the initial performance of the existing electrolytic cell before operation. In this embodiment, it is assumed that the existing electrolytic cell is an "electrolytic cell that has been in operation", and the new electrolytic cell is assumed to be an "electrolytic cell that has not yet been in operation." That is, if the electrolytic cell manufactured as a new electrolytic cell is operated once, it becomes the "existing electrolytic cell in this embodiment", and the one formed by arranging electrolysis electrodes or laminates in the existing electrolytic cell becomes " The new electrolytic cell in this embodiment". Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. In addition, in the item of <6th Embodiment>, unless otherwise specified, "the electrolytic cell in this embodiment" includes "the existing electrolytic cell in this embodiment" and "the new electrolysis cell in this embodiment" Both of the "slot". [Cell] First, an electrolytic cell that can be used as a constituent unit of the electrolytic cell in this embodiment will be described. Fig. 103 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. As shown in FIG. 107, the reverse current absorber 18 has a substrate 18a and is formed thereon. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. FIG. 104 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. FIG. 105 shows the electrolytic cell 4. FIG. 106 shows the steps of assembling the electrolytic cell 4. As shown in Figure 104, the electrolytic cell 1, the cation exchange membrane 2, and the electrolytic cell 1 are arranged in series in sequence. An ion exchange membrane 2 is arranged between the anode chamber of one electrolytic cell 1 and the cathode chamber of the other electrolytic cell 1 among the two adjacent electrolytic cells in the electrolytic cell. That is, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the adjacent electrolytic cell 1 are separated by the cation exchange membrane 2. As shown in FIG. 105, the electrolytic cell 4 includes a plurality of electrolytic cells 1 connected in series through the separator exchange membrane 2. That is, the electrolytic cell 4 is a bipolar electrolytic cell provided with a plurality of electrolytic cells 1 arranged in series and an ion exchange membrane 2 arranged between adjacent electrolytic cells 1. As shown in FIG. 106, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series through the separator exchange membrane 2 and connecting them with the presser 5. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. As used herein, the power feeder means a deteriorated electrode (that is, an existing electrode) or an electrode without a catalyst coating. When the electrode for electrolysis in this embodiment is inserted into the anode side, 11 functions as an anode feeder. When the electrode for electrolysis in this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis in this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10 (that is, the anode frame). As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis in this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. Furthermore, unless otherwise specified, the term "upper" means the upper direction in the electrolytic cell 1 of FIG. 103, and "lower" means the lower direction in the electrolytic cell 1 of FIG. 103. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 in this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 103, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrode for electrolysis in this embodiment is inserted on the cathode side, and when the electrode for electrolysis in this embodiment is not inserted on the cathode side, 21 serves as a cathode Function. In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis in this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20 (that is, the cathode frame). The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis in this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, nickel, nickel alloy, nickel-plated iron or stainless steel without a catalyst coating can be used. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage applied to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. In addition, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis in the present embodiment is installed in the electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis. At the starting position. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell connect the electrolytic cells to each other by sandwiching the ion exchange membrane 2 (refer to FIG. 104). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the separator exchange membrane 2, airtightness can be given to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. In addition, for example, when the separator exchange membrane 2 is connected to two electrolytic cells 1 (refer to FIG. 104), the separator exchange membrane 2 may fasten each electrolytic cell 1 to which gaskets are attached. Thereby, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. [Layered body] The electrode for electrolysis in this embodiment is used as a laminate with a separator such as an ion exchange membrane or a microporous membrane. That is, the laminated system in this embodiment includes an electrode for electrolysis and a new separator. The so-called new diaphragm is not particularly limited as long as it is different from the diaphragm in the existing electrolytic cell, and various well-known diaphragms can be applied. In addition, the new diaphragm may be of the same material, shape, and physical properties as the diaphragm in the existing electrolytic cell. Specific examples of electrodes and separators for electrolysis will be described in detail. (Step (A)) In the step (A) in this embodiment, the electrode for electrolysis and the new separator are integrated at a temperature at which the separator does not melt to obtain a laminate. "The temperature at which the diaphragm does not melt" can be specified as the softening point of the new diaphragm. The temperature may vary according to the material constituting the diaphragm, and is preferably 0-100°C, more preferably 5-80°C, and still more preferably 10-50°C. In addition, the above-mentioned integration is preferably performed under normal pressure. As a specific method of the above-mentioned integration, all methods except the typical method of melting the separator such as thermocompression bonding can be used, and are not particularly limited. As a preferable example, the method described below in which a liquid is interposed between an electrode for electrolysis and a separator and integrated by the surface tension of the liquid can be cited. [Step (B)] In step (B) in this embodiment, after step (A), the diaphragm in the existing electrolytic cell is exchanged with the laminate. The method of exchange is not particularly limited. For example, the following methods can be mentioned. First, the fixed state of the adjacent electrolytic cell and the ion exchange membrane formed by the press is released in the existing electrolytic cell, and the fixed state of the ion exchange membrane is released in the electrolytic cell. A gap is formed between the ion exchange membrane and the ion exchange membrane, and then the existing ion exchange membrane to be renewed is removed, and then the laminate is inserted into the gap, and the components are connected again by a press. By this method, the laminated body can be arranged on the surface of the anode or the cathode in the existing electrolytic cell, and the performance of the ion exchange membrane, the anode and/or the cathode can be updated. [Electrode for Electrolysis] In this embodiment, the electrode for electrolysis is not particularly limited as long as it can be integrated with the new separator as described above, that is, can be integrated. The electrode for electrolysis may function as a cathode in an electrolytic cell, or may function as an anode. In addition, regarding the material or shape of the electrode for electrolysis, an appropriate one can be appropriately selected in consideration of the steps (A) and (B) in this embodiment or the structure of the electrolytic cell. Hereinafter, the preferred aspects of the electrode for electrolysis in this embodiment will be described, but these are only examples of preferred aspects in terms of integration with the new diaphragm, and the aspects described below can also be appropriately adopted. Electrodes other than electrolysis. The electrode for electrolysis in this embodiment can achieve good operability, and has good adhesion to membranes such as ion exchange membranes or microporous membranes, and power feeders (degraded electrodes and electrodes without catalyst coating). From the viewpoint of force, the force per unit mass·unit area is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/mg·cm2 Above, and more preferably 0.14 N/(mg·cm2 )the above. From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm is more preferable2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. In addition, good operability can be obtained, and good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders that are not formed with a catalyst coating, etc., is the point of view, and furthermore, it is economical. From a viewpoint, the mass per unit area is preferably 48 mg/cm2 Below, more preferably 30 mg/cm2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is preferably 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The endurance can be measured by the following method (i) or (ii), in detail, as described in the examples. Regarding endurance, the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the measurement of method (ii) (also called "endurance (2) )”) can be the same or different, but preferably any value is less than 1.5 N/mg·cm2 . [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles The ion exchange membrane (170 mm square, the details of the so-called ion exchange membrane here are as described in the examples) and the electrode sample (130 mm square) of the bonding agent. After the laminate is fully immersed in pure water, the adhesion is removed The excess water on the surface of the laminate is used to obtain a sample for measurement. Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.5-0.8 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the electrode sample overlapped with the ion exchange membrane and the mass of the electrode sample overlapped with the ion exchange membrane to calculate the force per unit mass·unit area (1)(N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Also, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 ), more preferably 0.2 N/(mg·cm2 )the above. [Method (ii)] Stack the nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and electrode sample (130 mm square) obtained by spraying with the alumina grain number 320 in order, After the laminate is fully immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapping part of the electrode sample and the nickel plate, and the mass of the electrode sample in the overlapping part of the nickel plate, to calculate the adhesive force per unit mass•unit area (2) (N/mg·cm)2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Furthermore, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. The electrode for electrolysis in this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and non-contact formation. The media-coated electrode (feeder) has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m) In particular, it is preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more It is preferably 100 μm or less, and from the viewpoint of operability and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In this embodiment, it is preferable to integrate the new diaphragm and the electrode for electrolysis, and then interpose a liquid between them. Any liquid can be used as long as the liquid is one that generates surface tension such as water or organic solvent. The greater the surface tension of the liquid, the greater the force it can withstand between the new diaphragm and the electrode for electrolysis, so the liquid with greater surface tension is preferred. Examples of the liquid include the following (the value in parentheses is the surface tension of the liquid at 20°C). Hexane (20.44 mN/m), acetone (23.30 mN/m), methanol (24.00 mN/m), ethanol (24.05 mN/m), ethylene glycol (50.21 mN/m), water (72.76 mN/m) In the case of a liquid with a large surface tension, the new separator and the electrode for electrolysis are integrated (a layered body), and there is a tendency that the replacement of the electrode becomes easier. The amount of liquid between the new separator and the electrode for electrolysis is sufficient to adhere to each other by surface tension. As a result, the amount of liquid is small. Therefore, even if the laminate is installed in the electrolytic cell, it is mixed into the electrolytic solution. It will not affect the electrolysis itself. From a practical point of view, as the liquid, it is preferable to use a liquid having a surface tension of 24 mN/m to 80 mN/m, such as ethanol, ethylene glycol, and water. Particularly preferably, it is water or an alkaline aqueous solution is made by dissolving caustic soda, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, etc. in water. In addition, these liquids may contain a surfactant to adjust the surface tension. By containing the surfactant, the adhesion between the new separator and the electrode for electrolysis is changed, and the operability can be adjusted. The surfactant is not particularly limited, and any one of ionic surfactants and nonionic surfactants can be used. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Feeder) From the viewpoint of good adhesive force, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more. Furthermore, for large sizes (for example, From the viewpoint of ease of handling under a size of 1.5 m×2.5 m), it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 280 mm) with the electrode sample in the layered body as the outside, and pure Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Power feeder) has good adhesive force, can be wound into a roll shape and bends well, the ratio measured by the following method (3) is preferably 75% or more, more It is preferably 80% or more, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 145 mm) in such a way that the electrode sample in the layered body becomes the outside. Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (The feeder) has a good adhesive force and prevents the gas generated during electrolysis from stagnating, preferably a porous structure, and its open porosity or porosity is 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In this embodiment, the volume V can be calculated from the value of the gauge thickness, width, and length of the electrode, and then the weight W can be actually measured, and the porosity A can be calculated using the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio can be adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. Hereinafter, a more specific embodiment of the electrode for electrolysis in this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 108, the electrode for electrolysis 100 of this embodiment is equipped with the electrode base material 10 for electrolysis, and the pair of 1st layer 20 which covers both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode for electrolysis can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. Moreover, as shown in FIG. 108, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, or valve metals represented by titanium can be used, and it is preferable to contain one selected from the group consisting of nickel (Ni) and titanium (Ti). At least 1 element. When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, metal wire mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. As the electrode base material 10 for electrolysis, a metal porous foil, a metal wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal can be mentioned. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on one or both sides. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina powder to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. Alternatively, it is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As the treatment to increase the surface area, blasting treatment using steel wire grains, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, and plating treatment using the same elements as the substrate can be mentioned. The arithmetic average surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-8 μm. Next, the case where the electrode for electrolysis in this embodiment is used as an anode for salt electrolysis is demonstrated. (level one) In FIG. 108, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis in this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode, that is, the total thickness of the electrode substrate for electrolysis and the catalyst layer, is preferably 315 μm or less, more preferably 220 μm or less, and even more preferably 170 μm in terms of the operability of the electrode Hereinafter, it is more preferably 150 μm or less, even more preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis is measured in the same manner as the thickness of the electrode. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. In this embodiment, from the viewpoint of ensuring sufficient electrolytic performance, it is preferable that the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, Si, P, S, At least one catalyst component from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. In this embodiment, if the electrode for electrolysis is an electrode with a wider elastic deformation region, better operability can be obtained, and it is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and no catalyst coating. From the viewpoint that the feeder of the layer has better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, still more preferably 170 μm or less, and even more preferably 150 μm Hereinafter, it is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, a catalyst layer is formed on the electrode substrate for electrolysis by a coating step of applying a coating liquid containing a catalyst, a drying step of drying the coating liquid, and a thermal decomposition step of performing thermal decomposition. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes, thermal decomposition is usually carried out in the air, and in most cases metal oxides or metal hydroxides are formed. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, the solution may not be applied and only the substrate is heated, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. Hereinafter, the ion exchange membrane, which is one aspect of the diaphragm, will be described in detail. [Ion Exchange Membrane] The ion exchange membrane is not particularly limited as long as it can be formed into a laminate with the electrode for electrolysis, and various ion exchange membranes can be applied. In this embodiment, it is preferable to use an ion exchange membrane having a membrane body containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups and a coating layer provided on at least one surface of the membrane body. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is preferably 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure during electrolysis has less influence on electrolysis performance, and has a tendency to exert stable electrolysis performance. The membrane system of the above-mentioned so-called perfluorocarbon polymer with ion-exchange groups introduced has ion-exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 109 is a schematic cross-sectional view showing an embodiment of an ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 has an ion exchange group derived from a sulfonic group (with -SO3 - The group represented by the sulfonic acid layer 3, which is also referred to as "sulfonic acid group" hereinafter, and the ion exchange group (with -CO) derived from the carboxyl group2 - The indicated group (hereinafter also referred to as "carboxylic acid group") of the carboxylic acid layer 2 strengthens the strength and dimensional stability by strengthening the core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as a cation exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example shown in FIG. 109. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane preferably has a coating layer on at least one surface of the membrane body. Moreover, as shown in FIG. 109, in the ion exchange membrane 1, coating layers 11a and 11b are formed on both surfaces of the membrane body 10, respectively. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine, Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Monofilament, multifilament or these yarns, cut film yarns, etc. can be used for woven or knitted fabrics, and various weaving methods such as plain weaving, leno weaving, knitting, rib weaving, crepe stripe thin weaving, etc. can be used as the weaving method. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. Fig. 110 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. FIG. 110 enlarges a part of the ion exchange membrane, and only shows the arrangement of the reinforced core materials 21 and 22 in this area, and the other components are omitted from illustration. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. Fig. 111 (a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 111(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the membrane body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Fig. 111(a), the reinforcing material for plain weaving is illustrated in the paper in which the reinforcing yarn 52 and the sacrificial yarn 504a are woven in the longitudinal and transverse directions on the paper. The arrangement of the reinforcing yarn 52 and the sacrificial yarn 504a in the reinforcing material can be changed as needed . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM. The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. As a specific example of the above-mentioned microporous membrane, Zilfon Perl UTP 500 (also referred to as Zilfon membrane in this embodiment) manufactured by Agfa, International Publication No. 2013-183584 Specification, International Publication No. 2016-203701 Those recorded in the manual, etc. In this embodiment, the separator preferably includes a first ion exchange resin layer and a second ion exchange resin layer having an EW (ion exchange equivalent) different from the first ion exchange resin layer. Furthermore, it is preferable that the separator includes a first ion exchange resin layer and a second ion exchange resin layer having a functional group different from the first ion exchange resin layer. The ion exchange equivalent can be adjusted by the introduced functional group, and the introduced functional group is as described above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. <The seventh embodiment> Here, the seventh embodiment of the present invention will be described in detail with reference to FIGS. 112 to 122. [Manufacturing method of electrolytic cell] The manufacturing method of the electrolytic cell of the first aspect (hereinafter also referred to as the "first aspect") of the seventh embodiment (hereinafter referred to as "this embodiment" in the item of the <7th embodiment>) is used An existing electrolytic cell equipped with an anode, a cathode facing the anode, a diaphragm fixed between the anode and the cathode, and an electrolytic cell frame supporting the anode, the cathode, and the diaphragm includes electrodes for electrolysis. A method for manufacturing a new electrolytic cell with a laminated body of a new diaphragm, and has a step (A) of releasing the fixation of the diaphragm in the electrolytic cell frame, and a method of exchanging the diaphragm with the laminated body after the above step (A) Step (B). As described above, according to the manufacturing method of the electrolytic cell of the first aspect, the electrodes can be renewed without taking out the components to the outside of the electrolytic cell rack, and the work efficiency during the renewal of the electrodes in the electrolytic cell can be improved. In addition, the method for manufacturing the electrolytic cell of the second aspect of the present embodiment (hereinafter also referred to as "the second aspect") is to fix a cathode with an anode facing the anode to the anode and A method for manufacturing a new electrolytic cell by arranging electrodes for electrolysis in the existing electrolytic cell of the electrolytic cell frame supporting the anode, the cathode, and the electrolytic cell frame between the above-mentioned cathodes, and having a method for releasing the above-mentioned diaphragm in the above-mentioned electrolytic cell frame The step (A) of fixing, and the step (B') of arranging the electrode for electrolysis between the separator and the anode or the cathode after the step (A). As described above, according to the manufacturing method of the electrolytic cell of the second aspect, the electrodes can be renewed without taking out the components to the outside of the electrolytic cell rack, and the work efficiency during the renewal of the electrodes in the electrolytic cell can be improved. Hereinafter, when referred to as "the manufacturing method of the electrolytic cell of this embodiment", the manufacturing method of the electrolytic cell of the first aspect and the manufacturing method of the electrolytic cell of the second aspect are included. In the method of manufacturing the electrolytic cell of this embodiment, the existing electrolytic cell includes an anode, a cathode facing the anode, a separator disposed between the anode and the cathode, and a support for the anode, the cathode, and the separator. The electrolytic cell frame is used as a constituent member. In other words, the existing electrolytic cell includes a diaphragm, an electrolytic cell, and an electrolytic cell frame supporting these. The existing electrolytic cell is not particularly limited as long as it includes the above-mentioned structural members, and various known structures can be applied. In the method of manufacturing the electrolytic cell of the present embodiment, the new electrolytic cell is a member that functions as an anode or a cathode in the existing electrolytic cell, and further includes an electrode for electrolysis or a laminate. That is, in the first aspect and the second aspect, the "electrode for electrolysis" arranged in the manufacture of a new electrolytic cell functions as an anode or a cathode, which is different from the cathode and anode in the existing electrolytic cell. . In the manufacturing method of the electrolytic cell of this embodiment, even when the electrolytic performance of the anode and/or cathode is deteriorated due to the operation of the existing electrolytic cell, it can be renewed by arranging electrodes for electrolysis different from these Performance of anode and/or cathode. In addition, in the first aspect of using the laminate, since a new ion exchange membrane is arranged at the same time, the performance of the ion exchange membrane accompanying the deterioration of the running performance can also be updated at the same time. The so-called "renewal performance" here means that the performance is set to be the same as or higher than the initial performance of the existing electrolytic cell before operation. In the manufacturing method of the electrolytic cell of this embodiment, it is assumed that the existing electrolytic cell is an "electrolytic cell that is already in operation", and it is assumed that the new electrolytic cell is an "electrolytic cell that is not yet in operation." That is, if the electrolytic cell manufactured as a new electrolytic cell is operated once, it becomes the "existing electrolytic cell in this embodiment", and the one formed by arranging electrolysis electrodes or laminates in the existing electrolytic cell becomes " The new electrolytic cell in this embodiment". Hereinafter, a case where salt electrolysis is performed using an ion exchange membrane as a diaphragm is taken as an example, and one embodiment of the electrolytic cell will be described in detail. In addition, in the item of <7th embodiment>, unless otherwise specified, "the electrolytic cell in this embodiment" includes "the existing electrolytic cell in this embodiment" and "new electrolysis in this embodiment" Both of the "slot". [Cell] First, an electrolytic cell that can be used as a constituent unit of the electrolytic cell in this embodiment will be described. Figure 112 is a cross-sectional view of the electrolytic cell 1. The electrolytic cell 1 includes an anode chamber 10, a cathode chamber 20, a partition wall 30 provided between the anode chamber 10 and the cathode chamber 20, an anode 11 provided in the anode chamber 10, and a cathode 21 provided in the cathode chamber 20. If necessary, a reverse current absorber 18 having a substrate 18a and a reverse current absorbing layer 18b formed on the substrate 18a and disposed in the cathode chamber may be provided. The anode 11 and the cathode 21 belonging to one electrolytic cell 1 are electrically connected to each other. In other words, the electrolytic cell 1 includes the following cathode structure. The cathode structure 40 includes a cathode chamber 20, a cathode 21 provided in the cathode chamber 20, and a reverse current absorber 18 provided in the cathode chamber 20. As shown in FIG. 116, the reverse current absorber 18 has a substrate 18a and is formed thereon. The reverse current absorbing layer 18b and the cathode 21 on the substrate 18a are electrically connected to the reverse current absorbing layer 18b. The cathode chamber 20 further has a current collector 23, a support 24 supporting the current collector, and a metal elastic body 22. The metal elastic body 22 is disposed between the current collector 23 and the cathode 21. The support 24 is arranged between the current collector 23 and the partition wall 30. The current collector 23 is electrically connected to the cathode 21 via the metal elastic body 22. The partition wall 30 is electrically connected to the current collector 23 via the support 24. Therefore, the partition wall 30, the support body 24, the current collector 23, the metal elastic body 22, and the cathode 21 are electrically connected. The cathode 21 and the reverse current absorption layer 18b are electrically connected. The cathode 21 and the reverse current absorption layer may be directly connected, or may be connected indirectly via a current collector, a support, a metal elastic body, a partition wall, or the like. The entire surface of the cathode 21 is preferably covered by a catalyst layer for reduction reaction. In addition, the form of electrical connection may be to directly mount the partition wall 30 and the support 24, the support 24 and the current collector 23, the current collector 23 and the metal elastic body 22, respectively, and laminate the cathode 21 on the metal elastic body 22. The form. As a method of directly attaching these constituent members to each other, welding or the like can be cited. In addition, the reverse current absorber 18, the cathode 21, and the current collector 23 may be collectively referred to as the cathode structure 40. FIG. 113 is a cross-sectional view of two adjacent electrolytic cells 1 in the electrolytic cell 4. Fig. 114 shows an electrolytic cell 4 as an existing electrolytic cell. FIG. 115 shows the steps of assembling the electrolytic cell 4 (different from steps (A) to (B) and steps (A') to (B')). As shown in Figure 113, the electrolytic cell 1, the cation exchange membrane 2, and the electrolytic cell 1 are arranged in series in sequence. An ion exchange membrane 2 is arranged between the anode chamber of one electrolytic cell 1 and the cathode chamber of the other electrolytic cell 1 among the two adjacent electrolytic cells in the electrolytic cell. That is, the anode chamber 10 of the electrolytic cell 1 and the cathode chamber 20 of the adjacent electrolytic cell 1 are separated by the cation exchange membrane 2. As shown in FIG. 114, the electrolytic cell 4 is constructed in the form of a plurality of electrolytic cells 1 connected in series by the electrolytic cell frame 8 supporting the separator exchange membrane 2. That is, the electrolytic cell 4 is provided with a plurality of electrolytic cells 1 arranged in series, an ion exchange membrane 2 arranged between adjacent electrolytic cells 1, and a bipolar electrolytic cell supporting these electrolytic cell frames 8. As shown in FIG. 115, the electrolytic cell 4 is assembled by arranging a plurality of electrolytic cells 1 in series via the separator exchange membrane 2 and connecting them with the presser 5 in the electrolytic cell frame 8. In addition, as an electrolytic cell rack, as long as it can support each member and can connect, there will be no restriction|limiting in particular, Various well-known forms can be applied. The mechanism for connecting each member included in the electrolytic cell rack is not particularly limited. For example, a pressing mechanism using hydraulic pressure, or a mechanism provided with a connecting rod may be mentioned. The electrolytic cell 4 has an anode terminal 7 and a cathode terminal 6 connected to a power source. The anode 11 of the electrolytic cell 1 located at the end of the plurality of electrolytic cells 1 connected in series in the electrolytic cell 4 is electrically connected to the anode terminal 7. The cathode 21 of the electrolytic cell located at the end opposite to the anode terminal 7 among the plurality of electrolytic cells 2 connected in series in the electrolytic cell 4 is electrically connected to the cathode terminal 6. The current during electrolysis starts from the anode terminal 7 side, passes through the anode and the cathode of each electrolytic cell 1 and flows to the cathode terminal 6. Furthermore, an electrolytic cell having only an anode compartment (anode terminal cell) and an electrolytic cell having only a cathode compartment (cathode terminal cell) can be arranged at both ends of the connected electrolytic cell 1. In this case, the anode terminal 7 is connected to the anode terminal pool arranged at one end thereof, and the cathode terminal 6 is connected to the cathode terminal pool arranged at the other end. In the case of electrolysis of brine, each anode chamber 10 is supplied with brine, and the cathode chamber 20 is supplied with pure water or a low-concentration sodium hydroxide aqueous solution. Each liquid system is supplied to each electrolytic cell 1 from an electrolytic solution supply pipe (omitted in the figure) through an electrolytic solution supply hose (omitted in the figure). In addition, the electrolyte and the products of electrolysis are recovered by the electrolyte recovery pipe (not shown in the figure). In the electrolysis, the sodium ions in the brine move from the anode chamber 10 of an electrolytic cell 1 through the ion exchange membrane 2 to the cathode chamber 20 of the electrolytic cell 1 next to it. Therefore, the current in the electrolysis flows in the direction connecting the electrolytic cells 1 in series. That is, the current system flows from the anode chamber 10 to the cathode chamber 20 via the cation exchange membrane 2. Along with the electrolysis of brine, chlorine gas is generated on the anode 11 side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 21 side. (Anode chamber) The anode chamber 10 has an anode 11 or an anode feeder 11. As used herein, the power feeder means a deteriorated electrode (that is, an existing electrode) or an electrode without a catalyst coating. When the electrode for electrolysis in this embodiment is inserted into the anode side, 11 functions as an anode feeder. When the electrode for electrolysis in this embodiment is not inserted into the anode side, 11 functions as an anode. Furthermore, the anode chamber 10 preferably has an anode-side electrolyte supply part for supplying electrolyte to the anode chamber 10, and a baffle plate arranged above the anode-side electrolyte supply part and arranged substantially parallel to or inclined with the partition wall 30 , And the anode side gas-liquid separation part which is arranged above the baffle and separates gas from the electrolyte mixed with gas. (anode) When the electrode for electrolysis in this embodiment is not inserted into the anode side, the anode 11 is provided in the frame of the anode chamber 10 (that is, the anode frame). As the anode 11, a metal electrode such as so-called DSA (registered trademark) can be used. The so-called DSA is an electrode with a titanium substrate on the surface covered by oxides of ruthenium, iridium, and titanium. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode feeder) When the electrode for electrolysis in this embodiment is inserted into the anode side, an anode feeder 11 is provided in the frame of the anode chamber 10. As the anode feeder 11, a metal electrode such as a so-called DSA (registered trademark) can be used, or titanium without a catalyst coating layer can be used. In addition, DSA that reduces the thickness of the catalyst coating can also be used. Furthermore, a used anode can also be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Anode side electrolyte supply part) The anode-side electrolyte solution supply unit is a device that supplies the electrolyte solution to the anode chamber 10, and is connected to an electrolyte solution supply pipe. The anode-side electrolyte supply part is preferably arranged below the anode chamber 10. As the anode-side electrolyte supply unit, for example, a pipe (dispersion pipe) having an opening formed on the surface, or the like can be used. The tube is more preferably arranged in such a way that it is parallel to the bottom 19 of the electrolytic cell along the surface of the anode 11. This pipe system is connected to an electrolytic solution supply pipe (liquid supply nozzle) for supplying the electrolytic solution into the electrolytic cell 1. The electrolytic solution supplied from the liquid supply nozzle is transported into the electrolytic cell 1 through the tube, and is supplied to the inside of the anode chamber 10 from the opening provided on the surface of the tube. By arranging the tube along the surface of the anode 11 parallel to the bottom 19 of the electrolytic cell, the electrolyte can be evenly supplied to the inside of the anode chamber 10, which is preferable. (Anode side gas-liquid separation part) The anode side gas-liquid separation part is preferably arranged above the baffle. In electrolysis, the anode side gas-liquid separator has the function of separating generated gas such as chlorine from the electrolyte. Furthermore, unless otherwise specified, the term "upper" means the upper direction in the electrolytic cell 1 of FIG. 112, and "lower" means the lower direction in the electrolytic cell 1 of FIG. 112. During electrolysis, if the gas generated in the electrolytic cell 1 and the electrolyte become mixed phases (gas-liquid mixed phase) and are discharged out of the system, there will be physical damage to the ion exchange membrane due to vibrations caused by the pressure fluctuations in the electrolytic cell 1 The situation. In order to suppress this situation, it is preferable to provide an anode-side gas-liquid separator for separating gas and liquid in the electrolytic cell 1 in this embodiment. Preferably, a defoaming plate for eliminating air bubbles is provided at the gas-liquid separation part on the anode side. When the gas-liquid mixed-phase flow passes through the defoaming plate, the bubbles burst, which can be separated into electrolyte and gas. As a result, vibration during electrolysis can be prevented. (Baffle) The baffle is preferably arranged above the anode-side electrolyte supply part, and is arranged substantially parallel to or inclined with the partition wall 30. The baffle is a partition between which controls the flow of the electrolyte in the anode chamber 10. By installing the baffle, the electrolyte (salt water, etc.) can be circulated inside the anode chamber 10 to make its concentration uniform. In order to cause internal circulation, the baffle is preferably arranged in such a way that the space near the anode 11 is separated from the space near the partition wall 30. From this point of view, the baffle plate is preferably provided in a manner facing each surface of the anode 11 and the partition wall 30. In the space near the anode separated by the baffle, the electrolyte concentration (salt water concentration) is reduced by electrolysis, and the chlorine gas and other generated gas are generated. Thereby, a gas-liquid specific gravity difference is generated between the space near the anode 11 and the space near the partition wall 30 separated by the baffle. Taking advantage of this situation, the internal circulation of the electrolyte in the anode chamber 10 can be promoted, and the concentration distribution of the electrolyte in the anode chamber 10 becomes more uniform. Furthermore, it is not shown in FIG. 112, but a current collector may be separately provided inside the anode chamber 10. As the current collector, it can also be made of the same material or structure as the current collector of the cathode chamber described below. In addition, in the anode chamber 10, the anode 11 itself may function as a current collector. (Partition wall) The partition wall 30 is arranged between the anode chamber 10 and the cathode chamber 20. The partition wall 30 is also called a partition in some cases, and partitions the anode chamber 10 and the cathode chamber 20. As the partition wall 30, what is known as a separator for electrolysis can be used, for example, a partition wall in which a plate containing nickel is welded to the cathode side, and a plate containing titanium is welded to the anode side. (Cathode chamber) The cathode chamber 20 functions as a cathode feeder when the electrode for electrolysis in this embodiment is inserted on the cathode side, and when the electrode for electrolysis in this embodiment is not inserted on the cathode side, 21 serves as a cathode Function. In the case of a reverse current absorber, the cathode or cathode feeder 21 is electrically connected to the reverse current absorber. Moreover, it is preferable that the cathode chamber 20, like the anode chamber 10, also has a cathode-side electrolyte supply part and a cathode-side gas-liquid separation part. In addition, the description of the parts that constitute the cathode chamber 20 that are the same as the parts that constitute the anode chamber 10 will be omitted. (cathode) When the electrode for electrolysis in this embodiment is not inserted into the cathode side, the cathode 21 is provided in the frame of the cathode chamber 20 (that is, the cathode frame). The cathode 21 preferably has a nickel base material and a catalyst layer coated with the nickel base material. As the composition of the catalyst layer on the nickel substrate, examples include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb , Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, the cathode 21 may be subjected to reduction treatment as necessary. Furthermore, as the base material of the cathode 21, nickel, nickel alloys, nickel-plated iron or stainless steel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Cathode feeder) When the electrode for electrolysis in this embodiment is inserted into the cathode side, a cathode feeder 21 is provided in the frame of the cathode chamber 20. The cathode feeder 21 can be coated with a catalyst component. The catalyst component may be the residue originally used as the cathode. The components of the catalyst layer include: Ru, C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and other metals and oxides or hydroxides of these metals. Examples of methods for forming the catalyst layer include plating, alloy plating, dispersion/composite plating, CVD, PVD, thermal decomposition, and spraying. These methods can also be combined. The catalyst layer may have multiple layers and multiple elements as needed. In addition, nickel, nickel alloy, nickel-plated iron or stainless steel without a catalyst coating can be used. Furthermore, as the base material of the cathode feeder 21, nickel, nickel alloy, iron or stainless steel plated with nickel can be used. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. (Reverse current absorption layer) A material with a lower oxidation-reduction potential than the above-mentioned elements for the catalyst layer of the cathode can be selected as the material of the reverse current absorption layer. For example, nickel, iron, etc. can be mentioned. (Current collector) The cathode chamber 20 preferably includes a current collector 23. This improves the current collection effect. In this embodiment, the current collector 23 is preferably a porous plate, and is arranged substantially parallel to the surface of the cathode 21. As the current collector 23, for example, it is preferable to include a conductive metal such as nickel, iron, copper, silver, and titanium. The current collector 23 can be a mixture, alloy, or composite oxide of these metals. In addition, the shape of the current collector 23 may be any shape as long as it functions as a current collector, and may be a plate shape or a mesh shape. (Metal elastomer) By disposing the metal elastic body 22 between the current collector 23 and the cathode 21, each cathode 21 of the plurality of electrolytic cells 1 connected in series is pressed against the ion exchange membrane 2. The distance between each anode 11 and each cathode 21 By shortening, the voltage applied to the entire electrolytic cell 1 connected in series can be reduced. By reducing the voltage, the power consumption can be reduced. In addition, by providing the metal elastic body 22, when the laminate containing the electrode for electrolysis in the present embodiment is installed in the electrolytic cell, the pressure of the metal elastic body 22 can stably maintain the electrode for electrolysis. At the starting position. As the metal elastic body 22, spring members such as coil springs and coils, cushioning pads, and the like can be used. As the metal elastic body 22, a suitable one can be suitably used in consideration of stress against the ion exchange membrane and the like. The metal elastic body 22 can be provided on the surface of the current collector 23 on the side of the cathode chamber 20, or on the surface of the partition wall on the side of the anode chamber 10. Generally, the cathode chamber 20 is smaller than the anode chamber 10 to divide the two chambers. Therefore, from the viewpoint of the strength of the frame, it is preferable to arrange the metal elastic body 22 between the current collector 23 and the cathode 21 of the cathode chamber 20. In addition, the metal elastic body 23 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. (Support) The cathode chamber 20 preferably includes a support 24 that electrically connects the current collector 23 and the partition wall 30. This allows current to flow efficiently. The support 24 preferably contains conductive metals such as nickel, iron, copper, silver, and titanium. In addition, the shape of the support 24 may be any shape as long as it can support the current collector 23, and may be a rod shape, a plate shape, or a mesh shape. The support 24 has a plate shape, for example. The plurality of supports 24 are arranged between the partition wall 30 and the current collector 23. The plurality of supports 24 are arranged in such a way that their respective faces are parallel to each other. The support body 24 is arranged substantially perpendicular to the partition wall 30 and the current collector 23. (Anode side gasket, cathode side gasket) The anode side gasket is preferably arranged on the surface of the frame constituting the anode chamber 10. The cathode side gasket is preferably arranged on the surface of the frame constituting the cathode chamber 20. The anode side gasket of one electrolytic cell and the cathode side gasket of the adjacent electrolytic cell are connected to each other by sandwiching the ion exchange membrane 2 (refer to FIG. 113). With these gaskets, when a plurality of electrolytic cells 1 are connected in series via the separator exchange membrane 2, airtightness can be given to the connection. The so-called gasket is a seal between the ion exchange membrane and the electrolytic cell. As a specific example of the gasket, a frame-shaped rubber sheet with an opening formed in the center, etc. can be cited. The gasket is required to be resistant to corrosive electrolyte or generated gas and can be used for a long time. Therefore, in terms of chemical resistance or hardness, ethylene-propylene-diene rubber (EPDM rubber), ethylene-propylene rubber (EPM rubber) vulcanizates or peroxide cross-linked products can usually be used as cushions. sheet. In addition, if necessary, a gasket with a fluorine-based resin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) covering the area in contact with the liquid (wetted part) can also be used . The gaskets are not particularly limited as long as they have openings so as not to hinder the flow of the electrolyte. For example, along the periphery of each opening of the anode chamber frame constituting the anode chamber 10 or the cathode chamber frame constituting the cathode chamber 20, a frame-shaped gasket is attached by an adhesive or the like. In addition, for example, when the separator exchange membrane 2 is connected to two electrolytic cells 1 (refer to FIG. 113), the separator exchange membrane 2 may fasten each electrolytic cell 1 to which gaskets are attached. Thereby, it is possible to prevent leakage of electrolyte, alkali metal hydroxide, chlorine gas, hydrogen gas, etc. generated by electrolysis to the outside of the electrolytic cell 1. [Layered body] In the manufacturing method of the electrolytic cell of this embodiment, the electrode for electrolysis can be used as a laminate with a separator such as an ion exchange membrane or a microporous membrane. That is, the laminated system in this embodiment includes an electrode for electrolysis and a new separator. The new diaphragm is not particularly limited as long as it is different from the diaphragm in the existing electrolytic cell, and various well-known diaphragms can be applied. In addition, the new diaphragm may be of the same material, shape, and physical properties as the diaphragm in the existing electrolytic cell. Specific examples of electrodes and separators for electrolysis will be described in detail. (Step (A)) In step (A) in the first aspect, the fixing of the diaphragm is released in the electrolytic cell frame. The so-called "in the electrolytic cell frame" means that the step (A) is performed while maintaining the electrolytic cell (that is, the member including the anode and the cathode) and the diaphragm is supported by the electrolytic cell frame to remove the electrolytic cell from the electrolytic cell frame. Except for the appearance. The method for releasing the fixing of the diaphragm is not particularly limited. For example, it can be used to release the pressing of the press in the electrolytic cell frame to form a gap between the electrolytic cell and the diaphragm, and set the diaphragm to be taken out of the electrolytic cell frame. State methods, etc. In step (A), it is preferable to release the fixation of the diaphragm in the electrolytic cell frame by sliding the anode and the cathode in the arrangement directions respectively. By this operation, it can be set to a state where the diaphragm can be taken out of the electrolytic cell frame without taking the electrolytic cell out of the electrolytic cell frame. [Step (B)] In step (B) in the first aspect, after step (A), the diaphragm in the existing electrolytic cell is exchanged with the laminate. The exchange method is not particularly limited. For example, after a gap is formed between the electrolytic cell and the ion exchange membrane, the existing diaphragm that is the object of renewal is removed, and then the laminate is inserted into the gap. By this method, the laminated body can be arranged on the surface of the anode or the cathode in the existing electrolytic cell, and the performance of the ion exchange membrane, the anode and/or the cathode can be updated. After performing step (B), it is preferable to fix the laminate in the electrolytic cell frame by pressing from the anode and the cathode. Specifically, after exchanging the diaphragm and the laminate in the existing electrolytic cell, the laminate and the electrolytic cell can be pressed and connected again by pressing each member in the existing electrolytic cell such as the laminate and the electrolytic cell. By this method, the laminate can be fixed on the surface of the anode or cathode in the existing electrolytic cell. Based on FIGS. 117 (A) and (B), specific examples of steps (A) to (B) in the first aspect will be described. First, the pressing by the presser 5 is released, and the plurality of electrolytic cells 1 and the ion exchange membranes 2 are slid along the arrangement direction α. Thereby, a gap S can be formed between the electrolytic cell 1 and the ion exchange membrane 2 without taking the electrolytic cell 1 out of the electrolytic cell frame 8, and the ion exchange membrane 2 can be taken out of the electrolytic cell frame 8. The state. Next, the ion exchange membrane 2 of the existing electrolytic cell to be exchanged is taken out of the electrolytic cell frame 8, and instead, the laminate 9 of the new ion exchange membrane 2a and the electrolysis electrode 100 is inserted between the adjacent electrolytic cells 1 ( That is, the gap S). As a result, the layered bodies 9 are arranged between the adjacent electrolytic cells 1 and these are in a state of being supported by the electrolytic cell frame 8. Then, by pressing in the arrangement direction α by the presser 5, the plurality of electrolytic cells 1 and the layered body 9 are connected. (Step (A')) In the step (A') in the second aspect, the fixing of the diaphragm is also released in the electrolytic cell frame in the same manner as in the first aspect. In step (A'), it is also preferable to release the fixation of the diaphragm in the electrolytic cell frame by sliding the anode and the cathode in the arrangement directions respectively. By this operation, it can be set to a state where the diaphragm can be taken out of the electrolytic cell frame without taking the electrolytic cell out of the electrolytic cell frame. [Step (B')] In step (B') in the second aspect, after step (A'), an electrode for electrolysis is arranged between the separator and the anode or cathode. The method of arranging the electrode for electrolysis is not particularly limited, and for example, a method of inserting the electrode for electrolysis into the gap after forming a gap between the electrolytic cell and the ion exchange membrane, and the like. By this method, the electrode for electrolysis can be arranged on the surface of the anode or cathode in the existing electrolytic cell, and the performance of the anode or cathode can be updated. After performing step (B'), it is preferable to fix the electrode for electrolysis in the electrolytic cell frame by pressing from the anode and the cathode. Specifically, the electrode for electrolysis can be arranged on the surface of the anode or cathode in the existing electrolytic cell, and the components in the existing electrolytic cell, such as the electrode for electrolysis and the electrolytic cell, can be pressed again by a press. link. By this method, the laminate can be fixed on the surface of the anode or cathode in the existing electrolytic cell. Based on FIGS. 118 (A) and (B), specific examples of steps (A') to (B') in the second aspect will be described. First, the pressing by the presser 5 is released, and the plurality of electrolytic cells 1 and the ion exchange membranes 2 are slid along the arrangement direction α. Thereby, the gap S can be formed between the electrolytic cell 1 and the ion exchange membrane 2 without taking the electrolytic cell 1 out of the electrolytic cell rack 8. Then, the electrode 100 for electrolysis is inserted between the adjacent electrolytic cells 1 (that is, the gap S). Thereby, the electrodes 100 for electrolysis are arranged between the adjacent electrolytic cells 1 and these electrodes are in a state supported by the electrolytic cell frame 8. Then, by pressing in the arrangement direction α by the presser 5, a plurality of electrolytic cells 1 and the electrodes 100 for electrolysis are connected. Furthermore, in the step (B) in the first aspect, it is preferable to fix the laminate on the surface of at least one of the anode and the cathode at a temperature at which the laminate does not melt. "The temperature at which the laminate does not melt" can be specified as the softening point of the new separator. The temperature may vary according to the material constituting the diaphragm, and is preferably 0-100°C, more preferably 5-80°C, and still more preferably 10-50°C. In addition, the above-mentioned fixing is preferably performed under normal pressure. It is preferable to further integrate the electrode for electrolysis and the new separator at a temperature at which the separator does not melt to obtain a laminate and use it in step (B). As a specific method of the above-mentioned integration, all methods except the typical method of melting the separator such as thermocompression bonding can be used, and are not particularly limited. As a preferable example, the method described below in which a liquid is interposed between an electrode for electrolysis and a separator and integrated by the surface tension of the liquid can be cited. [Electrode for Electrolysis] In the method of manufacturing the electrolytic cell of this embodiment, the electrode for electrolysis is not particularly limited as long as it can be used for electrolysis. The electrode for electrolysis may function as a cathode in an electrolytic cell, or may function as an anode. Also, regarding the material or shape of the electrode for electrolysis, an appropriate one can be appropriately selected in consideration of the structure of the electrolytic cell, etc. Hereinafter, the preferred aspects of the electrode for electrolysis in the present embodiment will be described, but these are only examples of preferred aspects for the case where the first aspect is integrated with a new diaphragm to form a laminate. Electrolysis electrodes other than those described below can also be appropriately used. The electrode for electrolysis in this embodiment can achieve good operability, and has good adhesion to membranes such as ion exchange membranes or microporous membranes, and power feeders (degraded electrodes and electrodes without catalyst coating). From the viewpoint of force, the force per unit mass·unit area is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. From the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/mg·cm2 Above, and more preferably 0.14 N/(mg·cm2 )the above. From the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), 0.2 N/(mg·cm is more preferable2 )the above. The above-mentioned endurance can be set to the above-mentioned range, for example, by appropriately adjusting the aperture ratio, the thickness of the electrode, the arithmetic average surface roughness, etc. described below. More specifically, for example, if the aperture ratio is increased, the bearing force tends to decrease, and if the aperture rate is decreased, the bearing force tends to increase. In addition, good operability can be obtained, and good adhesion to membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and feeders that are not formed with a catalyst coating, etc., is the point of view, and furthermore, it is economical. From a viewpoint, the mass per unit area is preferably 48 mg/cm2 Below, more preferably 30 mg/cm2 Below, it is more preferably 20 mg/cm2 Hereinafter, further, from the viewpoint of combining operability, adhesiveness, and economy, it is preferably 15 mg/cm2 the following. The lower limit is not particularly limited, for example, 1 mg/cm2 about. The above-mentioned mass per unit area can be set to the above-mentioned range by appropriately adjusting the aperture ratio, the thickness of the electrode, etc. described below, for example. More specifically, for example, if the thickness is the same, the mass per unit area tends to decrease if the aperture ratio is increased, and the mass per unit area tends to increase if the aperture ratio is decreased. . The endurance can be measured by the following method (i) or (ii), in detail, as described in the examples. Regarding endurance, the value obtained by the measurement of method (i) (also called "endurance (1)") and the value obtained by the measurement of method (ii) (also called "endurance (2) )”) can be the same or different, but preferably any value is less than 1.5 N/mg·cm2 . [Method (i)] The nickel plate (thickness 1.2 mm, 200 mm square) obtained by spraying with the alumina particle number 320 is sequentially laminated, and the two sides of the membrane of the perfluorocarbon polymer with ion exchange groups are coated with inorganic particles The ion exchange membrane (170 mm square, the details of the so-called ion exchange membrane here are as described in the examples) and the electrode sample (130 mm square) of the bonding agent. After the laminate is fully immersed in pure water, the adhesion is removed The excess water on the surface of the laminate is used to obtain a sample for measurement. Furthermore, the arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.5-0.8 μm. The specific calculation method of the arithmetic mean surface roughness (Ra) is as described in the examples. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. Divide the average value by the area of the electrode sample overlapped with the ion exchange membrane and the mass of the electrode sample overlapped with the ion exchange membrane to calculate the force per unit mass·unit area (1)(N/mg・cm2 ). The force per unit mass and unit area obtained by the method (i) (1) can obtain good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Also, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 ), more preferably 0.2 N/(mg·cm2 )the above. [Method (ii)] Stack the nickel plate (thickness 1.2 mm, 200 mm square, the same nickel plate as the above method (i)) and electrode sample (130 mm square) obtained by spraying with the alumina grain number 320 in order, After the laminate is fully immersed in pure water, excess water adhering to the surface of the laminate is removed, thereby obtaining a sample for measurement. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, use a tensile and compression testing machine to only make the electrode sample in the measurement sample rise in the vertical direction at 10 mm/min, and the measurement electrode sample in the vertical direction Load when ascending 10 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapping part of the electrode sample and the nickel plate, and the mass of the electrode sample in the overlapping part of the nickel plate, to calculate the adhesive force per unit mass•unit area (2) (N/mg·cm)2 ). The force per unit mass and unit area (2) obtained by the method (ii) can achieve good operability. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and non-catalyst coatings. From the point of view that the feeder of the layer has a good adhesive force, it is preferably 1.6 N/(mg·cm2 ) Or less, preferably less than 1.6 N/(mg·cm2 ), more preferably less than 1.5 N/(mg·cm2 ), and more preferably 1.2 N/mg·cm2 Below, more preferably 1.20 N/mg·cm2 the following. More preferably 1.1 N/mg・cm2 Below, more preferably 1.10 N/mg·cm2 Below, 1.0 N/mg·cm is particularly preferred2 Below, 1.00 N/mg·cm is particularly preferred2 the following. Furthermore, from the viewpoint of further improving the electrolytic performance, it is preferably more than 0.005 N/(mg·cm2 ), more preferably 0.08 N/(mg·cm2 ) Above, more preferably 0.1 N/(mg·cm2 ) Above, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 0.14 N/(mg·cm2 )the above. The electrode for electrolysis in this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The thickness (gauge thickness) of the electrode substrate for electrolysis is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and non-contact formation. The media-coated electrode (feeder) has good adhesion, can be wound into a roll shape and bends well, and it is easy to handle in large size (for example, size 1.5 m×2.5 m) In particular, it is preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, still more preferably 125 μm or less, more preferably 120 μm or less, and still more It is preferably 100 μm or less, and from the viewpoint of operability and economy, it is more preferably 50 μm or less. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the manufacturing method of the electrolytic cell of this embodiment, it is preferable to integrate a new diaphragm and an electrode for electrolysis, and to interpose a liquid between them. Any liquid can be used as long as the liquid is one that generates surface tension such as water or organic solvent. The greater the surface tension of the liquid, the greater the force it can withstand between the new diaphragm and the electrode for electrolysis, so the liquid with greater surface tension is preferred. Examples of the liquid include the following (the value in parentheses is the surface tension of the liquid at 20°C). Hexane (20.44 mN/m), acetone (23.30 mN/m), methanol (24.00 mN/m), ethanol (24.05 mN/m), ethylene glycol (50.21 mN/m), water (72.76 mN/m) In the case of a liquid with a large surface tension, the new separator and the electrode for electrolysis are integrated (a layered body), and there is a tendency that the replacement of the electrode becomes easier. The amount of liquid between the new separator and the electrode for electrolysis is sufficient to adhere to each other by surface tension. As a result, the amount of liquid is small. Therefore, even if the laminate is installed in the electrolytic cell, it is mixed into the electrolytic solution. It will not affect the electrolysis itself. From a practical point of view, as the liquid, it is preferable to use a liquid having a surface tension of 24 mN/m to 80 mN/m, such as ethanol, ethylene glycol, and water. Particularly preferably, it is water or an alkaline aqueous solution is made by dissolving caustic soda, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, etc. in water. In addition, these liquids may contain a surfactant to adjust the surface tension. By containing the surfactant, the adhesion between the new separator and the electrode for electrolysis is changed, and the operability can be adjusted. The surfactant is not particularly limited, and any one of ionic surfactants and nonionic surfactants can be used. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Feeder) From the viewpoint of good adhesive force, the ratio measured by the following method (2) is preferably 90% or more, more preferably 92% or more. Furthermore, for large sizes (for example, From the viewpoint of ease of handling under a size of 1.5 m×2.5 m), it is more preferably 95% or more. The upper limit value is 100%. [Method (2)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 280 mm) with the electrode sample in the layered body as the outside, and pure Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (Power feeder) has good adhesive force, can be wound into a roll shape and bends well, the ratio measured by the following method (3) is preferably 75% or more, more It is preferably 80% or more, and furthermore, from the viewpoint of easy handling in a large size (for example, a size of 1.5 m×2.5 m), it is more preferably 90% or more. The upper limit value is 100%. [Method (3)] Layer the ion exchange membrane (170 mm square) and the electrode sample (130 mm square) in sequence. Under the conditions of a temperature of 23±2℃ and a relative humidity of 30±5%, the layered body is placed on the curved surface of a polyethylene tube (outer diameter of 145 mm) in such a way that the electrode sample in the layered body becomes the outside. Water fully soaks the laminate and the tube to remove excess water adhering to the surface of the laminate and the tube. After 1 minute, the ratio of the area where the ion exchange membrane (170 mm square) and the electrode sample are in close contact ( %) is measured. The electrode for electrolysis in this embodiment is not particularly limited, and good operability can be obtained. It is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes (feeders), and electrodes that are not coated with a catalyst. (The feeder) has a good adhesive force and prevents the gas generated during electrolysis from stagnating, preferably a porous structure, and its open porosity or porosity is 5 to 90% or less. The porosity is more preferably 10 to 80% or less, and still more preferably 20 to 75%. Furthermore, the so-called open porosity refers to the ratio of open pores per unit volume. There are various calculation methods for the openings based on whether they are considered to be sub-micron or only visible openings. In this embodiment, the volume V can be calculated from the value of the gauge thickness, width, and length of the electrode, and then the weight W can be actually measured, and the porosity A can be calculated using the following formula. A=(1-(W/(V×ρ))×100 ρ is the density of the electrode material (g/cm3 ). For example, in the case of nickel, it is 8.908 g/cm3 , 4.506 g/cm in the case of titanium3 . The aperture ratio can be adjusted appropriately by the following methods: if it is punched metal, change the area of punched metal per unit area; if it is porous metal, change SW (short diameter), LW (long diameter), Feed value; if it is a wire mesh, change the wire diameter and mesh number of the metal fiber; if it is electroforming, change the pattern of the photoresist used; if it is a non-woven fabric, change the metal fiber diameter and fiber density; If it is a foamed metal, change the template or the like for forming voids. Hereinafter, a more specific embodiment of the electrode for electrolysis in this embodiment will be described. The electrode for electrolysis of this embodiment preferably includes an electrode base material for electrolysis and a catalyst layer. The catalyst layer is as described below, and may include multiple layers, or may have a single-layer structure. As shown in FIG. 119, the electrode for electrolysis 100 of this embodiment is equipped with the electrode base material 10 for electrolysis, and a pair of 1st layer 20 which covers both surfaces of the electrode base material 10 for electrolysis. The first layer 20 preferably covers the entire electrode substrate 10 for electrolysis. Thereby, the catalyst activity and durability of the electrode for electrolysis can be easily improved. Furthermore, the first layer 20 may be layered on only one surface area of the electrode substrate 10 for electrolysis. Moreover, as shown in FIG. 119, the surface of the first layer 20 may be covered by the second layer 30. The second layer 30 preferably covers the entire first layer 20. In addition, the second layer 30 may be laminated on only one surface of the first layer 20. (Electrode base material for electrolysis) The electrode substrate 10 for electrolysis is not particularly limited. For example, nickel, nickel alloys, stainless steel, or valve metals represented by titanium can be used, and it is preferable to contain one selected from the group consisting of nickel (Ni) and titanium (Ti). At least 1 element. When stainless steel is used in a high-concentration alkaline aqueous solution, considering the elution of iron and chromium, and the conductivity of stainless steel is about 1/10 of nickel, it is better to use a substrate containing nickel (Ni) as the base material Electrode substrate for electrolysis. In addition, when the electrode substrate 10 for electrolysis is used in a chlorine generating environment in a highly saturated salt water, the material is preferably titanium with higher corrosion resistance. The shape of the electrode substrate 10 for electrolysis is not particularly limited, and an appropriate shape can be selected according to the purpose. As the shape, any of punched metal, non-woven fabric, foamed metal, porous metal, metal porous foil formed by electroforming, so-called woven mesh made of braided metal wire, or the like can be used. Among them, punched metal or porous metal is preferred. Furthermore, the so-called electroforming is a technology that combines photolithography and electroplating to produce a metal thin film with a precise pattern. It is a method of forming a pattern on a substrate by photoresist, and electroplating the part that is not protected by photoresist to obtain a metal thin film. Regarding the shape of the electrode substrate for electrolysis, there are appropriate specifications according to the distance between the anode and the cathode in the electrolytic cell. It is not particularly limited. When the anode and the cathode have a limited distance, porous metal or punched metal shapes can be used. In the case of a so-called zero-pitch electrolytic cell where the ion exchange membrane and the electrode are connected, a braided fine wire can be used. Into woven mesh, metal wire mesh, foamed metal, metal non-woven fabric, porous metal, perforated metal, metal porous foil, etc. As the electrode base material 10 for electrolysis, a metal porous foil, a metal wire mesh, a metal nonwoven fabric, a punched metal, a porous metal, or a foamed metal can be mentioned. As the sheet material before being processed into punched metal or porous metal, it is preferably a sheet material formed by rolling, an electrolytic foil, and the like. The electrolytic foil is preferably further subjected to a plating treatment with the same element as the base material as a post-treatment to form unevenness on one or both sides. In addition, the thickness of the electrode substrate 10 for electrolysis is as described above, preferably 300 μm or less, more preferably 205 μm or less, still more preferably 155 μm or less, still more preferably 135 μm or less, and still more preferably 125 μm or less. μm or less, more preferably 120 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less from the viewpoint of operability and economy. The lower limit is not particularly limited, and is, for example, 1 μm, preferably 5 μm, and more preferably 15 μm. In the electrode base material for electrolysis, it is preferable to relax the residual stress during processing by annealing the electrode base material for electrolysis in an oxidizing environment. Furthermore, in order to improve the adhesion with the catalyst layer coated on the surface of the electrode substrate for electrolysis, it is preferable to use steel grit or alumina powder to form irregularities on the above-mentioned surface, and then to increase the surface area by acid treatment. Alternatively, it is preferable to apply a plating treatment with the same element as the substrate to increase the surface area. In order to bring the first layer 20 into close contact with the surface of the electrode substrate 10 for electrolysis, it is preferable to perform the treatment of increasing the surface area of the electrode substrate 10 for electrolysis. As the treatment to increase the surface area, blasting treatment using steel wire grains, steel grit, alumina sand, etc., acid treatment using sulfuric acid or hydrochloric acid, and plating treatment using the same elements as the substrate can be mentioned. The arithmetic average surface roughness (Ra) of the substrate surface is not particularly limited, and is preferably 0.05 μm-50 μm, more preferably 0.1-10 μm, and still more preferably 0.1-8 μm. Next, the case where the electrode for electrolysis in this embodiment is used as an anode for salt electrolysis is demonstrated. (level one) In FIG. 119, the first layer 20 as a catalyst layer contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide. As ruthenium oxide, RuO can be cited2 Wait. As iridium oxide, IrO can be cited2 Wait. As titanium oxide, TiO2 Wait. The first layer 20 preferably contains two oxides of ruthenium oxide and titanium oxide, or three oxides of ruthenium oxide, iridium oxide and titanium oxide. Thereby, the first layer 20 becomes a more stable layer, and further, the adhesion with the second layer 30 is further improved. When the first layer 20 contains two oxides of ruthenium oxide and titanium oxide, the titanium oxide contained in the first layer 20 is preferably 1 mol relative to the ruthenium oxide contained in the first layer 20 It is 1 to 9 mols, more preferably 1 to 4 mols. By setting the composition ratio of the two oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains three oxides of ruthenium oxide, iridium oxide and titanium oxide, the iridium oxide contained in the first layer 20 is 1 mol relative to the ruthenium oxide contained in the first layer 20 The substance is preferably 0.2 to 3 mol, more preferably 0.3 to 2.5 mol. In addition, with respect to 1 mol of ruthenium oxide contained in the first layer 20, the titanium oxide contained in the first layer 20 is preferably 0.3-8 mol, more preferably 1-7 mol. By setting the composition ratio of the three oxides to this range, the electrode for electrolysis 100 exhibits excellent durability. When the first layer 20 contains at least two oxides selected from ruthenium oxide, iridium oxide and titanium oxide, these oxides preferably form a solid solution. By forming an oxide solid solution, the electrode for electrolysis 100 exhibits excellent durability. In addition to the above composition, as long as it contains at least one oxide of ruthenium oxide, iridium oxide, and titanium oxide, various compositions can be used. For example, an oxide coating called DSA (registered trademark) containing ruthenium, iridium, tantalum, niobium, titanium, tin, cobalt, manganese, platinum, etc. can also be used as the first layer 20. The first layer 20 does not need to be a single layer, and may include multiple layers. For example, the first layer 20 may include a layer containing three kinds of oxides and a layer containing two kinds of oxides. The thickness of the first layer 20 is preferably 0.05-10 μm, more preferably 0.1-8 μm. (Second floor) The second layer 30 preferably contains ruthenium and titanium. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. The second layer 30 preferably contains palladium oxide, a solid solution of palladium oxide and platinum, or an alloy of palladium and platinum. Thereby, the chlorine overvoltage immediately after electrolysis can be further reduced. If the second layer 30 is thicker, the electrolytic performance can be maintained for a longer period of time. From the viewpoint of economy, the thickness is preferably 0.05-3 μm. Next, the case where the electrode for electrolysis in this embodiment is used as a cathode for salt electrolysis is demonstrated. (level one) The composition of the first layer 20 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. When it contains at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, it is preferably platinum group metal, platinum group metal oxide, and platinum group metal hydroxide The alloy containing platinum group metal contains at least one platinum group metal among platinum, palladium, rhodium, ruthenium, and iridium. As a platinum group metal, it is preferable to contain platinum. As the platinum group metal oxide, it is preferable to contain ruthenium oxide. The platinum group metal hydroxide preferably contains ruthenium hydroxide. As the platinum group metal alloy, an alloy containing platinum, nickel, iron, and cobalt is preferable. It is preferable to further contain an oxide or hydroxide of a lanthanide as the second component as necessary. Thereby, the electrode 100 for electrolysis exhibits excellent durability. The oxide or hydroxide of the lanthanoid element preferably contains at least one selected from the group consisting of lanthanum, cerium, samarium, neodymium, euthanium, samarium, europium, gamma, porite, and dysprosium. It is preferable to further contain an oxide or hydroxide of a transition metal as the third component as necessary. By adding the third component, the electrode for electrolysis 100 can exhibit more excellent durability and reduce the electrolysis voltage. Examples of preferred combinations include: ruthenium only, ruthenium + nickel, ruthenium + cerium, ruthenium + lanthanum, ruthenium + lanthanum + platinum, ruthenium + lanthanum + palladium, ruthenium + ama, ruthenium + ama + platinum, ruthenium + ama + Platinum + Palladium, Ruthenium + Neodymium, Ruthenium + Neodymium + Platinum, Ruthenium + Neodymium + Manganese, Ruthenium + Neodymium + Iron, Ruthenium + Neodymium + Cobalt, Ruthenium + Neodymium + Zinc, Ruthenium + Neodymium + Gallium, Ruthenium + Neodymium + Sulfur , Ruthenium + neodymium + lead, ruthenium + neodymium + nickel, ruthenium + neodymium + copper, ruthenium + samarium, ruthenium + samarium + manganese, ruthenium + samarium + iron, ruthenium + samarium + cobalt, ruthenium + samarium + zinc, ruthenium + samarium + Gallium, ruthenium + samarium + sulfur, ruthenium + samarium + lead, ruthenium + samarium + nickel, platinum + cerium, platinum + palladium + cerium, platinum + palladium + lanthanum + cerium, platinum + iridium, platinum + palladium, platinum + iridium + Palladium, platinum + nickel + palladium, platinum + nickel + ruthenium, platinum and nickel alloy, platinum and cobalt alloy, platinum and iron alloy, etc. When it does not contain platinum group metals, platinum group metal oxides, platinum group metal hydroxides, or alloys containing platinum group metals, the main component of the catalyst is preferably nickel. It is preferable to contain at least one of nickel metal, oxide, and hydroxide. As the second component, a transition metal can be added. The second component to be added preferably contains at least one element of titanium, tin, molybdenum, cobalt, manganese, iron, sulfur, zinc, copper, and carbon. As a preferable combination, nickel+tin, nickel+titanium, nickel+molybdenum, nickel+cobalt, etc. can be cited. If necessary, an intermediate layer may be provided between the first layer 20 and the electrode substrate 10 for electrolysis. By providing the intermediate layer, the durability of the electrode 100 for electrolysis can be improved. As the intermediate layer, one having affinity for both the first layer 20 and the electrode substrate 10 for electrolysis is preferable. As the intermediate layer, nickel oxide, platinum group metal, platinum group metal oxide, and platinum group metal hydroxide are preferable. As the intermediate layer, it can be formed by coating and firing a solution containing the components that form the intermediate layer, or heat treatment of the substrate at a temperature of 300 to 600°C in an air environment to form a surface oxide layer . In addition, it can be formed by a known method such as a thermal spray method and an ion plating method. (Second floor) The composition of the first layer 30 as the catalyst layer may include: C, Si, P, S, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Metals such as Tb, Dy, Ho, Er, Tm, Yb, Lu, and oxides or hydroxides of these metals. It may contain at least one of platinum group metal, platinum group metal oxide, platinum group metal hydroxide, and platinum group metal-containing alloy, or not. As a preferable combination example of the elements contained in the second layer, there are the combinations listed in the first layer and the like. The combination of the first layer and the second layer can be a combination of the same composition but different composition ratios, or a combination of different compositions. As the thickness of the catalyst layer, it is preferable that the thickness formed by accumulating the formed catalyst layer and the intermediate layer is 0.01 μm to 20 μm. If it is 0.01 μm or more, it can fully function as a catalyst. If it is 20 μm or less, there will be less separation from the base material, and a strong catalyst layer can be formed. More preferably, it is 0.05 μm to 15 μm. More preferably, it is 0.1 μm to 10 μm. More preferably, it is 0.2 μm to 8 μm. The thickness of the electrode, that is, the total thickness of the electrode substrate for electrolysis and the catalyst layer, is preferably 315 μm or less, more preferably 220 μm or less, and even more preferably 170 μm in terms of the operability of the electrode Hereinafter, it is more preferably 150 μm or less, even more preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. Furthermore, the thickness of the electrode can be determined by measuring with an electronic digital thickness gauge (Mitutoyo Co., Ltd., with a minimum display of 0.001 mm). The thickness of the electrode substrate for electrolysis is measured in the same manner as the thickness of the electrode. The thickness of the catalyst layer can be obtained by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. In the manufacturing method of the electrolytic cell of this embodiment, from the viewpoint of ensuring sufficient electrolytic performance, it is preferable that the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, At least one catalyst component from the group consisting of Si, P, S, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. In this embodiment, if the electrode for electrolysis is an electrode with a wider elastic deformation region, better operability can be obtained, and it is compatible with membranes such as ion exchange membranes or microporous membranes, degraded electrodes, and no catalyst coating. From the viewpoint that the feeder of the layer has better adhesion, the thickness of the electrode for electrolysis is preferably 315 μm or less, more preferably 220 μm or less, still more preferably 170 μm or less, and even more preferably 150 μm Hereinafter, it is particularly preferably 145 μm or less, more preferably 140 μm or less, still more preferably 138 μm or less, and still more preferably 135 μm or less. If it is 135 μm or less, good operability can be obtained. Furthermore, from the same viewpoint as the above, it is preferably 130 μm or less, more preferably less than 130 μm, still more preferably 115 μm or less, and still more preferably 65 μm or less. The lower limit is not particularly limited, but it is preferably 1 μm or more, practically more preferably 5 μm or more, and even more preferably 20 μm or more. In addition, in the present embodiment, the term "wide elastic deformation area" means that the electrode for electrolysis is wound to form a wound body, and the warpage caused by the winding is less likely to occur after the wound state is released. In addition, when the thickness of the electrode for electrolysis includes the catalyst layer described below, it refers to the thickness of the combined electrode base material for electrolysis and the catalyst layer. (Method of manufacturing electrode for electrolysis) Next, an embodiment of the manufacturing method of the electrode 100 for electrolysis will be described in detail. In the present embodiment, the first layer 20 is formed on the electrode substrate for electrolysis by using methods such as firing (thermal decomposition) of the coating film in an oxygen environment, or ion plating, plating, and thermal spraying. Preferably, the second layer 30 can be used to manufacture the electrode 100 for electrolysis. Such a manufacturing method of this embodiment can achieve high productivity of the electrode 100 for electrolysis. Specifically, a catalyst layer is formed on the electrode substrate for electrolysis by a coating step of applying a coating liquid containing a catalyst, a drying step of drying the coating liquid, and a thermal decomposition step of performing thermal decomposition. The term “thermal decomposition” here means heating the metal salt as a precursor to decompose it into a metal or metal oxide and gaseous substance. The decomposition products vary according to the type of metal used, the type of salt, and the environment in which the thermal decomposition takes place. However, most metals tend to form oxides in an oxidizing environment. In the industrial manufacturing process of electrodes, thermal decomposition is usually carried out in the air, and in most cases metal oxides or metal hydroxides are formed. (Formation of the first layer of anode) (Coating step) The first layer 20 is a solution (first coating solution) in which a salt of at least one metal of ruthenium, iridium, and titanium is dissolved (first coating solution) is applied to the electrode substrate for electrolysis, and then thermally decomposed (fired) in the presence of oxygen ) And obtained. The content of ruthenium, iridium, and titanium in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 100 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a sintering furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the second layer) The second layer 30 is formed as required. For example, a solution containing a palladium compound and a platinum compound or a solution containing a ruthenium compound and a titanium compound (the second coating solution) is coated on the first layer 20, and then in the presence of oxygen It is obtained by thermal decomposition under the following conditions. (Formation of the first layer of the cathode using thermal decomposition method) (Coating step) The first layer 20 is obtained by applying a solution (first coating solution) in which various combinations of metal salts are dissolved on the electrode substrate for electrolysis, and then thermally decomposing (baking) in the presence of oxygen. The metal content in the first coating solution is approximately equal to that of the first layer 20. The metal salt may be chloride salt, nitrate salt, sulfate salt, metal alkoxide, or any other form. The solvent of the first coating liquid can be selected according to the type of metal salt, and alcohols such as water and butanol can be used. As the solvent, water or a mixed solvent of water and alcohol is preferred. The total metal concentration in the first coating solution in which the metal salt is dissolved is not particularly limited. In terms of taking into account the thickness of the coating film formed by one coating, it is preferably 10 to 150 g/L range. As a method of applying the first coating solution to the electrode substrate 10 for electrolysis, a dipping method in which the electrode substrate 10 for electrolysis is immersed in the first coating solution can be used, and the first coating can be applied with a brush. The liquid method, the roller method using a sponge roller impregnated with the first coating liquid, the electrostatic coating method of spraying the electrode substrate 10 for electrolysis and the first coating liquid with opposite charges, and the like. Among them, the roller method or the electrostatic coating method, which is excellent in industrial productivity, is preferred. (Drying step, thermal decomposition step) After the first coating solution is applied to the electrode substrate 10 for electrolysis, it is dried at a temperature of 10 to 90°C, and thermally decomposed in a firing furnace heated to 350 to 650°C. It can also be pre-fired at 100-350°C between drying and thermal decomposition as needed. The drying, pre-baking, and thermal decomposition temperatures can be appropriately selected according to the composition of the first coating liquid or the kind of solvent. The time for each thermal decomposition is preferably longer, and from the viewpoint of the productivity of the electrode, it is preferably 3 to 60 minutes, more preferably 5 to 20 minutes. The cycle of coating, drying and thermal decomposition is repeated to form the coating (first layer 20) to a specific thickness. After the first layer 20 is formed, if necessary, if necessary, the post-heating is further performed for a long time, the stability of the first layer 20 can be further improved. (Formation of the middle layer) The intermediate layer is formed as needed. For example, a solution containing a palladium compound or a platinum compound (the second coating liquid) is applied to the substrate and then thermally decomposed in the presence of oxygen. Alternatively, the solution may not be applied and only the substrate is heated, thereby forming an intermediate layer of nickel oxide on the surface of the substrate. (Formation of the first layer of the cathode using ion plating) The first layer 20 may also be formed by ion plating. As an example, a method of fixing a substrate in a chamber and irradiating a metal ruthenium target with an electron beam can be cited. The evaporated metal ruthenium particles are positively charged in the plasma in the chamber and deposited on the negatively charged substrate. The plasma environment is argon and oxygen, and ruthenium is deposited on the substrate in the form of ruthenium oxide. (Formation of the first layer using the plated cathode) The first layer 20 may also be formed by a plating method. As an example, if a substrate is used as a cathode and electrolytic plating is performed in an electrolyte containing nickel and tin, an alloy plating of nickel and tin can be formed. (Formation of the first layer of the cathode using thermal spray) The first layer 20 can also be formed by a thermal spray method. As an example, by spraying the plasma of nickel oxide particles on the substrate, a catalyst layer mixed with metallic nickel and nickel oxide can be formed. Hereinafter, the ion exchange membrane, which is one aspect of the diaphragm, will be described in detail. [Ion Exchange Membrane] The ion exchange membrane is not particularly limited as long as it can be formed into a laminate with the electrode for electrolysis, and various ion exchange membranes can be applied. In the manufacturing method of the electrolytic cell of this embodiment, it is preferable to use a membrane body containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups, and a coating provided on at least one surface of the membrane body Layer of ion exchange membrane. In addition, the coating layer contains inorganic particles and a binder, and the specific surface area of the coating layer is preferably 0.1-10 m2 /g. The gas produced by the ion exchange membrane of this structure during electrolysis has less influence on electrolysis performance, and has a tendency to exert stable electrolysis performance. The membrane system of the above-mentioned so-called perfluorocarbon polymer with ion-exchange groups introduced has ion-exchange groups derived from sulfo groups (with -SO3 - The sulfonic acid layer and the ion exchange group (with -CO) derived from the carboxyl group (hereinafter also referred to as "sulfonic acid group")2 - The represented group is hereinafter also referred to as "carboxylic acid group") any one of the carboxylic acid layer. From the viewpoint of strength and dimensional stability, it is preferable to further have a reinforced core material. Hereinafter, the inorganic particles and the binder will be described in detail in the column of the description of the coating layer. Fig. 120 is a schematic cross-sectional view showing an embodiment of the ion exchange membrane. The ion exchange membrane 1 has: a membrane body 10 containing a hydrocarbon-based polymer or a fluorine-containing polymer having ion exchange groups; and coating layers 11 a and 11 b, which are formed on both sides of the membrane body 10. In the ion exchange membrane 1, the membrane body 10 has an ion exchange group derived from a sulfonic group (with -SO3 - The group represented by the sulfonic acid layer 3, which is also referred to as "sulfonic acid group" hereinafter, and the ion exchange group (with -CO) derived from the carboxyl group2 - The indicated group (hereinafter also referred to as "carboxylic acid group") of the carboxylic acid layer 2 strengthens the strength and dimensional stability by strengthening the core material 4. Since the ion exchange membrane 1 includes the sulfonic acid layer 3 and the carboxylic acid layer 2, it can be suitably used as a cation exchange membrane. Furthermore, the ion exchange membrane may have only any one of a sulfonic acid layer and a carboxylic acid layer. In addition, the ion exchange membrane is not necessarily reinforced by the reinforced core material, and the arrangement state of the reinforced core material is not limited to the example shown in FIG. 120. (Membrane body) First, the membrane main body 10 constituting the ion exchange membrane 1 will be described. The membrane main body 10 may be one that has a function of selectively permeating cations and contains a hydrocarbon-based polymer or a fluorine-containing polymer having an ion exchange group, and its composition and material are not particularly limited, and an appropriate one can be appropriately selected. The hydrocarbon-based polymer or fluorine-containing polymer having ion exchange groups in the membrane body 10 can be obtained, for example, from hydrocarbon-based polymers or fluorine-containing polymers having ion exchange group precursors that can be converted into ion exchange groups by hydrolysis or the like. . Specifically, for example, a polymer that contains a fluorinated hydrocarbon in the main chain and has a group (ion exchange group precursor) that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain and can be melt-processed (hereinafter referred to as the case "Fluorine-containing polymer (a)") After the precursor of the membrane body 10 is produced, the ion exchange group precursor is converted into an ion exchange group, whereby the membrane body 10 can be obtained. The fluorine-containing polymer (a) can be obtained, for example, by copolymerizing at least one monomer selected from the following first group and at least one monomer selected from the following second group and/or the following third group manufacture. In addition, it can also be produced by homopolymerization of one type of monomer selected from the following first group, the following second group, and the following third group. Examples of monomers of the first group include vinyl fluoride compounds. Examples of vinyl fluoride compounds include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, and perfluoroalkyl vinyl ether. Especially when an ion exchange membrane is used as a membrane for alkaline electrolysis, the vinyl fluoride compound is preferably a perfluoro monomer, preferably selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ether. Perfluorinated monomer in the group. Examples of monomers of the second group include vinyl compounds having a functional group convertible into a carboxylic acid type ion exchange group (carboxylic acid group). As a vinyl compound having a functional group that can be converted into a carboxylic acid group, for example, CF2 =CF(OCF2 CYF)s -O(CZF)t -Monomers represented by COOR (here, s represents an integer of 0-2, t represents an integer of 1-12, Y and Z each independently represent F or CF3 , R represents a lower alkyl group. The lower alkyl group is, for example, an alkyl group having 1 to 3 carbon atoms). Among them, it is better to use CF2 =CF(OCF2 CYF)n -O(CF2 )m -COOR said compound. Here, n represents an integer from 0 to 2, m represents an integer from 1 to 4, and Y represents F or CF3 , R stands for CH3 , C2 H5 , Or C3 H7 . Furthermore, when an ion exchange membrane is used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluorinated compound as a monomer, but since the alkyl group of the ester group (refer to the above R) is removed from the polymer during hydrolysis Therefore, the alkyl group (R) may not be a perfluoroalkyl group in which all hydrogen atoms are replaced with fluorine atoms. As the second group of monomers, among the above, the monomers shown below are more preferred. CF2 =CFOCF2 -CF(CF3 )OCF2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )2 COOCH3 , CF2 =CF[OCF2 -CF(CF3 )]2 O(CF2 )2 COOCH3 , CF2 =CFOCF2 CF(CF3 )O(CF2 )3 COOCH3 , CF2 =CFO(CF2 )2 COOCH3 , CF2 =CFO(CF2 )3 COOCH3 . Examples of monomers of the third group include vinyl compounds having a functional group convertible into a sulfonic acid type ion exchange group (sulfonic acid group). As a vinyl compound having a functional group that can be converted into a sulfonic acid group, for example, CF is preferred2 =CFO-X-CF2 -SO2 A monomer represented by F (here, X represents a perfluoroalkylene group). As these specific examples, the monomers etc. shown below can be mentioned. CF2 =CFOCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F. CF2 =CF(CF2 )2 SO2 F. CF2 =CFO[CF2 CF(CF3 )O]2 CF2 CF2 SO2 F. CF2 =CFOCF2 CF(CF2 OCF3 )OCF2 CF2 SO2 F. Among them, CF is more preferred2 =CFOCF2 CF(CF3 )OCF2 CF2 CF2 SO2 F, and CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F. The copolymers obtained from these monomers can be produced by the polymerization method developed for the homopolymerization and copolymerization of vinyl fluoride, especially the usual polymerization method used for tetrafluoroethylene. For example, in the non-aqueous method, inactive solvents such as perfluorocarbons and chlorofluorocarbons can be used in the presence of radical polymerization initiators such as perfluorocarbon peroxides or azo compounds at a temperature of 0 to 200°C , The polymerization reaction is carried out under the pressure of 0.1-20 MPa. In the above-mentioned copolymerization, the type and ratio of the combination of the above-mentioned monomers are not particularly limited, and are selected and determined according to the type and amount of the functional group to be imparted to the obtained fluorine-containing polymer. For example, when a fluorine-containing polymer containing only a carboxylic acid group is used, at least one monomer may be selected from each of the first group and the second group and copolymerized. In addition, in the case of producing a fluorine-containing polymer containing only sulfonic acid groups, at least one monomer may be selected from each of the monomers of the first group and the third group and copolymerized. Furthermore, when making a fluorine-containing polymer having a carboxylic acid group and a sulfonic acid group, at least one monomer is selected from the monomers of the first group, the second group, and the third group to be copolymerized. That's it. In this case, by separately polymerizing the copolymer containing the first group and the second group and the copolymer containing the first group and the third group, and then mixing them together, the desired fluorine-containing polymerization can be obtained. Things. In addition, the mixing ratio of each monomer is not particularly limited. When the amount of functional groups per unit polymer is increased, the ratio of monomers selected from the second group and the third group may be increased. The total ion exchange capacity of the fluorine-containing copolymer is not particularly limited, but is preferably 0.5 to 2.0 mg equivalent/g, more preferably 0.6 to 1.5 mg equivalent/g. Here, the so-called total ion exchange capacity refers to the equivalent of the exchange group per unit weight of the dry resin, which can be measured by neutralization titration or the like. In the membrane body 10 of the ion exchange membrane 1, a sulfonic acid layer 3 containing a fluorine-containing polymer having a sulfonic acid group and a carboxylic acid layer 2 containing a fluorine-containing polymer having a carboxylic acid group are laminated. By forming the membrane body 10 with such a layer structure, the selective permeability of cations such as sodium ions can be further improved. When the ion exchange membrane 1 is arranged in an electrolytic cell, it is usually arranged in such a way that the sulfonic acid layer 3 is located on the anode side of the electrolytic cell and the carboxylic acid layer 2 is located on the cathode side of the electrolytic cell. The sulfonic acid layer 3 is preferably made of a material with low electrical resistance, and from the viewpoint of film strength, it is preferably thicker than the carboxylic acid layer 2. The thickness of the sulfonic acid layer 3 is preferably 2-25 times that of the carboxylic acid layer 2, and more preferably 3-15 times. The carboxylic acid layer 2 is preferably one having high anion repellency even if the film thickness is thin. The anion repellency here refers to the property that hinders the penetration or penetration of anions into the ion exchange membrane 1. In order to improve the anion repellency, it is effective to provide a carboxylic acid layer with a small ion exchange capacity to the sulfonic acid layer. As the fluorine-containing polymer used in the sulfonic acid layer 3, for example, it is suitable to use CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 F is a polymer obtained as the third group of monomers. As the fluorine-containing polymer used in the carboxylic acid layer 2, for example, it is suitable to use CF2 =CFOCF2 CF(CF2 )O(CF2 )2 COOCH3 A polymer obtained as a monomer of the second group. (Coating layer) The ion exchange membrane preferably has a coating layer on at least one surface of the membrane body. Moreover, as shown in FIG. 120, in the ion exchange membrane 1, coating layers 11a and 11b are formed on both surfaces of the membrane body 10, respectively. The coating layer contains inorganic particles and a binder. The average particle diameter of the inorganic particles is more preferably 0.90 μm or more. If the average particle diameter of the inorganic particles is 0.90 μm or more, not only the durability to gas adhesion is greatly improved, but also the durability to impurities is greatly improved. That is, by increasing the average particle diameter of the inorganic particles and satisfying the above-mentioned value of the specific surface area, a particularly remarkable effect can be obtained. In order to satisfy such an average particle diameter and specific surface area, irregular inorganic particles are preferred. Inorganic particles obtained by melting or inorganic particles obtained by crushing rough stones can be used. Preferably, inorganic particles obtained by pulverizing rough stones can be suitably used. In addition, the average particle diameter of the inorganic particles can be 2 μm or less. If the average particle diameter of the inorganic particles is 2 μm or less, damage to the film due to the inorganic particles can be prevented. The average particle diameter of the inorganic particles is more preferably 0.90 to 1.2 μm. Here, the average particle size can be measured with a particle size distribution meter ("SALD2200" Shimadzu Corporation). The shape of the inorganic particles is preferably an irregular shape. The resistance to impurities is further improved. In addition, the particle size distribution of the inorganic particles is preferably wide. The inorganic particles preferably contain at least one inorganic substance selected from the group consisting of oxides of elements of group IV of the periodic table, nitrides of elements of group IV of the periodic table, and carbides of elements of group IV of the periodic table. From the viewpoint of durability, zirconia particles are more preferable. The inorganic particles are preferably inorganic particles produced by pulverizing rough inorganic particles, or spherical particles with uniform particle diameters by melting and refining rough inorganic particles. The rough grinding method is not particularly limited, and examples include ball mills, bead mills, colloid mills, cone mills, disc mills, roller mills, pulverizers, hammer mills, granulators, and VSI mills. Machine, Wiley mill, roller mill, jet mill, etc. Moreover, it is preferable to wash it after pulverization, and as a washing method in this case, acid treatment is preferable. Thereby, impurities such as iron adhering to the surface of the inorganic particles can be reduced. The coating layer preferably contains a bonding agent. The binder is a component that holds the inorganic particles on the surface of the ion exchange membrane and forms the coating layer. From the standpoint of resistance to the electrolyte or the product of electrolysis, the binder preferably contains a fluorine-containing polymer. As the binder, from the viewpoint of resistance to the electrolyte solution or the product of electrolysis, and adhesion to the surface of the ion exchange membrane, a fluorine-containing polymer having a carboxylic acid group or a sulfonic acid group is more preferable. When a coating layer is provided on a layer containing a sulfonic acid group-containing fluoropolymer (sulfonic acid layer), as the binding agent for the coating layer, it is more preferable to use a sulfonic acid group-containing fluorine-containing polymer polymer. In addition, when a coating layer is provided on a layer containing a fluorine-containing polymer having a carboxylic acid group (carboxylic acid layer), as a binder for the coating layer, it is more preferable to use a carboxylic acid group-containing binder. Fluorine-based polymer. The content of the inorganic particles in the coating layer is preferably 40 to 90% by mass, more preferably 50 to 90% by mass. In addition, the content of the binder is preferably 10 to 60% by mass, more preferably 10 to 50% by mass. The distribution density of the coating layer in the ion exchange membrane is preferably per 1 cm2 It is 0.05~2 mg. In addition, when the ion exchange membrane has a concave-convex shape on the surface, the distribution density of the coating layer is preferably per 1 cm2 It is 0.5~2 mg. The method of forming the coating layer is not particularly limited, and a known method can be used. For example, a method of coating a coating liquid obtained by dispersing inorganic particles in a solution containing a binder by spraying or the like can be cited. (Reinforced core material) The ion exchange membrane preferably has a reinforced core material arranged inside the membrane body. The reinforced core material is a component that strengthens the strength or dimensional stability of the ion exchange membrane. By arranging the reinforced core material inside the membrane body, in particular, the expansion and contraction of the ion exchange membrane can be controlled to a desired range. The ion exchange membrane does not expand or contract more than necessary during electrolysis, and can maintain excellent dimensional stability for a long time. The structure of the reinforcing core material is not particularly limited. For example, it can be formed by spinning a yarn called a reinforcing yarn. The term “reinforcing yarn” as a member constituting the reinforced core material here refers to a yarn that can impart the required dimensional stability and mechanical strength to the ion exchange membrane and can stably exist in the ion exchange membrane. By using the reinforced core material made by spinning the reinforced yarn, the ion exchange membrane can be given more excellent dimensional stability and mechanical strength. The material of the reinforcing core material and the reinforcing yarn used is not particularly limited. It is preferably a material resistant to acids or alkalis. In terms of long-term heat resistance and chemical resistance, it is preferable to include Fluorine-containing polymer fiber. As the fluorine-containing polymer used for the reinforced core material, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) ), tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF), etc. Among these, it is preferable to use fibers containing polytetrafluoroethylene, especially from the viewpoint of heat resistance and chemical resistance. The yarn diameter of the reinforcing yarn used for the reinforcing core material is not particularly limited, and is preferably 20 to 300 deniers, more preferably 50 to 250 deniers. The textile density (the number of woven threads per unit length) is preferably 5-50 threads/inch. The form of the reinforcing core material is not particularly limited. For example, woven fabric, non-woven fabric, knitted fabric, etc. can be used, and the form of woven fabric is preferred. In addition, the thickness of the woven fabric used is preferably 30 to 250 μm, more preferably 30 to 150 μm. Monofilament, multifilament or these yarns, cut film yarns, etc. can be used for woven or knitted fabrics, and various weaving methods such as plain weaving, leno weaving, knitting, rib weaving, crepe stripe thin weaving, etc. can be used as the weaving method. The weaving method and arrangement of the reinforced core material in the membrane body are not particularly limited, and the size or shape of the ion exchange membrane, the physical properties required by the ion exchange membrane, and the use environment can be appropriately set to a suitable arrangement. For example, the reinforced core material can be arranged along a specific direction of the film body. From the viewpoint of dimensional stability, it is preferable to arrange the reinforced core material along a specific first direction and along a second direction substantially perpendicular to the first direction. Other reinforced core materials are arranged in the direction. By arranging a plurality of reinforcing core materials substantially in a row inside the longitudinal film body of the film body, more excellent dimensional stability and mechanical strength can be imparted in multiple directions. For example, it is preferable to woven the reinforcing core material (longitudinal yarn) arranged in the longitudinal direction and the reinforcing core material (cross yarn) arranged in the transverse direction on the surface of the film body. From the viewpoints of dimensional stability, mechanical strength and ease of manufacture, it is more preferable to make a plain weave fabric that is woven with longitudinal yarns and weft yarns alternately up and down, or to twist two warp yarns and one side and weave yarns. Interwoven leno fabrics, twill weave fabrics (twill weave) woven by weaving the same number of horizontal yarns in every two or several longitudinal yarns arranged in a parallel yarn arrangement. It is particularly preferable to arrange the reinforced core material along the MD direction (Machine Direction direction) and TD direction (Transverse Direction direction) of the ion exchange membrane. That is, it is preferable to perform plain weaving in the MD direction and the TD direction. Here, the so-called MD direction refers to the direction in which the membrane body or various core materials (for example, reinforced core material, reinforced yarn, sacrificial yarn described below, etc.) are transported in the manufacturing steps of the ion exchange membrane described below (the direction of travel) ), the so-called TD direction refers to the direction substantially perpendicular to the MD direction. In addition, the yarn spun in the MD direction is called MD yarn, and the yarn spun in the TD direction is called TD yarn. Generally, the ion exchange membrane used in electrolysis is rectangular, and the length direction is the MD direction and the width direction is the TD direction in many cases. By knitting as a reinforcing core material for MD yarns and a reinforcing core material for TD yarns, it can provide more excellent dimensional stability and mechanical strength in multiple directions. The arrangement interval of the reinforced core material is not particularly limited, and it can be appropriately arranged in consideration of the physical properties and use environment required for the ion exchange membrane. The aperture ratio of the reinforced core material is not particularly limited, and is preferably 30% or more, more preferably 50% or more and 90% or less. The aperture ratio is preferably 30% or more from the viewpoint of the electrochemical properties of the ion exchange membrane, and preferably 90% or less from the viewpoint of the mechanical strength of the ion exchange membrane. The so-called aperture ratio of the reinforced core material refers to the total area of the surface through which ions and other substances (electrolyte and its cations (for example, sodium ions)) can pass through in the area (A) of any surface of the membrane body (B) The ratio (B/A). The total area (B) of the surface through which ions and other substances can pass can refer to the total area of the area in the ion exchange membrane that is not blocked by the reinforced core material contained in the ion exchange membrane, such as cations or electrolyte. FIG. 121 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. FIG. 121 enlarges a part of the ion exchange membrane and only shows the arrangement of the reinforced core materials 21 and 22 in this area, and the other components are omitted from the illustration. By subtracting the total area of the reinforced core material from the area (A) of the region enclosed by the reinforced core material 21 arranged in the longitudinal direction and the reinforced core material 22 arranged in the horizontal direction, which also includes the area of the reinforced core material ( C), the total area (B) of the area through which ions and other substances can pass in the area (A) of the above-mentioned area can be obtained. That is, the aperture ratio can be calculated by the following formula (I). Aperture ratio=(B)/(A)=((A)-(C))/(A) …(I) Among the reinforced core materials, in terms of chemical resistance and heat resistance, the most preferred form is a ribbon yarn containing PTFE or a highly oriented monofilament. Specifically, it is more preferable to use a reinforced core material that uses a ribbon-shaped yarn obtained by cutting a high-strength porous sheet containing PTFE into a ribbon shape, or a highly aligned monofilament containing PTFE 50 to 300 The thickness of a plain weave fabric with denier weaving density of 10-50 pieces/inch is in the range of 50-100 μm. The aperture ratio of the ion exchange membrane containing the reinforced core material is more preferably 60% or more. Examples of the shape of the reinforcing yarn include round yarn and ribbon yarn. (Connecting hole) The ion exchange membrane preferably has a communication hole inside the membrane body. The so-called communicating hole refers to a hole that can become a flow path for ions or electrolyte generated during electrolysis. In addition, the so-called communicating hole is a tubular hole formed inside the membrane body, which is formed by the elution of the sacrificial core material (or sacrificial yarn) described below. The shape or diameter of the communicating hole can be controlled by selecting the shape or diameter of the sacrificial core material (sacrificial yarn). By forming connecting holes in the ion exchange membrane, the mobility of the electrolyte can be ensured during electrolysis. The shape of the communicating hole is not particularly limited. According to the manufacturing method described below, the shape of the sacrificial core material used to form the communicating hole can be made. The communicating holes are preferably formed so as to alternately pass through the anode side (sulfonic acid layer side) and the cathode side (carboxylic acid layer side) of the reinforced core material. With this structure, the portion where the communicating hole is formed on the cathode side of the reinforced core material, the ions (for example, sodium ions) transported by the electrolyte filled with the communicating hole can also flow to the cathode side of the reinforced core material. As a result, since the flow of cations is not blocked, the resistance of the ion exchange membrane can be further reduced. The communication holes can be formed only along a specific direction of the membrane body constituting the ion exchange membrane. From the viewpoint of exerting more stable electrolytic performance, it is preferably formed along the longitudinal and transverse directions of the membrane body. [Production method] As a suitable manufacturing method of the ion exchange membrane, a method having the following steps (1) to (6) can be cited. (1) Step: A step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (2) Step: by weaving at least a plurality of reinforced core materials and sacrificial yarns that are soluble in acid or alkali and form communicating holes as necessary to obtain reinforcement with sacrificial yarns arranged between adjacent reinforced core materials Material steps. (3) Step: A step of filming the above-mentioned fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be hydrolyzed into an ion exchange group. (4) Step: a step of embedding the above-mentioned reinforcing material in the above-mentioned film as necessary to obtain a film body in which the above-mentioned reinforcing material is arranged inside. (5) Step: a step of hydrolyzing the membrane body obtained in step (4) (hydrolysis step). (6) Step: a step of providing a coating layer on the film body obtained in step (5) (coating step). Hereinafter, each step will be described in detail. (1) Step: Step of manufacturing fluorine-containing polymer In step (1), a fluorine-containing polymer is produced using the monomers of the raw materials described in the first to third groups. In order to control the ion exchange capacity of the fluorine-containing polymer, the mixing ratio of the monomers of the raw materials may be adjusted during the production of the fluorine-containing polymer forming each layer. (2) Steps: manufacturing steps of reinforcing materials The so-called reinforcing material refers to the weaving of textile reinforcing yarn. The reinforced core material is formed by embedding the reinforcing material in the film. When making the ion exchange membrane with communicating holes, the sacrificial yarn is also woven into the reinforcing material. In this case, the mixing amount of the sacrificial yarn is preferably 10 to 80% by mass of the entire reinforcing material, and more preferably 30 to 70% by mass. By weaving the sacrificial yarn, it is also possible to prevent the reinforcing core material from coming off the thread. The sacrificial yarn is soluble in the production process of the film or in the electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, etc. can be used. In addition, it is also preferably a polyvinyl alcohol having a thickness of 20-50 deniers, containing monofilament or multifilament, and the like. Furthermore, in step (2), the opening ratio or the arrangement of the communicating holes can be controlled by adjusting the arrangement of the reinforcing core material or the sacrificial yarn. (3) Step: Filming step In step (3), the fluorine-containing polymer obtained in step (1) above is formed into a film using an extruder. The film may have a single-layer structure, or a two-layer structure of a sulfonic acid layer and a carboxylic acid layer as described above, or a multilayer structure of three or more layers. As a method of film formation, the following can be mentioned, for example. A method of separately filming fluoropolymers with carboxylic acid groups and fluoropolymers with sulfonic acid groups. A method of forming a composite film of a fluoropolymer with a carboxylic acid group and a fluoropolymer with a sulfonic acid group by coextrusion. Furthermore, the film may be a plurality of pieces, respectively. In addition, co-extrusion of dissimilar films helps to increase the bonding strength of the interface, so it is preferable. (4) Steps: Steps to obtain the membrane body In step (4), by embedding the reinforcing material obtained in step (2) into the film obtained in step (3), the film body with the reinforcing material inside is obtained. A preferred method for forming the film body includes: (i) Coextrusion is used to co-extrusion a fluorine-containing polymer having a carboxylic acid group precursor (for example, a carboxylic acid ester functional group) on the cathode side (hereinafter referred to as The layer containing it is called the first layer) and a fluorine-containing polymer having a sulfonic acid group precursor (for example, a sulfonic fluorine functional group) (hereinafter the layer containing it is called the second layer) is formed into a film, depending on It is necessary to use a heating source and a vacuum source to interpose the air-permeable and heat-resistant release paper to laminate the reinforcing material and the second layer/first layer composite film in sequence on a flat plate or a rotating drum with a large number of pores on the surface. At the temperature at which each polymer is melted, the air between the layers is removed by reducing pressure while integrating; (ii) Different from the second layer/first layer composite film, the precursors with sulfonic acid groups are preliminarily The fluorine-containing polymer (third layer) is formed into a film separately, and a heating source and a vacuum source are used as necessary. The third layer of film, the reinforced core material, and the second layer are separated by air-permeable and heat-resistant release paper. The layer/first layer composite film is sequentially laminated on a flat plate or a rotating drum with a large number of pores on the surface, and at the temperature at which each polymer is melted, the air between each layer is removed by reducing the pressure while being integrated. Here, co-extruding the first layer and the second layer helps to improve the bonding strength of the interface. In addition, the method of integrating under reduced pressure has the characteristic that the thickness of the third layer on the reinforcing material becomes larger than that of the pressurizing method. Furthermore, since the reinforcing material is fixed to the inner surface of the membrane body, it has the ability to sufficiently maintain the mechanical strength of the ion exchange membrane. Furthermore, the variation of the laminated layer described here is an example. Considering the layer composition or physical properties of the film body required, a suitable laminated pattern (for example, the combination of each layer, etc.) can be appropriately selected before co-extrusion. Furthermore, in order to further improve the electrical performance of the ion exchange membrane, a fluorine-containing polymer containing both a carboxylic acid group precursor and a sulfonic acid group precursor may be further interposed between the first layer and the second layer Or use a fourth layer containing a fluorine-containing polymer having both a carboxylic acid group precursor and a sulfonic acid group precursor instead of the second layer. The formation method of the fourth layer can be a method of separately manufacturing a fluorine-containing polymer having a carboxylic acid group precursor and a fluorine-containing polymer having a sulfonic acid group precursor, and then mixing them, or a method of using a carboxylic acid group A method of copolymerizing the monomer of the precursor and the monomer having the sulfonic acid group precursor. When the fourth layer is made into an ion exchange membrane, the co-extruded film of the first layer and the fourth layer can be formed, and the third layer and the second layer are separated from them for film formation. The method described in the article is laminated, and the three layers of the first layer/the fourth layer/the second layer can also be co-extruded at one time to form a film. In this case, the direction of travel of the extruded film is the MD direction. Thus, the membrane body containing the fluorine-containing polymer having ion exchange groups can be formed on the reinforcing material. In addition, the ion exchange membrane preferably has a projecting portion including a fluorine-containing polymer having a sulfonic acid group, that is, a convex portion, on the surface side including the sulfonic acid layer. The method of forming such protrusions is not particularly limited, and a known method of forming protrusions on the resin surface can be adopted. Specifically, for example, a method of embossing the surface of the film body can be cited. For example, when integrating the above-mentioned composite film with a reinforcing material, etc., the above-mentioned protrusions can be formed by using a release paper that has been embossed in advance. In the case of forming convex portions by embossing, the height or arrangement density of the convex portions can be controlled by controlling the embossing shape (shape of release paper) to be transferred. (5) Hydrolysis step In step (5), a step of hydrolyzing the membrane body obtained in step (4) to convert ion exchange group precursors into ion exchange groups (hydrolysis step) is performed. In addition, in step (5), by dissolving and removing the sacrificial yarn contained in the membrane body with acid or alkali, dissolution holes can be formed in the membrane body. Furthermore, the sacrificial yarn may not be completely dissolved and removed, but remains in the communicating holes. In addition, the sacrificial yarn remaining in the communicating hole can be dissolved and removed by the electrolyte when the ion exchange membrane is used for electrolysis. The sacrificial yarn is soluble in acid or alkali in the manufacturing process of the ion exchange membrane or in an electrolytic environment. The sacrificial yarn is eluted to form a communicating hole in the part. Step (5) can be carried out by immersing the membrane body obtained in step (4) in a hydrolysis solution containing acid or alkali. As the hydrolysis solution, for example, a mixed solution containing KOH and DMSO (Dimethyl sulfoxide) can be used. The mixed solution preferably contains 2.5 to 4.0 N KOH and 25 to 35% by mass of DMSO. The temperature of hydrolysis is preferably 70 to 100°C. The higher the temperature, the thicker the apparent thickness. More preferably, it is 75-100°C. The time for hydrolysis is preferably 10 to 120 minutes. The longer the time, the thicker the apparent thickness. More preferably, it is 20 to 120 minutes. Here, the step of forming communication holes by eluting the sacrificial yarn is described in further detail. Figures 122 (a) and (b) are schematic diagrams for explaining the method of forming the communicating holes of the ion exchange membrane. In FIGS. 122(a) and (b), only the reinforcing yarn 52, the sacrificial yarn 504a, and the communication hole 504 formed by the sacrificial yarn 504a are shown, and other members such as the membrane body are not shown. First, the reinforcing yarn 52 constituting the reinforcing core material in the ion exchange membrane and the sacrificial yarn 504a used to form the communicating hole 504 in the ion exchange membrane are made into a knitted-in reinforcing material. Then, in step (5), the communication hole 504 is formed by eluting the sacrificial yarn 504a. According to the above method, the knitting method of the reinforcing yarn 52 and the sacrificial yarn 504a can be adjusted according to how the reinforcing core material and the communicating holes are arranged in the membrane body of the ion exchange membrane, so it is relatively simple. In Fig. 122(a), an example is shown on the paper as a reinforcing material for plain weaving in which the reinforcing yarn 52 and the sacrificial yarn 504a are woven in the longitudinal and transverse directions. The arrangement of the reinforcing yarn 52 and the sacrificial yarn 504a in the reinforcing material may be changed as needed . (6) Coating steps In step (6), a coating solution containing inorganic particles obtained by crushing or melting the rough stone and a binder is prepared, and the coating solution is applied to the surface of the ion exchange membrane obtained in step (5) and dried , Thereby forming a coating layer. As a binding agent, it is preferable to hydrolyze the fluorine-containing polymer with ion exchange group precursor in an aqueous solution containing dimethyl sulfide (DMSO) and potassium hydroxide (KOH), and then immerse in hydrochloric acid to exchange the ion. The counter ion of the base is replaced with H+ The resulting binder (for example, a fluorine-containing polymer with a carboxyl group or a sulfo group). By this, it becomes easy to dissolve in water or ethanol as described below, which is preferable. The binder is dissolved in a solution of mixing water and ethanol. Furthermore, the preferred volume ratio of water to ethanol is 10:1 to 1:10, more preferably 5:1 to 1:5, and even more preferably 2:1 to 1:2. The inorganic particles are dispersed in the thus-obtained dissolving liquid by a ball mill to obtain a coating liquid. At this time, the average particle size of the particles can also be adjusted by adjusting the time and rotation speed during dispersion. Furthermore, the preferred blending amounts of the inorganic particles and the binding agent are as described above. The concentration of the inorganic particles and the binder in the coating liquid is not particularly limited, but it is preferably made into a thin coating liquid. Thereby, it can be uniformly coated on the surface of the ion exchange membrane. In addition, when dispersing inorganic particles, a surfactant may be added to the dispersion. The surfactant is preferably a nonionic surfactant, and examples thereof include HS-210, NS-210, P-210, and E-212 manufactured by NOF Corporation. The ion exchange membrane can be obtained by coating the obtained coating liquid on the surface of the ion exchange membrane by spray coating or roller coating. [Microporous membrane] The microporous membrane of this embodiment is not particularly limited as long as it can be formed into a laminate with an electrode for electrolysis as described above, and various microporous membranes can be applied. The porosity of the microporous membrane of this embodiment is not particularly limited, and it can be set to 20-90, preferably 30-85, for example. The above-mentioned porosity can be calculated by the following formula, for example. Porosity=(1-(film weight in dry state)/(weight calculated from the volume calculated from the thickness, width and length of the film and the density of the film material))×100 The average pore diameter of the microporous membrane of this embodiment is not particularly limited, and it can be, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm. The average pore diameter is, for example, the film is cut vertically in the thickness direction, and the cut surface is observed by FE-SEM. The diameter of the hole to be observed is measured at about 100 points and the average value is obtained to obtain the average pore diameter. The thickness of the microporous film of the present embodiment is not particularly limited, and it can be set to, for example, 10 μm to 1000 μm, and preferably 50 μm to 600 μm. The above-mentioned thickness can be measured using a micrometer (manufactured by Mitutoyo Co., Ltd.) or the like, for example. Specific examples of the above-mentioned microporous membrane include those described in Zilfon Perl UTP 500 manufactured by Agfa, International Publication No. 2013-183584, International Publication No. 2016-203701, and the like. In the manufacturing method of the electrolytic cell of this embodiment, it is preferable that the diaphragm includes a first ion exchange resin layer and a second ion exchange resin layer having an EW (ion exchange equivalent) different from the first ion exchange resin layer. Furthermore, it is preferable that the separator includes a first ion exchange resin layer and a second ion exchange resin layer having a functional group different from the first ion exchange resin layer. The ion exchange equivalent can be adjusted by the introduced functional group, and the introduced functional group is as described above. (Water electrolysis) The electrolytic cell in the case of performing water electrolysis in this embodiment has a configuration in which the ion exchange membrane in the electrolytic cell in the case of performing salt electrolysis is changed to a microporous membrane. In addition, the electrolytic cell is different from the electrolytic cell in the case of salt electrolysis described above in that the supplied raw material is water. Regarding other configurations, the electrolytic cell in the case of water electrolysis can also have the same configuration as the electrolytic cell in the case of salt electrolysis. In the case of salt electrolysis, because chlorine is generated in the anode chamber, titanium is used as the material of the anode chamber. In the case of water electrolysis, since only oxygen is generated in the anode chamber, the same material as the cathode chamber can be used. For example, nickel etc. can be mentioned. In addition, the anode coating is suitably a catalyst coating for oxygen generation. Examples of the catalyst coating include metals of the platinum group and transition metal group, oxides, hydroxides, and the like. For example, platinum, iridium, palladium, ruthenium, nickel, cobalt, iron and other elements can be used. [Example] The following examples and comparative examples illustrate the present invention in further detail, but the present invention is not limited in any way by the following examples. <Verification of the first embodiment> As follows, prepare experimental examples corresponding to the first embodiment (referred to as "Examples" in the section "Verification of the first embodiment" below) and experimental examples not corresponding to the first embodiment ( In the section of the following <Verification of the first embodiment>, it is simply referred to as "comparative example"), and these were evaluated by the following methods. The details will be described with reference to FIGS. 10 to 21 as appropriate. [Evaluation method] (1) Hole rate Cut the electrode into a size of 130 mm×100 mm. Use an electronic digital thickness gauge (manufactured by Mitutoyo Co., Ltd., display at least 0.001 mm) to measure 10 points uniformly in the plane and calculate the average value. Use this as the thickness of the electrode (gauge thickness) to calculate the volume. After that, use an electronic balance to measure the mass, according to the specific gravity of the metal (specific gravity of nickel = 8.908 g/cm3 、The specific gravity of titanium = 4.506 g/cm3 ) Calculate the open porosity or porosity. Porosity (void ratio) (%) = (1-(electrode mass) / (electrode volume × metal specific gravity)) × 100 (2) Mass per unit area (mg/cm2 ) Cut the electrode into a size of 130 mm×100 mm, and measure the mass with an electronic balance. Divide this value by the area (130 mm×100 mm) to calculate the mass per unit area. (3) Force per unit mass and unit area (1) (Adhesive force) (N/mg・cm2 )) [Method (i)] The measurement system uses a tensile and compression testing machine (Imada Manufacturing Co., Ltd., testing machine body: SDT-52NA tensile and compression testing machine, load meter: SL-6001 load meter). The 1.2 mm thick and 200 mm square nickel plate is sprayed with alumina with grain number 320. The arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.7 μm. Here, the surface roughness measurement uses a stylus-type surface roughness measuring machine SJ-310 (Mitutoyo Co., Ltd.). The measurement sample is set on a platform parallel to the ground, and the arithmetic average roughness Ra is measured under the following measurement conditions. When the measurement was performed 6 times, the average value was recorded. <Shape of the stylus> Cone, cone angle = 60°, tip radius = 2 μm, static measuring force = 0.75 mN <Roughness standard> JIS2001 <Evaluation curve> R <Filter>GAUSS <Critical value λc>0.8 mm <Critical value λs>2.5 μm <Number of intervals>5 <Front sweep, back sweep> Yes The nickel plate was fixed to the chuck on the lower side of the tensile and compression testing machine in a vertical manner. The following ion exchange membrane A was used as the diaphragm. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made by twisting 35 denier and 6 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with a particle diameter of 1 μm was added to a 5 mass% ethanol solution of the acid resin of resin B and dispersed to prepare a suspension, and the two sides of the composite film were sprayed by the suspension spray method. Spraying is performed to form a coating of zirconia on the surface of the composite membrane to obtain ion exchange membrane A. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . In addition, the average particle diameter was measured with a particle size distribution meter ("SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). The ion exchange membrane (diaphragm) obtained above was immersed in pure water for more than 12 hours and then used for the test. It is brought into contact with the above-mentioned nickel plate fully wetted with pure water, and bonding is carried out by the tension of the water. At this time, the position of the nickel plate and the upper end of the ion exchange membrane are aligned. The electrode sample (electrode) for electrolysis used in the measurement was cut into 130 mm squares. The ion exchange membrane A is cut into 170 mm squares. Two stainless steel plates (thickness: 1 mm, length: 9 mm, and width: 170 mm) sandwiched one side of the electrode, aligned with the center of the stainless steel plate and the electrode, and fixed evenly with 4 clamps. Clamp the center of the stainless steel plate to the chuck on the upper side of the tensile and compression testing machine, and hang the electrode. At this time, set the load on the testing machine to 0 N. Temporarily remove the stainless steel plate, electrode, and jig integrated from the tensile and compression tester, and immerse it in a tank containing pure water in order to fully wet the electrode with pure water. After that, the center of the stainless steel plate was again clamped to the chuck on the upper side of the tensile and compression testing machine, and the electrode was suspended. Lower the chuck on the upper side of the tensile and compression tester, and use the surface tension of pure water to adhere the electrode sample for electrolysis to the surface of the ion exchange membrane. At this time, the bonding surface is 130 mm in width and 110 mm in length. Blow the pure water filled in the washing bottle to the electrode and ion exchange membrane as a whole to make the diaphragm and the electrode fully wet again. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and roll it from top to bottom to remove the excess Pure water removal. The roller is applied only once. The electrode is raised at a speed of 10 mm/min, and the load measurement is started. The overlap between the recording electrode and the diaphragm becomes the load when the width is 130 mm and the length is 100 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapped portion of the electrode and the ion exchange membrane and the electrode mass of the overlapped portion of the ion exchange membrane to calculate the force per unit mass·unit area (1). The mass of the electrode overlapping with the ion exchange membrane is based on the mass per unit area (mg/cm2 The value obtained in) is calculated by proportional calculation. The environment of the measuring room is a temperature of 23±2℃ and a relative humidity of 30±5%. Furthermore, the electrodes used in the examples and comparative examples can be adhered independently without sagging or peeling when they are adhered to the ion exchange membrane of the vertically fixed nickel plate by surface tension. Furthermore, a schematic diagram of the evaluation method of endurance (1) is shown in FIG. 10. Furthermore, the lower limit of measurement by the tensile tester is 0.01 (N). (4) Force per unit mass and unit area (2) (Adhesive force) (N/mg・cm2 )) [Method (ii)] The measurement system uses a tensile and compression testing machine (Imada Manufacturing Co., Ltd., testing machine body: SDT-52NA tensile and compression testing machine, load meter: SL-6001 load meter). Fix the same nickel plate as the method (i) to the chuck on the lower side of the tensile and compression testing machine in a vertical manner. The electrode sample (electrode) for electrolysis used in the measurement was cut into 130 mm squares. The ion exchange membrane A is cut into 170 mm squares. Two stainless steel plates (thickness: 1 mm, length: 9 mm, and width: 170 mm) sandwiched one side of the electrode, aligned with the center of the stainless steel plate and the electrode, and fixed evenly with 4 clamps. Clamp the center of the stainless steel plate to the chuck on the upper side of the tensile and compression testing machine, and hang the electrode. At this time, set the load on the testing machine to 0 N. Temporarily remove the stainless steel plate, electrode, and jig integrated from the tensile and compression tester, and immerse it in a tank containing pure water in order to fully wet the electrode with pure water. After that, the center of the stainless steel plate was again clamped to the chuck on the upper side of the tensile and compression testing machine, and the electrode was suspended. The upper chuck of the tensile-compression tester was lowered, and the electrode sample for electrolysis was adhered to the surface of the nickel plate by the surface tension of the solution. At this time, the bonding surface is 130 mm in width and 110 mm in length. Blow the pure water in the washing bottle to the electrode and the nickel plate to make the nickel plate and the electrode fully wet again. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and roll it from top to bottom to remove the excess The solution is removed. The roller is applied only once. The electrode is raised at a speed of 10 mm/min, and the load measurement is started. The load when the longitudinal overlap between the recording electrode and the nickel plate reaches 100 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapped portion of the electrode and the nickel plate and the electrode mass of the overlapped portion of the nickel plate to calculate the force per unit mass·unit area (2). The mass of the electrode that overlaps the diaphragm is based on the mass per unit area (mg/cm2 The value obtained in) is calculated by proportional calculation. In addition, the environment of the measurement room is 23±2°C and relative humidity 30±5%. Furthermore, when the electrodes used in the examples and comparative examples are adhered to a vertically fixed nickel plate by surface tension, they can be adhered independently without sagging or peeling. Furthermore, the lower limit of measurement by the tensile tester is 0.01 (N). (5) Evaluation method for cylindrical winding with a diameter of 280 mm (1) (%) (Membrane and cylinder) Implement the evaluation method (1) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In Comparative Examples 10 and 11, the electrode was integrated with the ion exchange membrane by hot pressing, so a body of the ion exchange membrane and the electrode (electrode system 130 mm square) was prepared. After fully immersing the ion exchange membrane in pure water, place it on the curved surface of a plastic (polyethylene) tube with an outer diameter of 280 mm. After that, the excess solution was removed by a roll formed by winding an independently foamed EPDM sponge rubber with a thickness of 5 mm on a vinyl chloride tube (outer diameter of 38 mm). The roller rolls on the ion exchange membrane from the left side to the right side of the schematic diagram shown in FIG. 11. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane is in close contact with the plastic tube electrode with an outer diameter of 280 mm. (6) Evaluation method for cylindrical winding with a diameter of 280 mm (2) (%) (Membrane and electrode) Implement the evaluation method (2) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square, and cut the electrode into a 130 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. The ion exchange membrane and electrode are fully immersed in pure water and then laminated. Place the laminated body on the curved surface of a plastic (polyethylene) tube with an outer diameter of 280 mm so that the electrode becomes the outer side. After that, the vinyl chloride tube (outer diameter 38 mm) is wound with a 5 mm thick independent foaming type EPDM sponge rubber roller and gently press from the top of the electrode, and from the left side of the schematic diagram shown in Figure 12 Roll to the right to remove excess solution. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane and the electrode are in close contact. (7) 145 mm diameter cylindrical winding evaluation method (3) (%) (Membrane and electrode) Implement the evaluation method (3) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square, and cut the electrode into a 130 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. The ion exchange membrane and electrode are fully immersed in pure water and then laminated. Place the laminated body on the curved surface of a plastic (polyethylene) tube with an outer diameter of 145 mm in such a way that the electrode becomes the outer side. After that, the vinyl chloride tube (outer diameter 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and from the left side of the schematic diagram shown in Figure 13 Roll to the right to remove excess solution. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane and the electrode are in close contact. (8)Operability (sensing evaluation) (A) Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into 170 mm square size, and cut the electrode into 95×110 mm. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In each embodiment, the ion exchange membrane and the electrode were fully immersed in three solutions of sodium bicarbonate aqueous solution, 0.1 N NaOH aqueous solution, and pure water before being laminated, and then placed on a Teflon plate. The interval between the anode cell and the cathode cell used in the electrolytic evaluation was set to about 3 cm, and the static laminate was lifted up and inserted and sandwiched between them. When performing this operation, check whether the electrode is deviated or dropped while operating. (B) Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into 170 mm square size, and cut the electrode into 95×110 mm. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In each embodiment, the ion exchange membrane and the electrode were fully immersed in three solutions of sodium bicarbonate aqueous solution, 0.1 N NaOH aqueous solution, and pure water before being laminated, and then placed on a Teflon plate. Hold the two adjacent corners of the film portion of the laminated body and lift it up so that the laminated body becomes vertical. From this state, move the two hand-held corners close to each other to make the film convex or concave. Repeat this operation one more time to confirm the followability of the electrode to the membrane. Based on the following indicators, the results are evaluated on 4 levels from 1 to 4. 1: Good operation 2: Able to operate 3: Difficulty in operation 4: Generally unable to operate Here, the sample of Comparative Example 5 was operated with the same size as a large electrolytic cell with an electrode of 1.3 m×2.5 m and an ion exchange membrane of 1.5 m×2.8 m. The evaluation result of Comparative Example 5 (hereinafter referred to as "3") is used as an index to evaluate the difference between the evaluation of the above (A) and (B) and the large size. That is, when the result obtained by evaluating the small-sized laminate is "1" or "2", it is evaluated that there is no problem with the operability even when it is made into a large size. (9) Electrolysis evaluation (voltage (V), current efficiency (%), salt concentration in caustic soda (ppm, 50% conversion)) The electrolysis performance was evaluated by the following electrolysis experiment. A titanium anode cell (anode terminal cell) having an anode chamber provided with an anode was opposed to a cathode cell having a nickel cathode chamber (cathode terminal cell) provided with a cathode. A pair of gaskets are arranged between the cells, and the laminate (the laminate of the ion exchange membrane A and the electrode for electrolysis) is sandwiched between the pair of gaskets. Then, the anode cell, the gasket, the laminate, the gasket, and the cathode are closely adhered to obtain an electrolytic cell, and an electrolytic cell containing the electrolytic cell is prepared. As the anode, it is produced by coating a mixed solution of ruthenium chloride, iridium chloride, and titanium tetrachloride on a titanium substrate that has been sprayed and acid-etched as a pretreatment, followed by drying and firing. The anode is fixed to the anode chamber by welding. As the cathode, those described in the respective Examples and Comparative Examples were used. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the nickel net with a 40-mesh mesh and flat-woven nickel wire with a diameter of 150 μm. The four corners of the Ni net are fixed to the current collector by a rope made of Teflon (registered trademark). Use this Ni net as a power feeder. In the electrolytic cell, the repulsive force of the pad as a metal elastic body is used to form a zero-spacing structure. As the gasket, a rubber gasket made of EPDM (Ethylene Propylene Diene) is used. As the diaphragm, the ion exchange membrane A (160 mm square) made in [Method (i)] was used. Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 90°C. At current density 6 kA/m2 Under the implementation of salt electrolysis, the voltage, current efficiency, and salt concentration in caustic soda were measured. Here, the so-called current efficiency is the ratio of the amount of caustic soda generated to the current flowing. If the current flowing, impurity ions or hydroxide ions instead of sodium ions move in the ion exchange membrane, the current efficiency reduce. Current efficiency is calculated by dividing the molar number of caustic soda generated in a certain period of time by the molar number of electrons flowing in between. The molar number of caustic soda is obtained by recovering the caustic soda produced by electrolysis in a polymer tank and measuring its mass. The salt concentration in caustic soda means the value obtained by converting the concentration of caustic soda to 50%. In addition, the specifications of electrodes and power feeders used in Examples and Comparative Examples are shown in Table 1. (11) Measurement of the thickness of the catalyst layer, the electrode substrate for electrolysis, and the thickness of the electrode The thickness of the electrode substrate for electrolysis is measured uniformly at 10 points in the plane using an electronic digital thickness gauge (manufactured by Mitutoyo Co., Ltd., with a minimum display of 0.001 mm) and the average value is calculated. This is used as the thickness of the electrode substrate for electrolysis (gauge thickness). The thickness of the electrode is uniformly measured at 10 points in the plane with an electronic digital thickness gauge similar to the electrode base material, and the average value is calculated. Use this as the electrode thickness (gauge thickness). The thickness of the catalyst layer is calculated by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. (12) Electrode elastic deformation test Cut the ion exchange membrane A (diaphragm) and electrode made in [Method (i)] into a size of 110 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. Under the conditions of a temperature of 23±2°C and a relative humidity of 30±5%, the ion exchange membrane and the electrode are overlapped to form a laminate, and then wound to an outer diameter of ϕ32 mm without gaps as shown in Figure 14. PVC pipe with a length of 20 cm. In order to prevent the wound laminate from peeling or loosening from the PVC pipe, a polyethylene strapping is used to fix it. Keep in this state for 6 hours. After that, the strap was removed, and the laminate was unwound from the PVC pipe. Only place the electrode on the platform and measure the height L of the part raised from the platform1 , L2 And find the average. Use this value as an indicator of electrode deformation. That is, a small value means that it is difficult to deform. Furthermore, when using porous metal, there are two types of SW direction and LW direction during winding. In this test, it is wound in the SW direction. In addition, for the deformed electrode (the electrode that did not return to the original flat state), the softness after plastic deformation was evaluated by the method shown in FIG. 15. That is, the deformed electrode is placed on a diaphragm fully immersed in pure water, one end is fixed, the opposite end of the floating is pressed against the diaphragm, the force is released, and whether the deformed electrode follows the diaphragm is evaluated. . (13) Evaluation of membrane damage The following ion exchange membrane B was used as the diaphragm. As the reinforcing core material, a polytetrafluoroethylene (PTFE) and a ribbon yarn of 100 denier twisted at 900 times/m to form a yarn shape (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn of the warp, a yarn obtained by twisting 35 denier and 8 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. In addition, as the sacrificial yarn of the weft, a yarn obtained by twisting 35 denier and 8 filaments of polyethylene terephthalate (PET) at 200 times/m was used. First, PTFE yarns are arranged at 24 yarns/inch and two sacrificial yarns are arranged between adjacent PTFE yarns to perform plain weaving to obtain a woven fabric with a thickness of 100 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.92 mg equivalent/g dry resin polymer (A1), CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of the copolymer of F is 1.10 mg equivalent/g of dry resin polymer (B1). Using these polymers (A1) and (B1), a two-layer film X with a polymer (A1) layer thickness of 25 μm and a polymer (B1) layer thickness of 89 μm was obtained by co-extrusion T-die method . Furthermore, the ion exchange capacity of each polymer indicates the ion exchange capacity when the ion exchange group precursor of each polymer is hydrolyzed to convert it into an ion exchange group. Also, separately prepare to use CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of F copolymer is 1.10 mg equivalent/g of dry resin polymer (B2). The polymer monolayer was extruded to obtain a 20 μm film Y. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on the surface is laminated with release paper, film Y, reinforcing material, and film X in this order. The temperature of the heating plate is 225°C and the pressure reduction is 0.022 MPa. After heating and reducing pressure for 2 minutes, the release paper was removed, thereby obtaining a composite film. The obtained composite membrane was saponified by immersing the obtained composite membrane in an aqueous solution containing dimethyl sulfoxide (DMSO) and potassium hydroxide (KOH) for 1 hour, and then immersed in 0.5 N NaOH for 1 hour to remove the ion exchange group. The attached ions were replaced with Na, and then washed with water. It was further dried at 60°C. Also, it will be CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 After the polymer (B3) of the dry resin with an ion exchange capacity of 1.05 mg equivalent/g as the copolymer of F is hydrolyzed, it is made into an acid form with hydrochloric acid. The acid type polymer (B3') is dissolved in a 50/50 (mass ratio) mixture of water and ethanol at a ratio of 5% by mass, and the polymer (B3') and zirconium oxide Zirconium oxide particles with an average particle diameter of 0.02 μm of primary particles are added so that the mass ratio of the particles becomes 20/80. After that, it was dispersed in a suspension of zirconia particles by a ball mill to obtain a suspension. The suspension was coated on both surfaces of the ion exchange membrane by a spraying method and dried, thereby obtaining an ion exchange membrane B having a coating layer containing a polymer (B3') and zirconia particles. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.35 mg/cm2 . As the anode system, the same as (9) electrolytic evaluation was used. As the cathode, those described in the respective examples and comparative examples were used. The current collector, pad and feed system of the cathode chamber are the same as those used in (9) electrolysis evaluation. That is, the Ni mesh is used as the power feeder, and the repulsive force of the pad as the metal elastic body is used to form a zero pitch structure. The gasket was also used the same as (9) electrolytic evaluation. As the diaphragm, the ion exchange membrane B produced by the above-mentioned method was used. That is, except that the laminate of the ion exchange membrane B and the electrode for electrolysis is sandwiched between a pair of gaskets, the same electrolytic cell as in (9) is prepared. Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 70°C. At current density 8 kA/m2 Under the implementation of salt electrolysis. After 12 hours from the start of the electrolysis, the electrolysis was stopped, and the ion exchange membrane B was taken out to observe the damage state. "0" means no damage. "1 to 3" means there is damage, the larger the number, the greater the degree of damage. (14) Ventilation resistance of electrodes The ventilation resistance of the electrode was measured using a ventilation tester KES-F8 (trade name, Kato Tech Co., Ltd.). The unit of ventilation resistance is kPa·s/m. The measurement was performed 5 times, and the average value is shown in Table 2. The measurement is carried out under the following two conditions. Furthermore, the temperature of the measuring room is set to 24°C, and the relative humidity is set to 32%. ・Measurement condition 1 (ventilation resistance 1) Piston speed: 0.2 cm/s Ventilation volume: 0.4 cc/cm2 /s Measuring range: SENSE L (low) Sample size: 50 mm×50 mm ・Measurement condition 2 (ventilation resistance 2) Piston speed: 2 cm/s Ventilation: 4 cc/cm2 /s Measuring range: SENSE M (medium) or H (high) Sample size: 50 mm×50 mm [Example 1] As an electrode substrate for cathodic electrolysis, an electrolytic nickel foil with a gauge thickness of 16 μm was prepared. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 49%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the electrode fabricated in Example 1 is 24 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Also, it is the total thickness of ruthenium oxide and cerium oxide. Table 2 shows the measurement results of the adhesive force of the electrode produced by the above method. Sufficient adhesion was observed. Implementation of the electrode deformation test, the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. Between the roughened surface of the electrode and the approximate center of the carboxylic acid layer side of the ion exchange membrane A (dimensions 160 mm×160 mm) produced in [Method (i)] which is equilibrated with 0.1 N NaOH aqueous solution The positions are opposite, and the surface tension of the aqueous solution makes them close together. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The above-mentioned membrane-integrated electrode is sandwiched between the anode cell and the cathode cell so that the surface where the electrode is attached becomes the side of the cathode chamber. In the cross-sectional structure, the current collector, the pad, the nickel mesh feeder, the electrode, the membrane, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure. The obtained electrode was subjected to electrolytic evaluation. The results are shown in Table 2. Shows lower voltage, higher current efficiency and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF (fluorescent X-ray analysis), approximately 100% of the coating remains on the roughened surface, and the intermediate coating on the non-roughened surface decreases. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 2] Example 2 uses an electrolytic nickel foil with a gauge thickness of 22 μm as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 44%. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 29 μm. The thickness of the catalyst layer is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0033 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 3] In Example 3, an electrolytic nickel foil with a gauge thickness of 30 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 1.38 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 44%. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 38 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 4] In Example 4, an electrolytic nickel foil with a gauge thickness of 16 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 75%. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 24 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0023 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 5] In Example 5, an electrolytic nickel foil with a gauge thickness of 20 μm was prepared as an electrode substrate for cathode electrolysis. The roughening treatment by electrolytic nickel plating was performed on both sides of the nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. Both sides have the same roughness. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 49%. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 30 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0023 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on both sides. Considering Comparative Examples 1 to 4, it shows that even if the coating layer is less or absent on the opposite side that does not face the membrane, good electrolytic performance can be exerted. [Example 6] Example 6 was evaluated in the same manner as Example 1, except that the coating of the electrode substrate for cathodic electrolysis was performed by ion plating, and the results are shown in Table 2. In addition, the ion plating system uses a Ru metal target at a heating temperature of 200°C, and a film formation pressure of 7×10 in an argon/oxygen environment.-2 Pa is used for film formation. The formed coating is ruthenium oxide. The thickness of the electrode is 26 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 7] In Example 7, an electrode substrate for cathodic electrolysis was produced by an electroforming method. The shape of the mask is set to a shape formed by vertically and horizontally arranging a square of 0.485 mm×0.485 mm with an interval of 0.15 mm. By sequentially performing exposure, development, and electroplating, a nickel porous foil with a gauge thickness of 20 μm and an opening rate of 56% was obtained. The arithmetic average surface roughness Ra is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 37 μm. The thickness of the catalyst layer is 17 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0032 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 8] In Example 8, the electrode substrate for cathodic electrolysis was produced by an electroforming method, the gauge thickness was 50 μm, and the porosity was 56%. The arithmetic average surface roughness Ra is 0.73 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 60 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0032 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 9] In Example 9, a nickel non-woven fabric (manufactured by NIKKO TECHNO Co., Ltd.) with a gauge thickness of 150 μm and a porosity of 76% was used as an electrode substrate for cathode electrolysis. The diameter of the nickel fiber of the non-woven fabric is about 40 μm, and the weight per unit area is 300 g/m2 . Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 165 μm. The thickness of the catalyst layer is 15 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 29 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0612 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 10] In Example 10, a nickel non-woven fabric (manufactured by NIKKO TECHNO Co., Ltd.) with a gauge thickness of 200 μm and a porosity of 72% was used as an electrode substrate for cathode electrolysis. The diameter of the nickel fiber of the non-woven fabric is about 40 μm, and the weight per unit area is 500 g/m2 . Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 215 μm. The thickness of the catalyst layer is 15 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 40 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0164 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 11] In Example 11, foamed nickel (manufactured by Mitsubishi Materials Co., Ltd.) with a gauge thickness of 200 μm and a porosity of 72% was used as an electrode substrate for cathode electrolysis. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. In addition, the thickness of the electrode is 210 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 17 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0402 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 12] In Example 12, a nickel mesh with a wire diameter of 50 μm, 200 meshes, a gauge thickness of 100 μm, and an opening ratio of 37% was used as an electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. Even if the spray treatment is applied, the opening rate does not change. Because it is difficult to measure the surface roughness of the wire mesh, in Example 12, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. . The arithmetic average roughness Ra of a wire mesh is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 110 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0154 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 13] In Example 13, a nickel mesh with a wire diameter of 65 μm, 150 mesh, a gauge thickness of 130 μm, and an opening ratio of 38% was used as an electrode substrate for cathode electrolysis. The blasting treatment was carried out with the alumina particle number 320. Even if the spray treatment is applied, the opening rate does not change. Since it is difficult to measure the surface roughness of the wire mesh, in Example 13, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. . The arithmetic average roughness Ra is 0.66 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 133 μm. The thickness of the catalyst layer is 3 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 6.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0124 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation is also "0", which is relatively good. [Example 14] In Example 14, the same substrate as in Example 3 (gauge thickness 30 μm, opening ratio 44%) was used as the electrode substrate for cathodic electrolysis. The electrolytic evaluation was performed with the same configuration as in Example 1 except that the nickel mesh feeder was not provided. That is, the cross-sectional structure of the electrolytic cell is such that the current collector, the pad, the membrane-integrated electrode, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure, and the pad functions as a power feeder. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 15] In Example 15, the same substrate as in Example 3 (gauge thickness 30 μm, opening ratio 44%) was used as the electrode substrate for cathodic electrolysis. The degraded and high electrolytic voltage cathode used in Reference Example 1 was installed instead of the nickel mesh feeder. Except for this, electrolytic evaluation was performed with the same configuration as in Example 1. That is, the cross-sectional structure of the electrolytic cell is formed by sequentially arranging current collectors, pads, degraded and high electrolytic voltage cathodes (functioning as power feeders), electrolysis electrodes (cathodes), diaphragms, and anodes from the cathode chamber side. With a zero-pitch structure, the cathode, which deteriorates and increases the electrolysis voltage, functions as a power feeder. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 16] As an electrode substrate for anode electrolysis, a titanium foil with a gauge thickness of 20 μm was prepared. The two sides of the titanium foil are roughened. The titanium foil is punched and round holes are made to make a porous foil. The diameter of the hole is 1 mm, and the opening rate is 14%. The arithmetic average surface roughness Ra is 0.37 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) with a ruthenium concentration of 100 g/L ruthenium chloride solution (Tanaka Precious Metals Industry Co., Ltd.) and an iridium concentration of 100 g/L is such that the molar ratio of ruthenium, iridium and titanium becomes 0.25:0.25:0.5 Iridium chloride (Tanaka Precious Metals Industry Co., Ltd.) and titanium tetrachloride (Wako Pure Chemical Industry Co., Ltd.). This mixed solution was sufficiently stirred and used as an anode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). After coating the above-mentioned coating liquid on the titanium porous foil, drying was performed at 60°C for 10 minutes, and firing was performed at 475°C for 10 minutes. After repeating a series of operations of coating, drying, pre-firing, and firing, firing was carried out at 520°C for 1 hour. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. The surface tension of the aqueous solution makes it close to the approximate center of the sulfonic acid layer side of the ion exchange membrane A (size 160 mm×160 mm) produced in [Method (i)] equilibrated with 0.1 N NaOH aqueous solution . The cathode was prepared in the following order. First, prepare a nickel wire mesh with a wire diameter of 150 μm and 40 mesh as a base material. After spraying with alumina as a pretreatment, it was immersed in 6 N hydrochloric acid for 5 minutes, and thoroughly washed and dried with pure water. Then, the ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) and cerium chloride (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were used to make the molar ratio of ruthenium element and cerium element 1:0.25. To mix. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was carried out at 50°C for 10 minutes, pre-firing at 300°C for 3 minutes, and firing at 550°C for 10 minutes. After that, firing was performed at 550°C for 1 hour. Repeat the series of operations of coating, drying, pre-firing, and firing. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the cathode made by the above method, and fix the four corners of the net to the current collector by using a rope made of Teflon (registered trademark). Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the anode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The degraded and high electrolytic voltage anode used in Reference Example 3 was fixed to the anode cell by welding, and the membrane-integrated electrode was sandwiched between the anode cell and the cathode cell so that the surface where the electrode was attached became the anode chamber side. That is, the cross-sectional structure of the electrolytic cell is arranged in order from the cathode chamber side with current collectors, mats, cathodes, diaphragms, electrodes for electrolysis (anode of titanium porous foil), and anodes that deteriorate and increase electrolysis voltage to form a zero-pitch structure. The anode that deteriorates and the electrolysis voltage becomes high functions as a power feeder. Furthermore, the titanium porous foil anode is only in physical contact with the deteriorated and high electrolytic voltage anode, and is not fixed by welding. With this configuration, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 26 μm. The thickness of the catalyst layer is 6 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 4 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0060 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 17] In Example 17, a titanium foil with a gauge thickness of 20 μm and an opening ratio of 30% was used as an electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.37 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 16, and the results are shown in Table 2. The thickness of the electrode is 30 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0030 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 18] In Example 18, a titanium foil with a gauge thickness of 20 μm and an opening ratio of 42% was used as an electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.38 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 16, and the results are shown in Table 2. The thickness of the electrode is 32 μm. The thickness of the catalyst layer is 12 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 2.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0022 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 19] In Example 19, a titanium foil with a gauge thickness of 50 μm and an opening rate of 47% was used as an electrode substrate for anodic electrolysis. The arithmetic average surface roughness Ra is 0.40 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 16, and the results are shown in Table 2. The thickness of the electrode is 69 μm. The thickness of the catalyst layer is 19 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 8 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0024 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 20] Example 20 uses a gauge thickness of 100 μm, a titanium fiber diameter of about 20 μm, and a unit area weight of 100 g/m2 , Titanium non-woven fabric with 78% porosity is used as the electrode substrate for anode electrolysis. Except for this, evaluation was performed in the same manner as in Example 16, and the results are shown in Table 2. The thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 2 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0228 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 21] In Example 21, a titanium wire mesh with a gauge thickness of 120 μm, a titanium fiber diameter of about 60 μm, and a 150 mesh was used as the electrode substrate for anodic electrolysis. The opening rate is 42%. The blasting treatment was carried out with the alumina particle number 320. Because it is difficult to measure the surface roughness of the wire mesh, in Example 21, a titanium plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. . The arithmetic average roughness Ra is 0.60 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 16, and the results are shown in Table 2. The thickness of the electrode is 140 μm. The thickness of the catalyst layer is 20 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 10 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0132 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 22] In Example 22, as in Example 16, a deteriorated and high electrolytic voltage anode was used as the anode feeder, and the same titanium nonwoven fabric as in Example 20 was used as the anode. In the same manner as in Example 15, a degraded and high electrolytic voltage cathode was used as the cathode feeder, and the same nickel foil electrode as in Example 3 was used as the cathode. The cross-sectional structure of the electrolytic cell is from the side of the cathode chamber, and the current collector, the pad, the deteriorated and higher voltage cathode, the nickel porous foil cathode, the diaphragm, the titanium non-woven anode, and the deteriorated and higher electrolytic voltage anode are arranged in order to form a zero With a pitch structure, the cathode and anode, which deteriorate and increase the electrolysis voltage, function as a power feeder. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode (anode) is 114 μm, and the thickness of the catalyst layer is 14 μm from the thickness of the electrode (anode) minus the thickness of the electrode substrate for electrolysis. The thickness of the electrode (cathode) is 38 μm, and the thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode (cathode). Sufficient adhesion was observed on both the anode and the cathode. Implement the deformation test of the electrode (anode), the result is L1 , L2 The average value is 2 mm. The deformation test of the electrode (cathode) was carried out, and the result was L1 , L2 The average value is 0 mm. The air resistance of the electrode (anode) was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0228 (kPa·s/m) under the measurement condition 2. The air resistance of the electrode (cathode) was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The evaluation of the membrane damage in the anode and cathode is also "0", which is relatively good. Furthermore, in Example 22, the cathode was attached to one side of the separator, and the anode was attached to the opposite side, and the cathode and anode were combined to evaluate the membrane damage. [Example 23] In Example 23, the microporous film "Zirfon Perl UTP 500" manufactured by Agfa Company was used. The Zirfon film was used for testing after immersing in pure water for more than 12 hours. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 3, and the results are shown in Table 2. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. As in the case of using an ion exchange membrane as the diaphragm, sufficient adhesive force was observed, the microporous membrane and the electrode were in close contact with each other by surface tension, and the operability was "1", which was relatively good. [Example 24] As an electrode substrate for cathode electrolysis, a carbon cloth made of woven carbon fiber with a gauge thickness of 566 μm was prepared. The coating solution for forming the electrode catalyst on the carbon cloth was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A rubber made of foamed EPDM (ethylene-propylene-diene rubber) (Inoac Corporation, E-4088 (trade name), thickness 10 mm) is wound on a tube made of PVC (polyvinyl chloride). The resulting coating drum is set in such a way that the coating liquid is always connected. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the fabricated electrode is 570 μm. The thickness of the catalyst layer is 4 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The thickness of the catalyst layer is the total thickness of ruthenium oxide and cerium oxide. The obtained electrode was subjected to electrolytic evaluation. The results are shown in Table 2. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. The ventilation resistance of the electrode was measured, and the result was 0.19 (kPa·s/m) under measurement condition 1 and 0.176 (kPa·s/m) under measurement condition 2. In addition, the operability is "2", and it can be judged that it can be operated as a large laminate. The voltage was high, the film damage was evaluated as "1", and the film damage was confirmed. It is considered that the reason is that since the air flow resistance of the electrode of Example 24 is relatively large, the NaOH generated in the electrode stays at the interface between the electrode and the diaphragm and becomes a high concentration. [Reference example 1] In Reference Example 1, the cathode was used as a cathode in a large electrolytic cell for 8 years, which deteriorated and the electrolysis voltage became high. The above-mentioned cathode was installed on the mat of the cathode chamber instead of the nickel mesh feeder, and the electrolysis evaluation was performed through the ion exchange membrane A produced in [Method (i)]. In Reference Example 1, the membrane-integrated electrode is not used. The cross-sectional structure of the electrolytic cell is from the cathode chamber side. The current collector, the mat, the cathode, the ion exchange membrane A, and the anode that deteriorate and increase the electrolysis voltage are arranged in order to form a zero pitch. structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.04 V, the current efficiency was 97.0%, and the salt concentration (50% conversion value) in the caustic soda was 20 ppm. Due to the deterioration of the cathode, the result is a higher voltage [Reference example 2] In Reference Example 2, a nickel mesh feeder was used as the cathode. That is, electrolysis is performed with a nickel mesh without a catalyst coating. The nickel mesh cathode was set on the mat of the cathode chamber, and the electrolysis evaluation was performed through the ion exchange membrane A produced in [Method (i)]. The cross-sectional structure of the battery of Reference Example 2 is from the cathode chamber side, and the current collector, the pad, the nickel mesh, the ion exchange membrane A, and the anode are arranged in order to form a zero-pitch structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.38 V, the current efficiency was 97.7%, and the salt concentration (50% conversion value) in the caustic soda was 24 ppm. Since the cathode catalyst is not coated, the result is a higher voltage. [Reference example 3] In Reference Example 3, the anode was used as an anode in a large electrolytic cell for about 8 years, which deteriorated and the electrolysis voltage became high. The cross-sectional structure of the electrolytic cell of Reference Example 3 is formed by sequentially arranging the current collector, the mat, the cathode, the ion exchange membrane A made in [Method (i)], and the anode with deterioration and higher electrolysis voltage from the cathode chamber side. Zero-spacing structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.18 V, the current efficiency was 97.0%, and the salt concentration (50% conversion value) in the caustic soda was 22 ppm. Due to the deterioration of the anode, the result is a higher voltage. [Comparative Example 1] In Comparative Example 1, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 33% after full drum processing was used as an electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of porous metals, in Comparative Example 1, a nickel plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.68 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 67.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.05 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 64%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 22%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 13 mm. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0168 (kPa·s/m) under the measurement condition 2. [Comparative Example 2] In Comparative Example 2, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 16% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of porous metals, in Comparative Example 2, a nickel plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 107 μm. The thickness of the catalyst layer is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 78.1 (mg/cm2 ). The force per unit mass and unit area (1) is 0.04 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 37%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 25%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 18.5 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0176 (kPa·s/m) under the measurement condition 2. [Comparative Example 3] In Comparative Example 3, a nickel porous metal with a gauge thickness of 100 μm and a porosity of 40% after full drum processing was used as an electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of porous metals, in Comparative Example 3, a nickel plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.70 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The coating of the electrode substrate for electrolysis was carried out by the same ion plating as in Example 6. Except for this, evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 110 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The force per unit mass and unit area (1) is 0.07 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 80%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 32%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "3", and there are also problems. The film damage evaluation was "0". Implementation of the electrode deformation test, the result is L1 , L2 The average value is 11 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0030 (kPa·s/m) under the measurement condition 2. [Comparative Example 4] In Comparative Example 4, a nickel porous metal with a gauge thickness of 100 μm and an opening rate of 58% after full drum processing was used as an electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of porous metals, in Comparative Example 4, a nickel plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 109 μm. The thickness of the catalyst layer is 9 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The force per unit mass and unit area (1) is 0.06 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 69%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 39%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "3", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 11.5 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. [Comparative Example 5] In Comparative Example 5, a nickel wire mesh with a gauge thickness of 300 μm and an opening ratio of 56% was used as an electrode substrate for cathodic electrolysis. Since it is difficult to measure the surface roughness of the wire mesh, in Comparative Example 5, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. . The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 1, and the results are shown in Table 2. The thickness of the electrode is 308 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 49.2 (mg/cm2 ). Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 88%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 42%, which means that the part where the electrode and the separator are separated increases. When it exists in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane during operation and fall off. The operability is "3", which is problematic. Actually, it can be evaluated as "3" when it is operated in a large size. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 23 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0034 (kPa·s/m) under the measurement condition 2. [Comparative Example 6] In Comparative Example 6, a nickel wire mesh with a gauge thickness of 200 μm and an opening ratio of 37% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of the wire mesh, in Comparative Example 6, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. . The arithmetic average roughness Ra is 0.65 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the electrode electrolysis evaluation, the measurement result of adhesive force, and adhesiveness were implemented similarly to Example 1. The results are shown in Table 2. The thickness of the electrode is 210 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 56.4 mg/cm2 . Therefore, the result of the evaluation method (3) for the cylindrical winding with a diameter of 145 mm is 63%, and the adhesion between the electrode and the diaphragm is poor. When it exists in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane during operation and fall off. The operability is "3", which is problematic. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 19 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0096 (kPa·s/m) under the measurement condition 2. [Comparative Example 7] In Comparative Example 7, a porous titanium metal with a gauge thickness of 500 μm and an open porosity of 17% after full drum processing was used as the electrode substrate for anodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Comparative Example 7, a titanium plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.60 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 16, and the results are shown in Table 2. In addition, the thickness of the electrode is 508 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 152.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured.1 , L2 The value. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0072 (kPa·s/m) under the measurement condition 2. [Comparative Example 8] In Comparative Example 8, a titanium porous metal with a gauge thickness of 800 μm and an open porosity of 8% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of porous metals, in Comparative Example 8, a titanium plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.61 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 16, and the results are shown in Table 2. The thickness of the electrode is 808 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 251.3 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured.1 , L2 The value. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0172 (kPa·s/m) under the measurement condition 2. [Comparative Example 9] In Comparative Example 9, a porous titanium metal with a gauge thickness of 1000 μm and an opening rate of 46% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Comparative Example 9, a titanium plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. The arithmetic average roughness Ra is 0.59 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 16, and the results are shown in Table 2. In addition, the thickness of the electrode is 1011 μm. The thickness of the catalyst layer is 11 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 245.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. [Comparative Example 10] In Comparative Example 10, a previous document (an example of Japanese Patent Laid-Open No. 58-48686) was used as a reference to fabricate a membrane electrode assembly formed by thermocompression bonding of an electrode to a separator. Using a nickel porous metal with a gauge thickness of 100 μm and an opening ratio of 33% as an electrode substrate for cathodic electrolysis, electrode coating was performed in the same manner as in Example 1. After that, the inertization treatment was performed on one side of the electrode in the following procedure. Attach a polyimide adhesive tape (Zhongxing Chemical Co., Ltd.) on one side of the electrode, and apply a PTFE dispersion (DuPont-Mitsui Fluorochemicals Co., Ltd., 31-JR (trade name)) on the opposite side, at 120°C Dry in the muffle furnace for 10 minutes. The polyimide tape was peeled off, and sintering was performed in a muffle furnace set at 380°C for 10 minutes. Repeat this operation twice to inertize one side of the electrode. Produced from the terminal functional group as "-COOCH3 "The perfluorocarbon polymer (C polymer) and the end group are "-SO2 A film formed by two layers of perfluorocarbon polymer (S polymer) of F". The thickness of the C polymer layer is 3 mils, and the thickness of the S polymer layer is 4 mils. The two-layer membrane is subjected to saponification treatment, and ion exchange groups are introduced to the ends of the polymer by hydrolysis. The end of the C polymer is hydrolyzed into carboxylic acid groups, and the end of the S polymer is hydrolyzed into sulfonic groups. The ion exchange capacity based on sulfonic acid groups is 1.0 meq/g, and the ion exchange capacity based on carboxylic acid groups is 0.9 meq/g. The surface having the carboxylic acid group as the ion exchange group is opposed to the inertized electrode surface, and hot pressing is performed to integrate the ion exchange membrane and the electrode. After thermocompression bonding, one side of the electrode is also exposed, and there is no part of the electrode penetrating the membrane. After that, in order to prevent the adhesion of bubbles generated during electrolysis to the film, a perfluorocarbon polymer mixture with zirconia and sulfo groups introduced was coated on both sides. In this way, a membrane electrode assembly of Comparative Example 10 was produced. Using this membrane electrode assembly, the force per unit mass and unit area (1) was measured. As a result, the electrode and the membrane were strongly joined by thermocompression bonding, so the electrode did not move upward. Therefore, the ion exchange membrane and the nickel plate were fixed without moving, and the electrode was pulled upward with a stronger force, and the result was 1.50(N/mg·cm2 ), a part of the membrane ruptures. The force per unit mass and unit area of the membrane electrode assembly of Comparative Example 10 (1) is at least 1.50 (N/mg·cm2 ), is strongly joined. The evaluation (1) of cylindrical winding with a diameter of 280 mm was carried out, and the contact area with the plastic pipe was less than 5%. On the other hand, evaluation (2) of cylindrical winding with a diameter of 280 mm was carried out. As a result, although the electrode and the membrane were 100% bonded, the separator was not wound to the cylinder at first. The results of evaluation (3) for cylindrical winding with a diameter of 145 mm are also the same. This result means that the operability of the film is impaired by the integrated electrode, and it is difficult to wind it into a roll or bend it. The operability is "3" and there is a problem. The film damage evaluation was "0". In addition, the electrolysis evaluation was performed. As a result, the voltage became higher, the current efficiency became lower, the salt concentration (50% conversion value) in the caustic soda became higher, and the electrolysis performance deteriorated. In addition, the thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 13 mm. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0168 (kPa·s/m) under the measurement condition 2. [Comparative Example 11] In Comparative Example 11, a nickel mesh with a wire diameter of 150 μm, 40 mesh, a gauge thickness of 300 μm, and an opening ratio of 58% was used as an electrode substrate for cathodic electrolysis. Except for this, a membrane electrode assembly was produced in the same manner as in Comparative Example 10. Using this membrane electrode assembly, the force per unit mass and unit area (1) was measured. As a result, the electrode and the membrane were strongly joined by thermocompression bonding, so the electrode did not move upward. Therefore, the ion exchange membrane and the nickel plate were fixed without moving, and the electrode was pulled upward with a stronger force. The result was 1.60(N/mg·cm2 ), a part of the membrane ruptures. The force per unit mass and unit area of the membrane electrode assembly of Comparative Example 11 (1) is at least 1.60 (N/mg·cm2 ), is strongly joined. Evaluation (1) of cylindrical winding with a diameter of 280 mm using this membrane electrode assembly showed that the contact area with the plastic tube was less than 5%. On the other hand, evaluation (2) of cylindrical winding with a diameter of 280 mm was carried out. As a result, although the electrode and the membrane were 100% bonded, the separator was not wound to the cylinder at first. The results of evaluation (3) for cylindrical winding with a diameter of 145 mm are also the same. This result means that the operability of the film is impaired by the integrated electrode, and it is difficult to wind it into a roll or bend it. The operability is "3" and there is a problem. In addition, the electrolysis evaluation was performed. As a result, the voltage became higher, the current efficiency became lower, the salt concentration in the caustic soda became higher, and the electrolysis performance deteriorated. In addition, the thickness of the electrode is 308 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 23 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0034 (kPa·s/m) under the measurement condition 2. [Comparative Example 12] (Preparation of catalyst) 0.728 g of silver nitrate (Wako Pure Chemicals Co., Ltd.) and 1.86 g of cerium nitrate hexahydrate (Wako Pure Chemicals Co., Ltd.) were added to 150 ml of pure water to prepare a metal salt aqueous solution. 240 g of pure water was added to 100 g of 15% tetramethylammonium hydroxide aqueous solution (Wako Pure Chemical Industries, Ltd.) to prepare an alkaline solution. While stirring the alkaline solution with a magnetic stirrer, the above-mentioned metal salt aqueous solution was added dropwise using a burette at 5 ml/min. After the suspension containing the produced metal hydroxide particles is suction filtered, it is washed with water to remove alkaline components. After that, the filtrate was transferred to 200 ml of 2-propanol (Kishida Chemical Co., Ltd.), and dispersed by an ultrasonic dispersion machine (US-600T, Nippon Seiki Manufacturing Co., Ltd.) for another 10 minutes to obtain a uniform The suspension. 0.36 g of hydrophobic carbon black (DENKA BLACK (registered trademark) AB-7 (trade name), Denka Chemical Industry Co., Ltd.), hydrophilic carbon black (Ketjen Black (registered trademark) EC-600JD (trade name), Mitsubishi Chemical Co., Ltd.) 0.84 g was dispersed in 100 ml of 2-propanol, and dispersed by an ultrasonic disperser for 10 minutes to obtain a suspension of carbon black. The suspension of the metal hydroxide precursor and the suspension of carbon black are mixed, and dispersed by an ultrasonic disperser for 10 minutes. The suspension is suction filtered and dried at room temperature for half a day to obtain carbon black with the metal hydroxide precursor dispersed and fixed. Then, using an inert gas firing furnace (VMF165 type, Yamada Electric Co., Ltd.), firing was carried out at 400°C for 1 hour in a nitrogen atmosphere to obtain carbon black A in which the electrode catalyst was dispersed and immobilized. (Production of powder for reaction layer) To 1.6 g of carbon black A, which is dispersed and immobilized by the electrode catalyst, add 0.84 ml of the surfactant Triton (registered trademark) X-100 (trade name, ICN Biomedical) diluted to 20% by weight with pure water, and 15 pure water. ml, disperse by ultrasonic disperser for 10 minutes. 0.664 g of a PTFE (polytetrafluoroethylene) dispersion (PTFE30J (trade name), DuPont-Mitsui Fluorochemicals Co., Ltd.) was added to this dispersion, stirred for 5 minutes, and then filtered. Furthermore, it was dried in a dryer at 80 degreeC for 1 hour, and it pulverized with a grinder, and the powder A for reaction tanks was obtained. (Production of powder for gas diffusion layer) Using an ultrasonic disperser, 20 g of hydrophobic carbon black (DENKA BLACK (registered trademark) AB-7 (trade name)) was diluted with pure water to a surfactant Triton (registered trademark) X-100 ( Trade name) 50 ml, 360 ml of pure water disperse for 10 minutes. 22.32 g of PTFE dispersion was added to the obtained dispersion, and after stirring for 5 minutes, it was filtered. Furthermore, it was dried in a dryer at 80° C. for 1 hour, and pulverized by a grinder to obtain powder A for a gas diffusion layer. (Production of gas diffusion electrode) 8.7 ml of ethanol was added to the powder A 4 g for the gas diffusion layer, and the mixture was kneaded to obtain a starchy form. The powder for the gas diffusion layer made into a syrup shape was formed into a sheet by a roller forming machine, and a silver mesh (SW=1, LW=2, thickness=0.3 mm) was embedded as a current collector, and the final shape was 1.8 mm The flakes. 2.2 ml of ethanol was added to 1 g of powder A for the reaction layer, and the mixture was kneaded to obtain a starchy form. The powder for the reaction layer made into a syrup shape was molded into a sheet shape with a thickness of 0.2 mm by a roller molding machine. Furthermore, two sheets of the produced sheet obtained using the powder A for the gas diffusion layer and the sheet obtained using the powder A for the reaction layer were laminated and formed into a 1.8 mm sheet shape by a roll forming machine . The laminated sheet was dried at room temperature for a whole day and night, and the ethanol was removed. Furthermore, in order to remove the remaining surfactant, a thermal decomposition treatment was performed in the air at 300°C for 1 hour. Wrapped in aluminum foil, using a hot press (SA303 (trade name), TESTER SANGYO Co., Ltd.), at 360°C at 50 kgf/cm2 Hot pressing was performed for 1 minute to obtain a gas diffusion electrode. The thickness of the gas diffusion electrode is 412 μm. Using the obtained electrode, electrolysis evaluation was performed. The cross-sectional structure of the electrolytic cell is to arrange the current collector, the pad, the nickel mesh feeder, the electrode, the membrane, and the anode in order from the cathode chamber side to form a zero-spacing structure. The results are shown in Table 2. Implementation of the electrode deformation test, the result is L1 , L2 The average value is 19 mm. The ventilation resistance of the electrode was measured, and the result was 25.88 (kPa·s/m) under the measurement condition 1. In addition, the operability is "3", and there is a problem. In addition, the electrolysis evaluation was carried out. As a result, the current efficiency became low, the salt concentration in the caustic soda became high, and the electrolysis performance significantly deteriorated. The film damage was evaluated as "3", and there were also problems. According to these results, if the gas diffusion electrode obtained in Comparative Example 12 is used, the electrolytic performance is significantly poorer. In addition, damage was confirmed on almost the entire surface of the ion exchange membrane. The reason for this is considered to be that since the gas diffusion electrode of Comparative Example 12 has a significantly larger ventilation resistance, the NaOH generated in the electrode stays at the interface between the electrode and the separator and becomes a high concentration. [Comparative Example 13] Prepare a nickel wire with a gauge thickness of 150 μm as the electrode substrate for cathodic electrolysis. The roughening treatment using the nickel wire is performed. Since it is difficult to measure the surface roughness of the nickel wire, in Comparative Example 13, a nickel plate with a thickness of 1 mm was simultaneously blasted during blasting, and the surface roughness of the nickel plate was used as the surface roughness of the nickel wire. The blasting treatment was carried out with the alumina particle number 320. The arithmetic average roughness Ra is 0.64 μm. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A rubber made of foamed EPDM (ethylene-propylene-diene rubber) (Inoac Corporation, E-4088 (trade name), thickness 10 mm) is wound on a tube made of PVC (polyvinyl chloride). The resulting coating drum is set in such a way that the coating liquid is always connected. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of one nickel wire produced in Comparative Example 13 was 158 μm. Cut the nickel wire made by the above method into lengths of 110 mm and 95 mm. As shown in Figure 16, the nickel wire of 110 mm and the nickel wire of 95 mm are placed vertically at the center of each nickel wire. The instant adhesive (Aron Alpha (registered trademark), Dong-A Synthetic Co., Ltd.) Then, at the intersection, an electrode is fabricated. The electrodes were evaluated, and the results are shown in Table 2. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The opening rate is 99.7%. The mass per unit area of the electrode is 0.5 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 15 mm. The air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under the measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance value was 0.0002 (kPa·s/m). In addition, for the electrode, the structure shown in FIG. 17 was used, the electrode (cathode) was set on the Ni mesh feeder, and the electrolytic evaluation was performed by the method described in (9) Electrolytic Evaluation. As a result, the voltage becomes 3.16 V, which is relatively high. [Comparative Example 14] In Comparative Example 14, the electrode made in Comparative Example 13 was used. As shown in Figure 18, the nickel wire of 110 mm and the nickel wire of 95 mm were placed vertically at the center of each nickel wire. An agent (Aron Alpha (registered trademark), Toah Gosei Co., Ltd.) was then used to connect the intersections to make electrodes. The electrodes were evaluated, and the results are shown in Table 2. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The porosity is 99.4%. The mass per unit area of the electrode is 0.9 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 16 mm. The air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under the measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance was 0.0004 (kPa·s/m). For the electrode, the structure shown in FIG. 19 was used, the electrode (cathode) was placed on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage is 3.18 V, which is relatively high. [Comparative Example 15] In Comparative Example 15, the electrode made in Comparative Example 13 was used. As shown in Figure 20, the nickel wire of 110 mm and the nickel wire of 95 mm were placed vertically at the center of each nickel wire. An agent (Aron Alpha (registered trademark), Toah Gosei Co., Ltd.) was then used to connect the intersections to make electrodes. The electrodes were evaluated, and the results are shown in Table 2. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The opening rate is 98.8%. The mass per unit area of the electrode is 1.9 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 14 mm. In addition, the air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance was 0.0005 (kPa·s/m). In addition, for the electrode, the structure shown in FIG. 21 was used, the electrode (cathode) was placed on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage is 3.18 V, which is relatively high. [Table 1]
Figure 109105584-A0304-0001
[Table 2]
Figure 109105584-A0304-0002
In Table 2, all samples can stand on their own by surface tension before the measurement of "force per unit mass·unit area (1)" and "force per unit mass·unit area (2)" ( That is, there is no case of sagging). In Comparative Examples 1, 2, 7-9, since the mass per unit area is large, the force (1) per unit mass·unit area is small, and therefore the adhesion to the diaphragm is poor. Therefore, for a large electrolytic cell size (for example, 1.5 m in length and 3 m in width), when operating the separator as a polymer membrane, there is bound to be slack. At this time, the electrode peels off and cannot withstand practical use. In Comparative Examples 3 and 4, since the force (1) per unit mass and unit area is small, the adhesion to the diaphragm is poor. Therefore, for a large electrolytic cell size (for example, 1.5 m in length and 3 m in width), when operating the separator as a polymer membrane, there is bound to be slack. At this time, the electrode peels off and cannot withstand practical use. Comparative Examples 5 and 6 have a large mass per unit area and poor adhesion to the diaphragm. Therefore, for a large electrolytic cell size (for example, 1.5 m in length and 3 m in width), when operating the separator as a polymer membrane, there is bound to be slack. At this time, the electrode peels off and cannot withstand practical use. In Comparative Examples 10 and 11, since the film and the electrode were strongly joined by hot pressing, there was no case where peeling from the film occurred during operation as in Comparative Examples 1, 2, 7-9. However, since it is strongly bonded to the electrode, the flexibility of the polymer film is lost, and it is difficult to wind it into a roll or bend it, and it has poor operability and cannot withstand practical use. Furthermore, in Comparative Examples 10 and 11, the electrolytic performance was greatly deteriorated. It is believed that the reason for the large increase in voltage is that the flow of ions is obstructed due to the state in which the electrode is buried in the ion exchange membrane. It is believed that the decrease in current efficiency and the deterioration of the salt concentration in the caustic soda are due to the following factors: the electrode is embedded in the carboxylic acid layer that exhibits higher current efficiency and ion selectivity, resulting in the formation of a carboxylic acid layer The thickness is uneven, and the electrode embedded in a part of the carboxylic acid layer is penetrated. Furthermore, in Comparative Examples 10 and 11, when one of the separator or the electrode had to be replaced due to the strong joining, only one of them could not be replaced, resulting in high cost. In Comparative Example 12, the electrolytic performance was greatly deteriorated. It is believed that the reason for the large increase in voltage is that the product stays at the interface between the diaphragm and the electrode. In Comparative Examples 13-15, since the forces (1) and (2) received per unit mass and unit area were both small (below the lower limit of measurement), the adhesion to the separator was poor. Therefore, for a large electrolytic cell size (for example, 1.5 m in length and 3 m in width), when operating the separator as a polymer membrane, there is bound to be slack. At this time, the electrode peels off and cannot withstand practical use. In this embodiment, the membrane and the electrode are closely attached to the surface with moderate force, so there is no problem of electrode peeling during operation, and there is no situation that hinders the flow of ions in the membrane, so it exhibits good electrolytic performance. <Verification of the second embodiment> As follows, prepare experimental examples corresponding to the second embodiment (referred to as "Examples" in the section of "Verification of the second embodiment" below) and experimental examples that do not correspond to the second embodiment ( In the section of the following <Verification of the second embodiment>, it is simply referred to as "comparative example"), and these were evaluated by the following methods. The details will be described with reference to FIGS. 31 to 42 as appropriate. [Evaluation method] (1) Hole rate Cut the electrode into a size of 130 mm×100 mm. Use an electronic digital thickness gauge (manufactured by Mitutoyo Co., Ltd., display at least 0.001 mm) to measure 10 points uniformly in the plane and calculate the average value. Use this as the thickness of the electrode (gauge thickness) to calculate the volume. After that, use an electronic balance to measure the mass, according to the specific gravity of the metal (specific gravity of nickel = 8.908 g/cm3 、The specific gravity of titanium = 4.506 g/cm3 ) Calculate the open porosity or porosity. Porosity (void ratio) (%) = (1-(electrode mass) / (electrode volume × metal specific gravity)) × 100 (2) Mass per unit area (mg/cm2 ) Cut the electrode into a size of 130 mm×100 mm, and measure the mass with an electronic balance. Divide this value by the area (130 mm×100 mm) to calculate the mass per unit area. (3) Force per unit mass and unit area (1) (Adhesive force) (N/mg・cm2 )) [Method (i)] The measurement system uses a tensile and compression testing machine (Imada Manufacturing Co., Ltd., testing machine body: SDT-52NA tensile and compression testing machine, load meter: SL-6001 load meter). The aluminum oxide with particle number 320 is used for spray processing on a nickel plate with a thickness of 1.2 mm and a square of 200 mm. The arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.7 μm. Here, the surface roughness measurement uses a stylus-type surface roughness measuring machine SJ-310 (Mitutoyo Co., Ltd.). The measurement sample is set on a platform parallel to the ground, and the arithmetic average roughness Ra is measured under the following measurement conditions. When the measurement was performed 6 times, the average value was recorded. <Shape of the stylus> Cone, cone angle = 60°, tip radius = 2 μm, static measuring force = 0.75 mN <Roughness standard> JIS2001 <Evaluation curve> R <Filter>GAUSS <Critical value λc>0.8 mm <Critical value λs>2.5 μm <Number of intervals>5 <Front sweep, back sweep> Yes The nickel plate was fixed to the chuck on the lower side of the tensile and compression testing machine in a vertical manner. The following ion exchange membrane A was used as the diaphragm. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made by twisting 35 denier and 6 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with a particle diameter of 1 μm was added to a 5 mass% ethanol solution of the acid resin of resin B and dispersed to prepare a suspension, and the two sides of the composite film were sprayed by the suspension spray method. Spraying is performed to form a coating of zirconia on the surface of the composite membrane to obtain ion exchange membrane A. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . In addition, the average particle diameter was measured with a particle size distribution meter ("SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). The ion exchange membrane (diaphragm) obtained above was immersed in pure water for more than 12 hours and then used for the test. It is brought into contact with the above-mentioned nickel plate fully wetted with pure water, and bonding is carried out by the tension of the water. At this time, the position of the nickel plate and the upper end of the ion exchange membrane are aligned. The electrode sample (electrode) for electrolysis used in the measurement was cut into 130 mm squares. The ion exchange membrane A is cut into 170 mm squares. Two stainless steel plates (thickness: 1 mm, length: 9 mm, and width: 170 mm) sandwiched one side of the electrode, aligned with the center of the stainless steel plate and the electrode, and fixed evenly with 4 clamps. Clamp the center of the stainless steel plate to the chuck on the upper side of the tensile and compression testing machine, and hang the electrode. At this time, set the load on the testing machine to 0 N. Temporarily remove the stainless steel plate, electrode, and jig integrated from the tensile and compression tester, and immerse it in a tank containing pure water in order to fully wet the electrode with pure water. After that, the center of the stainless steel plate was again clamped to the chuck on the upper side of the tensile and compression testing machine, and the electrode was suspended. Lower the chuck on the upper side of the tensile and compression tester, and use the surface tension of pure water to adhere the electrode sample for electrolysis to the surface of the ion exchange membrane. At this time, the bonding surface is 130 mm in width and 110 mm in length. Blow the pure water filled in the washing bottle to the electrode and ion exchange membrane as a whole to make the diaphragm and the electrode fully wet again. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and roll it from top to bottom to remove the excess Pure water removal. The roller is applied only once. The electrode is raised at a speed of 10 mm/min, and the load measurement is started. The overlap between the recording electrode and the diaphragm becomes the load when the width is 130 mm and the length is 100 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapped portion of the electrode and the ion exchange membrane and the electrode mass of the overlapped portion of the ion exchange membrane to calculate the force per unit mass·unit area (1). The mass of the electrode overlapping with the ion exchange membrane is based on the mass per unit area (mg/cm2 The value obtained in) is calculated by proportional calculation. The environment of the measuring room is a temperature of 23±2℃ and a relative humidity of 30±5%. Furthermore, the electrodes used in the examples and comparative examples can be adhered independently without sagging or peeling when they are adhered to the ion exchange membrane of the vertically fixed nickel plate by surface tension. Furthermore, a schematic diagram of the evaluation method of endurance (1) is shown in FIG. 31. Furthermore, the lower limit of measurement by the tensile tester is 0.01 (N). (4) Force per unit mass and unit area (2) (Adhesive force) (N/mg・cm2 )) [Method (ii)] The measurement system uses a tensile and compression testing machine (Imada Manufacturing Co., Ltd., testing machine body: SDT-52NA tensile and compression testing machine, load meter: SL-6001 load meter). Fix the same nickel plate as the method (i) to the chuck on the lower side of the tensile and compression testing machine in a vertical manner. The electrode sample (electrode) for electrolysis used in the measurement was cut into 130 mm squares. The ion exchange membrane A is cut into 170 mm squares. Two stainless steel plates (thickness: 1 mm, length: 9 mm, and width: 170 mm) sandwiched one side of the electrode, aligned with the center of the stainless steel plate and the electrode, and fixed evenly with 4 clamps. Clamp the center of the stainless steel plate to the chuck on the upper side of the tensile and compression testing machine, and hang the electrode. At this time, set the load on the testing machine to 0 N. Temporarily remove the stainless steel plate, electrode, and jig integrated from the tensile and compression tester, and immerse it in a tank containing pure water in order to fully wet the electrode with pure water. After that, the center of the stainless steel plate was again clamped to the chuck on the upper side of the tensile and compression testing machine, and the electrode was suspended. The upper chuck of the tensile-compression tester was lowered, and the electrode sample for electrolysis was adhered to the surface of the nickel plate by the surface tension of the solution. At this time, the bonding surface is 130 mm in width and 110 mm in length. Blow the pure water in the washing bottle to the electrode and the nickel plate to make the nickel plate and the electrode fully wet again. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and roll it from top to bottom to remove the excess The solution is removed. The roller is applied only once. The electrode is raised at a speed of 10 mm/min, and the load measurement is started. The load when the longitudinal overlap between the recording electrode and the nickel plate reaches 100 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapped portion of the electrode and the nickel plate and the electrode mass of the overlapped portion of the nickel plate to calculate the force per unit mass·unit area (2). The mass of the electrode that overlaps the diaphragm is based on the mass per unit area (mg/cm2 The value obtained in) is calculated by proportional calculation. In addition, the environment of the measurement room is 23±2°C and relative humidity 30±5%. Furthermore, when the electrodes used in the examples and comparative examples are adhered to a vertically fixed nickel plate by surface tension, they can be adhered independently without sagging or peeling. Furthermore, the lower limit of measurement by the tensile tester is 0.01 (N). (5) Evaluation method for cylindrical winding with a diameter of 280 mm (1) (%) (Membrane and cylinder) Implement the evaluation method (1) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In Comparative Examples 1 and 2, the electrode was integrated with the ion exchange membrane by hot pressing, so a body of the ion exchange membrane and the electrode (electrode system 130 mm square) was prepared. After fully immersing the ion exchange membrane in pure water, place it on the curved surface of a plastic (polyethylene) tube with an outer diameter of 280 mm. After that, the excess solution was removed by a roll formed by winding an independently foamed EPDM sponge rubber with a thickness of 5 mm on a vinyl chloride tube (outer diameter of 38 mm). The roller rolls on the ion exchange membrane from the left side to the right side of the schematic diagram shown in FIG. 32. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane is in close contact with the plastic tube electrode with an outer diameter of 280 mm. (6) Evaluation method for cylindrical winding with a diameter of 280 mm (2) (%) (Membrane and electrode) Implement the evaluation method (2) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square, and cut the electrode into a 130 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. The ion exchange membrane and electrode are fully immersed in pure water and then laminated. Place the laminated body on the curved surface of a plastic (polyethylene) tube with an outer diameter of 280 mm so that the electrode becomes the outer side. After that, the vinyl chloride tube (outer diameter 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and from the left side of the schematic diagram shown in Figure 33 Roll to the right to remove excess solution. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane and the electrode are in close contact. (7) 145 mm diameter cylindrical winding evaluation method (3) (%) (Membrane and electrode) Implement the evaluation method (3) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square, and cut the electrode into a 130 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. The ion exchange membrane and electrode are fully immersed in pure water and then laminated. Place the laminated body on the curved surface of a plastic (polyethylene) tube with an outer diameter of 145 mm in such a way that the electrode becomes the outer side. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber and gently pressed from the top of the electrode, and from the left side of the schematic diagram shown in Figure 34 Roll to the right to remove excess solution. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane and the electrode are in close contact. (8)Operability (sensing evaluation) (A) Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into 170 mm square size, and cut the electrode into 95×110 mm. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In each embodiment, the ion exchange membrane and the electrode were fully immersed in three solutions of sodium bicarbonate aqueous solution, 0.1 N NaOH aqueous solution, and pure water before being laminated, and then placed on a Teflon plate. The interval between the anode cell and the cathode cell used in the electrolytic evaluation was set to about 3 cm, and the static laminate was lifted up and inserted and sandwiched between them. When performing this operation, check whether the electrode is deviated or dropped while operating. (B) Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into 170 mm square size, and cut the electrode into 95×110 mm. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In each embodiment, the ion exchange membrane and the electrode were fully immersed in three solutions of sodium bicarbonate aqueous solution, 0.1 N NaOH aqueous solution, and pure water before being laminated, and then placed on a Teflon plate. Hold the two adjacent corners of the film portion of the laminated body and lift it up so that the laminated body becomes vertical. From this state, move the two hand-held corners close to each other to make the film convex or concave. Repeat this operation one more time to confirm the followability of the electrode to the membrane. Based on the following indicators, the results are evaluated on 4 levels from 1 to 4. 1: Good operation 2: Able to operate 3: Difficulty in operation 4: Generally unable to operate Here, the sample of Comparative Example 2-5 was operated with the same size as a large electrolytic cell with an electrode of 1.3 m×2.5 m and an ion exchange membrane of 1.5 m×2.8 m. The evaluation result of Comparative Example 5 (hereinafter referred to as "3") is used as an index to evaluate the difference between the evaluation of the above (A) and (B) and the large size. That is, when the result obtained by evaluating the small-sized laminate is "1" or "2", it is evaluated that there is no problem with the operability even when it is made into a large size. (9) Electrolysis evaluation (voltage (V), current efficiency (%), salt concentration in caustic soda (ppm, 50% conversion)) The electrolysis performance was evaluated by the following electrolysis experiment. A titanium anode cell (anode terminal cell) having an anode chamber provided with an anode was opposed to a cathode cell having a nickel cathode chamber (cathode terminal cell) provided with a cathode. A pair of gaskets are arranged between the cells, and the laminate (the laminate of the ion exchange membrane A and the electrode for electrolysis) is sandwiched between the pair of gaskets. Then, the anode cell, the gasket, the laminate, the gasket, and the cathode are closely adhered to obtain an electrolytic cell, and an electrolytic cell containing the electrolytic cell is prepared. As the anode, it is produced by coating a mixed solution of ruthenium chloride, iridium chloride, and titanium tetrachloride on a titanium substrate that has been sprayed and acid-etched as a pretreatment, followed by drying and firing. The anode is fixed to the anode chamber by welding. As the cathode, those described in the respective Examples and Comparative Examples were used. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the nickel net with a 40-mesh mesh and flat-woven nickel wire with a diameter of 150 μm. The four corners of the Ni net are fixed to the current collector by a rope made of Teflon (registered trademark). Use this Ni net as a power feeder. In the electrolytic cell, the repulsive force of the pad as a metal elastic body is used to form a zero-spacing structure. As the gasket, a rubber gasket made of EPDM (Ethylene Propylene Diene) is used. As the diaphragm, the ion exchange membrane A (160 mm square) made in [Method (i)] was used. Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 90°C. At current density 6 kA/m2 Under the implementation of salt electrolysis, the voltage, current efficiency, and salt concentration in caustic soda were measured. Here, the so-called current efficiency is the ratio of the amount of caustic soda generated to the current flowing. If the current flowing, impurity ions or hydroxide ions instead of sodium ions move in the ion exchange membrane, the current efficiency reduce. Current efficiency is calculated by dividing the molar number of caustic soda generated in a certain period of time by the molar number of electrons flowing in between. The molar number of caustic soda is obtained by recovering the caustic soda produced by electrolysis in a polymer tank and measuring its mass. The salt concentration in caustic soda means the value obtained by converting the concentration of caustic soda to 50%. In addition, the specifications of the electrodes and power feeders used in the Examples and Comparative Examples are shown in Table 3. (11) Measurement of the thickness of the catalyst layer, the electrode substrate for electrolysis, and the thickness of the electrode The thickness of the electrode substrate for electrolysis is measured uniformly at 10 points in the plane using an electronic digital thickness gauge (manufactured by Mitutoyo Co., Ltd., with a minimum display of 0.001 mm) and the average value is calculated. This is used as the thickness of the electrode substrate for electrolysis (gauge thickness). The thickness of the electrode is uniformly measured at 10 points in the plane with an electronic digital thickness gauge similar to the electrode base material, and the average value is calculated. Use this as the electrode thickness (gauge thickness). The thickness of the catalyst layer is calculated by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. (12) Electrode elastic deformation test Cut the ion exchange membrane A (diaphragm) and electrode made in [Method (i)] into a size of 110 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. Under the conditions of a temperature of 23±2°C and a relative humidity of 30±5%, the ion exchange membrane and the electrode are overlapped to form a laminate, and then wound to an outer diameter of ϕ32 mm without gaps as shown in Figure 35. PVC pipe with a length of 20 cm. In order to prevent the wound laminate from peeling or loosening from the PVC pipe, a polyethylene strapping is used to fix it. Keep in this state for 6 hours. After that, the strap was removed, and the laminate was unwound from the PVC pipe. Only place the electrode on the platform and measure the height L of the part raised from the platform1 , L2 And find the average. Use this value as an indicator of electrode deformation. That is, a small value means that it is difficult to deform. Furthermore, when using porous metal, there are two types of SW direction and LW direction during winding. In this test, it is wound in the SW direction. In addition, for the deformed electrode (the electrode that did not return to the original flat state), the softness after plastic deformation was evaluated by the method shown in FIG. 36. That is, the deformed electrode is placed on a diaphragm fully immersed in pure water, one end is fixed, the opposite end of the floating is pressed against the diaphragm, the force is released, and whether the deformed electrode follows the diaphragm is evaluated. . (13) Evaluation of membrane damage The following ion exchange membrane B was used as the diaphragm. As the reinforcing core material, a polytetrafluoroethylene (PTFE) and a ribbon yarn of 100 denier twisted at 900 times/m to form a yarn shape (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn of the warp, a yarn obtained by twisting 35 denier and 8 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. In addition, as the sacrificial yarn of the weft, a yarn obtained by twisting 35 denier and 8 filaments of polyethylene terephthalate (PET) at 200 times/m was used. First, PTFE yarns are arranged at 24 yarns/inch and two sacrificial yarns are arranged between adjacent PTFE yarns to perform plain weaving to obtain a woven fabric with a thickness of 100 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.92 mg equivalent/g dry resin polymer (A1), CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of the copolymer of F is 1.10 mg equivalent/g of dry resin polymer (B1). Using these polymers (A1) and (B1), a two-layer film X with a polymer (A1) layer thickness of 25 μm and a polymer (B1) layer thickness of 89 μm was obtained by co-extrusion T-die method . Furthermore, the ion exchange capacity of each polymer indicates the ion exchange capacity when the ion exchange group precursor of each polymer is hydrolyzed to convert it into an ion exchange group. Also, separately prepare to use CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of F copolymer is 1.10 mg equivalent/g of dry resin polymer (B2). The polymer monolayer was extruded to obtain a 20 μm film Y. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on the surface is laminated with release paper, film Y, reinforcing material, and film X in this order. The temperature of the heating plate is 225°C and the pressure reduction is 0.022 MPa. After heating and reducing pressure for 2 minutes, the release paper was removed, thereby obtaining a composite film. The obtained composite membrane was saponified by immersing the obtained composite membrane in an aqueous solution containing dimethyl sulfoxide (DMSO) and potassium hydroxide (KOH) for 1 hour, and then immersed in 0.5 N NaOH for 1 hour to remove the ion exchange group. The attached ions were replaced with Na, and then washed with water. It was further dried at 60°C. Also, it will be CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 After the polymer (B3) of the dry resin with an ion exchange capacity of 1.05 mg equivalent/g as the copolymer of F is hydrolyzed, it is made into an acid form with hydrochloric acid. The acid type polymer (B3') is dissolved in a 50/50 (mass ratio) mixture of water and ethanol at a ratio of 5% by mass, and the polymer (B3') and zirconium oxide Zirconium oxide particles with an average particle diameter of 0.02 μm of primary particles are added so that the mass ratio of the particles becomes 20/80. After that, it was dispersed in a suspension of zirconia particles by a ball mill to obtain a suspension. The suspension was coated on both surfaces of the ion exchange membrane by a spraying method and dried, thereby obtaining an ion exchange membrane B having a coating layer containing a polymer (B3') and zirconia particles. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.35 mg/cm2 . As the anode system, the same as (9) electrolytic evaluation was used. As the cathode, those described in the respective examples and comparative examples were used. The current collector, pad and feed system of the cathode chamber are the same as those used in (9) electrolysis evaluation. That is, the Ni mesh is used as the power feeder, and the repulsive force of the pad as the metal elastic body is used to form a zero pitch structure. The gasket was also used the same as (9) electrolytic evaluation. As the diaphragm, the ion exchange membrane B produced by the above-mentioned method was used. That is, except that the laminate of the ion exchange membrane B and the electrode for electrolysis is sandwiched between a pair of gaskets, the same electrolytic cell as in (9) is prepared. Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 70°C. At current density 8 kA/m2 Under the implementation of salt electrolysis. After 12 hours from the start of the electrolysis, the electrolysis was stopped, and the ion exchange membrane B was taken out to observe the damage state. "0" means no damage. "1 to 3" means there is damage, the larger the number, the greater the degree of damage. (14) Ventilation resistance of electrodes The ventilation resistance of the electrode was measured using a ventilation tester KES-F8 (trade name, Kato Tech Co., Ltd.). The unit of ventilation resistance is kPa·s/m. The measurement was performed 5 times, and the average value is shown in Table 4. The measurement is carried out under the following two conditions. Furthermore, the temperature of the measuring room is set to 24°C, and the relative humidity is set to 32%. ・Measurement condition 1 (ventilation resistance 1) Piston speed: 0.2 cm/s Ventilation volume: 0.4 cc/cm2 /s Measuring range: SENSE L (low) Sample size: 50 mm×50 mm ・Measurement condition 2 (ventilation resistance 2) Piston speed: 2 cm/s Ventilation: 4 cc/cm2 /s Measuring range: SENSE M (medium) or H (high) Sample size: 50 mm×50 mm [Example 2-1] As an electrode substrate for cathodic electrolysis, an electrolytic nickel foil with a gauge thickness of 16 μm was prepared. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 49%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the electrode produced in Example 2-1 was 24 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Also, it is the total thickness of ruthenium oxide and cerium oxide. Table 4 shows the measurement results of the adhesive force of the electrode produced by the above method. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. Between the roughened surface of the electrode and the approximate center of the carboxylic acid layer side of the ion exchange membrane A (dimensions 160 mm×160 mm) produced in [Method (i)] which is equilibrated with 0.1 N NaOH aqueous solution The positions are opposite, and the surface tension of the aqueous solution makes them close together. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The above-mentioned membrane-integrated electrode is sandwiched between the anode cell and the cathode cell so that the surface where the electrode is attached becomes the side of the cathode chamber. In the cross-sectional structure, the current collector, the pad, the nickel mesh feeder, the electrode, the membrane, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure. The obtained electrode was subjected to electrolytic evaluation. The results are shown in Table 4. Shows lower voltage, higher current efficiency and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF (fluorescent X-ray analysis), approximately 100% of the coating remains on the roughened surface, and the intermediate coating on the non-roughened surface decreases. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 2-2] In Example 2-2, an electrolytic nickel foil with a gauge thickness of 22 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 44%. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 29 μm. The thickness of the catalyst layer is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0033 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 2-3] In Example 2-3, an electrolytic nickel foil with a gauge thickness of 30 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 1.38 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 44%. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 38 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 2-4] In Example 2-4, an electrolytic nickel foil with a gauge thickness of 16 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 75%. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 24 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0023 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 2-5] In Example 2-5, an electrolytic nickel foil with a gauge thickness of 20 μm was prepared as an electrode substrate for cathode electrolysis. The roughening treatment by electrolytic nickel plating was performed on both sides of the nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. Both sides have the same roughness. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 49%. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 30 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0023 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on both sides. Considering the comparative examples 2-1 to 2-4, it shows that even if there is less or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exerted. [Example 2-6] Example 2-6 was evaluated in the same manner as Example 2-1 except that the application of the electrode substrate for cathodic electrolysis was carried out by ion plating, and the results are shown in Table 4. In addition, the ion plating system uses a Ru metal target at a heating temperature of 200°C, and a film formation pressure of 7×10 in an argon/oxygen environment.-2 Pa is used for film formation. The formed coating is ruthenium oxide. The thickness of the electrode is 26 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-7] In Examples 2-7, an electrode substrate for cathode electrolysis was produced by an electroforming method. The shape of the mask is set to a shape formed by vertically and horizontally arranging a square of 0.485 mm×0.485 mm with an interval of 0.15 mm. By sequentially performing exposure, development, and electroplating, a nickel porous foil with a gauge thickness of 20 μm and an opening rate of 56% was obtained. The arithmetic average surface roughness Ra is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 37 μm. The thickness of the catalyst layer is 17 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0032 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-8] In Examples 2-8, the electrode substrate for cathodic electrolysis was fabricated by an electroforming method, the gauge thickness was 50 μm, and the porosity was 56%. The arithmetic average surface roughness Ra is 0.73 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 60 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0032 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-9] In Example 2-9, a nickel non-woven fabric (manufactured by NIKKO TECHNO Co., Ltd.) with a gauge thickness of 150 μm and a porosity of 76% was used as an electrode substrate for cathode electrolysis. The diameter of the nickel fiber of the non-woven fabric is about 40 μm, and the weight per unit area is 300 g/m2 . Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 165 μm. The thickness of the catalyst layer is 15 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 29 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0612 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 2-10] In Example 2-10, a nickel non-woven fabric (manufactured by NIKKO TECHNO Co., Ltd.) with a gauge thickness of 200 μm and a porosity of 72% was used as an electrode substrate for cathode electrolysis. The diameter of the nickel fiber of the non-woven fabric is about 40 μm, and the weight per unit area is 500 g/m2 . Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 215 μm. The thickness of the catalyst layer is 15 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 40 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0164 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 2-11] In Example 2-11, foamed nickel (manufactured by Mitsubishi Materials Co., Ltd.) with a gauge thickness of 200 μm and a porosity of 72% was used as an electrode substrate for cathode electrolysis. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. In addition, the thickness of the electrode is 210 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 17 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0402 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 2-12] In Example 2-12, a nickel mesh with a wire diameter of 50 μm, 200 meshes, a gauge thickness of 100 μm, and an opening ratio of 37% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. Even if the spray treatment is applied, the opening rate does not change. Because it is difficult to measure the surface roughness of the wire mesh, in Example 2-12, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the wire mesh Roughness. The arithmetic average roughness Ra of a wire mesh is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 110 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0154 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-13] In Example 2-13, a nickel mesh with a wire diameter of 65 μm, 150 mesh, a gauge thickness of 130 μm, and an opening ratio of 38% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. Even if the spray treatment is applied, the opening rate does not change. Because it is difficult to measure the surface roughness of the wire mesh, in Example 2-13, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the wire mesh. Roughness. The arithmetic average roughness Ra is 0.66 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 133 μm. The thickness of the catalyst layer is 3 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 6.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0124 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation is also "0", which is relatively good. [Example 2-14] In Example 2-14, the same substrate as in Example 2-3 (gauge thickness 30 μm, opening rate 44%) was used as the electrode substrate for cathodic electrolysis. Except that the nickel mesh feeder was not provided, the electrolytic evaluation was performed with the same configuration as in Example 2-1. That is, the cross-sectional structure of the electrolytic cell is such that the current collector, the pad, the membrane-integrated electrode, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure, and the pad functions as a power feeder. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-15] In Example 2-15, the same substrate as in Example 2-3 (gauge thickness 30 μm, open porosity 44%) was used as the electrode substrate for cathodic electrolysis. The degraded and high electrolytic voltage cathode used in Reference Example 1 was installed instead of the nickel mesh feeder. Except for this, electrolysis evaluation was performed with the same structure as Example 2-1. That is, the cross-sectional structure of the electrolytic cell is formed by sequentially arranging current collectors, pads, degraded and high electrolytic voltage cathodes (functioning as power feeders), electrolysis electrodes (cathodes), diaphragms, and anodes from the cathode chamber side. With a zero-pitch structure, the cathode, which deteriorates and increases the electrolysis voltage, functions as a power feeder. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-16] As an electrode substrate for anode electrolysis, a titanium foil with a gauge thickness of 20 μm was prepared. The two sides of the titanium foil are roughened. The titanium foil is punched and round holes are made to make a porous foil. The diameter of the hole is 1 mm, and the opening rate is 14%. The arithmetic average surface roughness Ra is 0.37 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) with a ruthenium concentration of 100 g/L ruthenium chloride solution (Tanaka Precious Metals Industry Co., Ltd.) and an iridium concentration of 100 g/L is such that the molar ratio of ruthenium, iridium and titanium becomes 0.25:0.25:0.5 Iridium chloride (Tanaka Precious Metals Industry Co., Ltd.) and titanium tetrachloride (Wako Pure Chemical Industry Co., Ltd.). This mixed solution was sufficiently stirred and used as an anode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). After coating the above-mentioned coating liquid on the titanium porous foil, drying was performed at 60°C for 10 minutes, and firing was performed at 475°C for 10 minutes. After repeating a series of operations of coating, drying, pre-firing, and firing, firing was carried out at 520°C for 1 hour. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. The surface tension of the aqueous solution makes it close to the approximate center of the sulfonic acid layer side of the ion exchange membrane A (size 160 mm×160 mm) produced in [Method (i)] equilibrated with 0.1 N NaOH aqueous solution . The cathode was prepared in the following order. First, prepare a nickel wire mesh with a wire diameter of 150 μm and 40 mesh as a base material. After spraying with alumina as a pretreatment, it was immersed in 6 N hydrochloric acid for 5 minutes, and thoroughly washed and dried with pure water. Then, the ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) and cerium chloride (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were used to make the molar ratio of ruthenium element and cerium element 1:0.25. To mix. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was carried out at 50°C for 10 minutes, pre-firing at 300°C for 3 minutes, and firing at 550°C for 10 minutes. After that, firing was performed at 550°C for 1 hour. Repeat the series of operations of coating, drying, pre-firing, and firing. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the cathode made by the above method, and fix the four corners of the net to the current collector by using a rope made of Teflon (registered trademark). Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the anode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The degraded and high electrolytic voltage anode used in Reference Example 3 was fixed to the anode cell by welding, and the membrane-integrated electrode was sandwiched between the anode cell and the cathode cell so that the surface where the electrode was attached became the anode chamber side. That is, the cross-sectional structure of the electrolytic cell is arranged in order from the cathode chamber side with current collectors, mats, cathodes, diaphragms, electrodes for electrolysis (anode of titanium porous foil), and anodes that deteriorate and increase electrolysis voltage to form a zero-pitch structure. The anode that deteriorates and the electrolysis voltage becomes high functions as a power feeder. Furthermore, the titanium porous foil anode is only in physical contact with the deteriorated and high electrolytic voltage anode, and is not fixed by welding. With this configuration, evaluation was performed in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 26 μm. The thickness of the catalyst layer is 6 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 4 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0060 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-17] In Example 2-17, a titanium foil with a gauge thickness of 20 μm and an opening rate of 30% was used as the electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.37 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. The thickness of the electrode is 30 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0030 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-18] In Example 2-18, a titanium foil with a gauge thickness of 20 μm and an opening rate of 42% was used as the electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.38 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 2-16, and the results are shown in Table 4. The thickness of the electrode is 32 μm. The thickness of the catalyst layer is 12 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 2.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0022 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-19] In Example 2-19, a titanium foil with a gauge thickness of 50 μm and an opening rate of 47% was used as the electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.40 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. The thickness of the electrode is 69 μm. The thickness of the catalyst layer is 19 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 8 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0024 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-20] Example 2-20 uses a gauge thickness of 100 μm, a titanium fiber diameter of about 20 μm, and a unit area weight of 100 g/m2 , Titanium non-woven fabric with 78% porosity is used as the electrode substrate for anode electrolysis. Except for this, evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. The thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 2 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0228 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-21] In Example 2-21, a titanium wire mesh with a gauge thickness of 120 μm, a titanium fiber diameter of about 60 μm, and a 150 mesh was used as the electrode substrate for anode electrolysis. The opening rate is 42%. The blasting treatment was carried out with the alumina particle number 320. Because it is difficult to measure the surface roughness of the wire mesh, in Example 2-21, a titanium plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the titanium plate was used as the surface of the wire mesh Roughness. The arithmetic average roughness Ra is 0.60 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. The thickness of the electrode is 140 μm. The thickness of the catalyst layer is 20 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 10 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0132 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 2-22] In Example 2-22, as in Example 2-16, a degraded and high electrolytic voltage anode was used as the anode feeder, and the same titanium non-woven fabric as in Example 2-20 was used as the anode. In the same manner as in Example 2-15, a degraded and high electrolytic voltage cathode was used as the cathode feeder, and the same nickel foil electrode as in Example 2-3 was used as the cathode. The cross-sectional structure of the electrolytic cell is from the side of the cathode chamber, and the current collector, the pad, the deteriorated and higher voltage cathode, the nickel porous foil cathode, the diaphragm, the titanium non-woven anode, and the deteriorated and higher electrolytic voltage anode are arranged in order to form a zero With a pitch structure, the cathode and anode, which deteriorate and increase the electrolysis voltage, function as a power feeder. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode (anode) is 114 μm, and the thickness of the catalyst layer is 14 μm from the thickness of the electrode (anode) minus the thickness of the electrode substrate for electrolysis. The thickness of the electrode (cathode) is 38 μm, and the thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode (cathode). Sufficient adhesion was observed on both the anode and the cathode. Implement the deformation test of the electrode (anode), the result is L1 , L2 The average value is 2 mm. The deformation test of the electrode (cathode) was carried out, and the result was L1 , L2 The average value is 0 mm. The air resistance of the electrode (anode) was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0228 (kPa·s/m) under the measurement condition 2. The air resistance of the electrode (cathode) was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The evaluation of the membrane damage in the anode and cathode is also "0", which is relatively good. Furthermore, in Example 2-22, the cathode was attached to one side of the separator, and the anode was attached to the opposite side, and the cathode and anode were combined to evaluate the membrane damage. [Example 2-23] In Example 2-23, the microporous film "Zirfon Perl UTP 500" manufactured by Agfa Company was used. The Zirfon film was used for testing after immersing in pure water for more than 12 hours. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 2-3, and the results are shown in Table 4. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. As in the case of using an ion exchange membrane as the diaphragm, sufficient adhesive force was observed, the microporous membrane and the electrode were in close contact with each other by surface tension, and the operability was "1", which was relatively good. [Example 2-24] As an electrode substrate for cathode electrolysis, a carbon cloth made of woven carbon fiber with a gauge thickness of 566 μm was prepared. The coating solution for forming the electrode catalyst on the carbon cloth was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A rubber made of foamed EPDM (ethylene-propylene-diene rubber) (Inoac Corporation, E-4088 (trade name), thickness 10 mm) is wound on a tube made of PVC (polyvinyl chloride). The resulting coating drum is set in such a way that the coating liquid is always connected. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the fabricated electrode is 570 μm. The thickness of the catalyst layer is 4 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The thickness of the catalyst layer is the total thickness of ruthenium oxide and cerium oxide. The obtained electrode was subjected to electrolytic evaluation. The results are shown in Table 4. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. The ventilation resistance of the electrode was measured, and the result was 0.19 (kPa·s/m) under measurement condition 1 and 0.176 (kPa·s/m) under measurement condition 2. In addition, the operability is "2", and it can be judged that it can be operated as a large laminate. The voltage was high, the film damage was evaluated as "1", and the film damage was confirmed. It is believed that the reason is that since the ventilation resistance of the electrode of Example 2-24 is relatively large, the NaOH generated in the electrode stays at the interface between the electrode and the diaphragm and becomes a high concentration. [Reference example 1] In Reference Example 1, the cathode was used as a cathode in a large electrolytic cell for 8 years, which deteriorated and the electrolysis voltage became high. The above-mentioned cathode was installed on the mat of the cathode chamber instead of the nickel mesh feeder, and the electrolysis evaluation was performed through the ion exchange membrane A produced in [Method (i)]. In Reference Example 1, the membrane-integrated electrode is not used. The cross-sectional structure of the electrolytic cell is from the cathode chamber side. The current collector, the mat, the cathode, the ion exchange membrane A, and the anode that deteriorate and increase the electrolysis voltage are arranged in order to form a zero pitch. structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.04 V, the current efficiency was 97.0%, and the salt concentration (50% conversion value) in the caustic soda was 20 ppm. Due to the deterioration of the cathode, the result is a higher voltage [Reference example 2] In Reference Example 2, a nickel mesh feeder was used as the cathode. That is, electrolysis is performed with a nickel mesh without a catalyst coating. The nickel mesh cathode was set on the mat of the cathode chamber, and the electrolysis evaluation was performed through the ion exchange membrane A produced in [Method (i)]. The cross-sectional structure of the battery of Reference Example 2 is from the cathode chamber side, and the current collector, the pad, the nickel mesh, the ion exchange membrane A, and the anode are arranged in order to form a zero-pitch structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.38 V, the current efficiency was 97.7%, and the salt concentration (50% conversion value) in the caustic soda was 24 ppm. Since the cathode catalyst is not coated, the result is a higher voltage. [Reference example 3] In Reference Example 3, the anode was used as an anode in a large electrolytic cell for about 8 years, which deteriorated and the electrolysis voltage became high. The cross-sectional structure of the electrolytic cell of Reference Example 3 is formed by sequentially arranging the current collector, the mat, the cathode, the ion exchange membrane A made in [Method (i)], and the anode with deterioration and higher electrolysis voltage from the cathode chamber side. Zero-spacing structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.18 V, the current efficiency was 97.0%, and the salt concentration (50% conversion value) in the caustic soda was 22 ppm. Due to the deterioration of the anode, the result is a higher voltage. [Example 2-25] In Example 2-25, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 33% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of porous metals, in Example 2-25, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh degree. The arithmetic average roughness Ra is 0.68 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 67.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.05 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 64%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 22%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 13 mm. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0168 (kPa·s/m) under the measurement condition 2. [Example 2-26] In Example 2-26, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 16% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 2-26, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 107 μm. The thickness of the catalyst layer is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 78.1 (mg/cm2 ). The force per unit mass and unit area (1) is 0.04 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 37%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 25%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 18.5 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0176 (kPa·s/m) under the measurement condition 2. [Example 2-27] In Example 2-27, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 40% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 2-27, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.70 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The coating of the electrode substrate for electrolysis was carried out by the same ion plating as in Example 2-6. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 110 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The force per unit mass and unit area (1) is 0.07 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 80%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 32%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "3", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 11 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0030 (kPa·s/m) under the measurement condition 2. [Example 2-28] In Example 2-28, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 58% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 2-28, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 109 μm. The thickness of the catalyst layer is 9 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The force per unit mass and unit area (1) is 0.06 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 69%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 39%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "3", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 11.5 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. [Example 2-29] In Example 2-29, a nickel wire mesh with a gauge thickness of 300 μm and an opening rate of 56% was used as the electrode substrate for cathodic electrolysis. Because it is difficult to measure the surface roughness of the wire mesh, in Example 2-29, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the wire mesh. Roughness. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-1, and the results are shown in Table 4. The thickness of the electrode is 308 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 49.2 (mg/cm2 ). Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 88%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 42%, which means that the part where the electrode and the separator are separated increases. When it exists in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane during operation and fall off. The operability is "3", which is problematic. Actually, it can be evaluated as "3" when it is operated in a large size. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 23 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0034 (kPa·s/m) under the measurement condition 2. [Example 2-30] In Examples 2-30, a nickel wire mesh with a gauge thickness of 200 μm and an opening rate of 37% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Since it is difficult to measure the surface roughness of the wire mesh, in Example 2-30, the nickel plate with a thickness of 1 mm was simultaneously sprayed during the spraying process, and the surface roughness of the nickel plate was used as the surface of the wire mesh Roughness. The arithmetic average roughness Ra is 0.65 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the electrode electrolysis evaluation, the measurement result of adhesive force, and adhesiveness were implemented similarly to Example 2-1. The results are shown in Table 4. The thickness of the electrode is 210 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 56.4 mg/cm2 . Therefore, the result of the evaluation method (3) for the cylindrical winding with a diameter of 145 mm is 63%, and the adhesion between the electrode and the diaphragm is poor. When it exists in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane during operation and fall off. The operability is "3", which is problematic. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 19 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0096 (kPa·s/m) under the measurement condition 2. [Example 2-31] In Example 2-31, a titanium porous metal with a gauge thickness of 500 μm and an opening rate of 17% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 2-31, a titanium plate with a thickness of 1 mm was blasted at the same time during blasting, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.60 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. In addition, the thickness of the electrode is 508 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 152.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0072 (kPa·s/m) under the measurement condition 2. [Example 2-32] In Example 2-32, a titanium porous metal with a gauge thickness of 800 μm and an open porosity of 8% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 2-32, a titanium plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.61 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. The thickness of the electrode is 808 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 251.3 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0172 (kPa·s/m) under the measurement condition 2. [Example 2-33] In Example 2-33, a titanium porous metal with a gauge thickness of 1000 μm and an open porosity of 46% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 2-33, a titanium plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.59 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 2-16, and the results are shown in Table 4. In addition, the thickness of the electrode is 1011 μm. The thickness of the catalyst layer is 11 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 245.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. [Example 2-34] Prepare a nickel wire with a gauge thickness of 150 μm as the electrode substrate for cathodic electrolysis. The roughening treatment using the nickel wire is performed. Because it is difficult to measure the surface roughness of the nickel wire, in Example 2-34, the nickel plate with a thickness of 1 mm was sprayed at the same time during the spraying, and the surface roughness of the nickel plate was used as the surface roughness of the nickel wire . The blasting treatment was carried out with the alumina particle number 320. The arithmetic average roughness Ra is 0.64 μm. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A rubber made of foamed EPDM (ethylene-propylene-diene rubber) (Inoac Corporation, E-4088 (trade name), thickness 10 mm) is wound on a tube made of PVC (polyvinyl chloride). The resulting coating drum is set in such a way that the coating liquid is always connected. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of one nickel wire produced in Example 2-34 was 158 μm. Cut the nickel wire made by the above method into lengths of 110 mm and 95 mm. As shown in Figure 37, the nickel wire of 110 mm and the nickel wire of 95 mm are placed vertically at the center of each nickel wire. The instant adhesive (Aron Alpha (registered trademark), Dong-A Synthetic Co., Ltd.) Then, at the intersection, an electrode is fabricated. The electrodes were evaluated, and the results are shown in Table 4. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The opening rate is 99.7%. The mass per unit area of the electrode is 0.5 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 15 mm. The air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under the measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance value was 0.0002 (kPa·s/m). In addition, for the electrode, the structure shown in FIG. 38 was used, the electrode (cathode) was set on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage becomes 3.16 V, which is relatively high. [Example 2-35] In Example 2-35, the electrode made in Example 2-34 was used. As shown in Figure 39, the nickel wire of 110 mm and the nickel wire of 95 mm were placed vertically at the center of each nickel wire. The electrode was made by bonding the intersection point with an instant adhesive (Aron Alpha (registered trademark), Toa Synthetic Co., Ltd.). The electrodes were evaluated, and the results are shown in Table 4. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The porosity is 99.4%. The mass per unit area of the electrode is 0.9 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 16 mm. The air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under the measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance was 0.0004 (kPa·s/m). In addition, for the electrode, the structure shown in FIG. 40 was used, the electrode (cathode) was placed on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage is 3.18 V, which is relatively high. [Example 2-36] In Example 2-36, the electrode made in Example 2-34 was used. As shown in Figure 41, the nickel wire of 110 mm and the nickel wire of 95 mm were placed vertically at the center of each nickel wire. The electrode was made by bonding the intersection point with an instant adhesive (Aron Alpha (registered trademark), Toa Synthetic Co., Ltd.). The electrodes were evaluated, and the results are shown in Table 4. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The opening rate is 98.8%. The mass per unit area of the electrode is 1.9 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 14 mm. In addition, the air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance was 0.0005 (kPa·s/m). In addition, for the electrode, the structure shown in FIG. 42 was used, the electrode (cathode) was set on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage is 3.18 V, which is relatively high. [Comparative Example 2-1] In Comparative Example 2-1, a previous document (an example of Japanese Patent Application Laid-Open No. 58-48686) was used as a reference to produce a thermocompression bonded body in which an electrode was thermocompressed to a separator. Using a nickel porous metal with a gauge thickness of 100 μm and an opening ratio of 33% as an electrode substrate for cathodic electrolysis, electrode coating was performed in the same manner as in Example 2-1. After that, the inertization treatment was performed on one side of the electrode in the following procedure. Attach a polyimide adhesive tape (Zhongxing Chemical Co., Ltd.) on one side of the electrode, and apply a PTFE dispersion (DuPont-Mitsui Fluorochemicals Co., Ltd., 31-JR (trade name)) on the opposite side, at 120°C Dry in the muffle furnace for 10 minutes. The polyimide tape was peeled off, and sintering was performed in a muffle furnace set at 380°C for 10 minutes. Repeat this operation twice to inertize one side of the electrode. Produced from the terminal functional group as "-COOCH3 "The perfluorocarbon polymer (C polymer) and the end group are "-SO2 A film formed by two layers of perfluorocarbon polymer (S polymer) of F". The thickness of the C polymer layer is 3 mils, and the thickness of the S polymer layer is 4 mils. The two-layer membrane is subjected to saponification treatment, and ion exchange groups are introduced to the ends of the polymer by hydrolysis. The end of the C polymer is hydrolyzed into carboxylic acid groups, and the end of the S polymer is hydrolyzed into sulfonic groups. The ion exchange capacity based on sulfonic acid groups is 1.0 meq/g, and the ion exchange capacity based on carboxylic acid groups is 0.9 meq/g. The surface having the carboxylic acid group as the ion exchange group is opposed to the inertized electrode surface, and hot pressing is performed to integrate the ion exchange membrane and the electrode. After thermocompression bonding, one side of the electrode is also exposed, and there is no part of the electrode penetrating the membrane. After that, in order to prevent the adhesion of bubbles generated during electrolysis to the film, a perfluorocarbon polymer mixture with zirconia and sulfo groups introduced was coated on both sides. In this way, a thermocompression bonded body of Comparative Example 2-1 was produced. Using this thermocompression bonding assembly, the force per unit mass and unit area (1) was measured. As a result, the electrode and the film were strongly bonded by thermocompression bonding, so the electrode did not move upward. Therefore, the ion exchange membrane and the nickel plate were fixed without moving, and the electrode was pulled upward with a stronger force, and the result was 1.50(N/mg·cm2 ), a part of the membrane ruptures. The force per unit mass and unit area of the thermocompression bonded body of Comparative Example 2-1 (1) is at least 1.50 (N/mg·cm)2 ), is strongly joined. The evaluation (1) of cylindrical winding with a diameter of 280 mm was carried out, and the contact area with the plastic pipe was less than 5%. On the other hand, evaluation (2) of cylindrical winding with a diameter of 280 mm was carried out. As a result, although the electrode and the membrane were 100% bonded, the separator was not wound to the cylinder at first. The results of evaluation (3) for cylindrical winding with a diameter of 145 mm are also the same. This result means that the operability of the film is impaired by the integrated electrode, and it is difficult to wind it into a roll or bend it. The operability is "3" and there is a problem. The film damage evaluation was "0". In addition, the electrolysis evaluation was performed. As a result, the voltage became higher, the current efficiency became lower, the salt concentration (50% conversion value) in the caustic soda became higher, and the electrolysis performance deteriorated. In addition, the thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 13 mm. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0168 (kPa·s/m) under the measurement condition 2. [Comparative Example 2-2] In Comparative Example 2-2, a nickel mesh with a wire diameter of 150 μm, 40 mesh, a gauge thickness of 300 μm, and an opening ratio of 58% was used as an electrode substrate for cathodic electrolysis. Except for this, a thermocompression bonded body was produced in the same manner as in Comparative Example 2-1. Using this thermocompression bonding assembly, the force per unit mass and unit area (1) was measured. As a result, the electrode and the film were strongly bonded by thermocompression bonding, so the electrode did not move upward. Therefore, the ion exchange membrane and the nickel plate were fixed without moving, and the electrode was pulled upward with a stronger force. The result was 1.60(N/mg·cm2 ), a part of the membrane ruptures. The force per unit mass and unit area of the thermocompression bonded body of Comparative Example 2-2 (1) is at least 1.60 (N/mg·cm)2 ), is strongly joined. Evaluation (1) of cylindrical winding with a diameter of 280 mm using this thermocompression bonded body showed that the contact area with the plastic pipe was less than 5%. On the other hand, evaluation (2) of cylindrical winding with a diameter of 280 mm was carried out. As a result, although the electrode and the membrane were 100% bonded, the separator was not wound to the cylinder at first. The results of evaluation (3) for cylindrical winding with a diameter of 145 mm are also the same. This result means that the operability of the film is impaired by the integrated electrode, and it is difficult to wind it into a roll or bend it. The operability is "3" and there is a problem. In addition, the electrolysis evaluation was performed. As a result, the voltage became higher, the current efficiency became lower, the salt concentration in the caustic soda became higher, and the electrolysis performance deteriorated. In addition, the thickness of the electrode is 308 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 23 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0034 (kPa·s/m) under the measurement condition 2. [table 3]
Figure 109105584-A0304-0003
[Table 4]
Figure 109105584-A0304-0004
In Table 4, all samples can stand on their own by surface tension before the measurement of "force per unit mass·unit area (1)" and "force per unit mass·unit area (2)" ( That is, there is no case of sagging). <Verification of the third embodiment> As follows, prepare experimental examples corresponding to the third embodiment (referred to as "Examples" in the section of "Verification of the third embodiment" below) and experimental examples not corresponding to the third embodiment ( In the following section of <Verification of the third embodiment>, it is simply referred to as "comparative example"), and these were evaluated by the following methods. The details will be described with reference to FIGS. 57 to 62 as appropriate. (1) Electrolysis evaluation (voltage (V), current efficiency (%)) The electrolysis performance was evaluated by the following electrolysis experiment. A titanium anode cell (anode terminal cell) having an anode chamber provided with an anode was opposed to a cathode cell having a nickel cathode chamber (cathode terminal cell) provided with a cathode. A pair of gaskets are arranged between the cells, and the ion exchange membrane is sandwiched between the pair of gaskets. Then, the anode cell, the gasket, the ion exchange membrane, the gasket, and the cathode are closely connected to obtain an electrolytic cell. As the anode, it is produced by coating a mixed solution of ruthenium chloride, iridium chloride, and titanium tetrachloride on a titanium substrate that has been sprayed and acid-etched as a pretreatment, followed by drying and firing. The anode is fixed to the anode chamber by welding. As the cathode, those described in the respective Examples and Comparative Examples were used. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the nickel net with a 40-mesh mesh and flat-woven nickel wire with a diameter of 150 μm. The four corners of the Ni net are fixed to the current collector by a rope made of Teflon (registered trademark). Use this Ni net as a power feeder. In this electrolytic cell, the repulsive force of the pad as a metal elastic body is used to establish a zero-spacing structure. As the gasket, a rubber gasket made of EPDM (Ethylene Propylene Diene) is used. As the diaphragm, the following ion exchange membrane was used. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made of 35 denier and 6 filaments of polyethylene terephthalate (PET) twisted at 200 times/m was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF2 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with an average particle diameter (primary particle diameter) of 1 μm was added to the 5% by mass ethanol solution of the acid resin of resin B and dispersed to prepare a suspension. Spray both sides of the composite membrane to form a coating of zirconia on the surface of the composite membrane to obtain an ion exchange membrane. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . In addition, the average particle diameter is measured with a particle size distribution meter (for example, "SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 90°C. At current density 6 kA/m2 Under the implementation of salt electrolysis, the voltage and current efficiency are measured. Here, the so-called current efficiency is the ratio of the amount of caustic soda generated to the current flowing. If the current flowing, impurity ions or hydroxide ions instead of sodium ions move in the ion exchange membrane, the current efficiency reduce. Current efficiency is calculated by dividing the molar number of caustic soda generated in a certain period of time by the molar number of electrons flowing in between. The molar number of caustic soda is obtained by recovering the caustic soda produced by electrolysis in a polymer tank and measuring its mass. (2)Operability (sensing evaluation) (A) Cut the ion exchange membrane (diaphragm) described above into a size of 170 mm square, and cut the electrodes obtained in the examples and comparative examples described below into 95×110 mm. Laminate the ion exchange membrane and the electrode and place it on the Teflon plate. The interval between the anode cell and the cathode cell used in the electrolytic evaluation was set to about 3 cm, and the static laminate was lifted up and inserted and sandwiched between them. When performing this operation, check whether the electrode is deviated or dropped while operating. (B) The laminated body is statically placed on a Teflon plate in the same manner as in the above (A). Hold the two adjacent corners of the film portion of the laminated body and lift it up so that the laminated body becomes vertical. From this state, move the two hand-held corners close to each other to make the film convex or concave. Repeat this operation one more time to confirm the followability of the electrode to the membrane. Based on the following indicators, the results are evaluated on 4 levels from 1 to 4. 1: Good operation 2: Able to operate 3: Difficulty in operation 4: Generally unable to operate Here, as for the samples of Examples 3-4 and 3-6, as described below, even if they are the same size as a large electrolytic cell, the operability was evaluated. The evaluation results of Examples 3-4 and 3-6 are used as indicators to evaluate the difference between the evaluation of the above (A) and (B) and the large size. That is, when the result obtained by evaluating the small-sized laminate is "1" or "2", it is evaluated that the operability is good even when it is made into a large size. (3) Ratio of fixed area The area of the surface of the ion exchange membrane opposite to the electrode for electrolysis (the total of the part corresponding to the current-carrying surface and the part corresponding to the non-current-carrying surface) was calculated as the area S1. Then, the area of the electrode for electrolysis was calculated as the area S2 of the energizing surface. The areas S1 and S2 are specified by the area when the laminate of the ion exchange membrane and the electrode for electrolysis is viewed from the side of the electrode for electrolysis (see FIG. 57). Furthermore, even if the shape of the electrode for electrolysis has openings, the opening rate is less than 90%. Therefore, the electrode for electrolysis is regarded as a flat plate (the area of openings is also included in the area). The area S3 of the fixed region is also specified as the area when the laminate is viewed from above as shown in FIG. 57 (the same applies to the area S3' of only the portion corresponding to the energized surface). Furthermore, when the PTFE tape described below is used as a fixing member for fixing, the overlapping part of the tape is not included in the area. In addition, when the PTFE yarn or adhesive described below is fixed as a fixing member, the area existing on the back side of the electrode and the separator is also included in the area. As described above, as the ratio α (%) of the area of the fixed region in the ion exchange membrane to the area of the surface opposite to the electrode for electrolysis, 100×(S3/S1) was calculated. Furthermore, as the ratio β of the area of only the portion corresponding to the energized surface of the fixed region to the area of the energized surface, 100×S3'/S2 was calculated. [Example 3-1] Prepare an electrolytic nickel foil with a gauge thickness of 22 μm as an electrode substrate for cathodic electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 44%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the electrode fabricated in Example 3-1 was 24 μm. The thickness of the catalyst layer containing ruthenium oxide and cerium oxide is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. The roughened surface of the electrode is arranged to face the approximate center of the carboxylic acid layer side of the ion exchange membrane (size 160 mm×160 mm) equilibrated with a 0.1 N NaOH aqueous solution. Use PTFE tape (manufactured by Nitto Denko) as shown in Fig. 57 (but Fig. 57 is only a schematic diagram for illustration, and the dimensions may not be accurate. The same is true for the following diagrams). Fixed on 4 sides. In Example 3-1, the PTFE tape is a fixing member, and the ratio α is 60%, and the ratio β is 1.0%. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The above-mentioned membrane-integrated electrode is sandwiched between the anode cell and the cathode cell so that the surface where the electrode is attached becomes the side of the cathode chamber. In the cross-sectional structure, the current collector, the pad, the nickel mesh feeder, the electrode, the membrane, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure. The electrodes obtained were evaluated. The results are shown in Table 5. Shows lower voltage and higher current efficiency. The operability is also "2", which is relatively good. [Example 3-2] As shown in FIG. 58, the evaluation was performed in the same manner as in Example 3-1 except that the area where the PTFE tape overlaps the electrolytic surface was increased. That is, in Example 3-2, since the area of the PTFE tape increases along the in-plane direction of the electrode for electrolysis, the area of the electrolysis surface in the electrode for electrolysis is reduced compared to Example 3-1. In Example 3-2, the ratio α is 69%, and the ratio β is 23%. Table 5 shows the results of the evaluation. Shows lower voltage and higher current efficiency. The operability is also "1", which is relatively good. [Example 3-3] As shown in FIG. 59, the evaluation was performed in the same manner as in Example 3-1 except that the area where the PTFE tape overlaps the electrolytic surface was increased. That is, in Example 3-3, since the area of the PTFE tape increases along the in-plane direction of the electrode for electrolysis, the area of the electrolysis surface in the electrode for electrolysis is reduced compared with Example 3-1. In Example 3-3, the ratio α is 87%, and the ratio β is 67%. Table 5 shows the results of the evaluation. Shows lower voltage and higher current efficiency. The operability is also "1", which is relatively good. [Example 3-4] The same electrode as in Example 3-1 was prepared and cut into a size of 95 mm in length and 110 mm in width for electrolytic evaluation. The roughened surface of the electrode is arranged to face the approximate center of the carboxylic acid layer side of the ion exchange membrane (size 160 mm×160 mm) equilibrated with a 0.1 N NaOH aqueous solution. Using PTFE yarn, as shown in Figure 60, sew the ion exchange membrane and the electrode so that the left side of the electrode extends longitudinally. From the corner of the electrode 10 mm in the longitudinal direction and 10 mm in the transverse direction, penetrate the PTFE yarn from the back side of the paper in Figure 60 to the front side, and penetrate through the 35 mm in the longitudinal direction and 10 mm in the transverse direction from the front side to the back side of the paper. , Make the yarn penetrate again from the back side of the paper to the front side at the part of 60 mm in the longitudinal direction and 10 mm in the lateral direction, and penetrate from the front side of the paper to the back side at the part of 85 mm in the longitudinal direction and 10 mm in the horizontal direction. The part of the yarn passing through the ion exchange membrane will be coated with CF2 =CF2 With CF2 =CFOCF2 CF(CF2 )OCF2 CF2 SO2 The acid type resin S of the resin whose ion exchange capacity is 1.03 mg equivalent/g based on the copolymer of F is dispersed in ethanol so as to become 5% by mass. As described above, in Example 3-4, the ratio α is 0.35%, and the ratio β is 0.86%. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not fall. Even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not fall. The electrodes obtained were evaluated. The results are shown in Table 5. Shows lower voltage and higher current efficiency. The operability is also "2", which is relatively good. Furthermore, in Example 3-4, ion exchange membranes and electrodes that were changed to a large size were prepared. Prepare 4 ion exchange membranes with a length of 1.5 m and a width of 2.5 m, and a cathode with a length of 0.3 m and a width of 2.4 m. The cathode is arranged on the carboxylic acid layer side of the ion exchange membrane in a gapless manner, and the cathode and the ion exchange membrane are connected by PTFE yarn to make a laminate. In this example, the ratio α is 0.013%, and the ratio β is 0.017%. The operation of installing the membrane-integrated electrode in which the membrane and the electrode are integrated into a large electrolytic cell can be installed smoothly. [Example 3-5] The same electrode as in Example 3-1 was prepared and cut into a size of 95 mm in length and 110 mm in width for electrolytic evaluation. The roughened surface of the electrode is arranged to face the approximate center of the carboxylic acid layer side of the ion exchange membrane (size 160 mm×160 mm) equilibrated with a 0.1 N NaOH aqueous solution. Use the polypropylene fixing resin shown in Fig. 61 to fix the ion exchange membrane and the electrode. In other words, it is installed at one of the 20 mm longitudinal and 20 mm lateral portions from the corner of the electrode, and one further 20 mm longitudinal and lateral 20 mm portions from the corner below the electrode. The same solution as in Example 3-4 was applied to the part where the fixing resin penetrates the ion exchange membrane. As described above, in Examples 3-5, the fixing resin and the resin S are used as fixing members, and the ratio α is 0.47%, and the ratio β is 1.1%. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not fall. Even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not fall. The electrodes obtained were evaluated. The results are shown in Table 5. Shows lower voltage and higher current efficiency. The operability is also "2", which is relatively good. [Example 3-6] The same electrode as in Example 3-1 was prepared and cut into a size of 95 mm in length and 110 mm in width for electrolytic evaluation. The roughened surface of the electrode is arranged to face the approximate center of the carboxylic acid layer side of the ion exchange membrane (size 160 mm×160 mm) equilibrated with a 0.1 N NaOH aqueous solution. As shown in FIG. 62, a cyanoacrylate-based adhesive (trade name: Aron Alpha, Toagosei Co., Ltd.) was used to fix the ion exchange membrane and the electrode. That is, the adhesive is fixed at 5 locations on one side of the electrode in the longitudinal direction (all at equal intervals) and 8 locations on the side of the electrode in the horizontal direction (all at equal intervals). As described above, in Example 3-6, the adhesive becomes a fixing member, and the ratio α is 0.78%, and the ratio β is 1.9%. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not fall. Even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not fall. The electrodes obtained were evaluated. The results are shown in Table 5. Shows lower voltage and higher current efficiency. The operability is "1", which is relatively good. Furthermore, in Example 3-6, ion exchange membranes and electrodes that were changed to a large size were prepared. Prepare 4 ion exchange membranes with a length of 1.5 m and a width of 2.5 m, and a cathode with a length of 0.3 m and a width of 2.4 m. Using the above-mentioned adhesive, the edges of one side of the four cathodes in the horizontal direction were connected to each other to form a large cathode (1.2 m in length and 2.4 m in width). The large cathode was adhered to the central part of the ion exchange membrane on the side of the carboxylic acid layer by Aron Alpha to produce a laminate. That is, as in FIG. 62, the adhesive is fixed at 5 locations (all at equal intervals) on one side of the electrode in the longitudinal direction and 8 locations on one side of the electrode (all at equal intervals) in the lateral direction of the electrode. In this example, the ratio α is 0.019%, and the ratio β is 0.024%. The operation of installing the membrane-integrated electrode in which the membrane and the electrode are integrated into a large electrolytic cell can be installed smoothly. [Example 3-7] The same electrode as in Example 3-1 was prepared and cut into a size of 95 mm in length and 110 mm in width for electrolytic evaluation. The roughened surface of the electrode is arranged to face the approximate center of the carboxylic acid layer side of the ion exchange membrane (size 160 mm×160 mm) equilibrated with a 0.1 N NaOH aqueous solution. Coat the same solution as in Example 3-4 to fix the ion exchange membrane and the electrode. That is, it is installed at one of the 20 mm longitudinal and 20 mm lateral portions from the corner of the electrode, a 20 mm longitudinal and lateral 20 mm portion from the corner below it, and a total of 2 locations (refer to Figure 61) . As described above, in Examples 3-7, the resin S was used as a fixing member, and the ratio α was 2.0%, and the ratio β was 4.8%. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not fall. Even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not fall. The electrodes obtained were evaluated. The results are shown in Table 5. Shows lower voltage and higher current efficiency. The operability is also "2", which is relatively good. [Comparative Example 3-1] The evaluation was performed in the same manner as in Example 3-1 except that the area where the PTFE tape overlaps the electrolytic surface was increased. That is, in Comparative Example 3-1, since the area of the PTFE tape increases in the in-plane direction of the electrode for electrolysis, the area of the electrolysis surface in the electrode for electrolysis is reduced compared to Example 3-1. In Comparative Example 3-1, the ratio α is 93%, and the ratio β is 83%. Table 5 shows the results of the evaluation. The voltage is higher and the current efficiency is lower. The operability is "1", which is relatively good. [Comparative Example 3-2] The evaluation was performed in the same manner as in Example 3-1 except that the area where the PTFE tape overlaps the electrolytic surface was increased. Table 5 shows the results of the evaluation. That is, in Comparative Example 3-2, the area of the PTFE tape was increased in the in-plane direction of the electrode for electrolysis. In Comparative Example 3-2, the ratio α and the ratio β are 100%, and the entire surface of the electrolysis surface is a fixed area covered with PTFE. Therefore, the electrolyte cannot be supplied and electrolysis cannot be performed. The operability is "1", which is relatively good. [Comparative Example 3-3] The evaluation was performed in the same manner as in Example 3-1 except that the PTFE tape was not used, that is, the ratio α and the ratio β were 0%. Table 5 shows the results of the evaluation. Shows lower voltage and higher current efficiency. On the other hand, since there is no fixed area between the diaphragm and the electrode, the diaphragm and the electrode cannot be handled as a laminate (integrated product), and the operability is "4". The evaluation results of Examples 3-1 to 7 and Comparative Examples 3-1 to 3 are collectively shown in Table 5 below. [table 5]
Figure 109105584-A0304-0005
<Verification of the fourth embodiment> As follows, prepare experimental examples corresponding to the fourth embodiment (referred to as "Examples" in the section of "Verification of the fourth embodiment" below) and experimental examples that do not correspond to the fourth embodiment ( In the section of the following <Verification of the fourth embodiment>, it is simply referred to as "comparative example"), and these were evaluated by the following methods. The details will be described with reference to FIGS. 79 to 90 as appropriate. [Evaluation method] (1) Hole rate Cut the electrode into a size of 130 mm×100 mm. Use an electronic digital thickness gauge (manufactured by Mitutoyo Co., Ltd., display at least 0.001 mm) to measure 10 points uniformly in the plane and calculate the average value. Use this as the thickness of the electrode (gauge thickness) to calculate the volume. After that, use an electronic balance to measure the mass, according to the specific gravity of the metal (specific gravity of nickel = 8.908 g/cm3 、The specific gravity of titanium = 4.506 g/cm3 ) Calculate the open porosity or porosity. Porosity (void ratio) (%) = (1-(electrode mass) / (electrode volume × metal specific gravity)) × 100 (2) Mass per unit area (mg/cm2 ) Cut the electrode into a size of 130 mm×100 mm, and measure the mass with an electronic balance. Divide this value by the area (130 mm×100 mm) to calculate the mass per unit area. (3) Force per unit mass and unit area (1) (Adhesive force) (N/mg・cm2 )) [Method (i)] The measurement system uses a tensile and compression testing machine (Imada Manufacturing Co., Ltd., testing machine body: SDT-52NA tensile and compression testing machine, load meter: SL-6001 load meter). The 1.2 mm thick and 200 mm square nickel plate is sprayed with alumina with grain number 320. The arithmetic average surface roughness (Ra) of the nickel plate after spray treatment is 0.7 μm. Here, the surface roughness measurement uses a stylus-type surface roughness measuring machine SJ-310 (Mitutoyo Co., Ltd.). The measurement sample is set on a platform parallel to the ground, and the arithmetic average roughness Ra is measured under the following measurement conditions. When the measurement was performed 6 times, the average value was recorded. <Shape of the stylus> Cone, cone angle = 60°, tip radius = 2 μm, static measuring force = 0.75 mN <Roughness standard> JIS2001 <Evaluation curve> R <Filter>GAUSS <Critical value λc>0.8 mm <Critical value λs>2.5 μm <Number of intervals>5 <Front sweep, back sweep> Yes The nickel plate was fixed to the chuck on the lower side of the tensile and compression testing machine in a vertical manner. The following ion exchange membrane A was used as the diaphragm. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made by twisting 35 denier and 6 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with a particle diameter of 1 μm was added to a 5 mass% ethanol solution of the acid resin of resin B and dispersed to prepare a suspension, and the two sides of the composite film were sprayed by the suspension spray method. Spraying is performed to form a coating of zirconia on the surface of the composite membrane to obtain ion exchange membrane A. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . In addition, the average particle diameter was measured with a particle size distribution meter ("SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). The ion exchange membrane (diaphragm) obtained above was immersed in pure water for more than 12 hours and then used for the test. It is brought into contact with the above-mentioned nickel plate fully wetted with pure water, and bonding is carried out by the tension of the water. At this time, the position of the nickel plate and the upper end of the ion exchange membrane are aligned. The electrode sample (electrode) for electrolysis used in the measurement was cut into 130 mm squares. The ion exchange membrane A is cut into 170 mm squares. Two stainless steel plates (thickness: 1 mm, length: 9 mm, and width: 170 mm) sandwiched one side of the electrode, aligned with the center of the stainless steel plate and the electrode, and fixed evenly with 4 clamps. Clamp the center of the stainless steel plate to the chuck on the upper side of the tensile and compression testing machine, and hang the electrode. At this time, set the load on the testing machine to 0 N. Temporarily remove the stainless steel plate, electrode, and jig integrated from the tensile and compression tester, and immerse it in a tank containing pure water in order to fully wet the electrode with pure water. After that, the center of the stainless steel plate was again clamped to the chuck on the upper side of the tensile and compression testing machine, and the electrode was suspended. Lower the chuck on the upper side of the tensile and compression tester, and use the surface tension of pure water to adhere the electrode sample for electrolysis to the surface of the ion exchange membrane. At this time, the bonding surface is 130 mm in width and 110 mm in length. Blow the pure water filled in the washing bottle to the electrode and ion exchange membrane as a whole to make the diaphragm and the electrode fully wet again. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and roll it from top to bottom to remove the excess Pure water removal. The roller is applied only once. The electrode is raised at a speed of 10 mm/min, and the load measurement is started. The overlap between the recording electrode and the diaphragm becomes the load when the width is 130 mm and the length is 100 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapped portion of the electrode and the ion exchange membrane and the electrode mass of the overlapped portion of the ion exchange membrane to calculate the force per unit mass·unit area (1). The mass of the electrode overlapping with the ion exchange membrane is based on the mass per unit area (mg/cm2 The value obtained in) is calculated by proportional calculation. The environment of the measuring room is a temperature of 23±2℃ and a relative humidity of 30±5%. Furthermore, the electrodes used in the examples and comparative examples can be adhered independently without sagging or peeling when they are adhered to the ion exchange membrane of the vertically fixed nickel plate by surface tension. Furthermore, a schematic diagram of the evaluation method of endurance (1) is shown in FIG. 79. Furthermore, the lower limit of measurement by the tensile tester is 0.01 (N). (4) Force per unit mass and unit area (2) (Adhesive force) (N/mg・cm2 )) [Method (ii)] The measurement system uses a tensile and compression testing machine (Imada Manufacturing Co., Ltd., testing machine body: SDT-52NA tensile and compression testing machine, load meter: SL-6001 load meter). Fix the same nickel plate as the method (i) to the chuck on the lower side of the tensile and compression testing machine in a vertical manner. The electrode sample (electrode) for electrolysis used in the measurement was cut into 130 mm squares. The ion exchange membrane A is cut into 170 mm squares. Two stainless steel plates (thickness: 1 mm, length: 9 mm, and width: 170 mm) sandwiched one side of the electrode, aligned with the center of the stainless steel plate and the electrode, and fixed evenly with 4 clamps. Clamp the center of the stainless steel plate to the chuck on the upper side of the tensile and compression testing machine, and hang the electrode. At this time, set the load on the testing machine to 0 N. Temporarily remove the stainless steel plate, electrode, and jig integrated from the tensile and compression tester, and immerse it in a tank containing pure water in order to fully wet the electrode with pure water. After that, the center of the stainless steel plate was again clamped to the chuck on the upper side of the tensile and compression testing machine, and the electrode was suspended. The upper chuck of the tensile-compression tester was lowered, and the electrode sample for electrolysis was adhered to the surface of the nickel plate by the surface tension of the solution. At this time, the bonding surface is 130 mm in width and 110 mm in length. Blow the pure water in the washing bottle to the electrode and the nickel plate to make the nickel plate and the electrode fully wet again. After that, a vinyl chloride tube (outer diameter of 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently press from the top of the electrode, and roll it from top to bottom to remove the excess The solution is removed. The roller is applied only once. The electrode is raised at a speed of 10 mm/min, and the load measurement is started. The load when the longitudinal overlap between the recording electrode and the nickel plate reaches 100 mm. This measurement was performed 3 times, and the average value was calculated. The average value is divided by the area of the overlapped portion of the electrode and the nickel plate and the electrode mass of the overlapped portion of the nickel plate to calculate the force per unit mass·unit area (2). The mass of the electrode that overlaps the diaphragm is based on the mass per unit area (mg/cm2 The value obtained in) is calculated by proportional calculation. In addition, the environment of the measurement room is 23±2°C and relative humidity 30±5%. Furthermore, when the electrodes used in the examples and comparative examples are adhered to a vertically fixed nickel plate by surface tension, they can be adhered independently without sagging or peeling. Furthermore, the lower limit of measurement by the tensile tester is 0.01 (N). (5) Evaluation method for cylindrical winding with a diameter of 280 mm (1) (%) (Membrane and cylinder) Implement the evaluation method (1) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In Examples 33 and 34, the electrode was integrated with the ion exchange membrane by hot pressing, so a body of the ion exchange membrane and the electrode (electrode system 130 mm square) was prepared. After fully immersing the ion exchange membrane in pure water, place it on the curved surface of a plastic (polyethylene) tube with an outer diameter of 280 mm. After that, the excess solution was removed by a roll formed by winding an independently foamed EPDM sponge rubber with a thickness of 5 mm on a vinyl chloride tube (outer diameter of 38 mm). The roller rolls on the ion exchange membrane from the left side to the right side of the schematic diagram shown in FIG. 80. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane is in close contact with the plastic tube electrode with an outer diameter of 280 mm. (6) Evaluation method for cylindrical winding with a diameter of 280 mm (2) (%) (Membrane and electrode) Implement the evaluation method (2) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square, and cut the electrode into a 130 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. The ion exchange membrane and electrode are fully immersed in pure water and then laminated. Place the laminated body on the curved surface of a plastic (polyethylene) tube with an outer diameter of 280 mm so that the electrode becomes the outer side. After that, a vinyl chloride tube (outer diameter of 38 mm) was wound with a 5 mm thick independent foamed EPDM sponge rubber roller and gently pressed from the top of the electrode, and from the left side of the schematic diagram shown in Figure 81 Roll to the right to remove excess solution. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane and the electrode are in close contact. (7) 145 mm diameter cylindrical winding evaluation method (3) (%) (Membrane and electrode) Implement the evaluation method (3) in the following order. Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into a size of 170 mm square, and cut the electrode into a 130 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. The ion exchange membrane and electrode are fully immersed in pure water and then laminated. Place the laminated body on the curved surface of a plastic (polyethylene) tube with an outer diameter of 145 mm in such a way that the electrode becomes the outer side. After that, the vinyl chloride tube (outer diameter 38 mm) is wound with a 5 mm thick independent foamed EPDM sponge rubber and gently pressed from the top of the electrode, and from the left side of the schematic diagram shown in Figure 82 Roll to the right to remove excess solution. The roller is applied only once. After 1 minute, measure the ratio of the part where the ion exchange membrane and the electrode are in close contact. (8)Operability (sensing evaluation) (A) Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into 170 mm square size, and cut the electrode into 95×110 mm. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In each embodiment, the ion exchange membrane and the electrode were fully immersed in three solutions of sodium bicarbonate aqueous solution, 0.1 N NaOH aqueous solution, and pure water before being laminated, and then placed on a Teflon plate. The interval between the anode cell and the cathode cell used in the electrolytic evaluation was set to about 3 cm, and the static laminate was lifted up and inserted and sandwiched between them. When performing this operation, check whether the electrode is deviated or dropped while operating. (B) Cut the ion exchange membrane A (diaphragm) made in [Method (i)] into 170 mm square size, and cut the electrode into 95×110 mm. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. In each embodiment, the ion exchange membrane and the electrode were fully immersed in three solutions of sodium bicarbonate aqueous solution, 0.1 N NaOH aqueous solution, and pure water before being laminated, and then placed on a Teflon plate. Hold the two adjacent corners of the film portion of the laminated body and lift it up so that the laminated body becomes vertical. From this state, move the two hand-held corners close to each other to make the film convex or concave. Repeat this operation one more time to confirm the followability of the electrode to the membrane. Based on the following indicators, the results are evaluated on 4 levels from 1 to 4. 1: Good operation 2: Able to operate 3: Difficulty in operation 4: Generally unable to operate Here, the samples of Examples 4-28 were operated with the same size as a large electrolytic cell with an electrode of 1.3 m×2.5 m and an ion exchange membrane of 1.5 m×2.8 m. The evaluation result of Example 28 (hereinafter referred to as "3") is used as an index for evaluating the difference between the evaluation of the above (A) and (B) and the large size. That is, when the result obtained by evaluating the small-sized laminate is "1" or "2", it is evaluated that there is no problem with the operability even when it is made into a large size. (9) Electrolysis evaluation (voltage (V), current efficiency (%), salt concentration in caustic soda (ppm, 50% conversion)) The electrolysis performance was evaluated by the following electrolysis experiment. A titanium anode cell (anode terminal cell) having an anode chamber provided with an anode was opposed to a cathode cell having a nickel cathode chamber (cathode terminal cell) provided with a cathode. A pair of gaskets are arranged between the cells, and the laminate (the laminate of the ion exchange membrane A and the electrode for electrolysis) is sandwiched between the pair of gaskets. Here, both the ion exchange membrane A and the electrode for electrolysis are directly sandwiched between the spacers. Then, the anode cell, the gasket, the laminate, the gasket, and the cathode are closely adhered to obtain an electrolytic cell, and an electrolytic cell containing the electrolytic cell is prepared. As the anode, it is produced by coating a mixed solution of ruthenium chloride, iridium chloride, and titanium tetrachloride on a titanium substrate that has been sprayed and acid-etched as a pretreatment, followed by drying and firing. The anode is fixed to the anode chamber by welding. As the cathode, those described in the respective Examples and Comparative Examples were used. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the nickel net with a 40-mesh mesh and flat-woven nickel wire with a diameter of 150 μm. The four corners of the Ni net are fixed to the current collector by a rope made of Teflon (registered trademark). Use this Ni net as a power feeder. In the electrolytic cell, the repulsive force of the pad as a metal elastic body is used to form a zero-spacing structure. As the gasket, a rubber gasket made of EPDM (Ethylene Propylene Diene) is used. As the diaphragm, the ion exchange membrane A (160 mm square) made in [Method (i)] was used. Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 90°C. At current density 6 kA/m2 Under the implementation of salt electrolysis, the voltage, current efficiency, and salt concentration in caustic soda were measured. Here, the so-called current efficiency is the ratio of the amount of caustic soda generated to the current flowing. If the current flowing, impurity ions or hydroxide ions instead of sodium ions move in the ion exchange membrane, the current efficiency reduce. Current efficiency is calculated by dividing the molar number of caustic soda generated in a certain period of time by the molar number of electrons flowing in between. The molar number of caustic soda is obtained by recovering the caustic soda produced by electrolysis in a polymer tank and measuring its mass. The salt concentration in caustic soda means the value obtained by converting the concentration of caustic soda to 50%. In addition, the specifications of electrodes and power feeders used in Examples and Comparative Examples are shown in Table 6. (11) Measurement of the thickness of the catalyst layer, the electrode substrate for electrolysis, and the thickness of the electrode The thickness of the electrode substrate for electrolysis is measured uniformly at 10 points in the plane using an electronic digital thickness gauge (manufactured by Mitutoyo Co., Ltd., with a minimum display of 0.001 mm) and the average value is calculated. This is used as the thickness of the electrode substrate for electrolysis (gauge thickness). The thickness of the electrode is uniformly measured at 10 points in the plane with an electronic digital thickness gauge similar to the electrode base material, and the average value is calculated. Use this as the electrode thickness (gauge thickness). The thickness of the catalyst layer is calculated by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. (12) Electrode elastic deformation test Cut the ion exchange membrane A (diaphragm) and electrode made in [Method (i)] into a size of 110 mm square. The ion exchange membrane was immersed in pure water for more than 12 hours and used for the test. Under the conditions of a temperature of 23±2°C and a relative humidity of 30±5%, the ion exchange membrane and the electrode are overlapped to form a laminate, and then wound to an outer diameter of ϕ32 mm without gaps as shown in Figure 83. PVC pipe with a length of 20 cm. In order to prevent the wound laminate from peeling or loosening from the PVC pipe, a polyethylene strapping is used to fix it. Keep in this state for 6 hours. After that, the strap was removed, and the laminate was unwound from the PVC pipe. Only place the electrode on the platform and measure the height L of the part raised from the platform1 , L2 And find the average. Use this value as an indicator of electrode deformation. That is, a small value means that it is difficult to deform. Furthermore, when using porous metal, there are two types of SW direction and LW direction during winding. In this test, it is wound in the SW direction. In addition, for the deformed electrode (the electrode that did not return to the original flat state), the softness after plastic deformation was evaluated by the method shown in FIG. 84. That is, the deformed electrode is placed on a diaphragm fully immersed in pure water, one end is fixed, the opposite end of the floating is pressed against the diaphragm, the force is released, and whether the deformed electrode follows the diaphragm is evaluated. . (13) Evaluation of membrane damage The following ion exchange membrane B was used as the diaphragm. As the reinforcing core material, a polytetrafluoroethylene (PTFE) and a ribbon yarn of 100 denier twisted at 900 times/m to form a yarn shape (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn of the warp, a yarn obtained by twisting 35 denier and 8 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. In addition, as the sacrificial yarn of the weft, a yarn obtained by twisting 35 denier and 8 filaments of polyethylene terephthalate (PET) at 200 times/m was used. First, PTFE yarns are arranged at 24 yarns/inch and two sacrificial yarns are arranged between adjacent PTFE yarns to perform plain weaving to obtain a woven fabric with a thickness of 100 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.92 mg equivalent/g dry resin polymer (A1), CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of the copolymer of F is 1.10 mg equivalent/g of dry resin polymer (B1). Using these polymers (A1) and (B1), a two-layer film X with a polymer (A1) layer thickness of 25 μm and a polymer (B1) layer thickness of 89 μm was obtained by co-extrusion T-die method . Furthermore, the ion exchange capacity of each polymer indicates the ion exchange capacity when the ion exchange group precursor of each polymer is hydrolyzed to convert it into an ion exchange group. Also, separately prepare to use CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of F copolymer is 1.10 mg equivalent/g of dry resin polymer (B2). The polymer monolayer was extruded to obtain a 20 μm film Y. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on the surface is laminated with release paper, film Y, reinforcing material, and film X in this order. The temperature of the heating plate is 225°C and the pressure reduction is 0.022 MPa. After heating and reducing pressure for 2 minutes, the release paper was removed, thereby obtaining a composite film. The obtained composite membrane was saponified by immersing the obtained composite membrane in an aqueous solution containing dimethyl sulfoxide (DMSO) and potassium hydroxide (KOH) for 1 hour, and then immersed in 0.5 N NaOH for 1 hour to remove the ion exchange group. The attached ions were replaced with Na, and then washed with water. It was further dried at 60°C. Also, it will be CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 After the polymer (B3) of the dry resin with an ion exchange capacity of 1.05 mg equivalent/g as the copolymer of F is hydrolyzed, it is made into an acid form with hydrochloric acid. The acid type polymer (B3') is dissolved in a 50/50 (mass ratio) mixture of water and ethanol at a ratio of 5% by mass, and the polymer (B3') and zirconium oxide Zirconium oxide particles with an average particle diameter of 0.02 μm of primary particles are added so that the mass ratio of the particles becomes 20/80. After that, it was dispersed in a suspension of zirconia particles by a ball mill to obtain a suspension. The suspension was coated on both surfaces of the ion exchange membrane by a spraying method and dried, thereby obtaining an ion exchange membrane B having a coating layer containing a polymer (B3') and zirconia particles. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.35 mg/cm2 . As the anode system, the same as (9) electrolytic evaluation was used. As the cathode, those described in the respective examples and comparative examples were used. The current collector, pad and feed system of the cathode chamber are the same as those used in (9) electrolysis evaluation. That is, the Ni mesh is used as the power feeder, and the repulsive force of the pad as the metal elastic body is used to form a zero pitch structure. The gasket was also used the same as (9) electrolytic evaluation. As the diaphragm, the ion exchange membrane B produced by the above-mentioned method was used. That is, except that the laminate of the ion exchange membrane B and the electrode for electrolysis is sandwiched between a pair of gaskets, the same electrolytic cell as in (9) is prepared. Use the above-mentioned electrolytic cell to electrolyze salt. The brine concentration (sodium chloride concentration) in the anode compartment is adjusted to 205 g/L. The concentration of sodium hydroxide in the cathode compartment was adjusted to 32% by mass. Adjust the temperature of the anode chamber and the cathode chamber so that the temperature in each electrolytic cell becomes 70°C. At current density 8 kA/m2 Under the implementation of salt electrolysis. After 12 hours from the start of the electrolysis, the electrolysis was stopped, and the ion exchange membrane B was taken out to observe the damage state. "○" means no damage. "×" means that there is damage on almost the entire surface of the ion exchange membrane. (14) Ventilation resistance of electrodes The ventilation resistance of the electrode was measured using a ventilation tester KES-F8 (trade name, Kato Tech Co., Ltd.). The unit of ventilation resistance is kPa·s/m. The measurement was performed 5 times, and the average value is shown in Table 7. The measurement is carried out under the following two conditions. Furthermore, the temperature of the measuring room is set to 24°C, and the relative humidity is set to 32%. ・Measurement condition 1 (ventilation resistance 1) Piston speed: 0.2 cm/s Ventilation volume: 0.4 cc/cm2 /s Measuring range: SENSE L (low) Sample size: 50 mm×50 mm ・Measurement condition 2 (ventilation resistance 2) Piston speed: 2 cm/s Ventilation: 4 cc/cm2 /s Measuring range: SENSE M (medium) or H (high) Sample size: 50 mm×50 mm [Example 4-1] As an electrode substrate for cathodic electrolysis, an electrolytic nickel foil with a gauge thickness of 16 μm was prepared. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 49%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the electrode fabricated in Example 4-1 was 24 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Also, it is the total thickness of ruthenium oxide and cerium oxide. Table 7 shows the measurement results of the adhesive force of the electrode produced by the above method. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. Between the roughened surface of the electrode and the approximate center of the carboxylic acid layer side of the ion exchange membrane A (dimensions 160 mm×160 mm) produced in [Method (i)] which is equilibrated with 0.1 N NaOH aqueous solution The positions are opposite, and the surface tension of the aqueous solution makes them close together. Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the electrode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The above-mentioned membrane-integrated electrode is sandwiched between the anode cell and the cathode cell so that the surface where the electrode is attached becomes the side of the cathode chamber. In the cross-sectional structure, the current collector, the pad, the nickel mesh feeder, the electrode, the membrane, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure. The obtained electrode was subjected to electrolytic evaluation. The results are shown in Table 7. Shows lower voltage, higher current efficiency and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF (fluorescent X-ray analysis), approximately 100% of the coating remains on the roughened surface, and the intermediate coating on the non-roughened surface decreases. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 4-2] In Example 4-2, an electrolytic nickel foil with a gauge thickness of 22 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 44%. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 29 μm. The thickness of the catalyst layer is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0033 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 4-3] In Example 4-3, an electrolytic nickel foil with a gauge thickness of 30 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 1.38 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 44%. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 38 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 4-4] In Example 4-4, an electrolytic nickel foil with a gauge thickness of 16 μm was used as an electrode substrate for cathode electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 75%. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 24 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0023 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on the surface that has been roughened, and the coating on the surface that has not been roughened is reduced. This shows that the surface facing the membrane (the roughened surface) contributes to electrolysis, and even if there is little or no coating on the opposite surface that does not face the membrane, good electrolytic performance can be exhibited. [Example 4-5] In Example 4-5, an electrolytic nickel foil with a gauge thickness of 20 μm was prepared as an electrode substrate for cathode electrolysis. The roughening treatment by electrolytic nickel plating was performed on both sides of the nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.96 μm. Both sides have the same roughness. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The opening rate is 49%. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 30 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0023 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. In addition, if the coating amount after electrolysis is measured by XRF, approximately 100% of the coating remains on both sides. Considering the comparative examples 4-1 to 4-4, it shows that even if the coating layer is less or absent on the opposite surface that does not face the membrane, good electrolytic performance can be exerted. [Example 4-6] Example 4-6 was evaluated in the same manner as Example 4-1 except that the application of the electrode substrate for cathodic electrolysis was carried out by ion plating, and the results are shown in Table 7. In addition, the ion plating system uses a Ru metal target at a heating temperature of 200°C, and a film formation pressure of 7×10 in an argon/oxygen environment.-2 Pa is used for film formation. The formed coating is ruthenium oxide. The thickness of the electrode is 26 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-7] In Examples 4-7, an electrode substrate for cathodic electrolysis was produced by an electroforming method. The shape of the mask is set to a shape formed by vertically and horizontally arranging a square of 0.485 mm×0.485 mm with an interval of 0.15 mm. By sequentially performing exposure, development, and electroplating, a nickel porous foil with a gauge thickness of 20 μm and an opening rate of 56% was obtained. The arithmetic average surface roughness Ra is 0.71 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 37 μm. The thickness of the catalyst layer is 17 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0032 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-8] In Examples 4-8, the electrode substrate for cathodic electrolysis was fabricated by an electroforming method, the gauge thickness was 50 μm, and the porosity was 56%. The arithmetic average surface roughness Ra is 0.73 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 60 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0032 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-9] In Examples 4-9, a nickel non-woven fabric (manufactured by NIKKO TECHNO Co., Ltd.) with a gauge thickness of 150 μm and a porosity of 76% was used as an electrode substrate for cathode electrolysis. The diameter of the nickel fiber of the non-woven fabric is about 40 μm, and the weight per unit area is 300 g/m2 . Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 165 μm. The thickness of the catalyst layer is 15 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 29 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0612 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 4-10] In Examples 4-10, a nickel non-woven fabric (manufactured by NIKKO TECHNO Co., Ltd.) with a gauge thickness of 200 μm and a porosity of 72% was used as an electrode substrate for cathode electrolysis. The diameter of the nickel fiber of the non-woven fabric is about 40 μm, and the weight per unit area is 500 g/m2 . Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 215 μm. The thickness of the catalyst layer is 15 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 40 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0164 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 4-11] In Example 4-11, foamed nickel (manufactured by Mitsubishi Materials Co., Ltd.) with a gauge thickness of 200 μm and a porosity of 72% was used as an electrode substrate for cathode electrolysis. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. In addition, the thickness of the electrode is 210 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 17 mm, and it has not returned to its original flat state. Therefore, the degree of softness after plastic deformation was evaluated, and as a result, the electrode followed the separator by surface tension. This confirms that even after plastic deformation, it can be brought into contact with the diaphragm with a small force, and the electrode has good operability. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0402 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation was "0", which was relatively good. [Example 4-12] In Examples 4-12, a nickel mesh with a wire diameter of 50 μm, 200 mesh, a gauge thickness of 100 μm, and an opening ratio of 37% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. Even if the spray treatment is applied, the opening rate does not change. Because it is difficult to measure the surface roughness of the wire mesh, in Example 4-12, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the wire mesh Roughness. The arithmetic average roughness Ra of a wire mesh is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 110 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0154 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-13] In Example 4-13, a nickel mesh with a wire diameter of 65 μm, 150 mesh, a gauge thickness of 130 μm, and an opening ratio of 38% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. Even if the spray treatment is applied, the opening rate does not change. Because it is difficult to measure the surface roughness of the wire mesh, in Example 4-13, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the wire mesh. Roughness. The arithmetic average roughness Ra is 0.66 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 133 μm. The thickness of the catalyst layer is 3 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 6.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0124 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is "2", and it can be judged that it can be operated as a large laminate. The film damage evaluation is also "0", which is relatively good. [Example 4-14] In Example 4-14, the same substrate as in Example 4-3 (gauge thickness 30 μm, opening ratio 44%) was used as the electrode substrate for cathodic electrolysis. Except that the nickel mesh feeder was not provided, the electrolytic evaluation was performed with the same configuration as in Example 4-1. That is, the cross-sectional structure of the electrolytic cell is such that the current collector, the pad, the membrane-integrated electrode, and the anode are arranged in order from the cathode chamber side to form a zero-pitch structure, and the pad functions as a power feeder. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-15] In Example 4-15, the same substrate as in Example 4-3 (gauge thickness 30 μm, opening rate 44%) was used as the electrode substrate for cathodic electrolysis. The degraded and high electrolytic voltage cathode used in Reference Example 1 was installed instead of the nickel mesh feeder. Except for this, electrolysis evaluation was performed with the same structure as Example 4-1. In other words, the cross-sectional structure of the electrolytic cell is arranged from the cathode chamber side with current collectors, pads, degraded and high electrolytic voltage cathodes (functioning as feeders), cathodes, diaphragms, and anodes to form a zero-pitch structure. In addition, the cathode whose electrolysis voltage becomes higher functions as a power feeder. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-16] As an electrode substrate for anode electrolysis, a titanium foil with a gauge thickness of 20 μm was prepared. The two sides of the titanium foil are roughened. The titanium foil is punched and round holes are made to make a porous foil. The diameter of the hole is 1 mm, and the opening rate is 14%. The arithmetic average surface roughness Ra is 0.37 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) with a ruthenium concentration of 100 g/L ruthenium chloride solution (Tanaka Precious Metals Industry Co., Ltd.) and an iridium concentration of 100 g/L is such that the molar ratio of ruthenium, iridium and titanium becomes 0.25:0.25:0.5 Iridium chloride (Tanaka Precious Metals Industry Co., Ltd.) and titanium tetrachloride (Wako Pure Chemical Industry Co., Ltd.). This mixed solution was sufficiently stirred and used as an anode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). After coating the above-mentioned coating liquid on the titanium porous foil, drying was performed at 60°C for 10 minutes, and firing was performed at 475°C for 10 minutes. After repeating a series of operations of coating, drying, pre-firing, and firing, firing was carried out at 520°C for 1 hour. In order to use the electrode produced by the above method for electrolytic evaluation, it was cut into a size of 95 mm in length and 110 mm in width. The surface tension of the aqueous solution makes it close to the approximate center of the sulfonic acid layer side of the ion exchange membrane A (size 160 mm×160 mm) produced in [Method (i)] equilibrated with 0.1 N NaOH aqueous solution . The cathode was prepared in the following order. First, prepare a nickel wire mesh with a wire diameter of 150 μm and 40 mesh as a base material. After spraying with alumina as a pretreatment, it was immersed in 6 N hydrochloric acid for 5 minutes, and thoroughly washed and dried with pure water. Then, the ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) and cerium chloride (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were used to make the molar ratio of ruthenium element and cerium element 1:0.25. To mix. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was carried out at 50°C for 10 minutes, pre-firing at 300°C for 3 minutes, and firing at 550°C for 10 minutes. After that, firing was performed at 550°C for 1 hour. Repeat the series of operations of coating, drying, pre-firing, and firing. As the current collector of the cathode chamber, porous metal made of nickel is used. The size of the current collector is 95 mm in length × 110 mm in width. As the metal elastomer, a mat woven with fine nickel wires is used. Place a metal elastomer pad on the current collector. Cover the cathode made by the above method, and fix the four corners of the net to the current collector by using a rope made of Teflon (registered trademark). Even if the four corners of the membrane part of the membrane-integrated electrode in which the membrane and the anode are integrated are grasped, the electrode becomes the ground side and the membrane-integrated electrode is suspended parallel to the ground, the electrode does not peel off or deviate. Moreover, even if the membrane-integrated electrode is suspended perpendicular to the ground by grasping both ends of one side, the electrode does not peel off or deviate. The degraded and high electrolytic voltage anode used in Reference Example 3 was fixed to the anode cell by welding, and the membrane-integrated electrode was sandwiched between the anode cell and the cathode cell so that the surface where the electrode was attached became the anode chamber side. That is, the cross-sectional structure of the electrolytic cell is from the cathode chamber side, with current collectors, pads, cathodes, diaphragms, titanium porous foil anodes, and anodes degraded and increased in electrolysis voltage, forming a zero-pitch structure. The anode that deteriorates and the electrolysis voltage becomes high functions as a power feeder. Furthermore, the titanium porous foil anode is only in physical contact with the deteriorated and high electrolytic voltage anode, and is not fixed by welding. With this configuration, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 26 μm. The thickness of the catalyst layer is 6 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 4 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0060 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-17] In Example 4-17, a titanium foil with a gauge thickness of 20 μm and an opening rate of 30% was used as the electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.37 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-16, and the results are shown in Table 7. The thickness of the electrode is 30 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0030 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-18] In Examples 4-18, a titanium foil with a gauge thickness of 20 μm and an opening ratio of 42% was used as the electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.38 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-16, and the results are shown in Table 7. The thickness of the electrode is 32 μm. The thickness of the catalyst layer is 12 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 2.5 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0022 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-19] In Examples 4-19, a titanium foil with a gauge thickness of 50 μm and an opening rate of 47% was used as the electrode substrate for anode electrolysis. The arithmetic average surface roughness Ra is 0.40 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-16, and the results are shown in Table 7. The thickness of the electrode is 69 μm. The thickness of the catalyst layer is 19 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 8 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0024 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-20] Example 4-20 uses a gauge thickness of 100 μm, a titanium fiber diameter of about 20 μm, and a unit area weight of 100 g/m2 , Titanium non-woven fabric with 78% porosity is used as the electrode substrate for anode electrolysis. Except for this, evaluation was performed in the same manner as in Example 4-16, and the results are shown in Table 7. The thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 2 mm. It can be seen that it is an electrode with a wider elastic deformation area. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0228 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-21] In Example 4-21, a titanium wire mesh with a gauge thickness of 120 μm, a titanium fiber diameter of about 60 μm, and a 150 mesh was used as the electrode substrate for anode electrolysis. The opening rate is 42%. The blasting treatment was carried out with the alumina particle number 320. Because it is difficult to measure the surface roughness of the wire mesh, in Example 4-21, a titanium plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the titanium plate was used as the surface of the wire mesh Roughness. The arithmetic average roughness Ra is 0.60 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-16, and the results are shown in Table 7. The thickness of the electrode is 140 μm. The thickness of the catalyst layer is 20 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. Sufficient adhesion was observed. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 10 mm. It can be seen that it is an electrode with a wider elastic deformation area. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0132 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The film damage evaluation is also "0", which is relatively good. [Example 4-22] In Example 4-22, as in Example 4-16, an anode degraded and increased in electrolysis voltage was used as the anode feeder, and the same titanium non-woven fabric as in Example 4-20 was used as the anode. In the same manner as in Example 4-15, a degraded and high electrolytic voltage cathode was used as the cathode feeder, and the same nickel foil electrode as in Example 4-3 was used as the cathode. The cross-sectional structure of the electrolytic cell is from the side of the cathode chamber, and the current collector, the pad, the deteriorated and higher voltage cathode, the nickel porous foil cathode, the diaphragm, the titanium non-woven anode, and the deteriorated and higher electrolytic voltage anode are arranged in order to form a zero With a pitch structure, the cathode and anode, which deteriorate and increase the electrolysis voltage, function as a power feeder. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode (anode) is 114 μm, and the thickness of the catalyst layer is 14 μm from the thickness of the electrode (anode) minus the thickness of the electrode substrate for electrolysis. The thickness of the electrode (cathode) is 38 μm, and the thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode (cathode). Sufficient adhesion was observed on both the anode and the cathode. Implement the deformation test of the electrode (anode), the result is L1 , L2 The average value is 2 mm. The deformation test of the electrode (cathode) was carried out, and the result was L1 , L2 The average value is 0 mm. The air resistance of the electrode (anode) was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0228 (kPa·s/m) under the measurement condition 2. The air resistance of the electrode (cathode) was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. In addition, it exhibits lower voltage, higher current efficiency, and lower caustic salt concentration. The operability is also "1", which is relatively good. The evaluation of the membrane damage in the anode and cathode is also "0", which is relatively good. Furthermore, in Examples 4-22, the cathode was attached to one side of the separator, and the anode was attached to the opposite side, and the cathode and anode were combined to evaluate the membrane damage. [Example 4-23] In Examples 4-23, the microporous film "Zirfon Perl UTP 500" manufactured by Agfa Company was used. The Zirfon film was used for testing after immersing in pure water for more than 12 hours. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 4-3, and the results are shown in Table 7. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 0 mm. It can be seen that it is an electrode with a wider elastic deformation area. As in the case of using an ion exchange membrane as the diaphragm, sufficient adhesive force was observed, the microporous membrane and the electrode were in close contact with each other by surface tension, and the operability was "1", which was relatively good. [Reference example 1] In Reference Example 1, the cathode was used as a cathode in a large electrolytic cell for 8 years, which deteriorated and the electrolysis voltage became high. The above-mentioned cathode was installed on the mat of the cathode chamber instead of the nickel mesh feeder, and the electrolysis evaluation was performed through the ion exchange membrane A produced in [Method (i)]. In Reference Example 1, the membrane-integrated electrode is not used. The cross-sectional structure of the electrolytic cell is from the cathode chamber side. The current collector, the mat, the cathode, the ion exchange membrane A, and the anode that deteriorate and increase the electrolysis voltage are arranged in order to form a zero pitch. structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.04 V, the current efficiency was 97.0%, and the salt concentration (50% conversion value) in the caustic soda was 20 ppm. Due to the deterioration of the cathode, the result is a higher voltage [Reference example 2] In Reference Example 2, a nickel mesh feeder was used as the cathode. That is, electrolysis is performed with a nickel mesh without a catalyst coating. The nickel mesh cathode was set on the mat of the cathode chamber, and the electrolysis evaluation was performed through the ion exchange membrane A produced in [Method (i)]. The cross-sectional structure of the battery of Reference Example 2 is from the cathode chamber side, and the current collector, the pad, the nickel mesh, the ion exchange membrane A, and the anode are arranged in order to form a zero-pitch structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.38 V, the current efficiency was 97.7%, and the salt concentration (50% conversion value) in the caustic soda was 24 ppm. Since the cathode catalyst is not coated, the result is a higher voltage. [Reference example 3] In Reference Example 3, the anode was used as an anode in a large electrolytic cell for about 8 years, which deteriorated and the electrolysis voltage became high. The cross-sectional structure of the electrolytic cell of Reference Example 3 is formed by sequentially arranging the current collector, the mat, the cathode, the ion exchange membrane A made in [Method (i)], and the anode with deterioration and higher electrolysis voltage from the cathode chamber side. Zero-spacing structure. With this configuration, electrolysis evaluation was performed. As a result, the voltage was 3.18 V, the current efficiency was 97.0%, and the salt concentration (50% conversion value) in the caustic soda was 22 ppm. Due to the deterioration of the anode, the result is a higher voltage. [Example 4-24] In Examples 4-24, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 33% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-24, a nickel plate with a thickness of 1 mm was simultaneously sprayed during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.68 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 67.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.05 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 64%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 22%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 13 mm. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0168 (kPa·s/m) under the measurement condition 2. [Example 4-25] In Examples 4-25, a nickel porous metal with a gauge thickness of 100 μm and an opening rate of 16% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-25, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 107 μm. The thickness of the catalyst layer is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 78.1 (mg/cm2 ). The force per unit mass and unit area (1) is 0.04 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 37%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 25%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 18.5 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0176 (kPa·s/m) under the measurement condition 2. [Example 4-26] In Example 4-26, a nickel porous metal with a gauge thickness of 100 μm and an open porosity of 40% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-26, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.70 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. The coating of the electrode substrate for electrolysis was carried out by the same ion plating as in Example 4-6. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 110 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The force per unit mass and unit area (1) is 0.07 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 80%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 32%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "3", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 11 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0030 (kPa·s/m) under the measurement condition 2. [Example 4-27] In Example 4-27, a nickel porous metal with a gauge thickness of 100 μm and an opening rate of 58% after full drum processing was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-27, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 109 μm. The thickness of the catalyst layer is 9 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The force per unit mass and unit area (1) is 0.06 (N/mg・cm2 ) Is the smaller value. Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 69%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 39%, which means that the part where the electrode and the separator are separated increases. When it is used in the treatment of the membrane-integrated electrode, the electrode is easily peeled off, and the electrode peels off and falls off the membrane during operation. The operability is "3", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 11.5 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0028 (kPa·s/m) under the measurement condition 2. [Example 4-28] In Example 4-28, a nickel wire mesh with a gauge thickness of 300 μm and an opening ratio of 56% was used as the electrode substrate for cathodic electrolysis. Because it is difficult to measure the surface roughness of the metal wire mesh, in Example 4-28, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the metal wire mesh. Roughness. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. The arithmetic average roughness Ra is 0.64 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-1, and the results are shown in Table 7. The thickness of the electrode is 308 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 49.2 (mg/cm2 ). Therefore, the result of evaluation (2) for cylindrical winding with a diameter of 280 mm is 88%, and the result of evaluation (3) for cylindrical winding with a diameter of 145 mm is 42%, which means that the part where the electrode and the separator are separated increases. When it exists in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane during operation and fall off. The operability is "3", which is problematic. Actually, it can be evaluated as "3" when it is operated in a large size. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 23 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0034 (kPa·s/m) under the measurement condition 2. [Example 4-29] In Examples 4-29, a nickel wire mesh with a gauge thickness of 200 μm and an opening rate of 37% was used as the electrode substrate for cathodic electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of the wire mesh, in Example 4-29, a nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface of the wire mesh Roughness. The arithmetic average roughness Ra is 0.65 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the electrode electrolysis evaluation, the measurement result of adhesive force, and adhesiveness were implemented similarly to Example 4-1. The results are shown in Table 7. The thickness of the electrode is 210 μm. The thickness of the catalyst layer is 10 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 56.4 mg/cm2 . Therefore, the result of the evaluation method (3) for the cylindrical winding with a diameter of 145 mm is 63%, and the adhesion between the electrode and the diaphragm is poor. When it exists in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane during operation and fall off. The operability is "3", which is problematic. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 19 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0096 (kPa·s/m) under the measurement condition 2. [Example 4-30] In Examples 4-30, a titanium porous metal with a gauge thickness of 500 μm and an opening ratio of 17% after full-roller processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-30, a titanium plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh degree. The arithmetic average roughness Ra is 0.60 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, evaluation was performed in the same manner as in Example 4-16, and the results are shown in Table 7. In addition, the thickness of the electrode is 508 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 152.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0072 (kPa·s/m) under the measurement condition 2. [Example 4-31] In Example 4-31, a titanium porous metal with a gauge thickness of 800 μm and an open porosity of 8% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-31, a titanium plate with a thickness of 1 mm was blasted at the same time during blasting, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.61 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 4-16, and the results are shown in Table 7. The thickness of the electrode is 808 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 251.3 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0172 (kPa·s/m) under the measurement condition 2. [Example 4-32] In Example 4-32, a titanium porous metal with a gauge thickness of 1000 μm and an open porosity of 46% after full drum processing was used as the electrode substrate for anode electrolysis. The blasting treatment was carried out with the alumina particle number 320. The opening rate did not change after spraying. Because it is difficult to measure the surface roughness of porous metals, in Example 4-32, a titanium plate with a thickness of 1 mm was blasted at the same time during blasting, and the surface roughness of the titanium plate was used as the surface roughness of the wire mesh. degree. The arithmetic average roughness Ra is 0.59 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. Except for this, the above-mentioned evaluation was carried out in the same manner as in Example 4-16, and the results are shown in Table 7. In addition, the thickness of the electrode is 1011 μm. The thickness of the catalyst layer is 11 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The mass per unit area is 245.5 (mg/cm2 ). The force per unit mass and unit area (1) is 0.01 (N/mg・cm2 ) Is the smaller value. Therefore, the evaluation result of cylindrical winding with a diameter of 280 mm (2) is less than 5%, and the evaluation result of cylindrical winding with a diameter of 145 mm (3) is less than 5%, and the part where the electrode and the separator are separated increases. When it is used in the treatment of membrane-integrated electrodes, the electrodes are easily peeled off, and the electrodes are peeled off from the membrane and fall off during operation. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode was carried out, and the result was that the electrode was crimped into the shape of the PVC pipe without recovering, and the L could not be measured1 , L2 The value. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0027 (kPa·s/m) under the measurement condition 2. [Example 4-33] In Example 4-33, a previous document (an example of Japanese Patent Application Laid-Open No. 58-48686) was used as a reference to fabricate a membrane electrode assembly formed by thermocompression bonding of an electrode to a separator. Using a nickel porous metal with a gauge thickness of 100 μm and an opening ratio of 33% as an electrode substrate for cathodic electrolysis, electrode coating was performed in the same manner as in Example 4-1. After that, the inertization treatment was performed on one side of the electrode in the following procedure. Attach a polyimide adhesive tape (Zhongxing Chemical Co., Ltd.) on one side of the electrode, and apply a PTFE dispersion (DuPont-Mitsui Fluorochemicals Co., Ltd., 31-JR (trade name)) on the opposite side, at 120°C Dry in the muffle furnace for 10 minutes. The polyimide tape was peeled off, and sintering was performed in a muffle furnace set at 380°C for 10 minutes. Repeat this operation twice to inertize one side of the electrode. Produced from the terminal functional group as "-COOCH3 "The perfluorocarbon polymer (C polymer) and the end group are "-SO2 A film formed by two layers of perfluorocarbon polymer (S polymer) of F". The thickness of the C polymer layer is 3 mils, and the thickness of the S polymer layer is 4 mils. The two-layer membrane is subjected to saponification treatment, and ion exchange groups are introduced to the ends of the polymer by hydrolysis. The end of the C polymer is hydrolyzed into carboxylic acid groups, and the end of the S polymer is hydrolyzed into sulfonic groups. The ion exchange capacity based on sulfonic acid groups is 1.0 meq/g, and the ion exchange capacity based on carboxylic acid groups is 0.9 meq/g. The surface having the carboxylic acid group as the ion exchange group is opposed to the inertized electrode surface, and hot pressing is performed to integrate the ion exchange membrane and the electrode. After thermocompression bonding, one side of the electrode is also exposed, and there is no part of the electrode penetrating the membrane. After that, in order to prevent the adhesion of bubbles generated during electrolysis to the film, a perfluorocarbon polymer mixture with zirconia and sulfo groups introduced was coated on both sides. In this way, the membrane electrode assembly of Example 4-33 was produced. Using this membrane electrode assembly, the force per unit mass and unit area (1) was measured. As a result, the electrode and the membrane were strongly joined by thermocompression bonding, so the electrode did not move upward. Therefore, the ion exchange membrane and the nickel plate were fixed without moving, and the electrode was pulled upward with a stronger force, and the result was 1.50(N/mg·cm2 ), a part of the membrane ruptures. The force per unit mass and unit area of the membrane electrode assembly of Example 4-33 (1) is at least 1.50 (N/mg·cm2 ), is strongly joined. The evaluation (1) of cylindrical winding with a diameter of 280 mm was carried out, and the contact area with the plastic pipe was less than 5%. On the other hand, evaluation (2) of cylindrical winding with a diameter of 280 mm was carried out. As a result, although the electrode and the membrane were 100% bonded, the separator was not wound to the cylinder at first. The results of evaluation (3) for cylindrical winding with a diameter of 145 mm are also the same. This result means that the operability of the film is impaired by the integrated electrode, and it is difficult to wind it into a roll or bend it. The operability is "3" and there is a problem. The film damage evaluation was "0". In addition, the electrolysis evaluation was performed. As a result, the voltage became higher, the current efficiency became lower, the salt concentration (50% conversion value) in the caustic soda became higher, and the electrolysis performance deteriorated. In addition, the thickness of the electrode is 114 μm. The thickness of the catalyst layer is 14 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 13 mm. The ventilation resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0168 (kPa·s/m) under the measurement condition 2. [Example 4-34] In Example 4-34, a nickel mesh with a wire diameter of 150 μm, 40 mesh, a gauge thickness of 300 μm, and an opening ratio of 58% was used as the electrode substrate for cathode electrolysis. Except for this, a membrane electrode assembly was produced in the same manner as in Example 4-33. Using this membrane electrode assembly, the force per unit mass and unit area (1) was measured. As a result, the electrode and the membrane were strongly joined by thermocompression bonding, so the electrode did not move upward. Therefore, the ion exchange membrane and the nickel plate were fixed without moving, and the electrode was pulled upward with a stronger force. The result was 1.60(N/mg·cm2 ), a part of the membrane ruptures. The force per unit mass and unit area of the membrane electrode assembly of Example 4-34 (1) is at least 1.60 (N/mg·cm2 ), is strongly joined. Evaluation (1) of cylindrical winding with a diameter of 280 mm using this membrane electrode assembly showed that the contact area with the plastic tube was less than 5%. On the other hand, evaluation (2) of cylindrical winding with a diameter of 280 mm was carried out. As a result, although the electrode and the membrane were 100% bonded, the separator was not wound to the cylinder at first. The results of evaluation (3) for cylindrical winding with a diameter of 145 mm are also the same. This result means that the operability of the film is impaired by the integrated electrode, and it is difficult to wind it into a roll or bend it. The operability is "3" and there is a problem. In addition, the electrolysis evaluation was performed. As a result, the voltage became higher, the current efficiency became lower, the salt concentration in the caustic soda became higher, and the electrolysis performance deteriorated. In addition, the thickness of the electrode is 308 μm. The thickness of the catalyst layer is 8 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 23 mm. The air resistance of the electrode was measured, and the result was 0.07 (kPa·s/m) or less under the measurement condition 1, and 0.0034 (kPa·s/m) under the measurement condition 2. [Example 4-35] Prepare a nickel wire with a gauge thickness of 150 μm as the electrode substrate for cathodic electrolysis. The roughening treatment using the nickel wire is performed. Because it is difficult to measure the surface roughness of the nickel wire, in Example 4-35, the nickel plate with a thickness of 1 mm was sprayed at the same time during spraying, and the surface roughness of the nickel plate was used as the surface roughness of the nickel wire . The blasting treatment was carried out with the alumina particle number 320. The arithmetic average roughness Ra is 0.64 μm. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A rubber made of foamed EPDM (ethylene-propylene-diene rubber) (Inoac Corporation, E-4088 (trade name), thickness 10 mm) is wound on a tube made of PVC (polyvinyl chloride). The resulting coating drum is set in such a way that the coating liquid is always connected. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of one nickel wire produced in Example 4-35 was 158 μm. Cut the nickel wire made by the above method into lengths of 110 mm and 95 mm. As shown in Figure 85, the nickel wire of 110 mm and the nickel wire of 95 mm are placed vertically at the center of each nickel wire, and the intersection part is connected by Aron Alpha to make the electrode. The electrodes were evaluated, and the results are shown in Table 7. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The opening rate is 99.7%. The mass per unit area of the electrode is 0.5 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 15 mm. The air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under the measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance value was 0.0002 (kPa·s/m). For the electrode, the structure shown in FIG. 86 was used, the electrode (cathode) was placed on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage becomes 3.16 V, which is relatively high. [Example 4-36] In Example 4-36, the electrode made in Example 4-35 was used. As shown in Figure 87, the nickel wire of 110 mm and the nickel wire of 95 mm were placed vertically at the center of each nickel wire. The electrodes are made by connecting the intersections with Aron Alpha. The electrodes were evaluated, and the results are shown in Table 7. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The porosity is 99.4%. The mass per unit area of the electrode is 0.9 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 16 mm. The air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under the measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance was 0.0004 (kPa·s/m). For the electrode, the structure shown in FIG. 88 was used, the electrode (cathode) was set on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage is 3.18 V, which is relatively high. [Example 4-37] In Example 4-37, the electrode made in Example 4-35 was used. As shown in Figure 89, the nickel wire of 110 mm and the nickel wire of 95 mm were placed vertically at the center of each nickel wire. The electrodes are made by connecting the intersections with Aron Alpha. The electrodes were evaluated, and the results are shown in Table 7. The thickness of the electrode where the nickel wires overlap is the thickest, and the thickness of the electrode is 306 μm. The thickness of the catalyst layer is 6 μm. The opening rate is 98.8%. The mass per unit area of the electrode is 1.9 (mg/cm2 ). The forces (1) and (2) per unit mass and unit area are below the lower limit of measurement of the tensile testing machine. Therefore, the evaluation result (1) of the cylindrical winding with a diameter of 280 mm is less than 5%, and the part where the electrode and the separator are separated increases. The operability is "4", and there are also problems. The film damage evaluation was "0". The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 14 mm. In addition, the air resistance of the electrode was measured, and the result was 0.001 (kPa·s/m) or less under measurement condition 2. Under measurement condition 2, the SENSE (measurement range) of the ventilation resistance measuring device was set to H (high) for measurement, and the ventilation resistance was 0.0005 (kPa·s/m). For the electrode, the structure shown in FIG. 90 was used, the electrode (cathode) was set on the Ni mesh feeder, and the electrolysis evaluation was performed by the method described in (9) Electrolysis Evaluation. As a result, the voltage is 3.18 V, which is relatively high. [Comparative Example 4-1] (Preparation of catalyst) 0.728 g of silver nitrate (Wako Pure Chemicals Co., Ltd.) and 1.86 g of cerium nitrate hexahydrate (Wako Pure Chemicals Co., Ltd.) were added to 150 ml of pure water to prepare a metal salt aqueous solution. 240 g of pure water was added to 100 g of 15% tetramethylammonium hydroxide aqueous solution (Wako Pure Chemical Industries, Ltd.) to prepare an alkaline solution. While stirring the alkaline solution with a magnetic stirrer, the above-mentioned metal salt aqueous solution was added dropwise using a burette at 5 ml/min. After the suspension containing the produced metal hydroxide particles is suction filtered, it is washed with water to remove alkaline components. After that, the filtrate was transferred to 200 ml of 2-propanol (Kishida Chemical Co., Ltd.), and dispersed by an ultrasonic dispersion machine (US-600T, Nippon Seiki Manufacturing Co., Ltd.) for another 10 minutes to obtain a uniform The suspension. 0.36 g of hydrophobic carbon black (DENKA BLACK (registered trademark) AB-7 (trade name), Denka Chemical Industry Co., Ltd.), hydrophilic carbon black (Ketjen Black (registered trademark) EC-600JD (trade name), Mitsubishi Chemical Co., Ltd.) 0.84 g was dispersed in 100 ml of 2-propanol, and dispersed by an ultrasonic disperser for 10 minutes to obtain a suspension of carbon black. The suspension of the metal hydroxide precursor and the suspension of carbon black are mixed, and dispersed by an ultrasonic disperser for 10 minutes. The suspension is suction filtered and dried at room temperature for half a day to obtain carbon black with the metal hydroxide precursor dispersed and fixed. Then, using an inert gas firing furnace (VMF165 type, Yamada Electric Co., Ltd.), firing was carried out at 400°C for 1 hour in a nitrogen atmosphere to obtain carbon black A in which the electrode catalyst was dispersed and immobilized. (Production of powder for reaction layer) To 1.6 g of carbon black A, which is dispersed and immobilized by the electrode catalyst, add 0.84 ml of the surfactant Triton (registered trademark) X-100 (trade name, ICN Biomedical) diluted to 20% by weight with pure water, and 15 pure water. ml, disperse by ultrasonic disperser for 10 minutes. 0.664 g of a PTFE (polytetrafluoroethylene) dispersion (PTFE30J (trade name), DuPont-Mitsui Fluorochemicals Co., Ltd.) was added to this dispersion, stirred for 5 minutes, and then filtered. Furthermore, it was dried in a dryer at 80 degreeC for 1 hour, and it pulverized with a grinder, and the powder A for reaction tanks was obtained. (Production of powder for gas diffusion layer) Using an ultrasonic disperser, 20 g of hydrophobic carbon black (DENKA BLACK (registered trademark) AB-7 (trade name)) was diluted with pure water to a surfactant Triton (registered trademark) X-100 ( Trade name) 50 ml, 360 ml of pure water disperse for 10 minutes. 22.32 g of PTFE dispersion was added to the obtained dispersion, and after stirring for 5 minutes, it was filtered. Furthermore, it was dried in a dryer at 80° C. for 1 hour, and pulverized by a grinder to obtain powder A for a gas diffusion layer. (Production of gas diffusion electrode) 8.7 ml of ethanol was added to the powder A 4 g for the gas diffusion layer, and the mixture was kneaded to obtain a starchy form. The powder for the gas diffusion layer made into a syrup shape was formed into a sheet by a roller forming machine, and a silver mesh (SW=1, LW=2, thickness=0.3 mm) was embedded as a current collector, and the final shape was 1.8 mm The flakes. 2.2 ml of ethanol was added to 1 g of powder A for the reaction layer, and the mixture was kneaded to obtain a starchy form. The powder for the reaction layer made into a syrup shape was molded into a sheet shape with a thickness of 0.2 mm by a roller molding machine. Furthermore, two sheets of the produced sheet obtained using the powder A for the gas diffusion layer and the sheet obtained using the powder A for the reaction layer were laminated and formed into a 1.8 mm sheet shape by a roll forming machine . The laminated sheet was dried at room temperature for a whole day and night, and the ethanol was removed. Furthermore, in order to remove the remaining surfactant, a thermal decomposition treatment was performed in the air at 300°C for 1 hour. Wrapped in aluminum foil, using a hot press (SA303 (trade name), TESTER SANGYO Co., Ltd.), at 360°C at 50 kgf/cm2 Hot pressing was performed for 1 minute to obtain a gas diffusion electrode. The thickness of the gas diffusion electrode is 412 μm. Using the obtained electrode, electrolysis evaluation was performed. The cross-sectional structure of the electrolytic cell is to arrange the current collector, the pad, the nickel mesh feeder, the electrode, the membrane, and the anode in order from the cathode chamber side to form a zero-spacing structure. The results are shown in Table 7. The deformation test of the electrode is carried out, and the result is L1 , L2 The average value is 19 mm. The ventilation resistance of the electrode was measured, and the result was 25.88 (kPa·s/m) under the measurement condition 1. In addition, the operability is "3", and there is a problem. In addition, the electrolysis evaluation was carried out. As a result, the current efficiency became low, the salt concentration in the caustic soda became high, and the electrolysis performance significantly deteriorated. The film damage was evaluated as "3", and there were also problems. From these results, it can be seen that if the gas diffusion electrode obtained in Comparative Example 4-1 is used, the electrolytic performance is significantly poorer. In addition, damage was confirmed on almost the entire surface of the ion exchange membrane. The reason for this is considered to be that since the gas diffusion electrode of Comparative Example 4-1 has a significantly larger ventilation resistance, the NaOH generated in the electrode stays at the interface between the electrode and the separator and becomes a high concentration. [Table 6]
Figure 109105584-A0304-0006
[Table 7]
Figure 109105584-A0304-0007
In Table 7, all samples can stand on their own by surface tension before the measurement of "force per unit mass·unit area (1)" and "force per unit mass·unit area (2)" ( That is, there is no case of sagging). <Verification of the fifth embodiment> As follows, prepare experimental examples corresponding to the fifth embodiment (referred to as "Examples" in the section "Verification of the fifth embodiment" below) and experimental examples that do not correspond to the fifth embodiment ( In the following section of <Verification of the Fifth Embodiment>, it is simply referred to as "Comparative Example"), and these were evaluated by the following methods. The details will be described while referring to FIGS. 93 to 94 and 100 to 102 as appropriate. As the diaphragm, the ion exchange membrane A manufactured in the following manner was used. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made by twisting 35 denier and 6 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Second, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with a particle diameter of 1 μm was added to the 5% by mass ethanol solution of the acid resin of resin B and dispersed to prepare a suspension. Spray on both sides to form a coating of zirconia on the surface of the composite membrane to obtain ion exchange membrane A. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . Here, the average particle size is measured with a particle size distribution meter ("SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). Use the following cathode and anode as electrodes. Prepare an electrolytic nickel foil with a gauge thickness of 22 μm as an electrode substrate for cathodic electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.95 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 44%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the fabricated electrode is 29 μm. The thickness of the catalyst layer containing ruthenium oxide and cerium oxide is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. The thickness of the gauge used is 100 μm, the diameter of the titanium fiber is about 20 μm, and the weight per unit area is 100 g/m2 , Titanium non-woven fabric with 78% porosity is used as the electrode substrate for anode electrolysis. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) with a ruthenium concentration of 100 g/L ruthenium chloride solution (Tanaka Precious Metals Industry Co., Ltd.) and an iridium concentration of 100 g/L is such that the molar ratio of ruthenium, iridium and titanium becomes 0.25:0.25:0.5 Iridium chloride (Tanaka Precious Metals Industry Co., Ltd.) and titanium tetrachloride (Wako Pure Chemical Industry Co., Ltd.). This mixed solution was sufficiently stirred and used as an anode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). After coating the above-mentioned coating liquid on the titanium porous foil, drying was performed at 60°C for 10 minutes, and firing was performed at 475°C for 10 minutes. After repeating a series of operations of coating, drying, pre-firing, and firing, firing was carried out at 520°C for 1 hour. [Example 5-1] (Example of using cathode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, an ion exchange membrane with a length of 1.5 m and a width of 2.5 m was prepared by the method described above. Furthermore, by the method described above, four cathodes with a length of 0.3 m and a width of 2.4 m were prepared. After immersing the ion exchange membrane in a 2% sodium bicarbonate solution for a whole day and night, the cathodes were arranged on the side of the carboxylic acid layer without gaps to fabricate a laminate of the cathode and the ion exchange membrane (refer to FIG. 100). If the cathode is placed on the membrane, the interfacial tension will work due to the contact with the sodium bicarbonate aqueous solution, and the cathode and the membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. As shown in Fig. 101, the obtained laminate was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. The size of the winding body becomes a cylindrical shape with an outer diameter of 84 mm and a length of 1.7 m, which can reduce the size of the laminated body. Then, in an existing large-scale electrolytic cell (an electrolytic cell with the same structure as shown in Figures 93 and 94), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press is released and taken out The existing diaphragm becomes a state with gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the laminated body is maintained to be approximately perpendicular to the ground, but there is no cathodic spalling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. If the wound body of the laminated body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the electrode and the replacement of the separator can be completed in about tens of minutes for each electrolytic cell. [Example 5-2] (Example of using anode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, an ion exchange membrane with a length of 1.5 m and a width of 2.5 m was prepared by the method described above. In addition, 4 anodes with a length of 0.3 m and a width of 2.4 m were prepared by the method described above. After the ion exchange membrane was immersed in a 2% sodium bicarbonate solution for a whole day and night, the anodes were arranged on the side of the sulfonic acid layer without gaps according to the same method as in Example 5-1 to fabricate a laminate of the anode and the ion exchange membrane . If the cathode is placed on the membrane, the interfacial tension will work due to the contact with the sodium bicarbonate aqueous solution, and the cathode and the membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. The obtained laminate was wound around a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m according to the same method as in Example 5-1 to produce a wound body. The size of the winding body becomes a cylindrical shape with an outer diameter of 86 mm and a length of 1.7 m, which can reduce the size of the laminated body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 5-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the layered body is maintained to be approximately perpendicular to the ground, but there is no anode peeling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. If the wound body of the laminated body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the electrode and the replacement of the separator can be completed in about tens of minutes for each electrolytic cell. [Example 5-3] (Example of using anode/cathode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, an ion exchange membrane with a length of 1.5 m and a width of 2.5 m was prepared by the method described above. In addition, 4 anodes and anodes each having a length of 0.3 m and a width of 2.4 m were prepared by the method described above. After immersing the ion exchange membrane in a 2% sodium bicarbonate solution for one day and night, following the same procedure as in Example 5-1, the cathode was arranged on the side of the carboxylic acid layer without gaps, and the anode was arranged on the sulfonic acid layer without gaps. On the layer side, a laminate of cathode, anode, and ion exchange membrane is produced. If the cathode and anode are placed on the membrane, the interfacial tension will play a role due to the contact with the sodium bicarbonate aqueous solution, and the cathode, anode and membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. The obtained laminate was wound around a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m according to the same method as in Example 5-1 to produce a wound body. The size of the winding body becomes a cylindrical shape with an outer diameter of 88 mm and a length of 1.7 m, which can reduce the size of the laminated body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 5-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the layered body is maintained to be approximately perpendicular to the ground, but there is no anode peeling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. If the wound body of the laminated body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the electrode and the replacement of the separator can be completed in about tens of minutes for each electrolytic cell. [Example 5-4] (Example of using cathode) The jelly roll is prepared in advance in the following manner. First, by the method described above, four cathodes with a length of 0.3 m and a width of 2.4 m were prepared. The four cathodes are arranged without gaps in a size of 1.2 m in length and 2.4 m in width. In order to prevent the cathodes from being separated from each other, as shown in FIG. 102, a PTFE string is passed through the opening portion (not shown) of the cathode, thereby tying adjacent cathodes to each other and fixing. In this operation, no pressure was applied and the temperature was 23°C. The cathode was wound around a polyvinyl chloride (PVC) tube having an outer diameter of 76 mm and a length of 1.7 m according to the same method as in Example 5-1 to produce a wound body. The size of the winding body becomes a cylindrical shape with an outer diameter of 78 mm and a length of 1.7 m, which can reduce the size of the laminated body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 5-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the wound state is released by pulling out the wound cathode. At this time, the cathode is maintained to be approximately perpendicular to the ground, but there is no flaking of the cathode. Then, after inserting the cathode between the electrolytic cells, the electrolytic cells were moved, and the laminate was sandwiched between the electrolytic cells. Compared with the previous, the cathode can be easily replaced. If the cathode wound body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the cathode can be completed in about tens of minutes for each electrolytic cell. [Example 5-5] (Example of using anode) The jelly roll is prepared in advance in the following manner. First, prepare 4 anodes with a length of 0.3 m and a width of 2.4 m by the method described above. The four anodes are arranged without gaps in a size of 1.2 m in length and 2.4 m in width. In order to prevent the anodes from being separated from each other, in accordance with the same method as in Example 5-4, the adjacent anodes were tied to each other with PTFE rope to fix them. In this operation, no pressure was applied and the temperature was 23°C. The anode was wound around a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m according to the same procedure as in Example 5-1 to produce a wound body. The size of the wound body becomes a cylindrical shape with an outer diameter of 81 mm and a length of 1.7 m, which can reduce the size of the laminated body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 5-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the wound state is released by pulling out the wound anode. At this time, the anode is maintained approximately perpendicular to the ground, but there is no anode peeling. Then, after inserting the anode between the electrolytic cells, the electrolytic cells were moved, and the laminate was sandwiched between the electrolytic cells. Compared with the previous, the anode can be replaced easily. If the anode winding body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the anode can be completed in tens of minutes for each electrolytic cell. [Comparative Example 5-1] (Previous electrode update) In the existing large-scale electrolytic cell (the same electrolytic cell as in Example 5-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press is released, and the existing diaphragm is taken out to become the electrolytic cell. A state of gaps. After that, the electrolytic cell was lifted from the large electrolytic cell by a lift. Transport the removed electrolytic cell to a workshop where welding can be carried out. After peeling and removing the anode fixed to the rib of the electrolytic cell by welding, use a mill or the like to polish the burrs of the removed part to make it smooth. Regarding the cathode, the part folded into the current collector and fixed is removed, and the cathode is peeled off. After that, a new anode is installed on the rib of the anode chamber, and the new anode is fixed to the electrolytic cell by spot welding. Regarding the cathode, in the same way, a new cathode is installed on the cathode side, folded into the current collector, and fixed. Transport the renewed electrolytic cell to the place of the large electrolytic cell, and use the elevator to put the electrolytic cell back into the electrolytic cell. The time required from the release of the fixed state of the electrolytic cell and the ion exchange membrane to the fixing of the electrolytic cell is more than 1 day. <Verification of the sixth embodiment> As described below, prepare experimental examples corresponding to the sixth embodiment (referred to as "Examples" in the section of "Verification of the sixth embodiment" below) and experimental examples that do not correspond to the sixth embodiment ( In the section of the following <Verification of the sixth embodiment>, it is simply referred to as "comparative example"), and these were evaluated by the following methods. The details will be described with reference to FIGS. 105 to 106 as appropriate. As the diaphragm, the ion exchange membrane b manufactured in the following manner was used. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made by twisting 35 denier and 6 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with a particle diameter of 1 μm was added to a 5 mass% ethanol solution of the acid resin of resin B and dispersed to prepare a suspension, and the two sides of the composite film were sprayed by the suspension spray method. Spraying is performed to form a coating of zirconia on the surface of the composite membrane to obtain ion exchange membrane A. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . Here, the average particle size is measured with a particle size distribution meter ("SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). Use the following cathode and anode as electrodes. Prepare an electrolytic nickel foil with a gauge thickness of 22 μm as an electrode substrate for cathodic electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.95 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 44%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the fabricated electrode is 29 μm. The thickness of the catalyst layer containing ruthenium oxide and cerium oxide is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. The thickness of the gauge used is 100 μm, the diameter of the titanium fiber is about 20 μm, and the weight per unit area is 100 g/m2 , Titanium non-woven fabric with 78% porosity is used as the electrode substrate for anode electrolysis. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) with a ruthenium concentration of 100 g/L ruthenium chloride solution (Tanaka Precious Metals Industry Co., Ltd.) and an iridium concentration of 100 g/L is such that the molar ratio of ruthenium, iridium and titanium becomes 0.25:0.25:0.5 Iridium chloride (Tanaka Precious Metals Industry Co., Ltd.) and titanium tetrachloride (Wako Pure Chemical Industry Co., Ltd.). This mixed solution was sufficiently stirred and used as an anode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). After coating the above-mentioned coating liquid on the titanium porous foil, drying was performed at 60°C for 10 minutes, and firing was performed at 475°C for 10 minutes. After repeating a series of operations of coating, drying, pre-firing, and firing, firing was carried out at 520°C for 1 hour. [Example 6-1] (Example of using cathode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, by the method described above, an ion exchange membrane b with a length of 1.5 m and a width of 2.5 m is prepared. Furthermore, by the method described above, four cathodes with a length of 0.3 m and a width of 2.4 m were prepared. After immersing the ion exchange membrane b in a 2% sodium bicarbonate solution for one day and night, the cathodes were arranged on the side of the carboxylic acid layer without gaps to produce a laminate of the cathode and the ion exchange membrane b. If the cathode is placed on the membrane, the interfacial tension will work due to the contact with the sodium bicarbonate aqueous solution, and the cathode and the membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. This laminated body was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. In addition, in order to melt the ion exchange membrane b, the temperature must be 200° C. or higher, and the ion exchange membrane does not melt during integration in this example. Then, in the existing large electrolytic cell (the electrolytic cell with the same structure as shown in Figures 105 and 106), the fixed state of the adjacent electrolytic cell and the ion exchange membrane formed by the press is released, and taken out The existing diaphragm becomes a state with gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the laminated body is maintained to be approximately perpendicular to the ground, but there is no cathodic spalling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. It is evaluated that for each electrolytic cell, electrode replacement and diaphragm replacement can be completed in about tens of minutes. [Example 6-2] (Example of using anode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, by the method described above, an ion exchange membrane b with a length of 1.5 m and a width of 2.5 m is prepared. In addition, 4 anodes with a length of 0.3 m and a width of 2.4 m were prepared by the method described above. After immersing the ion exchange membrane b in a 2% sodium bicarbonate solution for one day and night, the anodes were arranged on the side of the sulfonic acid layer without gaps to fabricate a laminate of the anode and the ion exchange membrane. If the anode is placed on the membrane, the interfacial tension will work due to the contact with the sodium bicarbonate aqueous solution, and the anode and the membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. This laminated body was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 6-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the layered body is maintained to be approximately perpendicular to the ground, but there is no anode peeling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. It is evaluated that for each electrolytic cell, electrode replacement and diaphragm replacement can be completed in about tens of minutes. [Example 6-3] (Example of using anode/cathode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, by the method described above, an ion exchange membrane b with a length of 1.5 m and a width of 2.5 m is prepared. In addition, 4 anodes and anodes each having a length of 0.3 m and a width of 2.4 m were prepared by the method described above. After immersing the ion exchange membrane b in a 2% sodium bicarbonate solution for one day and night, the cathodes are arranged on the side of the carboxylic acid layer without gaps, and the anodes are arranged on the side of the sulfonic acid layer without gaps to fabricate the cathode, anode, and ion. Layered body of exchange membrane b. If the cathode and anode are placed on the membrane, the interfacial tension will play a role due to the contact with the sodium bicarbonate aqueous solution, and the cathode, anode and membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. This laminated body was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 6-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the layered body is maintained to be approximately perpendicular to the ground, but there is no anode peeling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. It is evaluated that for each electrolytic cell, electrode replacement and diaphragm replacement can be completed in about tens of minutes. [Comparative Example 6-1] As described below, using the examples of Japanese Patent Laid-Open No. 58-48686 as a reference, a membrane electrode laminate formed by thermocompression bonding of an electrode to a separator was produced. Using a nickel porous metal with a gauge thickness of 100 μm and an opening ratio of 33% as an electrode substrate for cathodic electrolysis, electrode coating was performed in the same manner as in Example 6-1. The size of the electrode is 200 mm×200 mm, and the number of pieces is 72 pieces. After that, the inertization treatment was performed on one side of the electrode in the following procedure. Attach a polyimide adhesive tape (Zhongxing Chemical Co., Ltd.) on one side of the electrode, and apply a PTFE dispersion (DuPont-Mitsui Fluorochemicals Co., Ltd., 31-JR (trade name)) on the opposite side, at 120°C Dry in the muffle furnace for 10 minutes. The polyimide tape was peeled off, and sintering was performed in a muffle furnace set at 380°C for 10 minutes. Repeat this operation twice to inertize one side of the electrode. Produced from the terminal functional group as "-COOCH3 "The perfluorocarbon polymer (C polymer) and the end group are "-SO2 A film formed by two layers of perfluorocarbon polymer (S polymer) of F". The thickness of the C polymer layer is 3 mils, and the thickness of the S polymer layer is 4 mils. The two-layer membrane is subjected to saponification treatment, and ion exchange groups are introduced to the ends of the polymer by hydrolysis. The end of the C polymer is hydrolyzed into carboxylic acid groups, and the end of the S polymer is hydrolyzed into sulfonic groups. The ion exchange capacity based on sulfonic acid groups is 1.0 meq/g, and the ion exchange capacity based on carboxylic acid groups is 0.9 meq/g. The size of the obtained ion exchange membrane was the same as that of Example 6-1. The surface having the carboxylic acid group as the ion exchange group is opposed to the inertized electrode surface of the above-mentioned electrode, and hot pressing (thermocompression bonding) is performed to integrate the ion exchange membrane and the electrode. That is, at the temperature at which the ion exchange membrane melts, an ion exchange membrane with a length of 1500 mm and a width of 2500 mm is integrated with 72 electrodes of 200 mm square. After thermocompression bonding, one side of the electrode is also exposed, and there is no part of the electrode penetrating the membrane. Under the large size of 1500 mm×2500 mm, it takes more than one day to integrate the ion exchange membrane and the electrode by thermocompression bonding. That is, when the electrodes are renewed and the diaphragm is replaced, it is evaluated in Comparative Example 6-1 that it takes more time than the examples. <Verification of the seventh embodiment> As follows, prepare experimental examples corresponding to the seventh embodiment (referred to as "Examples" in the following section "Verification of the seventh embodiment"), and experimental examples that do not correspond to the seventh embodiment ( In the following section of <Verification of 7th Embodiment>, it is simply referred to as "comparative example"), and these were evaluated by the following method. The details will be described with reference to FIGS. 114 to 115 as appropriate. As the diaphragm, an ion exchange membrane manufactured in the following manner was used. As the reinforcing core material, a monofilament made of polytetrafluoroethylene (PTFE) and 90 denier (hereinafter referred to as PTFE yarn) is used. As the sacrificial yarn, a yarn made by twisting 35 denier and 6 filaments of polyethylene terephthalate (PET) at 200 times/m (hereinafter referred to as PET yarn) was used. First, a woven fabric is obtained by arranging PTFE yarns at 24 yarns/inch in each of the TD and MD directions, and arranging two sacrificial yarns between adjacent PTFE yarns to obtain a woven fabric. The obtained fabric was crimped by a roller to obtain a fabric with a thickness of 70 μm. Then, prepare to CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 COOCH3 The ion exchange capacity of the copolymer is 0.85 mg equivalent/g dry resin resin A, CF2 =CF2 With CF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO2 The ion exchange capacity of copolymer F is 1.03 mg equivalent/g of dry resin resin B. Using these resins A and B, a two-layer film X with a resin A layer of 15 μm in thickness and a resin B layer of 104 μm in thickness was obtained by the co-extrusion T-die method. Then, a heating plate with a heating source and a vacuum source inside and a micro-hole on its surface layered release paper (embossing in a cone shape with a height of 50 μm), reinforcing material and film X in sequence, and the surface temperature of the heating plate After heating and decompressing for 2 minutes under the conditions of 223°C and decompression degree of 0.067 MPa, the release paper is removed, thereby obtaining a composite film. Saponification was performed by immersing the obtained composite membrane in an 80°C aqueous solution containing 30% by mass of dimethylsulfoxide (DMSO) and 15% by mass of potassium hydroxide (KOH) for 20 minutes. After that, it was immersed in an aqueous solution containing sodium hydroxide (NaOH) 0.5 N at 50°C for 1 hour to replace the counter ion of the ion exchange group with Na, and then washed with water. It was further dried at 60°C. Furthermore, 20% by mass of zirconium oxide with a particle diameter of 1 μm was added to a 5 mass% ethanol solution of the acid resin of resin B and dispersed to prepare a suspension, and the two sides of the composite film were sprayed by the suspension spray method. Spraying is performed to form a coating of zirconia on the surface of the composite membrane to obtain ion exchange membrane A. The coating density of zirconia was measured by fluorescent X-ray measurement, and the result was 0.5 mg/cm2 . Here, the average particle size is measured with a particle size distribution meter ("SALD (registered trademark) 2200" manufactured by Shimadzu Corporation). Use the following cathode and anode as electrodes. Prepare an electrolytic nickel foil with a gauge thickness of 22 μm as an electrode substrate for cathodic electrolysis. The surface roughening process by electrolytic nickel plating was performed on the single side of this nickel foil. The arithmetic average roughness Ra of the roughened surface is 0.95 μm. The measurement of the surface roughness is carried out under the same conditions as the measurement of the surface roughness of the nickel plate subjected to the blasting treatment. A porous foil is made by punching holes in the nickel foil to make round holes. The opening rate is 44%. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium nitrate solution (FURUYA METAL Co., Ltd.) and cerium nitrate (Kishida Chemical Co., Ltd.) with a ruthenium concentration of 100 g/L were mixed so that the molar ratio of ruthenium element and cerium element became 1:0.25. The mixed solution was sufficiently stirred and used as a cathode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). Thereafter, drying was performed at 50°C for 10 minutes, pre-baking was performed at 150°C for 3 minutes, and baking was performed at 350°C for 10 minutes. Repeat the series of operations of coating, drying, pre-firing, and firing until a specific coating amount is reached. The thickness of the fabricated electrode is 29 μm. The thickness of the catalyst layer containing ruthenium oxide and cerium oxide is 7 μm by subtracting the thickness of the electrode substrate for electrolysis from the thickness of the electrode. The coating is also formed on the surface that has not been roughened. The thickness of the gauge used is 100 μm, the diameter of the titanium fiber is about 20 μm, and the weight per unit area is 100 g/m2 , Titanium non-woven fabric with 78% porosity is used as the electrode substrate for anode electrolysis. The coating solution for forming the electrode catalyst was prepared according to the following procedure. The ruthenium chloride solution (Tanaka Precious Metals Co., Ltd.) with a ruthenium concentration of 100 g/L ruthenium chloride solution (Tanaka Precious Metals Industry Co., Ltd.) and an iridium concentration of 100 g/L is such that the molar ratio of ruthenium, iridium and titanium becomes 0.25:0.25:0.5 Iridium chloride (Tanaka Precious Metals Industry Co., Ltd.) and titanium tetrachloride (Wako Pure Chemical Industry Co., Ltd.). This mixed solution was sufficiently stirred and used as an anode coating solution. A tank containing the above-mentioned coating liquid is installed at the lowermost part of the drum coating device. A coating roller made of rubber (Inoac Corporation, E-4088, thickness 10 mm) made of foamed EPDM (ethylene-propylene-diene rubber) made of foamed EPDM (ethylene-propylene-diene rubber) wound on a tube made of PVC (polyvinyl chloride) It is set in a way that it is always connected to the coating liquid. On the upper part of the coating roller is also set up with EPDM, and then a PVC roller is set on it. The electrode substrate is passed between the second coating roller and the uppermost PVC roller to apply the coating liquid (roller coating method). After coating the above-mentioned coating liquid on the titanium porous foil, drying was performed at 60°C for 10 minutes, and firing was performed at 475°C for 10 minutes. After repeating a series of operations of coating, drying, pre-firing, and firing, firing was carried out at 520°C for 1 hour. [Example 7-1] (Example of using cathode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, an ion exchange membrane with a length of 1.5 m and a width of 2.5 m was prepared by the method described above. Furthermore, by the method described above, four cathodes with a length of 0.3 m and a width of 2.4 m were prepared. After immersing the ion exchange membrane in a 2% sodium bicarbonate solution for a whole day and night, the cathodes were arranged on the side of the carboxylic acid layer without gaps to fabricate a laminate of the cathode and the ion exchange membrane. If the cathode is placed on the membrane, the interfacial tension will work due to the contact with the sodium bicarbonate aqueous solution, and the cathode and the membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. This laminated body was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (an electrolytic cell with the same structure as shown in Figures 114 and 115), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press is released, and taken out The existing diaphragm becomes a state with gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the laminated body is maintained to be approximately perpendicular to the ground, but there is no cathodic spalling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. If the wound body of the laminated body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the electrode and the replacement of the separator can be completed in about tens of minutes for each electrolytic cell. [Example 7-2] (Example of using anode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, an ion exchange membrane with a length of 1.5 m and a width of 2.5 m was prepared by the method described above. In addition, 4 anodes with a length of 0.3 m and a width of 2.4 m were prepared by the method described above. After immersing the ion exchange membrane in a 2% sodium bicarbonate solution for a whole day and night, the anodes were arranged on the side of the sulfonic acid layer without gaps to produce a laminate of the anode and the ion exchange membrane. If the anode is placed on the membrane, the interfacial tension will work due to the contact with the sodium bicarbonate aqueous solution, and the anode and the membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. This laminated body was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 7-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the layered body is maintained to be approximately perpendicular to the ground, but there is no anode peeling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. If the wound body of the laminated body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the electrode and the replacement of the separator can be completed in about tens of minutes for each electrolytic cell. [Example 7-3] (Example of using anode/cathode-membrane laminate) The jelly roll is prepared in advance in the following manner. First, an ion exchange membrane with a length of 1.5 m and a width of 2.5 m was prepared by the method described above. In addition, 4 anodes and anodes each having a length of 0.3 m and a width of 2.4 m were prepared by the method described above. After immersing the ion exchange membrane in 2% sodium bicarbonate solution for one day and night, the cathodes are arranged on the side of the carboxylic acid layer without gaps, and the anodes are arranged on the side of the sulfonic acid layer without gaps to fabricate the cathode, anode, and ion exchange. The laminated body of the film. If the cathode and anode are placed on the membrane, the interfacial tension will play a role due to the contact with the sodium bicarbonate aqueous solution, and the cathode, anode and membrane will become one body by adsorption. No pressure is applied during integration in the above-mentioned manner. In addition, the temperature at the time of integration was 23°C. This laminated body was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 7-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the winding state is released by pulling out the wound laminate. At this time, the layered body is maintained to be approximately perpendicular to the ground, but there is no anode peeling or the like. Then, after inserting the layered body between the electrolytic cells, the electrolytic cells are moved, and the layered body is sandwiched between the electrolytic cells. Compared with the previous, the electrode and the diaphragm can be replaced easily. If the wound body of the laminated body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the electrode and the replacement of the separator can be completed in about tens of minutes for each electrolytic cell. [Example 7-4] (Example of using cathode) The jelly roll is prepared in advance in the following manner. First, by the method described above, four cathodes with a length of 0.3 m and a width of 2.4 m were prepared. The four cathodes are arranged without gaps in a size of 1.2 m in length and 2.4 m in width. In order to prevent the cathodes from being separated from each other, the adjacent cathodes are fastened by tying the adjacent cathodes with PTFE rope. In this operation, no pressure was applied and the temperature was 23°C. The cathode was wound on a polyvinyl chloride (PVC) tube having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 7-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the wound state is released by pulling out the wound cathode. At this time, the cathode is maintained to be approximately perpendicular to the ground, but there is no flaking of the cathode. Then, after inserting the cathode between the electrolytic cells, the electrolytic cells were moved, and the laminate was sandwiched between the electrolytic cells. Compared with the previous, the cathode can be easily replaced. If the cathode wound body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the cathode can be completed in about tens of minutes for each electrolytic cell. [Example 7-5] (Example of using anode) The jelly roll is prepared in advance in the following manner. First, prepare 4 anodes with a length of 0.3 m and a width of 2.4 m by the method described above. The four anodes are arranged without gaps in a size of 1.2 m in length and 2.4 m in width. In order to prevent the anodes from being separated from each other, the adjacent anodes are fastened by tying the adjacent anodes with PTFE rope. In this operation, no pressure was applied and the temperature was 23°C. This anode was wound on a polyvinyl chloride (PVC) pipe having an outer diameter of 76 mm and a length of 1.7 m to produce a wound body. Then, in an existing large-scale electrolytic cell (the same electrolytic cell as in Example 7-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press was released, and the existing diaphragm was taken out to become The state where there are gaps between the electrolytic cells. After that, the wound body was transported to a large-sized electrolytic cell. On the large electrolytic cell, from the state where the PVC pipe is erected, the wound state is released by pulling out the wound anode. At this time, the anode is maintained approximately perpendicular to the ground, but there is no anode peeling. Then, after inserting the anode between the electrolytic cells, the electrolytic cells were moved, and the laminate was sandwiched between the electrolytic cells. Compared with the previous, the anode can be replaced easily. If the anode winding body is prepared in advance during the electrolysis operation, it is evaluated that the replacement of the anode can be completed in about tens of minutes for each electrolytic cell. [Comparative Example 7-1] (Previous electrode update) In an existing large-scale electrolytic cell (the same electrolytic cell as in Example 7-1), the fixed state of the adjacent electrolytic cell and ion exchange membrane formed by the press is released, and the existing diaphragm is taken out to become the electrolytic cell. A state of gaps. After that, the electrolytic cell was lifted from the large electrolytic cell by a lift. Transport the removed electrolytic cell to a workshop where welding can be carried out. After peeling and removing the anode fixed to the rib of the electrolytic cell by welding, use a mill or the like to polish the burrs of the removed part to make it smooth. Regarding the cathode, the part folded into the current collector and fixed is removed, and the cathode is peeled off. After that, a new anode is installed on the rib of the anode chamber, and the new anode is fixed to the electrolytic cell by spot welding. Regarding the cathode, in the same way, a new cathode is installed on the cathode side, folded into the current collector, and fixed. Transport the renewed electrolytic cell to the place of the large electrolytic cell, and use the elevator to put the electrolytic cell back into the electrolytic cell. The time required from the release of the fixed state of the electrolytic cell and the ion exchange membrane to the fixing of the electrolytic cell is more than 1 day. This application is based on the Japanese patent application filed on March 22, 2017 (Japanese Patent Application No. 2017-056524 and Japanese Patent Application No. 2017-056525), and the Japanese patent filed on March 20, 2018 Application cases (Japanese Patent Application No. 2018-053217, Japanese Patent Application No. 2018-053146, Japanese Patent Application No. 2018-053144, Japanese Patent Application No. 2018-053231, Japanese Patent Application No. 2018-053145, Japanese Patent Japanese Patent Application No. 2018-053149 and Japanese Patent Application No. 2018-053139), the contents of which are incorporated herein by reference.

<與第1實施形態相對應之圖> 針對圖1之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖2~4之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗 針對圖5~9之符號之說明 1:電解池 2:離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 針對圖10之符號之說明 1:夾持治具(SUS) 2:電極 3:隔膜 4:鎳板(已實施粒編號320之氧化鋁噴擊) 100:正面 200:側面 針對圖11~13之符號之說明 1:隔膜 2a:外徑280 mm之聚乙烯製管 2b:外徑145 mm之聚乙烯製管 3:剝離部 4:密接部 5:電極 針對圖14之符號之說明 1:PVC(聚氯乙烯)製管 2:離子交換膜 3:電極 4:平台 針對圖15之符號之說明 1:平台 2:產生變形之電極 10:固定電極之治具 20:施加力之方向 針對圖16~21之符號之說明 1:110 mm之鎳線 2:950 mm之鎳線 3:架 <與第2實施形態相對應之圖> 針對圖22之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖23~25之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗 針對圖26~30之符號之說明 1:電解池 2:離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 針對圖31之符號之說明 1:夾持治具(SUS) 2:電極 3:隔膜 4:鎳板(已實施粒編號320之氧化鋁噴擊) 100:正面 200:側面 針對圖32~34之符號之說明 1:隔膜 2a:外徑280 mm之聚乙烯製管 2b:外徑145 mm之聚乙烯製管 3:剝離部 4:密接部 5:電極 針對圖35之符號之說明 1:PVC(聚氯乙烯)製管 2:離子交換膜 3:電極 4:平台 針對圖36之符號之說明 1:平台 2:產生變形之電極 10:固定電極之治具 20:施加力之方向 針對圖37~42之符號之說明 1:110 mm之鎳線 2:950 mm之鎳線 3:架 <與第3實施形態相對應之圖> 針對圖43之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖44~46之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗 針對圖47~51之符號之說明 1:積層體 2:電解用電極 2a:電解用電極之內表面 2b:電解用電極之外表面 3:隔膜 3a:隔膜之內表面 3b:隔膜之外表面 7:固定用構件 針對圖52~56之符號之說明 1:電解池 2:離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 <與第4實施形態相對應之圖> 針對圖63~67之符號之說明 1:電解池 2:離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 21a:更新用陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 針對圖68之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖69~71之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗 針對圖72~78之符號之說明 1:積層體 2:電解用電極 2a:電解用電極之內表面 2b:電解用電極之外表面 3:隔膜 3a:隔膜之內表面 3b:隔膜之外表面 7:固定用構件 A:墊片 A1:墊片之最外周緣 B:隔膜 B1:隔膜之最外周緣 C:電解用電極 C1:電解用電極之最外周緣 針對圖79之符號之說明 1:夾持治具(SUS) 2:電極 3:隔膜 4:鎳板(已實施粒編號320之氧化鋁噴擊) 100:正面 200:側面 針對圖80~82之符號之說明 1:隔膜 2a:外徑280 mm之聚乙烯製管 2b:外徑145 mm之聚乙烯製管 3:剝離部 4:密接部 5:電極 針對圖84之符號之說明 1:平台 2:產生變形之電極 10:固定電極之治具 20:施加力之方向 針對圖85~90之符號之說明 1:110 mm之鎳線 2:950 mm之鎳線 3:架 <與第5實施形態相對應之圖> 針對圖91~95之符號之說明 1:電解池 2:離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 針對圖96之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖97~99之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗 <與第6實施形態相對應之圖> 針對圖103~107之符號之說明 1:電解池 2:離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 針對圖108之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖109~111之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗 <與第7實施形態相對應之圖> 針對圖112~118之符號之說明 1:電解池 2:離子交換膜 2a:新離子交換膜 4:電解槽 5:壓製器 6:陰極端子 7:陽極端子 8:電解槽架 9:積層體 10:陽極室 11:陽極 12:陽極墊片 13:陰極墊片 18:逆向電流吸收體 18a:基材 18b:逆向電流吸收層 19:陽極室之底部 20:陰極室 21:陰極 22:金屬彈性體 23:集電體 24:支持體 30:間隔壁 40:電解用陰極結構體 100:電解用電極 針對圖119之符號之說明 10:電解用電極基材 20:第一層 30:第二層 100:電解用電極 針對圖120~122之符號之說明 1:離子交換膜 2:羧酸層 3:磺酸層 4:強化芯材 10:膜本體 11a:塗佈層 11b:塗佈層 21:強化芯材 22:強化芯材 52:強化紗 100:電解槽 200:陽極 300:陰極 504:連通孔 504a:犧牲紗<Picture corresponding to the first embodiment> Explanation for the symbols in Figure 1 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Explanation for the symbols in Figures 2 to 4 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn Explanation for the symbols in Figures 5-9 1: Electrolytic cell 2: Ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis Explanation for the symbols in Figure 10 1: Clamping fixture (SUS) 2: Electrode 3: Diaphragm 4: Nickel plate (Alumina spray with particle number 320 has been implemented) 100: positive 200: side Description of the symbols in Figures 11 to 13 1: Diaphragm 2a: Polyethylene pipe with an outer diameter of 280 mm 2b: Polyethylene pipe with outer diameter of 145 mm 3: Stripping part 4: Close joint 5: Electrode Explanation for the symbols in Figure 14 1: PVC (polyvinyl chloride) pipe 2: Ion exchange membrane 3: electrode 4: platform Explanation for the symbols in Figure 15 1: platform 2: Deformed electrode 10: Fixture for fixed electrode 20: The direction of force Description of the symbols in Figures 16-21 1: 110 mm nickel wire 2: 950 mm nickel wire 3: frame <Picture corresponding to the second embodiment> Explanation for the symbols in Figure 22 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Description of the symbols in Figs. 23-25 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn Description of the symbols in Figures 26 to 30 1: Electrolytic cell 2: Ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis Explanation for the symbols in Figure 31 1: Clamping fixture (SUS) 2: Electrode 3: Diaphragm 4: Nickel plate (Alumina spray with particle number 320 has been implemented) 100: positive 200: side Explanation of symbols in Figures 32 to 34 1: Diaphragm 2a: Polyethylene pipe with an outer diameter of 280 mm 2b: Polyethylene pipe with outer diameter of 145 mm 3: Stripping part 4: Close joint 5: Electrode Explanation for the symbols in Figure 35 1: PVC (polyvinyl chloride) pipe 2: Ion exchange membrane 3: electrode 4: platform Explanation for the symbols in Figure 36 1: platform 2: Deformed electrode 10: Fixture for fixed electrode 20: The direction of force Explanation of symbols in Figs. 37-42 1: 110 mm nickel wire 2: 950 mm nickel wire 3: frame <Picture corresponding to the third embodiment> Explanation for the symbols in Figure 43 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Description of the symbols in Figures 44 to 46 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn Description of the symbols in Figures 47 to 51 1: Layered body 2: Electrode for electrolysis 2a: The inner surface of the electrode for electrolysis 2b: The outer surface of the electrode for electrolysis 3: Diaphragm 3a: The inner surface of the diaphragm 3b: The outer surface of the diaphragm 7: Fixing components Description of the symbols in Figures 52 to 56 1: Electrolytic cell 2: Ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis <Picture corresponding to the fourth embodiment> Explanation of the symbols in Figures 63 to 67 1: Electrolytic cell 2: Ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 21a: Renewable cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis Explanation for the symbols in Figure 68 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Explanation of the symbols in Figure 69-71 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn Explanation of symbols in Fig. 72~78 1: Layered body 2: Electrode for electrolysis 2a: The inner surface of the electrode for electrolysis 2b: The outer surface of the electrode for electrolysis 3: Diaphragm 3a: The inner surface of the diaphragm 3b: The outer surface of the diaphragm 7: Fixing components A: Gasket A1: The outermost edge of the gasket B: Diaphragm B1: The outermost edge of the diaphragm C: Electrode for electrolysis C1: The outermost edge of the electrode for electrolysis Explanation for the symbols in Figure 79 1: Clamping fixture (SUS) 2: Electrode 3: Diaphragm 4: Nickel plate (Alumina spray with particle number 320 has been implemented) 100: positive 200: side Explanation for the symbols in Figures 80 to 82 1: Diaphragm 2a: Polyethylene pipe with an outer diameter of 280 mm 2b: Polyethylene pipe with outer diameter of 145 mm 3: Stripping part 4: Close joint 5: Electrode Explanation for the symbols in Figure 84 1: platform 2: Deformed electrode 10: Fixture for fixed electrode 20: The direction of force Explanation for the symbols in Figures 85 to 90 1: 110 mm nickel wire 2: 950 mm nickel wire 3: frame <Picture corresponding to the fifth embodiment> Explanation of the symbols in Figs. 91~95 1: Electrolytic cell 2: Ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis Explanation of symbols in Figure 96 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Explanation of symbols in Fig. 97~99 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn <Picture corresponding to the sixth embodiment> Explanation of symbols in Fig. 103~107 1: Electrolytic cell 2: Ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis Explanation of symbols in Figure 108 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Explanation for the symbols in Figures 109 to 111 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn <Picture corresponding to the seventh embodiment> Explanation for the symbols in Figs. 112~118 1: Electrolytic cell 2: Ion exchange membrane 2a: New ion exchange membrane 4: Electrolyzer 5: Suppressor 6: Cathode terminal 7: Anode terminal 8: Electrolyzer rack 9: Laminated body 10: Anode chamber 11: anode 12: Anode gasket 13: Cathode gasket 18: Reverse current absorber 18a: Substrate 18b: Reverse current absorption layer 19: The bottom of the anode chamber 20: Cathode chamber 21: Cathode 22: Metal elastomer 23: collector 24: support body 30: next door 40: Cathode structure for electrolysis 100: Electrode for electrolysis Explanation for the symbols in Figure 119 10: Electrode substrate for electrolysis 20: first layer 30: second layer 100: Electrode for electrolysis Explanation for the symbols in Figures 120 to 122 1: Ion exchange membrane 2: carboxylic acid layer 3: Sulfonic acid layer 4: Reinforced core material 10: Membrane body 11a: Coating layer 11b: Coating layer 21: Reinforced core material 22: Reinforced core material 52: Strengthening yarn 100: Electrolyzer 200: anode 300: Cathode 504: Connecting hole 504a: Sacrifice Yarn

圖1係本發明之一實施形態之電解用電極之模式性剖面圖。 圖2係表示離子交換膜之一實施形態之剖面模式圖。 圖3係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖4係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 圖5係電解池之模式性剖面圖。 圖6係表示將2個電解池串聯連接之狀態之模式性剖面圖。 圖7係電解槽之模式圖。 圖8係表示組裝電解槽之步驟之模式性立體圖。 圖9係電解池所具備之逆向電流吸收體之模式性剖面圖。 圖10係實施例所記載之每單位質量•單位面積所承受之力(1)之評價方法的模式圖。 圖11係實施例所記載之直徑280 mm圓柱捲繞評價方法(1)之模式圖。 圖12係實施例所記載之直徑280 mm圓柱捲繞評價方法(2)之模式圖。 圖13係實施例所記載之直徑145 mm圓柱捲繞評價方法(3)之模式圖。 圖14係實施例所記載之電極之彈性變形試驗之模式圖。 圖15係塑性變形後之柔軟程度之評價方法之模式圖。 圖16係比較例13中所製作之電極之模式圖。 圖17係用以將比較例13中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖18係比較例14中所製作之電極之模式圖。 圖19係用以將比較例14中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖20係比較例15中所製作之電極之模式圖。 圖21係用以將比較例15中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖22係本發明之一實施形態中之電解用電極之模式性剖面圖。 圖23係表示離子交換膜之一實施形態之剖面模式圖。 圖24係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖25係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 圖26係電解池之模式性剖面圖。 圖27係表示將2個電解池串聯連接之狀態之模式性剖面圖。 圖28係電解槽之模式圖。 圖29係表示組裝電解槽之步驟之模式性立體圖。 圖30係電解池所具備之逆向電流吸收體之模式性剖面圖。 圖31係實施例所記載之每單位質量•單位面積所承受之力(1)之評價方法的模式圖。 圖32係實施例所記載之直徑280 mm圓柱捲繞評價方法(1)之模式圖。 圖33係實施例所記載之直徑280 mm圓柱捲繞評價方法(2)之模式圖。 圖34係實施例所記載之直徑145 mm圓柱捲繞評價方法(3)之模式圖。 圖35係實施例所記載之電極之彈性變形試驗之模式圖。 圖36係塑性變形後之柔軟程度之評價方法之模式圖。 圖37係實施例34中所製作之電極之模式圖。 圖38係用以將實施例34中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖39係實施例35中所製作之電極之模式圖。 圖40係用以將實施例35中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖41係實施例36中所製作之電極之模式圖。 圖42係用以將實施例36中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖43係本發明之一實施形態中之電解用電極之模式性剖面圖。 圖44係例示離子交換膜之一實施形態之剖面模式圖。 圖45係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖46係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 圖47中圖5A係例示電解用電極之至少一部分貫通隔膜而被固定之態樣之積層體的模式性剖面圖。圖5B係表示用以獲得圖5A之結構之步驟的說明圖。 圖48中圖6A係例示電解用電極之至少一部分位於隔膜之內部而被固定之態樣之積層體的模式性剖面圖。圖6B係表示用以獲得圖6A之結構之步驟的說明圖。 圖49中圖7A~C係例示使用紗狀之固定用構件作為用以固定隔膜與電解用電極之固定用構件進行固定之態樣之積層體的模式性剖面圖。 圖50係例示使用有機樹脂作為用以固定隔膜與電解用電極之固定用構件進行固定之態樣之積層體的模式性剖面圖。 圖51中圖9A係例示固定用構件之至少一部分從外部將隔膜與電解用電極固持並加以固定之態樣之積層體的模式性剖面圖。圖9B係例示固定用構件之至少一部分藉由磁力將隔膜與電解用電極加以固定之態樣之積層體的模式性剖面圖。 圖52係電解池之模式性剖面圖。 圖53係表示將2個電解池串聯連接之狀態之模式性剖面圖。 圖54係電解槽之模式圖。 圖55係表示組裝電解槽之步驟之模式性立體圖。 圖56係電解池可具備之逆向電流吸收體之模式性剖面圖。 圖57係表示實施例1中之積層體之說明圖。 圖58係表示實施例2中之積層體之說明圖。 圖59係表示實施例3中之積層體之說明圖。 圖60係表示實施例4中之積層體之說明圖。 圖61係表示實施例5中之積層體之說明圖。 圖62係表示實施例6中之積層體之說明圖。 圖63係電解池之模式性剖面圖。 圖64中圖2A係表示先前之電解槽中將2個電解池串聯連接之狀態之模式性剖面圖。圖2B係表示本實施形態之電解槽中將2個電解池串聯連接之狀態之模式性剖面圖。 圖65係電解槽之模式圖。 圖66係表示組裝電解槽之步驟之模式性立體圖。 圖67係電解池可具備之逆向電流吸收體之模式性剖面圖。 圖68係本發明之一實施形態中之電解用電極之模式性剖面圖。 圖69係例示離子交換膜之一實施形態之剖面模式圖。 圖70係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖71係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 圖72係用以說明積層體與墊片之位置關係之說明圖。 圖73係用以說明積層體與墊片之位置關係之說明圖。 圖74中圖12A係例示電解用電極之至少一部分貫通隔膜而被固定之態樣之積層體的模式性剖面圖。圖12B係表示用以獲得圖12A之結構之步驟的說明圖。 圖75中圖13A係例示電解用電極之至少一部分位於隔膜之內部而被固定之態樣之積層體的模式性剖面圖。圖13B係表示用以獲得圖13A之結構之步驟的說明圖。 圖76中圖14A~C係例示使用紗狀之固定用構件作為用以固定隔膜與電解用電極之固定用構件進行固定之態樣之積層體的模式性剖面圖。 圖77係例示使用有機樹脂作為用以固定隔膜與電解用電極之固定用構件進行固定之態樣之積層體的模式性剖面圖。 圖78中圖16A係例示固定用構件之至少一部分從外部將隔膜與電解用電極固持並加以固定之態樣之積層體的模式性剖面圖。圖16B係例示固定用構件之至少一部分藉由磁力將隔膜與電解用電極加以固定之態樣之積層體的模式性剖面圖。 圖79係實施例所記載之每單位質量•單位面積所承受之力(1)之評價方法的模式圖。 圖80係實施例所記載之直徑280 mm圓柱捲繞評價方法(1)之模式圖。 圖81係實施例所記載之直徑280 mm圓柱捲繞評價方法(2)之模式圖。 圖82係實施例所記載之直徑145 mm圓柱捲繞評價方法(3)之模式圖。 圖83係實施例所記載之電極之柔軟性評價之模式圖。 圖84係塑性變形後之柔軟程度之評價方法之模式圖。 圖85係實施例35中所製作之電極之模式圖。 圖86係用以將實施例35中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖87係實施例36中所製作之電極之模式圖。 圖88係用以將實施例36中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖89係實施例37中所製作之電極之模式圖。 圖90係用以將實施例37中所製作之電極設置於鎳網饋電體上之結構體之模式圖。 圖91係電解池之模式性剖面圖。 圖92係表示將2個電解池串聯連接之狀態之模式性剖面圖。 圖93係電解槽之模式圖。 圖94係表示組裝電解槽之步驟之模式性立體圖。 圖95係電解池可具備之逆向電流吸收體之模式性剖面圖。 圖96係本發明之一實施形態中之電解用電極之模式性剖面圖。 圖97係例示離子交換膜之一實施形態之剖面模式圖。 圖98係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖99係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 圖100係實施例1中所製作之積層體之模式圖。 圖101係將實施例1中所製作之積層體捲繞而製作捲繞體時之模式圖。 圖102係實施例4中所製作之積層體之模式圖。 圖103係電解池之模式性剖面圖。 圖104係表示將2個電解池串聯連接之狀態之模式性剖面圖。 圖105係電解槽之模式圖。 圖106係表示組裝電解槽之步驟之模式性立體圖。 圖107係電解池可具備之逆向電流吸收體之模式性剖面圖。 圖108係本發明之一實施形態中之電解用電極之模式性剖面圖。 圖109係例示離子交換膜之一實施形態之剖面模式圖。 圖110係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖111係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。 圖112係電解池之模式性剖面圖。 圖113係表示將2個電解池串聯連接之狀態之模式性剖面圖。 圖114係電解槽之模式圖。 圖115係表示組裝電解槽之步驟之模式性立體圖。 圖116係電解池可具備之逆向電流吸收體之模式性剖面圖。 圖117中圖6(A)係用以說明本實施形態之第1態樣之各步驟之一例的電解槽之模式圖。圖6(B)係與圖6(A)相對應之模式性立體圖。 圖118中圖7(A)係用以說明本實施形態之第2態樣之各步驟之一例的電解槽之模式圖。圖7(B)係與圖7(A)相對應之模式性立體圖。 圖119係本發明之一實施形態中之電解用電極之模式性剖面圖。 圖120係例示離子交換膜之一實施形態之剖面模式圖。 圖121係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。 圖122係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。Fig. 1 is a schematic cross-sectional view of an electrode for electrolysis according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing an embodiment of the ion exchange membrane. Fig. 3 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 4 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane. Figure 5 is a schematic cross-sectional view of the electrolytic cell. Fig. 6 is a schematic cross-sectional view showing a state where two electrolytic cells are connected in series. Figure 7 is a schematic diagram of the electrolytic cell. Fig. 8 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 9 is a schematic cross-sectional view of the reverse current absorber provided in the electrolytic cell. Fig. 10 is a schematic diagram of the evaluation method of the force per unit mass and unit area (1) described in the embodiment. Fig. 11 is a schematic diagram of the evaluation method (1) for a cylindrical winding with a diameter of 280 mm described in the examples. Fig. 12 is a schematic diagram of the evaluation method (2) for a cylindrical winding with a diameter of 280 mm described in the examples. Fig. 13 is a schematic diagram of the evaluation method (3) of a cylindrical winding with a diameter of 145 mm described in the examples. Fig. 14 is a schematic diagram of the elastic deformation test of the electrode described in the embodiment. Figure 15 is a schematic diagram of the evaluation method of softness after plastic deformation. FIG. 16 is a schematic diagram of the electrode produced in Comparative Example 13. FIG. Fig. 17 is a schematic diagram of a structure in which the electrode made in Comparative Example 13 is arranged on a nickel mesh feeder. FIG. 18 is a schematic diagram of the electrode produced in Comparative Example 14. FIG. Fig. 19 is a schematic diagram of a structure in which the electrode made in Comparative Example 14 is arranged on a nickel mesh feeder. FIG. 20 is a schematic diagram of the electrode produced in Comparative Example 15. FIG. Fig. 21 is a schematic diagram of a structure in which the electrode made in Comparative Example 15 is arranged on a nickel mesh feeder. Fig. 22 is a schematic cross-sectional view of an electrode for electrolysis in an embodiment of the present invention. Fig. 23 is a schematic cross-sectional view showing an embodiment of the ion exchange membrane. Fig. 24 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 25 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane. Figure 26 is a schematic cross-sectional view of the electrolytic cell. Fig. 27 is a schematic cross-sectional view showing a state where two electrolytic cells are connected in series. Figure 28 is a schematic diagram of the electrolytic cell. Fig. 29 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 30 is a schematic cross-sectional view of the reverse current absorber provided in the electrolytic cell. Fig. 31 is a schematic diagram of the evaluation method of the force per unit mass and unit area (1) described in the embodiment. Fig. 32 is a schematic diagram of the evaluation method (1) of a cylindrical winding with a diameter of 280 mm described in the examples. Fig. 33 is a schematic diagram of the evaluation method (2) of a cylindrical winding with a diameter of 280 mm described in the examples. Fig. 34 is a schematic diagram of the evaluation method (3) of a cylindrical winding with a diameter of 145 mm described in the examples. Fig. 35 is a schematic diagram of the elastic deformation test of the electrode described in the embodiment. Figure 36 is a schematic diagram of the evaluation method of softness after plastic deformation. Fig. 37 is a schematic diagram of the electrode produced in Example 34. FIG. 38 is a schematic diagram of a structure used to install the electrode made in Example 34 on the nickel mesh feeder. Fig. 39 is a schematic diagram of the electrode produced in Example 35. FIG. 40 is a schematic diagram of a structure used to install the electrode made in Example 35 on the nickel mesh feeder. FIG. 41 is a schematic diagram of the electrode produced in Example 36. FIG. FIG. 42 is a schematic diagram of a structure used to install the electrode made in Example 36 on the nickel mesh feeder. Fig. 43 is a schematic cross-sectional view of an electrode for electrolysis in an embodiment of the present invention. Fig. 44 is a schematic cross-sectional view illustrating an embodiment of the ion exchange membrane. Fig. 45 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 46 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane. FIG. 5A in FIG. 47 is a schematic cross-sectional view illustrating a laminate in a state where at least a part of the electrode for electrolysis penetrates through the separator and is fixed. FIG. 5B is an explanatory diagram showing the steps used to obtain the structure of FIG. 5A. FIG. 6A in FIG. 48 is a schematic cross-sectional view of the laminate in a state where at least a part of the electrode for electrolysis is located inside the separator and is fixed. FIG. 6B is an explanatory diagram showing the steps used to obtain the structure of FIG. 6A. FIGS. 7A to 7C in FIG. 49 are schematic cross-sectional views illustrating a laminated body in which a yarn-shaped fixing member is used as a fixing member for fixing a diaphragm and an electrode for electrolysis. FIG. 50 is a schematic cross-sectional view illustrating a laminate in a state where an organic resin is used as a fixing member for fixing the diaphragm and the electrode for electrolysis. FIG. 9A in FIG. 51 is a schematic cross-sectional view illustrating a laminate in a state where at least a part of the fixing member holds and fixes the separator and the electrode for electrolysis from the outside. FIG. 9B is a schematic cross-sectional view of a laminate illustrating a state in which at least a part of the fixing member is fixed to the separator and the electrode for electrolysis by magnetic force. Figure 52 is a schematic cross-sectional view of the electrolytic cell. Fig. 53 is a schematic cross-sectional view showing a state in which two electrolytic cells are connected in series. Figure 54 is a schematic diagram of the electrolytic cell. Fig. 55 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 56 is a schematic cross-sectional view of a reverse current absorber that the electrolytic cell can have. FIG. 57 is an explanatory diagram showing the laminate in Example 1. FIG. FIG. 58 is an explanatory diagram showing a laminate in Example 2. FIG. FIG. 59 is an explanatory diagram showing a laminate in Example 3. FIG. FIG. 60 is an explanatory diagram showing a laminate in Example 4. FIG. FIG. 61 is an explanatory diagram showing a laminate in Example 5. FIG. FIG. 62 is an explanatory diagram showing a laminate in Example 6. FIG. Figure 63 is a schematic cross-sectional view of the electrolytic cell. Fig. 2A in Fig. 64 is a schematic cross-sectional view showing a state in which two electrolytic cells are connected in series in the previous electrolytic cell. Fig. 2B is a schematic cross-sectional view showing a state in which two electrolytic cells are connected in series in the electrolytic cell of this embodiment. Figure 65 is a schematic diagram of the electrolytic cell. Fig. 66 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 67 is a schematic cross-sectional view of the reverse current absorber that the electrolytic cell can have. Fig. 68 is a schematic cross-sectional view of an electrode for electrolysis in an embodiment of the present invention. Fig. 69 is a schematic cross-sectional view illustrating an embodiment of the ion exchange membrane. Fig. 70 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 71 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane. Fig. 72 is an explanatory diagram for explaining the positional relationship between the laminated body and the gasket. Fig. 73 is an explanatory diagram for explaining the positional relationship between the laminate and the gasket. FIG. 12A in FIG. 74 is a schematic cross-sectional view illustrating a laminate in a state where at least a part of the electrode for electrolysis penetrates through the separator and is fixed. FIG. 12B is an explanatory diagram showing the steps used to obtain the structure of FIG. 12A. FIG. 13A in FIG. 75 is a schematic cross-sectional view of the laminate in a state where at least a part of the electrode for electrolysis is located inside the separator and is fixed. FIG. 13B is an explanatory diagram showing the steps used to obtain the structure of FIG. 13A. Figs. 14A to C in Fig. 76 are schematic cross-sectional views illustrating a laminated body in which a yarn-shaped fixing member is used as a fixing member for fixing the diaphragm and the electrode for electrolysis. Fig. 77 is a schematic cross-sectional view illustrating a laminate in a state where an organic resin is used as a fixing member for fixing the diaphragm and the electrode for electrolysis. FIG. 16A in FIG. 78 is a schematic cross-sectional view illustrating a laminate in a state where at least a part of the fixing member holds the separator and the electrode for electrolysis from the outside and fixes it. FIG. 16B is a schematic cross-sectional view of a laminate showing a state where at least a part of the fixing member is fixed to the separator and the electrode for electrolysis by magnetic force. Fig. 79 is a schematic diagram of the evaluation method of the force per unit mass and unit area (1) described in the examples. Fig. 80 is a schematic diagram of the evaluation method (1) for a cylindrical winding with a diameter of 280 mm described in the examples. Fig. 81 is a schematic diagram of the evaluation method (2) of the cylindrical winding with a diameter of 280 mm described in the examples. Fig. 82 is a schematic diagram of the evaluation method (3) of the cylindrical winding with a diameter of 145 mm described in the examples. Fig. 83 is a schematic diagram of the flexibility evaluation of the electrodes described in the examples. Figure 84 is a schematic diagram of the evaluation method of softness after plastic deformation. Fig. 85 is a schematic diagram of the electrode produced in Example 35. FIG. 86 is a schematic diagram of a structure used to install the electrode made in Example 35 on the nickel mesh feeder. Fig. 87 is a schematic diagram of the electrode produced in Example 36. Fig. 88 is a schematic diagram of a structure for placing the electrode made in Example 36 on the nickel mesh feeder. Fig. 89 is a schematic diagram of the electrode produced in Example 37. Fig. 90 is a schematic diagram of a structure in which the electrode made in Example 37 is arranged on a nickel mesh feeder. Figure 91 is a schematic cross-sectional view of the electrolytic cell. Fig. 92 is a schematic cross-sectional view showing a state where two electrolytic cells are connected in series. Figure 93 is a schematic diagram of the electrolytic cell. Fig. 94 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 95 is a schematic cross-sectional view of the reverse current absorber that the electrolytic cell can have. Fig. 96 is a schematic cross-sectional view of an electrode for electrolysis in an embodiment of the present invention. Fig. 97 is a schematic cross-sectional view illustrating an embodiment of the ion exchange membrane. Fig. 98 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 99 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane. FIG. 100 is a schematic diagram of the laminate produced in Example 1. FIG. Fig. 101 is a schematic diagram when the laminated body produced in Example 1 is wound to produce a wound body. FIG. 102 is a schematic diagram of the laminate produced in Example 4. FIG. Figure 103 is a schematic cross-sectional view of the electrolytic cell. Fig. 104 is a schematic cross-sectional view showing a state where two electrolytic cells are connected in series. Figure 105 is a schematic diagram of the electrolytic cell. Fig. 106 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 107 is a schematic cross-sectional view of a reverse current absorber that the electrolytic cell can have. Fig. 108 is a schematic cross-sectional view of an electrode for electrolysis in an embodiment of the present invention. Fig. 109 is a schematic cross-sectional view illustrating an embodiment of the ion exchange membrane. Fig. 110 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. Fig. 111 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane. Figure 112 is a schematic cross-sectional view of the electrolytic cell. Fig. 113 is a schematic cross-sectional view showing a state where two electrolytic cells are connected in series. Figure 114 is a schematic diagram of the electrolytic cell. Fig. 115 is a schematic perspective view showing the steps of assembling the electrolytic cell. Figure 116 is a schematic cross-sectional view of a reverse current absorber that the electrolytic cell can have. FIG. 6(A) in FIG. 117 is a schematic diagram of an electrolytic cell for explaining an example of each step of the first aspect of this embodiment. Fig. 6(B) is a schematic perspective view corresponding to Fig. 6(A). FIG. 7(A) of FIG. 118 is a schematic diagram of an electrolytic cell for explaining an example of each step of the second aspect of this embodiment. Fig. 7(B) is a schematic perspective view corresponding to Fig. 7(A). Fig. 119 is a schematic cross-sectional view of an electrode for electrolysis in an embodiment of the present invention. Fig. 120 is a schematic cross-sectional view illustrating an embodiment of the ion exchange membrane. FIG. 121 is a schematic diagram for explaining the aperture ratio of the reinforced core material constituting the ion exchange membrane. FIG. 122 is a schematic diagram for explaining the method of forming the communicating holes of the ion exchange membrane.

Claims (44)

一種積層體,其具備電解用電極、及與上述電解用電極相接之隔膜或饋電體,針對上述隔膜或饋電體之上述電解用電極之每單位質量.單位面積所承受之力未達1.5N/mg‧cm2A laminate having an electrode for electrolysis and a diaphragm or feeder connected to the electrode for electrolysis, per unit mass of the electrode for electrolysis of the diaphragm or feeder. The force per unit area does not reach 1.5N/mg‧cm 2 . 如請求項1之積層體,其中針對上述隔膜或饋電體之上述電解用電極之每單位質量.單位面積所承受之力超過0.005N/mg‧cm2Such as the laminated body of claim 1, wherein per unit mass of the electrode for electrolysis of the diaphragm or feeder. The force per unit area exceeds 0.005N/mg‧cm 2 . 如請求項1或2之積層體,其中上述饋電體為金屬絲網、金屬不織布、沖孔金屬、多孔金屬、或發泡金屬。 The laminate of claim 1 or 2, wherein the above-mentioned power feeder is a metal wire mesh, a metal non-woven fabric, a punched metal, a porous metal, or a foamed metal. 如請求項1或2之積層體,其具有含有親水性氧化物粒子與導入有離子交換基之聚合物之混合物的層作為上述隔膜之至少一表面層。 The layered body of claim 1 or 2, which has a layer containing a mixture of hydrophilic oxide particles and an ion-exchange group-introduced polymer as at least one surface layer of the separator. 如請求項1或2之積層體,其中於上述電解用電極與上述隔膜或饋電體之間介置液體。 The laminate of claim 1 or 2, wherein a liquid is interposed between the electrode for electrolysis and the separator or the power feeder. 如請求項1之積層體,其中上述電解用電極固定於上述隔膜之表面之至少一區域,上述隔膜之表面中之上述區域之比率超過0%且未達93%。 The laminate of claim 1, wherein the electrode for electrolysis is fixed to at least one area of the surface of the diaphragm, and the ratio of the area in the surface of the diaphragm exceeds 0% and does not reach 93%. 如請求項6之積層體,其中上述電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 Such as claim 6, wherein the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, C, N, O, Si, P, S, La, Ce, Pr, Nd, Pm, At least one catalyst component in the group consisting of Sm, Eu, Gd, Tb, and Dy. 如請求項6或7之積層體,其中於上述區域,上述電解用電極之至少一部分貫通上述隔膜而被固定。 The layered body according to claim 6 or 7, wherein at least a part of the electrode for electrolysis penetrates through the separator to be fixed in the region. 如請求項6或7之積層體,其中於上述區域,上述電解用電極之至少一部分位於上述隔膜之內部而被固定。 The laminate according to claim 6 or 7, wherein at least a part of the electrode for electrolysis is located inside the separator and is fixed in the above-mentioned area. 如請求項6或7之積層體,其進而具有用以將上述隔膜與上述電解用電極加以固定之固定用構件。 The laminate according to claim 6 or 7, which further has a fixing member for fixing the separator and the electrode for electrolysis. 如請求項10之積層體,其中上述固定用構件之至少一部分從外部將上述隔膜與上述電解用電極固持。 The laminate according to claim 10, wherein at least a part of the fixing member externally holds the separator and the electrode for electrolysis. 如請求項10之積層體,其中上述固定用構件之至少一部分藉由磁力將上述隔膜與上述電解用電極加以固定。 The laminate of claim 10, wherein at least a part of the fixing member fixes the separator and the electrode for electrolysis by a magnetic force. 如請求項6或7之積層體,其中上述隔膜包含於表面層含有有機樹脂之離子交換膜, 上述有機樹脂存在於上述區域。 The laminate according to claim 6 or 7, wherein the above-mentioned membrane comprises an ion exchange membrane containing an organic resin in a surface layer, The above-mentioned organic resin exists in the above-mentioned area. 如請求項6或7之積層體,其中上述隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之EW之第2離子交換樹脂層。 The laminate of claim 6 or 7, wherein the diaphragm includes a first ion exchange resin layer and a second ion exchange resin layer having an EW different from the first ion exchange resin layer. 如請求項6或7之積層體,其中上述隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。 The laminate of claim 6 or 7, wherein the separator includes a first ion exchange resin layer and a second ion exchange resin layer having a functional group different from the first ion exchange resin layer. 一種電解槽,其具備陽極、支持上述陽極之陽極框、配置於上述陽極框上之陽極側墊片、與上述陽極相對向之陰極、支持上述陰極之陰極框、配置於上述陰極框上且與上述陽極側墊片相對向之陰極側墊片、及如請求項1之積層體,其係配置於上述陽極側墊片與上述陰極側墊片之間之隔膜與電解用電極之積層體,且上述積層體之至少一部分由上述陽極側墊片及上述陰極側墊片所夾持,將上述電解用電極設為50mm×50mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2cm/s及通氣量0.4cc/cm2/s之情形時之通氣阻力為24kPa‧s/m以下。 An electrolytic cell comprising an anode, an anode frame supporting the anode, an anode side gasket arranged on the anode frame, a cathode facing the anode, a cathode frame supporting the cathode, and an anode frame arranged on the cathode frame and The cathode side gasket facing the anode side gasket, and the laminate according to claim 1, which is a laminate of the separator and the electrode for electrolysis arranged between the anode side gasket and the cathode side gasket, and At least a part of the laminate is sandwiched between the anode side gasket and the cathode side gasket, and the electrolysis electrode has a size of 50mm×50mm, a temperature of 24°C, a relative humidity of 32%, and a piston speed of 0.2cm /s and 0.4cc/cm 2 /s, the ventilation resistance is 24kPa‧s/m or less. 如請求項16之電解槽,其中上述電解用電極之厚度為315μm以下。 The electrolytic cell of claim 16, wherein the thickness of the electrode for electrolysis is 315 μm or less. 如請求項16或17之電解槽,其中藉由以下之方法(A)對上述電解用電極進行測定而獲得之值為40mm以下,[方法(A)]於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑Φ32mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L1及L2,以該等之平均值作為測定值。 Such as the electrolytic cell of claim 16 or 17, in which the value obtained by measuring the above-mentioned electrode for electrolysis by the following method (A) is 40 mm or less, [Method (A)] at a temperature of 23±2°C and a relative humidity of 30 Under the condition of ±5%, the sample formed by the laminated ion exchange membrane and the electrode for electrolysis is wound and fixed on the curved surface of the core material made of vinyl chloride with an outer diameter of Φ32mm. After standing for 6 hours, the electrode for electrolysis is separated Place it on a horizontal plate, measure the heights L 1 and L 2 of the two ends of the electrode for electrolysis in the vertical direction at this time, and use the average of these as the measured value. 如請求項16或17之電解槽,其中上述電解用電極之每單位面積之質量為48mg/cm2以下。 Such as the electrolytic cell of claim 16 or 17, wherein the mass per unit area of the electrode for electrolysis is 48 mg/cm 2 or less. 如請求項16或17之電解槽,其中上述電解用電極之每單位質量.單位面積所承受之力超過0.005N/mg‧cm2Such as the electrolytic cell of claim 16 or 17, in which the mass per unit of the electrode for electrolysis. The force per unit area exceeds 0.005N/mg‧cm 2 . 如請求項16或17之電解槽,其中上述積層體之最外周緣位於較上述陽極側墊片及陰極側墊片之最外周緣更靠通電面方向外側之位置。 The electrolytic cell of claim 16 or 17, wherein the outermost periphery of the laminated body is located on the outer side in the direction of the energizing surface than the outermost periphery of the anode side gasket and the cathode side gasket. 如請求項16或17之電解槽,其中上述電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、 C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。 Such as the electrolytic cell of claim 16 or 17, wherein the electrode for electrolysis contains selected from Ru, Rh, Pd, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, Ta, W, Re, Os, Al, In, Sn, Sb, Ga, Ge, B, At least one catalyst component from the group consisting of C, N, O, Si, P, S, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. 如請求項16或17之電解槽,其中於上述積層體中,上述電解用電極之至少一部分貫通上述隔膜而被固定。 The electrolytic cell of claim 16 or 17, wherein in the laminate, at least a part of the electrode for electrolysis penetrates the diaphragm and is fixed. 如請求項16或17之電解槽,其中於上述積層體中,上述電解用電極之至少一部分位於上述隔膜之內部而被固定。 The electrolytic cell of claim 16 or 17, wherein in the laminate, at least a part of the electrode for electrolysis is located inside the diaphragm and is fixed. 如請求項16或17之電解槽,其中於上述積層體中進而具有用以將上述隔膜與上述電解用電極加以固定之固定用構件。 The electrolytic cell of claim 16 or 17, wherein the laminate further has a fixing member for fixing the diaphragm and the electrode for electrolysis. 如請求項25之電解槽,其中於上述積層體中,上述固定用構件之至少一部分貫通上述隔膜與上述電解用電極而加以固定。 The electrolytic cell of claim 25, wherein in the laminate, at least a part of the fixing member penetrates the diaphragm and the electrode for electrolysis to be fixed. 如請求項25之電解槽,其中於上述積層體中,上述固定用構件含有可溶於電解液之可溶材料。 The electrolytic cell of claim 25, wherein in the laminate, the fixing member contains a soluble material that is soluble in an electrolytic solution. 如請求項25之電解槽,其中於上述積層體中,上述固定用構件之至少一部分從外部將上述隔膜與上述電解用電極固持。 The electrolytic cell of claim 25, wherein in the laminate, at least a part of the fixing member externally holds the diaphragm and the electrode for electrolysis. 如請求項25之電解槽,其中於上述積層體中,上述固定用構件之至少一部分藉由磁力將上述隔膜與上述電解用電極加以固定。 The electrolytic cell of claim 25, wherein in the laminate, at least a part of the fixing member fixes the separator and the electrode for electrolysis by a magnetic force. 如請求項16或17之電解槽,其中上述隔膜包含於表面層含有有機樹脂之離子交換膜,於上述有機樹脂中固定有上述電解用電極。 The electrolytic cell of claim 16 or 17, wherein the diaphragm includes an ion exchange membrane containing an organic resin in a surface layer, and the electrode for electrolysis is fixed in the organic resin. 如請求項16或17之電解槽,其中上述隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之EW之第2離子交換樹脂層。 The electrolytic cell of claim 16 or 17, wherein the diaphragm includes a first ion exchange resin layer and a second ion exchange resin layer having an EW different from the first ion exchange resin layer. 一種如請求項16至31中任一項之電解槽之製造方法,其具有於上述陽極側墊片與陰極側墊片之間夾持上述積層體之步驟。 A method for manufacturing an electrolytic cell according to any one of claims 16 to 31, which has a step of sandwiching the laminate between the anode side gasket and the cathode side gasket. 一種如請求項16至31中任一項之電解槽中之積層體之更新方法,其具有:藉由將上述積層體從上述陽極側墊片及上述陰極側墊片分離而將該積層體從電解槽取出之步驟;及於上述陽極側墊片與陰極側墊片之間夾持新的上述積層體之步驟。 A method for renewing a laminate in an electrolytic cell according to any one of claims 16 to 31, comprising: separating the laminate from the anode side gasket and the cathode side gasket to remove the laminate from The step of taking out the electrolytic cell; and the step of clamping the new laminate between the anode side gasket and the cathode side gasket. 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置如請求項1之積層體而製造新電解槽之方法,並且使用上述積層體之捲繞體。 A method for manufacturing an electrolytic cell, which is used for arranging the laminated body of claim 1 in an existing electrolytic cell having an anode, a cathode facing the anode, and a diaphragm arranged between the anode and the cathode The method of manufacturing a new electrolytic cell uses the winding body of the above-mentioned laminate. 如請求項34之電解槽之製造方法,其具有將上述電解用電極或上述 積層體保持為捲繞狀態而獲得上述捲繞體之步驟(A)。 Such as the manufacturing method of the electrolytic cell of claim 34, which has the above-mentioned electrode for electrolysis or the above-mentioned The step (A) of obtaining the above-mentioned wound body by keeping the layered body in a wound state. 如請求項34或35之電解槽之製造方法,其具有解除上述捲繞體之捲繞狀態之步驟(B)。 For example, the manufacturing method of the electrolytic cell of claim 34 or 35 has the step (B) of releasing the winding state of the above-mentioned winding body. 如請求項36之電解槽之製造方法,其具有於上述步驟(B)後於上述陽極及上述陰極之至少一者之表面上配置上述電解用電極或上述積層體之步驟(C)。 The method for manufacturing an electrolytic cell according to claim 36 includes the step (C) of arranging the electrode for electrolysis or the laminate on the surface of at least one of the anode and the cathode after the step (B). 一種捲繞體之製造方法,其係用以更新具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽的捲繞體之製造方法,並且具有將如請求項1之積層體捲繞而獲得上述捲繞體之步驟。 A method of manufacturing a wound body, which is used to update the method of manufacturing a wound body of an existing electrolytic cell having an anode, a cathode facing the anode, and a separator disposed between the anode and the cathode, and There is a step of winding the laminated body as in claim 1 to obtain the above-mentioned wound body. 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置如請求項1之積層體而製造新電解槽之方法,並且具有:藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,而獲得上述積層體之步驟(A);及於上述步驟(A)後將既有電解槽中之上述隔膜更換為上述積層體之步驟(B)。 A method for manufacturing an electrolytic cell, which is used for arranging the laminated body of claim 1 in an existing electrolytic cell having an anode, a cathode facing the anode, and a diaphragm arranged between the anode and the cathode The method of manufacturing a new electrolytic cell includes: the step (A) of obtaining the laminate by integrating the electrode for electrolysis and the new diaphragm at a temperature at which the diaphragm does not melt; and in the step (A) Then the step (B) of replacing the above-mentioned diaphragm in the existing electrolytic cell with the above-mentioned laminate. 如請求項39之電解槽之製造方法,其中上述一體化係於常壓下進 行。 Such as the manufacturing method of the electrolytic cell of claim 39, wherein the above-mentioned integration is carried out under normal pressure Row. 一種電解槽之製造方法,其係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置如請求項1之積層體而製造新電解槽之方法,並且具有:於上述電解槽架內解除上述隔膜之固定之步驟(A);及於上述步驟(A)後將上述隔膜與上述積層體交換之步驟(B)。 A method for manufacturing an electrolytic cell, which is used to provide an anode, a cathode facing the anode, a diaphragm fixed between the anode and the cathode, and an electrolytic cell supporting the anode, the cathode, and the diaphragm A method for manufacturing a new electrolytic cell by arranging the existing electrolytic cell of the rack as the laminate of claim 1, and having: the step (A) of releasing the fixing of the diaphragm in the electrolytic cell rack; and after the above step (A) Step (B) of exchanging the above-mentioned diaphragm with the above-mentioned laminate. 如請求項41之電解槽之製造方法,其中上述步驟(A)係藉由使上述陽極及上述陰極分別沿該等之排列方向滑動而進行。 The method for manufacturing an electrolytic cell of claim 41, wherein the step (A) is performed by sliding the anode and the cathode in the arrangement directions, respectively. 如請求項41或42之電解槽之製造方法,其中於上述步驟(B)後,藉由來自上述陽極及上述陰極之按壓,而將上述積層體固定於上述電解槽架內。 The method for manufacturing an electrolytic cell of claim 41 or 42, wherein after the above step (B), the laminate is fixed in the electrolytic cell frame by pressing from the anode and the cathode. 如請求項41或42之電解槽之製造方法,其中於上述步驟(B)中,於上述積層體不熔融之溫度下將該積層體固定於上述陽極及上述陰極之至少一者之表面上。 The method for manufacturing an electrolytic cell of claim 41 or 42, wherein in the step (B), the laminate is fixed on the surface of at least one of the anode and the cathode at a temperature at which the laminate does not melt.
TW109105584A 2017-03-22 2018-03-22 Laminated body, electrolytic cell, manufacturing method of electrolytic cell, renewal method of laminated body, and manufacturing method of wound body TWI721790B (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2017-056525 2017-03-22
JP2017056524 2017-03-22
JP2017-056524 2017-03-22
JP2017056525 2017-03-22
JP2018-053139 2018-03-20
JP2018-053145 2018-03-20
JP2018-053144 2018-03-20
JP2018053149A JP7072413B2 (en) 2018-03-20 2018-03-20 How to manufacture an electrolytic cell
JP2018-053146 2018-03-20
JP2018053145A JP7109220B2 (en) 2018-03-20 2018-03-20 Method for manufacturing electrolytic cell, method for renewing electrode, and method for manufacturing wound body
JP2018053139A JP7073152B2 (en) 2018-03-20 2018-03-20 How to manufacture an electrolytic cell
JP2018-053231 2018-03-20
JP2018-053217 2018-03-20
JP2018053146A JP7075792B2 (en) 2017-03-22 2018-03-20 Laminate
JP2018053217A JP7058152B2 (en) 2017-03-22 2018-03-20 Electrode for electrolysis
JP2018053231A JP7075793B2 (en) 2018-03-20 2018-03-20 Electrolytic cell, method of manufacturing electrolytic cell and method of renewing laminate
JP2018-053149 2018-03-20
JP2018053144A JP7104533B2 (en) 2018-03-20 2018-03-20 Laminate

Publications (2)

Publication Number Publication Date
TW202020231A TW202020231A (en) 2020-06-01
TWI721790B true TWI721790B (en) 2021-03-11

Family

ID=65033958

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109105584A TWI721790B (en) 2017-03-22 2018-03-22 Laminated body, electrolytic cell, manufacturing method of electrolytic cell, renewal method of laminated body, and manufacturing method of wound body
TW107109914A TWI694174B (en) 2017-03-22 2018-03-22 Electrolysis electrode, laminate, winding body, electrolytic cell manufacturing method, electrode updating method, and winding body manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107109914A TWI694174B (en) 2017-03-22 2018-03-22 Electrolysis electrode, laminate, winding body, electrolytic cell manufacturing method, electrode updating method, and winding body manufacturing method

Country Status (6)

Country Link
US (1) US20200102662A1 (en)
EP (1) EP3604618B1 (en)
KR (1) KR102593913B1 (en)
BR (1) BR112019019618A2 (en)
RU (2) RU2744881C2 (en)
TW (2) TWI721790B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854911A4 (en) * 2018-09-21 2022-05-04 Asahi Kasei Kabushiki Kaisha Jig for manufacturing laminate, method for manufacturing laminate, package, laminate, electrolytic cell, and method for manufacturing electrolytic cell
US11142836B2 (en) 2018-11-29 2021-10-12 Industrial Technology Research Institute Catalyst material and method for manufacturing the same
US10914011B2 (en) 2018-11-30 2021-02-09 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
TWI671122B (en) * 2018-11-30 2019-09-11 財團法人工業技術研究院 Catalyst material and method for manufacturing the same
US10914012B2 (en) 2018-11-30 2021-02-09 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
US10900133B2 (en) 2018-11-30 2021-01-26 Industrial Technology Research Institute Nitride catalyst and method for manufacturing the same
JP7414018B2 (en) * 2019-02-08 2024-01-16 Agc株式会社 Membrane electrode assembly, water electrolysis device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148775A (en) * 1979-05-04 1980-11-19 Asahi Glass Co Ltd Manufacture of caustic alkali
CN102149852A (en) * 2008-06-18 2011-08-10 麻省理工学院 Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
TW201406995A (en) * 2012-06-18 2014-02-16 Asahi Chemical Ind Bipolar alkaline water electrolysis unit and electrolytic cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345986A (en) * 1980-06-02 1982-08-24 Ppg Industries, Inc. Cathode element for solid polymer electrolyte
JPS5848686A (en) 1981-09-17 1983-03-22 Toyo Soda Mfg Co Ltd Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
US4581140A (en) * 1981-11-25 1986-04-08 Asahi Kasei Kogyo Kabushiki Kaisha Porous regenerated cellulose membrane and process for the preparation thereof
JPS59173281A (en) * 1983-03-23 1984-10-01 Tokuyama Soda Co Ltd Electrolytic cell
DE69017539T2 (en) * 1989-07-17 1995-11-30 Asahi Chemical Ind Cation exchange membrane with high stability.
EP0952590B1 (en) * 1994-06-08 2004-09-22 Tyco Electronics Corporation Electrical devices containing conductive polymers
DE19548421B4 (en) * 1995-12-22 2004-06-03 Celanese Ventures Gmbh Process for the continuous production of membrane electrode assemblies
TW200304503A (en) * 2002-03-20 2003-10-01 Asahi Chemical Ind Electrode for generation of hydrogen
JP5632773B2 (en) * 2011-02-28 2014-11-26 株式会社トクヤマ Electrolytic cell manufacturing method
RU2532561C2 (en) * 2012-09-20 2014-11-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Машиноведения Им. А.А. Благонравова Российской Академии Наук Method and device of producing hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148775A (en) * 1979-05-04 1980-11-19 Asahi Glass Co Ltd Manufacture of caustic alkali
CN102149852A (en) * 2008-06-18 2011-08-10 麻省理工学院 Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
TW201406995A (en) * 2012-06-18 2014-02-16 Asahi Chemical Ind Bipolar alkaline water electrolysis unit and electrolytic cell

Also Published As

Publication number Publication date
RU2738206C1 (en) 2020-12-09
US20200102662A1 (en) 2020-04-02
TW201840907A (en) 2018-11-16
EP3604618B1 (en) 2023-06-07
TW202020231A (en) 2020-06-01
TWI694174B (en) 2020-05-21
KR20190119631A (en) 2019-10-22
RU2020114494A (en) 2020-06-26
BR112019019618A2 (en) 2020-06-30
RU2744881C2 (en) 2021-03-16
EP3604618A1 (en) 2020-02-05
RU2020114494A3 (en) 2020-09-25
KR102593913B1 (en) 2023-10-24
EP3604618A4 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
TWI721790B (en) Laminated body, electrolytic cell, manufacturing method of electrolytic cell, renewal method of laminated body, and manufacturing method of wound body
JP7447330B2 (en) Jig for manufacturing a laminate, method for manufacturing a laminate, package, laminate, electrolytic cell, and method for manufacturing an electrolytic cell
JP7058152B2 (en) Electrode for electrolysis
JP7260272B2 (en) Electrode manufacturing method
KR102590720B1 (en) Electrolysis electrode, layered body, wound body, electrolytic cell, method for manufacturing electrolytic cell, method for renewing electrode, method for renewing layered body, and method for manufacturing wound body
CN112639169B (en) Laminate, method for storing laminate, method for transporting laminate, protective laminate, and wound body
JP7230050B2 (en) Electrodes for electrolysis and laminates
JP7075793B2 (en) Electrolytic cell, method of manufacturing electrolytic cell and method of renewing laminate
JP7075792B2 (en) Laminate
JP7104533B2 (en) Laminate
KR102677353B1 (en) Jig for manufacturing laminate, method for manufacturing laminate, package, laminate, electrolytic cell, and method for manufacturing electrolytic cell
JP7109220B2 (en) Method for manufacturing electrolytic cell, method for renewing electrode, and method for manufacturing wound body