JP2010192829A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2010192829A
JP2010192829A JP2009038111A JP2009038111A JP2010192829A JP 2010192829 A JP2010192829 A JP 2010192829A JP 2009038111 A JP2009038111 A JP 2009038111A JP 2009038111 A JP2009038111 A JP 2009038111A JP 2010192829 A JP2010192829 A JP 2010192829A
Authority
JP
Japan
Prior art keywords
light
metal
light emitting
emitting device
led chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009038111A
Other languages
Japanese (ja)
Other versions
JP5351551B2 (en
Inventor
Kazuyuki Yamae
和幸 山江
Kenichiro Tanaka
健一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009038111A priority Critical patent/JP5351551B2/en
Publication of JP2010192829A publication Critical patent/JP2010192829A/en
Application granted granted Critical
Publication of JP5351551B2 publication Critical patent/JP5351551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device capable of improving a color mixing property to suppress color unevenness, and also improving optical output. <P>SOLUTION: The light emitting device includes a plurality of kind of LED chips 11 to 13 emitting light beams differing in main wavelengths from one another, a mounting substrate 20 having the plurality of kind of LED chips 11 to 13 mounted on one surface side, and a lens portion (transparent body) 30 covering the plurality of kind of LED chips 11 to 13 on the one surface side of the mounting substrate 20. The lens portion 30 is provided with many metal nanostructures 40 which have surface plasmons 50 excited with the light beams emitted by the respective LED chips 11 to 13 to cause surface plasmon resonance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、互いに主波長の異なる複数種のLEDチップ(発光ダイオードチップ)を利用した発光装置に関するものである。   The present invention relates to a light emitting device using a plurality of types of LED chips (light emitting diode chips) having different main wavelengths.

従来から、LEDチップを用いた白色光源として、青色光を放射するGaN系のLEDチップと当該LEDチップから放射された光によって励起されてLEDチップとは異なる発光色の光を放射する蛍光体(例えば、黄色蛍光体、あるいは、赤色蛍光体および緑色蛍光体)とを用いた発光装置(以下、蛍光体方式の発光装置と称する)や、発光色が赤色のLEDチップと発光色が緑色のLEDチップと発光色が青色のLEDチップとを用いた発光装置(以下、複数チップ方式の発光装置と称する)が各所で研究開発されている(例えば、特許文献1参照)。   Conventionally, as a white light source using an LED chip, a GaN-based LED chip that emits blue light and a phosphor that emits light of an emission color different from that of the LED chip when excited by light emitted from the LED chip ( For example, a light emitting device using a yellow phosphor or a red phosphor and a green phosphor (hereinafter referred to as a phosphor-type light emitting device), an LED chip whose emission color is red, and an LED whose emission color is green A light-emitting device using a chip and an LED chip whose emission color is blue (hereinafter referred to as a multi-chip type light-emitting device) has been researched and developed in various places (for example, see Patent Document 1).

ここにおいて、複数チップ方式の発光装置は、蛍光体方式の発光装置に比べて色度や色温度の制御が容易であるという特長があるが、LEDチップの劣化速度が異なるため、同じ色度を保つためには、各色のLEDチップの光出力をモニタリングしてフィードバック制御を行うなどの工夫が必要である。   Here, the multi-chip type light emitting device has a feature that the control of chromaticity and color temperature is easier than the phosphor type light emitting device, but the deterioration rate of the LED chip is different, so the same chromaticity is obtained. In order to maintain, it is necessary to devise such as monitoring the light output of each color LED chip and performing feedback control.

また、両者の発光装置に共通の課題として、色むらがある。特に、複数チップ方式の発光装置では、主波長の異なる複数種のLEDチップが空間的に分離して配置されていることにより、色むらが発生しやすい。   In addition, color unevenness is a problem common to both light emitting devices. In particular, in a multi-chip type light emitting device, color unevenness is likely to occur because a plurality of types of LED chips having different main wavelengths are spatially separated.

ここにおいて、複数チップ方式の発光装置を用いた照明装置として、赤色光(R)を放射するLEDチップ、緑色光(G)を放射するLEDチップ、および青色光(B)を放射するLEDチップを有する発光部と、発光部から放射された光の配光を制御するガラス製の配光レンズとを備えた照明装置が提案されている。   Here, an LED chip that emits red light (R), an LED chip that emits green light (G), and an LED chip that emits blue light (B) are used as illumination devices using a light emitting device of a multi-chip system. There has been proposed an illuminating device including a light emitting unit having a light distribution lens made of glass that controls light distribution of light emitted from the light emitting unit.

しかしながら、この種の照明装置では、主波長の異なる光R,G,Bに対して媒質の屈折率が異なるので、図7に示すようにガラス中で同じ光路を辿った光R,G,Bでもスネルの法則に従って空気中への屈折方向が分かれてしまう。ここにおいて、ガラスと空気との界面にガラス側から光R,G,Bが同じ光路で入射する場合の入射角をθ、屈折角をθ,θ,θ、ガラスにおける光R,Bそれぞれの屈折率をn,nとすると、スネルの法則により、sinθ=nsinθの関係、並びに、sinθ=nsinθの関係が成り立ち、ガラスでは、n>nであるから、θ>θとなる。したがって、配光レンズを用いて発光部からの光を集光すると、色収差が発生し、光軸上から見た際に、図8に示すように赤色領域イと緑色領域ロと青色領域ハとの全てが重なる領域(R+G+B)と2つが重なる領域(R+G,G+B)と重ならない領域(R、G)とが存在し、色むらが見られる。 However, in this type of illumination device, the refractive index of the medium is different for light R, G, B having different main wavelengths, so that the light R, G, B that has followed the same optical path in the glass as shown in FIG. However, the direction of refraction into the air is divided according to Snell's law. Here, when light R, G, B enters the interface between glass and air from the glass side through the same optical path, the incident angle is θ, the refraction angles are θ R , θ G , θ B , and the light R, B in the glass. When the refractive indexes are n R and n B , the relationship of sin θ B = n B sin θ and the relationship of sin θ R = n R sin θ are established according to Snell's law. In glass, n B > n R. Therefore, θ B > θ R. Therefore, when the light from the light emitting unit is condensed using the light distribution lens, chromatic aberration is generated, and when viewed from the optical axis, as shown in FIG. There are a region (R + G + B) in which all of these overlap, a region (R + G, G + B) in which they overlap each other, and a region (R, G) in which they do not overlap, and color unevenness is observed.

ところで、照明系の光学設計では、光線追跡法を用いた幾何学光学設計を行っているのが一般的であるが、幾何学光学設計では、屈折率が変化する界面での屈折により光の進行方向を制御することを前提としており、配光レンズの厚み寸法を大きくする必要があり、光の進行方向の制御範囲には限界がある。したがって、色むらがなく且つ狭角配光が可能な照明器具の薄型化が制限される。   By the way, in the optical design of the illumination system, the geometric optical design using the ray tracing method is generally performed, but in the geometric optical design, the light advances due to refraction at the interface where the refractive index changes. It is premised on controlling the direction, and it is necessary to increase the thickness dimension of the light distribution lens, and there is a limit to the control range of the light traveling direction. Therefore, thinning of the lighting fixture which does not have color unevenness and is capable of narrow-angle light distribution is limited.

これに対して、従来から、LED照明器具などに用いる白色光源として、互いに主波長の異なる複数種のLEDチップ(例えば、赤色LEDチップ、緑色LEDチップ、青色LEDチップ)と、これら複数種のLEDチップを一表面側に実装した実装基板と、実装基板の上記一表面側において各LEDチップを封止した透光性封止樹脂(例えば、エポキシ樹脂など)からなる封止部とを備え、封止部中に平均粒子径が10μm〜1mm程度のガラスビーズからなる光拡散材(光分散部材)を含有させてなる複数チップ方式の発光装置が提案されている(例えば、特許文献1参照)。   On the other hand, conventionally, as a white light source used for an LED lighting apparatus or the like, a plurality of types of LED chips having different main wavelengths (for example, a red LED chip, a green LED chip, a blue LED chip) and the plurality of types of LEDs A mounting substrate having a chip mounted on one surface side, and a sealing portion made of a translucent sealing resin (for example, epoxy resin) that seals each LED chip on the one surface side of the mounting substrate, There has been proposed a multi-chip type light emitting device in which a light diffusing material (light dispersion member) made of glass beads having an average particle diameter of about 10 μm to 1 mm is contained in the stopper (see, for example, Patent Document 1).

特開2002−280617号公報JP 2002-280617 A

ところで、上記特許文献1に開示された発光装置では、各LEDチップそれぞれからの放射光が封止部中の光拡散材により反射され混色されるので、色むらの発生を抑制することができる。   By the way, in the light emitting device disclosed in Patent Document 1, since the emitted light from each LED chip is reflected and mixed by the light diffusing material in the sealing portion, the occurrence of color unevenness can be suppressed.

しかしながら、上記特許文献1に開示された発光装置のように透光性封止樹脂中に光拡散材を含有させたものでは、光拡散材に起因した光損失が生じ、光出力が低下してしまう。   However, in the case where the light diffusing material is contained in the translucent sealing resin as in the light emitting device disclosed in Patent Document 1, light loss due to the light diffusing material occurs, and the light output is reduced. End up.

本発明は上記事由に鑑みて為されたものであり、その目的は、混色性を向上できて色むらの発生を抑制でき且つ光出力の向上を図れる発光装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a light-emitting device that can improve color mixing, suppress the occurrence of uneven color, and improve light output.

請求項1の発明は、互いに主波長の異なる光を放射する複数種のLEDチップと、当該複数種のLEDチップが一表面側に実装された実装基板と、実装基板の前記一表面側において当該複数種のLEDチップを覆う透明体とを備え、当該透明体に、各LEDチップから放射される光により表面プラズモンが励起され表面プラズモン共鳴が起こる多数の金属ナノ構造体が設けられてなることを特徴とする。   The invention of claim 1 includes a plurality of types of LED chips that emit light having different main wavelengths, a mounting substrate on which the plurality of types of LED chips are mounted on one surface side, and the one surface side of the mounting substrate on the one surface side. A transparent body that covers a plurality of types of LED chips, and the transparent body is provided with a plurality of metal nanostructures in which surface plasmons are excited by light emitted from each LED chip and surface plasmon resonance occurs. Features.

この発明によれば、互いに主波長の異なる複数種のLEDチップから放射される光により、各LEDチップを覆っている透明体の多数の金属ナノ構造体の表面に表面プラズモンが励起され表面プラズモン共鳴が起こるから、混色性を向上できるとともに各LEDチップから放射された光の増強が可能となり、混色性を向上できて色むらの発生を抑制でき且つ光出力の向上を図れる。   According to the present invention, surface plasmon resonance is caused by light emitted from a plurality of types of LED chips having different main wavelengths, and surface plasmons are excited on the surface of a large number of transparent metal nanostructures covering each LED chip. Therefore, the color mixing property can be improved, the light emitted from each LED chip can be enhanced, the color mixing property can be improved, the occurrence of uneven color can be suppressed, and the light output can be improved.

請求項2の発明は、請求項1の発明において、前記金属ナノ構造体は、球状の金属ナノ粒子からなり、前記透明体内に設けられてなることを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the metal nanostructure is formed of spherical metal nanoparticles and provided in the transparent body.

この発明によれば、空気中の水分や酸素の吸着や、前記金属ナノ構造体の形状変化、凝集などに起因した前記金属ナノ構造体の劣化を防止することができる。   According to the present invention, it is possible to prevent deterioration of the metal nanostructure due to adsorption of moisture and oxygen in the air, shape change of the metal nanostructure, aggregation, and the like.

請求項3の発明は、請求項1の発明において、前記金属ナノ構造体は、球状の金属ナノ粒子からなり、前記透明体の光出射面に配置されてなることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the metal nanostructure is made of spherical metal nanoparticles and is arranged on a light emitting surface of the transparent body.

この発明によれば、前記金属ナノ構造体を容易に形成することができる。   According to this invention, the metal nanostructure can be easily formed.

請求項4の発明は、請求項1の発明において、前記金属ナノ構造体は、金属ナノロッドからなることを特徴とする。   The invention of claim 4 is characterized in that, in the invention of claim 1, the metal nanostructure is made of metal nanorods.

この発明によれば、前記金属ナノ構造体が金属ナノ粒子である場合に比べて、光の増強効果が強く、光出力の高出力化を図れる。また、この発明によれば、金属ナノロッドの長軸の長さと短軸の長さとの比であるアスペクト比の制御により、指向性制御や、増強波長の制御も可能となる。   According to this invention, compared with the case where the metal nanostructure is a metal nanoparticle, the effect of enhancing the light is strong and the light output can be increased. Further, according to the present invention, directivity control and control of the enhancement wavelength can be performed by controlling the aspect ratio, which is the ratio of the major axis to the minor axis of the metal nanorod.

請求項1の発明では、混色性を向上できて色むらの発生を抑制でき且つ光出力の向上を図れるという効果がある。   According to the first aspect of the present invention, the color mixing property can be improved, the occurrence of color unevenness can be suppressed, and the light output can be improved.

実施形態1の発光装置を示し、(a)は要部概略断面図、(b)は要部説明図である。The light-emitting device of Embodiment 1 is shown, (a) is principal part schematic sectional drawing, (b) is principal part explanatory drawing. (a)は表面プラズモン共鳴を確認するための構造例を示し、(b)は(a)のXZ断面における表面プラズモン共鳴による光強度分布図、(c)は(a)のXY断面における表面プラズモン共鳴による光強度分布図である。(A) shows a structural example for confirming surface plasmon resonance, (b) is a light intensity distribution diagram by surface plasmon resonance in the XZ section of (a), and (c) is a surface plasmon in the XY section of (a). It is a light intensity distribution map by resonance. 同上の発光装置の他の構成例を示し、図1(a)のA−A’断面に相当する概略断面図である。It is a schematic sectional drawing which shows the other structural example of the light-emitting device same as the above, and is equivalent to the A-A 'cross section of Fig.1 (a). 実施形態2の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 実施形態3の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 3. FIG. 実施形態4の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 4. FIG. 従来例における色むらの発生原因の説明図である。It is explanatory drawing of the cause of generation | occurrence | production of the color nonuniformity in a prior art example. 同上における色むらの発生原因の説明図である。断面図である。It is explanatory drawing of the generation | occurrence | production cause of the color nonuniformity in the same as the above. It is sectional drawing.

(実施形態1)
本実施形態の発光装置は、図1に示すように、互いに主波長の異なる複数種(ここでは、3種類)のLEDチップ11,12,13を用いたものであり、主波長が650nmで発光色が赤色のLEDチップ(赤色LEDチップ)11と、主波長が550nmで発光色が緑色のLEDチップ(緑色LEDチップ)12と、主波長が450nmで発光色が青色のLEDチップ(青色LEDチップ)13と、これら主波長の異なる複数種のLEDチップ11〜13が一表面側に実装された1つの矩形板状の実装基板20と、実装基板20の上記一表面側において各LEDチップ11〜13および各LEDチップ11〜13に電気的に接続されたボンディングワイヤ(図示せず)を覆う透光性材料からなるレンズ部30とを備えており、各LEDチップ11〜13へ順方向電流を流すことにより、赤色光と緑色光と青色光との混色光として白色光を得ることができる。なお、実装基板20の平面形状は矩形状に限定するものではなく、例えば、三角形状、菱形状、五角形状、六角形状などの形状でもよい。
(Embodiment 1)
As shown in FIG. 1, the light emitting device of this embodiment uses a plurality of types (here, three types) of LED chips 11, 12, and 13 having different main wavelengths, and emits light at a main wavelength of 650 nm. Red LED chip (red LED chip) 11, LED chip (green LED chip) 12 having a main wavelength of 550 nm and green emission color, and LED chip (blue LED chip) having a main wavelength of 450 nm and blue emission color ) 13 and a single rectangular plate-like mounting substrate 20 on which one or more LED chips 11 to 13 having different main wavelengths are mounted on one surface side, and each LED chip 11 to 11 on the one surface side of the mounting substrate 20. 13 and a lens portion 30 made of a translucent material covering a bonding wire (not shown) electrically connected to each LED chip 11 to 13, and each LED chip. By flowing a forward current to 11 to 13, it is possible to obtain white light as mixed light of red light, green light and blue light. Note that the planar shape of the mounting substrate 20 is not limited to a rectangular shape, and may be, for example, a triangular shape, a rhombus shape, a pentagonal shape, a hexagonal shape, or the like.

LEDチップ11〜13は、実装基板20の上記一表面側の中央部において横一列に等間隔で近接して配置されており、実装基板20には、各LEDチップ111〜13への給電用の導体パターン(図示せず)が形成されている。ここにおいて、LEDチップ11〜13の配置は特に限定するものではなく、平面視において3つのLEDチップ11〜13それぞれの中心が仮想的な正三角形の3つの頂点それぞれに対応する位置となるように配置してもよい。   The LED chips 11 to 13 are arranged in a horizontal line in the central portion on the one surface side of the mounting substrate 20 so as to be close to each other at equal intervals. The mounting substrate 20 is for supplying power to the LED chips 111 to 13. A conductor pattern (not shown) is formed. Here, the arrangement of the LED chips 11 to 13 is not particularly limited, and the centers of the three LED chips 11 to 13 are positions corresponding to the three vertices of the virtual equilateral triangle in a plan view. You may arrange.

レンズ部30は、透光性材料により半球状の凸レンズ状に形成されており、レンズ部30が各LEDチップ11〜13を封止する封止部を兼ねているが、透光性材料により形成され各LEDチップ11〜13を封止した凸レンズ状の封止部と、透光性材料により形成され封止部を覆うドーム状の光学部材とでレンズ部30を構成するようにしてもよい。なお、これらの透光性材料としては、例えば、エポキシ樹脂、ガラス、シリコーン樹脂、ポリカーボネイト樹脂、アクリル樹脂などを採用すればよく、封止部と光学部材とは同じ透光性材料により形成してもよいし、異なる透光性材料により形成してもよい。   The lens unit 30 is formed in a hemispherical convex lens shape with a translucent material, and the lens unit 30 also serves as a sealing unit that seals the LED chips 11 to 13, but is formed with the translucent material. The lens unit 30 may be configured by a convex lens-shaped sealing unit that seals the LED chips 11 to 13 and a dome-shaped optical member that is formed of a light-transmitting material and covers the sealing unit. In addition, as these translucent materials, for example, epoxy resin, glass, silicone resin, polycarbonate resin, acrylic resin, etc. may be adopted, and the sealing portion and the optical member are formed of the same translucent material. Alternatively, they may be formed of different light-transmitting materials.

ところで、本実施形態の発光装置では、レンズ部30に、各LEDチップ11〜13から放射される光により表面プラズモン50が励起され表面プラズモン共鳴を起こす多数の金属ナノ構造体40が設けられており、レンズ部30が、多数の金属ナノ構造体40が設けられた透明体を構成している。ここにおいて、金属ナノ構造体40は、長軸方向に直交する断面の直径が200nm以下、望ましくは50nm以下の金属ナノロッドにより構成してあり、レンズ部30の光出射面から当該光出射面に交差する方向に突出している。要するに、金属ナノ構造体40は、レンズ部30と当該レンズ部30の光出射面に接する媒質(空気)との界面付近に配置されている。   By the way, in the light emitting device of the present embodiment, the lens unit 30 is provided with a number of metal nanostructures 40 that excite the surface plasmon 50 by the light emitted from the LED chips 11 to 13 and cause surface plasmon resonance. The lens unit 30 constitutes a transparent body provided with a large number of metal nanostructures 40. Here, the metal nanostructure 40 is composed of metal nanorods having a cross-sectional diameter orthogonal to the major axis direction of 200 nm or less, preferably 50 nm or less, and intersects the light emitting surface from the light emitting surface of the lens unit 30. It protrudes in the direction of In short, the metal nanostructure 40 is disposed in the vicinity of the interface between the lens unit 30 and a medium (air) in contact with the light emitting surface of the lens unit 30.

表面プラズモン50は、金属ナノ構造体40の表面に存在する自由電子の振動モード(金属ナノ構造体40の表面に局在し表面からの深さとともに振幅が指数関数的に減衰するプラズマモード)の電子密度波(表面波)であり、光と相互作用する。要するに、表面プラズモン50は、光と直接相互作用し、励起時に増強された電磁場を発生させる。ここにおいて、表面プラズモン50は、金属ナノ構造体40の金属材料の複素誘電率の実部(ε’=n−k、ただし、nは屈折率、kは消衰係数)が負の値で、且つ、絶対値が大きい材料(例えば、AuやAgなど)の場合に、可視光域の光との相互作用が強い。本実施形態では、金属ナノ構造体40を金属ナノロッドにより構成しているが、金属ナノ構造体40を粒径が200nm以下、望ましくは20nm以下の金属ナノ粒子により構成してもよく、この場合も金属材料としてAuやAgを採用することにより、表面プラズモン50と可視光域の光との相互作用が強くなる。 The surface plasmon 50 is a vibration mode of free electrons existing on the surface of the metal nanostructure 40 (a plasma mode that is localized on the surface of the metal nanostructure 40 and whose amplitude exponentially decays with the depth from the surface). An electron density wave (surface wave) that interacts with light. In essence, the surface plasmon 50 interacts directly with light and generates an enhanced electromagnetic field upon excitation. Here, the surface plasmon 50 is a negative value of the real part (ε ′ = n 2 −k 2 , where n is the refractive index and k is the extinction coefficient) of the metal material of the metal nanostructure 40. In the case of a material having a large absolute value (for example, Au or Ag), the interaction with light in the visible light region is strong. In the present embodiment, the metal nanostructure 40 is composed of metal nanorods. However, the metal nanostructure 40 may be composed of metal nanoparticles having a particle size of 200 nm or less, preferably 20 nm or less. By using Au or Ag as the metal material, the interaction between the surface plasmon 50 and the light in the visible light region is strengthened.

ここで、参考例として、図2(a)に示すように、主波長が450nmの青色LEDチップ13の光取り出し面に短軸長(直径)が50nm、長軸長が200nmの金属ナノロッド(棒状金属ナノ粒子)からなる金属ナノ構造体40を配置した構造モデルにおいて、青色LEDチップ13から放射される光が金属ナノ構造体40に入射した際の表面プラズモン共鳴による金属ナノ構造体40付近の光強度分布(光の振幅の分布であり、電場・磁場の振幅の分布に相当する)について、FDTD法(Finite-Difference Time-Domain method:時間領域差分法、あるいは有限差分時間領域法と呼ばれている)を用いた電磁界シミュレーションを行った結果を、図2(b)、(c)に示す。ここにおいて、図2(a)の構造モデルでは、LEDチップ13の発光層の中心位置をXYZ直交座標の原点として、当該発光層と金属ナノ構造体40との間の媒質をGaN(屈折率が2.4)、LEDチップ13および金属ナノ構造体40の周囲の媒質を空気(屈折率が1)、金属ナノ構造体40の金属材料をAgとし、LEDチップ13の発光層からの光の放射方向をZ軸方向としてある。ここで、図2(b)はY=0でのXZ断面における光強度分布を示し、図2(c)はZ=0.3μmでのXY断面における光強度分布を示している。また、図2(b),(c)では、光強度の大きさ(任意単位)を色の違いとして示してあり、正の値と負の値とでは位相が逆になっていることを意味している。   Here, as a reference example, as shown in FIG. 2A, a metal nanorod (rod-like) having a short axis length (diameter) of 50 nm and a long axis length of 200 nm on the light extraction surface of a blue LED chip 13 having a dominant wavelength of 450 nm. In a structural model in which a metal nanostructure 40 made of metal nanoparticles is arranged, light in the vicinity of the metal nanostructure 40 due to surface plasmon resonance when light emitted from the blue LED chip 13 enters the metal nanostructure 40 About the intensity distribution (distribution of light amplitude, which corresponds to the distribution of electric field / magnetic field amplitude), it is called FDTD method (Finite-Difference Time-Domain method) or finite-difference time-domain method. 2 (b) and 2 (c) show the results of the electromagnetic field simulation using Here, in the structural model of FIG. 2A, the center position of the light emitting layer of the LED chip 13 is the origin of the XYZ orthogonal coordinates, and the medium between the light emitting layer and the metal nanostructure 40 is GaN (having a refractive index). 2.4) The medium around the LED chip 13 and the metal nanostructure 40 is air (refractive index is 1), the metal material of the metal nanostructure 40 is Ag, and light is emitted from the light emitting layer of the LED chip 13. The direction is the Z-axis direction. Here, FIG. 2B shows the light intensity distribution in the XZ section when Y = 0, and FIG. 2C shows the light intensity distribution in the XY section when Z = 0.3 μm. In FIGS. 2B and 2C, the magnitude of light intensity (arbitrary unit) is shown as a difference in color, which means that the phase is reversed between a positive value and a negative value. is doing.

図2(b),(c)より、金属ナノ構造体40の近傍で光強度が局所的に増強されていることが分かる。要するに、図2(b),(c)より、LEDチップ13からの光が表面プラズモン共鳴により増強されていることが分かる。ここで、図2(a)に示した構造モデルでは、発光層と金属ナノ構造体40との間の媒質(つまり、光が伝搬する媒質)をGaNとしてあるが、当該媒質をレンズ部30の材料(ガラス、シリコーン樹脂、エポキシ樹脂、ポリカーボネイト樹脂、アクリル樹脂など)としても本質的には同じ現象(表面プラズモン共鳴による光の増強)が起こり、また、発光層と金属ナノ構造体40との距離に関係なく同じ現象が起こる。また、本実施形態の発光装置では、金属ナノ構造体40を金属ナノロッドにより構成しているが、図4に示した発光装置のように金属ナノ構造体40を球状の金属ナノ粒子により構成してもよい。   2B and 2C that the light intensity is locally enhanced in the vicinity of the metal nanostructure 40. FIG. In short, it can be seen from FIGS. 2B and 2C that the light from the LED chip 13 is enhanced by surface plasmon resonance. Here, in the structural model shown in FIG. 2A, the medium (that is, the medium through which light propagates) between the light emitting layer and the metal nanostructure 40 is GaN. The same phenomenon (enhancement of light due to surface plasmon resonance) occurs essentially as a material (glass, silicone resin, epoxy resin, polycarbonate resin, acrylic resin, etc.), and the distance between the light emitting layer and the metal nanostructure 40 The same phenomenon occurs regardless of. Further, in the light emitting device of this embodiment, the metal nanostructure 40 is configured by metal nanorods, but the metal nanostructure 40 is configured by spherical metal nanoparticles as in the light emitting device illustrated in FIG. Also good.

ところで、本実施形態の発光装置では、金属ナノ構造体40にLEDチップ11〜13の光が入射することにより表面プラズモン50が励起され、表面プラズモン共鳴により特定の波長成分の光が特定の方向において強くなり、金属ナノ構造体40への入射光が反射光に変化せずに金属ナノ構造体40の表面に沿って伝達されるようになる。ここで、表面プラズモン共鳴に寄与する光の波長や進行方向は、金属ナノ構造体40の配置間隔や形状により制御することが可能である。   By the way, in the light-emitting device of this embodiment, the surface plasmon 50 is excited when the light of the LED chips 11 to 13 enters the metal nanostructure 40, and light of a specific wavelength component is generated in a specific direction by the surface plasmon resonance. The light becomes stronger, and the incident light to the metal nanostructure 40 is transmitted along the surface of the metal nanostructure 40 without changing to reflected light. Here, the wavelength and traveling direction of light contributing to surface plasmon resonance can be controlled by the arrangement interval and shape of the metal nanostructures 40.

したがって、各LEDチップ11〜13から放射される各主波長の光の位相分布を均等にして混色性を向上するには、図1に示すように、金属ナノロッドからなる金属ナノ構造体40をレンズ部30の光出射面に交差する方向へ突出させたり、図4に示すように、球状の金属ナノ粒子からなる金属ナノ構造体40をレンズ部30の光出射面に交差する方向で複数個(図示例では、2個)連ねた鎖状としレンズ部30の光出射面に配置するのが望ましく、金属ナノ構造体40を図1や図4のように配置することで、指向性制御(例えば、偏角配光制御など)を行うことも可能となる。ただし、金属ナノ構造体40を金属ナノロッドとした方が、球状の金属ナノ粒子をレンズ部30の光出射面に交差する方向に連ねる場合に比べて発光装置の製造が容易である。なお、金属ナノ構造体40をレンズ部30に配列する方法としては、例えば、金属ナノ構造体40の配列パターンに応じたナノメータオーダの微細なパターンが施されたスタンプ(モールド)を用いて、あらかじめレンズ部30の光出射面にプラスの帯電パターンを形成しておき、マイナスに帯電した金属ナノ構造体40を気相で供給することで金属ナノ構造体40とレンズ部30との静電ポテンシャルに従って金属構造体40を移動させて固着するようにしてもよいし、粒子表面間に働く力を利用した自己組織化と呼ばれる方法を採用してもよい。   Therefore, in order to improve the color mixing property by equalizing the phase distribution of the light of each main wavelength emitted from each LED chip 11 to 13, as shown in FIG. 1, a metal nanostructure 40 made of metal nanorods is used as a lens. A plurality of metal nanostructures 40 made of spherical metal nanoparticles are projected in a direction intersecting the light exit surface of the lens portion 30 as shown in FIG. In the example shown in the figure, it is desirable that the two are connected to each other on the light emitting surface of the lens unit 30. By arranging the metal nanostructures 40 as shown in FIGS. 1 and 4, directivity control (for example, , Declination light distribution control, etc.) can also be performed. However, it is easier to manufacture the light emitting device when the metal nanostructure 40 is a metal nanorod than when the spherical metal nanoparticles are arranged in a direction intersecting the light exit surface of the lens unit 30. In addition, as a method of arranging the metal nanostructure 40 on the lens unit 30, for example, using a stamp (mold) on which a fine pattern of nanometer order corresponding to the arrangement pattern of the metal nanostructure 40 is given in advance. A positive charging pattern is formed on the light emitting surface of the lens unit 30, and the negatively charged metal nanostructure 40 is supplied in a gas phase to thereby follow the electrostatic potential between the metal nanostructure 40 and the lens unit 30. The metal structure 40 may be moved and fixed, or a method called self-organization using the force acting between the particle surfaces may be adopted.

上述の表面プラズモン50の共鳴波長(吸収ピーク波長)は、金属ナノ構造体40の金属材料の種類、金属ナノ構造体40のサイズ(粒径、長軸長、短軸長、アスペクト比=長軸長/短軸長など)、金属ナノ構造体40に対するコーティング膜の有無、コーティング膜の誘電率などによって調整することができる。また、金属ナノ構造体40の調整条件(形成条件)、形状などに依存する体積平均一次粒径および体積平均凝集径が大きくなるに従って、共鳴波長が変化する。   The resonance wavelength (absorption peak wavelength) of the surface plasmon 50 described above is the type of metal material of the metal nanostructure 40 and the size of the metal nanostructure 40 (particle diameter, major axis length, minor axis length, aspect ratio = major axis). (Long / short axis length, etc.), presence / absence of a coating film on the metal nanostructure 40, and a dielectric constant of the coating film. In addition, the resonance wavelength changes as the volume average primary particle size and the volume average aggregate diameter depending on the adjustment conditions (formation conditions) and shape of the metal nanostructure 40 increase.

表面プラズモン50の共鳴波長は、Mie理論(Mie theory)におけるMie散乱の公式によって予測することができる。例えば、金属ナノ構造体40の金属材料がAg、Au、およびCuの場合の表面プラズモン50の共鳴波長が、それぞれ、約400nm、約530nm、および約570nmである場合、金属材料がAuである金属ナノ構造体40をSiO膜でコーティングしたときの共鳴波長は約510nmないし540nmであり、金属材料がAuである金属ナノ構造体40をTiO膜でコーティングしたときの共鳴波長は約640nmである。これは、金属ナノ構造体40に接する媒質の誘電率が高くなるにつれて表面プラズモン50の共鳴波長が長波長側(低フォトンエネルギ側)へシフトするからであり、TiOの方がSiOに比べて誘電率が高いためである。また、金属材料がAgである金属ナノ構造体40をSiO膜でコーティングしたときの共鳴波長は約425nmである。ただし、表面プラズモン50の共鳴波長は、金属ナノ構造体40の粒径が大きくなるにつれて長波長側へシフトする。 The resonance wavelength of the surface plasmon 50 can be predicted by the Mie scattering formula in the Mie theory. For example, when the resonance wavelength of the surface plasmon 50 when the metal material of the metal nanostructure 40 is Ag, Au, and Cu is about 400 nm, about 530 nm, and about 570 nm, respectively, the metal whose metal material is Au The resonance wavelength when the nanostructure 40 is coated with the SiO 2 film is about 510 nm to 540 nm, and the resonance wavelength when the metal nanostructure 40 whose metal material is Au is coated with the TiO 2 film is about 640 nm. . This is because the resonance wavelength of the surface plasmon 50 shifts to the long wavelength side (low photon energy side) as the dielectric constant of the medium in contact with the metal nanostructure 40 increases, and TiO 2 is more in comparison with SiO 2 . This is because the dielectric constant is high. Further, the resonance wavelength when the metal nanostructure 40 whose metal material is Ag is coated with a SiO 2 film is about 425 nm. However, the resonance wavelength of the surface plasmon 50 shifts to the longer wavelength side as the particle size of the metal nanostructure 40 increases.

また、金属ナノ構造体40を構成する金属ナノロッドの金属材料をAuとした場合、金属ナノロッドのアスペクト比(=長軸長/短軸長)を制御することで、可視光線から近赤外光線(現状では、530nm〜1100nm)までの任意の特定波長で表面プラズモン共鳴を起こすことが可能であり、金属ナノロッドの金属材料をAgとすれば、Auの場合に比べて短波長側で表面プラズモン共鳴を起こすことが可能である。また、粒子の形状に異方性のある金属ナノロッドは、レンズ部30の光出射面における配向を制御することにより、マクロな光学的性質を制御することが可能であり、球状の金属ナノ粒子に比べて指向性制御(配光制御)の点が有利である。また、金属ナノロッドは球状の金属ナノ粒子に比べて光の増強効果も強い。   Further, when the metal material of the metal nanorod constituting the metal nanostructure 40 is Au, the aspect ratio (= major axis length / minor axis length) of the metal nanorod is controlled to change from visible light to near infrared light ( At present, it is possible to cause surface plasmon resonance at an arbitrary specific wavelength up to 530 nm to 1100 nm), and if the metal material of the metal nanorod is Ag, surface plasmon resonance is generated on the short wavelength side compared to Au. It is possible to wake up. In addition, the metal nanorods having anisotropic particle shape can control the macro optical properties by controlling the orientation of the light exit surface of the lens unit 30, Compared to directivity control (light distribution control), this is advantageous. In addition, metal nanorods have a stronger light enhancement effect than spherical metal nanoparticles.

なお、金属ナノ構造体40を構成する金属ナノロッドや球状の金属ナノ粒子の形成方法としては、周知の形成方法を適宜採用すればよく、例えば、CVD法、金属塩化物の還元・酸化・窒化法、水素中還元法、溶媒蒸着法、エピタキシャル成長法、ガス中蒸着法、レーザーアブレーション法、金属蒸気合成法、流動油上真空蒸着法)などの気相法や、コロイド法、水熱合成法、ゾル・ゲル法、中和分解法、加水分解法、化学沈殿法、共沈法、アトマイジング(噴霧・固化)法、逆ミセル法、エマルジョン法などの液相法や、再結晶法、熱分解法、焼成法、黒鉛化法、熱還元法、粉砕法などの固相法、などを適宜採用すればよい。   In addition, as a formation method of the metal nanorod and the spherical metal nanoparticle constituting the metal nanostructure 40, a well-known formation method may be appropriately employed. For example, a CVD method, a metal chloride reduction / oxidation / nitridation method, and the like. Gas phase methods such as reduction in hydrogen, solvent deposition, epitaxial growth, gas deposition, laser ablation, metal vapor synthesis, and vacuum deposition on fluid oil), colloidal methods, hydrothermal synthesis, sol -Liquid phase methods such as gel method, neutralization decomposition method, hydrolysis method, chemical precipitation method, coprecipitation method, atomizing (spraying / solidification) method, reverse micelle method, emulsion method, recrystallization method, thermal decomposition method A solid phase method such as a firing method, a graphitization method, a thermal reduction method, or a pulverization method may be appropriately employed.

本実施形態では、各LEDチップ11〜13として例えば面発光型のLEDチップを用いるとすれば、それぞれの放射光強度の放射角依存性がランバート(Lambert)型分布で近似される。したがって、主波長の異なる3種類の各LEDチップ11,12,13それぞれの放射光強度が球状領域で均等であり、レンズ部30に複数の金属ナノ構造体40が設けられていないとすると、レンズ部30の光出射面において3つの球状領域が重なる中央部(頂部の表面)では赤色LEDチップ11からの放射光(赤色光)と緑色LEDチップ12からの放射光(緑色光)と青色LEDチップ13からの放射光(青色光)とが混色されて所望の白色光が得られ、3つの球状領域が重ならない周部では所望の混色光が得られない。   In the present embodiment, if, for example, a surface-emitting LED chip is used as each of the LED chips 11 to 13, the radiation angle dependence of each radiated light intensity is approximated by a Lambert distribution. Therefore, if the radiated light intensity of each of the three types of LED chips 11, 12, 13 having different main wavelengths is uniform in the spherical region and the lens portion 30 is not provided with a plurality of metal nanostructures 40, the lens In the central part (top surface) where the three spherical regions overlap on the light exit surface of the unit 30, the emitted light (red light) from the red LED chip 11, the emitted light (green light) from the green LED chip 12, and the blue LED chip The radiated light (blue light) from 13 is mixed and desired white light is obtained, and the desired mixed color light cannot be obtained in the periphery where the three spherical regions do not overlap.

これに対して、本実施形態の発光装置では、複数種のLEDチップ11〜13を覆うレンズ部30に、各LEDチップ11〜13から放射される光により表面プラズモンが励起され表面プラズモン共鳴が起こる多数の金属ナノ構造体40が設けられているので、各LEDチップ11〜13から放射される光により各金属ナノ構造体40の表面に表面プラズモン50が励起され表面プラズモン共鳴が起こるから、混色性を向上できるとともに各LEDチップ11〜13から放射された光の増強が可能となり、混色性を向上できて色むらの発生を抑制でき且つ光出力の向上を図れる。ここにおいて、本実施形態の発光装置では、金属ナノ構造体40のサイズや配置をランダムにすることにより、各LEDチップ11〜13からの各主波長の光の出射方向が揃いやすくなり、混色性が向上する(なお、図1中の実線の矢印はLEDチップ11から放射された赤色の光、破線の矢印はLEDチップ12から放射された緑色の光、一点鎖線の矢印はLEDチップ13から放射された青色の光、それぞれの伝搬方向を模式的に示している)。ここで、本実施形態の発光装置では、例えば金属ナノロッドからなりサイズがランダム(アスペクト比を決定する長軸長や短軸長がランダム)な金属ナノ構造体40をレンズ部30の光出射面に配置すれば、表面プラズモン共鳴が起こる共鳴波長がランダムになり、混色性が向上する。また、図3に示すように、サイズの異なる金属ナノ構造体40をマトリクス状にしてランダムに配置すれば、レンズ部30の光出射面から出射する各主波長の光の伝搬方向が揃いやすくなり、混色性がより向上する。   On the other hand, in the light emitting device according to the present embodiment, surface plasmon resonance occurs in the lens unit 30 covering the plurality of types of LED chips 11 to 13 by exciting surface plasmons with light emitted from the LED chips 11 to 13. Since a large number of metal nanostructures 40 are provided, the surface plasmon 50 is excited on the surface of each metal nanostructure 40 by the light emitted from the LED chips 11 to 13, so that the surface plasmon resonance occurs. In addition, the light emitted from each of the LED chips 11 to 13 can be enhanced, the color mixing property can be improved, the occurrence of uneven color can be suppressed, and the light output can be improved. Here, in the light emitting device of the present embodiment, by making the size and arrangement of the metal nanostructures 40 random, the emission directions of the light of the respective main wavelengths from the LED chips 11 to 13 are easily aligned, and color mixing properties are achieved. (A solid line arrow in FIG. 1 indicates red light emitted from the LED chip 11, a broken line arrow indicates green light emitted from the LED chip 12, and an alternate long and short dash line arrow indicates that emitted from the LED chip 13.) Blue light, and the respective propagation directions are schematically shown). Here, in the light emitting device of the present embodiment, the metal nanostructure 40 made of, for example, metal nanorods and having a random size (the long axis length and the short axis length determining the aspect ratio are random) is provided on the light emitting surface of the lens unit 30. If arranged, the resonance wavelength at which surface plasmon resonance occurs becomes random, and the color mixing property is improved. Further, as shown in FIG. 3, if the metal nanostructures 40 having different sizes are arranged in a matrix and randomly arranged, the propagation directions of the light of the respective main wavelengths emitted from the light emitting surface of the lens unit 30 are easily aligned. The color mixing property is further improved.

また、本実施形態では、金属ナノ構造体40を金属ナノロッドにより構成しているので、金属ナノ構造体40が球状の金属ナノ粒子である場合に比べて、増強効果が強く、光出力の高出力化を図れる。また、金属ナノロッドのアスペクト比の制御により、指向性制御(例えば、偏角配光制御)や、増強波長の制御も可能となる。   Moreover, in this embodiment, since the metal nanostructure 40 is comprised by the metal nanorod, compared with the case where the metal nanostructure 40 is a spherical metal nanoparticle, the enhancement effect is strong and high output of light output. Can be realized. Moreover, directivity control (for example, declination light distribution control) and control of the enhancement wavelength can be performed by controlling the aspect ratio of the metal nanorods.

以上説明した本実施形態の発光装置を照明器具の光源として用いれば、配光レンズの厚み寸法を小さくすることができ、色むらがなく且つ狭角配光が可能な照明器具の薄型化を図れる。   If the light emitting device of the present embodiment described above is used as a light source of a lighting fixture, the thickness dimension of the light distribution lens can be reduced, and the lighting fixture capable of narrow-angle light distribution without color unevenness can be achieved. .

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図3に示すように、金属ナノ構造体40が、球状の金属ナノ粒子により構成され、レンズ部30内に設けられている点が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 3, the metal nanostructure 40 is formed of spherical metal nanoparticles and provided in the lens unit 30. The only difference is that In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態では、金属ナノ粒子からなる金属ナノ構造体40を透光性材料からなるレンズ部30に分散させてある。ここにおいて、金属ナノ構造体40をレンズ部30内に設けるには、例えば、予め精製した金属ナノ粒子からなる金属ナノ構造体40を分散させた透光性材料(例えば、シリコーン樹脂など)によりレンズ部30を形成すればよい。また、レンズ部30を、LEDチップ11〜13を封止するレンズ状の封止部と、当該封止部を覆う光学部材とで構成する場合には、予め精製した金属ナノ粒子からなる金属ナノ構造体40を分散させた透光性材料により光学部材を形成するようにしてもよいし、封止部の表面側に金属ナノ構造体40を分散させた透光性材料を塗布するようにしてもよい。なお、レンズ部30内に金属ナノ構造体40を形成する方法として、例えば、負イオン注入法を採用してもよく、この場合には、深さ方向の空間制御性を高めることができる。   In the present embodiment, the metal nanostructure 40 made of metal nanoparticles is dispersed in the lens portion 30 made of a translucent material. Here, in order to provide the metal nanostructure 40 in the lens portion 30, for example, the lens is made of a translucent material (for example, silicone resin) in which the metal nanostructure 40 made of metal nanoparticles purified in advance is dispersed. The part 30 may be formed. Moreover, when the lens part 30 is comprised with the lens-shaped sealing part which seals the LED chips 11-13, and the optical member which covers the said sealing part, the metal nano consisting of the metal nanoparticle refine | purified previously. The optical member may be formed of a translucent material in which the structure 40 is dispersed, or a translucent material in which the metal nanostructure 40 is dispersed is applied to the surface side of the sealing portion. Also good. In addition, as a method of forming the metal nanostructure 40 in the lens unit 30, for example, a negative ion implantation method may be employed, and in this case, space controllability in the depth direction can be improved.

以上説明した本実施形態の発光装置では、空気中の水分や酸素の吸着や、金属ナノ構造体40の形状変化、融着、凝集などに起因した金属ナノ構造体40の劣化を防止することができる。   In the light emitting device of the present embodiment described above, it is possible to prevent deterioration of the metal nanostructure 40 due to adsorption of moisture and oxygen in the air, shape change of the metal nanostructure 40, fusion, aggregation, and the like. it can.

(実施形態3)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、実装基板20としてLEDチップ11〜13およびレンズ部30を収納する収納凹所が形成されたものを用いており、実装基板20の収納凹所を閉塞する形で実装基板20に気密的に固着されるガラス基板60の光出射面に金属ナノ構造体40を設けてある点が相違する。要するに、本実施形態では、ガラス基板60が、金属構造体40が設けられた透明体を構成している。ここにおいて、実装基板20における上記収納凹所の内面には、各LEDチップ11〜13からの光を反射する反射膜が適宜設けられている。なお、他の構成は実施形態1と同様なので、説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment, and the mounting substrate 20 is formed with a housing recess in which the LED chips 11 to 13 and the lens unit 30 are housed. The difference is that the metal nanostructure 40 is provided on the light emitting surface of the glass substrate 60 which is airtightly fixed to the mounting substrate 20 so as to close the storage recess 20. In short, in this embodiment, the glass substrate 60 constitutes a transparent body provided with the metal structure 40. Here, a reflection film that reflects light from the LED chips 11 to 13 is appropriately provided on the inner surface of the housing recess in the mounting substrate 20. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

ところで、上述の各実施形態では、互いに主波長の異なる複数種のLEDチップ11〜13として赤色LEDチップ11と緑色LEDチップ12と青色LEDチップ13とを備え、所望の混色光として白色光を得るようにしているが、発光装置を構成するLEDチップの主波長の組み合わせや数は特に限定するものではなく、所望の混色光に応じて適宜設定すればよい。   By the way, in each above-mentioned embodiment, the red LED chip 11, the green LED chip 12, and the blue LED chip 13 are provided as a plurality of types of LED chips 11 to 13 having different main wavelengths, and white light is obtained as desired mixed color light. However, the combination and the number of the main wavelengths of the LED chips constituting the light emitting device are not particularly limited, and may be set as appropriate according to the desired mixed color light.

また、各LEDチップ11〜13と実装基板20との線膨張率差が比較的大きい場合には、各LEDチップ11〜13を、各LEDチップ11〜13と実装基板20との線膨張率の差に起因して各LEDチップ11〜13に働く応力を緩和するサブマウント部材を介して実装基板20に実装するようにしてもよい。ここで、サブマウント部材は、各LEDチップ11〜13ごとに1つずつ設けてもよいが、複数種のLEDチップ11〜13に対して1つだけ設けるようにした方が部品点数の削減および発光装置全体の小型化の点で有利である。   Moreover, when the linear expansion coefficient difference between each LED chip 11-13 and the mounting substrate 20 is relatively large, each LED chip 11-13 is replaced with the linear expansion coefficient between each LED chip 11-13 and the mounting substrate 20. You may make it mount in the mounting board | substrate 20 through the submount member which relieve | moderates the stress which acts on each LED chip 11-13 resulting from a difference. Here, one submount member may be provided for each of the LED chips 11 to 13, but if only one submount member is provided for the plurality of types of LED chips 11 to 13, the number of parts can be reduced. This is advantageous in terms of downsizing the entire light emitting device.

11 LEDチップ(赤色LEDチップ)
12 LEDチップ(緑色LEDチップ)
13 LEDチップ(青色LEDチップ)
20 実装基板
30 レンズ部(透明体)
40 金属ナノ構造体
50 表面プラズモン
60 ガラス基板(透明体)
11 LED chip (red LED chip)
12 LED chip (green LED chip)
13 LED chip (blue LED chip)
20 Mounting board 30 Lens part (transparent body)
40 Metal nanostructure 50 Surface plasmon 60 Glass substrate (transparent)

Claims (4)

互いに主波長の異なる光を放射する複数種のLEDチップと、当該複数種のLEDチップが一表面側に実装された実装基板と、実装基板の前記一表面側において当該複数種のLEDチップを覆う透明体とを備え、当該透明体に、各LEDチップから放射される光により表面プラズモンが励起され表面プラズモン共鳴が起こる多数の金属ナノ構造体が設けられてなることを特徴とする発光装置。   A plurality of types of LED chips that emit light having different main wavelengths, a mounting substrate on which the plurality of types of LED chips are mounted on one surface side, and the plurality of types of LED chips covered on the one surface side of the mounting substrate A light emitting device comprising: a transparent body, and a plurality of metal nanostructures in which surface plasmon resonance is caused by excitation of surface plasmons by light emitted from each LED chip. 前記金属ナノ構造体は、球状の金属ナノ粒子からなり、前記透明体内に設けられてなることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the metal nanostructure is formed of spherical metal nanoparticles and is provided in the transparent body. 前記金属ナノ構造体は、球状の金属ナノ粒子からなり、前記透明体の光出射面に配置されてなることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the metal nanostructure is made of spherical metal nanoparticles and disposed on a light emitting surface of the transparent body. 前記金属ナノ構造体は、金属ナノロッドからなることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the metal nanostructure is made of a metal nanorod.
JP2009038111A 2009-02-20 2009-02-20 Light emitting device Active JP5351551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038111A JP5351551B2 (en) 2009-02-20 2009-02-20 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038111A JP5351551B2 (en) 2009-02-20 2009-02-20 Light emitting device

Publications (2)

Publication Number Publication Date
JP2010192829A true JP2010192829A (en) 2010-09-02
JP5351551B2 JP5351551B2 (en) 2013-11-27

Family

ID=42818507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038111A Active JP5351551B2 (en) 2009-02-20 2009-02-20 Light emitting device

Country Status (1)

Country Link
JP (1) JP5351551B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060273A (en) * 2012-09-18 2014-04-03 Sumitomo Chemical Co Ltd Metal particle assembly
WO2016006777A1 (en) * 2014-07-11 2016-01-14 한화토탈주식회사 Light-emitting element comprising anisotropic metal nanoparticle-dielectric core-shell nanostructure
US9691950B2 (en) 2013-07-25 2017-06-27 Nichia Corporation Light emitting device and method of manufacturing light emitting device
KR101784085B1 (en) * 2016-01-08 2017-11-06 한화토탈 주식회사 Light conversion emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructure
WO2018226157A1 (en) * 2017-06-05 2018-12-13 Agency For Science, Technology And Research Light emitting device, method of fabricating same and method of controlling light emission
JP2019502942A (en) * 2015-12-23 2019-01-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Calibration slide on digital pathology
JP2019505824A (en) * 2015-12-23 2019-02-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fluorescence calibration slide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280617A (en) * 2001-03-19 2002-09-27 Matsushita Electric Ind Co Ltd Illuminating device
WO2006092963A1 (en) * 2005-02-17 2006-09-08 National University Corporation Hokkaido University Metal structure and production method therefor
WO2007121486A2 (en) * 2006-04-18 2007-10-25 Lamina Lighting, Inc. Optical devices for controlled color mixing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280617A (en) * 2001-03-19 2002-09-27 Matsushita Electric Ind Co Ltd Illuminating device
WO2006092963A1 (en) * 2005-02-17 2006-09-08 National University Corporation Hokkaido University Metal structure and production method therefor
WO2007121486A2 (en) * 2006-04-18 2007-10-25 Lamina Lighting, Inc. Optical devices for controlled color mixing

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060273A (en) * 2012-09-18 2014-04-03 Sumitomo Chemical Co Ltd Metal particle assembly
US9691950B2 (en) 2013-07-25 2017-06-27 Nichia Corporation Light emitting device and method of manufacturing light emitting device
WO2016006777A1 (en) * 2014-07-11 2016-01-14 한화토탈주식회사 Light-emitting element comprising anisotropic metal nanoparticle-dielectric core-shell nanostructure
TWI555234B (en) * 2014-07-11 2016-10-21 韓華道達爾股份有限公司 Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructures
JP2019502942A (en) * 2015-12-23 2019-01-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Calibration slide on digital pathology
US11408821B2 (en) 2015-12-23 2022-08-09 Koninklijke Philips N.V. Fluorescence calibration slide
JP7041618B6 (en) 2015-12-23 2022-05-31 コーニンクレッカ フィリップス エヌ ヴェ Fluorescence calibration slide
JP2019505824A (en) * 2015-12-23 2019-02-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fluorescence calibration slide
JP7057279B6 (en) 2015-12-23 2022-06-02 コーニンクレッカ フィリップス エヌ ヴェ Calibration slides for digital pathology
JP7041618B2 (en) 2015-12-23 2022-03-24 コーニンクレッカ フィリップス エヌ ヴェ Fluorescence calibration slide
JP7057279B2 (en) 2015-12-23 2022-04-19 コーニンクレッカ フィリップス エヌ ヴェ Calibration slides for digital pathology
JP2022066215A (en) * 2015-12-23 2022-04-28 コーニンクレッカ フィリップス エヌ ヴェ Calibration slide for digital pathology
JP2022066214A (en) * 2015-12-23 2022-04-28 コーニンクレッカ フィリップス エヌ ヴェ Fluorescence calibration slide
KR101784085B1 (en) * 2016-01-08 2017-11-06 한화토탈 주식회사 Light conversion emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructure
US20200203560A1 (en) * 2017-06-05 2020-06-25 Agency For Science, Technology And Research Light emitting device, method of fabricating same and method of controlling light emission
WO2018226157A1 (en) * 2017-06-05 2018-12-13 Agency For Science, Technology And Research Light emitting device, method of fabricating same and method of controlling light emission
US11688826B2 (en) 2017-06-05 2023-06-27 Agency For Science, Technology And Research Light emitting device, method of fabricating same and method of controlling light emission

Also Published As

Publication number Publication date
JP5351551B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5351551B2 (en) Light emitting device
JP5269115B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, VEHICLE HEADLAMP, LIGHTING DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5665969B2 (en) Optoelectronic device and manufacturing method of optoelectronic device
JP2010092956A (en) Led light source and luminary using it
JP2012109400A (en) Light-emitting element, light-emitting device and method of manufacturing light-emitting element
TW200950159A (en) A luminous device
JP7077202B2 (en) Light emitting device
JP2021144098A (en) Image display device
JP2017519337A (en) Spatial positioning of photon emitters in plasmon illuminators
KR20100137284A (en) Uv-led display device using the surface plasmonic resonance
JP6165346B2 (en) Side-emitting luminescence structure and lighting device including the luminescence structure
TW201438936A (en) Vehicle lamp system
JP5538479B2 (en) LED light source and light emitter using the same
WO2019230934A1 (en) Wavelength conversion element and light source device
US9255666B2 (en) Illumination apparatus
TWI585469B (en) Lens and method for manufacturing lens and light source module with the lens
TWI465671B (en) Led source device
TW201425823A (en) Illumination device
CN112103380B (en) Quantum dot light-emitting device and manufacturing method thereof
US20110062454A1 (en) Light emitting device having remotely located light scattering material
WO2013018503A1 (en) Light-emitting device
JP2014120660A (en) Light-emitting module
RU193640U1 (en) Semiconductor LED device
Nhan et al. Influence of scattering enhancement particles CaCO3, CaF2, SiO2 and TiO2 on color uniformity of white LEDs
Thi et al. TiO 2/silicone encapsulation film for achieving optical performance improvement of chip-on-board packaging LEDs

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150