TWI720671B - Core/shell quantum dot material and manufacturing method thereof - Google Patents

Core/shell quantum dot material and manufacturing method thereof Download PDF

Info

Publication number
TWI720671B
TWI720671B TW108139102A TW108139102A TWI720671B TW I720671 B TWI720671 B TW I720671B TW 108139102 A TW108139102 A TW 108139102A TW 108139102 A TW108139102 A TW 108139102A TW I720671 B TWI720671 B TW I720671B
Authority
TW
Taiwan
Prior art keywords
core
shell
solution
alloy
quantum dot
Prior art date
Application number
TW108139102A
Other languages
Chinese (zh)
Other versions
TW202116971A (en
Inventor
張瑋倫
周尚威
Original Assignee
欣盛光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣盛光電股份有限公司 filed Critical 欣盛光電股份有限公司
Priority to TW108139102A priority Critical patent/TWI720671B/en
Application granted granted Critical
Publication of TWI720671B publication Critical patent/TWI720671B/en
Publication of TW202116971A publication Critical patent/TW202116971A/en

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

A core/shell quantum dot material includes at least one core, an element descending portion, a shell and a zinc-blende structure. The core is an alloyed core as a CdSe-alloyed core. The element descending portion has a Cd element, a Se element or both descending from a center of the core to exterior. The shell is formed to cover the core and made from a material of cubic system. The shell is a polygon shell formed from a zinc-blende compound. The zinc-blende structure of the shell provides to protect the alloyed core, with the zinc-blende structure enhancing resistance capabilities of water or oxidation erosion and thermal stability which can provide stabilities of light emitting and further enhance QD efficiencies.

Description

核-殼發光量子點材料及其製造方法 Core-shell luminous quantum dot material and manufacturing method thereof

本發明係關於一種核-殼〔core/shell〕發光量子點〔quantum dot〕材料及其製造方法;特別是關於一種具合金核-殼發光量子點材料及其製造方法;更特別是關於一種具合金核-具閃鋅礦結構殼層之發光量子點材料及其製造方法。 The present invention relates to a core-shell (core/shell) light-emitting quantum dot material and its manufacturing method; in particular, it relates to an alloy core-shell light-emitting quantum dot material and its manufacturing method; more particularly to a composite Gold core-luminescent quantum dot material with zinc blende structure shell and manufacturing method thereof.

舉例而言,習用量子點材料,例如:中華民國專利公告第TW-I620809號之〝量子點奈米晶體及量子點奈米晶體溶液〞發明專利,其揭示一種量子點奈米晶體。該量子點奈米晶體包含一核及一殼。該核具有一核心及一外核心層,而該外核心層自該核心向外凸伸,且該外核心層為該核的表面呈不規層形狀。其中該核心由化合物M1xM21-xA1yA21-y,0<x≦1,0<y≦1構成,而該外核心層由化合物M1xM21-xA1yA21-y,0<x≦1,0<y≦1構成,且該外核心層的能隙向遠離該核心方向漸增,其中該M1及M2選自金屬:Zn、Sn、Pb、Cd、In、Ga、Cs、Ge、Ti及Cu之一,且該M1與M2不同。該A1及A2選自元素:Se、S、Te、P、As、N、O、Cl、Br及I之一。該殼用以包覆該核,且該殼由化合物M1A2或M2A2構成。 For example, conventional quantum dot materials, such as the invention patent of "Quantum Dot Nanocrystals and Quantum Dot Nanocrystal Solutions" in the Republic of China Patent Publication No. TW-I620809, which discloses a quantum dot nanocrystal. The quantum dot nanocrystal includes a core and a shell. The core has a core and an outer core layer, and the outer core layer protrudes outward from the core, and the outer core layer is an irregular layer shape on the surface of the core. The core is composed of compound M1 x M2 1-x A1 y A2 1-y , 0<x≦1, 0<y≦1, and the outer core layer is composed of compound M1 x M2 1-x A1 y A2 1-y , 0<x≦1, 0<y≦1, and the energy gap of the outer core layer gradually increases away from the core, wherein the M1 and M2 are selected from metals: Zn, Sn, Pb, Cd, In, Ga , Cs, Ge, Ti, and Cu, and the M1 and M2 are different. The A1 and A2 are selected from one of the elements: Se, S, Te, P, As, N, O, Cl, Br, and I. The shell is used to coat the core, and the shell is composed of the compound M1A2 or M2A2.

另一習用量子點材料,例如:中華民國專利公告第TW-I653318號之〝超大量子點及其形成方法〞發明專利,其揭示一種超大量子點。該超大量子點包含一核、一殼及一合金。該核由CdSe構成,而該殼由ZnS所構成, 且該殼包覆該核的表面,且該合金形成在該核及殼之間。該合金由Cd、Se、Zn及S構成,且該Cd及Se的含量自該核逐漸減少至該殼,且該Zn及S的含量自該核逐漸增加至該殼。該超大量子點的粒徑大於10奈米,而該超大量子點能在被激發時發光,且其具有大於90%的光致發光量子效率。 Another conventional quantum dot material, for example, the invention patent of "Super large number of dots and its formation method" of the Republic of China Patent Publication No. TW-I653318, which discloses a kind of ultra large number of dots. The super large number of sub-dots includes a core, a shell, and an alloy. The core is made of CdSe, and the shell is made of ZnS, And the shell covers the surface of the core, and the alloy is formed between the core and the shell. The alloy is composed of Cd, Se, Zn, and S, and the content of Cd and Se gradually decreases from the core to the shell, and the content of Zn and S gradually increases from the core to the shell. The particle size of the super large number of dots is greater than 10 nanometers, and the super large number of dots can emit light when excited, and it has a photoluminescence quantum efficiency greater than 90%.

另一習用量子點材料,例如:中華民國專利公告第TW-I668294號之〝無鎘量子點配體材料及其製造方法〞發明專利,其揭示一種無鎘量子點配體材料製造方法。該無鎘量子點配體材料製造方法包含:利用數個金屬錯合物製備數個單一前驅物,並將該數個單一前驅物以一預定比例進行混合,以獲得一混合固體前驅物,且將該混合固體前驅物於一油胺液體中進行溶解及熱裂解,以形成一未包殼量子點溶液,再將該未包殼量子點溶液於一油胺混合溶液中進行一包殼反應,以獲得一包殼量子點溶液,再將該包殼量子點溶液製成一包殼量子點材料。 Another conventional quantum dot material, such as the invention patent of "Cadmium-free Quantum Dot Ligand Material and Its Manufacturing Method" of the Republic of China Patent Publication No. TW-I668294, discloses a method for manufacturing a cadmium-free quantum dot ligand material. The manufacturing method of the cadmium-free quantum dot ligand material comprises: preparing several single precursors using several metal complexes, and mixing the several single precursors in a predetermined ratio to obtain a mixed solid precursor, and The mixed solid precursor is dissolved and thermally cracked in an oleylamine liquid to form an unencapsulated quantum dot solution, and then the unencapsulated quantum dot solution is subjected to an encapsulation reaction in an oleylamine mixed solution, A cladding quantum dot solution is obtained, and then the cladding quantum dot solution is made into a cladding quantum dot material.

另一習用量子點材料,例如:中國專利公告第CN-105802628號之〝藍綠色發光量子點及其製備方法〞發明專利,其揭示一種藍綠色發光量子點。該藍綠色發光量子點包含一核及一外殼,而該核為選自一ZnnCd1-nSmSe1-m核,且該外殼位於該核的外周,其中該ZnnCd1-nSmSe1-m核中0<n<1,0

Figure 108139102-A0101-12-0002-20
m
Figure 108139102-A0101-12-0002-21
1。該外殼選自一ZnS殼、一ZnSe殼或一CdS殼。該藍綠色發光量子點通過以ZnnCd1-nX量子點為核外延生長ZnS、ZnSe或CdS外殼,在簡化量子點結構的同時,通過匹配核殼結構,降低核殼結構間的晶格失配度,形成在450-550nm波長範圍內的藍綠色發光量子點,使得由利用該藍綠色發光量子點的QD-LED的最高亮度可達到4700cd/m2以上。 Another conventional quantum dot material, such as the invention patent of "Blue-green light-emitting quantum dots and its preparation method" of China Patent Publication No. CN-105802628, which discloses a blue-green light-emitting quantum dot. The blue-green light-emitting quantum dot includes a core and a shell, and the core is selected from a Zn n Cd 1-n S m Se 1-m core, and the shell is located on the periphery of the core, wherein the Zn n Cd 1- n S m Se 1-m core 0<n<1, 0
Figure 108139102-A0101-12-0002-20
m
Figure 108139102-A0101-12-0002-21
1. The shell is selected from a ZnS shell, a ZnSe shell or a CdS shell. The blue-green light-emitting quantum dots epitaxially grow ZnS, ZnSe or CdS shells with ZnnCd1-nX quantum dots as the core. While simplifying the structure of the quantum dots, by matching the core-shell structure, the lattice mismatch between the core-shell structures is reduced, The blue-green light-emitting quantum dots formed in the wavelength range of 450-550nm enable the highest brightness of the QD-LED using the blue-green light-emitting quantum dots to reach 4700 cd/m 2 or more.

另一習用量子點材料,例如:PCT專利公開第 WO-2015/117876號之〝Quantum dots with inorganic ligands in an inorganic matrix〞發明專利申請案,其揭示一種基於量子點的發光材料。該基於量子點的發光材料包含一發光量子點,而該發光量子點具有一無機包覆劑,且該發光材料包含數個顆粒。該顆粒具有一無機鹽基質,而該具無機包覆劑之發光量子點包含該無機鹽基質,且該發光量子點具有一外層。 Another conventional quantum dot material, for example: PCT Patent Publication No. WO-2015/117876 "Quantum dots with inorganic ligands in an inorganic matrix" invention patent application, which discloses a quantum dot-based luminescent material. The quantum dot-based luminescent material includes a luminescent quantum dot, and the luminescent quantum dot has an inorganic coating agent, and the luminescent material includes a plurality of particles. The particles have an inorganic salt matrix, and the luminescent quantum dots with inorganic coatings include the inorganic salt matrix, and the luminescent quantum dots have an outer layer.

然而,習用量子點材料仍必然存在提供進一步改善其發光穩定性、量子效率、熱穩定性或抗水、氧侵蝕能力的潛在需求。前述中華民國專利公告第TW-I620809號、第TW-I653318號、第TW-I668294號、中國專利公告第CN-105802628號及PCT專利公開第WO-2015/117876號之專利或專利申請案僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 However, conventional quantum dot materials still have a potential need to further improve their luminescence stability, quantum efficiency, thermal stability, or resistance to water and oxygen. The aforementioned ROC Patent Publication No. TW-I620809, No. TW-I653318, No. TW-I668294, China Patent Publication No. CN-105802628 and PCT Patent Publication No. WO-2015/117876 patents or patent applications are only The reference to the technical background of the present invention and the description of the current state of technology development are only, and are not intended to limit the scope of the present invention.

有鑑於此,本發明為了滿足上述需求,其提供一種核-殼發光量子點材料及其製造方法,其將一核體形成一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者,並將一殼體包覆形成於該核體,且該殼體由一立方晶系材料形成,且將一閃鋅礦結構形成於該殼體,以改善習用核-殼發光量子點材料之發光穩定性、量子效率、熱穩定性或抗水、氧侵蝕能力不佳之技術缺點。 In view of this, in order to meet the above requirements, the present invention provides a core-shell light-emitting quantum dot material and a manufacturing method thereof. A core body is formed into a cadmium selenide alloy body, and the cadmium selenide alloy body has an element content Decrease area, and the decrease area of element content decreases a cadmium element, a selenium element or both from the core part of the core body, and a shell is formed on the core body, and the shell is made of a cubic The crystal system material is formed, and a zinc blende structure is formed on the shell to improve the luminescence stability, quantum efficiency, thermal stability, or poor resistance to water and oxygen of conventional core-shell luminescent quantum dot materials.

本發明較佳實施例之主要目的係提供一種核-殼發光量子點材料及其製造方法,其將一核體形成一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者,並將一殼體包覆形成於該核體,且該殼 體由一立方晶系材料形成,且將一閃鋅礦結構形成於該殼體,因而具有達成提升其發光穩定性、量子效率、熱穩定性或抗水、氧侵蝕能力之目的。 The main purpose of the preferred embodiments of the present invention is to provide a core-shell luminescent quantum dot material and a manufacturing method thereof. A core body is formed into a cadmium selenide alloy body, and the cadmium selenide alloy body has a region of decreasing element content , And the decreasing element content area decreases a cadmium element, a selenium element or both from the core part of the core body, and a shell is formed on the core body, and the shell The body is formed of a cubic crystal system material, and a zinc blende structure is formed on the shell, thereby achieving the purpose of improving its luminescence stability, quantum efficiency, thermal stability, or resistance to water and oxygen erosion.

為了達成上述目的,本發明較佳實施例之核-殼發光量子點材料包含: In order to achieve the above objective, the core-shell luminescent quantum dot material of a preferred embodiment of the present invention includes:

至少一核體,其為一合金型核體,而該核體具有一核心部,且該核體形成一硒化鎘合金體; At least one core body, which is an alloy core body, and the core body has a core part, and the core body forms a cadmium selenide alloy body;

一元素含量遞減區,其自該核體之核心部向外遞減一鎘元素、一硒元素或兩者; A zone of decreasing element content, which decreases a cadmium element, a selenium element or both from the core part of the core body;

一殼體,其包覆形成於該核體,而該殼體具有一殼層及一外表面,且該外表面位於該殼層之外,且該殼體由一立方晶系材料形成;及 A shell covering the core body, the shell having a shell layer and an outer surface, the outer surface is located outside the shell layer, and the shell is formed of a cubic material; and

至少一閃鋅礦結構,其形成於該殼體之殼層及外表面,而該殼體為一多角形殼體,且該閃鋅礦結構由一閃鋅礦型化合物形成; At least one sphalerite structure formed on the shell and outer surface of the shell, and the shell is a polygonal shell, and the sphalerite structure is formed of a sphalerite type compound;

其中該殼體之閃鋅礦結構提供保護該合金型核體,且該殼體之閃鋅礦結構具有一抗水、氧侵蝕能力及提供一熱穩定性,以便該合金型核體產生一發光穩定性及提供一量子效率。 The zinc blende structure of the shell provides protection for the alloy core body, and the zinc blende structure of the shell has a resistance to water and oxygen erosion and provides a thermal stability, so that the alloy type core body produces a luminescence Stability and provide a quantum efficiency.

本發明較佳實施例之該合金型核體之硒化鎘合金體選自一CdZnSe合金體、一具CdZnSe合金成之合金體、一CdZnSeS合金體、一具CdZnSeS合金之合金體、一CdSeS合金體、一具CdSeS合金之合金體或其任意組合之合金體。 The cadmium selenide alloy body of the alloy core body of the preferred embodiment of the present invention is selected from a CdZnSe alloy body, an alloy body made of a CdZnSe alloy, a CdZnSeS alloy body, an alloy body with a CdZnSeS alloy, and a CdSeS alloy Body, an alloy body with CdSeS alloy or any combination of alloy bodies.

本發明較佳實施例之該元素含量遞減區之鎘元素或硒元素之比例為0.1莫耳百分比至50莫耳百分比、10莫耳百分比至50莫耳百分比、30莫耳百分比至50莫耳百分比或其它範圍。 In a preferred embodiment of the present invention, the ratio of cadmium or selenium in the element content decreasing area is 0.1 mol% to 50 mol%, 10 mol% to 50 mol%, 30 mol% to 50 mol% Or other ranges.

本發明較佳實施例之該殼體選擇由一ZnS殼 體、一ZnSe殼體、一ZnSeS殼體、一CdS殼體、一CdZnS殼體、一CdSe殼體或其任意組合形成殼體。 The shell of the preferred embodiment of the present invention is selected from a ZnS shell Body, a ZnSe shell, a ZnSeS shell, a CdS shell, a CdZnS shell, a CdSe shell, or any combination thereof to form the shell.

本發明較佳實施例之該殼體之外表面具有一稜角多角形表面。 In the preferred embodiment of the present invention, the outer surface of the casing has an angular polygonal surface.

本發明較佳實施例之該殼體為一多層複合殼體,而該殼體包含數個殼層厚度,且數個該殼層厚度自該核體之核心部向外遞減厚度。 In a preferred embodiment of the present invention, the shell is a multi-layer composite shell, and the shell includes a plurality of shell thicknesses, and the thickness of the shell layers decreases gradually from the core part of the core body.

為了達成上述目的,本發明較佳實施例之核-殼發光量子點材料製造方法包含: In order to achieve the above objective, the manufacturing method of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention includes:

將一第一金屬前驅物溶液進行錯合活化,以形成一已活化第一金屬前驅物溶液,且該已活化第一金屬前驅物溶液包含一已活化第一金屬前驅物,且該已活化第一金屬前驅物為一已活化鎘前驅物; A first metal precursor solution is complex activated to form an activated first metal precursor solution, and the activated first metal precursor solution includes an activated first metal precursor, and the activated first metal precursor solution A metal precursor is an activated cadmium precursor;

將一第二金屬前驅物添加至該已活化第一金屬前驅物溶液中進行錯合活化,以形成一已活化第一及第二金屬前驅物溶液; Adding a second metal precursor to the activated first metal precursor solution for complex activation to form an activated first and second metal precursor solution;

將一第三金屬離子溶液添加至該已活化第一及第二金屬前驅物溶液中進行一核體粒子反應,且第三金屬離子溶液包含一第三金屬離子,且該第三金屬離子為一硒離子,以形成一合金型核體溶液及一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者; A third metal ion solution is added to the activated first and second metal precursor solutions to perform a core particle reaction, and the third metal ion solution includes a third metal ion, and the third metal ion is a Selenium ions to form an alloy core solution and a cadmium selenide alloy body, and the cadmium selenide alloy body has a decreasing element content area, and the decreasing element content area decreases by one from the core part of the core body Cadmium, selenium or both;

將一第四離子溶液添加至該合金型核體溶液中進行一第一包殼反應,以獲得一合金型核-包殼量子點溶液;及 Adding a fourth ion solution to the alloy-type core body solution to perform a first cladding reaction to obtain an alloy-type core-cladding quantum dot solution; and

將該合金型核-包殼量子點溶液製成一合金型核-包殼量子點材料。 The alloy core-clad quantum dot solution is made into an alloy core-clad quantum dot material.

為了達成上述目的,本發明另一較佳實施例之 核-殼發光量子點材料製造方法包含: In order to achieve the above object, another preferred embodiment of the present invention The manufacturing method of core-shell luminescent quantum dot material includes:

將一第一金屬前驅物溶液進行錯合活化,以形成一已活化第一金屬前驅物溶液,且該已活化第一金屬前驅物溶液包含一已活化第一金屬前驅物,且該已活化第一金屬前驅物為一已活化鎘前驅物; A first metal precursor solution is complex activated to form an activated first metal precursor solution, and the activated first metal precursor solution includes an activated first metal precursor, and the activated first metal precursor solution A metal precursor is an activated cadmium precursor;

將一第二金屬前驅物添加至該已活化第一金屬前驅物溶液中進行錯合活化,以形成一已活化第一及第二金屬前驅物溶液; Adding a second metal precursor to the activated first metal precursor solution for complex activation to form an activated first and second metal precursor solution;

將一第三金屬離子溶液添加至該已活化第一及第二金屬前驅物溶液中進行一核體粒子反應,且第三金屬離子溶液包含一第三金屬離子,且該第三金屬離子為一硒離子,以形成一合金型核體溶液及一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者; A third metal ion solution is added to the activated first and second metal precursor solutions to perform a core particle reaction, and the third metal ion solution includes a third metal ion, and the third metal ion is a Selenium ions to form an alloy core solution and a cadmium selenide alloy body, and the cadmium selenide alloy body has a decreasing element content area, and the decreasing element content area decreases by one from the core part of the core body Cadmium, selenium or both;

將一第四離子溶液添加至該合金型核體溶液中進行一第一包殼反應,以獲得一合金型核-包殼量子點溶液,且該第一包殼反應產生一合金型核-包殼量子點材料; A fourth ion solution is added to the alloy-type core body solution to perform a first cladding reaction to obtain an alloy-type core-cladding quantum dot solution, and the first cladding reaction produces an alloy-type core-cladding solution Shell quantum dot material;

將另一第二金屬前驅物及一油酸混合形成一第二金屬前驅物混合溶液,並將該第二金屬前驅物混合溶液添加至該合金型核體溶液中進行一第二包殼反應,以獲得一合金型核-多層包殼量子點溶液;及 Mixing another second metal precursor and an oleic acid to form a second metal precursor mixed solution, and adding the second metal precursor mixed solution to the alloy core solution to perform a second cladding reaction, To obtain an alloy-type core-multilayer cladding quantum dot solution; and

將該合金型核-多層包殼量子點溶液製成一合金型核-多層包殼量子點材料。 The alloy type core-multilayer cladding quantum dot solution is made into an alloy type core-multilayer cladding quantum dot material.

本發明較佳實施例將一十二硫醇另添加至該合金型核體溶液中,以進行該第二包殼反應。 In a preferred embodiment of the present invention, dodecanethiol is additionally added to the alloy-type core solution to perform the second cladding reaction.

本發明較佳實施例之該第一金屬前驅物溶液以添加一油胺液體及一油酸溶液方式進行錯合活化。 In the preferred embodiment of the present invention, the first metal precursor solution is activated by adding an oleylamine liquid and an oleic acid solution.

本發明較佳實施例之該已活化第一及第二金 屬前驅物溶液包含一已活化第二金屬前驅物,且該第二已活化金屬前驅物為一已活化鋅前驅物。 The activated first and second gold in the preferred embodiment of the present invention The precursor solution includes an activated second metal precursor, and the second activated metal precursor is an activated zinc precursor.

本發明較佳實施例之該第一金屬前驅物溶液為選自一含鎘金屬前驅物溶液。 The first metal precursor solution in a preferred embodiment of the present invention is selected from a cadmium-containing metal precursor solution.

本發明較佳實施例之該第二金屬前驅物為選自一含鋅金屬前驅物。 The second metal precursor in a preferred embodiment of the present invention is selected from a zinc-containing metal precursor.

本發明較佳實施例之該第三金屬離子溶液為選自一第三金屬離子及第四離子混合溶液。 The third metal ion solution in a preferred embodiment of the present invention is selected from a mixed solution of a third metal ion and a fourth ion.

本發明較佳實施例之該第三金屬離子溶液為選自一含硒金屬離子溶液。 The third metal ion solution in a preferred embodiment of the present invention is selected from a selenium-containing metal ion solution.

本發明較佳實施例之該第四離子溶液為選自一含硫陰離子溶液、一含硫與TOP陰離子溶液或一含硫與TBP陰離子溶液。 The fourth ion solution in the preferred embodiment of the present invention is selected from a sulfur-containing anion solution, a sulfur-containing and TOP anion solution, or a sulfur-containing and TBP anion solution.

1‧‧‧核體 1‧‧‧nucleus body

11‧‧‧元素含量遞減區 11‧‧‧Decreasing element content area

2‧‧‧殼體 2‧‧‧Shell

21‧‧‧第一外殼層 21‧‧‧First shell layer

22‧‧‧第二外殼層 22‧‧‧Second shell layer

3‧‧‧閃鋅礦結構 3‧‧‧Sphalerite structure

A‧‧‧Cd元素 A‧‧‧Cd element

B‧‧‧Se元素 B‧‧‧Se element

C‧‧‧Zn元素 C‧‧‧Zn element

D‧‧‧S元素 D‧‧‧S element

第1圖:本發明第一較佳實施例之核殼發光量子點材料之示意圖。 Figure 1: A schematic diagram of the core-shell luminescent quantum dot material of the first preferred embodiment of the present invention.

第2圖:本發明第一較佳實施例之核殼發光量子點材料製造方法之方塊示意圖。 Figure 2: A schematic block diagram of the manufacturing method of the core-shell light-emitting quantum dot material according to the first preferred embodiment of the present invention.

第3圖:本發明第二較佳實施例之核殼發光量子點材料之示意圖。 Figure 3: A schematic diagram of the core-shell luminescent quantum dot material of the second preferred embodiment of the present invention.

第4圖:本發明第二較佳實施例之核殼發光量子點材料製造方法之方塊示意圖。 Figure 4: A schematic block diagram of a method for manufacturing a core-shell light-emitting quantum dot material according to a second preferred embodiment of the present invention.

第5圖:本發明第三較佳實施例之核殼發光量子點材料之示意圖。 Figure 5: A schematic diagram of the core-shell luminescent quantum dot material of the third preferred embodiment of the present invention.

第6A圖:本發明較佳實施例之核殼發光量子點材料之穿透式電子顯微鏡影像圖。 Fig. 6A: A transmission electron microscope image of a core-shell luminescent quantum dot material according to a preferred embodiment of the present invention.

第6B圖:本發明較佳實施例之核殼發光量子點材料之粒徑分佈之示意圖。 Fig. 6B: A schematic diagram of the particle size distribution of the core-shell luminescent quantum dot material according to a preferred embodiment of the present invention.

第6C圖:本發明較佳實施例之核殼發光量子點材料之X射線繞射儀之繞射圖譜示意圖。 Fig. 6C: A schematic diagram of the diffraction spectrum of the X-ray diffractometer of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention.

第7A圖:本發明另一較佳實施例之核殼發光量子點材料之穿透式電子顯微鏡影像圖。 Fig. 7A: A transmission electron microscope image of a core-shell luminescent quantum dot material according to another preferred embodiment of the present invention.

第7B圖:本發明另一較佳實施例之核殼發光量子點材料之粒徑分佈之示意圖。 Fig. 7B: A schematic diagram of the particle size distribution of a core-shell luminescent quantum dot material according to another preferred embodiment of the present invention.

第7C圖:本發明另一較佳實施例之核殼發光量子點材料之X射線繞射儀之繞射圖譜示意圖。 Fig. 7C: A schematic diagram of the diffraction spectrum of an X-ray diffractometer of a core-shell luminescent quantum dot material according to another preferred embodiment of the present invention.

第8A圖:本發明較佳實施例之核殼發光量子點材料之不同鎘金屬前驅物濃度與光致發光關係之光譜示意圖。 Fig. 8A: A schematic diagram of the spectrum of the relationship between the concentration of different cadmium metal precursors and the photoluminescence of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention.

第8B圖:本發明較佳實施例之核殼發光量子點材料之不同鎘金屬前驅物濃度與光致發光波長之關係示意圖。 Fig. 8B: A schematic diagram of the relationship between the concentration of different cadmium metal precursors and the photoluminescence wavelength of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention.

第9A圖:本發明較佳實施例之核殼發光量子點材料之單一核殼發光量子點以掃描穿透電子顯微鏡-X射線能譜-二維元素分布方式顯示鎘元素及硒元素之影像圖。 Fig. 9A: The single core-shell luminescent quantum dot of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention shows the image of cadmium and selenium in a scanning transmission electron microscope-X-ray energy spectrum-two-dimensional element distribution method .

第9B圖:本發明較佳實施例之核殼發光量子點材料之單一核殼發光量子點以掃描穿透電子顯微鏡-X射線能譜-二維元素分布方式顯示鋅元素及硫元素之影像圖。 Figure 9B: The single core-shell luminescent quantum dot of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention shows the image of zinc and sulfur by scanning transmission electron microscope-X-ray energy spectrum-two-dimensional element distribution .

第9C圖:本發明較佳實施例之核殼發光量子點材料之單一核殼發光量子點沿著第9A圖及第9B圖探測線以X射線質譜儀顯示元素分佈影像示意圖。 Figure 9C: A schematic diagram of a single core-shell luminescent quantum dot of a core-shell luminescent quantum dot material according to a preferred embodiment of the present invention along the detection lines of Figures 9A and 9B, showing the element distribution image by X-ray mass spectrometer.

第10圖:本發明較佳實施例之核殼發光量子點材料之掃描穿透式電子顯微鏡影像-高角度環狀暗場影像。 Figure 10: A scanning transmission electron microscope image of a core-shell luminescent quantum dot material according to a preferred embodiment of the present invention-a high-angle ring-shaped dark field image.

第11圖:本發明較佳實施例之核殼發光量子點材料之閃鋅礦結構之示意圖。 Figure 11: A schematic diagram of the zinc blende structure of the core-shell luminescent quantum dot material according to a preferred embodiment of the present invention.

為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, preferred embodiments are exemplified below and described in detail with the accompanying drawings, and they are not intended to limit the present invention.

本發明較佳實施例之核-殼發光量子點材料及 其製造方法可適用於各種螢光發光材料、光擴散混合材料、光擴散薄膜構造及其裝置〔例如:顯示器或照明裝置〕;再者,本發明較佳實施例之核-殼發光量子點材料及其製造方法可適當做為量子點材料或螢光發光材料表面穩定劑、吸附劑或分散載體,或其可選擇應用於材料、影像顯示、光學或生物醫學或其它技術領域,但其並非用以限定本發明之應用範圍。 The core-shell luminescent quantum dot material of the preferred embodiment of the present invention and The manufacturing method can be applied to various fluorescent light-emitting materials, light-diffusing mixed materials, light-diffusing film structures and their devices (such as displays or lighting devices); furthermore, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention Its manufacturing method can be suitably used as quantum dot material or fluorescent material surface stabilizer, adsorbent or dispersion carrier, or it can be applied to materials, image display, optics or biomedicine or other technical fields, but it is not used To limit the scope of application of the present invention.

第1圖揭示本發明第一較佳實施例之核殼發光量子點材料之示意圖。請參照第1圖所示,舉例而言,本發明第一較佳實施例之核殼發光量子點材料包含至少一核體1、至少一元素含量遞減區11〔如第1圖之深淺變化區之示意所示〕、至少一殼體2及一閃鋅礦結構3〔如第1圖之細點之示意所示〕。 Figure 1 shows a schematic diagram of the core-shell luminescent quantum dot material of the first preferred embodiment of the present invention. Please refer to Figure 1. For example, the core-shell luminescent quantum dot material of the first preferred embodiment of the present invention includes at least one core body 1 and at least one element content decreasing region 11 (as shown in the depth change region in Figure 1 Schematic diagram], at least one shell 2 and a zinc blende structure 3 [as shown in the schematic diagram of the fine points in Figure 1].

請再參照第1圖所示,舉例而言,該核體1為一合金型核體,而在構造上該核體1具有一核心部,且該核體1形成一硒化鎘合金體。另外,該合金型核體之硒化鎘合金體選自一CdZnSe合金體、一具CdZnSe合金成之合金體、一CdZnSeS合金體、一具CdZnSeS合金之合金體、一CdSeS合金體、一具CdSeS合金之合金體或其任意組合之合金體。 Please refer to FIG. 1 again. For example, the core body 1 is an alloy core body, and the core body 1 has a core part in structure, and the core body 1 forms a cadmium selenide alloy body. In addition, the cadmium selenide alloy body of the alloy core body is selected from a CdZnSe alloy body, a CdZnSe alloy body, a CdZnSeS alloy body, a CdZnSeS alloy body, a CdSeS alloy body, and a CdSeS alloy body. Alloy body of alloy or any combination of alloy body.

請再參照第1圖所示,舉例而言,該元素含量遞減區11自該核體1之核心部向外遞減一鎘元素、一硒元素或兩者。另外,該元素含量遞減區11之鎘元素或硒元素之比例為0.1莫耳百分比至50莫耳百分比、10莫耳百分比至50莫耳百分比、30莫耳百分比至50莫耳百分比或其它範圍。 Please refer to FIG. 1 again. For example, the decreasing element content region 11 decreases a cadmium element, a selenium element, or both from the core portion of the core body 1 outward. In addition, the ratio of cadmium or selenium in the element content decreasing region 11 is 0.1 mol% to 50 mol%, 10 mol% to 50 mol%, 30 mol% to 50 mol%, or other ranges.

請再參照第1圖所示,舉例而言,該殼體2包覆形成於該核體1,而該殼體2具有一殼層及一外表面,且該外表面位於該殼層2之外,且該殼體2由一立方晶系 材料形成。該殼體2之外表面具有一稜角多角形表面。另外,該殼體2可選擇由一ZnS殼體、一ZnSe殼體、一ZnSeS殼體、一CdS殼體、一CdZnS殼體、一CdSe殼體或其任意組合形成殼體。 Please refer to Figure 1 again. For example, the shell 2 is formed on the core body 1, and the shell 2 has a shell layer and an outer surface, and the outer surface is located on the shell layer 2. Outside, and the shell 2 is made of a cubic crystal system Material formation. The outer surface of the shell 2 has an angular polygonal surface. In addition, the casing 2 can be formed of a ZnS casing, a ZnSe casing, a ZnSeS casing, a CdS casing, a CdZnS casing, a CdSe casing, or any combination thereof.

請再參照第1圖所示,舉例而言,該閃鋅礦結構3形成於該殼體2之殼層及外表面,而該殼體2為一多角形殼體,且該閃鋅礦結構3由一閃鋅礦型化合物形成。在功能上該殼體2之閃鋅礦結構3提供保護該合金型核體,且該殼體2之閃鋅礦結構3具有一抗水、氧侵蝕能力及提供一熱穩定性,以便該合金型核體產生一發光穩定性及提供一量子效率〔例如:量子效率大於90%或95%〕。 Please refer to Figure 1 again. For example, the sphalerite structure 3 is formed on the shell and outer surface of the shell 2, and the shell 2 is a polygonal shell, and the zinc blende structure 3 is formed by a zinc blende type compound. Functionally, the zinc blende structure 3 of the shell 2 provides protection for the alloy core body, and the zinc blende structure 3 of the shell 2 has a resistance to water and oxygen erosion and provides a thermal stability, so that the alloy The core body produces a luminescence stability and provides a quantum efficiency (for example, the quantum efficiency is greater than 90% or 95%).

第2圖揭示本發明第一較佳實施例之核殼發光量子點材料製造方法之方塊示意圖,其對應於第1圖之核殼發光量子點材料。請參照第1及2圖所示,本發明第一較佳實施例之核殼發光量子點材料製造〔合成〕方法包含第一步驟S1:首先,舉例而言,將一第一金屬前驅物溶液進行錯合活化,以形成一已活化第一金屬前驅物溶液,且該已活化第一金屬前驅物溶液包含一已活化第一金屬前驅物,且該已活化第一金屬前驅物為一已活化鎘前驅物,即該第一金屬前驅物溶液可選擇為一含鎘金屬前驅物溶液。 FIG. 2 shows a schematic block diagram of the core-shell light-emitting quantum dot material manufacturing method according to the first preferred embodiment of the present invention, which corresponds to the core-shell light-emitting quantum dot material of FIG. 1. Please refer to Figures 1 and 2, the method for manufacturing [synthesizing] a core-shell luminescent quantum dot material in the first preferred embodiment of the present invention includes a first step S1: First, for example, a first metal precursor solution Perform complex activation to form an activated first metal precursor solution, and the activated first metal precursor solution includes an activated first metal precursor, and the activated first metal precursor is an activated The cadmium precursor, that is, the first metal precursor solution can be selected as a cadmium-containing metal precursor solution.

請再參照第1及2圖所示,舉例而言,該含鎘金屬前驅物溶液之鎘濃度可選自0.04毫莫耳、0.08毫莫耳、0.14毫莫耳、0.20毫莫耳、0.42毫莫耳、1.00毫莫耳或其它適當濃度。 Please refer to Figures 1 and 2. For example, the cadmium concentration of the cadmium-containing metal precursor solution can be selected from 0.04 millimoles, 0.08 millimoles, 0.14 millimoles, 0.20 millimoles, and 0.42 millimoles. Molar, 1.00 millimolar or other appropriate concentration.

請再參照第1及2圖所示,舉例而言,該第一金屬前驅物溶液以添加一油胺〔oleyl amine〕液體及一油酸〔oleic acid〕溶液或其它一級胺或油胺混合溶液方式進行錯合活化。另外,該第一金屬前驅物溶液可選擇預先添加一預定量〔例如:適當少量〕之一級烷基胺〔primary alkylamine〕、12胺〔dodecylamine〕、15胺〔pentadecylamine〕、16胺〔hexadecanamine〕或〔oleylamine〕於反應溫度150℃至180℃之間或其它適當反應溫度進行錯合活化。 Please refer to Figures 1 and 2, for example, the first metal precursor solution is added with an oleyl amine liquid and an oleic acid solution or a mixed solution of other primary amines or oleyl amine The way to carry out the complex activation. In addition, the first metal precursor solution can be optionally added with a predetermined amount [e.g. a suitable small amount] of primary alkylamine [primary Alkylamine], 12 amine [dodecylamine], 15 amine [pentadecylamine], 16 amine [hexadecanamine] or [oleylamine] are activated at a reaction temperature between 150°C and 180°C or other appropriate reaction temperature.

請再參照第1及2圖所示,本發明第一較佳實施例之核殼發光量子點材料製造方法包含第二步驟S2:接著,舉例而言,將一第二金屬前驅物添加至該已活化第一金屬前驅物溶液中進行錯合活化〔例如:反應溫度300℃至320℃之間或其它適當反應溫度〕,以形成一已活化第一及第二金屬前驅物溶液。該已活化第一及第二金屬前驅物溶液包含一已活化第二金屬前驅物,且該第二已活化金屬前驅物為一已活化鋅前驅物,即該第二金屬前驅物可為選自一含鋅金屬前驅物〔例如:鋅濃度為2.9毫莫耳〕。 Please refer to Figures 1 and 2, the method for manufacturing the core-shell light-emitting quantum dot material of the first preferred embodiment of the present invention includes a second step S2: Then, for example, a second metal precursor is added to the Perform complex activation in the activated first metal precursor solution (for example, the reaction temperature is between 300°C and 320°C or other appropriate reaction temperature) to form an activated first and second metal precursor solution. The activated first and second metal precursor solutions include an activated second metal precursor, and the second activated metal precursor is an activated zinc precursor, that is, the second metal precursor can be selected from A metal precursor containing zinc (for example: zinc concentration of 2.9 millimoles).

請再參照第1及2圖所示,本發明第一較佳實施例之核殼發光量子點材料製造方法包含第三步驟S3:接著,舉例而言,將一第三金屬離子溶液添加至該已活化第一及第二金屬前驅物溶液中進行一核體粒子反應〔例如:10分鐘或其它反應時間〕,例如:CdZnSeS核體,且第三金屬離子溶液包含一第三金屬離子,且該第三金屬離子為一硒離子,以形成一合金型核體溶液及一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者。 Please refer to Figures 1 and 2, the method for manufacturing the core-shell light-emitting quantum dot material of the first preferred embodiment of the present invention includes a third step S3: Then, for example, a third metal ion solution is added to the A nuclear body particle reaction (for example: 10 minutes or other reaction time) is performed in the activated first and second metal precursor solutions, such as CdZnSeS nuclear body, and the third metal ion solution contains a third metal ion, and the The third metal ion is a selenium ion to form an alloy core solution and a cadmium selenide alloy body, and the cadmium selenide alloy body has a decreasing element content area, and the decreasing element content area is from the core body At the core, a cadmium element, a selenium element, or both are decremented outward.

請再參照第1及2圖所示,舉例而言,該第三金屬離子溶液為選自一含硒金屬離子溶液〔例如:硒濃度為1.5毫莫耳〕。或,該第三金屬離子溶液可選擇包含硫〔例如:硫濃度為2.2毫莫耳〕、硒及正三辛基氧膦〔TOP,trioctylphosphine〕或包含硫、硒及三丁基膦〔TBP,tributylphosphine〕。 Please refer to Figures 1 and 2, for example, the third metal ion solution is selected from a selenium-containing metal ion solution (for example, the selenium concentration is 1.5 millimoles). Or, the third metal ion solution can optionally contain sulfur (for example, a sulfur concentration of 2.2 millimoles), selenium and n-trioctylphosphine oxide [TOP, trioctylphosphine] or contain sulfur, selenium and tributylphosphine [TBP, tributylphosphine]. ].

請再參照第1及2圖所示,舉例而言,本發明另一較佳實施例之該第三金屬離子溶液為選自一第三金屬離子及第四離子混合溶液,如此在該核體粒子反應上可選擇形成一CdSeZnS核心量子點或一類似CdSeZnS核心量子點。 Please refer to Figures 1 and 2. For example, the third metal ion solution of another preferred embodiment of the present invention is selected from a mixed solution of a third metal ion and a fourth ion. The particle reaction can choose to form a CdSeZnS core quantum dot or a similar CdSeZnS core quantum dot.

請再參照第1及2圖所示,本發明第一較佳實施例之核殼發光量子點材料製造方法包含第四步驟S4:接著,舉例而言,將一第四離子溶液添加至該合金型核體溶液中進行一第一包殼反應〔例如:15至20分鐘或其它反應時間〕,以獲得一合金型核-包殼量子點溶液。 Please refer to Figures 1 and 2, the method for manufacturing the core-shell light-emitting quantum dot material of the first preferred embodiment of the present invention includes a fourth step S4: Then, for example, a fourth ion solution is added to the alloy Perform a first cladding reaction (for example: 15 to 20 minutes or other reaction time) in the core solution to obtain an alloy core-clad quantum dot solution.

請再參照第1及2圖所示,舉例而言,該第四離子溶液為選自一含硫陰離子之儲備溶液〔stock solution〕、一含硫與TOP陰離子溶液〔例如:硫濃度為2.0毫莫耳〕或一含硫與TBP陰離子溶液。另外,該第一包殼反應可選擇反應溫度240℃至290℃之間或其它適當反應溫度。 Please refer to Figures 1 and 2. For example, the fourth ion solution is selected from a stock solution containing sulfur anions [stock solution], a sulfur and TOP anion solution [for example: sulfur concentration of 2.0 millimetres Mole] or a solution containing sulfur and TBP anion. In addition, the first cladding reaction can select a reaction temperature between 240°C and 290°C or other appropriate reaction temperature.

請再參照第1及2圖所示,本發明第一較佳實施例之核殼發光量子點材料製造方法包含第五步驟S5:接著,舉例而言,將該合金型核-包殼量子點溶液製成一合金型核-包殼量子點材料,其具有巨大粒徑〔>13nm或>15nm〕。舉例而言,本發明可選擇採用各種不同的包殼材料,例如:各種Zn鹽類包殼材料或其它適當鹽類包殼材料。 Please refer to Figures 1 and 2, the method for manufacturing the core-shell light-emitting quantum dot material of the first preferred embodiment of the present invention includes a fifth step S5: Then, for example, the alloy core-clad quantum dot The solution is made into an alloy core-clad quantum dot material, which has a huge particle size [>13nm or>15nm]. For example, various cladding materials can be selected in the present invention, such as various Zn salt cladding materials or other suitable salt cladding materials.

第3圖揭示本發明第二較佳實施例之核殼發光量子點材料之示意圖,其對應於第1圖之核殼發光量子點材料構造。請參照第3圖所示,相對於第一實施例,舉例而言,本發明第二較佳實施例之核殼發光量子點材料另包含一第一外殼層21〔例如:ZnS〕,且該第一外殼層21適當包覆於該殼體2〔例如:ZnS〕上。 FIG. 3 shows a schematic diagram of the core-shell light-emitting quantum dot material according to the second preferred embodiment of the present invention, which corresponds to the structure of the core-shell light-emitting quantum dot material in FIG. 1. Please refer to FIG. 3, with respect to the first embodiment, for example, the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention further includes a first shell layer 21 (e.g., ZnS), and the The first shell layer 21 is appropriately coated on the shell 2 (for example: ZnS).

請參照第3圖所示,該殼體2及第一外殼層21 組成為一多層複合殼體,而該殼體2包含數個殼層厚度,且數個該殼層厚度可選擇自該核體1之核心部向外遞減厚度或可選擇自該核體1之核心部向外遞增厚度。 Please refer to Figure 3, the shell 2 and the first shell layer 21 It is composed of a multi-layer composite shell, and the shell 2 includes several shell thicknesses, and several shell thicknesses can be selected from the core portion of the core body 1 to decrease in thickness or can be selected from the core body 1 The core part increases in thickness outwards.

第4圖揭示本發明第二較佳實施例之核殼發光量子點材料製造〔合成〕方法之方塊示意圖,其對應於第3圖之核殼發光量子點材料。請參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法包含第一步驟S1:首先,舉例而言,將一第一金屬前驅物溶液進行錯合活化,以形成一已活化第一金屬前驅物溶液,且該已活化第一金屬前驅物溶液包含一已活化第一金屬前驅物,且該已活化第一金屬前驅物為一已活化鎘前驅物,即該第一金屬前驅物溶液可選擇為一含鎘金屬前驅物溶液。 FIG. 4 shows a block diagram of the core-shell light-emitting quantum dot material manufacturing (synthesis) method of the second preferred embodiment of the present invention, which corresponds to the core-shell light-emitting quantum dot material in FIG. 3. Please refer to Figures 3 and 4, the method for manufacturing the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention includes a first step S1: First, for example, a first metal precursor solution is staggered Activation to form an activated first metal precursor solution, and the activated first metal precursor solution includes an activated first metal precursor, and the activated first metal precursor is an activated cadmium precursor That is, the first metal precursor solution can be selected as a cadmium-containing metal precursor solution.

請再參照第3及4圖所示,舉例而言,該含鎘金屬前驅物溶液之鎘濃度可選自0.04毫莫耳、0.08毫莫耳、0.14毫莫耳、0.20毫莫耳、0.42毫莫耳、1.00毫莫耳或其它適當濃度。 Please refer to Figures 3 and 4 again. For example, the cadmium concentration of the cadmium-containing metal precursor solution can be selected from 0.04 millimoles, 0.08 millimoles, 0.14 millimoles, 0.20 millimoles, and 0.42 millimoles. Molar, 1.00 millimolar or other appropriate concentration.

請再參照第3及4圖所示,舉例而言,該第一金屬前驅物溶液以添加一油胺液體及一油酸溶液或其它一級胺或油胺混合溶液方式進行錯合活化。另外,該第一金屬前驅物溶液可選擇預先添加一預定量之一級烷基胺〔primary alkylamine〕、12胺〔dodecylamine〕、15胺〔pentadecylamine〕、16胺〔hexadecanamine〕或〔oleylamine〕於反應溫度150℃至180℃之間或其它適當反應溫度進行錯合活化。 Please refer to Figures 3 and 4 again. For example, the first metal precursor solution is activated by adding an oleylamine liquid and an oleic acid solution or a mixed solution of other primary amines or oleylamine. In addition, the first metal precursor solution can be optionally added with a predetermined amount of primary alkylamine [primary alkylamine], 12 amine [dodecylamine], 15 amine [pentadecylamine], 16 amine [hexadecanamine] or [oleylamine] at the reaction temperature in advance. Perform complex activation between 150°C and 180°C or other appropriate reaction temperature.

請再參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法包含第二步驟S2:接著,舉例而言,將一第二金屬前驅物添加至該已活化第一金屬前驅物溶液中進行錯合活化〔例如:反應溫度300℃至320℃之間或其它適當反應溫度〕,以形成一已活化第 一及第二金屬前驅物溶液。該已活化第一及第二金屬前驅物溶液包含一已活化第二金屬前驅物,且該第二已活化金屬前驅物為一已活化鋅前驅物,即該第二金屬前驅物可為選自一含鋅金屬前驅物〔例如:鋅濃度為2.9毫莫耳〕。 Please refer to FIGS. 3 and 4 again. The method for manufacturing the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention includes a second step S2: Then, for example, a second metal precursor is added to the Perform complex activation in the solution of the activated first metal precursor (for example, the reaction temperature is between 300°C and 320°C or other appropriate reaction temperature) to form an activated first metal precursor solution. One and the second metal precursor solution. The activated first and second metal precursor solutions include an activated second metal precursor, and the second activated metal precursor is an activated zinc precursor, that is, the second metal precursor can be selected from A metal precursor containing zinc (for example: zinc concentration of 2.9 millimoles).

請再參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法包含第三步驟S3:接著,舉例而言,將一第三金屬離子溶液添加至該已活化第一及第二金屬前驅物溶液中進行一核體粒子反應〔例如:10分鐘或其它反應時間〕,且第三金屬離子溶液包含一第三金屬離子,且該第三金屬離子為一硒離子,以形成一合金型核體溶液及一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者。 Please refer to FIGS. 3 and 4 again. The manufacturing method of the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention includes a third step S3: Then, for example, a third metal ion solution is added to the A nucleus particle reaction is carried out in the activated first and second metal precursor solutions (for example: 10 minutes or other reaction time), and the third metal ion solution contains a third metal ion, and the third metal ion is a Selenium ions to form an alloy core solution and a cadmium selenide alloy body, and the cadmium selenide alloy body has a decreasing element content area, and the decreasing element content area decreases by one from the core part of the core body Cadmium, selenium or both.

請再參照第3及4圖所示,舉例而言,該第三金屬離子溶液為選自一含硒金屬離子溶液〔例如:硒濃度為1.5毫莫耳〕。或,該第三金屬離子溶液可選擇包含硫〔例如:硫濃度為2.2毫莫耳〕、硒及正三辛基氧膦〔TOP〕或包含硫、硒及三丁基膦〔TBP〕。 Please refer to Figures 3 and 4 again. For example, the third metal ion solution is selected from a selenium-containing metal ion solution (for example, a selenium concentration of 1.5 millimoles). Or, the third metal ion solution can optionally contain sulfur (for example, a sulfur concentration of 2.2 millimoles), selenium and n-trioctylphosphine oxide [TOP] or contain sulfur, selenium and tributylphosphine [TBP].

請再參照第3及4圖所示,舉例而言,本發明另一較佳實施例之該第三金屬離子溶液為選自一第三金屬離子及第四離子混合溶液,如此在該核體粒子反應上可選擇形成一CdSeZnS核心量子點或一類似CdSeZnS核心量子點。 Please refer to Figures 3 and 4 again. For example, the third metal ion solution of another preferred embodiment of the present invention is selected from a mixed solution of a third metal ion and a fourth ion. The particle reaction can choose to form a CdSeZnS core quantum dot or a similar CdSeZnS core quantum dot.

請再參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法包含第四步驟S4:接著,舉例而言,將一第四離子溶液添加至該合金型核體溶液中進行一第一包殼反應〔例如:15至20分鐘或其它反應時間〕,以獲得一合金型核-包殼量子點溶液,且該第一包殼反應產生一合金型核-包殼量子點材料。 Please refer to FIGS. 3 and 4 again, the method for manufacturing the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention includes a fourth step S4: Then, for example, a fourth ion solution is added to the alloy A first cladding reaction (for example, 15 to 20 minutes or other reaction time) is performed in the core solution to obtain an alloy core-clad quantum dot solution, and the first cladding reaction produces an alloy core -Encapsulated quantum dot material.

請再參照第3及4圖所示,舉例而言,該第四離子溶液為選自一含硫陰離子之儲備溶液、一含硫〔例如:硫濃度為2.0毫莫耳〕與TOP陰離子溶液或一含硫與TBP陰離子溶液。另外,該第一包殼反應可選擇反應溫度240℃至290℃之間或其它適當反應溫度。 Please refer to Figures 3 and 4 again. For example, the fourth ion solution is selected from a stock solution containing sulfur anions, a sulfur containing (for example: sulfur concentration of 2.0 millimoles) and a TOP anion solution or A solution containing sulfur and TBP anion. In addition, the first cladding reaction can select a reaction temperature between 240°C and 290°C or other appropriate reaction temperature.

請再參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法包含第五(A)步驟S5A:接著,舉例而言,將另一第二金屬前驅物及一油酸混合形成一第二金屬前驅物混合溶液,並將該第二金屬前驅物混合溶液添加至該合金型核體溶液中進行一第二包殼反應〔例如:30分鐘或其它反應時間〕,以獲得一合金型核-多層包殼量子點溶液。 Please refer to FIGS. 3 and 4 again. The method for manufacturing the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention includes the fifth (A) step S5A: Then, for example, another second metal precursor And an oleic acid are mixed to form a second metal precursor mixed solution, and the second metal precursor mixed solution is added to the alloy core solution for a second cladding reaction (for example: 30 minutes or other reaction Time] to obtain an alloy-type core-multilayer cladding quantum dot solution.

請再參照第3及4圖所示,該第二金屬前驅物混合溶液為一油酸鋅〔Zn-oleate〕溶液〔透明淡黃色溶液〕,而該第二金屬前驅物混合溶液可選擇反應溫度180℃至220℃之間或其它適當反應溫度。另外,該第二包殼反應可選擇反應溫度240℃至290℃之間或其它適當反應溫度。 Please refer to Figures 3 and 4 again, the second metal precursor mixed solution is a zinc oleate [Zn-oleate] solution [transparent light yellow solution], and the second metal precursor mixed solution can select the reaction temperature Between 180°C and 220°C or other appropriate reaction temperature. In addition, the second cladding reaction can select a reaction temperature between 240°C and 290°C or other appropriate reaction temperature.

請再參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法另包含步驟:選擇於反應溫度180℃至220℃之間或其它適當反應溫度下將一十二硫醇另添加至該合金型核體溶液中,以進行該第二包殼反應〔例如:30分鐘或其它反應時間〕。 Please refer to Figures 3 and 4 again. The manufacturing method of the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention further includes the step of selecting a reaction temperature between 180°C and 220°C or other appropriate reaction temperature. Dodecyl mercaptan is additionally added to the alloy core solution to perform the second cladding reaction (for example: 30 minutes or other reaction time).

請再參照第3及4圖所示,本發明第二較佳實施例之核殼發光量子點材料製造方法包含第六步驟S6:接著,舉例而言,將該合金型核-多層包殼量子點溶液製成一合金型核-多層包殼量子點材料,其具有巨大粒徑〔>13nm或>15nm〕。舉例而言,本發明可選擇採用各種不同的包殼材料,例如:各種Zn鹽類包殼材料或其它適當鹽類包殼 材料。 Please refer to Figures 3 and 4 again. The method for manufacturing the core-shell light-emitting quantum dot material of the second preferred embodiment of the present invention includes a sixth step S6: Then, for example, the alloy core-multilayer cladding quantum dot material The dot solution is made into an alloy-type core-multilayer cladding quantum dot material, which has a huge particle size [>13nm or>15nm]. For example, the present invention can choose to use various cladding materials, such as various Zn salt cladding materials or other appropriate salt cladding materials. material.

第5圖揭示本發明第三較佳實施例之核殼發光量子點材料之示意圖,其對應於第1及3圖之核殼發光量子點材料構造。請參照第5圖所示,相對於第一及第二實施例,舉例而言,本發明第三較佳實施例之核殼發光量子點材料另包含一第二外殼層22〔例如:ZnS〕,且該第二外殼層22適當包覆於該殼體2及第一外殼層21上。 FIG. 5 shows a schematic diagram of the core-shell light-emitting quantum dot material according to the third preferred embodiment of the present invention, which corresponds to the structure of the core-shell light-emitting quantum dot material in FIGS. 1 and 3. Please refer to FIG. 5, with respect to the first and second embodiments, for example, the core-shell light-emitting quantum dot material of the third preferred embodiment of the present invention further includes a second outer shell 22 [e.g., ZnS] , And the second shell layer 22 is appropriately covered on the housing 2 and the first shell layer 21.

第6A圖揭示本發明較佳實施例之核殼發光量子點材料之穿透式電子顯微鏡〔TEM,transmission electronic microscopy〕影像圖。請參照第6A圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料在適當添加十六胺〔hexadecanamine〕下產生一巨大〔giant〕的CdSeZnS量子點。 FIG. 6A shows a transmission electronic microscopy [TEM, transmission electronic microscopy] image of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention. Please refer to FIG. 6A. For example, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention produces a giant CdSeZnS quantum dot with appropriate addition of hexadecanamine.

第6B圖揭示本發明較佳實施例之核殼發光量子點材料之粒徑分佈之示意圖,其對應於第6A圖。請參照第6B圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料之粒徑的離散程度約為小於10%,而其粒徑平均值約為15.36±1.46nm,且其尺寸大小相當均一。 Fig. 6B shows a schematic diagram of the particle size distribution of the core-shell light-emitting quantum dot material according to a preferred embodiment of the present invention, which corresponds to Fig. 6A. Please refer to Figure 6B. For example, the particle size dispersion of the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention is about less than 10%, and the average particle size is about 15.36±1.46nm. And its size is quite uniform.

第6C圖揭示本發明較佳實施例之核殼發光量子點材料之X射線繞射儀〔XRD,X-ray diffratometer〕之繞射圖譜示意圖,其對應於第6A及6B圖。請參照第6C圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料具有閃鋅礦〔zinc-blende〕結構,如第6C圖之黑色棒體所示。 Fig. 6C shows a schematic diagram of the diffraction pattern of the X-ray diffratometer [XRD, X-ray diffratometer] of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention, which corresponds to Figs. 6A and 6B. Please refer to FIG. 6C. For example, the core-shell luminescent quantum dot material of the preferred embodiment of the present invention has a zinc-blende structure, as shown in the black rod in FIG. 6C.

第7A圖揭示本發明另一較佳實施例之核殼發光量子點材料之穿透式電子顯微鏡影像圖。請參照第7A圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料在未添加十六胺下仍產生一巨大的CdSeZnS量子點。 FIG. 7A shows a transmission electron microscope image of a core-shell light-emitting quantum dot material according to another preferred embodiment of the present invention. Referring to FIG. 7A, for example, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention still produces a huge CdSeZnS quantum dot without adding hexadecylamine.

第7B圖揭示本發明另一較佳實施例之核殼發 光量子點材料之粒徑分佈之示意圖,其對應於第7A圖。請參照第7B圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料之粒徑粒徑平均值約為13.87±1.41nm,且其粒徑的離散程度約為略大於10%,其尺寸大小可視為約相當接近均一。 Figure 7B discloses another preferred embodiment of the present invention core-shell hair A schematic diagram of the particle size distribution of the light quantum dot material, which corresponds to Figure 7A. Please refer to Figure 7B. For example, the average particle diameter of the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention is about 13.87±1.41 nm, and the dispersion of the particle diameter is about slightly larger than 10%, its size can be regarded as approximately fairly close to uniform.

第7C圖揭示本發明另一較佳實施例之核殼發光量子點材料之X射線繞射儀之繞射圖譜示意圖,其對應於第7A及7B圖。請參照第7C圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料另具有纖鋅礦〔wurtzite〕結構,如第7C圖之黑色棒體所示。 FIG. 7C shows a schematic diagram of the diffraction pattern of an X-ray diffractometer of a core-shell luminescent quantum dot material according to another preferred embodiment of the present invention, which corresponds to FIGS. 7A and 7B. Please refer to FIG. 7C. For example, the core-shell luminescent quantum dot material of the preferred embodiment of the present invention has a wurtzite structure, as shown in the black rod in FIG. 7C.

第8A圖揭示本發明較佳實施例之核殼發光量子點材料之不同鎘金屬前驅物濃度〔concentration〕與光致發光〔PL,photoluminescence〕關係之光譜示意圖。請參照第8A圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料選擇三種鎘金屬前驅物濃度,該鎘金屬前驅物濃度選擇為0.14毫莫耳、0.28毫莫耳及1.00毫莫耳,且其對應發光波長為519nm〔第8A圖之最左側波峰〕、533nm〔第8A圖之中間波峰〕及625nm〔第8A圖之最右側波峰〕。 FIG. 8A shows the spectral diagram of the relationship between different cadmium metal precursor concentration [concentration] and photoluminescence [PL, photoluminescence] of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention. Please refer to Figure 8A. For example, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention selects three cadmium metal precursor concentrations, and the cadmium metal precursor concentrations are selected as 0.14 millimoles and 0.28 millimoles And 1.00 millimoles, and its corresponding emission wavelengths are 519nm [the leftmost peak in Figure 8A], 533nm [the middle peak in Figure 8A], and 625nm [the rightmost peak in Figure 8A].

第8B圖揭示本發明較佳實施例之核殼發光量子點材料之不同鎘金屬前驅物濃度與光致發光波長之關係示意圖,其對應於第8A圖。請參照第8A圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料隨著鎘金屬前驅物濃度〔0.14毫莫耳、0.28毫莫耳及1.00毫莫耳〕增加而其發光產生紅移現象〔519nm、533nm及625nm〕,其最大紅移為620nm至625nm。 FIG. 8B shows a schematic diagram of the relationship between the concentration of different cadmium metal precursors and the photoluminescence wavelength of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention, which corresponds to FIG. 8A. Please refer to Figure 8A. For example, the core-shell luminescent quantum dot material of the preferred embodiment of the present invention increases with the concentration of the cadmium metal precursor [0.14 millimoles, 0.28 millimoles, and 1.00 millimoles] Its luminescence produces red shift phenomenon [519nm, 533nm and 625nm], and its maximum red shift is 620nm to 625nm.

第9A圖揭示本發明較佳實施例之核殼發光量子點材料之單一〔single〕核殼發光量子點以核殼發光量子點以掃描穿透電子顯微鏡-X射線能譜-二維元素分布 〔STEM-EDS elemental mapping〕方式顯示鎘〔Cd〕元素及硒〔Se〕元素之影像圖。請參照第9A圖所示,舉例而言,在微細結構分析上本發明較佳實施例之單一核殼發光量子點之核體具有鎘元素A〔顯示紅色〕及硒元素B〔顯示藍色〕,其核體處〔例如:半徑

Figure 108139102-A0101-12-0018-19
3nm〕為主要包含Cd、Zn、Se及S。 Figure 9A shows the single core-shell luminescent quantum dot material of the core-shell luminescent quantum dot material of the preferred embodiment of the present invention. The core-shell luminescent quantum dot is used for scanning penetration electron microscope-X-ray energy spectrum-two-dimensional element distribution [ STEM-EDS elemental mapping] displays the image of cadmium (Cd) and selenium (Se). Please refer to Figure 9A. For example, in terms of microstructure analysis, the core body of the single-core-shell light-emitting quantum dot of the preferred embodiment of the present invention has cadmium element A (display red) and selenium element B (display blue) , At its core (e.g. radius
Figure 108139102-A0101-12-0018-19
3nm] mainly contains Cd, Zn, Se and S.

第9B圖揭示本發明較佳實施例之核殼發光量子點材料之單一核殼發光量子點以掃描穿透電子顯微鏡-X射線能譜-二維元素分布方式顯示鋅〔Zn〕元素及硫〔S〕元素之影像圖,其對應於第9A圖。請參照第9B圖所示,舉例而言,在微細結構分析上本發明較佳實施例之單一核殼發光量子點之殼體具有鋅元素C〔在實際上顯示綠色〕及硫元素D〔在實際上顯示黃色〕,其殼體主要包含Zn及S。 Figure 9B shows that a single core-shell luminescent quantum dot of a core-shell luminescent quantum dot material of a preferred embodiment of the present invention displays zinc (Zn) and sulfur in a scanning transmission electron microscope-X-ray energy spectrum-two-dimensional element distribution method. S] the image of the element, which corresponds to image 9A. Please refer to Figure 9B. For example, in terms of microstructure analysis, the shell of the single-core-shell light-emitting quantum dot according to the preferred embodiment of the present invention has zinc element C (in fact, it displays green) and sulfur element D (in Actually it shows yellow], and its shell mainly contains Zn and S.

第9C圖揭示本發明較佳實施例之核殼發光量子點材料之單一核殼發光量子點沿著第9A圖及第9B圖探測線〔probed line〕以X射線質譜儀〔EDS〕顯示元素分佈影像〔elemental map〕示意圖,其對應於第9A及9B圖。請參照第9A、9B及9C圖所示,舉例而言,本發明較佳實施例之核殼發光量子點材料隨著鎘金屬前驅物濃度增加而其發光產生紅移現象。 Figure 9C shows the core-shell luminescent quantum dot material of the preferred embodiment of the present invention. The single core-shell luminescent quantum dot of the core-shell luminescent quantum dot material along the probed line of Figure 9A and Figure 9B shows the element distribution by X-ray mass spectrometer (EDS) Image [elemental map] schematic diagram, which corresponds to images 9A and 9B. Please refer to Figures 9A, 9B and 9C. For example, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention produces a red shift phenomenon in its light emission as the concentration of the cadmium metal precursor increases.

第10圖揭示本發明較佳實施例之核殼發光量子點材料之掃描穿透式電子顯微鏡影像-高角度環狀暗場影像〔STEM-HAADF image〕。請參照第10圖所示,舉例而言,在微細結構分析上本發明較佳實施例之核殼發光量子點材料具有各種原子以六角形的形式排列或近似六角形的形式排列。 Figure 10 shows a scanning transmission electron microscope image of a core-shell luminescent quantum dot material according to a preferred embodiment of the present invention-a high-angle ring-shaped dark field image [STEM-HAADF image]. Please refer to FIG. 10, for example, in terms of microstructure analysis, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention has various atoms arranged in a hexagonal form or an approximate hexagonal form.

第11圖揭示本發明較佳實施例之核殼發光量子點材料之閃鋅礦結構之示意圖,其對應於第10圖。請參 照第11圖所示,舉例而言,在微細結構分析上本發明較佳實施例之核殼發光量子點材料在模擬中自[110]方向顯示具有閃鋅礦結構,即以六角形的形式排列。 FIG. 11 shows a schematic diagram of the zinc blende structure of the core-shell luminescent quantum dot material according to a preferred embodiment of the present invention, which corresponds to FIG. 10. Please refer As shown in Figure 11, for example, in the analysis of the microstructure, the core-shell light-emitting quantum dot material of the preferred embodiment of the present invention shows a sphalerite structure from the [110] direction in the simulation, that is, in the form of a hexagon arrangement.

上述實驗數據為在特定條件之下所獲得的初步實驗結果,其僅用以易於瞭解或參考本發明之技術內容而已,其尚需進行其他相關實驗。該實驗數據及其結果並非用以限制本發明之權利範圍。 The above-mentioned experimental data are preliminary experimental results obtained under specific conditions, which are only used to easily understand or refer to the technical content of the present invention, and other related experiments are needed. The experimental data and results are not intended to limit the scope of rights of the present invention.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The foregoing preferred embodiments only illustrate the present invention and its technical features. The technology of this embodiment can still be implemented with various substantially equivalent modifications and/or alternatives; therefore, the scope of rights of the present invention shall be subject to a patent application. The scope defined by the scope shall prevail. The copyright in this case is restricted to the use of patent applications in the Republic of China.

1‧‧‧核體 1‧‧‧nucleus body

11‧‧‧元素含量遞減區 11‧‧‧Decreasing element content area

2‧‧‧殼體 2‧‧‧Shell

3‧‧‧閃鋅礦結構 3‧‧‧Sphalerite structure

Claims (10)

一種核-殼發光量子點材料,其包含: A core-shell luminescent quantum dot material, which comprises: 至少一核體,其為一合金型核體,而該核體具有一核心部,且該核體形成一硒化鎘合金體; At least one core body, which is an alloy core body, and the core body has a core part, and the core body forms a cadmium selenide alloy body; 一元素含量遞減區,其自該核體之核心部向外遞減一鎘元素、一硒元素或兩者; A zone of decreasing element content, which decreases a cadmium element, a selenium element or both from the core part of the core body; 一殼體,其包覆形成於該核體,而該殼體具有一殼層及一外表面,且該外表面位於該殼層之外,且該殼體由一立方晶系材料形成;及 A shell covering the core body, the shell having a shell layer and an outer surface, the outer surface is located outside the shell layer, and the shell is formed of a cubic material; and 至少一閃鋅礦結構,其形成於該殼體之殼層及外表面,而該殼體為一多角形殼體,且該閃鋅礦結構由一閃鋅礦型化合物形成; At least one sphalerite structure formed on the shell and outer surface of the shell, and the shell is a polygonal shell, and the sphalerite structure is formed of a sphalerite type compound; 其中該殼體之閃鋅礦結構提供保護該合金型核體,且該殼體之閃鋅礦結構具有一抗水、氧侵蝕能力及提供一熱穩定性,以便該合金型核體產生一發光穩定性及提供一量子效率。 The zinc blende structure of the shell provides protection for the alloy core body, and the zinc blende structure of the shell has a resistance to water and oxygen erosion and provides a thermal stability, so that the alloy type core body produces a luminescence Stability and provide a quantum efficiency. 依申請專利範圍第1項所述之核-殼發光量子點材料,其中該合金型核體之硒化鎘合金體選自一CdZnSe合金體、一具CdZnSe合金成之合金體、一CdZnSeS合金體、一具CdZnSeS合金之合金體、一CdSeS合金體、一具CdSeS合金之合金體或其任意組合之合金體。 According to the core-shell luminescent quantum dot material described in item 1 of the scope of patent application, wherein the cadmium selenide alloy body of the alloy core body is selected from a CdZnSe alloy body, a CdZnSe alloy body, and a CdZnSeS alloy body , An alloy body with CdZnSeS alloy, a CdSeS alloy body, an alloy body with CdSeS alloy or any combination of alloy bodies. 依申請專利範圍第1項所述之核-殼發光量子點材料,其中該殼體選擇由一ZnS殼體、一ZnSe殼體、一ZnSeS殼體、一CdS殼體、一CdZnS殼體、一CdSe殼體或其任意組合形成殼體。 According to the core-shell luminescent quantum dot material described in item 1 of the scope of patent application, the shell is selected from a ZnS shell, a ZnSe shell, a ZnSeS shell, a CdS shell, a CdZnS shell, and a The CdSe shell or any combination thereof forms the shell. 依申請專利範圍第1項所述之核-殼發光量子點材料,其中該殼體之外表面具有一稜角多角形表面。 According to the core-shell light-emitting quantum dot material described in item 1 of the scope of patent application, the outer surface of the shell has an angular polygonal surface. 依申請專利範圍第1項所述之核-殼發光量子點材料,其中該殼體為一多層複合殼體,而該殼體包含數個殼層厚度,且數個該殼層厚度自該核體之核心部向外遞減厚度。 According to the core-shell light-emitting quantum dot material according to the first item of the scope of patent application, the shell is a multi-layer composite shell, and the shell includes a plurality of shell thicknesses, and the shell thicknesses are from the The core of the nucleus body decreases in thickness outward. 一種核-殼發光量子點材料製造方法,其包含: A method for manufacturing a core-shell luminescent quantum dot material, which comprises: 將一第一金屬前驅物溶液進行錯合活化,以形成一已活化第一金屬前驅物溶液,且該已活化第一金屬前驅物溶液包含一已活化第一金屬前驅物,且該已活化第一金屬前驅物為一已活化鎘前驅物; A first metal precursor solution is complex activated to form an activated first metal precursor solution, and the activated first metal precursor solution includes an activated first metal precursor, and the activated first metal precursor solution A metal precursor is an activated cadmium precursor; 將一第二金屬前驅物添加至該已活化第一金屬前驅物溶液中進行錯合活化,以形成一已活化第一及第二金屬前驅物溶液; Adding a second metal precursor to the activated first metal precursor solution for complex activation to form an activated first and second metal precursor solution; 將一第三金屬離子溶液添加至該已活化第一及第二金屬前驅物溶液中進行一核體粒子反應,且第三金屬離子溶液包含一第三金屬離子,且該第三金屬離子為一硒離子,以形成一合金型核體溶液及一硒化鎘合金體,而該硒化鎘合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者; A third metal ion solution is added to the activated first and second metal precursor solutions to perform a core particle reaction, and the third metal ion solution includes a third metal ion, and the third metal ion is a Selenium ions to form an alloy core solution and a cadmium selenide alloy body, and the cadmium selenide alloy body has a decreasing element content area, and the decreasing element content area decreases by one from the core part of the core body Cadmium, selenium or both; 將一第四離子溶液添加至該合金型核體溶液中進行一第一包殼反應,以獲得一合金型核-包殼量子點溶液;及 Adding a fourth ion solution to the alloy-type core body solution to perform a first cladding reaction to obtain an alloy-type core-cladding quantum dot solution; and 將該合金型核-包殼量子點溶液製成一合金型核-包殼量子點材料。 The alloy core-clad quantum dot solution is made into an alloy core-clad quantum dot material. 一種核-殼發光量子點材料製造方法,其包含: A method for manufacturing a core-shell luminescent quantum dot material, which comprises: 將一第一金屬前驅物溶液進行錯合活化,以形成一已活化第一金屬前驅物溶液,且該已活化第一金屬前驅物溶液包含一已活化第一金屬前驅物,且該已活化第一金屬前驅物為一已活化鎘前驅物; A first metal precursor solution is complex activated to form an activated first metal precursor solution, and the activated first metal precursor solution includes an activated first metal precursor, and the activated first metal precursor solution A metal precursor is an activated cadmium precursor; 將一第二金屬前驅物添加至該已活化第一金屬前驅物溶液中進行錯合活化,以形成一已活化第一及第二金屬前驅物溶液; Adding a second metal precursor to the activated first metal precursor solution for complex activation to form an activated first and second metal precursor solution; 將一第三金屬離子溶液添加至該已活化第一及第二金屬前驅物溶液中進行一核體粒子反應,且第三金屬離子溶液包含一第三金屬離子,且該第三金屬離子為一硒離子,以形成一合金型核體溶液及一硒化鎘合金體,而該硒化鎘 合金體具有一元素含量遞減區,且該元素含量遞減區自該核體之核心部向外遞減一鎘元素、一硒元素或兩者; A third metal ion solution is added to the activated first and second metal precursor solutions to perform a core particle reaction, and the third metal ion solution includes a third metal ion, and the third metal ion is a Selenium ions to form an alloy core solution and a cadmium selenide alloy body, and the cadmium selenide The alloy body has a decreasing element content area, and the decreasing element content area decreases a cadmium element, a selenium element, or both from the core part of the core body; 將一第四離子溶液添加至該合金型核體溶液中進行一第一包殼反應,以獲得一第一合金型-包殼量子點溶液,且該第一包殼反應產生一合金型核-包殼量子點材料;及 A fourth ion solution is added to the alloy-type core body solution to perform a first cladding reaction to obtain a first alloy-type-clad quantum dot solution, and the first cladding reaction produces an alloy-type core- Encapsulated quantum dot material; and 將另一第二金屬前驅物及一油酸混合形成一第二金屬前驅物混合溶液,並將該第二金屬前驅物混合溶液添加至該合金型核體溶液中進行一第二包殼反應,以獲得一合金型核-多層包殼量子點溶液;及 Mixing another second metal precursor and an oleic acid to form a second metal precursor mixed solution, and adding the second metal precursor mixed solution to the alloy core solution to perform a second cladding reaction, To obtain an alloy-type core-multilayer cladding quantum dot solution; and 將該合金型核-多層包殼量子點溶液製成一合金型核-多層包殼量子點材料。 The alloy type core-multilayer cladding quantum dot solution is made into an alloy type core-multilayer cladding quantum dot material. 依申請專利範圍第7項所述之核-殼發光量子點材料製造方法,其中將一十二硫醇另添加至該合金型核體溶液中,以進行該第二包殼反應。 According to the manufacturing method of core-shell luminescent quantum dot material according to item 7 of the scope of patent application, dodecanethiol is additionally added to the alloy core solution to perform the second cladding reaction. 依申請專利範圍第6或7項所述之核-殼發光量子點材料製造方法,其中該第一金屬前驅物溶液以添加一油胺液體及一油酸溶液方式進行錯合活化。 According to the method for manufacturing the core-shell light-emitting quantum dot material according to item 6 or 7 of the scope of patent application, the first metal precursor solution is complex activated by adding an oleylamine liquid and an oleic acid solution. 依申請專利範圍第6或7項所述之核-殼發光量子點材料製造方法,其中該已活化第一及第二金屬前驅物溶液包含一已活化第二金屬前驅物,且該第二已活化金屬前驅物為一已活化鋅前驅物;或,該第三金屬離子溶液為選自一含硒金屬離子溶液或一第三金屬離子及第四離子混合溶液。 According to the method for manufacturing the core-shell light-emitting quantum dot material according to item 6 or 7 of the scope of patent application, wherein the activated first and second metal precursor solutions include an activated second metal precursor, and the second The activated metal precursor is an activated zinc precursor; or, the third metal ion solution is selected from a selenium-containing metal ion solution or a third metal ion and fourth ion mixed solution.
TW108139102A 2019-10-29 2019-10-29 Core/shell quantum dot material and manufacturing method thereof TWI720671B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108139102A TWI720671B (en) 2019-10-29 2019-10-29 Core/shell quantum dot material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108139102A TWI720671B (en) 2019-10-29 2019-10-29 Core/shell quantum dot material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI720671B true TWI720671B (en) 2021-03-01
TW202116971A TW202116971A (en) 2021-05-01

Family

ID=76035828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139102A TWI720671B (en) 2019-10-29 2019-10-29 Core/shell quantum dot material and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI720671B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835875A (en) * 2007-10-29 2010-09-15 伊斯曼柯达公司 Making colloidal ternary nanocrystals
CN108410446A (en) * 2018-03-22 2018-08-17 程先锋 A kind of preparation method of alloy quantum dot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835875A (en) * 2007-10-29 2010-09-15 伊斯曼柯达公司 Making colloidal ternary nanocrystals
CN108410446A (en) * 2018-03-22 2018-08-17 程先锋 A kind of preparation method of alloy quantum dot

Also Published As

Publication number Publication date
TW202116971A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
US11174429B2 (en) Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP5689575B2 (en) Blue light emitting semiconductor nanocrystal material
US11788003B2 (en) Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP7105237B2 (en) Quantum dots with III-V core and II-VI alloy shell
KR102296763B1 (en) Oxo- and hydroxo-based composite inorganic ligands for quantum dots
JP2007528612A5 (en)
KR20160119149A (en) Quantum dots with inorganic ligands in an inorganic matrix
US20100252778A1 (en) Novel nanoparticle phosphor
Jin et al. Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes
Corrado et al. Enhanced Cu emission in ZnS: Cu, Cl/ZnS core–shell nanocrystals
Venkatachalam et al. Indium doped CdTe colloidal quantum dots stabilised in aqueous medium for white light emission
TWI720671B (en) Core/shell quantum dot material and manufacturing method thereof
TWI555234B (en) Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures
CN112779012A (en) Core-shell luminescent quantum dot material and manufacturing method thereof
Cao et al. Synthesis and optical properties of Mn 2+-doped Cd–In–S colloidal nanocrystals
US11515445B2 (en) Core-shell type quantum dots and method of forming the same
TWI836162B (en) Method for manufacturing core-shell quantum dots
Saha et al. Water‐Soluble Alumina‐Coated Indium Phosphide Core–Shell Quantum Dots with Efficient Deep‐Red Emission Beyond 700 nm
Renuga et al. Design, Synthesis, and Properties of I-III-VI 2 Chalcogenide-Based Core-Multishell Nanocrystals
Sung et al. Variation in the structural and optical properties of ZnSe/ZnS core/shell nanocrystals with shell thickness
CN117025223A (en) Quantum dot coated with blue light absorption layer and preparation method thereof
Győri et al. Synthesis and characterization of composition-gradient based Cd x Zn 1− x Se y S 1− y heterostructured quantum dots
CN116265566A (en) Method for preparing quantum dot, quantum dot and electronic device comprising quantum dot