TWI721167B - Edge-emitting laser having small vertical emitting angle - Google Patents

Edge-emitting laser having small vertical emitting angle Download PDF

Info

Publication number
TWI721167B
TWI721167B TW106115594A TW106115594A TWI721167B TW I721167 B TWI721167 B TW I721167B TW 106115594 A TW106115594 A TW 106115594A TW 106115594 A TW106115594 A TW 106115594A TW I721167 B TWI721167 B TW I721167B
Authority
TW
Taiwan
Prior art keywords
layer
passive waveguide
cladding
edge
cladding layer
Prior art date
Application number
TW106115594A
Other languages
Chinese (zh)
Other versions
TW201902064A (en
Inventor
潘建宏
吳承儒
Original Assignee
光環科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光環科技股份有限公司 filed Critical 光環科技股份有限公司
Priority to TW106115594A priority Critical patent/TWI721167B/en
Priority to CN201710433098.3A priority patent/CN108879330B/en
Publication of TW201902064A publication Critical patent/TW201902064A/en
Application granted granted Critical
Publication of TWI721167B publication Critical patent/TWI721167B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities

Abstract

An edge-emitting laser having a small vertical emitting angle is disclosed. The edge-emitting laser comprises an upper cladding layer, a lower cladding layer and an active region layer sandwiched between the upper and lower cladding layers. By embedding a passive waveguide layer within the lower cladding layer, an extended lower cladding layer is formed between the passive waveguide layer and the active region layer. In addition, the refractive index (referred as “n-value”) of the passive waveguide layer is larger than the n-value of the extended lower cladding layer. Such passive waveguide layer with larger n-value will guide the light-field to extend downward, in addition, the extended lower cladding layer can separate the passive waveguide layer and the active region layer and thus expand the near-field distribution of laser light-field in the resonant cavity, so as to obtain a smaller vertical emitting angle in the far-field laser light-field.

Description

具小垂直發射角的邊射型雷射元件 Edge-fired laser element with small vertical launch angle

本發明係有關於一種光電元件的結構,尤指一種利用AlInAS磊晶層設計具穩定小垂直發射角的邊射型雷射元件。 The present invention relates to the structure of a photoelectric element, in particular to an edge-fired laser element with a stable and small vertical emission angle designed by using an AlInAS epitaxial layer.

半導體雷射(semiconductor laser)或稱雷射二極體(laser diode)具有體積小、消耗功率低、反應快、耐衝擊、壽命長、效率高及價格低等優點,因此被廣泛的應用於光電系統產品中,例如:光波通信、資訊系統、家用電器、精密測量及光纖通信。 Semiconductor laser or laser diode has the advantages of small size, low power consumption, fast response, impact resistance, long life, high efficiency and low price, so it is widely used in optoelectronics Among the system products, such as: light wave communication, information system, household appliances, precision measurement and optical fiber communication.

請參閱圖一及圖二,分別為一典型習知之邊射型(edge emitting)雷射二極體元件的立體圖與側視圖。該典型習知的邊射型雷射元件包含一半導體基板901,以及利用磊晶技術依序形成於該半導體基板901上之一下披覆層(cladding layer)902、一下光侷限(Separated Confinement Hetero-Structure;簡稱SCH)層9031、一主動層(active region layer)903、一上光侷限層9032、一上披覆層904及一接觸層(contact layer)905。其中,該接觸層905及該上披覆層904被適當地形成一脊狀平台(ridge mesa)910。 Please refer to FIGS. 1 and 2, which are a perspective view and a side view of a typical edge emitting laser diode device, respectively. The typical conventional edge-fired laser device includes a semiconductor substrate 901, a lower cladding layer 902, and a second optical confinement (Separated Confinement Hetero-) sequentially formed on the semiconductor substrate 901 using epitaxial technology. Structure; SCH for short) layer 9031, an active region layer 903, a glazing confined layer 9032, an upper cladding layer 904, and a contact layer 905. Wherein, the contact layer 905 and the upper cladding layer 904 are appropriately formed as a ridge mesa 910.

一般邊射型雷射二極體元件的操作原理,電子與電洞等載子會注入到主動層903,被載子屏障(Barrier)所侷限在量子井(Quantum Well)複合發光產生材料增益。侷限原理為屏障層比量子井層有較高的材料能隙,因此在量子井會形成較低的量子能階,一旦捕捉載子後即使其不易逃脫。而雷射光場則被上、下披覆層904、902侷限在上、下SCH層9032、9031與主動層903中。侷限原理為上、下披覆層904、902有比上、下SCH層9032、9031與主動層903較低的光折射率係數n值(Low Refractive Index),光場會 藉由全反射的原理在n值比較高的材料中形成模態並進行傳播。光場與主動層903的量子井耦合的程度決定了模態增益(modal gain),模態增益越高則越容易克服光學損耗(Optical Loss)而達到雷射化(Lasing),也越容易降低產生雷射的門檻電流值(或稱為抽運閾值電流;Threshold Current)。為了有較高的模態增益,光場需十分集中於主動層903,然而因為邊射型雷射二極體元件發光的共振腔是一個矩形狹長腔體,且近場與遠場存在傅立葉(Fourier)轉換關係,近場集中則遠場就會發散,這也就是一般邊射型雷射二極體元件自出光端911所發出的雷射光999垂直發散角較高並導致其雷射光999之橫截面會呈一垂直方向較長的橢圓形光型的原因。 Generally, the operating principle of the edge-fired laser diode element is that carriers such as electrons and holes are injected into the active layer 903, and are confined by the carrier barrier to the quantum well (Quantum Well) to generate material gain. The limitation principle is that the barrier layer has a higher material energy gap than the quantum well layer, so a lower quantum energy level will be formed in the quantum well, and once the carriers are trapped, it is not easy to escape. The laser light field is confined in the upper and lower SCH layers 9032, 9031 and the active layer 903 by the upper and lower cladding layers 904 and 902. The limitation principle is that the upper and lower cladding layers 904, 902 have a lower optical refractive index (Low Refractive Index) than the upper and lower SCH layers 9032, 9031 and the active layer 903. The light field will be based on the principle of total reflection. A mode is formed and propagated in a material with a relatively high n value. The degree of coupling between the optical field and the quantum well of the active layer 903 determines the modal gain. The higher the modal gain, the easier it is to overcome the optical loss and achieve laserization, and the easier it is to reduce The threshold current value for generating the laser (or called the pumping threshold current; Threshold Current). In order to have a high modal gain, the light field needs to be very concentrated on the active layer 903. However, because the resonant cavity of the edge-fired laser diode element emits light is a rectangular and narrow cavity, and there are Fourier ( Fourier) conversion relationship. When the near field is concentrated, the far field will diverge. This is the higher vertical divergence angle of the laser light 999 emitted by the general edge-fired laser diode element from the light-emitting end 911, which results in the laser light 999. The reason why the cross section will be a long elliptical light in the vertical direction.

以圖一與圖二所示之習知邊射型雷射二極體元件為例,若以如下表一的層數、材料、厚度、摻雜參數值來進行製作2.5G FP磊晶設計結構的習知邊射型雷射二極體元件,並以如圖三所示之邊射型雷射二極體元件之電腦模型來模擬近場與遠場光型的話(其中,脊狀平台910的寬度設在1.7μm),則可獲得如圖四A、圖四B與圖四C的光場模擬結果。其中,圖三所示的邊射型雷射二極體元件的結構其實就是如圖一與圖二所示之邊射型雷射二極體元件的結構上下顛倒的示意圖(亦即,於圖三中,其半導體基板901在最上面)。由圖四A至四C的光場模擬結果可知,習知邊射型雷射二極體元件於垂直方向的發散角高達32.9度角,而水平方向的發散角則僅有20.28度角,導致其遠場光型呈現一垂直方向較長的狹長橢圓形。 Take the conventional edge-fired laser diode device shown in Figure 1 and Figure 2 as an example. If the number of layers, materials, thickness, and doping parameters in the following table 1 are used to make a 2.5G FP epitaxial design structure The conventional edge-fired laser diode element, and the computer model of the edge-fired laser diode element as shown in Figure 3 is used to simulate the near-field and far-field light types (wherein, the ridged platform 910 Set the width of 1.7μm), then the light field simulation results as shown in Figure 4A, Figure 4B and Figure 4C can be obtained. Among them, the structure of the edge-fired laser diode element shown in Figure 3 is actually a schematic diagram of the structure of the edge-fired laser diode element shown in Figure 1 and Figure 2 upside down (that is, in Figure 2). In the third mode, the semiconductor substrate 901 is on the top). From the light field simulation results in Figures 4A to 4C, it can be seen that the divergence angle of the conventional edge-fired laser diode element in the vertical direction is as high as 32.9 degrees, while the divergence angle in the horizontal direction is only 20.28 degrees, resulting in The far-field light pattern presents a long and narrow ellipse in the vertical direction.

Figure 106115594-A0101-12-0002-1
Figure 106115594-A0101-12-0002-1
Figure 106115594-A0101-12-0003-3
Figure 106115594-A0101-12-0003-3

一般來說,傳統習知的邊射型雷射二極體元件,其垂直發散角(FWHM)常達到30度角以上,而水平發散角一般小於20度角,而對稱性越差的場型在光纖偶光效率上就會顯得越差,不利於後端應用。因此,如何縮小邊射型雷射二極體元件所發射之雷射光的垂直發射角,使其遠場光型可較為接近圓形,乃為本發明所要解決的問題。 Generally speaking, the vertical divergence angle (FWHM) of conventional edge-fired laser diode elements often reaches 30 degrees or more, and the horizontal divergence angle is generally less than 20 degrees, and the field type with worse symmetry The optical efficiency of the fiber couple will appear worse, which is not conducive to back-end applications. Therefore, how to reduce the vertical emission angle of the laser light emitted by the edge-fired laser diode element so that the far-field light pattern can be closer to a circle is the problem to be solved by the present invention.

本發明之一目的,在於提供一種邊射型雷射元件,其利用AlInAS磊晶層來設計具穩定小垂直發射角的邊射型雷射元件。 An object of the present invention is to provide a side-fired laser element, which uses an AlInAS epitaxial layer to design a side-fired laser element with a stable and small vertical emission angle.

為達上述目的,本發明提供一種具小垂直發射角的邊射型雷射元件,其包括有:一磷化銦(InP)基板(Substrate);一下披覆(Bottom Cladding)層,位於該基板上方;一主動(Active Region)層,位於該下披覆層上方;一上披覆(Top Cladding)層,位於該主動層上方;以及一接觸層(Contact Layer),位於該上披覆層上方;其特徵在於:於該下披覆層中更夾設有一被動波導(Passive Waveguide)層,並使該被動波導層與該主動層之間具有一延伸下披覆(Extended Bottom Cladding)層,該延伸下披覆層是屬於該下披覆層的一部份;並且,該被動波導層的一光折射係數(Light Refraction Index)大於該下披覆層的光折射係數。 To achieve the above objective, the present invention provides an edge-fired laser element with a small vertical emission angle, which includes: an indium phosphide (InP) substrate (Substrate); a bottom cladding (Bottom Cladding) layer located on the substrate Above; an Active Region layer located above the lower cladding layer; a Top Cladding layer located above the active layer; and a contact layer (Contact Layer) located above the upper cladding layer It is characterized in that: a passive waveguide (Passive Waveguide) layer is further sandwiched in the lower cladding layer, and an extended Bottom Cladding (Extended Bottom Cladding) layer is provided between the passive waveguide layer and the active layer, the The extended lower cladding layer is a part of the lower cladding layer; and, a light refraction index (Light Refraction Index) of the passive waveguide layer is greater than the light refraction index of the lower cladding layer.

於一較佳實施例中,本發明之邊射型雷射元件更包括有:一下光侷限(SCH)層,位於該下披覆層與該主動層之間;以及一上光侷限層,位於該主動層與該上披覆層之間。 In a preferred embodiment, the edge-fired laser device of the present invention further includes: a lower optical confinement (SCH) layer, located between the lower cladding layer and the active layer; and an upper optical confinement layer, located Between the active layer and the upper cladding layer.

於一較佳實施例中,該磷化銦基板、該下披覆層、該被動波導層及該下光侷限層都具有n型摻雜(n-typed doping)。該上披覆層及該接觸層都具有p型摻雜(p-typed doping)。該下披覆層與該上披覆層的材料為InP。該主動層的材料為In1-x-yAlxGayAs,其中,x及y為介於0與1之間的實數。該接觸層的材料為InGaAs。該下光侷限層及該上光侷限層的材料為In0.52Al0.48As。 In a preferred embodiment, the indium phosphide substrate, the lower cladding layer, the passive waveguide layer, and the lower optical confinement layer all have n-typed doping. Both the upper cladding layer and the contact layer have p-typed doping. The material of the lower cladding layer and the upper cladding layer is InP. The material of the active layer is In 1-xy Al x Ga y As, where x and y are real numbers between 0 and 1. The material of the contact layer is InGaAs. The material of the low-gloss confined layer and the top-gloss confined layer is In 0.52 Al 0.48 As.

於一較佳實施例中,該被動波導層是單層結構,其材料為In0.52Al0.48As,且厚度介於0.2μm~0.6μm;並且,位於該被動波導層與該主動層之間的該延伸下披覆層的厚度是介於0.8μm~1.6μm。 In a preferred embodiment, the passive waveguide layer is a single-layer structure, the material of which is In 0.52 Al 0.48 As, and the thickness is between 0.2 μm and 0.6 μm; and, the passive waveguide layer is located between the passive waveguide layer and the active layer. The thickness of the cladding layer under the extension is between 0.8 μm and 1.6 μm.

於一更佳實施例中,該被動波導層的厚度是介於0.4μm~0.6μm;並且,該延伸下披覆層的厚度是介於1.2μm~1.4μm。 In a more preferred embodiment, the thickness of the passive waveguide layer is between 0.4 μm and 0.6 μm; and the thickness of the extended lower cladding layer is between 1.2 μm and 1.4 μm.

於一實施例中,該被動波導層是多層結構,其包括有:一下波導層,位於該下披覆層之上,其材料為InGaAsP,且厚度為40nm;一間隔層,位於該下波導層之上,其材料為InP,且厚度介於50nm;以及一上波導層,位於該間隔層之上,其材料為InGaAsP,且厚度為40nm;並且,位於該被動波導層與該主動層之間的該延伸下披覆層的厚度是1.4μm。 In one embodiment, the passive waveguide layer is a multilayer structure, which includes: a lower waveguide layer located on the lower cladding layer, the material of which is InGaAsP, and the thickness is 40 nm; and a spacer layer located on the lower waveguide layer On top, the material is InP with a thickness of 50nm; and an upper waveguide layer is located on the spacer layer, and the material is InGaAsP with a thickness of 40nm; and, it is located between the passive waveguide layer and the active layer The thickness of the cladding layer under the extension is 1.4μm.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,然而所附詳細說明與附圖僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the features and technical content of the present invention, please refer to the following detailed descriptions and drawings about the present invention. However, the accompanying detailed descriptions and drawings are only for reference and illustration, and are not used to limit the present invention. .

901‧‧‧基板 901‧‧‧Substrate

902‧‧‧下披覆層 902‧‧‧Lower cladding layer

9031‧‧‧下光侷限層 9031‧‧‧Low-light limited layer

903‧‧‧主動層 903‧‧‧Active layer

9032‧‧‧上光侷限層 9032‧‧‧Limited layer of glazing

904‧‧‧上披覆層 904‧‧‧Upper coating

905‧‧‧接觸層 905‧‧‧Contact layer

910‧‧‧脊狀平台 910‧‧‧ridged platform

911‧‧‧出光端 911‧‧‧light emitting end

999‧‧‧雷射光 999‧‧‧Laser light

301、401‧‧‧基板 301, 401‧‧‧Substrate

302、402‧‧‧下披覆層 302, 402‧‧‧ Lower cladding layer

3021‧‧‧下層 3021‧‧‧Lower Floor

3022、4022‧‧‧延伸下披覆層 3022, 4022‧‧‧Extended lower cladding layer

39、49‧‧‧被動波導層 39、49‧‧‧Passive waveguide layer

391‧‧‧下波導層 391‧‧‧Lower waveguide layer

392‧‧‧間隔層 392‧‧‧Interval layer

393‧‧‧上波導層 393‧‧‧Upper waveguide layer

3031、4031‧‧‧下光侷限層 3031, 4031‧‧‧Limited layer under light

303、403‧‧‧主動層 303, 403‧‧‧active layer

3032、4032‧‧‧上光侷限層 3032, 4032‧‧‧Limited layer of glazing

304、404‧‧‧上披覆層 304、404‧‧‧Top coating

305、405‧‧‧接觸層 305、405‧‧‧Contact layer

圖一為典型習知之邊射型(edge emitting)雷射二極體元件的立體圖。 Figure 1 is a perspective view of a typical conventional edge emitting laser diode device.

圖二為典型習知之邊射型(edge emitting)雷射二極體元件的側 視圖。 Figure 2 is a side view of a typical conventional edge emitting laser diode device.

圖三為典型習知之邊射型雷射二極體元件之電腦模型示意圖。 Figure 3 is a schematic diagram of a computer model of a typical conventional edge-fired laser diode element.

圖四A、圖四B與圖四C分別為依據圖三所示之電腦模型來模擬近場與遠場光型的光場模擬結果。 Fig. 4A, Fig. 4B and Fig. 4C are the light field simulation results of the near-field and far-field light patterns based on the computer model shown in Fig. 3, respectively.

圖五為本發明邊射型雷射元件之第一實施例的結構示意圖。 FIG. 5 is a schematic diagram of the structure of the first embodiment of the edge-fired laser element of the present invention.

圖六為本發明邊射型雷射元件之第二實施例的結構示意圖。 Fig. 6 is a schematic structural diagram of the second embodiment of the edge-fired laser element of the present invention.

圖七A、圖七B與圖七C本發明邊射型雷射二極體元件之第二實施例的光場模擬結果。 FIG. 7A, FIG. 7B, and FIG. 7C show the light field simulation results of the second embodiment of the edge-fired laser diode element of the present invention.

圖八A與圖八B分別是依據表四與表五之資料所繪製出的曲線圖。 Figure 8A and Figure 8B are graphs drawn based on the data in Table 4 and Table 5, respectively.

本發明的主要技術特徵,乃是在邊射型雷射元件的下披覆層中更夾設有一被動波導(Passive Waveguide)層,並使該被動波導層與該主動層之間具有一延伸下披覆(Extended Bottom Cladding)層,該延伸下披覆層是屬於該下披覆層的一部份;並且,該被動波導層的一光折射係數(Light Refraction Index;簡稱n值)大於該下披覆層的光折射係數。藉由此一具高光折射係數的該被動波導層結構來形成沒有主動層結構的被動式導光結構,藉以誘導光場往基板方向延伸,並藉由該延伸下披覆層來隔開該被動波導層與主動層之間的距離,擴張共振腔內雷射光場的近場分佈,因此可得到具較小垂直發射角也就是較接近圓形的遠場光型。 The main technical feature of the present invention is that a passive waveguide (Passive Waveguide) layer is sandwiched in the lower cladding layer of the edge-fired laser element, and an extended lower layer is formed between the passive waveguide layer and the active layer. A cladding (Extended Bottom Cladding) layer, the extended lower cladding layer is a part of the lower cladding layer; and, a light refraction index (Light Refraction Index; n value for short) of the passive waveguide layer is greater than the lower cladding layer Coefficient of light refraction of the cladding layer. The passive waveguide layer structure with a high optical refraction coefficient is used to form a passive light guide structure without an active layer structure, thereby inducing the light field to extend toward the substrate, and the passive waveguide is separated by the extended lower cladding layer The distance between the layer and the active layer expands the near-field distribution of the laser light field in the resonant cavity, so a far-field light pattern with a smaller vertical emission angle that is closer to a circle can be obtained.

配合參閱圖五,為本發明邊射型雷射元件之第一實施例的結構示意圖。於本發明之第一實施例中,該邊射型雷射元件由下至上依序至少包括有:一磷化銦(InP)基板(Substrate)301、一下披覆(Bottom Cladding)層302、一被動波導(Passive Waveguide)層39夾設於該下披覆層302中、一下光侷限(SCH)層3031、一主動(Active Region)層303、一上光侷限層3032、一上披覆(Top Cladding)層304、以及一接觸層(Contact Layer)305。由於該被動波導層39是被夾設於該下披覆層302中,所以會把下披覆層302分隔成上、下 兩層3021、3022;其中位於該被動波導層39與該主動層303之間的那部分可被稱為一延伸下披覆(Extended Bottom Cladding)層3022。該延伸下披覆層3022是屬於該下披覆層302的一部份,並且,該被動波導層39的一光折射係數(Light Refraction Index)大於該下披覆層302的光折射係數。 With reference to FIG. 5, it is a schematic structural diagram of the first embodiment of the edge-fired laser element of the present invention. In the first embodiment of the present invention, the edge-fired laser element from bottom to top includes at least: an indium phosphide (InP) substrate (Substrate) 301, a bottom cladding (Bottom Cladding) layer 302, a A Passive Waveguide layer 39 is sandwiched between the lower cladding layer 302, a lower optical confinement (SCH) layer 3031, an active region layer 303, an upper optical confinement layer 3032, and an upper cladding layer 3031. Cladding layer 304, and a contact layer (Contact Layer) 305. Since the passive waveguide layer 39 is sandwiched between the lower cladding layer 302, the lower cladding layer 302 is divided into upper and lower layers 3021 and 3022; among them are located between the passive waveguide layer 39 and the active layer 303 The part in between may be referred to as an Extended Bottom Cladding layer 3022. The extended lower cladding layer 3022 is a part of the lower cladding layer 302, and a light refraction index (Light Refraction Index) of the passive waveguide layer 39 is greater than the light refraction index of the lower cladding layer 302.

於圖五所示之本發明邊射型雷射元件的第一實施例中,該被動波導層39是多層結構,其由下而上依序包括有:一下波導層391、一間隔層392以及一上波導層393。請參閱表二所示,為如圖五所示之本發明邊射型雷射元件中,其各層結構的層數、材料、厚度、摻雜參數值的其中之一具體實施例(以2.5G FP為例)。 In the first embodiment of the edge-fired laser element of the present invention shown in FIG. 5, the passive waveguide layer 39 is a multilayer structure, which includes, from bottom to top, a lower waveguide layer 391, a spacer layer 392, and An upper waveguide layer 393. Please refer to Table 2, which is one of the specific examples of the number of layers, materials, thicknesses, and doping parameters of each layer structure in the edge-fired laser element of the present invention as shown in Figure 5 (with 2.5G FP as an example).

Figure 106115594-A0101-12-0006-4
Figure 106115594-A0101-12-0006-4

由表二搭配圖五內容可知,於本實施例中,該下波導層391是位於該披覆層下層3021上,其材料為InGaAsP,且厚度為40nm。該間隔層392是位於該下波導層391之上,其材料為InP,且厚度為50nm。該上波導層393是位於該間隔層392之上,其材料為InGaAsP,且厚度為40nm。並且,位於該被動波導層39與該主動層303之間的該延伸下披覆層3022的厚度是1.4μm。至於邊射型雷射二極體元件之上述各磊晶層的其他細節參數值,例如各層材料中分別又具有多少次層結構、各成分比例、各層厚度、摻雜類型、摻雜濃度、使用何種摻雜劑等具體數值,因可直接從表五得知,故不再贅述。 It can be seen from Table 2 and FIG. 5 that in this embodiment, the lower waveguide layer 391 is located on the lower layer 3021 of the cladding layer, the material of which is InGaAsP, and the thickness is 40 nm. The spacer layer 392 is located on the lower waveguide layer 391, the material is InP, and the thickness is 50 nm. The upper waveguide layer 393 is located on the spacer layer 392, the material of which is InGaAsP, and the thickness is 40 nm. In addition, the thickness of the extended lower cladding layer 3022 located between the passive waveguide layer 39 and the active layer 303 is 1.4 μm. As for the other detailed parameter values of the above-mentioned epitaxial layers of the edge-fired laser diode element, for example, how many layers are there in each layer of material, the proportion of each component, the thickness of each layer, doping type, doping concentration, use The specific values of the dopants can be directly obtained from Table 5, so I will not repeat them.

藉由如圖五及表二所示之本發明邊射型雷射二極體元件的第一實施例的具體結構,雖可讓所發出之雷射光的垂直發射角縮小到28度角以下,但是,由於此第一實施例的作法主要是在磊晶層靠近InP基板301的下披覆層302內安插兩層超晶格半導體材料(super lattice PQ;例如InGaAsP~1.165um)之高n值波導層,亦即該下波導層391與該上波導層393,而這樣的作法卻會具有以下兩個缺點: 1.PQ牽涉兩個五族的成長,磊晶上較難控制,因此容易造成折射率係數的變異進而影響到發散角的改變; 2.PQ layer需多層設計,每層厚度落在10nm-100nm之間,製程較為麻煩且不易控制。 With the specific structure of the first embodiment of the edge-fired laser diode element of the present invention shown in Figure 5 and Table 2, although the vertical emission angle of the emitted laser light can be reduced to below 28 degrees, However, because the method of this first embodiment is mainly to insert two layers of superlattice semiconductor material (super lattice PQ; for example, InGaAsP~1.165um) in the lower cladding layer 302 of the epitaxial layer close to the InP substrate 301, the high n value The waveguide layer, that is, the lower waveguide layer 391 and the upper waveguide layer 393, but this approach has the following two disadvantages: 1. PQ involves the growth of two five groups, which is difficult to control on epitaxial, so it is easy to cause the variation of refractive index and affect the change of divergence angle; 2. The PQ layer needs a multi-layer design, and the thickness of each layer falls between 10nm-100nm. The manufacturing process is cumbersome and difficult to control.

有鑑於此,本發明進一步提供了邊射型雷射二極體元件的第二實施例來解決第一實施例所具有的上述缺點,詳述於後。 In view of this, the present invention further provides a second embodiment of the edge-fired laser diode element to solve the above-mentioned shortcomings of the first embodiment, which will be described in detail later.

請參閱圖六,為本發明邊射型雷射元件之第二實施例的結構示意圖。於此第二實施例中,同樣地,該邊射型雷射元件乃係在一磷化銦(InP)基板(Substrate)401以磊晶方式由下至上依序形成至少下列各磊晶層:一下披覆(Bottom Cladding)層402、一被動波導(Passive Waveguide)層49夾設於該下披覆層402中、一下光侷限(SCH)層4031、一主動(Active Region)層403、一上光侷限層4032、一上披覆(Top Cladding)層404、以及一接觸層(Contact Layer)405。於本實施例中,基板401實質上也提供了下披覆層402的一部份功能,且由於該被動波導層49是被夾設於該下披覆層302中最靠近 基板401之處,所以位於該被動波導層49與該主動層403之間的那部分可被稱為一延伸下披覆(Extended Bottom Cladding)層4022。該延伸下披覆層4022是屬於該下披覆層402的一部份,並且,該被動波導層49的一光折射係數(Light Refraction Index)大於該下披覆層402的光折射係數。 Please refer to FIG. 6, which is a schematic structural diagram of the second embodiment of the edge-fired laser element of the present invention. In this second embodiment, similarly, the edge-fired laser device is formed on an indium phosphide (InP) substrate (Substrate) 401 in an epitaxial manner to form at least the following epitaxial layers sequentially from bottom to top: A Bottom Cladding layer 402, a Passive Waveguide layer 49 are sandwiched in the lower cladding layer 402, a lower optical confinement (SCH) layer 4031, an active region layer 403, and an upper cladding layer 403. The optical confinement layer 4032, a top cladding layer 404, and a contact layer 405. In this embodiment, the substrate 401 also substantially provides a part of the function of the lower cladding layer 402, and since the passive waveguide layer 49 is sandwiched in the lower cladding layer 302 closest to At the substrate 401, the portion between the passive waveguide layer 49 and the active layer 403 can be referred to as an Extended Bottom Cladding layer 4022. The extended lower cladding layer 4022 is a part of the lower cladding layer 402, and a light refraction index (Light Refraction Index) of the passive waveguide layer 49 is greater than the light refraction index of the lower cladding layer 402.

於圖六所示之本發明邊射型雷射元件的第二實施例中,該被動波導層49是單層結構,其乃是以晶格結構匹配(lattice match)的單層高n值AlxGayIn1-x-yAs塊狀(bulk)結構形成被動式波導(Passive Waveguide)來取代第一實施例中的PQ layer多層設計,例如AlInAs、AlGaInAs或InGaAs,其優點為下:1.該被動波導層49只使用單一五族(As),所以磊晶控制佳;2.該被動波導層49是單一塊狀膜層設計,膜厚落在50nm-1000nm範圍,所以製程較為簡單且好控制。 In the second embodiment of the edge-fired laser element of the present invention shown in FIG. 6, the passive waveguide layer 49 is a single-layer structure, which is a single-layer high n-value AlxGayIn1 with a lattice structure matching (lattice match) -The x-yAs bulk structure forms a passive waveguide (Passive Waveguide) to replace the PQ layer multilayer design in the first embodiment, such as AlInAs, AlGaInAs or InGaAs. The advantages are as follows: 1. The passive waveguide layer 49 only A single group 5 (As) is used, so the epitaxial control is good; 2. The passive waveguide layer 49 is a single bulk film design, and the film thickness falls in the range of 50nm-1000nm, so the process is relatively simple and easy to control.

利用此法一樣可穩定均勻的製作出小垂直角的邊射型雷射二極體元件,更可克服本發明第一實施例中的PQ layer多層設計所導致的各項缺點。 With this method, the edge-fired laser diode element with a small vertical angle can be manufactured stably and uniformly, and various shortcomings caused by the multi-layer design of the PQ layer in the first embodiment of the present invention can be overcome.

請參閱表三所示,為如圖六所示之本發明邊射型雷射元件的第二實施例中,其各層結構的層數、材料、厚度、摻雜參數值的其中之一具體實施例(以2.5G FP為例)。 Please refer to Table 3 for the specific implementation of one of the number of layers, materials, thickness, and doping parameter values of each layer structure in the second embodiment of the edge-fired laser element of the present invention as shown in Figure 6. Example (take 2.5G FP as an example).

Figure 106115594-A0305-02-0010-1
Figure 106115594-A0305-02-0010-1
Figure 106115594-A0101-12-0009-6
Figure 106115594-A0101-12-0009-6

由圖六搭配上表三內容可知,於本發明邊射型雷射二極體元件之第二實施例中,該磷化銦基板401、該下披覆層402(含延伸下披覆層4022)、該被動波導層49及該下光侷限層4031都具有n型摻雜(n-typed doping)。該上披覆層404及該接觸層405都具有p型摻雜(p-typed doping)。該基板401、下披覆層402(含延伸下披覆層4022)與該上披覆層404的材料都為InP。該主動層403的材料為In1-x-yAlxGayAs,其中,x及y為介於0與1之間的實數。該接觸層405的材料為InGaAs,於接觸層405底層靠近上披覆層404的部分設有較薄的InGaAsP層是為了從InP過渡到InGaAs的過渡層,目的是使材料能階比較連續,可以降低電阻。並且,該下光侷限層4031及該上光侷限層4032的材料為In0.52Al0.48As。至於邊射型雷射二極體元件之上述各磊晶層的其他細節參數值,例如各層材料中分別又具有多少次層結構、各成分比例、各層厚度、摻雜類型、摻雜濃度、使用何種摻雜劑等具體數值,因可直接從表六得知,故不再贅述。 It can be seen from Figure 6 and Table 3 above that, in the second embodiment of the edge-fired laser diode device of the present invention, the indium phosphide substrate 401, the lower cladding layer 402 (including the extended lower cladding layer 4022 ), the passive waveguide layer 49 and the lower optical confinement layer 4031 both have n-typed doping. Both the upper cladding layer 404 and the contact layer 405 have p-typed doping. The substrate 401, the lower cladding layer 402 (including the extended lower cladding layer 4022) and the upper cladding layer 404 are all InP. The material of the active layer 403 is In1-x-yAlxGayAs, where x and y are real numbers between 0 and 1. The material of the contact layer 405 is InGaAs, and a thinner InGaAsP layer is provided at the bottom of the contact layer 405 near the upper cladding layer 404 in order to transition from InP to InGaAs. The purpose is to make the material energy level more continuous. Reduce resistance. In addition, the material of the lower light confinement layer 4031 and the upper light confinement layer 4032 is In0.52Al0.48As. As for the other detailed parameter values of the above-mentioned epitaxial layers of the edge-fired laser diode element, for example, how many layers are there in each layer of material, the proportion of each component, the thickness of each layer, doping type, doping concentration, use The specific values of the dopants, etc., can be obtained directly from Table 6, so I will not repeat them.

以圖六所示之本發明邊射型雷射二極體元件之第二實施例為例,若以如上表三的層數、材料、厚度、摻雜參數值來進行製作2.5G FP磊晶設計結構的邊射型雷射二極體元件,並以如類似圖三所示之邊射型雷射二極體元件之電腦模型來模擬近場與遠場光型的話(其中,脊狀平台的寬度設在1.7μm),則可獲得如圖七A、圖七B與圖七C的光場模擬結果。由圖七A至七C的光場模擬結果可知,如圖六及表三所示之本發明邊射型雷射二極體元件之第二實施例,其於垂直方向的發散角可有效縮小至24.73度角,而水平方向的發散角則為18.28度角;因此,相較於圖四A至四C所示的習知技術光場模擬結果,本發明邊射型雷射二極體元件之第二實施例確實可以獲得相對更接近圓形的遠場雷射光型。此外,本發明也經由實際磊晶與元 件製作得到實際的量測資料,得到依據上述圖六與表三內容所製作出的本發明邊射型雷射二極體元件實際樣品,經量測其垂直方向的發散角為22.49度角、水平方向的發散角則為19.16度角,不僅確實較習知傳統的邊射型雷射二極體元件具有相對更接近圓形的雷射光型,且大體上也符合如圖七A至七C所示的光場模擬結果。 Taking the second embodiment of the edge-fired laser diode device of the present invention shown in Figure 6 as an example, if the number of layers, materials, thickness, and doping parameters as shown in Table 3 above are used to produce 2.5G FP epitaxy Design the structure of the edge-fired laser diode element, and use the computer model of the edge-fired laser diode element as shown in Figure 3 to simulate the near-field and far-field light types (wherein, the ridged platform The width of φ is set at 1.7 μm ), the light field simulation results as shown in Fig. 7A, Fig. 7B and Fig. 7C can be obtained. From the light field simulation results of Figs. 7A to 7C, it can be seen that the second embodiment of the edge-fired laser diode element of the present invention shown in Figs. 6 and Table 3 can effectively reduce the divergence angle in the vertical direction. To 24.73 degrees, and the horizontal divergence angle is 18.28 degrees; therefore, compared with the conventional technology light field simulation results shown in Figures 4A to 4C, the edge-fired laser diode element of the present invention In the second embodiment, it is true that a far-field laser type that is relatively closer to a circle can be obtained. In addition, the present invention also obtains actual measurement data through actual epitaxy and device fabrication, and obtains the actual sample of the edge-fired laser diode device of the present invention manufactured according to the content of the above-mentioned Figure 6 and Table 3. The divergence angle in the vertical direction is 22.49 degrees, and the divergence angle in the horizontal direction is 19.16 degrees. Not only does it have a relatively more circular laser type than the conventional edge-fired laser diode elements, but it is generally The above is also in line with the light field simulation results shown in Figs. 7A to 7C.

本發明的重點特徵在於使用單一五族(As)且單一層的InAlGaAs Bulk材料來設計該被動波導層49,達到穩定且簡易成長小垂直角雷射,此被動波導層49位於主動層403下方且位於InP基板401上方。本發明於結構上的重點包含兩點:1.延伸下披覆層4022之材料為InP可提供小n值;2.被動波導層49的材料為AlxGayIn1-x-yAs,可提供大n值。 The key feature of the present invention is to use a single group 5 (As) and a single layer of InAlGaAs Bulk material to design the passive waveguide layer 49 to achieve a stable and easy to grow small vertical angle laser. The passive waveguide layer 49 is located below the active layer 403 And it is located above the InP substrate 401. The key points of the structure of the present invention include two points: 1. The material of the extended lower cladding layer 4022 is InP, which can provide a small value of n; 2. The material of the passive waveguide layer 49 is AlxGayIn1-x-yAs, which can provide a large value of n.

所以,於本發明中,延伸下披覆層4022與被動波導層49各別的厚度需經過適當設計,才能同時有小垂直發散角與好的雷射特性。一般來說,延伸下披覆層4022(材料為InP)須有一定的厚度才能達到擴張近場分佈的功效,但過厚的設計則會耗費過多磊晶時間,合適厚度落於500nm-2000nm區間。被動波導層49(材料為AlxGayIn1-x-yAs)須有一定厚度才能有效誘導光場,但厚度增加會犧牲模態增益(modal gain),兩者間存在權衡(Trade-Off),需經過細算得到最佳優化平衡。而被動波導層49超過一定厚度則會出現多模態(multi-mode)而無法使用,合適厚度落於100nm-1000nm範圍。本發明藉由電腦模擬計算不同延伸下披覆層4022與被動波導層49厚度展開成陣列表的結果如下表四與表五,以顯示出在不同延伸下披覆層4022厚度搭配不同被動波導層49厚度時,其所能獲得的垂直發散角與模態增益分別為何。 Therefore, in the present invention, the respective thicknesses of the extended lower cladding layer 4022 and the passive waveguide layer 49 need to be appropriately designed to have a small vertical divergence angle and good laser characteristics at the same time. Generally speaking, the extended lower cladding layer 4022 (material is InP) must have a certain thickness to achieve the effect of expanding the near-field distribution, but an excessively thick design will consume too much epitaxy time, and the appropriate thickness falls in the range of 500nm-2000nm . The passive waveguide layer 49 (the material is AlxGayIn1-x-yAs) must have a certain thickness to effectively induce the light field, but the increase in thickness will sacrifice the modal gain. There is a trade-off between the two, which needs to be fine-tuned. Calculate the best optimized balance. However, if the passive waveguide layer 49 exceeds a certain thickness, it will appear multi-mode and cannot be used, and the appropriate thickness falls within the range of 100 nm-1000 nm. The present invention uses computer simulation to calculate the thickness of the cladding layer 4022 and the passive waveguide layer 49 under different extensions to form an array table. The results are shown in Tables 4 and 5 below to show that the thickness of the cladding layer 4022 under different extensions matches different passive waveguide layers. When the thickness is 49, what are the vertical divergence angles and modal gains that can be obtained.

Figure 106115594-A0101-12-0010-7
Figure 106115594-A0101-12-0010-7
Figure 106115594-A0101-12-0011-9
Figure 106115594-A0101-12-0011-9

Figure 106115594-A0101-12-0011-10
Figure 106115594-A0101-12-0011-10

其中,Multi是多模態(Multi-Mode)之意。 Among them, Multi means Multi-Mode.

另請參閱圖八A與圖八B,分別是依據表四與表五之資料所繪製出的曲線圖。 Please also refer to Figure 8A and Figure 8B, which are graphs drawn based on the data in Table 4 and Table 5, respectively.

由上述表四與表五內容可知,倘若吾人希望本發明之邊射型雷射元件的遠場垂直發散角能低於30度角、且同時模態增益能高於60以上時,則被動波導層49(材料為In0.52Al0.48As)厚度可介於0.2μm~0.6μm、同時該延伸下披覆層4022(材料為InP)厚度是介於0.8μm~1.6μm為較佳。而若欲得到更好的雷射光場與增益表現,則於本發明之最佳實施例中,該被動波導層的厚度可介於0.4μm~0.6μm;並且,該延伸下披覆層的厚度是介於1.2μm~1.4μm,此時,遠場垂直發散角能低於25度角左右、且同時模態增益能高於接近70以上,不僅確實改善了傳統習知邊射型雷射元件所具有的遠場垂直發散角常大於30度以上的缺失、還同時保持了良好的模態增益值。 From the above Table 4 and Table 5, it can be seen that if we hope that the far-field vertical divergence angle of the edge-fired laser element of the present invention can be lower than 30 degrees, and at the same time the modal gain can be higher than 60, then the passive waveguide The thickness of layer 49 (the material is In0.52Al0.48As) can be between 0.2 μ m and 0.6 μ m, and the thickness of the extended lower cladding layer 4022 (the material is InP) is preferably between 0.8 μ m and 1.6 μ m. . If better laser light field and gain performance are desired, in the preferred embodiment of the present invention, the thickness of the passive waveguide layer can be between 0.4 μm and 0.6 μm ; and the extended lower cladding layer The thickness is between 1.2 μ m and 1.4 μ m. At this time, the far-field vertical divergence angle can be lower than about 25 degrees, and at the same time the modal gain can be higher than close to 70 or more, which not only improves the traditional side shooter The far-field vertical divergence angle of the type laser element is often greater than the absence of more than 30 degrees, while maintaining a good modal gain value.

然以上所述者,僅為本發明之較佳實施例,當不能限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾等,皆 應仍屬本發明之專利涵蓋範圍意圖保護之範疇。 However, the above are only preferred embodiments of the present invention, and should not limit the scope of implementation of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention should still be covered by the patent of the present invention. Scope The scope of the intended protection.

401‧‧‧基板 401‧‧‧Substrate

402‧‧‧下披覆層 402‧‧‧Lower cladding layer

3021‧‧‧下層 3021‧‧‧Lower Floor

4022‧‧‧延伸下披覆層 4022‧‧‧Extended lower cladding layer

49‧‧‧被動波導層 49‧‧‧Passive waveguide layer

4031‧‧‧下光侷限層 4031‧‧‧Limited layer under light

403‧‧‧主動層 403‧‧‧Active layer

4032‧‧‧上光侷限層 4032‧‧‧Limited layer of glazing

404‧‧‧上披覆層 404‧‧‧Upper coating

405‧‧‧接觸層 405‧‧‧Contact layer

Claims (10)

一種具小垂直發射角的邊射型雷射元件,包括有:一磷化銦(InP)基板(Substrate);一下披覆(Bottom Cladding)層,位於該基板上方;一主動(Active Region)層,位於該下披覆層上方;一上披覆(Top Cladding)層,位於該主動層上方;以及一接觸層(Contact Layer),位於該上披覆層上方;其中,該接觸層及該上披覆層被適當地形成一脊狀平台(ridge mesa);其特徵在於:於該下披覆層中更夾設有一被動波導(Passive Waveguide)層,並使該被動波導層與該主動層之間具有一延伸下披覆(Extended Bottom Cladding)層,該延伸下披覆層是屬於該下披覆層的一部份;並且,該被動波導層的一光折射係數(Light Refraction Index)大於該下披覆層的光折射係數。 An edge-fired laser element with a small vertical emission angle, including: an indium phosphide (InP) substrate (Substrate); a bottom cladding (Bottom Cladding) layer located above the substrate; and an active (Active Region) layer , Located above the lower cladding layer; a top cladding (Top Cladding) layer located above the active layer; and a contact layer (Contact Layer) located above the upper cladding layer; wherein, the contact layer and the upper The cladding layer is appropriately formed as a ridge mesa; it is characterized in that a passive waveguide (Passive Waveguide) layer is sandwiched in the lower cladding layer, and the passive waveguide layer and the active layer There is an Extended Bottom Cladding (Extended Bottom Cladding) layer in between. The extended bottom cladding layer is a part of the bottom cladding layer; and the passive waveguide layer has a light refraction index (Light Refraction Index) greater than the The light refractive index of the lower cladding layer. 如申請專利範圍第1項所述之邊射型雷射元件,更包括有:一下光侷限(SCH)層,位於該下披覆層與該主動層之間;以及一上光侷限層,位於該主動層與該上披覆層之間。 For example, the edge-fired laser element described in item 1 of the scope of patent application further includes: a lower optical confinement (SCH) layer, located between the lower cladding layer and the active layer; and an upper optical confinement layer, located Between the active layer and the upper cladding layer. 如申請專利範圍第2項所述之邊射型雷射元件,其中:該磷化銦基板、該下披覆層、該被動波導層及該下光侷限層都具有n型摻雜(n-typed doping);該上披覆層及該接觸層都具有p型摻雜(p-typed doping);該下披覆層與該上披覆層的材料為InP;該主動層的材料為In1-x-yAlxGayAs,其中,x及y為介於0與1之間的實數;該接觸層的材料為InGaAs;並且,該下光侷限層及該上光侷限層的材料為In0.52Al0.48As。 The edge-fired laser device described in item 2 of the scope of patent application, wherein: the indium phosphide substrate, the lower cladding layer, the passive waveguide layer and the lower optical confinement layer all have n-type doping (n- typed doping); both the upper cladding layer and the contact layer have p-typed doping; the material of the lower cladding layer and the upper cladding layer is InP; the material of the active layer is In1- x-yAlxGayAs, where x and y are real numbers between 0 and 1; the material of the contact layer is InGaAs; and the material of the lower optical confinement layer and the upper optical confinement layer is In0.52Al0.48As. 如申請專利範圍第1項所述之邊射型雷射元件,其中:該被動波導層是單層結構,其材料為In0.52Al0.48As,且厚度介於0.2μm~0.6μm;並且,位於該被動波導層與該主動層之間的該延伸下披覆層的厚度是介於0.8μm~1.6μm。 The edge-fired laser element described in the first item of the scope of patent application, wherein: the passive waveguide layer is a single-layer structure, the material of which is In0.52Al0.48As, and the thickness is between 0.2μm~0.6μm; The thickness of the extended lower cladding layer between the passive waveguide layer and the active layer is between 0.8 μm and 1.6 μm. 如申請專利範圍第4項所述之邊射型雷射元件,其中,該被動波導層的厚 度是介於0.4μm~0.6μm;並且,該延伸下披覆層的厚度是介於1.2μm~1.4μm。 The edge-fired laser element described in item 4 of the scope of patent application, wherein the thickness of the passive waveguide layer The degree is between 0.4 μm and 0.6 μm; and the thickness of the cladding layer under the extension is between 1.2 μm and 1.4 μm. 如申請專利範圍第1項所述之邊射型雷射元件,其中,該被動波導層是多層結構,其包括有:一下波導層,位於該下披覆層之上,其材料為InGaAsP,且厚度為40nm;一間隔層,位於該下波導層之上,其材料為InP,且厚度介於50nm;以及一上波導層,位於該間隔層之上,其材料為InGaAsP,且厚度為40nm;並且,位於該被動波導層與該主動層之間的該延伸下披覆層的厚度是1.4μm。 As for the edge-fired laser element described in the first item of the patent application, the passive waveguide layer is a multilayer structure, which includes: a lower waveguide layer on the lower cladding layer, the material of which is InGaAsP, and The thickness is 40nm; a spacer layer, located on the lower waveguide layer, whose material is InP, and the thickness is between 50nm; and an upper waveguide layer, located on the spacer layer, whose material is InGaAsP, and the thickness is 40nm; In addition, the thickness of the extended lower cladding layer located between the passive waveguide layer and the active layer is 1.4 μm. 一種具小垂直發射角的邊射型雷射元件,係在以磷化銦(InP)為主材料的一基板(Substrate)上以磊晶方式依序形成包括:一被動波導(Passive Waveguide)層,位於該基板上方,其材料為In0.52Al0.48As;一延伸下披覆(Extended Bottom Cladding)層,位於該被動波導層上方,其材料為InP;一主動(Active Region)層,位於該延伸下披覆層上方,其材料為In1-x-yAlxGayAs,其中,x及y為介於0與1之間的實數;一上披覆(Top Cladding)層,位於該主動層上方,其材料為InP;以及一接觸層(Contact Layer),位於該上披覆層上方,其材料為InGaAs。 An edge-fired laser element with a small vertical emission angle is formed in an epitaxial manner on a substrate made of indium phosphide (InP) as the main material. It includes: a passive waveguide (Passive Waveguide) layer , Located above the substrate, its material is In0.52Al0.48As; an extended bottom cladding (Extended Bottom Cladding) layer located above the passive waveguide layer, its material is InP; an active (Active Region) layer located in the extension Above the lower cladding layer, the material is In1-x-yAlxGayAs, where x and y are real numbers between 0 and 1. A top cladding layer, located above the active layer, is made of InP; and a contact layer (Contact Layer), located above the upper cladding layer, the material of which is InGaAs. 如申請專利範圍第7項所述之邊射型雷射元件,更包括有:一下光侷限(SCH)層,位於該下披覆層與該主動層之間;以及一上光侷限層,位於該主動層與該上披覆層之間。 For example, the edge-fired laser element described in item 7 of the scope of patent application further includes: a lower optical confinement (SCH) layer located between the lower cladding layer and the active layer; and an upper optical confinement layer located on Between the active layer and the upper cladding layer. 如申請專利範圍第2項所述之邊射型雷射元件,其中:該磷化銦基板、該下披覆層、該被動波導層及該下光侷限層都具有n型摻雜(n-typed doping);並且,該上披覆層及該接觸層都具有p型摻雜(p-typed doping)。 The edge-fired laser device described in item 2 of the scope of patent application, wherein: the indium phosphide substrate, the lower cladding layer, the passive waveguide layer and the lower optical confinement layer all have n-type doping (n- typed doping); and, both the upper cladding layer and the contact layer have p-typed doping. 如申請專利範圍第1項所述之邊射型雷射元件,其中:該被動波導層是單層結構,且厚度介於0.4μm~0.6μm;並且,位於該被動波導層與該主動層之間的該延伸下披覆層的厚度是介於1.2μm~1.4μm。 The edge-fired laser element described in item 1 of the scope of patent application, wherein: the passive waveguide layer is a single-layer structure with a thickness of 0.4μm~0.6μm; and is located between the passive waveguide layer and the active layer The thickness of the cladding layer under the extension is between 1.2 μm and 1.4 μm.
TW106115594A 2017-05-11 2017-05-11 Edge-emitting laser having small vertical emitting angle TWI721167B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106115594A TWI721167B (en) 2017-05-11 2017-05-11 Edge-emitting laser having small vertical emitting angle
CN201710433098.3A CN108879330B (en) 2017-05-11 2017-06-09 Edge-emitting laser element with small vertical emission angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106115594A TWI721167B (en) 2017-05-11 2017-05-11 Edge-emitting laser having small vertical emitting angle

Publications (2)

Publication Number Publication Date
TW201902064A TW201902064A (en) 2019-01-01
TWI721167B true TWI721167B (en) 2021-03-11

Family

ID=64320778

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106115594A TWI721167B (en) 2017-05-11 2017-05-11 Edge-emitting laser having small vertical emitting angle

Country Status (2)

Country Link
CN (1) CN108879330B (en)
TW (1) TWI721167B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672088A (en) * 2018-12-29 2019-04-23 江西德瑞光电技术有限责任公司 A kind of semiconductor laser chip manufacturing method
CN111490453B (en) * 2020-04-24 2021-08-31 中国科学院半导体研究所 GaN-based laser with step-doped lower waveguide layer and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065553A1 (en) 2001-02-09 2002-08-22 Midwest Research Institute Isoelectronic co-doping
US6560259B1 (en) * 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US20150333482A1 (en) * 2014-05-13 2015-11-19 California Institute Of Technology Index-coupled distributed-feedback semiconductor quantum cascade lasers fabricated without epitaxial regrowth

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416790A (en) * 1992-11-06 1995-05-16 Sanyo Electric Co., Ltd. Semiconductor laser with a self-sustained pulsation
JP3926313B2 (en) * 2003-09-26 2007-06-06 シャープ株式会社 Semiconductor laser and manufacturing method thereof
GB2406968B (en) * 2003-10-11 2006-12-06 Intense Photonics Ltd Control of output beam divergence in a semiconductor waveguide device
KR20050110902A (en) * 2004-05-20 2005-11-24 삼성전기주식회사 Semiconductor laser diode
CN104466675B (en) * 2014-12-15 2017-08-29 中国电子科技集团公司第十三研究所 Narrow angle of divergence ridge waveguide semiconductor laser
CN106532433B (en) * 2016-12-30 2018-10-19 苏州全磊光电有限公司 A kind of laser and preparation method thereof of narrow vertical direction far-field divergence angle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560259B1 (en) * 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
WO2002065553A1 (en) 2001-02-09 2002-08-22 Midwest Research Institute Isoelectronic co-doping
US20150333482A1 (en) * 2014-05-13 2015-11-19 California Institute Of Technology Index-coupled distributed-feedback semiconductor quantum cascade lasers fabricated without epitaxial regrowth

Also Published As

Publication number Publication date
CN108879330A (en) 2018-11-23
CN108879330B (en) 2021-08-03
TW201902064A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
CN106848835A (en) A kind of Distributed Feedback Laser based on surface grating
CN105720479B (en) A kind of high speed semiconductor laser with beam-spreading structure
CN103219650B (en) Low divergence angle near diffraction limit output chirp photonic crystal edge-emitting laser array
CN106848836B (en) A kind of high order surfaces grating face emitting semiconductor laser
CN110061420A (en) Expanding laser oscillator waveguide
CN102545056A (en) Surface-emitting terahertz quantum cascade laser and manufacturing method thereof
CN103346478B (en) In stibium gallium, infrared round spot exports low divergence edge emitting photon crystal laser
CN102570307A (en) Single-mode large-power THz quantum cascade laser (QCL) and manufacturing technology thereof
TWI721167B (en) Edge-emitting laser having small vertical emitting angle
CN103166108B (en) Circle spot exports low divergence edge emitting photon crystal laser and composite waveguide device
TW202119719A (en) Surface emitting laser with hybrid grating structure
CN103326243A (en) Basic transverse mode low-horizontal-divergence-angle one-dimensional chirp photonic crystal edge-emitting laser array
JP5666815B2 (en) Semiconductor laser structure
CN108899761A (en) Asymmetric mode extends small divergence angle semiconductor laser
US9203216B2 (en) Semiconductor laser device
CN106300012A (en) A kind of 808nm semiconductor laser containing high selective corrosion barrier layer
US10522974B2 (en) Edge-emitting laser having small vertical emitting angle
JP2003133636A (en) Distributed feedback semiconductor laser element
TWI710186B (en) Structure and frabicating method of distibuted feedback laser
CN108447954B (en) Low-divergence-angle super-radiation light-emitting diode structure
US9093821B2 (en) Substrate-emitting transverse magnetic polarized laser employing a metal/semiconductor distributed feedback grating for symmetric-mode operation
JP5704901B2 (en) Two-dimensional photonic crystal surface emitting laser
CN113794104A (en) Photonic crystal laser
CN100536266C (en) Surface-emitting type semiconductor laser
TWI741940B (en) Edge-fired laser element