TWI719959B - 終端、雲端裝置、分析方法、資料協同式處理服務系統、以及終端-雲端分配系統 - Google Patents
終端、雲端裝置、分析方法、資料協同式處理服務系統、以及終端-雲端分配系統 Download PDFInfo
- Publication number
- TWI719959B TWI719959B TW105101939A TW105101939A TWI719959B TW I719959 B TWI719959 B TW I719959B TW 105101939 A TW105101939 A TW 105101939A TW 105101939 A TW105101939 A TW 105101939A TW I719959 B TWI719959 B TW I719959B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- terminal
- user
- activity
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 100
- 230000008569 process Effects 0.000 title claims description 32
- 230000000694 effects Effects 0.000 claims abstract description 212
- 238000004891 communication Methods 0.000 claims abstract description 110
- 238000004458 analytical method Methods 0.000 claims abstract description 109
- 238000012545 processing Methods 0.000 claims description 167
- 238000007405 data analysis Methods 0.000 claims description 33
- 238000003909 pattern recognition Methods 0.000 claims description 33
- 238000010586 diagram Methods 0.000 description 61
- 230000006870 function Effects 0.000 description 15
- 230000009471 action Effects 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 7
- 230000036541 health Effects 0.000 description 5
- 238000013475 authorization Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 244000035744 Hura crepitans Species 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6245—Protecting personal data, e.g. for financial or medical purposes
- G06F21/6254—Protecting personal data, e.g. for financial or medical purposes by anonymising data, e.g. decorrelating personal data from the owner's identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/52—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
- G06F21/53—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/535—Tracking the activity of the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/59—Providing operational support to end devices by off-loading in the network or by emulation, e.g. when they are unavailable
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/75—Indicating network or usage conditions on the user display
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- Information Transfer Between Computers (AREA)
Abstract
本發明提供一種終端、一種雲端裝置、一種藉由終端分析
使用者的活動的方法以及一種藉由雲端裝置分析使用者的活動的方法。所述終端包含:通信介面,其經由網路與外部裝置通信;控制器,其獲取用於預測使用者的活動的資料及將所獲得的資料的一部分匿名化,且經由所述通信介面將匿名化資料及所述資料的並未匿名化的其餘部分傳輸至所述外部裝置;以及顯示器,其基於自所述外部裝置接收的活動預測資料顯示關於所述使用者的所述活動的通知資訊,所述活動預測資料基於所傳輸的資料的分析產生。
Description
本發明是有關於一種終端、一種雲端裝置、一種驅動終端的方法、一種協同地處理資料的方法以及一種電腦可讀取記錄媒體,且特別是一種終端、一種雲端裝置、一種驅動終端的方法、一種協同地處理資料的方法以及一種電腦可讀取記錄媒體,其中多個裝置自適應性地協同處理個人化資料以提供特定服務。
由於經由網際網路上的伺服器使用各種服務(諸如儲存資料)、使用網路以及使用內容的雲端計算的使用愈來愈普遍,使用者儲存及使用網際網路上的重要內容及個人資訊的情況正在增加。
一般而言,雲端被理解成一種資料儲存方法,其中任何人可設定雲端帳戶以上傳資料,且藉由使用如同飄浮在網際網路環境中的雲的軟體環境(而不受到固定硬體的阻礙)容易地在任何位置使用資料。由雲端提供的服務的類型不同。服務根據服務特性可分類成軟體即服務(software as a service;SaaS)、平台即服務
(platform as a service;PaaS)、硬體即服務(hardware as a service;HaaS)以及基礎建設即服務(infrastructure as a service;IaaS),但此類服務在概念上相同,除根據提供者之略微差異以外。
SaaS表示一種將應用程式外借給使用者的服務,且PaaS表示一種外借平台的服務。HaaS表示一種當某些硬體為必需時自提供者接收硬體的服務。最後,IaaS為一種專門主要由公司使用的服務,且表示一種使得公司能夠當場合需要時藉由設定伺服器、儲存器以及網路以形成虛擬環境來使用資源。
然而,在由資訊協定(information protocol;IT)(或物聯網(nternet of things;IoT))器件產生的資料根據IT(或IoT)器件之間的連接性增強而大大增強的情形中,就操作費用、效能及隱私而言,藉由僅使用通用集中式雲端分析資料的方法並不適合。舉例而言,先前技術雲端服務執行藉由分析使用者的活動及終端的使用而提供服務的操作,但分析基於雲端而執行,且因此可過度曝露個人資訊,進而侵犯隱私。
此外,根據現有解決方案,由於資源在終端(諸如行動電話)與雲端裝置之間靜態地分配,或資料僅在一個方向上(自終端至雲端裝置或自雲端裝置至終端)卸載,因此資源利用不為自適應性。舉例而言,個人的資料使用量可可撓性地增大,且當將服務提供至多個使用者取決於雲端分析時,若機器資料隨後包含於IT環境中,則應考慮系統的擴充性。
根據例示性實施例的態樣,本發明提供一種終端,其包
括:通信介面,其經組態以經由網路與外部裝置通信;控制器,其經組態以獲得用於預測使用者的活動的資料且將所獲得的資料的一部分匿名化,且經由通信介面將匿名化資料及所述資料的並未匿名化的其餘部分傳輸至外部裝置;以及顯示器,其經組態以基於自外部裝置接收的活動預測資料顯示關於使用者的活動的通知資訊,活動預測資料基於所傳輸的資料的分析產生。
用於預測使用者的活動的資料可為獲自終端的原始資料、自原始資料導出的活動資料以及自活動資料導出的活動模式資料中的至少一者。
控制器可根據多個層將用於預測使用者的活動的資料分類,且當用於預測使用者的活動的資料根據多個層分類時,控制器可將用於根據多個層分析資料的分析主體設定為終端及外部裝置中的至少一者。
控制器可判定用於分析資料的程式是否安裝於外部裝置中且,當判定用於分析資料的程式並未安裝於外部裝置時,控制器可將用於分析資料的程式傳輸至外部裝置。
顯示器可進一步顯示用於關於終端的操作狀態及網路的網路狀態設定條件的使用者介面(user interface;UI)畫面,且控制器可基於經由UI畫面設定的條件分析使用者的活動。
控制器可根據多個層將用於預測使用者的活動的資料分類,且,當資料根據多個層分類時,顯示器可進一步顯示包括以下各者中的至少一者的UI畫面:第一區域,其基於屬於下層的資料的共用設定指示用於產生屬於上層的資料的資料可分析主體;第二區域,其指示資料可分析主體的分析可操作位準;以及第三區
域,其基於屬於下層的資料的共用設定指示屬於不同於上層及下層的另一層的資料的曝露風險。
根據例示性實施例的另一態樣,本發明提供一種雲端裝置,其包括:通信介面,其經組態以與終端通信;儲存器,其經組態以經由通信介面自終端接收及儲存資料的匿名化的一部分及資料的並未匿名化的其餘部分,作為用於使用終端預測使用者的活動的資料;以及控制器,其經組態以藉由使用所接收的資料生成預測使用者的活動的活動預測資料,且經由通信介面將所導出的活動預測資料傳輸至終端。
用於預測使用者的活動的資料可為獲自終端的原始資料、自原始資料導出的活動資料以及自活動資料導出的活動模式資料中的至少一者。
所接收的資料可根據多個層分類所接收的資料可根據多個層分類,且儲存器自終端接收及儲存用於所述層中的每一者的協同位準資訊,協同位準資訊指示根據所述層分類的資料是否可共用。
所接收的資料可根據多個層分類,且儲存器可自終端接收及儲存用於根據多個層判定終端、定位於終端周圍的鄰近終端以及雲端裝置中的至少一者作為資料分析主體的資訊。
根據例示性實施例的另一態樣,本發明提供一種方法,其包括:獲得用於預測使用者的活動的資料;將所獲得的資料的一部分匿名化;將匿名化資料及資料的並未匿名化的其餘部分提供至外部裝置;自外部裝置接收活動預測資料,活動預測資料根據所提供的資料的分析產生;以及基於所接收的活動預測資料顯示關於
使用者的活動的通知資訊。
用於預測使用者的活動的資料可為獲自終端的原始資料、自原始資料導出的活動資料以及自活動資料導出的活動模式資料中的至少一者。
資料可根據多個層分類,且當資料根據多個層分類時,方法可進一步包括將用於分析根據多個層分類的資料的分析主體設定為終端及外部裝置中的至少一者。
資料可根據多個層分類,且當判定用於分析資料的程式並未安裝於外部裝置中時,方法可進一步包括將用於分析資料的程式傳輸至外部裝置。
根據例示性實施例的另一態樣,本發明提供一種方法,其包括:接收資料的匿名化的一部分及資料的並未匿名化的其餘部分,作為用於預測使用終端的使用者的活動的資料;藉由使用所接收的資料產生預測使用者的活動的活動預測資料;以及將所產生的活動預測資料傳輸至終端。
根據例示性實施例的另一態樣,本發明提供一種系統,其包括雲端裝置及終端,所述終端包括:通信介面,其經組態以經由網路與雲端裝置通信;控制器,其經組態以獲得用於預測使用者的活動的資料,將資料處理至多個階層式層中以及根據資料的階層式層設定資料的共用限制;以及顯示器,其經組態以顯示用於設定共用限制的使用者介面(UI)畫面以及顯示關於使用者的活動的通知資訊,其中控制器基於資料的所設定的共用限制將資料的至少一部分分配至雲端裝置以供處理。
對於資料的每一階層式層,共用限制可指示階層式層的
資料是否可與雲端裝置共用。
控制器可設定每一階層式層的終端及雲端裝置的工作位準,且資料分配至雲端裝置的部分可根據包括資料的所述部分的階層式層的雲端裝置的工作位準判定。
多個階層式層可包括原始記錄資料、活動識別資料、模式識別資料以及預測結果資料,且活動識別資料可基於原始記錄資料產生、模式識別資料可基於活動識別資料產生以及預測結果資料可基於模式識別資料產生。
根據例示性實施例的另一態樣,本發明提供一種終端-雲端分配系統,其包括:終端,其包括通信介面;及經組態以獲得用於預測使用者活動、將所獲得的資料處理至多個階層式層中以及根據資料的階層式層設定資料的共用限制的控制器;雲端裝置,其包括經組態以經由網路與終端的通信介面通信的通信介面及經組態以根據多個階層式層處理資料的控制器;以及協同式管理器,其經組態以根據階層式層及所設定的共用限制在終端與雲端裝置之間分配資料。
多個階層式層可包括原始記錄資料、活動識別資料、模式識別資料以及預測結果資料,且活動識別資料可基於原始記錄資料產生、模式識別資料可基於活動識別資料產生以及預測結果資料可基於模式識別資料產生。
1:終端
2:終端
3:終端
90:資料協同式處理服務系統/雲端計算系統
90':資料協同處理服務系統/雲端計算系統
90":資料協同處理服務系統/雲端計算系統
90''':資料協同處理服務系統
90'''':資料協同處理服務系統
100:終端
100''':通信網路
100a:自主自適應代理(AAA)/協同式管理器
100-1':終端
100-1":終端
100-1''':終端
100-1'''':終端
100-2':鄰近終端
100-2":可穿戴裝置
100-2''':集線器或閘道器
100-2'''':可穿戴裝置
100-3:可穿戴器件
110:通信網路
110':通信網路
110''':通信網路
110-1'''':第一通信網路
110-2'''':第二通信網路
120:雲端裝置
120':雲端裝置
120":雲端裝置
120''':雲端裝置
120'''':雲端裝置
120-1:雲端裝置
120-2:雲端裝置
120-3:雲端裝置
120a:協同式管理器
200:通信介面
200':通信介面
210:控制器
210':使用者介面
220:顯示器
220':控制器
230':資料分析器
240':UI畫面產生器
300:通信介面
300':通信介面
310:控制器
310':控制器
320:儲存器
320':儲存器
330':資料分析器
400:分析模組
410:記憶體
500:引擎
510:活動/影像/語音識別引擎
520:模式識別引擎
530:預測引擎
700:帳戶項目
710:視圖清單項目
720:資訊設定項目
1301:參考編號
S2000:操作
S2010:操作
S2020:操作
S2030:操作
S2100:操作
S2110:操作
S2120:操作
S2130:操作
S2140:操作
S2200:操作
S2210:操作
S2220:操作
S2300:操作
S2310:操作
S2320:操作
S2400:操作
S2410:操作
圖1A為根據第一例示性實施例的雲端服務系統的圖。
圖1B為根據第二例示性實施例的資料協同式處理服務系統的圖。
圖1C為根據第三例示性實施例的資料協同式處理服務系統的圖。
圖1D為根據第四例示性實施例的資料協同式處理服務系統的圖。
圖1E為根據第五例示性實施例的資料協同式處理服務系統的圖。
圖2A為展示圖1A至圖1C的終端的詳細結構的實例的方塊圖。
圖2B為展示圖1A至圖1C的終端的詳細結構的另一實例的方塊圖。
圖3A為展示圖1A至圖1C的雲端裝置的詳細結構的實例的方塊圖。
圖3B為展示圖1A至圖1C的雲端裝置的詳細結構的另一實例的方塊圖。
圖4為圖示圖2A或圖2B的控制器及資料分析器的詳細功能的圖。
圖5為根據例示性實施例的大致描述提供個人化服務的過程的圖。
圖6(其包含畫面(a)及畫面(b))為根據一例示性實施例的用於描述藉由終端安裝用於提供個人化服務的應用程式的處理程序的圖。
圖7A至圖7K(圖7A包含畫面(a)及畫面(b);圖7B包
含畫面(c)及畫面(d);圖7C包含畫面(e);圖7D包含畫面(f);圖7E包含畫面(g);圖7F包含畫面(a)及畫面(b);圖7G包含畫面(c);圖7H包含畫面(d);圖7I包含畫面(a)及畫面(b);圖7J包含畫面(c);圖7K包含畫面(d))為根據例示性實施例的說明用於設定服務限制位準的資訊的圖。
圖8為根據例示性實施例的用於描述通知用於提取資料的工作執行主體的處理程序的圖。
圖9為根據例示性實施例的用於描述基於資料是否共用判定分析工作位準的處理程序的圖。
圖10為描述基於共用通知個人資訊曝露風險的處理程序的圖。
圖11為描述共用可藉由鄰近終端設定的圖。
圖12A及圖12B說明根據例示性實施例的關於個人化資料協同式處理服務的情境。
圖13為藉由圖1B的系統執行的智能操作的示範圖。
圖14(其包含組態(a)及組態(b))為藉由圖1B的系統執行的智能操作的另一示範圖。
圖15A(其包含畫面(a)及畫面(b))及圖15B為用於描述根據服務及裝置的情形分析工作分配調整功能的圖。
圖16(其包含畫面(a)及畫面(b))說明根據圖15B的服務及裝置的情形的關於分析工作分配調整的情境。
圖17A及圖17B說明用於根據圖15B的服務及裝置的情形變化描述工作分配處理程序的情境。
圖18及圖19為用於描述根據圖15B的服務及裝置的情形改
變的工作分配處理程序的圖。
圖20為根據第一例示性實施例的用於描述資料協同式處理服務的處理程序的圖。
圖21為根據第二例示性實施例的用於描述資料協同式處理服務的處理程序的圖。
圖22為根據例示性實施例的驅動終端的處理程序的流程圖。
圖23為根據例示性實施例的驅動雲端裝置的處理程序的流程圖。
圖24為根據例示性實施例的終端的畫面顯示方法的流程圖。
圖25A至圖25B(圖25A與圖25B中每一圖包含畫面(a)及畫面(b))及圖26A至圖26C(圖26A至圖26C中每一圖包含畫面(a)、畫面(b)及畫面(c))為用於描述在將資料自終端傳輸至雲端裝置或一鄰近終端時匿名化資料中的一些的處理程序的圖。
圖27(其包含畫面(a)、畫面(b)及畫面(c))為說明基於文字將相片分類的先前技術方法的圖。
圖28(其包含畫面(a)及畫面(b))為用於描述使用者藉由使用用於影像識別的終端待執行的識別位準的圖。
圖29(其包含組態(a)及組態(b))為用於描述使用識別引擎及個人化模型的影像處理操作的圖。
圖30為說明根據例示性實施例的終端藉由雲端裝置分配及處理用於健康保健服務的資料的實例的圖。
在下文中,將參考附圖詳細地描述例示性實施例。
圖1A為根據第一例示性實施例的資料協同式處理服務系統的圖。
如圖1A中所展示,根據第一例示性實施例的資料協同式處理服務系統90包含終端100、通信網路110以及至少一個雲端裝置(或服務提供裝置)120。
終端100可為隨後所描述的終端100-1'、終端100-1"、終端100-1'''或終端100-1''''。此外,雲端裝置120可為隨後所描述的雲端裝置120'、雲端裝置120"、雲端裝置120'''或雲端裝置120''''。
此處,終端100可包含行動裝置(諸如智慧型電話、行動電話、膝上型電腦、平板個人電腦(personal computer;PC)、個人數位助理(personal digital assistant;PDA))或執行有線/無線通信的可穿戴器件。舉例而言,在一些例示性實施例中,終端100可包含藉由具有應用於雲端計算環境下的最少硬體及軟體資源僅執行網際網路存取及基礎運算功能的終端。在其他例示性實施例中,終端100可包含諸如電視(television;TV)或機上盒的裝置。終端100可使用多媒體服務以及基礎通信服務,諸如語音及資料通信。終端100可傳輸及接收多媒體內容(諸如視訊或影像)且在終端100中再現多媒體內容。
根據例示性實施例的終端100可與雲端裝置120交互工作,進而與雲端裝置120協作以執行操作,從而提供資料協同式處理服務。又,因此,終端100可分析用於個人化資料協同式處理服務的資料。此處,個人化資料協同式處理服務可為提供至終端100的使用者的服務且雲端裝置120與彼此協作,且舉例而言,服
務可根據使用者以不同方式提供,即使雲端服務為相同類型。又,協同可表示協同地(或合作地)處理任務(亦即,工作)。任務可預定。又,當假定階層式資訊的多個片段可藉由使用用於雲端服務的使用者相關資料(諸如應用程式使用率資訊、網頁瀏覽歷史以及全球定位系統(global positioning system;GPS)資訊,以及諸如生物測定資訊的各種類型的感應資訊)產生時,使用者可不想要與外部裝置(亦即,雲端裝置120)共用某些階層式資訊。在此情況下,當終端100及雲端裝置120協同地生成及使用階層式資訊以便提供資料協同式處理服務時,使用者並不想要共用的關於階層式資訊的資料可不經自終端100提供至雲端裝置120。根據此類處理程序,可保護使用者的隱私。此處,階層式資訊可包含層級位準資訊(諸如活動識別、活動模式識別及活動預測)、指示屬性位準資訊的每一層的指示符(諸如網路瀏覽器使用率及應用程式選擇以及使用者位置的網路瀏覽器資訊等)以及關於標識符的實質性資料。指示符為指示所傳輸的資料是否與活動識別或活動模式識別相關的資訊。又,如稍後將參考表1描述,階層式資訊可包含原始資料、活動資料、活動模式資料以及活動預測資料,但不限於此。
終端100可基於利用(例如)終端100的畫面由使用者指派的設定資訊設定是否共用階層式資訊。又,基於設定是否共用某些資訊,終端100可對階層式資訊的資料執行分配處理且判定分配處理主體。又,終端100可基於來自由使用者指派的設定資訊(或服務限制位準資訊)當中的工作分配限制自適應性地對資料執行分配處理。由於對資料自適應性地執行分配處理,因此協同式
形式可經可撓性地改變。根據例示性實施例,終端100可處理關於使用者的活動(例如,使用者的行動、內容複製以及應用程式使用率)的資料。舉例而言,終端100可藉由分析使用者所喜歡的內容的內容類型或使用者通常基於使用內容的歷史複製內容的位置將內容推薦給使用者。
為了執行用於提供資料協同式處理服務的操作,終端100可包含低功率消耗的資料分析模組以便處理由雲端裝置120處理的一些大型資料處理工作。又,雲端裝置120可處理終端100的一些資料處理工作。此時,為資料處理工作的主體的某些資料可經由(例如,沙箱功能(sandboxing function))隱藏且自外部存取隱藏資料可受限制。換言之,終端100可藉由隱藏資料而保護來自分析主體(諸如雲端裝置120)的詳細個人資訊。此處,資料分析模組可包含用於分別獲得層資訊(例如,活動識別、活動模式識別以及活動預測的資訊)的多個片段的引擎。此處,引擎可表示執行電腦領域中的核心及基本功能的程式(或處理程序)。引擎可邏輯地分階層。在圖示圖(參見,例如以下進一步描述的圖4)中,以下的引擎(例如,活動識別引擎)可生成由以上的引擎(例如,模式識別引擎)使用的活動識別結果。換言之,活動識別結果可為活動識別引擎的輸出及模式識別引擎的輸入。協同式代理部分(參見例如圖4,400)的類比引擎的執行主體可判定且甚至執行排程可設定。此可基於使用者限制。又,使用者限制可用於判定待由個人資訊保護模組共用的資訊及是否共用或隱藏資訊。
又,終端100及雲端裝置120可自動共用即時使用資源的每一其他者的狀態。又,終端100可基於終端100及雲端裝置
120的使用資源的狀態可撓性地判定終端100及雲端裝置120的分析工作負荷。又,終端100可基於所判定的分析工作負荷將資料協同式處理服務的工作分配至雲端裝置120。此類操作可藉由稱為(例如)協同式管理器100a的類型的程式執行。換言之,協同式管理器100a可為執行仲裁協同的功能的智能引擎。根據例示性實施例,協同式管理器100a可被稱作自主自適應代理(autonomous adaptation agent;AAA)100a。協同式管理器100a(諸如AAA)可表示根據例示性實施例的程式自身,或可共同地表示揮發性記憶體及儲存於揮發性記憶體中的協同相關程式。替代地,協同式管理器100a不僅可包含(就硬體而言)程式經組態於其中的硬體,且亦包含(就硬體而言)程式的一些模組經組態於其中的硬體。此處,分析不僅可包含資料的分批類型工作,且亦包含分析及處理即時執行的複雜事件的一系列工作。事件可為關於即時共用的使用資源的狀態的資訊。又,終端100可執行用於判定工作負荷分配的單元及用於根據機器學習方法判定分配排程的策略,且可自動及連續應用機器學習方法以學習及調整策略。
另外,使用者可具有調整授權以調整資訊共用位準(例如,服務限制位準或協同位準),且終端100可根據使用者的調整授權執行個人資訊保護及工作分配。由於雲端裝置120的分析結果可比終端100的分析結果更好,因此終端100可藉由考慮終端100及雲端裝置120的計算能力及資源分配用於分析及處理資料的工作。舉例而言,根據例示性實施例的個人化資料協同處理服務的資訊的處理過程可分類成四個階層。舉例而言,第一階層可為收集包括利用感測器偵測到的感應資料以及關於使用應用程式及關
於電子郵件的記錄資料的階層,第二階層可為藉由分析第一階層的原始資料產生指示使用者的活動的活動資料的階層,第三階層可為藉由分析使用者的活動資料產生使用者的活動模式資料的階層,以及第四階層可為藉由使用使用者的活動模式資料預測使用者的活動且基於使用者的預測活動產生待提供至使用者的服務回應資訊的階層。服務開發者可開發服務應用程式,使得使用者可設定關於待分析資料的共用位準,以便在安裝服務應用程式時提供服務應用程式的服務。又,資料的共用位準可根據終端100的狀態、雲端裝置120的狀態以及終端100與雲端裝置120之間的網路狀態可撓性地改變。又,用於服務的待分析資料中的一些或全部可經由諸如沙箱的方法保護。
上文所描述的服務的資訊的處理過程期間產生或使用的資料可根據根據(例如)以下的表1的每一階層組織。
參考[表1],來自多個層當中的第一階層可為收集可藉由
終端100收集的全部原始資料的階層。第二階層可為藉由分析第一階層的資料識別使用者的動作(例如,使用者是否在步行及進食)的階層,其中第二階層中產生的資料可為基於原始資料分析出的活動資料。第三階層可為藉由分析第二階層的資料產生指示使用者以進食、運動以及睡覺的次序行動的活動資料。第四階層可為藉由分析第三階層的資料且產生指示預測活動的活動預測資料預測使用者的動作的階層。在第四階層中,服務回應資訊可基於活動預測資料產生。舉例而言,終端100可與雲端裝置120協作以分析使用者七天的活動資料,且識別使用者具有通常在進食之後慢跑的活動模式。又,終端100可基於使用者的活動模式預測使用者的活動。
此外,當終端100難以藉由雲端裝置120分配及執行資料協同處理服務的工作時,終端100可通知使用者難以分配及執行資料協同處理服務。又,終端100可將資料協同處理服務的工作重新分配至雲端裝置120。舉例而言,終端100可根據網路狀態、電池剩餘電量、中央處理單元(central processing unit;CPU)份額以及終端100及雲端裝置120的記憶體份額自適應性地重新分配資料協同處理服務的工作。
通信網路110包含有線及無線通信網絡兩者。此處,有線網路包含網際網路網路,諸如電纜網路或公眾交換電話網路(public switched telephone network;PSTN),且無線通信網路包含分碼多重存取(code division multiple access;CDMA)、寬頻CDMA(wideband CDMA;WCDMA)、全球行動通信系統(global system for mobile communication;GSM)、演變分組核心(evolved packet
core;EPC)、長期演進(long term evolution;LTE)或無線寬頻帶網際網路(wireless broadband Internet;WiBro)網路。然而,根據例示性實施例的通信網路110不限於此,且可用作下一代行動通信系統的存取網路,所述下一代行動通信系統將隨後在(例如)雲端計算環境下的雲端計算網路中實現。舉例而言,當通信網路110為有線/無線通信網路時,通信網路110中的接入點可存取電話公司的電話局,但當通信網路110為無線通信網路時,所述接入點可存取藉由行動載體操作的服務GPRS支援節點(serving GPRS support node;SGSN)或閘道器GPRS支援節點(gateway GPRS support node;GGSN)以處理資料,或存取各種中繼器(諸如基地台傳輸(base station transmission;BTS))、NodeB以及e-NodeB中的任一者以處理資料。
通信網路110可包含接入點。接入點包含較小基地台,諸如通常提供於建築物中的超微型或微微型基地台。此處,超微型或微微型基地台基於可存取的根據較小基地台的分類的終端100的最大數目區分。接入點包含用於藉由終端100執行局部區域通信的位置區域網路模組,諸如紫蜂或Wi-Fi。接入點可使用用於無線通信的TCP/IP或即時串流通信協定(real-time streaming protocol;RTSP)。此處,局部區域通信可以諸如射頻(radio frequency;RF)(諸如藍牙、紫蜂、紅外資料協會(infrared data association;IrDA)、超高頻(ultra high frequency;UHF)以及極高頻(very high frequency;VHF))以及超寬頻(ultra wideband;UWB)通信以及Wi-Fi的各種標準中的任一者執行。因此,接入點可提取資料封包的位置、指派關於所提取的位置的最佳通信路
徑以及將資料封包沿著所指派的通信路徑傳輸至下一個裝置(諸如終端100)。接入點可共用通用網路環境中的若干線,且(例如)可包含路由器、轉發器以及中繼器。
雲端裝置120為儲存及管理計算資源(諸如以無形形式存在的軟體)的裝置,且(例如)可接收、儲存以及管理藉由在來自終端100的請求後將某一應用程式(或程式)提供至終端100處理的應用程式相關資訊,或可驅動在終端100的請求後的其中應用程式且隨後處理藉由終端100請求的應用程式相關資訊以及儲存及管理處理結果。
又,根據例示性實施例的雲端裝置120可作為提供裝置的服務與終端100共用關於用於資料協同處理服務的資料的共用位準的服務限制位準資訊。雲端裝置120可與終端100協作以基於服務限制位準資訊處理由終端100提供的資料。此處,服務限制位準資訊可為由使用者關於處理協同式資料的資料共用位準設定的設定資訊。服務限制位準資訊可為額外資訊而非實質性分析資料。舉例而言,使用者可設定資料共用使得文字訊息的細節被限制由雲端裝置120共用,然而關於文字訊息的傳輸及接收的歷史的資訊允許由雲端裝置120共用。在此情況下,關於藉由使用者設定的資料共用的設定值可包含於服務限制位準資訊中。
同時,在上文中,已描述終端100將工作分配至雲端裝置120且藉由雲端裝置120設定資料共用位準,但本發明不限於此。雲端裝置120可將工作分配至終端100且藉由終端100設定資料共用位準。在此情況下,如同終端100,雲端裝置120可包含協同式管理器120a。雲端裝置120可藉由分析由終端100提供的
資料獲得關於終端100的使用者的階層式資訊。在此情況下,雲端裝置120可基於藉由使用者設定的安全位準接收來自個人化資訊當中的某一層的資訊中的一些或全部。雲端裝置120可根據各種條件(諸如藉由終端100設定的資料處理主體、可分析的位準以及資源使用率限制)分析自終端100接收的資料。因此,雲端裝置120可包含用於自處理資料資料的分析模組,以及處理關於用於分析協同的排程策略等的資訊的協同式管理器120a。資料分析模組及協同式管理器120a可與終端100的資料分析模組及協同式管理器100a類似。與終端100的資料分析模組相比,雲端裝置120的資料分析模組的效能可為極佳。舉例而言,雲端裝置120的資料分析模組可比終端100的資料分析模組操作更快且能夠處置更多資料。
雲端裝置120的稱為協同式管理器120a的智能引擎可與終端100的稱為協同式管理器100a的智能引擎交互工作,使得雲端裝置120與終端100可在分配及執行分析資料的工作時即時共用使用資源的狀態。舉例而言,當雲端裝置120的協同式管理器120a與終端100的協同式管理器100a彼此協作(亦即,交互)以分配用於分析資料的工作時,雲端裝置120的資料分析模組及終端100的資料分析模組可根據分配結果執行經指派至其中的資料的分析操作。
舉例而言,終端100的使用者可設定階層位準資訊使得關於使用者的活動的第一層的原始資料及第二層的活動資料與雲端裝置120共用,以及第三層的活動模式資料與第四層的活動預測資料不與雲端裝置120共用。在此情況下,終端100的協同式
管理器100a可藉由雲端裝置120的協同式管理器120a基於設定分配工作資料。當協同期間不具有雲端裝置120的資源時,雲端裝置120的協同式管理器120a可通知終端100的協同式管理器100a不具有資源。又,終端100可接收關於不具有資源的通知,且重新分配雲端裝置120的工作。
同時,雲端裝置120可藉由使用虛擬組織技術經由通信網路110存取雲端裝置120,且登記由雲端裝置120提供資源。因此,開發者可基於雲端裝置120經由由服務提供者提供的應用程式設計介面(application programming interface;API)快速開發應用程式,而非自開始自開發某一應用程式。此處,API可呈用於作業系統與應用程式之間通信的語言或訊息的形式實現。
當終端100(例如)將經由諸如聲學語音識別(acoustic speech recognition;ASR)的資料協同處理服務獲得某些結果時,終端100可基於由終端100擁有的階層式資訊及由雲端裝置120提供的階層式資訊將藉由使用者請求的結果提供至使用者。當然,終端100可與雲端裝置120檢查藉由分析對應於某些階層式資訊的資料獲得的分析結果是否在雲端裝置120中,且向雲端裝置120請求分析結果從而獲得由使用者所要的結果。
圖1B為根據第二例示性實施例的資料協同式處理服務系統的圖。
如圖1B中所展示,根據第二例示性實施例的資料協同處理服務系統90'包含終端100-1'、鄰近終端100-2'、通信網路110'以及雲端裝置120'。鄰近終端可由使用者他/她自己、家庭成員或好友擁有。當鄰近終端由家庭成員或好友擁有時,使用關於資料協
同的雙方同意。因此,根據顯示的使用者資料共用限制位準共用用於協同的資料與根據在終端100-1'與雲端裝置120'之間共用策略的方法類似。當存在多個鄰近終端時,協同式資料的區段單元的調整遵循與用於具有多個計算資源的雲端的劃分方法的相同方法被共用。
比較圖1B的資料協同處理服務系統90'與圖1A的雲端計算系統90,資料協同處理服務系統90'進一步包含鄰近終端100-2'。此處,除諸如智慧型電話的行動電話之外,鄰近終端100-2'可包含執行(例如)上文所描述的Wi-Fi通信的接入點以及(另外)各種類型的終端,諸如TV及機上盒。
根據以上結構,終端100-1'可進一步將鄰近終端100-2'(以及雲端裝置120')指派為待用於資料協同處理服務的資料的分配處理主體。此類資料的分配處理處理可經由通信網路110'以及經由終端100-1'與鄰近終端100-2'之間的直接通信而執行。
在鄰近終端100-2'中,用於分析藉由終端100-1'請求的資料的引擎(亦即,程式)可包含於鄰近終端100-2'中,但當判定並未包含程式時,鄰近終端100-2'可自終端100-1'或雲端裝置120'接收程式以執行分析操作。此處,程式表示協同式管理器100a或能夠執行分析操作的可下載引擎。又,經由分析操作獲得的分析結果(例如,階層式資訊)可儲存於鄰近終端100-2'的內部記憶體中或自鄰近終端100-2'提供至終端100-1'或雲端裝置120'。此處,只要不侵犯個人的隱私,關於其中存儲關於某一使用者的相關階層式資訊的資訊即可在終端100-1'、鄰近終端100-2'以及雲端裝置120'之間共用。隨後將詳細地描述鄰近終端100-2'的協同式處理。
另外,由於關於圖1B的終端100-1'、通信網路110'以及雲端裝置120'的細節與圖1A的終端100、通信網路100以及雲端裝置120的彼等類似,因此不再次提供其描述。
圖1C為根據第三例示性實施例的資料協同式處理服務系統的圖。
比較圖1C的資料協同處理服務系統90"與圖1B的資料協同處理服務系統90',在圖1C中所展示的例示性實施例中,圖1B的鄰近終端100-2'經組態為可穿戴裝置100-2"。此處,可穿戴裝置100-2"可為手錶形狀的具有計算能力的智慧型手錶(諸如Galaxy Gear)或眼鏡形狀的具有計算能力的智慧型眼鏡。此外,可穿戴裝置100-2"可為能夠通信的一副眼鏡、套環、望遠鏡、傳動帶、頭戴顯示器(head mounted display;HMD)或頭戴式耳機/耳機形狀的可穿戴器件。又,可穿戴器件100-2"可為具有量測生物測定資訊的生物測定資訊量測功能的可穿戴器件,諸如計步器、血壓計或血糖計等。
終端100-1"可進一步將可穿戴裝置100-2"指派為待用於資料協同處理服務的的資料的分配處理主體。由於可穿戴裝置100-2"的其他操作與圖1B的鄰近終端100-2'的彼等類似,因此不再次提供其細節。
又,由於圖1C的終端100-1"、通信網路110"以及雲端裝置120"與圖1A的終端100、通信網路110以及雲端裝置120類似,因此不再次提供其細節。
圖1D為根據第四例示性實施例的資料協同式處理服務系統的圖。
比較圖1D的資料協同處理服務系統90'''與圖1B的雲端計算系統90',圖1B的鄰近終端100-2'經組態為集線器或閘道器100-2'''。此處,集線器為藉由使用一個網路中的一個線提供用於使用若干主機(諸如電腦)的介面的裝置,且閘道器為實現(例如)使用不同協定的不同網絡的通信的裝置。
根據本發明的例示性實施例,終端100-1'''可藉由連接至終端100-1'''的集線器或閘道器100-2'''執行待用於個人化資料協同處理服務的資料的分配處理。集線器或閘道器100-2'''的操作並非很大程度上不同於圖1B的鄰近終端100-2'的彼等,且因此不提供進一步描述。
又,由於圖1D的終端100-1'''、通信網路100'''以及雲端裝置120'''與圖1A的終端100、通信網路110以及雲端裝置120類似,因此不再次提供其細節。然而,圖1D的通信網路110'''可經由基地台(諸如BTS或e-Node)連接至終端100-1'''。
圖1E為根據第五例示性實施例的資料協同式處理服務系統的圖。
比較圖1E的資料協同處理服務系統90''''與圖1C的雲端計算系統90",圖1E的終端100-1''''經由第一通信網路110-1''''連接至可穿戴裝置100-2'''',且終端100-1''''經由第二通信網路110-2''''連接至雲端裝置120''''。此處,第一通信網路110-1''''可為區域網路。區域網路可為(例如)使用來自無線LAN(Wi-Fi)、藍牙、紫蜂、Wi-Fi直連(Wi-Fi direct;WFD)、超寬頻(UWB)、紅外資料協會(IrDA)、藍牙低能量(Bluetooth low energy;BLE)、近場通信(near field communication;NFC)以及ANT+當中的至少一
個局部區域通信的通信網路,但不限於此。第二通信網路110-2''''可為上文參考圖1A所描述的通信網路110,或可為局部區域或遠端區域網路。
在圖1E中,終端100-1''''可進一步將雲端裝置120''''及可穿戴裝置100-2''''中的至少一者指派為資料的分配處理主體,以便處理用於資料協同處理服務的資料。
舉例而言,可穿戴裝置100-2''''的感測器可獲得關於使用者的動作的原始資料或關於使用者的生物測定資訊的原始資料。終端100-1''''可經由第一通信網路自可穿戴裝置100-2''''接收原始資料。隨後,終端100-1''''可與雲端裝置120''''協同分析所接收的原始資料。替代地,終端100-1''''可自可穿戴裝置100-2''''接收經處理資料,並與雲端裝置120''''協同分析經處理資料。經處理資料可包含(例如)活動資料、活動模式資料以及活動預測資料,但不限於此。
詳言之,原始資料及經處理資料可根據層或基於安全位準或處理位準的預設標準分類,且顯示於終端100-1''''或可穿戴裝置100-2''''的螢幕上。在此情況下,當判定工作主體時,終端100-1''''、可穿戴裝置100-2''''以及雲端裝置120''''可與彼此協作來分析使用者的生物測定資訊且提供適合於使用者的健康服務。在健康服務中,可提供用於使用者的運動或放鬆方法。替代地,疾病可能性、疾病的發展狀態等可提供至使用者。
當終端100-1''''或可穿戴裝置100-2''''將關於使用者的生物測定資訊的資料傳輸至外部裝置或雲端裝置120''''時,終端100-1''''或可穿戴裝置100-2''''可將資料中的一些作為用於隱私保護的
匿名化資料傳輸。在此情況下,原始資料及經處理資料中的一些或全部可匿名化。舉例而言,資料中的一些可藉由將關於生物測定資訊的原始資料或經處理資料中的一些改變為不同預設值而匿名化。舉例而言,匿名化可藉由將資料(諸如某些資料的名稱、年齡以及性別)改變為不同值而執行。隨後將詳細地描述關於匿名化的細節。又,隨後將描述基於由可穿戴裝置100-2''''收集的生物測定資訊經由終端100-1''''與雲端裝置120''''之間的協同提供經區分的位準的醫療服務的情境。
圖2A為展示圖1A至圖1E的終端100、終端100-1'、終端100-1"、終端100-1'''以及終端100-1''''的詳細結構的實例的方塊圖。
為方便描述起見,共同參考圖2A及圖1A,根據例示性實施例的終端100包含通信介面200、控制器210以及顯示器220中的一些或全部。
此處,『包含一些或全部』意謂諸如通信介面200的組件可藉由整合於諸如控制器210的另一組件中而經組態。舉例而言,通信介面200及控制器210可被稱作資料處理器。下文,為澈底理解本發明,將描述終端100包含通信介面200、控制器210以及顯示器220中的全部。
通信介面200與雲端裝置120通信以便將資料協同處理服務(例如,個人化資料協同處理服務)提供至使用者。因此,通信介面200可將關於藉由終端100中的使用者設定的資料協同處理服務的服務限制位準資訊傳輸至雲端裝置120。又,通信介面200可基於關於服務限制位準的資訊將待分析用於資料協同處理服務
的資料傳輸至雲端裝置120。在此類處理程序期間,通信介面200可另外執行諸如轉換所接收的資料的操作。舉例而言,通信介面200可執行資料處理程序,諸如編碼或解碼。即使資料對應於一個特定層,當執行工作分配時,終端100可將服務限制位準資訊傳輸至雲端裝置120,進而促進資料分配。舉例而言,當待處理的資料為對應於第二層的活動識別結果的資料時,使用者可設定資料的處理,使得待處理的資料的50%由終端100處理且待處理的資料的50%由雲端裝置120處理。然而,所述百分比僅為實例,且可使用不同百分比。舉例而言,使用者可設定資料的處理,使得資料的35%由終端100處理且資料的65%由雲端裝置120處理。在此情況下,雲端裝置120可具備服務限制位準資訊連同待處理的資料(例如,完整資料),且可根據服務限制位準資訊分析待處理的資料。然而,一例示性實施例不限於此,且根據一些例示性實施例,雲端裝置120可僅接收待處理的資料且分析所接收的資料,而無需接收服務限制位準資訊。亦即,在一些例示性實施例中可省去服務限制位準資訊的傳輸。
控制器210可控制通信介面200及顯示器220的整體操作。舉例而言,當使用者經由顯示於顯示器220上的UI畫面設定關於資料協同處理服務的服務限制位準時,通信介面200可經控制以將關於資料協同處理服務及設定的資訊傳輸至雲端裝置120。此處,服務限制位準可為指示使用者的隱私保護的程度的位準,且使用者相關資料中的一些或全部的共用可根據服務限制位準而受限制。雲端裝置120可藉由使用自終端100提供的使用者相關資料導出經分層的階層式資訊的多個片段。又,根據服務限制位準,
待提供至雲端裝置120的資料中的一些或全部可匿名化。終端100的使用者可判定指示待與雲端裝置120共用的至多階層的階層式資訊,使得雲端裝置120不能共用關於來自階層式資訊的多個片段當中的某些階層式資訊的資訊。因此,用於導出某些階層式資訊的一些資料可不自終端100提供至雲端裝置120。
為了設定此類服務限制位準,控制器210可控制顯示器220以顯示UI畫面,且同時,控制顯示器220以另外設定資訊的各種類型。舉例而言,為了自階層式資訊的多個片段當中導出某些階層式資訊,使用者可設定各種資訊的類型,諸如關於對應階層式資訊的資料待分析的程度,且若判定分析主體,則分析位準的百分比(%)。又,關於如何執行資料的分配處理的各種類型的資訊可根據資源的可用能力(諸如,終端100的CPU及電池,以及諸如通信網路110的網路狀態)而設定。各種類型的資訊設定同樣可與雲端裝置120共用。隨後將進一步描述其他細節。AAA及分析模組可根據藉由控制器210設定的服務限制位準執行協同處理程序。
顯示器220顯示各種UI畫面。此處,UI畫面可包含用於設定服務限制位準、資料分析工作可實行主體、分析工作位準以及工作分配限制的畫面。又,經判定以基於藉由使用者經由UI畫面設定的資訊另外通知使用者的資訊可以UI畫面或彈出視窗的形式顯示。舉例而言,使用者希望不共用關於來自階層式資訊的多個片段當中的某些階層式資訊的資訊,但顯示器220可通知使用者此類設定處理程序為錯誤,或或顯示通知使用者某些階層式資訊使用者希望不共用的資訊可因此外部共用。此外,顯示器220可顯
示由控制器210處理的各種類型的資訊。
圖2B為圖1A至圖1E的終端的詳細結構的另一示範圖。
為方便描述起見,共同參考圖2B及圖1A,根據另一例示性實施例的終端100可包含通信介面200'、使用者介面210'、控制器220'、資料分析器230'以及UI畫面產生器240'中的一些或全部。另外,終端100可進一步包含諸如攝像機或視訊模組的成像單元(圖中未展示)、語音辨識器(圖中未展示)以及語音輸出模組(圖中未展示)。
此處,『包含一些或全部』意謂可省去諸如使用者介面210'的組件,或諸如UI畫面產生器240'的組件可與諸如控制器220'的另一組件整合,且為澈底理解本發明,將描述包含通信介面200'、使用者介面210'、控制器220'、資料分析器230'以及UI畫面產生器240'的全部的終端100。
如同圖2A的通信介面200,通信介面200'可與雲端裝置120協作以基於服務限制位準及連結至服務限制位準的指示符分散地分配及處理各種類型的資料,所述服務限制位準藉由終端100中的使用者設定。
使用者介面210'可經組態為一個或多個按鈕及顯示器,或可實現為執行所述按鈕的功能及顯示器的功能的觸控式螢幕。又,使用者介面210'可進一步包含包含感測器等的使用者資訊偵測器。所述按鈕可接收使用者命令,且使用者資訊偵測器可偵測關於使用終端100的使用者的各種類型的資訊。舉例而言,可偵測到關於使用者的位置資訊。又,各種類型的支援資訊可經由顯示器顯示於終端100上。
控制器220'可控制包含於終端100中的通信介面200'、使用者介面210'、資料分析器230'以及UI畫面產生器240'的整體操作。舉例而言,當存在經由使用者介面210'的使用者請求時,控制器220'可控制UI畫面產生器240'以在使用者介面210'上(詳言之,在顯示器上)顯示用於設定服務限制位準的UI畫面。又,控制器220'可將基於設定服務限制位準資訊處理的資料提供至資料分析器230'且控制資料分析器230'以導出階層式資訊。由於關於控制器220'的其他細節並非很大程度上不同於圖2A的控制器220,因此不再次提供其描述。
控制器220'可包含中央處理單元(CPU)及記憶體。此處,記憶體可包含隨機存取記憶體(random access memory;RAM)及/或唯讀記憶體(read only memory;ROM)。RAM為揮發性記憶體,且可儲存程式,諸如根據例示性實施例的AAA 100a。又,ROM為非揮發性記憶體且可儲存用於起初驅動終端100的程式。因此,CPU在起始驅動期間藉由使用儲存於ROM中的程式執行啟動、在啟動之後執行儲存記憶體於中的用於自動協同的程式以及基於根據程式的執行所提供的服務限制位準資訊執行用於資料的分配處理的協同操作。控制器220'將基於服務限制位準資訊提供的資料提供至資料分析器230'。
資料分析器230'分析經由包含於使用者介面210'中的各種感測器獲得的資料。舉例而言,藉由使用者保持的終端100的運動資訊(方向資訊、旋轉資訊或類似者)可經由包含於使用者介面210'中的陀螺儀而獲得。作為另一實例,由使用者使用的應用程式的類型及使用應用程式的記錄歷史可獲得。在此類處理程序期
間,資料分析器230'基於由使用者設定的服務限制位準資訊分析資料。當使用者設定終端100以自階層式資訊的多個片段當中導出某一層的階層式資訊時,資料分析器230'可分析僅關於某些階層式資訊的資料。因此,資料分析器230'可執行用於導出階層式資訊的每一片段的分析引擎(亦即,程式)。
獲得上文所描述的原始資料及資料分析結果的獲得器可根據以下的表2組織。
UI畫面產生器240'為產生UI畫面的部分,且舉例而言,可生成用於某些功能的各種UI畫面,諸如用於判定是否共用階層
式資訊的UI畫面。此處,各種UI畫面包含用於設定服務限制位準及工作分配限制等的UI畫面。替代地,UI畫面產生器240'可經組態以預儲存關於所產生的畫面的資訊,且當某一事件產生時,提供關於對應UI畫面的資訊。
此外,成像單元可包含諸如攝像機或視訊記錄器的攝像器件,且可使用藉由使用資料協同處理服務中的攝像器件獲得的成像資料(例如,影像檔案或視訊檔案)。又,語音辨識器包含麥克風,且語音資料亦可用於資料協同處理服務。語音輸出模組包含揚聲器,或類似者。
圖3A為展示圖1A至圖1E的雲端裝置的詳細結構的實例的方塊圖。
為方便描述起見,共同參考圖3A及圖1A,根據例示性實施例的雲端裝置120包含通信介面300、控制器310以及儲存器320中的一些或全部。
此處,『包含一些或全部』意謂諸如通信介面300的組件可與諸如控制器310的另一組件整合以形成資料處理器,且為澈底理解本發明,將描述雲端裝置120包含通信介面300、控制器310以及儲存器320中的全部。
通信介面300與終端100執行通信以便將資料協同處理服務提供至使用者。因此,通信介面300可根據由終端100提供的使用者接收服務限制位準資訊,且將服務限制位準資訊傳輸至控制器310以儲存於儲存器320中。又,通信介面300基於服務限制位準資訊接收由終端100提供的資料。隨後,通信介面300可執行諸如資訊轉化的操作或類似者。又,當某些階層式資訊經請求
作為自終端100接收的資料的分析結果時,通信介面300可傳輸某些階層式資訊。
控制器310可控制雲端裝置120(例如,通信介面300及儲存器320)中的每一組件的整體操作,且執行資料分析操作。舉例而言,控制器310可在儲存器320中儲存各種類型的資訊,諸如自通信介面300提供的服務限制位準資訊。又,當原始記錄資料自所分配的資料或終端100提供時,控制器310可基於所存儲的服務限制位準資訊執行資料的分析操作。此處,記錄資料可包含經由線上通道(諸如網頁或行動通道)獲得的資料。因此,控制器310可在內部記憶體(詳言之,RAM)中或在儲存器320中儲存分析引擎(亦即,程式),且執行分析引擎以根據資料分析產生關於任意使用者的階層式資訊。在來自終端100的請求後,所產生的階層式資訊可隨後提供至終端100。
儲存器320可儲存用於資料分析處理程序的各種類型的資訊。代表性地,儲存器320可儲存由控制器310提供的服務限制位準資訊,且在控制器310的控制下輸出所存儲的資訊。另外,儲存器320可儲存藉由控制器310處理的各種類型的資訊及/或資料處理結果,且在請求後隨後輸出資訊及/或資料處理結果。
圖3B為圖1A至圖1E的雲端裝置的詳細結構的另一示範圖。
為方便描述起見,共同參考圖3B及圖1A,根據例示性實施例的雲端裝置120可包含通信介面300'、控制器310'、儲存器320'以及資料分析器330'中的一些或全部。此處,包含一些或全部具有如上相同的意謂。
比較圖3B雲端裝置120與圖3A的雲端裝置120,圖3B的雲端裝置120進一步包含與控制器310'分離的資料分析器330'。
控制器310'可包含CPU及揮發性記憶體。為了提供個人化資料協同處理服務,CPU可調用儲存於儲存器320'(儲存於揮發性記憶體中)中的稱為AAA 100a的程式,且隨後執行程式。根據程式的執行,AAA 100a及資料分析器330'的分析引擎可與彼此交互工作。舉例而言,AAA 100a可分析由通信介面300'提供的服務限制位準資訊,且基於分析結果將自通信介面300'接收的資料提供至資料分析器330'的每一分析引擎。
資料分析器330'可包含用於資料分析的分析引擎,且在控制器310'的控制下分析所提供的資料。舉例而言,即使當原始記錄資料自終端100提供時,在一些例示性實施例中,僅用於基於藉由終端100中的使用者設定的服務限制位準資訊導出某些階層式資訊的資料可被分析。分析引擎為用於執行活動偵測、分析活動模式以及基於活動模式預測未來活動的處理程序,且圖示於圖4中。每一引擎根據服務限制階層經分層。引擎在下層中產生由上層使用的資料。舉例而言,活動識別引擎產生用於模式識別引擎分析重複模式的活動偵測結果。
另外,由於圖3B的通信介面300'、控制器310'以及儲存器320'與圖3A的通信介面300、控制器310以及儲存器320類似,因此不再次提供其細節。
圖4為圖示圖2A或圖2B的控制器以及資料分析器的詳細功能的圖。
為方便描述起見,共同參考圖4及圖2A,根據例示性實
施例控制器210包含分析模組400及記憶體410,且可進一步包含CPU。
此處,分析模組400可經組態成晶片的形式,作為用於處理用於資料協同處理服務的資料中的一些的部分。舉例而言,分析模組400可實施為與用於儲存及執行分析引擎(亦即,程式)的ROM組合的CPU,諸如遮罩ROM(mask ROM)、可抹除及可程式化ROM(erasable and programmable ROM;EPROM)或電子可抹除及可程式化ROM(electrically erasable and programmable ROM;EEPROM)。此處,分析引擎可包含用於活動識別的活動識別引擎、用於分析活動模式的模式識別引擎以及用於導出關於活動模式的預測結果的預測引擎。ROM可為一種類型的記憶體,其中程式可寫入及擦除。分析模組400能夠線上/離線操作,且可分析使用者的興趣、分析活動模式以及執行預測操作。換言之,資料可基於藉由使用者設定的服務限制位準資訊分析以導出關於使用者的某一區域的階層式資訊。此處,由於終端100的使用者可沙箱分析任務,詳細個人資訊可經由資料隱藏被保護免於分析任務。
記憶體410可為(例如)揮發性記憶體。記憶體410可儲存關於AAA 100a的程式,且儲存待分析的資料。替代地,記憶體410可根據資料分析儲存階層式資訊。此外,記憶體410可儲存關於使用資源的狀態等的各種類型的資訊,其中此類資訊可與雲端裝置120共用。又,記憶體410可儲存用於基於工作負荷分配判定及分配排程策略動態分配工作負荷的資訊,且可儲存用於調整工作負荷分配判定及分配排程策略的資訊。
又,記憶體410中的協同式管理器100a可在(例如)CPU
的控制下執行。舉例而言,協同式管理器100a可在終端100操作時執行以分析使用者的興趣、活動模式等。因此,協同式管理器100a判定使用者的限制、導出工作劃分及分配方法以及分析與圖1B的鄰近終端100-2'及雲端裝置120'共同執行的工作區段,進而根據分析工作區段的結果與分析模組400交互工作。
圖5為根據一例示性實施例的用於大致描述提供個人化服務的處理程序的圖。
如圖5中所展示,根據例示性實施例的終端100及雲端裝置120包含用於資料分析的分析引擎(亦即,程式)。此處,程式可獨立執行。
根據例示性實施例,可包含用於處理原始記錄資料的引擎500、用於識別使用者動作的活動/影像/語音識別引擎510、用於分析使用者模式的模式識別引擎520以及用於預測使用者活動及設定服務回應位準的預測引擎530作為分析引擎。
當在終端100中設定服務限制位準時,終端100可與用於服務的雲端裝置120共用僅基於設定服務限制位準處理的位準的資料。換言之,可認為終端100提供僅使得雲端裝置120能夠藉由使用某一引擎分析資料的資料。
又,即使在雲端裝置120中,當內部負載增大時,雲端裝置120可設定關於終端100的動態處理位準。此處,動態處理位準意謂與終端100協同處理的資料可根據雲端裝置120的網路狀態頻繁改變。
圖6為根據一例示性實施例的用於描述藉由終端安裝用於提供個人化服務的應用程式的處理程序的圖。
如圖6中所展示,根據例示性實施例的終端100可需要安裝應用程式,以使用資料協同處理服務(亦即,個人化服務)的服務限制位準。因此,如圖6的畫面(a)中所展示,用於設定授權及同意獲取個人資訊的畫面可顯示於終端100的螢幕上。若使用者並不同意,則不可能使用服務。
然而,當使用者在畫面(a)中同意時,圖6的畫面(b)可顯示於終端100上。因此,可設定用於安裝應用程式的授權。
圖7A至圖7K為根據例示性實施例的說明用於設定用於指派服務限制位準的各種類型的資訊的資訊的圖式。
詳言之,圖7A至圖7E為展示設定階層位準資訊、工作主體以及工作位準的處理程序的圖;圖7F至圖7H為展示設定屬性位準資訊、工作主體以及工作位準的處理程序的圖;以及圖7I至圖7K為展示設定網路瀏覽器資訊、工作主體以及工作位準的處理程序的圖。
參考圖7A至圖7E連同圖1A及圖1B,根據例示性實施例的終端100可顯示用於設定用於分析及設定階層式隱私資料的資訊的UI。因此,終端100可提供用於設定如圖7A至圖7E中所展示的各種類型的資訊的UI畫面。
為方便描述起見,參考圖7A至圖7E連同圖1B,終端100-1'的使用者選擇顯示於如圖7A的畫面(a)中所展示的牆紙上的圖示,以使用個人化資料協同服務。隨後,終端100-1'可顯示用於提供如圖7A中所展示的服務的畫面(b)。舉例而言,諸如「個人雲端服務在使用中」的片語可顯示於畫面的上方處使得使用者認識到服務在使用。當使用者(例如)自服務畫面選擇終端100-1'
的底部處的功能表按鈕時,用於設定資訊的彈出視窗顯示於畫面的上方處。彈出視窗可通常顯示帳戶或類似者的帳戶項目700(使用者資訊輸入至其中)、展示由使用者指派以使用服務的裝置的清單的視圖清單項目710以及用於指派服務限制位準的資訊設定項目720。此處,視圖清單項目710可顯示(例如)由使用者經指派為資料處理主體的裝置以便使用本服務。
在圖7A的畫面(b)中,當終端100-1'的使用者選擇資訊設定項目720時,終端100-1'可顯示用於設定如圖7B的畫面(c)中所展示的詳細資訊的設定資訊。根據例示性實施例,設定資訊清單可簡單包含用於設定階層位準資訊、屬性位準資訊、網路瀏覽器資訊以及工作分配限制的項目等。
在圖7B的畫面(c)中,當終端100-1'的使用者選擇用於設定階層位準資訊的項目時,圖7B的畫面(d)可顯示。在圖7B的畫面(d)中,指示服務限制位準正在設定的片語可顯示,連同詳細指示正在被設定的資訊的片語。使用者可選擇待與外部裝置共用及不與外部裝置共用的層資訊。外部裝置可為圖1B的鄰近終端100-2'或雲端裝置120'。此處,共用意謂終端100-1'與鄰近終端100-2'及雲端裝置120'協作處理資料以便獲得層資訊。此處,協同可同樣關於層資訊的一個片段執行。另一方面,不共用意謂相關資料僅由終端100-1'處理以便獲得相關層資訊。
舉例而言,終端100-1'可關於如圖7B的畫面(d)中所展示的四個階層判定根據階層的共用。第一階層(階層0)與藉由終端100-1'收集的未處理資訊自身相關,且為關於身體感測器的接通/斷開、應用程式的使用率資訊等的層處理資料。第二階層(階層
1)與基於第一階層的資訊產生於終端100-1'中的行動分析相關,且(例如)為關於步行、通勤、進食等的層處理資料。第三階層(階層2)與基於第二階層的資訊的使用者的模式分析相關,且(例如)為關於進食、運動以及睡覺的模式的層處理資料。第四階層(階層3)與使用者的預測動作相關,且(例如)為用於預測動作(諸如在兩小時之後離開辦公室及在三小時之後慢跑)的層。
在圖7B的畫面(d)中,使用者可藉由選擇OK按鈕結束階層位準資訊的設定處理程序。舉例而言,在圖1B中,當僅終端100及雲端裝置120經指派用於服務時,終端100可在判定層資訊是否共用之後藉由與雲端裝置120對資料自動執行分配處理。然而,使用者可詳細判定工作主體,且藉由考慮到雲端裝置120的分析資源具有高效能而設定分析位準。因此,當選擇是否共用層資訊時,圖1B的終端100-1'可另外詢問使用者是否設定如圖7C的畫面(e)中所展示的分析主體及分析位準。
在圖7C的畫面(e)中,當使用者選擇OK按鈕時,圖7D的畫面(f)可展示,且使用者可經由左及右撥動(flicking)操作詳細設定工作主體及工作位準或檢查預先執行哪個設定。舉例而言,關於經指派為不可共用的層資訊,分析工作僅在自身終端(終端自身,亦即圖1B的終端100-1')中執行,且因此單獨設定工作並未使用。然而,關於允許被共用的層資訊,用於獲得對應層資訊的裝置可自多個裝置當中經指派且工作位準的百分比可經指派。
舉例而言,當設定工作主體時,當工作主體為僅如圖1A中所展示的終端100及雲端裝置120時,用於設定工作主體的兩
個工作主體設定項目可產生且顯示於如圖7E中所展示的畫面(g)上。同時,當使用者將五個裝置(例如,自身終端、雲端以及終端1至終端3)指派為工作主體時,用於設定工作主體的五個工作主體設定項目可顯示但非詳細的繪示。此處,所顯示的工作主體設定項目的數目可根據設定工作位準變化。換言之,當工作主體1的項目將自身終端的工作位準設定為80%且工作主體2的項目將雲端的工作位準設定為20%時,工作位準為100%,且因此即使當存在五個可設定裝置時,工作主體設定項目亦不再顯示。又,如圖7D的畫面(f)中所展示,使用者可選擇指示按鈕730以指派工作主體,且可自根據選擇突出較下端的突出視窗設定某一裝置(例如,自身終端)。使用者可經由此類處理程序設定工作主體,且執行輸入工作位準的值的單獨輸入處理程序。工作的單元及工作的執行排程的設定根據給定執行裝置的資源的當前狀態而執行。
如圖7E的畫面(g)中所展示,當使用者完成關於識別結果設定工作主體及關於自層資訊的多個片段當中選擇為可共用的活動模式設定預測結果,以及設定工作位準的處理程序時,使用者可檢查經由點選(clicking)操作最後輸入的資訊。隨後,當選擇OK按鈕時,階層位準資訊、工作主體以及工作位準的設定完成。又,圖1B的終端100-1'可再次顯示圖7B的畫面(c)。
又,圖1B的終端100-1'可將用於判定位準但不用於全部個人資訊的UI提供至使用者,且可藉由將每一階層資訊分層將用於設定的UI提供至如圖7F至圖7K中所展示的屬性位準。
簡單描述,在圖7F的畫面(a)中,使用者選擇用於設定屬性位準資訊的設定項目。隨後,圖7F的畫面(b)顯示,且使用
者可經由畫面(b)選擇屬性位準中的可共用性。隨後,當選擇OK按鈕時,用於詢問使用者是否設定分析主體及位準的畫面可顯示於如圖7G中所展示的畫面(c)中。若使用者希望在圖7G的畫面(c)中設定分析主體及位準,則終端100-1'可顯示圖7H的畫面(d),且自使用者接收工作主體的輸入。工作位準根據執行裝置的可用資源位準估計。
當使用者在完成輸入處理程序之後選擇畫面的底部處的OK按鈕時,屬性位準資訊的設定完成。隨後,終端100-1'可再次顯示圖7B的畫面(c)。
詳言之,參考圖7F,根據例示性實施例的屬性位準資訊經不同地分層至屬性位準中,所述屬性位準為終端或終端的活動,以及如終端中的活動的應用程式選擇、攝影、音樂收聽等。換言之,使用者可經由使用者的簡單活動位準判定是否共用甚至各種使用者活動,諸如使用網路瀏覽器及攝影,使用終端100-1'。換言之,在圖7B的畫面(d)中,若使用者希望共用(例如)活動識別結果,但在圖7F(b)的畫面(b)中,使用者希望不共用關於身體運動(亦即,GPS路徑)的資料,則排除GPS路徑的活動識別結果可共用。舉例而言,讓我們假定Wi-Fi模組及用於識別使用者的活動GPS模組包含於終端100-1'中。因此,當使用者並不共用關於GPS路徑的資料時,僅關於Wi-Fi模組的資料共用。
舉例而言,當使用者使用僅Wi-Fi模組共用資料時,使用者的活動資料可限於極受限制的空間,諸如住宅或辦公室。然而,當資料使用GPS模組共用時,使用者的每個動作可共用,且因此可侵犯使用者的隱私。舉例而言,若使用者造訪泌尿科醫生或出售
所謂的奢侈品的著名百貨商店,則使用者想要隱藏的資訊可能曝露。
又,當使用者將極私人相片或視訊儲存於終端100-1'中且關於儲存器的資訊與外部裝置共用時,對應內容可被攻擊及曝露,且因此隱私可不受保護。因此,共用關於在終端中儲存活動內容的資訊可能受限制。
此外,當使用網站及打開xxx.com時,關於『網際網路使用』的資訊可共用,且關於詳細搜尋的內容的資訊可不共用。此可適用於保護使用者的隱私的項目。
由於圖7I至圖7K並不很大程度上不同於圖7A至圖7H,因此不再次提供其相同內容。然而,在圖7I的畫面(b)中,網路瀏覽器資訊展示關於當前位置的詳細資訊,且使用者可判定是否共用此類詳細資訊以及另外,判定工作主體及工作位準。詳細資訊包含關於關於當前位置的位置名稱、時間槽以及緯度及經度的資訊。
同時,關於網頁瀏覽的層資訊將參考圖7I詳細地描述。舉例而言,使用者可不希望與圖7I的畫面(b)上的外部雲端裝置120共用某些網頁瀏覽資訊。舉例而言,使用者可設定共用規則,使得某一區域處的網頁瀏覽記錄不共用。第一,讓我們假定網頁瀏覽記錄中的全部設定為共用,且使用者自漢城市移動至水原市。在此情況下,終端100-1'可收集根據使用者的運動產生的各種類型的資料。舉例而言,關於使用者移動至哪個區域、使用者何時移動以及使用者在何處搜尋網頁的資料被收集。因此,此類資料為對應於第一層的原始資料。藉由使用原始資料,終端100-1'可識別使用者
的活動。換言之,使用者在某一時間移動區域及在某一位置處搜尋網頁的使用者的活動經識別。此類活動為第二層的活動識別資料。又,若使用者早晨在漢城且在下午移動至水原,則經由活動識別資料此類活動模式資料可在第三階層中獲得。此外,當活動模式經分析使用者大體上下午在水原時,可預測使用者可移動至水原,即使(例如)使用者早晨在除漢城以外的區域中。
然而,當使用者將活動模式分析及預測操作的分析主體設定為雲端裝置120',且設定終端100-1'不與雲端裝置120'共用在水原的網頁瀏覽記錄時,關於水原的活動模式資料可不傳輸到雲端裝置120'。換言之,活動模式資料在關於水原的資料自活動模式資料刪除之後傳輸。因此,雲端裝置120'不能獲得關於使用者下午大體上移動至水原進行如上業務的活動模式及預測資訊。同樣,可認為雲端裝置120'藉由限制漢城的活動模式及預測產生完全不同於以上的資料。
同時,慢跑與網頁瀏覽類似。舉例而言,讓我們假定慢跑的路徑為自住宅沿著海岸道路。因此,原始資料包含關於藉由感測器收集的路徑的資料,以及關於由使用者在慢跑期間收聽的音樂的資料等。又,如第二階層(亦即,如活動識別結果),可包含使用者離開住宅、沿著海岸道路慢跑以及收聽音樂的活動。隨後,如對應於第三階層的模式識別結果,獲得使用者在離開住宅之前收聽音樂及在離開住宅之後沿著海岸道路慢跑的資料。隨後,如第四階層,由於使用者大體上在8:00am返回住宅,可預測使用者可在30分鐘之後返回住宅,在到達之前30分鐘。
因此,在此情況下,當使用者設定不與圖1B的雲端裝置
120'共用關於收聽音樂的資料時,雲端裝置120'可使用僅使用者自住宅沿著海岸道路慢跑的資料。因此,對應於第三階層的模式識別結果為自關於音樂的資料刪除的資料。
圖8為根據例示性實施例的用於描述通知用於提取資料的工作執行主體的處理程序的圖。
為方便描述起見,共同參考圖8及圖1A,根據例示性實施例的終端100可基於藉由使用者在較低階層中設定的共用位準通知其他裝置中的至少一者執行提取屬於較高階層的資料的工作的主體,且因此使得其他裝置能夠判定所述主體。此處,較高階層的資料基於較低階層的資料而提取。因此,如圖8的實例中所展示,原始記錄資料用於圖8中的行動識別,但若終端100並不與雲端裝置120共用原始記錄資料,則行動識別的主體必須為終端100,且此類資訊可經通知至使用者。
當模式分析資料與雲端裝置120共用時,預測分析工作亦在雲端裝置120中執行,且此類資訊可經通知至使用者。
舉例而言,在圖7B的畫面(d)中,當使用者關於原始記錄資料選擇不可共用時,終端100可以彈出式視窗的形式將諸如「由於原始記錄資料經選擇為不共用,行動識別的主體可能僅在此終端中」的片語顯示給使用者,進而幫助使用者選擇如行動識別的物件的自身終端。亦即,若使用者選擇不共用原始記錄資料,則其他終端(例如,鄰近終端或雲端裝置)將不具有對其操作的原始記錄資料。同樣,僅終端自身(亦即,對原始記錄資料存取的終端)可執行更高階層活動。
又,由於使用者關於來自層資訊的多個片段當中的模式
識別選擇「可共用」,終端100可在畫面上以彈出視窗的形式將諸如「由於模式識別經選擇為共用,預測的分析主體可能亦在雲端裝置中」的片語顯示給使用者,進而幫助使用者選擇。
圖9為根據例示性實施例的用於描述基於資料是否共用判定分析工作位準的處理程序的圖。
為方便描述起見,共同參考圖9及圖1A,當使用者允許某些資料被共用時,根據例示性實施例的終端100可設定能夠分析工作的主體的分析工作位準。分析工作位準可為以百分比(%)設定。就此而言,如圖7E的畫面(g)中所展示,使用者可經由UI畫面檢查關於工作主體的工作位準。舉例而言,在圖9中,當自身終端(亦即,終端100)使用原始記錄資料來提取活動識別結果時,活動識別的精確性可達到至多90%。
圖10為描述基於共用通知個人資訊曝露風險的處理程序的圖。
為方便描述起見,共同參考圖10及圖1A,當根據例示性實施例的終端100否決如圖10中所展示的較高階層的資料共用時,在預設模式中較低階層的資料共用可自動阻斷。舉例而言,當模式資訊共用經否決為「不可共用」時,行動識別及原始資料記錄亦可自動經否決為「不可共用」。
同樣,當使用者錯誤地設定某一階層的資料共用時,終端100能夠通知使用者在較低階層中設定為共用的階層可經否決為「不可共用」。
舉例而言,在圖7B的畫面(d)中,使用者可分別為層資訊的預測結果、模式識別結果、活動識別結果以及原始記錄資料
選擇「可共用」、「不可共用」、「可共用」及「不可共用」。此處,當模式資訊的共用經否決時,終端100可將行動識別自動更改為「不可共用」。隨後,終端100可經由彈出視窗通知使用者共用經錯誤地設定。此外,終端100可關於每一可共用性通知個人資訊的曝露風險程度,且在選擇可共用性時,曝露風險程度可(例如)直接緊鄰選定項目顯示。
同時,當圖8至圖10的資訊經組態於UI畫面中時,圖8至圖10的資訊可彼此分離以形成獨立畫面,或可分為如圖7E的畫面(g)中所展示的UI畫面中的第一至第三區域。同樣,根據例示性實施例,設定UI畫面的方法並未特定地受限制。
圖11為描述共用可藉由鄰近終端設定的圖。
為方便描述起見,參考圖11連同圖1B及圖1C,根據例示性實施例的終端100-1'或100-1"可關於允許如圖11中所展示的共用的階層設定鄰近終端100-2'或可穿戴裝置100-2(終端100-1'或100-1藉由其執行共用工作)。
舉例而言,當使用者設定終端2(亦即鄰近終端100-2')對於活動識別為可共用時,可與終端2協同處理模式識別工作。舉例而言,模式識別工作可根據使用者的設定藉由終端2處理,且終端2可將處理結果提供至終端100-1'或100-1"。
就此而言,如上文參考圖7E的畫面(g)所描述,當使用者選擇共用某些層資訊時,終端100-1'或100-1"可在畫面上顯示用於設定待共用的裝置及如何分配工作階層的設定項目,且使用者可經由畫面輸入詳細資訊。
圖12A及圖12B說明根據例示性實施例的關於個人化資
料協同式處理服務的情境。
為方便描述起見,參考圖12A及圖12B連同圖1A,當終端100的使用者設定(例如)如圖12A中所展示的「想要網頁瀏覽記錄被保護」時,終端100可不與外部雲端裝置120共用基於網頁瀏覽記錄的興趣預測工作。換言之,終端100可自身執行對應工作。
舉例而言,當圖7I的UI畫面(b)顯示於終端100上時,使用者設定待共用及不共用的網路瀏覽器資訊。舉例而言,當使用者為關於網路瀏覽器的資訊資訊選擇「不可共用」時,使用者的網頁瀏覽記錄可被保護。因此,當終端100處理關於使用者的活動的原始記錄資料時,關於網頁瀏覽的資料並未與雲端裝置120共用。
另一方面,如圖12B中所展示,當使用者批准共用僅漢城市的路徑預測資料且否用於水原的共用時,關於漢城的預測資料可自終端100卸載至雲端裝置120。另一方面,關於水原的預測資料並未提供至雲端裝置120。因此,雲端裝置120導出僅關於漢城的使用者的行動預測結果,且與終端100共用行動預測結果。
就此而言,儘管並未提供單獨附圖,但(例如)當使用者在圖7I的畫面(b)中將關於位置名稱、時間槽以及關於當前位置的緯度及經度的資訊設定為不可共用時,終端100可進一步提供如下一個畫面的用於設定區域的UI畫面。藉由在此類UI畫面中另外設定區域,使用者可將某一區域的資料設定為不共用,如圖12B中所展示。
圖13為藉由圖1B的系統執行的智能操作的示範圖。圖
13的參考編號1301指示用於根據資料的類型執行分析的分析主體的判定。
參考圖13連同圖1B,終端100-1'的分析API及雲端裝置120'的分析API可相互取代,如圖13中所展示。然而,提供至使用者的服務的位準可基於組態而不同。換言之,可在隱私與操作之間權衡。舉例而言,當在識別作為服務的實例的Wi-Fi使用模式之後預測應用程式的使用率時,圖13的操作可應用。
詳言之,鄰近終端100-2'可執行活動識別引擎以導出由層資訊的多個片段產生的活動識別。因此,鄰近終端100-2'可自終端100-1'接收且可使用關於Wi-Fi使用的原始記錄資料。另一方面,模式識別工作可藉由終端100-1'執行。因此,終端100-1'可自鄰近終端100-2'接收及使用活動識別結果以導出模式識別結果。又,所導出的模式識別結果可提供至雲端裝置120'以導出預測結果。
根據此類操作,(例如)由於在使用者選擇可共用層資訊的每一片段且選擇圖7B的畫面(d)中的OK按鈕時工作主體在訂用期間經預先指派至個人化服務,經指派工作主體之間動態判定可為可能的。舉例而言,工作主體可根據終端100-1'及鄰近終端100-2'的CPU使用率或電池使用率以及此外根據雲端裝置120'的網路使用率等自動判定。
圖14為藉由圖1B的系統執行的智能操作的另一示範圖。
共同參考圖14及圖1B,根據例示性實施例,僅當包含能夠實質上執行資料分析工作的引擎(亦即程式)的一部分時,系統中的裝置可執行分配工作或可參與動態服務功能的重構。
然而,如圖14的組態(b)中所展示,為準備工作分配,
終端100-1'可將活動識別引擎傳輸至鄰近終端100-2'。此外,鄰近終端100-2'可自雲端裝置120'接收模式識別引擎及基於模式的預測引擎。因此,鄰近終端100-2'可藉由使用自終端100-1'接收的活動識別引擎及自雲端裝置120接收的模式識別引擎執行導出提供至鄰近終端100-2'活動識別結果及模式識別結果的操作,且可將所導出的結果中的每一者傳輸至終端100-1'及雲端裝置120'中的至少一者。
圖15A為在UI畫面上設定工作分配限制的處理程序的圖,且圖15B為用於描述根據服務及裝置的情形分析工作分配調整功能的圖。在一些例示性實施例中,使用者可選取不個別地設定限制。在此情況下,協同式管理器可藉由使用機制將適合的限制(或一般而言,通常由其他使用者使用的限制)設定為預設。
為方便描述起見,參考圖15A及圖15B連同圖1A,根據例示性實施例,終端100的使用者可關於如圖15B中所展示的限制預測限制,且可關於如圖15A中所展示的工作分配限制設定UI畫面上的限制設定詳細臨限值。
詳言之,終端100的使用者自如圖15A的畫面(a)中所展示的設定資訊清單選擇工作分配限制設定項目。隨後,終端100顯示圖15A的畫面(b)。因此,使用者關於每一限制項目設定限制(亦即,臨限值)。
舉例而言,當使用者將CPU使用率設定為50%時,舉例而言,若在圖1A的終端100中CPU使用率不超出50%,則提供至使用者的終端100的工作執行,但若CPU使用率超過50%,則給定工作可藉由共用裝置執行。又,關於電池使用率,若以充滿電
計電池耗盡至多約80%,則工作主體可改變。又,當判定網路帶寬使用率超過90%時,終端100可不更改經受雲端裝置120的工作。此類實例基於終端100及雲端裝置120已相互指派來共用層資訊的每一片段的假定。因此,由於以上描述可基於可共用性自由地更改,因此例示性實施例並非特定地限於以上描述。
如上文所描述,終端100的使用者可設定網路使用率極限線、電池使用極限線以及CPU使用極限線(亦即,臨限值)。僅當限制同樣設定時,可準備終端100與雲端裝置120之間的分析工作的標準。
因此,工作分配限制可自動判定。舉例而言,當每日網路使用率經設定不超過10百萬位元組(Mbyte)時,其相關的資源使用率限制可自動判定。換言之,由於關於網路使用率的限制設定關於10百萬位元組的資訊儲存於終端100中,限制可藉由檢查此類資訊判定。又,當存在多個限制時,舉例而言,當優先順序以網路、電池以及CPU的次序設定時,優先順序可基於此類資源使用率限制自動判定。換言之,由於關於每一限制的優先順序資訊亦儲存於終端100中,因此當優先順序需要被判定時,可檢查所存儲的優先順序資訊。同樣,終端100可(例如)經由圖15A的畫面基於藉由使用者設定的資訊自動判定工作主體或位準。如圖15B中所展示,限制可使用畫面上的浮動塊設定。
圖16說明根據圖15A的服務及裝置的情形的關於分析工作分配調整的情境。
為方便描述起見,共同參考圖16及圖1A,根據例示性實施例的終端100每日消耗50%的CPU來分析慢跑模式,且此
時。功率消耗為100mJ,以及另一方面,功率消耗在慢跑記錄經傳輸至雲端裝置120時為100mJ。此類資訊(例如)經由機械式學習憑經驗判定。因此,終端100判定活動分析資料可藉由使用自身資源(亦即,其自身資源)處理,且如圖16的畫面(a)中所展示,可將慢跑模式分析模組維持為作用中狀態。換言之,對應模組可執行。
在此類處理程序期間,舉例而言,當判定由於搜尋字組分析處理程序必須同時執行而CPU不充足時(如圖16的畫面(b)中所展示),終端100可將搜尋分析記錄資料傳輸至雲端裝置120以卸載搜尋分析工作。舉例而言,當CPU在藉由終端100同時執行搜尋字組分析處理程序時不具有足夠資源時,終端100可將相關資料傳輸至雲端裝置120,使得搜尋字組分析處理程序在雲端裝置120中執行。亦即,終端100可將搜尋字組分析處理程序卸載至所述雲端裝置120。
圖17A及圖17B說明用於根據圖15A的服務及裝置的情形變化描述工作分配處理程序的情境。
為方便描述起見,參考圖17A及圖17B連同圖1A,根據例示性實施例的多個終端100可根據網路及終端100的操作狀態執行各種操作。舉例而言,圖17A的終端1(器件1)可根據電池剩餘電量自動調整資料傳輸量,且終端2(器件2)可在CPU利用率為飽和狀態時降低卸載至雲端裝置120的資料傳輸量。亦在雲端裝置120中,適合的終端100可經選擇以執行卸載工作。
當(例如)雲端裝置120的負荷在此類處理程序期間減少時,雲端裝置120的資源利用率狀態此時可與終端100共用,
且在此情況下,終端100可增大卸載至雲端裝置120的資料傳輸量,如圖17B中所展示。
同樣,工作分配根據服務及裝置的情形變化在終端100與雲端裝置120之間自動、動態或自適應性地執行。
詳言之,根據例示性實施例,終端100的協同式管理器及雲端裝置120的協同式管理器根據藉由使用者設定的設定資訊關於終端100中的資料共用對資料執行分配處理,此為原理。此分配處理對應於用於資料分配處理的協同操作。然而,在此類處理程序期間,可存在終端100歸因於缺少電池剩餘電量而並未能夠執行資料分配處理及/或雲端裝置120歸因於資料處理的工作負荷而延遲或難以執行資料分配處理的情形,且在此類情形下,終端100的協同式管理器及雲端裝置120的協同式管理器可執行再協同操作。再協同操作可對資料執行,從而排除使用者並不想要共用的資料。同樣,根據終端100及/或雲端裝置120中的即時更改的資源狀態再執行資料分配處理方法可視為『工作分配根據情形更改自動執行』。
舉例而言,當雲端裝置120關於待單獨執行的資料分析執行工作再分配時,雲端裝置120可請求圖1B的終端100-1'或鄰近終端100-2'執行資料分析,且在負荷經拆分時接收資料及分析結果。
又,當存在藉由使用者經由終端100設定的匿名設定資訊時,終端100亦可在電池剩餘電量缺乏時將匿名資訊提供至雲端裝置120,以請求雲端裝置120產生包含匿名資訊的資料。隨後,當電池能力恢復時,終端100可自雲端裝置120接收包含匿
名資訊的資料且將資料提供至使用者。舉例而言,匿名將來自某些資料的資料(諸如名稱、年齡、隸屬等)改變為不同資料。隨後將進一步描述其細節。圖17B展示工作基於Wi-Fi的收費及使用卸載至雲端裝置的另一實例。
圖18及圖19為用於描述根據圖15A的服務及裝置的情形改變的工作分配處理程序的圖。
為方便描述起見,共同參考圖18及圖1A,根據例示性實施例的終端100可根據雲端裝置120的資料分析處理能力判定待卸載的資料的傳輸量。舉例而言,若雲端裝置120能夠接收及處理(例如)關於對應於10百萬位元組每分鐘的模式識別工作的資料,則終端100可傳輸對應於1百萬位元組每分鐘的資料。
又,共同參考圖19及圖1B,根據例示性實施例的終端100-1'亦可根據鄰近終端100-2'的資料分析處理能力判定待卸載的資料。舉例而言,當鄰近終端100-2'能夠接收關於用於影像識別工作的影像材料的1百萬位元每分鐘的資料時,終端100-1'可考慮此類資訊傳輸資料。
參考圖18及圖19,在將資料卸載至雲端裝置120或鄰近終端100-2'之前,終端100或終端100-1'可首先判定雲端裝置120或鄰近終端100-2'的資料分析處理能力,且隨後在可處理能力的範圍內卸載資料。
圖20為根據第一例示性實施例的用於描述資料協同式處理服務的處理程序的圖。下文,資料協同式處理服務經描述為雲端服務。
為方便描述起見,共同參考圖20及圖1A,在操作S2000
中,根據第一例示性實施例的終端100可顯示用於設定雲端服務的服務限制位準的UI畫面。替代地或另外,終端100可顯示用於設定雲端服務的協同位準的UI畫面。
隨後,在操作S2010中,當使用者經由UI畫面設定服務限制位準時,服務限制位準資訊可因此提供至雲端裝置120。然而,提供服務限制位準資訊的時間點不限於此,且服務限制位準資訊可在資料的分配處理期間提供至雲端裝置120。
在操作S2020中,雲端裝置120根據使用者儲存所接收的服務限制位準資訊。實質上,由於雲端裝置120能夠根據使用者儲存多個使用者的服務限制位準資訊,因此服務限制階層每使用者可根據使用者而不同。
在操作S2030中,當關於使用者的服務限制階層的資訊在終端100與雲端裝置120之間共用時,終端100及雲端裝置120基於藉由使用者判定的服務限制位準資訊對資料執行分配處理。
在此類處理程序期間,終端100可判定分配處理位準的百分比(%),且另外,可設定上文所描述的各種類型的資訊,使得資料處理動態及自適應性地處理。
隨後,當終端100的使用者需要根據資料分析的分析結果(亦即,諸如使用者預測的階層式資訊)以便使用某一雲端服務時,雲端裝置120將分析結果的資訊傳輸至終端100,且終端100可藉由使用自身所存儲的階層式資訊及由雲端裝置120提供的階層式資訊提供使用者所要的資料協同處理服務。
圖21為根據第二例示性實施例的用於描述資料協同式處理服務的處理程序的圖。
為方便描述起見,共同參考圖21及圖1B,在操作S2100中,根據第二例示性實施例的終端100-1'顯示用於設定雲端服務的服務限制位準及資料分析物件的UI畫面。
隨後,當使用者經由UI畫面設定服務限制位準及分析主體時,服務限制位準資訊及關於分析主體的資訊因此分別在操作S2110及S2120中提供至鄰近終端100-2'及雲端裝置120'。應注意,圖21展示如首先執行的操作S2110;然而,此僅為實例且操作S2120可在操作S2110之前執行。
隨後,在操作S2130中,鄰近終端100-2'及雲端裝置120'各自儲存所接收的限制位準資訊及所接收的關於分析主體的資訊。
隨後,在操作S2140中,鄰近終端100-2'及雲端裝置120'連同終端100-1'基於所存儲的服務限制位準資訊執行資料分配處理。當待處理的資料作為大型資料傳輸時,鄰近終端100-2'及雲端裝置120'可基於服務限制位準資訊偵測及分析來自待處理的資料的某些資料。然而,待處理的資料可根據網路的負荷經拆分及提供至鄰近終端100-2'及雲端裝置120'。此外,操作S2140展示於終端100-1'與鄰近終端100-2'之間,以及終端100-1'與雲端裝置120'之間。然而,在一些例示性實施例中,資料可同樣經拆分及分配於鄰近終端100-2'與雲端裝置120'之間。
即使當資料經拆分及提供時,若終端100-1'設定為可分析位準,則終端100-1'、鄰近終端100-2'以及雲端裝置120'可藉由另外考慮關於可分析位準的資訊執行資料的分配處理及分析工作。各種方法中的任一者可關於資料的分配及傳輸應用。
圖22為根據例示性實施例的驅動終端的處理程序的流程圖。
為方便描述起見,參考圖22連同圖1A及圖1B,在操作S2200中,根據例示性實施例的終端100與提供雲端服務的雲端裝置120執行通信。舉例而言,當終端100請求使用雲端服務時,雲端裝置120可在此方面回應。
隨後,在操作S2210中,終端100顯示用於根據使用者判定雲端服務的服務限制位準的UI畫面。
當鄰近終端100-2'如圖1B中所展示地存在時,在終端100判定服務限制位準時,各種類型的資訊(諸如分析主體)可設定。由於上文已充分描述其細節,因此並不再次提供其描述。
在S2220操作中,當服務限制位準經由UI畫面設定時,終端100藉由連同雲端裝置120對基於所設定的服務限制位準對資料執行分配處理而分析用於雲端服務的資料。
當在此類處理程序期間分析主體關於鄰近終端100-2'判定時,資料可在鄰近終端100-2'亦執行分配處理時分析。
圖23為根據例示性實施例的驅動雲端裝置的處理程序的流程圖。
為方便描述起見,共同參考圖23及圖1A,在操作S2300中,根據例示性實施例的雲端裝置120使用雲端服務與終端100執行通信。
隨後,在操作S2310中,雲端裝置120自終端100接收以及儲存根據使用者判定的服務限制位準資訊。
在此類處理程序期間,儘管未繪示,雲端裝置120可儲
存服務限制位準資訊,且若鄰近終端100-2'如圖1B中所展示地存在,則可設定關於分析主體的各種類型的資訊、可分析位準等。
又,在操作S2320中,雲端裝置120連同終端100基於所儲存的服務限制位準資訊對用於雲端服務的資料執行分配處理。此處,雲端裝置120可經由分配處理處理程序導出資料分析結果。
隨後,若在將雲端服務提供至終端100時資料分析結果待提供,則雲端裝置120可提供對應結果。
圖24為根據例示性實施例的終端的畫面顯示方法的流程圖。
為方便描述起見,共同參考圖24及圖1A,在操作S2400中,根據例示性實施例的終端100顯示用於使用雲端服務藉由終端100的使用者設定來自經分層且用於雲端服務的階層式資訊的多個片段當中的可共用階層式資訊的UI畫面。
隨後,在操作S2410中,終端100可基於所設定的階層式資訊的可共用性顯示用於根據階層式資訊設定雲端服務的資料分析主體的UI畫面。
又,當資料分析主體設定時,終端100可設定分析位準,且另外,可根據使用者的可共用性顯示各種類型的資訊通知風險。由於上文已充分描述其細節,因此並不再次提供其描述。
圖25A及圖25B為用於描述在將資料自終端傳輸至雲端裝置或至鄰近終端時匿名化資料中的一些的處理程序的圖。
為方便描述起見,參考圖25A及圖25B連同圖1A,當基於設定的階層式資訊的可共用性將資料傳輸至(例如)雲端裝置
120時,根據例示性實施例的終端100可另外將待傳輸的資料中的一些匿名化以用於隱私保護。此處,匿名化意謂資料(諸如,文字、影像、語音或視訊)中的一些在保持目標物件的特性的範圍內經改變為或構成不同內容。
舉例而言,當諸如圖25A中的畫面(a)的文字或語音根據階層式資訊的共用傳輸至雲端裝置120時,整體意義可完好傳輸,而資料中的一些(諸如,「三星電子(Samsung Electronics)」、「韓班勇(Hanban Yoon)總經理」以及「38歲」)的目標含有關於名稱、年齡以及隸屬的資訊,擔心侵犯隱私的內容可經一般化為「公司」、「勇」以及「將近40」,如圖25A的畫面(b)中所展示。換言之,對應項目可經改變為其他項目且隨後經傳輸。換言之,關於語音(如文字),對應於「韓班勇總經理」的語音可經切割且「勇」的語音可插入至其中。
又,在影像或視訊如在圖25B的畫面(a)中的情況下,面部區域可藉由如圖25B的畫面(b)中所展示的情緒圖標影像或漫畫的臉部影像隱藏且隨後經傳輸。詳言之,如圖25B的畫面(a)中所展示,個人物件可自影像識別,且額外影像可取代所識別的個人物件的一部分,詳言之,如圖25B的畫面(b)中所展示的臉部。在此情況下,此類匿名化可藉由施加至範圍內的全部原始資料而應用使得物件的本質的特性並不列出。
基於以上描述,根據例示性實施例的終端100可根據階層式資訊的可共用性執行分析(或判定)是否另外使用待傳輸的資料的匿名化的處理程序,且另外,可另外根據分析結果執行修正資料中的一些的處理程序。鑒於圖2B,此類操作可藉由(例如)控
制器220'及資料分析器230'執行。
詳言之,參考圖26A至圖26C,舉例而言,使用者可在圖26A的畫面(a)至畫面(c)中設定用於匿名化的資料類型及詳細匿名資訊。換言之,匿名資訊設定項目可選自如圖26A的畫面(a)中所展示的資訊設定項目,隨後文字類內容(諸如電子郵件、訊息一聊天服務)可選自圖26A的畫面(b),且隨後名稱、年齡以及隸屬的匿名化可如圖26A的畫面(c)中所展示地詳細設定。
當設定如此完成時,終端100儲存關於其中匿名化的設定資訊。隨後,當使用者執行資料分配工作時,分析關於匿名化的資訊在將對應資料傳輸至(例如)雲端裝置120之前是否存在。當基於分析結果判定關於匿名資訊的資料存在時,資料可經改變為藉由使用者指派的另一資料,或可藉由終端100經改變為預設,且隨後改變的資料可經傳輸。此處,預設可意謂終端100根據匿名策略自動改變資料。由於上文已參考圖25A充分描述其細節,因此並不再次提供其描述。
又,如圖26B的畫面(a)至畫面(c)中所展示,使用者可在(例如)在多媒體內容(諸如語音訊息、視訊通話、視訊以及相片)中的影像的情況下設定臉部的匿名化,且可設定語音中的名稱以及視訊中的臉部的匿名化。此時同樣,當終端100在使用者設定資料工作分配之後分配資料時,終端100將相關資料改變為另一資料且隨後基於其中設定的資訊傳輸相關資料。此類改變方法可藉由將相關資料改變為由使用者指派的資料,或藉由利用終端100自動改變相關資料而執行。
另外,如圖26C的畫面(a)至畫面(c)中所展示,使用者可設定辦公室文件(諸如Word、PPT或Excel)的匿名化。舉例而言,當檢查文件中的資訊(諸如安全、預算、機密等)時,文件中的各種類型資訊與對應資訊可根據安全策略匿名化。此處,安全策略可包含如上文所描述的隸屬、年齡以及名稱,以及臉部(若文件為相片)。由於此類安全策略可變化,例示性實施例並未特定地受限制。
圖27為說明基於文字將相片分類的先前技術方法的圖。然而,圖27亦用於描述根據例示性實施例的根據影像識別工作期間設定的服務限制位準將相片自動分類的操作。
為方便描述起見,參考圖27連同圖1A及圖7B的畫面(d),根據例示性實施例的使用者的終端100可設定影像識別結果以不與如圖7B的畫面(d)中所展示的雲端裝置120共用。詳言之,終端100可自如圖27的畫面(a)中所展示的各種相片當中另外設定使用者的個人相片以不與雲端裝置120共用。
在此情況下,當將藉由終端100拍攝的相片或自外部器件提供相片儲存於內部圖庫資料夾中時,終端100可經由影像識別引擎藉由分析相片自動辨別使用者的個人相片。因此,個人相片及其他相片可分類且存儲。舉例而言,當使用臉部識別時,關於使用者的臉部的特徵點的資訊可存儲,且當比較後所存儲的資訊及所識別的相片的資訊相互匹配時,所識別的相片可經判定為使用者的個人相片且自動分類。
舉例而言,如圖27的畫面(a)至畫面(c)中所展示,先前技術影像分類方法極不方便。換言之,可基於如圖27的畫面
(b)中所展示的文字搜尋如圖27畫面(a)中所展示的儲存於圖庫資料夾中的多個相片,進而根據如圖27的畫面(c)中所展示的影像類別將攝影分類。
然而,在例示性實施例中,當僅在終端100中執行關於影像識別的階層式資訊且此外類別資訊另外僅在個人相片及終端100中可設定時,相片的分類工作連同個人的隱私保護可極為簡單。
若將除個人相片以外的其餘相片提供至雲端裝置120是可以的,則終端100可將對應相片提供至雲端裝置120。
圖28為用於描述使用者藉由使用用於影像識的終端待執行的識別位準的圖。
參考圖28,為了執行影像識別(詳言之,影像掃描操作),圖1A的終端100可存取雲端裝置120或圖1D的閘道器100-2'''以接收及使用相關程式(或應用程式)。
因此,如圖28的畫面(a)中所展示,終端100可使用來自各種影像識別相關程式當中的使用者所要的程式(例如,『image-net.sqlite3』)。若使用者自圖28的畫面(a)選擇『選擇不同模型』按鈕以檢視其他模型,則終端100可顯示如圖28的畫面(b)中所展示的可下載程式的清單。
圖29為用於描述使用識別引擎及個人化模型的影像處理操作的圖。
為方便描述起見,參考圖29連同圖1D,當根據例示性實施例的終端100-1'''僅經指派為如圖29的組態(a)中所展示的用於影像分析的工作主體時,終端100-1'''可自外部器件(諸如,
雲端裝置120'''或閘道器100-2''')下載及儲存用於判定通常藉由終端100-1'''中的使用者檢視的上下文(亦即,狀態)及分析上下文的影像識別模型,且隨後藉由使用影像識別模型執行上下文分析。此處,影像識別模型可意謂程式,諸如圖28的畫面(a)的『image-netsqlite3』。
舉例而言,當發現可存取的閘道器100-2'''時,終端100-1'''存取閘道器100-2'''以請求模型,且隨後接收及將所請求的模型儲存其中。隨後,所請求的模型用於影像識別。
同時,如圖29的組態(b)中所展示,當影像識別工作與閘道器100-2'''協同執行時,終端100-1'''將相片傳輸至閘道器100-2''',且自閘道器100-2'''接收及儲存關於識別的結果。
圖29的組態(a)及組態(b)中所展示的模型管理器執行嘗試存取閘道器100-2'''的控制功能,且資料槽(data sink)執行用於兩個裝置之間的同步的操作,其中模型管理器及資料槽可皆經組態為軟體模組。又,個人化資料及模型可儲存於記憶體中。
圖30為說明根據例示性實施例的終端100藉由雲端裝置120分配及處理用於健康保健服務的資料的實例的圖。
參考圖30,終端100可獲得用於健康保健服務的原始資料。終端100可自使用者上的可穿戴器件100-3接收藉由可穿戴器件100-3感測到的感測資訊。可穿戴器件100-3可根據預設時段或在某一事件發生時經由可穿戴器件100-3中的感測器生成關於可穿戴器件100-3的位置及運動的感測資訊,以及關於使用者的脈搏及體溫的感測資訊。又,可穿戴器件100-3可根據預設時段或在某一事件發生時將感測資訊傳輸至終端100。又,終端100可藉
由使用終端100中的感測器生成關於終端100的位置及運動的感測資訊,以及關於使用者的脈搏及體溫的感測資訊。又,終端100可獲得關於感測資訊產生時間的時間資訊。
又,當將原始資料中的一些或全部傳輸至雲端裝置120-1時,終端100可請求雲端裝置120-1分析所傳輸的原始資料。雲端裝置120-1分析原始資料以產生活動資料,且將所產生的活動資料傳輸至終端100。終端100可將匿名化原始資料傳輸至雲端裝置120-1,且雲端裝置120-1可分析匿名化原始資料以產生匿名化活動資料。又,雲端裝置120-1可將匿名化活動資料提供至終端100。
又,當將活動資料中的一些或全部傳輸至雲端裝置120-2時,終端100可請求雲端裝置100-2分析所傳輸的活動資料。終端100可將待傳輸至雲端裝置120-2的活動資料中的一些匿名化,且將匿名化活動資料傳輸至雲端裝置120-2。舉例而言,當使用者的活動資料包含「漢江的河畔」、「星期日」、「9:00至10:00」以及「慢跑」時,活動資料可藉由將來自活動資料當中的位置相關活動資料「漢江的河畔」替換為預設變量「x」而匿名化。又,雲端裝置120-2可基於匿名化活動資料生成使用者的活動模式資料。在此情況下,雲端裝置120-2可基於匿名化活動資料的多個片段生成使用者的活動模式資料。又,藉由雲端裝置120-2產生的活動模式資料可包含匿名化值。舉例而言,雲端裝置120-2可生成諸如「星期日自9:00至10:00在x處慢跑」的活動模式資料。又,終端100可自雲端裝置120-2接收藉由雲端裝置120-2產生的活動模式資料,且將包含於活動模式資料中的「x」解譯為「漢江的河畔」,進而產生諸如「使用者星期日自9:00至10:00在漢江的河畔慢跑」的活
動模式資料。
又,當將活動模式資料的全部中的一些傳輸至雲端裝置120-3時,終端100可請求雲端裝置120-3產生活動預測資料。終端100可將待傳輸至雲端裝置120-3的活動模式資料中的一些匿名化,且將匿名化活動資料傳輸至雲端裝置120-3。舉例而言,當使用者的活動模式資料包含資訊「星期日自9:00至10:00在漢江的河畔慢跑」時,終端100可將活動模式資料匿名化為「星期日自9:00至10:00在x慢跑」。又,終端100可將匿名化活動模式資料提供至雲端裝置120-3。
在此情況下,終端100可即時獲得關於使用者的活動的資訊且將資訊提供至雲端裝置120-3。在此情況下,關於使用者的活動的資訊可為關於使用者的活動獲得的原始資料或根據原始資料分析的活動資料。終端100可將即時獲得的關於使用者的活動的資訊中的一些或全部匿名化,且將匿名化資訊提供至雲端裝置120-3。
又,雲端裝置120-3可藉由比較自終端100傳輸的關於使用者的活動的資訊與使用者的活動模式資料而生成關於使用者的活動的通知資訊。舉例而言,雲端裝置120-3可基於自終端100傳輸的關於使用者的活動的資訊判定使用者星期日早上9:30在漢江的河畔站立,且使用者的體溫低於預設值。又,雲端裝置120-3可比較此類判定結果與活動模式資料以產生通知使用者身體狀況存在一些問題的通知資訊,且將通知資訊傳輸至終端100。
在此情況下,終端100可將通知資訊傳輸至預設鄰近終端。待接收通知資訊的鄰近終端可藉由使用者預設。然而,例示性
實施例不限於此,且在一些例示性實施例中,雲端裝置120-3可將通知資訊傳輸至預設鄰近終端。
同時,形成例示性實施例的全部組件經合併於一個組件中或經合併以操作的描述並不意謂本發明必須限於此類例示性實施例。換言之,在本發明的範圍內,組件可選擇性地經提供於一個以上組件中以操作。又,組件可各自實現為獨立硬體的一個片段,但組件中的一些或全部可選擇性地經合併以實現為具有執行合併於硬體的一或多個片段中的一些或全部功能的程式模組的電腦程式。電腦程式的程式碼及程式碼區段可易於由於本領域具有通常知識者推斷出。此類電腦程式可儲存於非暫時性電腦可讀取媒體中,且可由電腦讀取及執行,進而實現本發明的示例性實施例。
此處,非暫時性可讀取記錄媒體並非儲存資料較短時間段的媒體(諸如,暫存器、快取記憶體或記憶體),但為半永久地儲存資料的媒體且可藉由器件讀取。詳言之,上文所描述的程式可儲存於非暫時性可讀取記錄媒體(諸如CD、DVD、硬碟、藍光磁碟、USB、記憶卡或ROM)中及由其提供。
雖然已參看諸圖描述一或多個例示性實施例,但一般熟習此項技術者將理解,可在不脫離如藉由以下申請專利範圍界定的精神及範疇的情況下在其中進行形式及細節上的各種改變。
90:資料協同式處理服務系統/雲端計算系統
100:終端
100a:自主自適應代理(AAA)/協同式管理器
110:通信網路
120:雲端裝置
120a:雲端裝置
Claims (16)
- 一種終端,其包括:通信介面,其經組態以經由網路與外部裝置通信;控制器,其經組態以獲得用於預測使用者的活動的資料及將所獲得的資料的一部分匿名化,且將匿名化資料及所述資料的並未匿名化的其餘部分經由所述通信介面傳輸至所述外部裝置;以及顯示器,其經組態以基於自所述外部裝置接收的活動預測資料顯示關於所述使用者的所述活動的通知資訊,所述活動預測資料基於所傳輸的資料的分析產生,其中所述控制器根據多個層將用於預測所述使用者的所述活動的所述資料分類,且當用於預測所述使用者的所述活動的所述資料根據所述多個層分類時,所述控制器根據所述多個層將用於分析所述資料的分析主體設定為所述終端及所述外部裝置中的至少一者。
- 如申請專利範圍第1項所述的終端,其中用於預測所述使用者的所述活動的所述資料為獲自所述終端的原始資料、自所述原始資料導出的活動資料以及自所述活動資料導出的活動模式資料中的至少一者。
- 如申請專利範圍第1項所述的終端,其中所述控制器判定用於分析資料的程式是否安裝於所述外部裝置中,且當判定用於分析所述資料的程式並未安裝於外部裝置中時,所述控制器將用於分析所述資料的所述程式傳輸至所述外部裝置。
- 如申請專利範圍第1項所述的終端,其中所述顯示器 進一步顯示用於關於所述終端的操作狀態及所述網路的網路狀態設定條件的使用者介面畫面,以及所述控制器基於經由所述使用者介面畫面設定的所述條件分析所述使用者的所述活動。
- 如申請專利範圍第1項所述的終端,其中所述控制器根據多個層將用於預測所述使用者的所述活動的所述資料分類,且,當所述資料根據所述多個層分類時,所述顯示器進一步顯示包括以下各者中的至少一者的使用者介面畫面:第一區域,其基於屬於下層的資料的共用設定指示用於產生屬於上層的資料的資料可分析主體;第二區域,其指示所述資料可分析主體的分析可操作位準;以及第三區域,其基於屬於所述下層的所述資料的所述共用設定指示屬於不同於所述上層及所述下層的另一層的資料的曝露風險。
- 一種雲端裝置,其包括:通信介面,其經組態以與終端通信;儲存器,其經組態以經由所述通信介面自所述終端接收及儲存資料的匿名化的一部分及所述資料的並未匿名化的其餘部分,作為用於使用所述終端預測使用者的活動的所述資料;以及控制器,其經組態以藉由使用所接收的資料生成預測所述使用者的所述活動的活動預測資料,且經由所述通信介面將所導出的活動預測資料傳輸至所述終端,其中所接收的所述資料根據多個層分類,且所述儲存器自所述終端接收及儲存用於所述層中的每一者的協同位準資訊,所述協同位準資訊指示根據所述層分類的資料是否可共用。
- 如申請專利範圍第6項所述的雲端裝置,其中用於預測所述使用者的所述活動的所述資料為獲自所述終端的原始資料、自所述原始資料導出的活動資料以及自所述活動資料導出的活動模式資料中的至少一者。
- 如申請專利範圍第6項所述的雲端裝置,其中所接收的所述資料根據多個層分類,且所述儲存器自所述終端接收及儲存用於根據所述多個層判定所述終端、定位於所述終端周圍的鄰近終端以及所述雲端裝置中的至少一者作為資料分析主體的資訊。
- 一種分析方法,其包括:獲得用於預測使用者的活動的資料;將所獲得的資料的一部分匿名化;將匿名化資料及所述資料的並未匿名化的其餘部分提供至外部裝置;自所述外部裝置接收活動預測資料,所述活動預測資料根據所提供的資料的分析產生;以及基於所接收的所述活動預測資料顯示關於所述使用者的所述活動的通知資訊,其中所述資料根據多個層分類,所述方法進一步包括:當所述資料根據所述多個層分類時,將用於分析根據所述多個層分類的所述資料的分析主體設定為終端及所述外部裝置中的至少一者。
- 如申請專利範圍第9項所述的分析方法,其中用於預測所述使用者的所述活動的所述資料為獲自終端的原始資料、自所述原始資料導出的活動資料以及自所述活動資料導出的活動模 式資料中的至少一者。
- 如申請專利範圍第9項所述的分析方法,其中所述資料根據多個層分類,當判定用於分析所述資料的程式並未安裝於所述外部裝置中時,所述分析方法進一步包括將用於分析所述資料之所述程式傳輸至所述外部裝置。
- 一種資料協同式處理服務系統,其包括:雲端裝置;以及終端,其包括:通信介面,其經組態以經由網路與所述雲端裝置通信;控制器,其經組態以獲得用於預測使用者的活動的資料,將所述資料處理至多個階層式層中以及根據所述資料的所述階層式層設定用於所述資料的共用限制;以及顯示器,其經組態以顯示用於設定所述共用限制的使用者介面畫面,以及顯示關於所述使用者的所述活動的通知資訊,其中所述控制器基於所設定的用於所述資料的共用限制將所述資料的至少一部分分配至所述雲端裝置以供處理,其中所述共用限制指示對於所述資料的每一階層式層,所述階層式層的資料是否可與所述雲端裝置共用。
- 如申請專利範圍第12項所述的資料協同式處理服務系統,其中所述控制器設定用於所述終端的工作位準及用於每一階層式層的所述雲端裝置,且分配至所述雲端裝置的所述資料的所述部分根據用於所述雲端裝置的所述工作位準判定,因為所述階層式層包含所述資料的所述部分。
- 如申請專利範圍第12項所述的資料協同式處理服務系 統,所述多個階層式層包含原始記錄資料、活動識別資料、模式識別資料以及預測結果資料,且其中所述活動識別資料基於所述原始記錄資料產生、所述模式識別資料基於所述活動識別資料產生以及所述預測結果資料基於所述模式識別資料產生。
- 一種終端-雲端分配系統,其包括:終端,其包括:通信介面;以及控制器,其經組態以獲得用於預測使用者的活動的資料,將所獲得的資料處理至多個階層式層中以及根據所述資料的所述階層式層設定關於所述資料的共用限制;雲端裝置,其包括:通信介面,其經組態以經由網路與所述終端的所述通信介面通信;以及控制器,其經組態以根據所述多個階層式層處理資料;以及協同式管理器,其經組態以根據所述階層式層及所設定的共用限制在所述終端與所述雲端裝置之間分配所述資料。
- 如申請專利範圍第15項所述的終端-雲端分配系統,其中所述多個階層式層包含原始記錄資料、活動識別資料、模式識別資料以及預測結果資料,且其中所述活動識別資料基於所述原始記錄資料產生、所述模式識別資料基於所述活動識別資料產生以及所述預測結果基於所述模式識別資料產生。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461993407P | 2014-05-15 | 2014-05-15 | |
KR10-2015-0022418 | 2015-02-13 | ||
KR1020150022418A KR20150132803A (ko) | 2014-05-15 | 2015-02-13 | 단말장치, 클라우드 장치, 단말장치의 구동방법, 데이터 협업처리 방법 및 컴퓨터 판독가능 기록매체 |
KR10-2015-0056893 | 2015-04-22 | ||
KR1020150056893A KR102322032B1 (ko) | 2014-05-15 | 2015-04-22 | 단말 장치, 클라우드 장치, 단말 장치의 구동방법, 데이터 협업처리 방법 및 컴퓨터 판독가능 기록매체 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201640373A TW201640373A (zh) | 2016-11-16 |
TWI719959B true TWI719959B (zh) | 2021-03-01 |
Family
ID=54847373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105101939A TWI719959B (zh) | 2014-05-15 | 2016-01-22 | 終端、雲端裝置、分析方法、資料協同式處理服務系統、以及終端-雲端分配系統 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3133502B1 (zh) |
KR (3) | KR20150132800A (zh) |
CN (1) | CN106464727B (zh) |
TW (1) | TWI719959B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10956603B2 (en) * | 2016-04-07 | 2021-03-23 | Samsung Electronics Co., Ltd. | Private dataaggregation framework for untrusted servers |
KR101887594B1 (ko) * | 2016-06-20 | 2018-08-13 | 엔쓰리엔 주식회사 | 클라우드 네트워크 기반 데이터 시각화 방법 및 장치 |
WO2020008384A1 (en) * | 2018-07-04 | 2020-01-09 | Channel Technologies Fze | Provision and recovery of network usage advances |
CN113141483B (zh) * | 2020-01-17 | 2022-09-09 | 华为技术有限公司 | 基于视频通话的共享屏幕方法及移动设备 |
US11960623B2 (en) * | 2020-03-27 | 2024-04-16 | EMC IP Holding Company LLC | Intelligent and reversible data masking of computing environment information shared with external systems |
TWI736328B (zh) * | 2020-06-19 | 2021-08-11 | 宏碁股份有限公司 | 頭戴式顯示裝置及應用其之畫面顯示方法 |
TWI800743B (zh) * | 2020-07-17 | 2023-05-01 | 開曼群島商粉迷科技股份有限公司 | 個人化內容推薦方法、圖形使用者介面及其系統 |
US12079395B2 (en) | 2022-08-31 | 2024-09-03 | Snap Inc. | Scissor hand gesture for a collaborative object |
US20240070298A1 (en) * | 2022-08-31 | 2024-02-29 | Youjean Cho | Selective collaborative object access |
US12019773B2 (en) | 2022-08-31 | 2024-06-25 | Snap Inc. | Timelapse of generating a collaborative object |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110314482A1 (en) * | 2010-06-18 | 2011-12-22 | Microsoft Corporation | System for universal mobile data |
US20120117097A1 (en) * | 2010-11-10 | 2012-05-10 | Sony Corporation | System and method for recommending user devices based on use pattern data |
US20130159408A1 (en) * | 2011-12-15 | 2013-06-20 | Microsoft Corporation | Action-oriented user experience based on prediction of user response actions to received data |
US20130326007A1 (en) * | 2012-06-04 | 2013-12-05 | Apple Inc. | Repackaging demographic data with anonymous identifier |
US20130332987A1 (en) * | 2012-06-11 | 2013-12-12 | Intertrust Technologies Corporation | Data collection and analysis systems and methods |
JP2014013458A (ja) * | 2012-07-03 | 2014-01-23 | Hitachi Systems Ltd | サービス提供方法及びサービス提供システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102440009A (zh) * | 2009-03-09 | 2012-05-02 | 佐科姆有限公司 | 提供生活观察的移动终端和方法以及具有数据分析、分发以及终端指导特征的相关服务器布置和方法 |
KR101472451B1 (ko) * | 2010-11-04 | 2014-12-18 | 한국전자통신연구원 | 디지털 콘텐츠 관리 시스템 및 방법 |
US8600981B1 (en) * | 2010-12-21 | 2013-12-03 | Google Inc. | Using activity status to adjust activity rankings |
CN103177129B (zh) * | 2013-04-19 | 2016-03-16 | 上海新数网络科技股份有限公司 | 互联网实时信息推荐预测系统 |
-
2014
- 2014-09-22 KR KR1020140126104A patent/KR20150132800A/ko unknown
-
2015
- 2015-02-13 KR KR1020150022418A patent/KR20150132803A/ko unknown
- 2015-04-22 KR KR1020150056893A patent/KR102322032B1/ko active IP Right Grant
- 2015-05-15 CN CN201580026559.4A patent/CN106464727B/zh not_active Expired - Fee Related
- 2015-05-15 EP EP15792566.0A patent/EP3133502B1/en active Active
-
2016
- 2016-01-22 TW TW105101939A patent/TWI719959B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110314482A1 (en) * | 2010-06-18 | 2011-12-22 | Microsoft Corporation | System for universal mobile data |
US20120117097A1 (en) * | 2010-11-10 | 2012-05-10 | Sony Corporation | System and method for recommending user devices based on use pattern data |
US20130159408A1 (en) * | 2011-12-15 | 2013-06-20 | Microsoft Corporation | Action-oriented user experience based on prediction of user response actions to received data |
US20130326007A1 (en) * | 2012-06-04 | 2013-12-05 | Apple Inc. | Repackaging demographic data with anonymous identifier |
US20130332987A1 (en) * | 2012-06-11 | 2013-12-12 | Intertrust Technologies Corporation | Data collection and analysis systems and methods |
JP2014013458A (ja) * | 2012-07-03 | 2014-01-23 | Hitachi Systems Ltd | サービス提供方法及びサービス提供システム |
Also Published As
Publication number | Publication date |
---|---|
EP3133502A4 (en) | 2017-11-29 |
KR20150132803A (ko) | 2015-11-26 |
CN106464727A (zh) | 2017-02-22 |
CN106464727B (zh) | 2021-02-23 |
KR20150132800A (ko) | 2015-11-26 |
EP3133502B1 (en) | 2020-11-11 |
TW201640373A (zh) | 2016-11-16 |
KR102322032B1 (ko) | 2021-11-08 |
KR20150131957A (ko) | 2015-11-25 |
EP3133502A1 (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI719959B (zh) | 終端、雲端裝置、分析方法、資料協同式處理服務系統、以及終端-雲端分配系統 | |
US11228653B2 (en) | Terminal, cloud apparatus, driving method of terminal, method for processing cooperative data, computer readable recording medium | |
Das et al. | Personalized privacy assistants for the internet of things: Providing users with notice and choice | |
AU2019201885B2 (en) | Client-side integration framework of services | |
KR102271786B1 (ko) | 개인 데몬의 훈련 가속화 | |
US11868492B2 (en) | Systems and methods for mediating permissions | |
TW201243725A (en) | Image analysis tools | |
Vescovi et al. | My data store: toward user awareness and control on personal data | |
CN114384997B (zh) | 传感器不可知姿势检测 | |
US11159911B2 (en) | User adapted location based services | |
EP3926988B1 (en) | Third-party access of end-user device assets | |
US20190147548A1 (en) | Creation and management of community networks | |
JP2017525069A (ja) | データキャプチャのためのダイナミックコントロール | |
Kapitsaki | Reflecting user privacy preferences in context-aware web services | |
US10938830B2 (en) | Authorizing and nullifying commands issued to virtual assistants in an internet of things (IoT) computing environment based on hierarchal user access levels | |
US20180006967A1 (en) | Signal upload optimization | |
US20210390021A1 (en) | Predictive fog computing in an edge device | |
US11630865B2 (en) | User reaction based information options | |
US11327747B2 (en) | Sentiment based offline version modification | |
Araújo et al. | Service discovery based on social profiles of objects in a social iot network | |
US20240171794A1 (en) | Biometric authentication of streaming content | |
Das et al. | Capturing policies for fine-grained access control on mobile devices | |
US20210174462A1 (en) | Health based property evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |