TWI555234B - Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures - Google Patents

Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures Download PDF

Info

Publication number
TWI555234B
TWI555234B TW103144537A TW103144537A TWI555234B TW I555234 B TWI555234 B TW I555234B TW 103144537 A TW103144537 A TW 103144537A TW 103144537 A TW103144537 A TW 103144537A TW I555234 B TWI555234 B TW I555234B
Authority
TW
Taiwan
Prior art keywords
light
luminescent material
anisotropic metal
dielectric
shell
Prior art date
Application number
TW103144537A
Other languages
Chinese (zh)
Other versions
TW201620159A (en
Inventor
金基世
李度勳
Original Assignee
韓華道達爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓華道達爾股份有限公司 filed Critical 韓華道達爾股份有限公司
Publication of TW201620159A publication Critical patent/TW201620159A/en
Application granted granted Critical
Publication of TWI555234B publication Critical patent/TWI555234B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Description

包含非等向性金屬奈米粒子-介電質核殼奈米結構之發光裝置 Light-emitting device comprising anisotropic metal nanoparticle-dielectric core-shell nanostructure 【相關申請案之交叉參考】[Cross-Reference to Related Applications]

本申請案主張於2014年7月11日在韓國智慧財產局申請的韓國第10-2014-0087616號專利申請案的優先權,以及35U.S.C.119下的全部權益,該申請案的整體內容併入於此以作為參考。 The present application claims priority to Korean Patent Application No. 10-2014-0087616, filed on Jan. 11, 2014, to the Korean Intellectual Property Office, and the entire contents of 35 U.SC119, the entire contents of which are This is hereby incorporated by reference.

本發明係關於包含非等向性金屬奈米粒子-介電質核殼奈米結構的發光裝置;具體而言,係關於具有改良發射效率的發光裝置,藉由誘導可導入使用金屬奈米粒子表面電漿共振現象之發光裝置的發光材料發射增強。 The present invention relates to a light-emitting device comprising an anisotropic metal nanoparticle-dielectric core-shell nanostructure; in particular, a light-emitting device having improved emission efficiency, which can be introduced into a metal nanoparticle by induction The luminescent material emission of the illuminating device of the surface plasma resonance phenomenon is enhanced.

作為新的次世代光源而引起注意的發光二極體(light-emitting diode,LED)相較於目前的光源(例如白熾燈、鹵素燈或螢光燈)具有許多優勢,包括高發光效率、響應快、壽命長、小型化,且不像螢光燈,其係較佳使用為無汞環境友善燈源。因此,LED可用在各種領域,涵蓋從訊號、顯示、通訊、可攜式終端或汽車產業,到一般照明產業。 Light-emitting diodes (LEDs) that attract attention as new next-generation light sources have many advantages over current light sources such as incandescent, halogen or fluorescent lamps, including high luminous efficiency and response. Fast, long life, miniaturized, and unlike fluorescent lamps, it is preferably used as a friendly source of mercury-free environment. As a result, LEDs can be used in a variety of applications, from signal, display, communications, portable terminals or the automotive industry to the general lighting industry.

特別是,白光LED係用於液晶電視或筆電的背光單元、汽 車頭燈或類似者,且根據一般照明裝置的減少及白熾燈管理政策,預期照明市場會持續的快速成長。 In particular, white LEDs are used in backlight units and vapors for LCD TVs or notebooks. Headlights or similar, and based on the reduction of general lighting and incandescent lamp management policies, the lighting market is expected to continue to grow rapidly.

一般而言,白光LED可透過發射具有不同單色波長光之複數LED晶片的組合,或是一個LED晶片與單一或複數成份的發光材料的組合來實現。前者(白光LED透過複數LED晶片的組合來實現)因施加於各晶片的操作電壓不一致以及各晶片的輸出隨環境溫度改變,係難以達到色彩再現性及高純度白光。因此,白光LED一般係藉由在具有近紫外光或藍光單色波長的LED晶片上塗佈發光材料及高分子封裝膜來製造。為達成高色純度白光LED,係採用LED晶片與單一發光材料或具有紅、綠、黃發射波長的複數發光材料之組合。 In general, white LEDs can be implemented by a combination of multiple LED wafers that emit light having different monochromatic wavelengths, or a combination of an LED wafer and a single or multiple component luminescent material. The former (the white LED is realized by a combination of a plurality of LED chips) is incapable of achieving color reproducibility and high-purity white light because the operating voltages applied to the respective wafers do not coincide and the output of each wafer changes with the ambient temperature. Therefore, white LEDs are generally fabricated by coating a luminescent material and a polymer encapsulating film on an LED wafer having a near-ultraviolet or blue-light monochromatic wavelength. In order to achieve high color purity white LEDs, LED chips are used in combination with a single luminescent material or a plurality of luminescent materials having red, green, and yellow emission wavelengths.

也就是說,在白光LED中的發光材料作為吸收LED晶片所產生的藍光(或近紫外光),將光線轉換為紅、綠、藍或具有長波長的黃光輻射,其係發光材料的本質。因此白光係由LED晶片未被發光材料所吸收的發射光線所達成。 That is to say, the luminescent material in the white LED acts as a blue light (or near-ultraviolet light) generated by absorbing the LED wafer, and converts the light into red, green, blue or yellow light having a long wavelength, which is the essence of the luminescent material. . Thus white light is achieved by the emitted light of the LED wafer that is not absorbed by the luminescent material.

白光LED的整體光效率,是代表LED性能的重要因素之一。因此,為達成具有高亮度及低功耗的白光LED,必須增加發光材料的光轉換效率。此外,為了達到高色純度的白光LED,需要兩種或更多種的發光材料。 The overall light efficiency of white LEDs is one of the important factors representing the performance of LEDs. Therefore, in order to achieve a white LED having high brightness and low power consumption, it is necessary to increase the light conversion efficiency of the luminescent material. Further, in order to achieve a white LED of high color purity, two or more luminescent materials are required.

也就是說,提供發光材料,其具有與LED晶片發射波長重疊之合適光譜的吸收波長是有助益的。此外,為了達成白光,發射波長應位在具有相對長波長的可見光的範圍內。另外,較佳使用具有高內部量子效率的發光材料。 That is, it is helpful to provide a luminescent material that has an absorption wavelength of a suitable spectrum that overlaps the emission wavelength of the LED wafer. Furthermore, in order to achieve white light, the emission wavelength should be in the range of visible light having a relatively long wavelength. In addition, a luminescent material having a high internal quantum efficiency is preferably used.

然而,發光材料的吸收和發射性質是在合成或製備發光材料的階段所決定的特性,且製備具有可控制的吸收與發射波長以及高量子效率的發光材料是相當困難的。 However, the absorption and emission properties of the luminescent material are properties determined at the stage of synthesizing or preparing the luminescent material, and it is quite difficult to prepare a luminescent material having a controllable absorption and emission wavelength and high quantum efficiency.

本發明係提供具有改良發射效率的發光裝置,藉由誘導發光材料的激發與發射增強,其可使用金屬奈米粒子的表面電漿共振現象引入發光裝置。 The present invention provides a light-emitting device having improved emission efficiency by inducing excitation and emission enhancement of a luminescent material, which can be introduced into a light-emitting device using surface plasma resonance phenomena of metal nanoparticles.

本發明上述及其他目的將會在以下較佳實施例的敘述中所描述或明示。 The above and other objects of the present invention will be described or illustrated in the following description of the preferred embodiments.

根據本發明之一觀點,係提供包含非等向性金屬奈米粒子-介電質核殼奈米結構及發光材料的發光裝置。非等向性金屬奈米粒子-介電質核殼奈米結構包含具有能形成兩種或更多種表面電漿共振帶之外觀比的非等向性金屬奈米粒子,以及塗覆在金屬奈米粒子表面上的介電殼。 According to one aspect of the present invention, a light-emitting device comprising an anisotropic metal nanoparticle-dielectric core-shell nanostructure and a light-emitting material is provided. An anisotropic metal nanoparticle-dielectric core nanostructure comprising an anisotropic metal nanoparticle having an aspect ratio capable of forming two or more surface plasma resonance bands, and coated on a metal A dielectric shell on the surface of the nanoparticle.

如上所述,根據本發明,在透過具有發射波長於近紫外光或可見光區域的發光裝置以及發光材料之組合所實施的光轉換發光裝置中,兩種或更多種表面電漿共振帶在同一時間藉由將非等向性金屬奈米粒子-介電質核殼奈米結構引入發光層,可誘導發光材料的激發增強與發射增強。此外,因為金屬-介電質核殼奈米結構可使發光材料以介電殼的厚度與金屬奈米粒子維持一定間隔,可預期局部電場增強發生在金屬奈米粒子的表面,藉此使發光材料磷光強度的增強最大化。此外,非等向性金屬奈米粒子-介電質核殼奈米結構的介電殼在發光裝置中維持非等向性金屬奈米粒子的形狀和外觀比,高溫熱在發光裝置中局部產生,且抑制從激發發光材料傳到金屬奈米粒子表面的能量,藉此防止發光材料淬滅。因此,可達成具有改良發射效率及耐用性的發光裝置。 As described above, according to the present invention, in a light-converting light-emitting device implemented by a combination of a light-emitting device having an emission wavelength in a near ultraviolet light or a visible light region and a light-emitting material, two or more surface plasma resonance bands are in the same Time can induce excitation enhancement and emission enhancement of the luminescent material by introducing an anisotropic metal nanoparticle-dielectric core-shell nanostructure into the luminescent layer. In addition, since the metal-dielectric core-shell nanostructure can keep the luminescent material at a certain interval from the thickness of the dielectric shell and the metal nanoparticle, it is expected that local electric field enhancement occurs on the surface of the metal nanoparticle, thereby causing the luminescence The enhancement of the phosphorescence intensity of the material is maximized. In addition, the dielectric shell of the anisotropic metal nanoparticle-dielectric core-shell nanostructure maintains the shape and appearance ratio of the anisotropic metal nanoparticles in the light-emitting device, and the high-temperature heat is locally in the light-emitting device. The energy generated from the excitation luminescent material to the surface of the metal nanoparticles is generated, thereby preventing quenching of the luminescent material. Therefore, a light-emitting device having improved emission efficiency and durability can be achieved.

另外,根據本發明,為了達到高色純度白光LED,可使用具有不同吸收和發射波長的複數發光材料。在這樣的情形下,非等向性金屬奈米粒子兩種或更多種的表面電漿帶受控制以與發光材料吸收波長和發射波長的光譜重疊最佳化。藉此同時實行發光材料的發射增強及提供具有改良的色純度與亮度的光轉換發光裝置。 Further, according to the present invention, in order to achieve a high color purity white light LED, a plurality of luminescent materials having different absorption and emission wavelengths can be used. In such cases, two or more surface plasma strips of the anisotropic metal nanoparticles are controlled to optimize spectral overlap with the luminescent material absorption and emission wavelengths. Thereby, emission enhancement of the luminescent material is simultaneously performed and a light-converting illuminating device having improved color purity and brightness is provided.

因此,根據本發明使用非等向性金屬奈米粒子-介電質核殼奈米結構,具有改良光轉換效率的發光裝置可用於多種領域,涵蓋自訊號、顯示、通訊、可攜式終端或汽車等產業到一般照明產業。 Therefore, according to the present invention, an anisotropic metal nanoparticle-dielectric core-shell nanostructure is used, and an illumination device having improved light conversion efficiency can be used in various fields, including self-signal, display, communication, portable terminal or Automobiles and other industries to the general lighting industry.

本發明的上述及其他特徵藉由參考所附圖式詳述其較佳實施例將會更明瞭,其中:圖1a係示意性地繪示具有非等向性金屬奈米粒子-介電質核殼奈米結構和發光材料彼此組合的複合物,且圖1b係示意性地繪示具有改良發射效率之發光裝置藉由引入複合物至發光層的原理;圖2a係繪示YAG螢光粉的激發、吸收、與發射光譜之圖形,且圖2b係繪示磷化銦(InP)/硫化鋅(ZnS)量子點的激發、吸收、與發射光譜之圖形;圖3a係繪示金奈米柱的穿透式電子顯微(TEM)影像,每一金奈米柱具有512nm及855nm的橫向電漿帶與縱向電漿帶;圖3b係繪示金-銀核殼奈米柱的穿透式電子顯微影像,每一金-銀核殼奈米柱具有450nm及600nm的橫向電漿帶與縱向電漿帶,且圖3c係繪示金-銀核殼奈米柱的穿透式電子顯微影像,每一金-銀核殼奈米柱具有450nm及565nm的橫向電漿帶與縱向電漿帶;圖4a係繪示金奈米柱的紫外光-可見光光譜,每一金奈米柱具有512nm及855nm的橫向電漿帶與縱向電漿帶;圖4b係繪示金-銀核殼奈米柱的紫外光-可見光光譜,每一金-銀核殼奈米柱具有450nm及600nm的橫向電漿帶與縱向電漿帶,且圖4c係繪示金-銀核殼奈米柱的紫外光-可見光光譜,每一金-銀核殼奈米柱具有450nm及565nm的橫向電漿帶與縱向電漿帶;圖5a係示意性地繪示YAG螢光粉在藍光LED晶片中的吸收、激發與發射波長和非等向性金屬奈米粒子的表面電漿帶之間的光譜重疊,且圖5b係示意性地繪示磷化銦/硫化鋅量子點在藍光LED晶片中的吸收、激發與 發射波長和非等向性金屬奈米粒子的表面電漿帶之間的光譜重疊;圖6係繪示非等向性金屬奈米粒子-介電質核殼奈米結構的穿透式電子顯微影像;圖7係繪示包含非等向性金屬奈米粒子-介電質核殼奈米結構與一起引入其中之發光材料的溶液的發射光譜的圖形;圖8a係繪示金屬奈米球-介電質核殼奈米結構的穿透式電子顯微影像,且圖8b係繪示金屬奈米球-介電質核殼奈米結構的紫外光-可見光光譜;圖9係繪示包含金屬奈米球-介電質核殼奈米結構與一起引入其中之發光材料的溶液的發射光譜的圖形;圖10係繪示包含無介電殼之非等向性金屬奈米粒子與一起引入其中之發光材料的溶液的發射光譜的圖形;以及圖11係示意性繪示具有改良發射效率之發光裝置,藉由將非等向性金屬奈米粒子-介電質核殼奈米結構及兩種或更多種不同發光材料一起引入至發光層。 The above and other features of the present invention will become more apparent from the detailed description of the preferred embodiments of the invention, wherein: FIG. 1a schematically shows an anisotropic metal nanoparticle-dielectric core. a composite of a shell nanostructure and a luminescent material combined with each other, and FIG. 1b schematically illustrates the principle of introducing a composite to a light-emitting layer by a light-emitting device having improved emission efficiency; FIG. 2a is a diagram showing YAG phosphor powder. Excitation, absorption, and emission spectra, and Figure 2b shows the excitation, absorption, and emission spectra of indium phosphide (InP)/zinc sulfide (ZnS) quantum dots; Figure 3a shows the gold nano column Transmissive electron microscopy (TEM) image, each gold nano column has a transverse plasma belt and a longitudinal plasma belt of 512 nm and 855 nm; Figure 3b shows the transmission of a gold-silver core shell nano column Electron microscopic image, each gold-silver core nano column has a transverse plasma belt and a longitudinal plasma belt of 450 nm and 600 nm, and Fig. 3c shows a penetrating electronic display of a gold-silver core shell nano column. Micro-image, each gold-silver core-shell nano column has a transverse plasma belt of 450 nm and 565 nm and a longitudinal plasma belt; Figure 4a shows gold The ultraviolet-visible spectrum of the nanocolumn, each of the gold nano columns has a transverse plasma belt and a longitudinal plasma belt of 512 nm and 855 nm; and Fig. 4b shows the ultraviolet-visible spectrum of the gold-silver core nano column. Each gold-silver core nano column has a transverse plasma band and a longitudinal plasma band of 450 nm and 600 nm, and FIG. 4c shows the ultraviolet-visible spectrum of the gold-silver core nano column, each gold - Silver core shell nano columns have transverse plasma strips and longitudinal plasma strips of 450 nm and 565 nm; Figure 5a schematically shows the absorption, excitation and emission wavelengths and anisotropy of YAG phosphors in blue LED wafers The spectral overlap between the surface plasma bands of the metallic nanoparticles, and Figure 5b schematically illustrates the absorption, excitation and excitation of the indium phosphide/zinc sulfide quantum dots in the blue LED wafer. The spectral overlap between the emission wavelength and the surface plasma zone of the anisotropic metal nanoparticles; Figure 6 shows the transmission electrons of the anisotropic metal nanoparticles-dielectric core nanostructures Microimage; FIG. 7 is a graph showing an emission spectrum of a solution containing an anisotropic metal nanoparticle-dielectric core-shell nanostructure and a luminescent material introduced therein together; FIG. 8a is a diagram showing a metal nanosphere - a transmission electron micrograph of the dielectric core-shell nanostructure, and FIG. 8b shows the ultraviolet-visible spectrum of the metal nanosphere-dielectric core nanostructure; FIG. 9 is a diagram showing a graph of the emission spectrum of a metal nanosphere-dielectric core-shell nanostructure and a solution of a luminescent material introduced therein; FIG. 10 is a diagram showing the introduction of an anisotropic metal nanoparticle containing a dielectric-free shell a pattern of an emission spectrum of a solution of the luminescent material therein; and FIG. 11 is a schematic diagram showing an illuminating device having improved emission efficiency by using an anisotropic metal nanoparticle-dielectric nucleocapsid nanostructure and two One or more different luminescent materials are introduced together to the luminescent layer.

在下文中,將描述根據本發明的光轉換發光裝置,其透過具有於近紫外光或可見光之發射波長的發光裝置和具有在可見光區的吸收及發射波長之發光材料之組合而實行。光轉換發光裝置的特徵在於非等向性金屬奈米粒子-介電質核殼奈米結構係引入發光層。 Hereinafter, a light-converting light-emitting device according to the present invention will be described which is implemented by a combination of a light-emitting device having an emission wavelength of near-ultraviolet light or visible light and a light-emitting material having absorption and emission wavelengths in the visible light region. The light-converting light-emitting device is characterized in that an anisotropic metal nanoparticle-dielectric core-shell nanostructure is introduced into the light-emitting layer.

一般而言,透過具有於近紫外光或藍光波長的LED晶片和黃光發光材料的組合,為了達到具有小功耗及高亮度的白光LED,LED晶片與發光材料應具有高發射率。 In general, LED wafers and luminescent materials should have high emissivity in order to achieve white LEDs with low power consumption and high brightness through a combination of LED chips and yellow light-emitting materials having near-ultraviolet or blue-light wavelengths.

為了克服缺點,LED晶片與發光材料的發射率可使用金屬奈米粒子的局部表面電漿共振而改善。 To overcome the disadvantages, the emissivity of the LED wafer and the luminescent material can be improved using localized surface plasma resonance of the metal nanoparticles.

在此,局部表面電漿共振係指金屬奈米粒子和光之間的交 互作用。若光(h ν)施加於金屬奈米粒子或奈米結構,集體振盪沿著金屬奈米粒子表面的自由電子所注入之光的電場而發生,藉此形成表面電漿子且在金屬奈米粒子周圍形成非常強的局部電場。在此,若發光材料存在金屬奈米粒子周圍,因為電場在金屬奈米粒子周圍局部形成,故藉由增加光吸收而使激發增強(Eex),使得發光材料的磷光(PL)強度可增加。此外,發光材料的發射增強(Eem),也就是發光材料內在的量子效率的增加,藉由激發的發光材料和表面電漿子之間的交互作用而可預期。如下列方程式(1)所述,相較於奈米粒子不存在的情形,在發光材料位於金屬奈米粒子周圍的情形中,發光材料的輻射衰減(γrad)路徑較非輻射衰減(γnon-rad)路徑大,藉此增加量子效率(γradM-rad>>γnon-rad)(Chemical Reviews,2011,111,3888;Nature Materials,2010,9,193;Analyst,2008,133,1308)。 Here, local surface plasma resonance refers to the interaction between metal nanoparticles and light. If light (h ν ) is applied to the metal nanoparticle or nanostructure, collective oscillation occurs along the electric field of the light injected by the free electrons on the surface of the metal nanoparticle, thereby forming a surface plasmonic and in the metal nano A very strong local electric field is formed around the particles. Here, if the luminescent material is present around the metal nanoparticles, since the electric field is locally formed around the metal nanoparticles, the excitation enhancement (E ex ) is increased by increasing the light absorption, so that the phosphorescence (PL) intensity of the luminescent material can be increased. . Furthermore, the emission enhancement (E em ) of the luminescent material, that is, the increase in the quantum efficiency inherent to the luminescent material, can be expected by the interaction between the excited luminescent material and the surface plasmonics. As described in the following equation (1), in the case where the luminescent material is located around the metal nanoparticles, the radiant attenuation (γ rad ) path of the luminescent material is less than the non-radiative attenuation (γ non). -rad ) Large path, thereby increasing quantum efficiency (γ rad + γ M-rad >> γ non-rad ) (Chemical Reviews, 2011 , 111 , 3888; Nature Materials, 2010 , 9 , 193; Analyst, 2008 , 133 , 1308).

也就是說,基於金屬奈米粒子表面電漿子的發光材料的總增強(Etotal)可被表示成激發增強(Eex)和發射增強(Eem)的乘積,如方程式(2)所描述。 That is, the total enhancement (E total ) of the luminescent material based on the surface plasmonics of the metal nanoparticle particles can be expressed as the product of excitation enhancement (E ex ) and emission enhancement (E em ), as described in equation (2). .

Etotal=Eex×Eem...(2) E total =E ex ×E em ...(2)

因此,基於金屬奈米粒子的表面電漿子,為了將發光材料磷光強度的增強最大化,在相同時間實行激發增強(Eex)和發射增強(Eem)是重要的,其係藉由將發光材料的吸收和發射波長與金屬奈米粒子的表面電漿子有效地重疊而控制(Nano Letters,2007,7,690;Applied Physics Letters,2008,93,53106)。 Therefore, based on the surface plasmonics of metal nanoparticles, in order to maximize the enhancement of the phosphorescence intensity of the luminescent material, it is important to perform excitation enhancement (E ex ) and emission enhancement (E em ) at the same time by The absorption and emission wavelength of the luminescent material is effectively controlled by overlapping with the surface plasmonics of the metal nanoparticles (Nano Letters, 2007 , 7 , 690; Applied Physics Letters, 2008 , 93 , 53106).

舉例而言,當發光材料的吸收波長與電漿帶重疊,光吸收增加,使得發光材料的激發增強(Eex)係可預期。當發光材料的發射波長與電漿帶重疊,輻射衰減速度因激發發光材料與表面電漿子耦合而增加以增加量子效率,使得發射增強(Eem)係可預期。因此,若誘發金屬奈米粒子表面電漿帶與發光材料的吸收和發射光譜合適的重疊,發光材料的激發增強和發射增強可同時實行,藉此將磷光強度的增強最大化。 For example, when the absorption wavelength of the luminescent material overlaps with the plasma ribbon, the light absorption increases, so that the excitation enhancement (E ex ) of the luminescent material is expected. When the emission wavelength of the luminescent material overlaps with the plasma strip, the rate of radiation decay increases due to the coupling of the excitation luminescent material to the surface plasmon to increase quantum efficiency, such that emission enhancement (E em ) is expected. Therefore, if the absorption and emission spectra of the surface of the metal nanoparticle particles and the luminescent material are appropriately overlapped, the excitation enhancement and emission enhancement of the luminescent material can be simultaneously performed, thereby maximizing the enhancement of the phosphorescence intensity.

在本發明,係使用具有能形成雙電漿共振帶之外觀比的非等向性金屬奈米粒子-介電質核殼奈米結構。也就是說,電漿帶係藉由使用雙電漿共振帶而形成於LED晶片發射波長與發光材料吸收波長的位置,而其餘電漿共振帶係形成於發光材料發射波長的區域,藉此同時實行激發(吸收)增強與發射增強,且最終將磷光強度的增強最大化。 In the present invention, an anisotropic metal nanoparticle-dielectric core-shell nanostructure having an aspect ratio capable of forming a double plasma resonance band is used. That is to say, the plasma ribbon is formed at a position where the emission wavelength of the LED chip and the absorption wavelength of the luminescent material are formed by using a double plasma resonance band, and the remaining plasma resonance bands are formed in a region of the emission wavelength of the luminescent material, thereby simultaneously Excitation (absorption) enhancement and emission enhancement are performed, and eventually the enhancement of phosphorescence intensity is maximized.

一般而言,係使用以由下而上方式之溶液製程來製備具有單一表面電漿帶的金屬奈米粒子,或使用以由上而下方式蝕刻金屬薄膜並分布在基板上所獲得的奈米結構。然而,要同時達到發光材料的激發增強和發射增強,將磷光強度的增強最大化是相當困難的。舉例而言,若球形奈米結構(奈米球)用在使用具有近紫外光或藍光波長以及黃光發光材料(像是釔鋁石榴石(Yttrium Aluminum Garnet,YAG))之LED晶片的白光LED中,奈米球的表面電漿帶一般會形成在400nm至500nm的區域,且LED晶片的近紫外光或藍光波長與黃光發光材料的吸收波長有效地重疊,造成黃光發光材料的吸收增加,使得激發增強係可預期。然而,因為黃光發光材料的發射波長與奈米結構的表面電漿帶並未彼此有效地重疊,可能未能預期內部量子效率的增加(也就是發射增強),使得磷光強度的增強不能最大化。 In general, a metal nanoparticle having a single surface plasma tape is prepared by a solution process in a bottom-up manner, or a nanoparticle obtained by etching a metal film from a top-down manner and distributed on a substrate is used. structure. However, to achieve both excitation enhancement and emission enhancement of the luminescent material, it is quite difficult to maximize the enhancement of phosphorescence intensity. For example, if a spherical nanostructure (nanosphere) is used in a white LED using an LED chip having a near-ultraviolet or blue-light wavelength and a yellow light-emitting material such as Yttrium Aluminum Garnet (YAG) The surface plasma belt of the nanosphere is generally formed in a region of 400 nm to 500 nm, and the near ultraviolet or blue wavelength of the LED wafer effectively overlaps with the absorption wavelength of the yellow light emitting material, resulting in an increase in absorption of the yellow light emitting material. So that the excitation enhancement system can be expected. However, since the emission wavelength of the yellow light-emitting material and the surface plasma belt of the nanostructure do not effectively overlap each other, an increase in internal quantum efficiency (that is, emission enhancement) may not be expected, so that the enhancement of the phosphorescence intensity cannot be maximized. .

然而,若金奈米粒子用在相同的白光LED,表面電漿帶係形成於500nm至600nm的區域,使得黃光發光材料的發射波長與金奈米粒子表面電漿帶可有效地彼此重疊,使上述之內部量子效率的增加(也就是發射增強)係可達成。然而,金奈米粒子的表面電漿帶可能不會與LED晶片的 近紫外光或藍光波長有效地重疊,使得藉由增加發光材料的吸收以達成激發增強係難以預期。 However, if the gold nanoparticles are used in the same white LED, the surface plasma strip is formed in a region of 500 nm to 600 nm, so that the emission wavelength of the yellow light-emitting material and the surface plasma belt of the gold nanoparticle can effectively overlap each other. An increase in the internal quantum efficiency (i.e., emission enhancement) described above can be achieved. However, the surface plasma strip of the gold nanoparticles may not be associated with the LED wafer The near ultraviolet or blue wavelengths effectively overlap such that it is difficult to achieve an excitation enhancement by increasing the absorption of the luminescent material.

為了實施高色純度的白光LED,可使用兩種或更多種具有不同發射波長的藍、綠、紅或黃光發光材料。然而,在此情形,金屬奈米粒子或奈米結構的使用係形成單一的表面電漿帶,使不同發光材料的發射增強難以同時達成。因此,要達成具有高色純度和亮度的光轉換發光裝置是相當困難的。 In order to implement white LEDs of high color purity, two or more blue, green, red or yellow luminescent materials having different emission wavelengths can be used. However, in this case, the use of metal nanoparticle or nanostructures forms a single surface plasma belt, making it difficult to achieve simultaneous emission enhancement of different luminescent materials. Therefore, it is quite difficult to achieve a light-converting light-emitting device having high color purity and brightness.

同時,為了誘導使用金屬奈米粒子表面電漿共振的發光材料的發射增強,應考慮發光材料和金屬奈米粒子的位置,以及發光材料和金屬奈米粒子之間的距離,還有兩者間的光譜重疊。也就是說,藉由在金屬奈米粒子周圍形成的局部增加電場,為了使磷光強度的增強最大化,必須確保金屬奈米粒子和發光材料之間合適的距離。 At the same time, in order to induce the emission enhancement of the luminescent material using the surface plasma resonance of the metal nanoparticle, the position of the luminescent material and the metal nanoparticle, and the distance between the luminescent material and the metal nanoparticle should be considered, and The spectrum overlaps. That is, by locally increasing the electric field formed around the metal nanoparticles, in order to maximize the enhancement of the phosphorescence intensity, it is necessary to ensure a proper distance between the metal nanoparticles and the luminescent material.

舉例而言,在金屬奈米粒子和發光材料彼此位置非常接近的情形中,也就是相距5nm或更少的距離,發光材料因能量自激發的發光材料轉移至金屬奈米粒子表面而可能淬滅。然而,在金屬奈米粒子和發光材料彼此位置遠離的情形中,也就是相距1μm或更大的距離,發光材料可能不及於形成於金屬奈米粒子表面的電場,而難以達成磷光強度的增強。 For example, in the case where the metal nanoparticle and the luminescent material are in close proximity to each other, that is, a distance of 5 nm or less, the luminescent material may be quenched by the transfer of energy from the excited luminescent material to the surface of the metallic nanoparticle. . However, in the case where the metal nanoparticle and the luminescent material are located apart from each other, that is, at a distance of 1 μm or more, the luminescent material may not be able to reach an electric field formed on the surface of the metal nanoparticles, and it is difficult to achieve an enhancement of the phosphorescence intensity.

若根據本發明應用非等向性金屬奈米粒子-介電質核殼奈米結構,金屬-介電質核殼奈米結構可使發光材料與金屬奈米粒子以介電殼厚度維持固定間隔,可預期在金屬奈米粒子表面發生局部電場增強,藉此提供具有磷光強度增強的發光裝置。 If the anisotropic metal nanoparticle-dielectric core-shell nanostructure is applied according to the present invention, the metal-dielectric core-shell nanostructure can maintain a fixed interval between the luminescent material and the metal nanoparticle at a dielectric shell thickness. It is expected that local electric field enhancement occurs at the surface of the metal nanoparticle, thereby providing a light-emitting device having enhanced phosphorescence intensity.

另外,非等向性金屬奈米粒子-介電質核殼奈米結構的介電殼在局部產生高溫熱的發光裝置中可維持非等向性金屬奈米粒子的形狀,且抑制能量從激發發光材料轉移至金屬奈米粒子的表面,藉此防止發光材料淬滅,且實行具改良發射效率及耐久性的發光裝置。 In addition, the dielectric shell of the anisotropic metal nanoparticle-dielectric core-shell nanostructure can maintain the shape of the anisotropic metal nanoparticle in the local high-temperature heat generating device, and suppress the energy from The excitation luminescent material is transferred to the surface of the metal nanoparticle, thereby preventing the luminescent material from being quenched, and a light-emitting device having improved emission efficiency and durability is implemented.

本發明藉由誘導可與具有外觀比之非等向性金屬奈米粒子- 介電質核殼奈米結構一起引入發光裝置的發光材料的發射增強,提供具有改良發射效率及耐久性的發光裝置。 The present invention induces anisotropic metal nanoparticles by having an appearance ratio - The dielectric core-shell nanostructures together enhance the emission of the luminescent material introduced into the illuminating device, providing a luminescent device with improved emission efficiency and durability.

本發明所使用的非等向性金屬奈米粒子-介電質核殼奈米結構涉及一種結構,其具有橫軸和縱軸之外觀比的奈米尺寸金屬粒子,構成核和以殼形式圍繞金屬粒子核的介電材料。 The anisotropic metal nanoparticle-dielectric core-shell nanostructure used in the present invention relates to a structure having nanometer-sized metal particles having an appearance ratio of a horizontal axis and a vertical axis, constituting a core and surrounding in a shell form A dielectric material of a metal particle core.

非等向性金屬奈米粒子可包含金屬,例如銀、金、鋁、銅、鋰、鈀、鉑或其合金。根據本發明的發光裝置,使用作為非等向性金屬奈米粒子之源材料的金屬種類可考慮光譜重疊而選擇,且外觀比可藉由根據發光裝置發射波長的位置、發光材料吸收和發射波長的位置所選擇金屬種類而調整。 The anisotropic metal nanoparticles may comprise a metal such as silver, gold, aluminum, copper, lithium, palladium, platinum or alloys thereof. According to the light-emitting device of the present invention, the metal species used as the source material of the anisotropic metal nanoparticles can be selected in consideration of spectral overlap, and the appearance ratio can be obtained by the position of the light-emitting device according to the wavelength of the light-emitting device, the absorption and emission wavelength of the light-emitting material. The position is adjusted by the type of metal selected.

舉例而言,為了增強具有於紫外光區的吸收和發射波長之發光材料的磷光強度,可有利地使用具有於紫外光區之電漿帶的鋁奈米粒子,或鋁和鋁以外之金屬的合金。同時,為了增強具有於可見光區的吸收和發射波長之發光材料的磷光強度,可有利地使用具有於可見光區之表面電漿帶的銀或金奈米粒子,或是銀或金和其他金屬的合金。 For example, in order to enhance the phosphorescence intensity of the luminescent material having the absorption and emission wavelengths in the ultraviolet light region, it is advantageous to use aluminum nanoparticle having a plasma belt in the ultraviolet region, or a metal other than aluminum and aluminum. alloy. Meanwhile, in order to enhance the phosphorescence intensity of the luminescent material having the absorption and emission wavelengths in the visible light region, silver or gold nanoparticles having a surface plasma belt in the visible light region, or silver or gold and other metals may be advantageously used. alloy.

非等向性金屬奈米粒子一般可用由下而上的方法或由上而下的方法來製備。根據前者的方法,金屬前驅物、還原劑以及介面活性劑係混合以製備溶液。根據後者的方法,奈米粒子可以蝕刻金屬薄膜(例如用電子束微影)來製備。從製造成本的觀點,較佳應用由下到上的方法。非等向性金屬奈米粒子係用於藉由製備金屬晶種,然後使金屬晶種長成非等向性柱狀而形成奈米柱。在此,奈米柱的外觀比在製備奈米柱期間可使用參數(包含晶種尺寸、金屬晶種與金屬前驅物的相對比例、溶液的pH值、溫度等等)來控制。可選地,在製備奈米柱之後,奈米柱可被蝕刻,或金屬前驅物可加入以再生長。製備非等向性金屬奈米粒子以及控制外觀比的技術係為本領域所熟知,且非等向性金屬奈米粒子的具體製備過程係透過實施例來描述。 Non-isotropic metal nanoparticles can generally be prepared by a bottom-up process or a top-down process. According to the former method, a metal precursor, a reducing agent, and an interfacial surfactant are mixed to prepare a solution. According to the latter method, the nanoparticles can be prepared by etching a metal film (for example, by electron beam lithography). From the viewpoint of manufacturing cost, a bottom-up method is preferably applied. The anisotropic metal nanoparticles are used to form a nanocolumn by preparing a metal seed and then growing the metal seed into an anisotropic column. Here, the appearance of the nanocolumn can be controlled using parameters (including seed size, relative ratio of metal seed to metal precursor, pH of solution, temperature, etc.) during the preparation of the nanocolumn. Alternatively, after preparing the nanocolumn, the nanocolumn can be etched, or a metal precursor can be added to regrind. Techniques for preparing anisotropic metal nanoparticles and controlling the aspect ratio are well known in the art, and the specific preparation of the anisotropic metal nanoparticles is described by way of examples.

奈米粒子較佳具有橫向尺寸介於1nm及1μm之間的範圍,以及縱向尺寸介於1nm及1μm之間的範圍,且更佳具有橫向尺寸介於10nm及40nm之間的範圍,以及縱向尺寸介於10nm及400nm之間的範圍。此外,非等向性金屬奈米粒子具有介於1.1及10之間的外觀比。在前述範圍下,奈米粒子顯示相當高的散射率,其係有利於達成發光材料的發射增強。 The nanoparticle preferably has a lateral dimension between 1 nm and 1 μm, and a longitudinal dimension between 1 nm and 1 μm, and more preferably a lateral dimension between 10 nm and 40 nm, and a longitudinal dimension. It is in the range between 10 nm and 400 nm. Further, the anisotropic metal nanoparticles have an aspect ratio of between 1.1 and 10. Under the foregoing range, the nanoparticles exhibit a relatively high scattering rate, which is advantageous for achieving an emission enhancement of the luminescent material.

在非等向性金屬奈米粒子-介電質核殼奈米結構中,介電材料的例子可包含二氧化矽(SiO2)、三氧化二鋁(Al2O3)、二氧化鈦(TiO2)、氧化鎂(MgO)、二氧化鋯(ZrO2)、氧化鉛(PbO)、三氧化二硼(B2O3)、氧化鈣(CaO)及氧化鋇(BaO),其係可根據介電材料的折射率和光學性質而使用。 In the anisotropic metal nanoparticle-dielectric core-shell nanostructure, examples of the dielectric material may include cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and titanium dioxide (TiO 2 ). ), magnesium oxide (MgO), zirconium dioxide (ZrO 2 ), lead oxide (PbO), boron trioxide (B2O 3 ), calcium oxide (CaO) and barium oxide (BaO), which can be based on dielectric materials The refractive index and optical properties are used.

根據本發明的非等向性金屬奈米粒子-介電質核殼奈米結構,在考慮金屬奈米粒子表面的強電場,介電殼較佳具有厚度介於1nm及1μm之間的範圍。若介電殼的厚度小於上述範圍,金屬奈米粒子與發光材料彼此的位置太近,會造成淬滅。若介電殼的厚度大於上述範圍,發光裝置可能位於偏離金屬奈米粒子表面所產生的電場,使得磷光強度的增強難以達成。 According to the anisotropic metal nanoparticle-dielectric core-shell nanostructure of the present invention, the dielectric shell preferably has a thickness ranging between 1 nm and 1 μm in consideration of a strong electric field on the surface of the metal nanoparticles. If the thickness of the dielectric shell is less than the above range, the position of the metal nanoparticles and the luminescent material are too close to each other, causing quenching. If the thickness of the dielectric shell is larger than the above range, the light-emitting device may be located at an electric field generated from the surface of the metal nanoparticles, so that the enhancement of the phosphorescence intensity is difficult to achieve.

在本發明中,發光材料指的是根據發射機制,包含能表現螢光或磷光之半導體量子點的有機或無機材料。但本發明不限於此處列出的那些發光材料。為了達成高色純度白光LED,可使用單一發光材料或複數發光材料。 In the present invention, a luminescent material refers to an organic or inorganic material comprising semiconductor quantum dots capable of expressing fluorescence or phosphorescence according to an emission mechanism. However, the invention is not limited to those luminescent materials listed herein. In order to achieve a high color purity white LED, a single luminescent material or a plurality of luminescent materials may be used.

在本發明中,發光材料可包含具有近紫外光或藍光發射波長之半導體LED以及具有較LED更長的發射波長之發光材料的組合。 In the present invention, the luminescent material may comprise a combination of a semiconductor LED having a near ultraviolet or blue emission wavelength and a luminescent material having a longer emission wavelength than the LED.

在本發明中,發出近紫外光或藍光的含氮半導體可用於發光裝置。此外,可使用發出紅光和綠光的各種發光裝置。 In the present invention, a nitrogen-containing semiconductor emitting near-ultraviolet light or blue light can be used for the light-emitting device. In addition, various light-emitting devices that emit red light and green light can be used.

在本發明中,當形成發光裝置的發光層,非等向性金屬奈米粒子-介電質核殼奈米結構和發光材料可簡單混合,或具有發光材料和奈米結構彼此組合的複合物可引入以形成發光層。在形成複合物的情形,發 光材料可一直位於非等向性金屬奈米粒子周圍的增強電場,其係有利於達成磷光強度的增強。 In the present invention, when the light-emitting layer of the light-emitting device is formed, the anisotropic metal nanoparticle-dielectric core-shell nanostructure and the light-emitting material may be simply mixed, or a composite having a combination of a light-emitting material and a nanostructure. It can be introduced to form a light-emitting layer. In the case of forming a complex, The optical material can always be located in an enhanced electric field around the anisotropic metal nanoparticles, which is beneficial for achieving an increase in phosphorescence intensity.

根據本發明的光轉換發光裝置,為了達成發光裝置光源的發射波長、發光材料的吸收和發射波長,以及非等向性金屬奈米粒子或奈米結構的表面電漿帶之間合適的光譜重疊,表面電漿帶可藉由控制非等向性金屬奈米粒子的外觀比而調整。也就是說,表面電漿帶可藉由控制非等向性金屬奈米粒子的外觀比而調整,且當外觀比增加時,縱向帶朝較長波長區域移動。相較於縱向帶,在橫向帶沒有表現相當改變。因此,電漿帶根據構成光轉換白光發光裝置和發光材料的LED晶片的光譜,較佳藉由控制非等向性金屬奈米粒子的組成、尺寸及外觀比而調整。詳言之,基於非等向性金屬奈米粒子的縱軸和橫軸,兩種或更多種表面電漿共振帶受控制而延伸到近紫外光區、可見光區,以及近紅外光區,使光源的近紫外光或藍光波長與發光材料的吸收和發射波長之間的光譜重疊最佳化,藉此同時實行發光材料的激發增強和發射增強。 According to the light-converting light-emitting device of the present invention, in order to achieve an appropriate spectral overlap between the emission wavelength of the light source of the light-emitting device, the absorption and emission wavelength of the light-emitting material, and the surface plasma tape of the non-isotropic metal nanoparticles or the nanostructure The surface plasma tape can be adjusted by controlling the appearance ratio of the anisotropic metal nanoparticles. That is, the surface plasma tape can be adjusted by controlling the aspect ratio of the anisotropic metal nanoparticles, and as the aspect ratio increases, the longitudinal band moves toward the longer wavelength region. There is no significant change in the lateral band compared to the longitudinal band. Therefore, the plasma belt is preferably adjusted by controlling the composition, size, and appearance ratio of the anisotropic metal nanoparticles according to the spectrum of the LED wafer constituting the light-converting white light-emitting device and the luminescent material. In detail, based on the longitudinal and transverse axes of the anisotropic metal nanoparticles, two or more surface plasma resonance bands are controlled to extend to the near ultraviolet region, the visible region, and the near infrared region. The spectral overlap between the near-ultraviolet or blue wavelength of the source and the absorption and emission wavelengths of the luminescent material is optimized, thereby simultaneously effecting excitation enhancement and emission enhancement of the luminescent material.

此外,使用兩種或更多種不同金屬所製備的核殼奈米粒子可用為本發明的奈米粒子,以提供發光裝置光源的發射波長、發光材料的吸收和發射波長,以及非等向性金屬奈米粒子或奈米結構的表面電漿帶之間合適的光譜重疊。 Further, core-shell nanoparticles prepared using two or more different metals may be used as the nanoparticle of the present invention to provide an emission wavelength of a light source of the light-emitting device, absorption and emission wavelengths of the light-emitting material, and anisotropy. A suitable spectral overlap between the metal nanoparticle or the surface plasma strip of the nanostructure.

發光層可藉由將兩種或更多種具有不同的雙電漿共振帶的非等向性金屬奈米粒子-介電質核殼奈米結構和發光材料一起導入而形成。 The light-emitting layer can be formed by introducing two or more kinds of anisotropic metal nanoparticle-dielectric core-shell nanostructures having different double plasma resonance bands together with a light-emitting material.

此外,本發明亦可提供包含非等向性金屬奈米粒子的光轉換發光裝置,非等向性金屬奈米粒子具有與發光裝置光源的發射波長或發光材料的吸收和發射波長重疊之一表面電漿帶,以及與發光材料發射波長重疊之另一表面電漿帶。核殼奈米柱的橫向表面電漿帶與LED晶片的發射波長重疊,使得發光材料可有效地吸收LED晶片的激發光,且可達成激發增強。此外,發光材料的發射波長與核殼奈米柱的縱向表面電漿帶合適地 重疊,且內部量子效率的增加(也就是激發增強)係可達成。因此,發光材料的激發增強和發射增強可在同一時間實行,藉此將磷光強度的增強最大化。 In addition, the present invention can also provide a light-converting light-emitting device comprising an anisotropic metal nanoparticle having a surface overlapping with an emission wavelength of a light source of the light-emitting device or an absorption and emission wavelength of the light-emitting material. A plasma strip, and another surface plasma strip that overlaps the emission wavelength of the luminescent material. The lateral surface plasma strip of the core-shell nano-pillar overlaps with the emission wavelength of the LED wafer, so that the luminescent material can effectively absorb the excitation light of the LED wafer, and excitation enhancement can be achieved. In addition, the emission wavelength of the luminescent material and the longitudinal surface plasma strip of the core-shell nano column are suitably Overlap, and an increase in internal quantum efficiency (ie, excitation enhancement) is achievable. Thus, excitation enhancement and emission enhancement of the luminescent material can be performed at the same time, thereby maximizing the enhancement of phosphorescence intensity.

當複數不同的發光材料用於發光層,本發明提供光轉換發光裝置,其包含與具有不同發射波長的兩種或更多種發光材料之吸收和發射波長重疊的兩種或更多種表面電漿共振帶的非等向性金屬奈米粒子或奈米結構。 When a plurality of different luminescent materials are used for the luminescent layer, the present invention provides a light-converting illuminating device comprising two or more surface electric charges overlapping with absorption and emission wavelengths of two or more luminescent materials having different emission wavelengths An anisotropic metal nanoparticle or nanostructure of the plasma resonance band.

在本發明,鑒於自非等向性金屬奈米粒子之消光光譜計算的散射效率和吸收效率的強度,較佳使用具有散射效率高於吸收效率的奈米粒子。在此情形,非等向性金屬奈米粒子的尺寸和外觀比係考慮用於奈米粒子消光之散射效率和吸收效率所決定,這是因為金屬奈米粒子的散射一般與發光材料磷光強度的增強有關。在奈米球的情形中,散射效率係與奈米粒子半徑的六次方(r6)成正比,而吸收效率係與發光材料的淬滅有關,且與奈米粒子半徑(r)的三次方(r3)成正比。因此,使用具有高散射率的非等向性金屬奈米粒子係有利於發光材料的發射增強。為了這個目的,非等向性金屬奈米粒子較佳具有橫向尺寸介於1nm及1μm之間的範圍,以及縱向尺寸介於1nm及1μm之間的範圍,且更佳具有橫向尺寸介於10nm及40nm之間的範圍,以及縱向尺寸介於10nm及400nm之間的範圍。此外,非等向性金屬奈米粒子具有介於1.1及10之間的外觀比。在前述範圍下,奈米粒子顯示相當高的散射率,且雙電漿共振帶可控制在可視光區域內,其係有利於達成發光材料的發射增強。 In the present invention, in view of the scattering efficiency and the absorption efficiency calculated from the extinction spectrum of the anisotropic metal nanoparticles, it is preferred to use nano particles having a scattering efficiency higher than the absorption efficiency. In this case, the size and appearance ratio of the anisotropic metal nanoparticles are determined by the scattering efficiency and the absorption efficiency for the nanoparticle extinction because the scattering of the metal nanoparticles generally corresponds to the phosphorescence intensity of the luminescent material. Enhance related. In the case of nanospheres, the scattering efficiency is proportional to the sixth power (r 6 ) of the radius of the nanoparticle, and the absorption efficiency is related to the quenching of the luminescent material and three times the radius of the nanoparticle (r) The square (r 3 ) is proportional. Therefore, the use of an anisotropic metal nanoparticle having a high scattering ratio facilitates the emission enhancement of the luminescent material. For this purpose, the anisotropic metal nanoparticles preferably have a lateral dimension between 1 nm and 1 μm, and a longitudinal dimension between 1 nm and 1 μm, and more preferably have a lateral dimension between 10 nm and The range between 40 nm, and the range of the longitudinal dimension between 10 nm and 400 nm. Further, the anisotropic metal nanoparticles have an aspect ratio of between 1.1 and 10. Under the foregoing range, the nanoparticles exhibit a relatively high scattering rate, and the double plasma resonance band can be controlled in the visible light region, which is advantageous for achieving emission enhancement of the luminescent material.

在下文中,本發明實施例的例子將會參考所附圖式詳細描述,使該內容可為本領域熟知者容易實現。 In the following, examples of the embodiments of the present invention will be described in detail with reference to the accompanying drawings, which can be easily implemented by those skilled in the art.

圖1a及圖1b係用於解釋根據本發明使用非等向性金屬奈米粒子-介電質核殼奈米結構,具有改良發射效率之光轉換白光發光裝置的概念的示意圖。具體而言,圖1a係示意性地繪示具有非等向性金屬奈米粒 子-介電質核殼奈米結構和發光材料彼此組合的複合物,且圖1b係示意性地繪示具有改良發射效率之發光裝置藉由引入複合物至發光層的原理。光轉換白光發光裝置可包含基板或LED晶片,發光材料及非等向性金屬奈米粒子-介電質的複合物以及透明高分子基質。 1a and 1b are schematic views for explaining the concept of a light-converting white light-emitting device having improved emission efficiency using an anisotropic metal nanoparticle-dielectric core-shell nanostructure according to the present invention. Specifically, FIG. 1a schematically shows an anisotropic metal nanoparticle. A composite of a sub-dielectric core-shell nanostructure and a luminescent material combined with each other, and FIG. 1b schematically illustrates the principle of introducing a composite to a light-emitting layer by a light-emitting device having improved emission efficiency. The light-converting white light-emitting device may comprise a substrate or an LED chip, a luminescent material and an anisotropic metal nanoparticle-dielectric composite and a transparent polymer matrix.

在圖1a中,自LED晶片產生的藍光(或近紫外光)係為發光材料所吸收並轉換為不被發光材料吸收的紅、綠、藍或具有長波長的黃光輻射,藉此實行LED晶片輻射色彩的白光。舉例而言,白光可透過使用具有黃色發射波長(如YAG或矽酸鹽)的非有機螢光粉與藍光(或近紫外光)LED之藍色與黃色發射波長的組合而實行。 In FIG. 1a, the blue light (or near-ultraviolet light) generated from the LED wafer is absorbed by the luminescent material and converted into red, green, blue or long-wavelength yellow light radiation that is not absorbed by the luminescent material, thereby implementing the LED. The wafer emits white light of color. For example, white light can be performed by using a combination of a non-organic phosphor having a yellow emission wavelength (such as YAG or citrate) and a blue and yellow emission wavelength of a blue (or near-ultraviolet) LED.

此外,隨著最近所需的高色純度發光裝置,係使用具有紅、綠、藍之各種輻射色彩的半導體量子點。舉例而言,已有提出用於實行較高色純度白光LED的一種技術,藉由引入YAG或矽酸鹽為基礎的黃色非有機螢光粉作為發光材料。 Further, with the recently required high color purity light-emitting device, semiconductor quantum dots having various radiation colors of red, green, and blue are used. For example, a technique for implementing a higher color purity white LED has been proposed as a luminescent material by introducing YAG or citrate-based yellow non-organic phosphor powder.

在本發明,在市售的發光材料中,YAG螢光粉與磷化銦/硫化鋅量子點係用為滿足上述條件的發光材料,且可使用各種發光材料而不論所用材料的種類。 In the present invention, among commercially available luminescent materials, YAG phosphor powder and indium phosphide/zinc sulfide quantum dot system are used as luminescent materials satisfying the above conditions, and various luminescent materials can be used regardless of the kind of materials used.

在本文中,發光材料的吸收、激發以及發射特性現在將參考圖2簡短地描述。圖2a係繪示YAG螢光粉的激發與發射光譜之圖形,其中最大吸收峰值係位在450nm,且最大發射峰值係位在540nm。圖2b係繪示磷化銦/硫化鋅量子點的吸收與發射光譜之圖形,其中吸收係自600nm或600nm以下開始,發射係自400nm明顯增加,且最大發射峰值係位在630nm。 Herein, the absorption, excitation and emission characteristics of the luminescent material will now be briefly described with reference to FIG. Figure 2a is a graph showing the excitation and emission spectra of a YAG phosphor with a maximum absorption peak at 450 nm and a maximum emission peak at 540 nm. Figure 2b is a graph showing the absorption and emission spectra of indium phosphide/zinc sulfide quantum dots, where the absorption system starts from 600 nm or less, the emission system increases significantly from 400 nm, and the maximum emission peak position is at 630 nm.

在本發明,使用非等向性金屬奈米粒子的雙電漿共振現象以實行具有改良發射效率的白光LED。也就是說,為了實行以藍光LED晶片為基礎白光LED,係設計與合成非等向性金屬奈米粒子的電漿帶,使發光材料的吸收、激發以及發射波長與藍光LED晶片的發射波長之間得以有 效光譜重疊。 In the present invention, a double plasma resonance phenomenon of anisotropic metal nanoparticles is used to carry out a white LED having improved emission efficiency. That is to say, in order to implement a white LED based on a blue LED chip, a plasma strip of non-isotropic metal nanoparticles is designed and synthesized to make the absorption, excitation and emission wavelength of the luminescent material and the emission wavelength of the blue LED chip. Have room The effect spectrum overlaps.

非等向性金屬奈米粒子可包含金屬,例如銀、金、鋁、銅、鋰、鈀、鉑及其合金。根據本發明的發光裝置,非等向性金屬奈米粒子的源金屬種類可考慮光譜重疊而選擇。非等向性金屬奈米粒子的源金屬種類可根據發光裝置發射波長的位置以及發光材料吸收和發射波長的位置而選擇,藉此調整外觀比。 The anisotropic metal nanoparticles may comprise a metal such as silver, gold, aluminum, copper, lithium, palladium, platinum, and alloys thereof. According to the light-emitting device of the present invention, the source metal species of the anisotropic metal nanoparticles can be selected in consideration of spectral overlap. The source metal species of the non-isotropic metal nanoparticles can be selected according to the position of the emission wavelength of the light-emitting device and the position of the absorption and emission wavelengths of the light-emitting material, thereby adjusting the aspect ratio.

圖3係繪示具有在近紫外光、可見光以及近紅外光區之兩種或更多種表面電漿帶的非等向性金屬奈米粒子的穿透式電子顯微影像。圖4係繪示對應穿透式電子顯微影像的紫外光-可見光光譜。 3 is a transmission electron micrograph of anisotropic metal nanoparticles having two or more surface plasma strips in the near-ultraviolet, visible, and near-infrared regions. Figure 4 is a graph showing the ultraviolet-visible spectrum of a corresponding transmission electron microscope image.

具體而言,圖3a係繪示藉由基於金晶種與加入的金前驅物一起生長而合成之金奈米柱的穿透式電子顯微影像,圖3b與圖3c係繪示藉由基於金奈米柱晶種與加入的銀前驅物所合成之金-銀核殼奈米柱。在圖3b與圖3c中,黑色部分表示金核,而圍繞金核的部分為銀殼。在本文中,銀殼的厚度可藉由控制成為核的金奈米柱與銀前驅物的相對比值而控制。隨著銀前驅物加入的量增加,銀殼的厚度自圖3b逐漸增加為圖3c所示。 Specifically, FIG. 3a illustrates a transmission electron micrograph of a gold nano column synthesized by gold seed crystal growth with an added gold precursor, and FIGS. 3b and 3c are illustrated by gold-based A gold-silver core-shell nanocolumn synthesized by a nano-pillar seed crystal and a silver precursor added thereto. In Figures 3b and 3c, the black portion represents the gold core and the portion surrounding the gold core is the silver shell. In this context, the thickness of the silver shell can be controlled by controlling the relative ratio of the gold nanorods that become nuclei to the silver precursor. As the amount of silver precursor added increases, the thickness of the silver shell gradually increases from Figure 3b to that shown in Figure 3c.

圖4係繪示對應圖3所示穿透式電子顯微影像之非等向性金屬奈米粒子的紫外光-可見光光譜。具體而言,圖4a係繪示對應圖3a所示穿透式電子顯微影像之金奈米柱的紫外光-可見光光譜。金奈米柱具有橫向電漿帶(transverse band,T-band)與縱向電漿帶(longitudinal band,L-band)分別位於512nm及855nm。圖4b係繪示對應圖3b所示穿透式電子顯微影像之金奈米柱的紫外光-可見光光譜。每一金銀核殼奈米柱具有橫向電漿帶與縱向電漿帶分別位於450nm及600nm。圖4c係繪示對應圖3c所示穿透式電子顯微影像之金奈米柱的紫外光-可見光光譜。每一奈米柱具有橫向電漿帶與縱向電漿帶分別位於450nm及565nm。也就是說,奈米粒子的表面電漿帶可藉由調整金奈米柱與銀前驅物之相對比值而控制。 4 is a graph showing the ultraviolet-visible spectrum of the anisotropic metal nanoparticles corresponding to the transmission electron micrograph shown in FIG. 3. Specifically, FIG. 4a illustrates the ultraviolet-visible spectrum of the gold nano column corresponding to the transmission electron micrograph shown in FIG. 3a. The Jinnai column has a transverse band (T-band) and a longitudinal band (L-band) at 512 nm and 855 nm, respectively. Figure 4b shows the ultraviolet-visible spectrum of the gold nano column corresponding to the transmission electron micrograph shown in Figure 3b. Each gold-silver core-shell nanocolumn has a transverse plasma zone and a longitudinal plasma zone at 450 nm and 600 nm, respectively. Figure 4c shows the ultraviolet-visible spectrum of a gold nanocolumn column corresponding to the transmission electron micrograph shown in Figure 3c. Each nanocolumn has a transverse plasma belt and a longitudinal plasma belt at 450 nm and 565 nm, respectively. That is to say, the surface plasma belt of the nanoparticle can be controlled by adjusting the relative ratio of the gold nano column to the silver precursor.

也就是說,如圖4a所示,從金奈米柱的表面電漿帶作為晶 種,隨著銀前驅物加入的量增加,奈米粒子的表面電漿帶逐漸朝短波長區移動,最後形成於可見光區且可準確地控制。 That is, as shown in Figure 4a, the surface of the plasma column from the gold nano column is used as the crystal As the amount of silver precursor added increases, the surface plasma band of the nanoparticle gradually moves toward the short wavelength region, and finally forms in the visible region and can be accurately controlled.

在本發明的實施例中,用於提供LED晶片和發光材料的吸收、激發以及發射波長與金屬奈米粒子的表面電漿帶之間的光譜重疊,使用金銀核殼奈米結構係作為舉例,本發明的觀點並不限於此。 In an embodiment of the invention, the spectral overlap between the absorption, excitation, and emission wavelengths of the LED wafer and the luminescent material and the surface plasma strip of the metal nanoparticle is provided, using a gold-silver core-shell nanostructure as an example, The viewpoint of the present invention is not limited to this.

圖5係示意性地繪示LED晶片和發光材料的吸收、激發與發射波長與非等向性金屬奈米粒子的表面電漿帶之間的光譜重疊。 Figure 5 is a schematic illustration of the spectral overlap between the absorption, excitation and emission wavelengths of the LED wafer and the luminescent material and the surface plasma strip of the anisotropic metal nanoparticles.

如圖5 a所示,為了改善包含藍光LED晶片和YAG螢光粉的發光裝置的發射效率,係應用非等向性金屬奈米粒子。在此情形,較佳使用圖4c所示之可與藍光LED晶片和YAG螢光粉的光譜有效地重疊的金銀奈米柱。 As shown in FIG. 5a, in order to improve the emission efficiency of a light-emitting device including a blue LED chip and a YAG phosphor, an anisotropic metal nanoparticle is applied. In this case, a gold-silver nanometer column which can effectively overlap the spectrum of the blue LED chip and the YAG phosphor powder as shown in Fig. 4c is preferably used.

如圖5 b所示,在包含藍光LED晶片和磷化銦/硫化鋅量子點的發光裝置中,較佳使用圖4b所示之可與藍光LED晶片和磷化銦/硫化鋅量子點的光譜有效地重疊的金銀奈米柱。 As shown in FIG. 5b, in a light-emitting device comprising a blue LED chip and an indium phosphide/zinc sulfide quantum dot, the spectrum of the blue LED chip and the indium phosphide/zinc sulfide quantum dot shown in FIG. 4b is preferably used. Effectively overlapping gold and silver nano columns.

可選地,如圖5所示,每一LED晶片、發光材料以及非等向性金屬奈米粒子之間各自的組合,僅係提供用於光譜重疊最佳化的實施例之說明。透過不同發光材料和非等向性金屬奈米粒子的組合,發射效率的增強係可預期。 Alternatively, as shown in Figure 5, the respective combination between each LED wafer, luminescent material, and anisotropic metal nanoparticles provides only an illustration of an embodiment for spectral overlap optimization. An increase in emission efficiency can be expected by a combination of different luminescent materials and non-isotropic metal nanoparticles.

在本發明中,為了改良發光裝置的發射效率,在非等向性金屬奈米粒子和發光材料引入發光層之前,非等向性金屬奈米粒子表面係塗覆介電材料,藉此製造非等向性金屬奈米粒子-介電質核殼奈米結構。 In the present invention, in order to improve the emission efficiency of the light-emitting device, before the non-isotropic metal nanoparticles and the light-emitting material are introduced into the light-emitting layer, the surface of the anisotropic metal nanoparticles is coated with a dielectric material, thereby manufacturing a non- Isotropic metal nanoparticle-dielectric core-shell nanostructure.

奈米結構可使發光材料與金屬奈米粒子以介電殼厚度維持固定間隔,藉此可使發光材料位於金屬奈米粒子表面上的局部電場增強,且將磷光強度增強最大化。另外,奈米結構的介電殼在局部產生高溫熱的發光裝置中可維持非等向性金屬奈米結構的形狀,且抑制能量從激發發光材料轉移至金屬奈米粒子的表面,藉此防止發光材料淬滅。 The nanostructure allows the luminescent material and the metal nanoparticle to be maintained at a fixed interval in the thickness of the dielectric shell, whereby the local electric field of the luminescent material on the surface of the metal nanoparticle is enhanced and the enhancement of phosphorescence intensity is maximized. In addition, the dielectric shell of the nanostructure can maintain the shape of the anisotropic metal nanostructure in a light-emitting device that locally generates high-temperature heat, and suppress the transfer of energy from the excitation luminescent material to the surface of the metal nanoparticle, thereby Prevent the luminescent material from quenching.

在非等向性金屬奈米粒子-介電質核殼奈米結構,介電材料的例子可包含二氧化矽、三氧化二鋁、二氧化鈦、氧化鎂、二氧化鋯、氧化鉛、三氧化二硼、氧化鈣及氧化鋇,其係可根據介電材料的折射率和光學性質而使用。 In the anisotropic metal nanoparticle-dielectric core-shell nanostructure, examples of the dielectric material may include ceria, alumina, titania, magnesia, zirconium dioxide, lead oxide, and trioxide. Boron, calcium oxide and cerium oxide can be used depending on the refractive index and optical properties of the dielectric material.

圖6係繪示非等向性金屬奈米粒子-介電質核殼奈米結構的穿透式電子顯微影像。具體而言,圖6a和圖6 b係繪示金-銀-二氧化矽核殼殼奈米結構,其具有塗覆二氧化矽殼的奈米粒子表面以及使用圖3b及圖3c所示金銀奈米柱。形成非等向性金屬奈米粒子-介電質核殼奈米結構的方法將參考例示的例子來描述。 Figure 6 is a diagram showing a transmission electron micrograph of an anisotropic metal nanoparticle-dielectric core nanostructure. Specifically, FIGS. 6a and 6b illustrate a gold-silver-ceria core shell nanostructure having a surface of a nanoparticle coated with a ceria shell and using the gold and silver shown in FIGS. 3b and 3c. Nano column. The method of forming the anisotropic metal nanoparticle-dielectric core-shell nanostructure will be described with reference to the illustrated examples.

如圖6所示,黑色部分代表金核,圍繞金核的灰色部分代表銀殼,且圍繞銀殼相對灰白的部分代表二氧化矽殼 As shown in Fig. 6, the black portion represents the gold core, the gray portion around the gold core represents the silver shell, and the relatively gray portion around the silver shell represents the ceria shell.

非等向性金屬奈米粒子-介電質核殼奈米結構與要引入發光裝置的發光層之發光材料可簡單混合,或與要引入的發光材料以奈米結構和發光材料之複合物的形式組合(見圖1b)。 The non-isotropic metal nanoparticle-dielectric core-shell nanostructure can be simply mixed with the luminescent material of the luminescent layer to be introduced into the illuminating device, or with the luminescent material to be introduced as a composite of the nanostructure and the luminescent material. Form combination (see Figure 1b).

如圖1 a所示,奈米結構和發光材料的複合物指的是非等向性金屬奈米粒子-介電質核殼奈米結構與發光材料之間非共價鍵相互作用的產物。 As shown in Figure 1a, the composite of the nanostructure and the luminescent material refers to the product of the non-covalent bond interaction between the anisotropic metal nanoparticle-dielectric core-shell nanostructure and the luminescent material.

也就是說,奈米結構表面係使用包含官能基(例如胺基、硫醇及環氧化合物)的矽烷或鈦酸酯偶合劑來改性,然後與發光材料混合,藉此形成具有非等向性金屬奈米粒子-介電質核殼奈米結構與發光材料彼此組合的複合物。 That is, the surface of the nanostructure is modified with a decane or titanate coupling agent containing a functional group such as an amine group, a thiol, and an epoxy compound, and then mixed with a luminescent material, thereby forming an anisotropic The metal nanoparticle-composite of a dielectric core-shell nanostructure and a luminescent material combined with each other.

舉例而言,奈米結構二氧化矽表面係使用具有胺基,例如3-氨基丙基-三甲氧基矽烷((3-Aminopropyl)trimethoxysilane,APTMS),的矽烷偶合劑來改性,使得在二氧化矽表面發生矽烷化,且經由胺基和奈米結構的組合,透過對發光材料表面(例如YAG螢光粉或磷化銦/硫化鋅量子點)非共價鍵吸引而形成複合物。 For example, the nanostructured cerium oxide surface is modified with a decane coupling agent having an amine group such as 3-aminopropyltrimethoxysilane (APTMS), such that The surface of the cerium oxide is decanolated, and a complex is formed by a non-covalent bond to the surface of the luminescent material (for example, YAG fluorescing powder or indium phosphide/zinc sulfide quantum dot) via a combination of an amine group and a nanostructure.

此外,發光材料的表面可先以矽烷或鈦酸酯偶合劑來改性。在此情形,奈米結構和發光材料的複合物可以類似上述方式來製造。 Further, the surface of the luminescent material may be first modified with a decane or titanate coupling agent. In this case, the composite of the nanostructure and the luminescent material can be manufactured in the same manner as described above.

在以此方式形成複合物的情形,發光材料可一直位於非等向性金屬奈米粒子周圍的強電場,其係有利於磷光強度的增強。 In the case where the composite is formed in this manner, the luminescent material can always be located in a strong electric field around the anisotropic metal nanoparticles, which is advantageous for the enhancement of the phosphorescence intensity.

偶合劑具有包含至少兩種不同反應群之矽烷偶合劑[RnSiX4-n]或鈦酸酯偶合劑[RnTiX4-n]之結構,X係選自由烷氧基、醯氧基、胺基及氯所組成的群組之一個或更多個可水解的官能基,R係包含一個或更多個由胺基、硫醇及環氧化合物所組成的非水解官能基,且n係介於1至3之間的整數。 The coupling agent has a structure of a decane coupling agent [R n SiX 4-n ] or a titanate coupling agent [R n TiX 4-n ] comprising at least two different reaction groups, and the X system is selected from the group consisting of an alkoxy group and a decyloxy group. One or more hydrolyzable functional groups of the group consisting of an amine group and a chlorine group, the R system comprising one or more non-hydrolyzable functional groups composed of an amine group, a thiol and an epoxy compound, and n An integer between 1 and 3.

此外,正如非等向性金屬奈米粒子-介電質核殼奈米結構的殼,偶合劑亦可使發光材料和非等向性金屬奈米粒子彼此分隔一預定距離。 Further, as with the shell of the anisotropic metal nanoparticles-dielectric core-shell nanostructure, the coupling agent may also separate the luminescent material and the anisotropic metal nanoparticles from each other by a predetermined distance.

圖7係繪示包含非等向性金屬奈米粒子-介電質核殼奈米結構與一起引入其中之發光材料的溶液的發射光譜的圖形。具體而言,圖7係繪示包含非等向性金屬奈米粒子-介電質核殼奈米結構和發光材料彼此組合所形成的複合物溶液的發射光譜。在此,用於與藍光LED晶片組合激發波長係固定於442nm。 Figure 7 is a graph showing the emission spectrum of a solution comprising an anisotropic metal nanoparticle-dielectric core-shell nanostructure and a luminescent material introduced therein together. Specifically, FIG. 7 illustrates an emission spectrum of a complex solution comprising an anisotropic metal nanoparticle-dielectric core-shell nanostructure and a luminescent material combined with each other. Here, the excitation wavelength band used for combination with the blue LED chip is fixed at 442 nm.

圖7 a係繪示具有圖6b所示之非等向性金屬奈米粒子-介電質奈米結構和YAG螢光粉彼此組合之溶液的發射光譜。在本文中,相較於沒有引入奈米結構的磷光強度(虛線表示),有引入奈米結構的磷光強度(實線表示)在YAG螢光粉的最大發射峰值(亦即550nm)係增加約2.6倍。圖7 b係繪示具有圖6a所示之非等向性金屬奈米粒子-介電質奈米結構和磷化銦/硫化鋅量子點彼此組合之溶液的發射光譜。在本文中,相較於沒有引入奈米結構的磷光強度(虛線表示),有引入奈米結構的磷光強度(實線表示)在磷化銦/硫化鋅量子點的最大發射峰值(亦即630nm)係增加約2.4倍。 Figure 7a is a graph showing the emission spectrum of a solution having the combination of the anisotropic metal nanoparticles-dielectric nanostructure and YAG phosphor shown in Figure 6b. In this paper, the phosphorescence intensity (indicated by the solid line) introduced into the nanostructure is increased at the maximum emission peak (ie, 550 nm) of the YAG phosphor compared to the phosphorescence intensity (indicated by the dotted line) in which the nanostructure is not introduced. 2.6 times. Figure 7b is an emission spectrum of a solution having the combination of the anisotropic metal nanoparticles-dielectric nanostructure and the indium phosphide/zinc sulfide quantum dots shown in Figure 6a. In this paper, the phosphorescence intensity (indicated by the solid line) introduced into the nanostructure is the maximum emission peak of the indium phosphide/zinc sulfide quantum dot (ie 630 nm) compared to the phosphorescence intensity (indicated by the dashed line) without the introduction of the nanostructure. The system is increased by about 2.4 times.

同時,在使用等向性金屬奈米球的情形,等向性金屬奈米 球表現與非等向性金屬不同的特性。圖8a係繪示金屬奈米球-介電質核殼奈米結構的穿透式電子顯微影像,其中黑色部分代表金奈米球而圍繞金奈米球相對亮的部分代表二氧化矽殼。不像非等向性金屬奈米粒子,圖8b係繪示金屬奈米球在約530nm的單一電漿帶。用於形成金屬奈米球-介電質核殼奈米結構的方法將透過比較例詳細描述。 At the same time, in the case of using isotropic metal nanospheres, isotropic metal nanoparticles The ball behaves differently than the non-isotropic metal. Figure 8a is a transmission electron micrograph of a metal nanosphere-dielectric core-shell nanostructure, in which the black portion represents the gold nanosphere and the relatively bright portion around the gold nanosphere represents the ceria shell. . Unlike non-isotropic metal nanoparticles, Figure 8b shows a single plasma strip of metal nanosphere at about 530 nm. The method for forming the metal nanosphere-dielectric core-shell nanostructure will be described in detail through comparative examples.

圖9係繪示包含金屬奈米球-介電質核殼奈米結構與彼此組合之發光材料之複合物的溶液(如圖8所示)的發射光譜的圖形,其係藉由與非等向性奈米粒子和發光材料耦合之相同方法來製造。在此,激發波長係固定於442nm,以與使用非等向性奈米結構的情形做比較。 Figure 9 is a graph showing the emission spectrum of a solution containing a composite of a metal nanosphere-dielectric core-shell nanostructure and a luminescent material combined with each other (as shown in Fig. 8), which is represented by unequal It is produced by the same method of coupling the nanoparticles to the luminescent material. Here, the excitation wavelength is fixed at 442 nm to compare with the case of using an anisotropic nanostructure.

圖9 a係繪示具有圖8a所示之等向性金屬奈米粒子-介電質奈米結構和YAG螢光粉彼此組合之溶液的發射光譜。不像圖7a,YAG螢光粉的磷光強度沒有明顯變化,且當引入奈米結構時,磷光強度(虛線表示)在YAG螢光粉的最大發射峰值(亦即550nm)係稍微減小。如圖9b中使用磷化銦/硫化鋅量子點所確認,當引入奈米結構,磷光強度(實線表示)正如圖9a所示情形,在約630nm係稍微減小。 Figure 9a is a graph showing the emission spectrum of a solution having an isotropic metal nanoparticle-dielectric nanostructure and YAG phosphor powder combined with each other as shown in Figure 8a. Unlike Figure 7a, the phosphorescence intensity of the YAG phosphor did not change significantly, and when the nanostructure was introduced, the phosphorescence intensity (indicated by the dashed line) was slightly reduced at the maximum emission peak of the YAG phosphor (i.e., 550 nm). As confirmed by the use of indium phosphide/zinc sulfide quantum dots in Fig. 9b, when a nanostructure was introduced, the phosphorescence intensity (indicated by the solid line) was slightly reduced at about 630 nm as shown in Fig. 9a.

也就是說,等向性金屬奈米球一般係用於發光材料的激發增強或發射增強。藉由適當調整材料、尺寸、形狀、使用的奈米粒子的激發性質、發光材料表面電漿帶的吸收、與發射波長的光譜重疊或與激發的光譜重疊,發光材料磷光強度的增強係可預期。 That is to say, isotropic metal nanospheres are generally used for excitation enhancement or emission enhancement of luminescent materials. The enhancement of the phosphorescence intensity of the luminescent material can be expected by appropriately adjusting the material, size, shape, the excitation properties of the nanoparticles used, the absorption of the plasma band on the surface of the luminescent material, the spectral overlap with the emission wavelength, or the overlap with the excited spectrum. .

同時,即使使用具有相同形狀的非等向性金屬奈米粒子,透過圖7所示之包含非等向性金屬奈米粒子-介電質核殼奈米結構和發光材料之複合物實行的發射增強係不能預期,除非金屬奈米粒子和發光材料之間的距離適當地調整。圖10係繪示包含無介電殼之非等向性金屬奈米粒子(如圖3所示)與一起引入之發光材料之複合物溶液的發射光譜的圖形。在此,激發波長係固定於442nm,以與使用非等向性金屬奈米粒子-介電質核殼奈米結構和發光材料做比較。詳細的實驗方法將透過比較例詳細描述。 Meanwhile, even if an anisotropic metal nanoparticle having the same shape is used, the emission is carried out through the composite comprising the anisotropic metal nanoparticle-dielectric core-shell nanostructure and the luminescent material shown in FIG. The reinforcement is not expected unless the distance between the metal nanoparticles and the luminescent material is properly adjusted. Figure 10 is a graph showing the emission spectrum of a composite solution comprising an anisotropic metal nanoparticles (as shown in Figure 3) without a dielectric shell and a luminescent material introduced together. Here, the excitation wavelength is fixed at 442 nm for comparison with the use of an anisotropic metal nanoparticles-dielectric core-shell structure and a luminescent material. Detailed experimental methods will be described in detail through comparative examples.

圖10a係繪示具有圖3c所示之非等向性金屬奈米粒子和YAG螢光粉彼此組合之溶液的發射光譜之溶液的發射光譜。如圖10a所確認,磷光強度在無介電殼YAG螢光粉的最大發射峰值(亦即550nm)係減小。圖10b係繪示具有圖3b所示之非等向性金屬奈米粒子和磷化銦/硫化鋅量子點彼此組合之溶液的發射光譜之溶液的發射光譜。如圖10b所確認,磷光強度(實線表示)正如圖10a所示情形,在約630nm減小。 Figure 10a is a graph showing the emission spectrum of a solution having an emission spectrum of a solution in which the anisotropic metal nanoparticles and YAG phosphors shown in Figure 3c are combined with each other. As confirmed in Fig. 10a, the phosphorescence intensity is reduced at the maximum emission peak (i.e., 550 nm) of the dielectric-free shell YAG phosphor. Figure 10b is a graph showing the emission spectrum of a solution having an emission spectrum of a solution in which the anisotropic metal nanoparticles shown in Figure 3b and the indium phosphide/zinc sulfide quantum dots are combined with each other. As confirmed in Fig. 10b, the phosphorescence intensity (indicated by the solid line) is decreasing at about 630 nm as shown in Fig. 10a.

也就是說,在使用無介電質二氧化矽殼塗覆之非等向性金屬奈米粒子的情形,發光材料可能因能量自激發的發光材料轉移至金屬奈米粒子表面而淬滅。因此,為了防止發光材料在發光材料發射增強最佳化時淬滅,有利地使用圖6所示之非等向性金屬奈米粒子-介電質核殼奈米結構。 That is, in the case of using an anisotropic metal nanoparticles coated with a dielectric-free ceria shell, the luminescent material may be quenched by the transfer of energy from the excited luminescent material to the surface of the metal nanoparticles. Therefore, in order to prevent quenching of the luminescent material when the luminescent material emission enhancement is optimized, the anisotropic metal nanoparticles-dielectric core-shell nanostructure shown in Fig. 6 is advantageously used.

可與光轉換白光發光裝置使用的發光材料,無論是有機或無機的發光材料種類,可包含致能磷光強度增強的發光材料,包含半導體量子點。為了達成高色純度白光LED,可使用單一發光材料或複數發光材料。在光轉換白光發光裝置中,發光材料可使用發出近紫外光或藍光之含氮的半導體材料。此外,各種能發射紅光、綠光等的發光材料亦可使用。 A luminescent material that can be used with a light-converting white light-emitting device, whether of an organic or inorganic luminescent material, can comprise a luminescent material that enhances phosphorescence intensity enhancement, including semiconductor quantum dots. In order to achieve a high color purity white LED, a single luminescent material or a plurality of luminescent materials may be used. In the light-converting white light-emitting device, the luminescent material may use a nitrogen-containing semiconductor material that emits near-ultraviolet light or blue light. In addition, various luminescent materials capable of emitting red light, green light, and the like can also be used.

為了使用非等向性金屬奈米粒子-介電質核殼奈米結構製造具有增強發射效率的光轉換白光發光裝置,合成的非等向性金屬奈米粒子-介電質奈米結構與發光材料係與透光聚合物(例如聚甲基丙烯酸甲脂、環氧化合物或矽氧樹脂)混合,以形成薄膜,且該薄膜係位於近紫外光或藍光LED晶片上。可選地,為了製造光轉換白光發光裝置,混合溶液可均勻地塗覆於LED晶片,其將會舉例詳細描述。 In order to fabricate a light-converting white light-emitting device with enhanced emission efficiency using an anisotropic metal nanoparticle-dielectric core-shell nanostructure, a synthetic anisotropic metal nanoparticle-dielectric nanostructure and luminescence The material is mixed with a light transmissive polymer (eg, polymethyl methacrylate, epoxy compound, or epoxy resin) to form a film, and the film is on a near-ultraviolet or blue LED wafer. Alternatively, in order to manufacture a light-converting white light emitting device, the mixed solution may be uniformly applied to the LED wafer, which will be described in detail by way of example.

如圖1b所示,在透過近紫外光或藍光LED晶片和黃光發光材料的組合而實行白光LED的情形,金-銀-二氧化矽奈米粒子和發光材料係散佈於位在發光層上的透明聚合物基材中。在本文中,非等向性金屬奈米粒子不限於金銀核殼奈米結構,且用於形成兩種或更多種在近紫外光 或可見光區之表面電漿帶的金屬奈米粒子可用為非等向性金屬奈米粒子。同時,在實行高色純度白光LED的情形,具有不同發射波長的複數發光材料可引入發光層。 As shown in FIG. 1b, in the case where a white LED is implemented by a combination of a near-ultraviolet light or a blue LED chip and a yellow light-emitting material, gold-silver-cerium oxide nanoparticles and a light-emitting material are dispersed on the light-emitting layer. In a transparent polymer substrate. Herein, the anisotropic metal nanoparticles are not limited to the gold-silver core-shell nanostructure, and are used to form two or more kinds of near-ultraviolet light. Or the metal nanoparticle of the surface plasma zone of the visible light region may be used as an anisotropic metal nanoparticle. Meanwhile, in the case of implementing a high color purity white LED, a plurality of luminescent materials having different emission wavelengths may be introduced into the luminescent layer.

在此情形,如圖11所示,發光材料可藉由製備非等向性金屬奈米粒子-介電質核殼奈米結構和綠光發光量子點的複合物,或是非等向性金屬奈米粒子-介電質核殼奈米結構和紅光發光量子點的複合物而形成。可選地,發光層可藉由製備金屬奈米粒子-介電質核殼奈米結構和黃光發光無機螢光粉的複合物,或是金屬奈米粒子-介電質核殼奈米結構和紅光發光量子點的複合物而形成。與圖1b所示情形類似的方式,可藉由形成白光LED製造具有改良發射效率之高色純度白光LED。 In this case, as shown in FIG. 11, the luminescent material can be prepared by preparing an anisotropic metal nanoparticle-dielectric core-shell nanostructure and a composite of green light-emitting quantum dots, or an anisotropic metal naphthalene. A rice particle-dielectric core-shell nanostructure and a complex of red-emitting quantum dots are formed. Alternatively, the luminescent layer can be prepared by a composite of a metal nanoparticle-dielectric core-shell nanostructure and a yellow-light-emitting inorganic phosphor, or a metal nanoparticle-dielectric core-shell nanostructure. Formed with a composite of red light-emitting quantum dots. In a manner similar to that shown in Figure 1b, a high color purity white LED with improved emission efficiency can be fabricated by forming white LEDs.

範例example 範例1:合成非等向性金屬奈米粒子Example 1: Synthesis of anisotropic metal nanoparticles

具有外觀比的非等向性金屬奈米粒子被合成以形成用於控制表面電漿帶的金奈米柱。首先,合成金晶種。為了這個目的,加入硼氫化鈉(NaBH4)(0.01M,0.6ml)至四氯合金酸(HAuCl4)(0.01M,0.25ml)和溴化十六烷基三甲銨(CTAB)(0.1M,9ml)的混合溶液中。接著劇烈攪拌2分鐘並將生成物儲存於維持29℃的恆溫箱2小時。接著,製備金奈米柱成長溶液。當攪拌四氯合金酸(0.01M,2ml)、硝酸銀(AgNO3)(0.01M,0.4ml)和溴化十六烷基三甲銨(0.1M,40ml)的混合溶液時,將抗壞血酸(0.1M,0.32ml)和氯化氫(1.0M,0.8ml)的水溶液依序加入混合溶液中。當持續攪拌混合溶液,將0.01ml製備的晶種溶液加入生成物。又攪拌10秒後,停止攪拌然後儲存於維持29℃的恆溫箱6小時。 Anisotropic metal nanoparticles having an aspect ratio are synthesized to form a gold nano column for controlling a surface plasma belt. First, synthesize gold seeds. For this purpose, sodium borohydride (NaBH 4 ) (0.01 M, 0.6 ml) was added to tetrachloroalloy acid (HAuCl 4 ) (0.01 M, 0.25 ml) and cetyltrimethylammonium bromide (CTAB) (0.1 M) , 9 ml) in a mixed solution. Stirring was then vigorously carried out for 2 minutes and the resultant was stored in an incubator maintained at 29 ° C for 2 hours. Next, a gold nano column growth solution was prepared. Ascorbic acid (0.1M) was stirred when a mixed solution of tetrachloroalloy (0.01 M, 2 ml), silver nitrate (AgNO 3 ) (0.01 M, 0.4 ml) and cetyltrimethylammonium bromide (0.1 M, 40 ml) was stirred. An aqueous solution of 0.32 ml) and hydrogen chloride (1.0 M, 0.8 ml) was sequentially added to the mixed solution. While the mixed solution was continuously stirred, 0.01 ml of the prepared seed solution was added to the resultant. After stirring for another 10 seconds, the stirring was stopped and stored in an incubator maintained at 29 ° C for 6 hours.

為了將雙電漿共振帶精確控制於可見光區,係合成金銀核殼奈米結構。金奈米柱溶液以10000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且將收集的沈澱層重新分散於氯化十六烷基三甲銨(CTAC)(0.08M,40ml)溶液中。10ml的金奈米柱溶液係加到硝酸銀(0.01M, 2ml)和抗壞血酸(0.1M,0.5ml)的水溶液中,接著使生成物未受擾動於維持在80℃的油浴中3小時,藉此合成圖3b所示之金銀核殼奈米結構。在反應中,硝酸銀(0.01M,3ml)和抗壞血酸(0.1M,0.5ml)水溶液的加入造成合成圖3c所示之金銀核殼奈米結構。銀殼的厚度係可藉由調整加入硝酸銀的量而調整。金銀奈米柱溶液以8000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且將收集的沈澱層重新分散於三蒸水中。 In order to accurately control the double plasma resonance band in the visible light region, a gold-silver core-shell nanostructure is synthesized. The gold nano column solution was centrifuged at 10,000 rpm for 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the collected precipitate layer was redispersed in a solution of cetyltrimethylammonium chloride (CTAC) (0.08 M, 40 ml). 10 ml of gold nano column solution is added to silver nitrate (0.01M, In 2 ml) and an aqueous solution of ascorbic acid (0.1 M, 0.5 ml), the resultant was then undisturbed in an oil bath maintained at 80 ° C for 3 hours, thereby synthesizing the gold-silver core-shell nanostructure shown in Fig. 3b. In the reaction, the addition of an aqueous solution of silver nitrate (0.01 M, 3 ml) and ascorbic acid (0.1 M, 0.5 ml) resulted in the synthesis of the gold-silver core-shell nanostructure shown in Fig. 3c. The thickness of the silver shell can be adjusted by adjusting the amount of silver nitrate added. The gold-silver nano-column solution was centrifuged at 8000 rpm for 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the collected precipitate layer was redispersed in the tri-distilled water.

範例2:合成非等向性金屬奈米粒子-介電質核殼奈米結構Example 2: Synthesis of anisotropic metal nanoparticles - dielectric core-shell nanostructure

製備在範例1中合成之包含0.1wt%的金銀非等向性奈米柱水溶液。用於塗覆二氧化矽,10μl的硫醇丙烷基三乙氧基矽烷(MPTMS)溶液和1ml乙醇的混合溶液加到金銀非等向性奈米柱溶液,接著攪拌2小時。將矽酸鈉溶液(2.0M,40μl)加到混合溶液中並於室溫中攪拌24小時,藉此合成金-銀-二氧化矽核殼奈米結構。 A 0.1 wt% gold-silver anisotropic nano column aqueous solution synthesized in Example 1 was prepared. A mixed solution for coating cerium oxide, 10 μl of a thiol propane-triethoxy decane (MPTMS) solution and 1 ml of ethanol was added to a gold-silver anisotropic column solution, followed by stirring for 2 hours. A sodium citrate solution (2.0 M, 40 μl) was added to the mixed solution and stirred at room temperature for 24 hours, thereby synthesizing a gold-silver-ceria core-shell nanostructure.

金-銀-二氧化矽奈米粒子溶液以5000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且收集沈澱層然後重新分散於乙醇中。 The gold-silver-niobium oxide nanoparticle solution was centrifuged at 5000 rpm for 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the precipitate layer was collected and redispersed in ethanol.

範例3:製備非等向性金屬奈米粒子-介電質核殼奈米結構和發光裝置之複合物以及評估發射性質Example 3: Preparation of an anisotropic metal nanoparticle-composite of a dielectric core-shell nanostructure and a light-emitting device and evaluation of emission properties

20μl的3-氨基丙基-三甲氧基矽烷係加入至範例2所合成之包含金-銀-二氧化矽核殼奈米粒子分散的乙醇溶液,接著於室溫中攪拌24小時且以5000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且收集沈澱層然後分散於四氫呋喃(THF)溶劑中。 20 μl of 3-aminopropyl-trimethoxydecane was added to the ethanol solution containing the gold-silver-ceria core-shell nanoparticles dispersed in Example 2, followed by stirring at room temperature for 24 hours and centrifuging at 5000 rpm. After 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the precipitate layer was collected and then dispersed in a tetrahydrofuran (THF) solvent.

將YAG螢光粉或磷化銦/硫化鋅量子點加入生成物溶液並攪拌2小時。在此,YAG螢光粉或磷化銦/硫化鋅量子點加入的量可在0.001wt%及50wt%之間的範圍。 YAG phosphor powder or indium phosphide/zinc sulfide quantum dots were added to the resultant solution and stirred for 2 hours. Here, the amount of YAG phosphor powder or indium phosphide/zinc sulfide quantum dots may be added in the range of 0.001 wt% and 50 wt%.

為了分析混合溶液磷光強度的變化,係使用光激發螢光光 譜。為了分析溶液的發射,使用氦鎘雷射作為激發光源,且激發波長固定於442nm。 In order to analyze the change in the phosphorescence intensity of the mixed solution, the light is used to excite the fluorescent light. Spectrum. To analyze the emission of the solution, a cadmium cadmium laser was used as the excitation source, and the excitation wavelength was fixed at 442 nm.

含有引入金-銀-二氧化矽奈米粒子的溶液及不含金-銀-二氧化矽奈米粒子的溶液係於442nm激發,以測量發射光譜及觀察磷光強度的變化。然後測量如圖7繪示的發射光譜。如圖7所示,根據本發明引入含有奈米粒子的溶液較未含奈米粒子的溶液展現較高的發射效率。 A solution containing gold-silver-niobium dioxide nanoparticles and a solution containing no gold-silver-niobium oxide nanoparticles were excited at 442 nm to measure the emission spectrum and observe changes in phosphorescence intensity. The emission spectrum as shown in Figure 7 was then measured. As shown in Fig. 7, the introduction of a solution containing nanoparticle according to the present invention exhibits a higher emission efficiency than a solution containing no nanoparticle.

比較例1:合成球形等向性金屬奈米粒子Comparative Example 1: Synthesis of spherical isotropic metal nanoparticles

為了合成金奈米球,首先製備金晶種。為了這個目的,加入硼氫化鈉(0.01M,0.6ml)至四氯合金酸(0.01M,0.25ml)和溴化十六烷基三甲銨(0.1M,7.5ml)的混合溶液中。接著劇烈攪拌2分鐘並將生成物儲存於維持29℃的恆溫箱2小時。接著,製備金奈米粒子成長溶液。將抗壞血酸(0.1M,3.8ml)的水溶液攪拌加入四氯合金酸(0.01M,0.8ml)、溴化十六烷基三甲銨(0.1M,6.4ml)和水(32ml)的混合溶液中。當持續攪拌混合溶液,將合成晶種溶液10倍稀釋,接著加入0.06ml的稀釋溶液。又攪拌10秒後,停止攪拌然後儲存於維持29℃的恆溫箱6小時,藉此合成圖8a所示的金奈米粒子。 In order to synthesize a gold nanosphere, a gold seed crystal is first prepared. For this purpose, sodium borohydride (0.01 M, 0.6 ml) was added to a mixed solution of tetrachloroalloy acid (0.01 M, 0.25 ml) and cetyltrimethylammonium bromide (0.1 M, 7.5 ml). Stirring was then vigorously carried out for 2 minutes and the resultant was stored in an incubator maintained at 29 ° C for 2 hours. Next, a gold nanoparticle growth solution was prepared. An aqueous solution of ascorbic acid (0.1 M, 3.8 ml) was stirred and added to a mixed solution of tetrachloroalloy acid (0.01 M, 0.8 ml), cetyltrimethylammonium bromide (0.1 M, 6.4 ml) and water (32 ml). While the mixed solution was continuously stirred, the synthetic seed solution was diluted 10-fold, followed by the addition of 0.06 ml of the diluted solution. After stirring for another 10 seconds, the stirring was stopped and stored in an incubator maintained at 29 ° C for 6 hours, thereby synthesizing the gold nanoparticles shown in Fig. 8a.

比較例2:合成球形等向性金屬奈米粒子-介電質核殼奈米結構Comparative Example 2: Synthesis of spherical isotropic metal nanoparticles - dielectric core-shell nanostructure

製備在比較例1中合成之包含0.1wt%的金奈米粒子水溶液。用於塗覆二氧化矽,10μl的硫醇丙烷基三乙氧基矽烷(MPTMS)溶液和1ml乙醇的混合溶液加到金奈米粒子溶液,接著攪拌2小時。將矽酸鈉溶液(2.0M,40μl)加到混合溶液中並於室溫中攪拌24小時,藉此合成金-二氧化矽核殼奈米結構。 An aqueous solution of 0.1 wt% of gold nanoparticles synthesized in Comparative Example 1 was prepared. For the coating of cerium oxide, a mixed solution of 10 μl of a thiol propane triethoxy decane (MPTMS) solution and 1 ml of ethanol was added to the gold nanoparticle solution, followed by stirring for 2 hours. A sodium citrate solution (2.0 M, 40 μl) was added to the mixed solution and stirred at room temperature for 24 hours, thereby synthesizing a gold-ceria core-shell nanostructure.

金-二氧化矽奈米結構溶液以10000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且收集沈澱層然後重新分散於乙醇中。 The gold-cerium oxide nanostructure solution was centrifuged at 10,000 rpm for 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the precipitate layer was collected and redispersed in ethanol.

比較例3:製備球形等向性金屬奈米粒子-介電質核殼奈米結構和發光裝置之複合物以及評估發射性質Comparative Example 3: Preparation of a spherical isotropic metal nanoparticle-composite of a dielectric core-shell nanostructure and a light-emitting device and evaluation of emission properties

20μl的3-氨基丙基-三甲氧基矽烷係加入至比較例2所合成之包含0.1wt%金-二氧化矽核殼奈米結構的乙醇溶液,接著於室溫中攪拌24小時且以10000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且收集沈澱層以分散於四氫呋喃溶劑中。將YAG螢光粉或磷化銦/硫化鋅量子點加入生成物溶液並攪拌2小時。在此,YAG螢光粉或磷化銦/硫化鋅量子點加入的量可在0.001wt%及50wt%之間的範圍。 20 μl of 3-aminopropyl-trimethoxydecane was added to the ethanol solution containing the 0.1 wt% gold-ceria core-shell nanostructure synthesized in Comparative Example 2, followed by stirring at room temperature for 24 hours and at 10,000 rpm. After centrifugation for 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the precipitate layer was collected to be dispersed in a tetrahydrofuran solvent. YAG phosphor powder or indium phosphide/zinc sulfide quantum dots were added to the resultant solution and stirred for 2 hours. Here, the amount of YAG phosphor powder or indium phosphide/zinc sulfide quantum dots may be added in the range of 0.001 wt% and 50 wt%.

為了分析混合溶液磷光強度的變化,係使用光激發螢光光譜。為了分析溶液的發射,使用氦鎘雷射作為激發光源,且激發波長固定於442nm。 In order to analyze the change in the phosphorescence intensity of the mixed solution, a photoexcited fluorescence spectrum was used. To analyze the emission of the solution, a cadmium cadmium laser was used as the excitation source, and the excitation wavelength was fixed at 442 nm.

含有引入金-二氧化矽奈米粒子的溶液及不含金-二氧化矽奈米粒子的溶液係於442nm激發,以測量發射光譜及觀察磷光強度的變化。然後測量如圖9繪示的發射光譜。 A solution containing gold-niobium dioxide nanoparticles and a solution containing no gold-niobium oxide nanoparticles were excited at 442 nm to measure the emission spectrum and observe changes in phosphorescence intensity. The emission spectrum as shown in Figure 9 was then measured.

比較例4:製備無介電質殼非等向性金屬奈米粒子和發光裝置之複合物以及評估發射性質Comparative Example 4: Preparation of a composite of non-dielectric shell anisotropic metal nanoparticles and a light-emitting device and evaluation of emission properties

範例1所合成之包含非等向性金屬-二氧化矽奈米粒子分散的水溶液係以10000rpm離心30分鐘,將上層流體倒掉,收集沈澱層,並且收集沈澱層然後分散於四氫呋喃溶劑中。 The aqueous solution containing the dispersion of the non-isotropic metal-niobium oxide nanoparticles synthesized in Example 1 was centrifuged at 10,000 rpm for 30 minutes, the upper layer fluid was poured off, the precipitate layer was collected, and the precipitate layer was collected and then dispersed in a tetrahydrofuran solvent.

將YAG螢光粉或磷化銦/硫化鋅量子點加入生成物溶液並攪拌2小時。在此,YAG螢光粉或磷化銦/硫化鋅量子點加入的量可在0.001wt%及50wt%之間的範圍。 YAG phosphor powder or indium phosphide/zinc sulfide quantum dots were added to the resultant solution and stirred for 2 hours. Here, the amount of YAG phosphor powder or indium phosphide/zinc sulfide quantum dots may be added in the range of 0.001 wt% and 50 wt%.

為了分析混合溶液磷光強度的變化,係使用光激發螢光光譜。為了分析溶液的發射,使用氦鎘雷射作為激發光源,且激發波長固定於442nm。 In order to analyze the change in the phosphorescence intensity of the mixed solution, a photoexcited fluorescence spectrum was used. To analyze the emission of the solution, a cadmium cadmium laser was used as the excitation source, and the excitation wavelength was fixed at 442 nm.

含有引入金-二氧化矽奈米粒子的溶液及不含金-二氧化矽奈米粒子的溶液係於442nm激發,以測量發射光譜及觀察磷光強度的變化。然後測量如圖10繪示的發射光譜。 A solution containing gold-niobium dioxide nanoparticles and a solution containing no gold-niobium oxide nanoparticles were excited at 442 nm to measure the emission spectrum and observe changes in phosphorescence intensity. The emission spectrum as depicted in Figure 10 is then measured.

由範例和比較例所得知,根據本發明,相較於使用非核殼結構之金屬奈米球或金屬奈米柱的情形,在使用包含非等向性金屬奈米粒子,其具有能形成兩種或更多種表面電漿共振帶之外觀比的非等向性金屬奈米粒子-介電質核殼奈米結構的情形,可同時誘發發光材料的激發增強和發射增強。此外,因為金屬-介電質核殼奈米結構可使發光材料與金屬奈米粒子以介電殼厚度維持固定間隔,故可預期在金屬奈米粒子表面發生局部電場增強。另外,非等向性金屬奈米粒子的形狀可維持在核殼結構之內,藉此達成具有改良發射效率及耐久性的發光裝置。 As is apparent from the examples and comparative examples, according to the present invention, in the case of using a metal nanosphere or a metal nano column using a non-core-shell structure, the use of an anisotropic metal nanoparticle is used, which has two types. In the case of an anisotropic metal nanoparticle-dielectric core-shell nanostructure of an appearance ratio of a plurality of surface plasma resonance bands, excitation enhancement and emission enhancement of the luminescent material can be induced simultaneously. In addition, since the metal-dielectric core-shell nanostructure can maintain the luminescent material and the metal nanoparticle at a fixed interval in the thickness of the dielectric shell, local electric field enhancement can be expected on the surface of the metal nanoparticle. Further, the shape of the anisotropic metal nanoparticles can be maintained within the core-shell structure, thereby achieving a light-emitting device having improved emission efficiency and durability.

雖然本發明已參照例示範例具體顯示和說明,本領域具有通常知識者將理解在不脫離由下列申請專利範圍所定義之本發明之精神和範圍下,可對形式或細節作各種變化。因此本發明實施例在各種觀點考量下係敘述而非限制,參考所附申請專利範圍,而非參考前述說明書來指明發明範圍。 While the invention has been shown and described with reference to the embodiments of the embodiments of the invention The present invention is therefore to be considered in all respects of

Claims (17)

一種發光裝置,包含:非等向性金屬奈米粒子-介電質核殼奈米結構,包含非等向性金屬奈米粒子,其具有能形成兩種或更多種表面電漿共振帶之外觀比,以及塗覆在金屬奈米粒子表面上的一介電殼;以及一發光材料;其中該非等向性金屬奈米粒子形成兩種或更多種表面電漿共振帶,其具有與該發光材料之吸收和發射波長以及該發光裝置之光源的發射波長重疊的頻譜;該些表面電漿共振帶其中之一與一近紫外光或一藍光光源的發射波長重疊,且另一與該發光材料的發射波長重疊。 A light-emitting device comprising: an anisotropic metal nanoparticle-dielectric core-shell nanostructure, comprising an anisotropic metal nanoparticle having the ability to form two or more surface plasma resonance bands An aspect ratio, and a dielectric shell coated on the surface of the metal nanoparticle; and a luminescent material; wherein the anisotropic metal nanoparticles form two or more surface plasma resonance bands having a spectrum in which the absorption and emission wavelengths of the luminescent material overlap with the emission wavelength of the light source of the illuminating device; one of the surface plasmon resonance bands overlaps with an emission wavelength of a near-ultraviolet light or a blue light source, and the other The emission wavelengths of the materials overlap. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子係具有兩種或更多種存在於一核殼結構中之不同金屬的奈米粒子。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticles have two or more kinds of nanoparticles of different metals present in a core-shell structure. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子係金屬奈米柱,每一個金屬奈米柱於縱軸及橫軸具有不同長度。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticles are metal nano columns, each of the metal nano columns having different lengths on the vertical axis and the horizontal axis. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子係兩種或更多種不同金屬的合金。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticles are an alloy of two or more different metals. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子包含一種或更多種選自由銀、金、鋁、銅、鋰、鈀、鉑及其合金所組成的群組。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticles comprise one or more groups selected from the group consisting of silver, gold, aluminum, copper, lithium, palladium, platinum, and alloys thereof. group. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子具有橫向尺寸介於1nm及1μm之間的範圍內,以及縱向尺寸介於1nm及1μm之間的範圍內。 The illuminating device according to claim 1, wherein the anisotropic metal nanoparticles have a lateral dimension in a range between 1 nm and 1 μm, and a longitudinal dimension in a range between 1 nm and 1 μm. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子具有外觀比介於1.1及10之間。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticles have an appearance ratio between 1.1 and 10. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子-介電質核殼奈米結構的介電材料包含一種或更多種選自由二氧化矽、三 氧化二鋁、二氧化鈦、氧化鎂、二氧化鋯、氧化鉛、三氧化二硼、氧化鈣及氧化鋇所組成的群組。 The light-emitting device of claim 1, wherein the non-isotropic metal nanoparticle-dielectric core-shell nanostructure dielectric material comprises one or more selected from the group consisting of cerium oxide and A group consisting of alumina, titania, magnesia, zirconium dioxide, lead oxide, boron trioxide, calcium oxide, and cerium oxide. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子-介電質核殼奈米結構的介電殼具有厚度介於1nm及1μm之間的範圍內。 The light-emitting device of claim 1, wherein the dielectric shell of the anisotropic metal nanoparticle-dielectric core-shell nanostructure has a thickness between 1 nm and 1 μm. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子-介電質核殼奈米結構係於其表面與該發光材料組合以形成一發光層,或該發光材料係於其表面與該非等向性金屬奈米粒子-介電質核殼奈米結構組合以形成一發光層。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticle-dielectric core nanostructure is combined with the luminescent material on a surface thereof to form a luminescent layer, or the luminescent material. The surface is combined with the anisotropic metal nanoparticle-dielectric core-shell nanostructure to form a light-emitting layer. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子之該表面電漿共振帶的其中之一係形成於300nm~480nm的區域,另一則形成於500nm~700nm的區域。 The light-emitting device of claim 1, wherein one of the surface plasma resonance bands of the anisotropic metal nanoparticles is formed in a region of 300 nm to 480 nm, and the other is formed at 500 nm to 700 nm. region. 如申請專利範圍第1項所述之發光裝置,其中該非等向性金屬奈米粒子-介電質核殼奈米結構包含兩種或更多種非等向性金屬奈米粒子-介電質核殼奈米結構。 The illuminating device of claim 1, wherein the anisotropic metal nanoparticle-dielectric nucleocapsid nanostructure comprises two or more kinds of anisotropic metal nanoparticles-dielectric Nuclear shell nanostructure. 如申請專利範圍第1項所述之發光裝置,其中在該非等向性金屬奈米粒子-介電質核殼奈米結構中的介電殼的表面或該發光材料的表面係使用包含至少兩個活性不同的官能基的矽烷偶合劑或鈦酸酯偶合劑來改性。 The illuminating device of claim 1, wherein the surface of the dielectric shell or the surface of the luminescent material in the anisotropic metal nanoparticle-dielectric core nanostructure comprises at least two A decane coupling agent or a titanate coupling agent having different functional groups is modified. 如申請專利範圍第13項所述之發光裝置,其中該矽烷偶合劑具有[RnSiX4-n]之結構,該鈦酸酯偶合劑具有[RnTiX4-n]之結構,X係選自由烷氧基、醯氧基、胺基及氯所組成的群組之一個或更多個,R係包含一個或更多個由胺基、硫醇及環氧化合物所組成的官能基,且n係介於1至3之間的整數。 The illuminating device according to claim 13, wherein the decane coupling agent has a structure of [RnSiX4-n], the titanate coupling agent has a structure of [RnTiX4-n], and the X system is selected from the group consisting of an alkoxy group, One or more of the group consisting of a decyloxy group, an amine group, and a chlorine group, the R group comprising one or more functional groups composed of an amine group, a thiol, and an epoxy compound, and the n series is 1 An integer between 3 and 3. 如申請專利範圍第1項所述之發光裝置,其中該發光裝置包含兩個或更多個發光材料,以及兩個或更多個非等向性金屬奈米粒子-介電質核殼奈米結構。 The illuminating device of claim 1, wherein the illuminating device comprises two or more luminescent materials, and two or more anisotropic metal nanoparticles-dielectric nucleocapsid nanoparticles structure. 如申請專利範圍第1項所述之發光裝置,其中該發光裝置包含一發光層, 且該發光層係由包含該非等向性金屬奈米粒子-介電質奈米結構、該發光材料,以及聚甲基丙烯酸甲脂、環氧化合物、矽氧樹脂或其混合物的塗佈組合物所形成。 The illuminating device of claim 1, wherein the illuminating device comprises a luminescent layer, And the luminescent layer is composed of a coating composition comprising the anisotropic metal nanoparticle-dielectric nanostructure, the luminescent material, and polymethyl methacrylate, epoxy compound, oxime resin or a mixture thereof Formed. 如申請專利範圍第1項所述之發光裝置,其中該發光材料係具有螢光或磷光特性的有機材料、半導體量子點材料、無機材料或其組合。 The illuminating device of claim 1, wherein the luminescent material is an organic material having a fluorescent or phosphorescent property, a semiconductor quantum dot material, an inorganic material, or a combination thereof.
TW103144537A 2014-07-11 2014-12-19 Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures TWI555234B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140087616A KR20160007239A (en) 2014-07-11 2014-07-11 Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructure

Publications (2)

Publication Number Publication Date
TW201620159A TW201620159A (en) 2016-06-01
TWI555234B true TWI555234B (en) 2016-10-21

Family

ID=55064385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144537A TWI555234B (en) 2014-07-11 2014-12-19 Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures

Country Status (3)

Country Link
KR (1) KR20160007239A (en)
TW (1) TWI555234B (en)
WO (1) WO2016006777A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226710B (en) * 2018-04-06 2024-02-06 首尔大学校产学协力团 Three-dimensional chiral nanostructures
KR102173227B1 (en) * 2018-04-06 2020-11-03 서울대학교산학협력단 Three dimensional chiral nanostructures
CN112670394B (en) * 2020-12-24 2022-11-08 合肥工业大学 Method for improving thermoelectric performance of p-type SnTe base material by introducing stable nano heterojunction
CN112645593A (en) * 2021-01-15 2021-04-13 北京师范大学 Material for enhancing rare earth ion glass luminescence by using metal core-shell particles and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200938608A (en) * 2007-11-22 2009-09-16 Merck Patent Gmbh Surface-modified conversion phosphors
TW201024210A (en) * 2008-12-30 2010-07-01 Ind Tech Res Inst Method of manufacturing core-shell nanostructure
JP2010192829A (en) * 2009-02-20 2010-09-02 Panasonic Electric Works Co Ltd Light emitting device
US20140027797A1 (en) * 2012-07-24 2014-01-30 Samsung Display Co., Ltd. Light Emitting Diode Package and Display Apparatus Having the Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659900B1 (en) * 2006-02-21 2006-12-20 엘지전자 주식회사 Device for emitting white light and fabricating method thereof
KR101361861B1 (en) * 2006-11-08 2014-02-12 엘지디스플레이 주식회사 Organic light emitting diodes and method of manufacturing the same
JP5312146B2 (en) * 2009-03-30 2013-10-09 ユー・ディー・シー アイルランド リミテッド Light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200938608A (en) * 2007-11-22 2009-09-16 Merck Patent Gmbh Surface-modified conversion phosphors
TW201024210A (en) * 2008-12-30 2010-07-01 Ind Tech Res Inst Method of manufacturing core-shell nanostructure
JP2010192829A (en) * 2009-02-20 2010-09-02 Panasonic Electric Works Co Ltd Light emitting device
US20140027797A1 (en) * 2012-07-24 2014-01-30 Samsung Display Co., Ltd. Light Emitting Diode Package and Display Apparatus Having the Same

Also Published As

Publication number Publication date
TW201620159A (en) 2016-06-01
WO2016006777A1 (en) 2016-01-14
KR20160007239A (en) 2016-01-20

Similar Documents

Publication Publication Date Title
KR101440232B1 (en) Light conversion emitting device with enhanced luminescence efficiency using anisotropic metal nanoparticles
Kim et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes
US9082941B2 (en) Semiconductor nanoparticle-based materials for use in light emitting diodes, optoelectronic displays and the like
US20180107065A1 (en) Core-shell nanoplatelets film and display device using the same
WO2007034877A1 (en) Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
TWI555234B (en) Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures
US9676996B2 (en) Light emitting material and method for production thereof
EP3068845A2 (en) Led cap containing quantum dot phosphors
EP1978072A1 (en) Semiconductor nanoparticle having core/shell structure and process for producing the same
Lin et al. Stable and efficient hybrid Ag-In-S/ZnS@ SiO2-carbon quantum dots nanocomposites for white light-emitting diodes
Yin et al. The thermal stability performances of the color rendering index of white light emitting diodes with the red quantum dots encapsulation
Soheyli et al. Multi-colored type-I Ag-doped ZnCdS/ZnS core/shell quantum dots with intense emission
CN208000936U (en) L ED photoelectric device based on surface plasmon enhancement
Chang et al. Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays
Liao et al. Bright white-light emission from Ag/SiO 2/CdS–ZnS core/shell/shell plasmon couplers
KR101784085B1 (en) Light conversion emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructure
Zhang et al. Preparation of CsPb (Cl/Br) 3/TiO2: Eu3+ composites for white light emitting diodes
JP2013209570A (en) Fluorescent complex and method of manufacturing fluorescent complex
Wang et al. One-pot synthesis of red light-emitting CdTe x Se (1− x) quantum dots for light-emitting diode application
Weng et al. Photoluminescence enhancement of quantum dots with different emission wavelengths using oxide shell-isolated Au nanoparticles
Kim et al. Synthetic hybrid particles to improve the down-conversion efficiency of quantum dots via simultaneously induced scattering and plasmonic effects
TWI575782B (en) Light conversion light-emitting device with enhanced luminescence efficiency using anisotropic nanoparticles
Li et al. Synthesis of self-assembled one-dimensional perovskite nanobelt passivated by homophthalic acid and application in WLED
Saavedra Rodriguez et al. Silica-Coated ZnS Quantum Dots for Multicolor Emission Tuning from Blue to White Light
US10584281B2 (en) Light emitting materials and systems and method for production thereof