TWI719573B - Power converter and power converter control method - Google Patents

Power converter and power converter control method Download PDF

Info

Publication number
TWI719573B
TWI719573B TW108127863A TW108127863A TWI719573B TW I719573 B TWI719573 B TW I719573B TW 108127863 A TW108127863 A TW 108127863A TW 108127863 A TW108127863 A TW 108127863A TW I719573 B TWI719573 B TW I719573B
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
low
control circuit
output
Prior art date
Application number
TW108127863A
Other languages
Chinese (zh)
Other versions
TW202107821A (en
Inventor
楊家誠
黃宸斌
詹睿騰
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW108127863A priority Critical patent/TWI719573B/en
Publication of TW202107821A publication Critical patent/TW202107821A/en
Application granted granted Critical
Publication of TWI719573B publication Critical patent/TWI719573B/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power converter includes a power converting circuit, an output current control circuit, a high-voltage control circuit, a low-voltage control circuit, and a driving circuit. The power converting circuit receives and converts a HV dc voltage from a HV side to a LV dc voltage to a LV side. The output current control circuit is configured to detect an output current and output a first control signal. The high-voltage control circuit is configured to detect the HV dc voltage and output a second control signal. The low-voltage control circuit is configured to detect the LV dc voltage and output a third control signal selectively according to the LV dc voltage, or the LV dc voltage and the first control signal, or the LV dc voltage and the second control signal. The driving voltage outputs a driving signal to drive the power converting circuit according to the third control signal.

Description

電源轉換器及電源轉換器的控制方法Power converter and control method of power converter

本揭示內容是關於一種電源轉換器及電源轉換器的控制方法,且特別係關於一種高壓轉低壓的電源轉換器及其控制方法。The present disclosure relates to a power converter and a control method of the power converter, and particularly relates to a high-voltage to low-voltage power converter and a control method thereof.

近來,隨著環保意識的提升,以電能作為動力來源的電動車(Electric Vehicle,EV)、油電混合車 (Hybrid Electric Vehicle,HEV)或插電式混合動力車(Plug-in Hybrid Electric Vehicle,PHEV)越來越普及。Recently, with the increase in environmental awareness, electric vehicles (Electric Vehicle, EV), Hybrid Electric Vehicle (HEV) or plug-in hybrid electric vehicle (Plug-in Hybrid Electric Vehicle, PHEV) is becoming more and more popular.

通常油電混合車上裝有一組高壓電池和一組低壓電池,然而,當高壓電池發生異常失效或在極低溫下無法工作時,系統中的發電機可能會無法平衡電壓,導致整個系統因過電壓或欠電壓而停止工作,使得系統可靠度下降,車輛無法行駛等問題發生。Generally, a hybrid electric vehicle is equipped with a set of high-voltage batteries and a set of low-voltage batteries. However, when the high-voltage battery fails abnormally or cannot work at extremely low temperatures, the generators in the system may not be able to balance the voltage, causing the entire system to be overwhelmed. The system stops working due to voltage or under-voltage, which reduces the reliability of the system and causes problems such as the inability of the vehicle to run.

因此,如何改善目前的電源轉換系統是本領域的重要課題之一。Therefore, how to improve the current power conversion system is one of the important topics in this field.

本揭示內容的一種實施態樣係關於一種電源轉換器。電源轉換器包含電源轉換電路、輸出電流控制電路、高壓電壓控制電路、低壓電壓控制電路和驅動電路。電源轉換電路用以自高壓側接收高壓直流電壓,並將高壓直流電壓轉換為低壓直流電壓輸出至低壓側。輸出電流控制電路電性耦接於低壓側,用以偵測電源轉換電路的輸出電流,並根據輸出電流輸出第一控制訊號。高壓電壓控制電路電性耦接於高壓側,用以偵測高壓直流電壓,並根據高壓直流電壓輸出第二控制訊號。低壓電壓控制電路電性耦接於低壓側,用以偵測低壓直流電壓,並選擇性地根據低壓直流電壓、或根據低壓直流電壓和第一控制訊號、或根據低壓直流電壓和第二控制訊號,以輸出第三控制訊號。驅動電路電性耦接於低壓電壓控制電路,用以根據第三控制訊號輸出驅動訊號驅動電源轉換電路。An implementation aspect of the present disclosure relates to a power converter. The power converter includes a power conversion circuit, an output current control circuit, a high-voltage voltage control circuit, a low-voltage voltage control circuit, and a drive circuit. The power conversion circuit is used for receiving the high-voltage direct current voltage from the high-voltage side, converting the high-voltage direct current voltage into a low-voltage direct current voltage and outputting to the low-voltage side. The output current control circuit is electrically coupled to the low voltage side for detecting the output current of the power conversion circuit and outputting the first control signal according to the output current. The high-voltage voltage control circuit is electrically coupled to the high-voltage side for detecting the high-voltage direct current voltage and outputting the second control signal according to the high-voltage direct current voltage. The low-voltage voltage control circuit is electrically coupled to the low-voltage side for detecting low-voltage DC voltage, and selectively according to the low-voltage DC voltage, or according to the low-voltage DC voltage and the first control signal, or according to the low-voltage DC voltage and the second control signal , To output the third control signal. The driving circuit is electrically coupled to the low voltage control circuit for driving the power conversion circuit according to the third control signal output driving signal.

本揭示內容的另一種實施態樣係關於一種電源轉換器的控制方法,包含:由電源轉換電路,將高壓側之高壓直流電壓轉換為低壓直流電壓輸出至低壓側;由處理電路,選擇性地啟動低壓電壓控制電路、或輸出電流控制電路和低壓電壓控制電路、或高壓電壓控制電路和低壓電壓控制電路;於輸出電流控制電路啟動時,透過輸出電流控制電路,偵測電源轉換電路的輸出電流並根據輸出電流輸出第一控制訊號至低壓電壓控制電路;於高壓電壓控制電路啟動時,透過高壓電壓控制電路,偵測高壓直流電壓並根據高壓直流電壓輸出第二控制訊號至低壓電壓控制電路;於低壓電壓控制電路啟動時,透過低壓電壓控制電路,偵測低壓直流電壓並輸出第三控制訊號;以及由驅動電路,根據第三控制訊號輸出驅動訊號驅動電源轉換電路,以相應於第三控制訊號控制低壓直流電壓、高壓直流電壓或輸出電流。Another implementation aspect of the present disclosure relates to a control method of a power converter, including: a power conversion circuit converts a high-voltage DC voltage on a high-voltage side into a low-voltage DC voltage and outputs it to a low-voltage side; and a processing circuit selectively Start the low-voltage voltage control circuit, or the output current control circuit and the low-voltage voltage control circuit, or the high-voltage voltage control circuit and the low-voltage voltage control circuit; when the output current control circuit is started, the output current control circuit is used to detect the output current of the power conversion circuit And output the first control signal to the low voltage control circuit according to the output current; when the high voltage control circuit is activated, detect the high voltage direct current voltage through the high voltage control circuit and output the second control signal to the low voltage control circuit according to the high voltage direct current voltage; When the low voltage voltage control circuit is activated, the low voltage voltage control circuit detects the low voltage DC voltage and outputs the third control signal; and the drive circuit outputs the drive signal according to the third control signal to drive the power conversion circuit to correspond to the third control The signal controls low-voltage DC voltage, high-voltage DC voltage or output current.

下文係舉實施例配合所附圖式作詳細說明,以更好地理解本案的態樣,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。此外,根據業界的標準及慣常做法,圖式僅以輔助說明為目的,並未依照原尺寸作圖,實際上各種特徵的尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同之符號標示來進行說明以便於理解。The following is a detailed description of the embodiments in conjunction with the accompanying drawings to better understand the aspect of the case, but the provided embodiments are not intended to limit the scope covered by the disclosure, and the description of the structural operations is not intended to limit The order of execution, any recombination of components, and a device with an equal effect are all within the scope of this disclosure. In addition, according to industry standards and common practices, the drawings are only for the purpose of supplementary explanation, and are not drawn in accordance with the original dimensions. In fact, the dimensions of various features can be arbitrarily increased or decreased for ease of explanation. In the following description, the same elements will be described with the same symbols to facilitate understanding.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。Unless otherwise specified, the terms used in the entire specification and the scope of the patent application usually have the usual meaning of each term used in this field, in the content disclosed here, and in the special content. Some terms used to describe the present disclosure will be discussed below or elsewhere in this specification to provide those skilled in the art with additional guidance on the description of the present disclosure.

此外,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。In addition, the terms "include", "include", "have", "contain", etc. used in this article are all open terms, meaning "including but not limited to". In addition, the "and/or" used in this article includes any one of one or more of the related listed items and all combinations thereof.

於本文中,當一元件被稱為『連接』或『耦接』時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。In this text, when an element is referred to as "connection" or "coupling", it can refer to "electrical connection" or "electrical coupling". "Connected" or "coupled" can also be used to indicate that two or more components cooperate or interact with each other. In addition, although terms such as “first”, “second”, etc. are used herein to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless the context clearly indicates, the terms do not specifically refer to or imply order or sequence, nor are they used to limit the present invention.

請參考第1圖。第1圖為根據本案部分實施例所繪示的電源轉換系統100的示意圖。如第1圖所示,在部分實施例中,電源轉換系統100包含直流發電機110、電源轉換器120、高壓側儲能裝置130、處理電路140、低壓側儲能裝置150、以及低壓負載裝置170。在其他部分實施例中,電源轉換系統100更包含保護電路180。Please refer to Figure 1. FIG. 1 is a schematic diagram of a power conversion system 100 according to some embodiments of the present application. As shown in Figure 1, in some embodiments, the power conversion system 100 includes a DC generator 110, a power converter 120, a high-voltage side energy storage device 130, a processing circuit 140, a low-voltage side energy storage device 150, and a low-voltage load device 170. In some other embodiments, the power conversion system 100 further includes a protection circuit 180.

在部分實施例中,電源轉換系統100可用於一插電式混合動力車(Plug-in Hybrid Electric Vehicle,PHEV)或油電混合車(Hybrid Electric Vehicle,HEV)系統當中,透過電源轉換器120與處理電路140的協同操作,將高壓側的直流發電機110輸出的高壓直流電壓V1轉換為低壓直流電壓V2,並提供輸出電流Io輸出至低壓側的低壓側儲能裝置150以及低壓負載裝置170。藉此,便能提供車載系統中各種設備所需的電力。In some embodiments, the power conversion system 100 can be used in a plug-in hybrid electric vehicle (PHEV) or hybrid electric vehicle (HEV) system, through the power converter 120 and The cooperative operation of the processing circuit 140 converts the high-voltage DC voltage V1 output by the DC generator 110 on the high-voltage side into a low-voltage DC voltage V2, and provides an output current Io to output to the low-voltage side energy storage device 150 and the low-voltage load device 170 on the low-voltage side. In this way, the power required by various devices in the vehicle system can be provided.

舉例來說,在部分實施例中,直流發電機110可輸出約48V的高壓直流電壓V1。電源轉換器120可將其轉換為例如約12V的低壓直流電壓V2,以供應車上的車用音響系統、車上電子裝置如行車記錄器等等的電力需求。值得注意的是,上述數值及應用僅為舉例說明,並非用以限制本案。For example, in some embodiments, the DC generator 110 can output a high-voltage DC voltage V1 of about 48V. The power converter 120 can convert it into a low-voltage DC voltage V2 of about 12V, for example, to supply the power demand of the car audio system on the car, the car electronic device such as the driving recorder, and so on. It is worth noting that the above-mentioned values and applications are only examples and are not intended to limit the case.

如第1圖所示,在結構上,電源轉換器120包含電源轉換電路121、低壓電壓控制電路122、輸出電流控制電路124、高壓電壓控制電路126以及驅動電路129。電源轉換電路121之高壓側電性耦接高壓側儲能裝置130以及直流發電機110,電源轉換電路121之低壓側電性耦接低壓側儲能裝置150以及低壓負載裝置170。電源轉換電路121用以接收高壓側之高壓直流電壓V1,並將高壓直流電壓V1轉換為低壓直流電壓V2輸出至電源轉換電路121之低壓側。As shown in FIG. 1, structurally, the power converter 120 includes a power conversion circuit 121, a low-voltage voltage control circuit 122, an output current control circuit 124, a high-voltage voltage control circuit 126, and a drive circuit 129. The high voltage side of the power conversion circuit 121 is electrically coupled to the high voltage side energy storage device 130 and the DC generator 110, and the low voltage side of the power conversion circuit 121 is electrically coupled to the low voltage side energy storage device 150 and the low voltage load device 170. The power conversion circuit 121 is used to receive the high voltage DC voltage V1 on the high voltage side, convert the high voltage DC voltage V1 into a low voltage DC voltage V2 and output to the low voltage side of the power conversion circuit 121.

具體而言,電源轉換電路121可透過各種交換式直流直流轉換電路(DC-DC Converter)實現。舉例來說,電源轉換電路121可為非隔離型轉換電路(Non-Isolated Converter),例如:降壓式(Buck Converter)、升降兩用式(Buck-Boost Converter)等等。或者,電源轉換電路121亦可由隔離型轉換電路(Isolated Converter)據以實施。Specifically, the power conversion circuit 121 can be implemented by various switched DC-DC converters. For example, the power conversion circuit 121 may be a non-isolated converter (Non-Isolated Converter), such as: Buck Converter, Buck-Boost Converter, and so on. Alternatively, the power conversion circuit 121 may also be implemented by an isolated converter (Isolated Converter).

請參考第2圖。第2圖為根據本揭示內容之部分實施例所繪示一種電源轉換電路121的示意圖。在部分實施例中,如第2圖所示,電源轉換電路121可為相移式全橋轉換器(Phase shifted full bridge Converter)。在此實施例中,電源轉換電路121包含切換開關SW1~SW4、諧振電感L1、變壓器、整流開關SW5、SW6、輸出電感Lo和輸出電容Co,其中變壓器的初級側包含一組初級繞組Np,次級側包含兩組次級繞組Ns1、Ns2。Please refer to Figure 2. FIG. 2 is a schematic diagram of a power conversion circuit 121 according to some embodiments of the present disclosure. In some embodiments, as shown in FIG. 2, the power conversion circuit 121 may be a phase shifted full bridge converter. In this embodiment, the power conversion circuit 121 includes switch switches SW1 to SW4, a resonant inductor L1, a transformer, rectifier switches SW5, SW6, an output inductor Lo, and an output capacitor Co. The primary side of the transformer includes a set of primary windings Np. The stage side contains two sets of secondary windings Ns1 and Ns2.

結構上,切換開關SW1、SW3的第一端電性耦接於高壓直流電壓V1的正極端,切換開關SW1、SW3的第二端電性耦接於切換開關SW2、SW4的第一端,切換開關SW2、SW4的第二端電性耦接於高壓直流電壓V1的負極端。諧振電感L1串聯於初級繞組Np,其一端電性耦接於切換開關SW1的第二端和切換開關SW2的第一端之間,另一端電性耦接於切換開關SW3的第二端和切換開關SW4的第一端之間。次級繞組Ns2的起始端電性耦接於次級繞組Ns1的結束端,且分別透過整流開關SW5和SW6一同電性耦接於輸出電容Co的負極端。Structurally, the first terminals of the switch switches SW1 and SW3 are electrically coupled to the positive terminal of the high-voltage DC voltage V1, and the second terminals of the switch switches SW1 and SW3 are electrically coupled to the first terminals of the switch switches SW2 and SW4. The second terminals of the switches SW2 and SW4 are electrically coupled to the negative terminal of the high-voltage DC voltage V1. The resonant inductor L1 is connected in series with the primary winding Np, one end of which is electrically coupled between the second end of the switch SW1 and the first end of the switch SW2, and the other end is electrically coupled to the second end of the switch SW3 and the switch Between the first end of the switch SW4. The start end of the secondary winding Ns2 is electrically coupled to the end end of the secondary winding Ns1, and is electrically coupled to the negative end of the output capacitor Co through the rectifier switches SW5 and SW6, respectively.

操作上,切換開關SW1~SW4的控制端分別用以接收相應的驅動訊號(如第1圖中之驅動訊號PWM),使得切換開關SW1~SW4根據相應的驅動訊號選擇性的導通或關斷。據此,便能藉由調整切換開關SW1、SW4和切換開關SW2、SW3輪流導通的時間長度,以產生不同的責任週期(duty cycle)的切換訊號,並透過諧振電感L1輸入至變壓器進行變壓。變壓器中的次級繞組Ns1與次級繞組Ns2感應初級繞組Np上訊號變化而輸出的次級電流。而整流開關SW5和SW6用以對變壓器輸出的次級電流進行同步整流,以提供輸出電容Co兩端上的低壓直流電壓V2。In operation, the control ends of the switch switches SW1 to SW4 are respectively used to receive corresponding drive signals (such as the drive signal PWM in Figure 1), so that the switch switches SW1 to SW4 are selectively turned on or off according to the corresponding drive signals. Accordingly, by adjusting the length of time that the switches SW1 and SW4 and the switches SW2 and SW3 are turned on in turn, the switching signals of different duty cycles can be generated, and the switching signals are input to the transformer through the resonant inductor L1 for transformation. . The secondary winding Ns1 and the secondary winding Ns2 in the transformer induce the secondary current outputted by the signal change on the primary winding Np. The rectifier switches SW5 and SW6 are used to synchronously rectify the secondary current output by the transformer to provide a low-voltage DC voltage V2 on both ends of the output capacitor Co.

值得注意的是,此電源轉換電路121僅作為舉例說明,並不用以限制本案。在其他部分實施例中,電源轉換電路121的種類以及電源轉換電路121中的變壓電路、諧振電路、整流電路皆可根據本領域技術人員熟知之任何形式來完成。It should be noted that the power conversion circuit 121 is only used as an example, and is not intended to limit the case. In other embodiments, the types of the power conversion circuit 121 and the transformer circuit, resonant circuit, and rectifier circuit in the power conversion circuit 121 can be implemented in any form well known to those skilled in the art.

請繼續參考第1圖。如第1圖所示,輸出電流控制電路124電性耦接於低壓側,用以偵測電源轉換電路121的輸出電流Io,並根據輸出電流Io輸出第一控制訊號CT1。高壓電壓控制電路126電性耦接於高壓側,用以偵測高壓直流電壓V1並相應輸出第二控制訊號CT2。Please continue to refer to Figure 1. As shown in FIG. 1, the output current control circuit 124 is electrically coupled to the low voltage side to detect the output current Io of the power conversion circuit 121 and output the first control signal CT1 according to the output current Io. The high-voltage voltage control circuit 126 is electrically coupled to the high-voltage side for detecting the high-voltage DC voltage V1 and correspondingly outputting the second control signal CT2.

低壓電壓控制電路122電性耦接於低壓側、輸出電流控制電路124和高壓電壓控制電路126。低壓電壓控制電路122用以偵測低壓直流電壓V2,並選擇性地根據低壓直流電壓V2、或根據低壓直流電壓V2和第一控制訊號CT1、或根據該低壓直流電壓V2和該第二控制訊號CT2相應輸出第三控制訊號CT3至驅動電路129。The low voltage control circuit 122 is electrically coupled to the low voltage side, the output current control circuit 124 and the high voltage control circuit 126. The low-voltage voltage control circuit 122 is used to detect the low-voltage DC voltage V2, and selectively according to the low-voltage DC voltage V2, or according to the low-voltage DC voltage V2 and the first control signal CT1, or according to the low-voltage DC voltage V2 and the second control signal CT2 correspondingly outputs the third control signal CT3 to the driving circuit 129.

而驅動電路129電性耦接於低壓電壓控制電路122,用以接收第三控制訊號CT3並根據第三控制訊號CT3輸出驅動訊號PWM,以脈衝寬度調變方式切換電源轉換電路121中的切換開關SW1~SW4導通與關斷。藉此,透過調整驅動訊號PWM的責任週期,便可控制完整週期中電源轉換電路121中的切換開關SW1~SW4導通的時間長度,進而控制電源轉換器120的操作。The driving circuit 129 is electrically coupled to the low voltage control circuit 122 for receiving the third control signal CT3 and outputting the driving signal PWM according to the third control signal CT3 to switch the switch in the power conversion circuit 121 in a pulse width modulation method SW1~SW4 are turned on and off. In this way, by adjusting the duty cycle of the driving signal PWM, the length of time during which the switching switches SW1 to SW4 in the power conversion circuit 121 are turned on in the complete cycle can be controlled, thereby controlling the operation of the power converter 120.

在部分實施例中,於同一時點,低壓電壓控制電路122可單獨啟動,或者輸出電流控制電路124以及低壓電壓控制電路122一起啟動,或者高壓電壓控制電路126以及低壓電壓控制電路122一起啟動。也就是說,在本實施例中,三種回授路徑皆包含低壓電壓控制電路122(即,低壓電壓控制電路122會維持啟動),然,於同一時點,三種回授路徑僅有一種會啟動。In some embodiments, at the same point in time, the low-voltage voltage control circuit 122 can be activated separately, or the output current control circuit 124 and the low-voltage control circuit 122 can be activated together, or the high-voltage voltage control circuit 126 and the low-voltage voltage control circuit 122 can be activated together. That is to say, in this embodiment, the three feedback paths all include the low-voltage voltage control circuit 122 (ie, the low-voltage control circuit 122 will remain activated). However, at the same time, only one of the three feedback paths will be activated.

換言之,在低壓電壓控制模式時,當低壓電壓控制電路122單獨啟動並輸出第三控制訊號CT3時,輸出電流控制電路124和高壓電壓控制電路126相應解耦。在低壓電壓和輸出電流並行控制模式時,當輸出電流控制電路124啟動並輸出第一控制訊號CT1時,低壓電壓控制電路122亦啟動並接收第一控制訊號CT1且輸出第三控制訊號CT3,而高壓電壓控制電路126相應解耦。在低壓電壓和高壓電壓並行控制模式時,當高壓電壓控制電路126啟動並輸出第二控制訊號CT2時,低壓電壓控制電路122亦啟動並接收第二控制訊號CT2且輸出第三控制訊號CT3,而輸出電流控制電路124相應解耦。In other words, in the low-voltage control mode, when the low-voltage control circuit 122 is individually activated and outputs the third control signal CT3, the output current control circuit 124 and the high-voltage control circuit 126 are decoupled accordingly. In the low voltage and output current parallel control mode, when the output current control circuit 124 activates and outputs the first control signal CT1, the low voltage control circuit 122 also activates and receives the first control signal CT1 and outputs the third control signal CT3, and The high voltage voltage control circuit 126 is decoupled accordingly. In the low voltage and high voltage parallel control mode, when the high voltage control circuit 126 activates and outputs the second control signal CT2, the low voltage control circuit 122 also activates and receives the second control signal CT2 and outputs the third control signal CT3, and The output current control circuit 124 is decoupled accordingly.

如此一來,電源轉換系統100可透過處理電路140控制輸出電流控制電路124與高壓電壓控制電路126何者啟動何者解耦,或兩者皆解耦,並根據相應的命令值對高壓直流電壓V1的電壓準位、低壓直流電壓V2的電壓準位或是輸出電流Io的電流大小進行控制。值得注意的是,控制電路的啟動與解耦並非限定控制電路是否關閉,只是代表該控制電路是否介入控制。In this way, the power conversion system 100 can control the output current control circuit 124 and the high voltage voltage control circuit 126 through the processing circuit 140, which decoupling is activated, or both are decoupled, and the high voltage DC voltage V1 can be adjusted according to the corresponding command value. The voltage level, the voltage level of the low-voltage DC voltage V2, or the current magnitude of the output current Io are controlled. It is worth noting that the activation and decoupling of the control circuit does not limit whether the control circuit is closed, but only represents whether the control circuit is involved in control.

進一步具體而言,處理電路140電性連接於低壓電壓控制電路122、輸出電流控制電路124和高壓電壓控制電路126。處理電路140分別輸出低壓電壓命令LVcmd、輸出電流命令Icmd和高壓電壓命令HVcmd至低壓電壓控制電路122、輸出電流控制電路124和高壓電壓控制電路126,以控制選擇性地僅啟動低壓電壓控制電路122,或啟動低壓電壓控制電路122和輸出電流控制電路124,或者啟動低壓電壓控制電路122和高壓電壓控制電路126。換言之,電源轉換器120可根據處理電路140之控制,操作在低壓電壓控制模式、低壓電壓和輸出電流並行控制模式,或是低壓電壓和高壓電壓並行控制模式,三者當中的任一者,以根據當前的系統狀態進行相應控制。More specifically, the processing circuit 140 is electrically connected to the low-voltage voltage control circuit 122, the output current control circuit 124, and the high-voltage voltage control circuit 126. The processing circuit 140 respectively outputs a low-voltage voltage command LVcmd, an output current command Icmd, and a high-voltage voltage command HVcmd to the low-voltage voltage control circuit 122, the output current control circuit 124, and the high-voltage voltage control circuit 126 to control selectively activate only the low-voltage voltage control circuit 122 , Or start the low voltage voltage control circuit 122 and the output current control circuit 124, or start the low voltage voltage control circuit 122 and the high voltage control circuit 126. In other words, the power converter 120 can operate in a low-voltage voltage control mode, a low-voltage voltage and output current parallel control mode, or a low-voltage and high-voltage voltage parallel control mode according to the control of the processing circuit 140. Perform corresponding control according to the current system status.

另外,如第1圖所示,電源轉換器120的高壓側與低壓側可分別耦接高壓側儲能裝置130、低壓側儲能裝置150以進行必要的電力補償。在部分實施例中,高壓側儲能裝置130、低壓側儲能裝置150可由儲能電池實現。舉例來說,低壓側儲能裝置150電性耦接於低壓負載裝置170以及電源轉換電路121之低壓側。當低壓負載裝置170處於輕載時,低壓側儲能裝置150可吸收電源轉換器120a輸出的額外電力。如此一來,當低壓負載裝置170處於重載時或是電源轉換器120不足以供應低壓負載裝置170所需的電力時,低壓側儲能裝置150便可輸出所儲存的電力至低壓負載裝置170,以維持電力系統上的供需平衡。In addition, as shown in Figure 1, the high-voltage side and the low-voltage side of the power converter 120 can be respectively coupled to the high-voltage side energy storage device 130 and the low-voltage side energy storage device 150 to perform necessary power compensation. In some embodiments, the high-voltage side energy storage device 130 and the low-voltage side energy storage device 150 may be implemented by energy storage batteries. For example, the low-voltage side energy storage device 150 is electrically coupled to the low-voltage load device 170 and the low-voltage side of the power conversion circuit 121. When the low-voltage load device 170 is under a light load, the low-voltage side energy storage device 150 can absorb the extra power output by the power converter 120a. In this way, when the low-voltage load device 170 is under heavy load or the power converter 120 is insufficient to supply the power required by the low-voltage load device 170, the low-voltage side energy storage device 150 can output the stored power to the low-voltage load device 170 , In order to maintain the balance of supply and demand on the power system.

相似地,高壓側儲能裝置130電性耦接於直流發電機110以及電源轉換電路121之高壓側。藉此,高壓側儲能裝置130亦可針對直流發電機110輸出至電源轉換器120的電力進行調節,以維持高壓側上高壓直流電壓V1的穩定。Similarly, the high-voltage side energy storage device 130 is electrically coupled to the high-voltage side of the DC generator 110 and the power conversion circuit 121. In this way, the high-voltage side energy storage device 130 can also adjust the power output from the DC generator 110 to the power converter 120 to maintain the stability of the high-voltage DC voltage V1 on the high-voltage side.

然而,當高壓側儲能裝置130與直流發電機110解聯或發生異常時,高壓側儲能裝置130無法調節高壓側上的高壓直流電壓V1。舉例來說,在極低溫環境下。高壓電池可能因為低溫導致無法工作。在此狀況下,若低壓側的負載端劇烈變動,直流發電機110的響應較慢,不足以及時調整發電機的輸出電力,容易導致高壓側上的高壓直流電壓V1過電壓、欠電壓,使得保護迴路相應動作,進而導致系統操作異常,例如電源系統停止工作等情況發生。However, when the high-voltage side energy storage device 130 is disconnected from the DC generator 110 or an abnormality occurs, the high-voltage side energy storage device 130 cannot adjust the high-voltage DC voltage V1 on the high-voltage side. For example, in an extremely low temperature environment. High-voltage batteries may not work due to low temperatures. In this situation, if the load terminal on the low-voltage side changes drastically, the response of the DC generator 110 will be slow, and the output power of the generator will be insufficient to adjust the generator’s output power in a timely manner. The corresponding action of the protection circuit leads to abnormal system operation, for example, the power system stops working.

為了避免上述情況發生,在本揭示內容部分實施例中,於高壓側儲能裝置130與直流發電機110解聯或發生異常時,處理電路140可輸出相應的高壓電壓命令HVcmd控制高壓電壓控制電路126根據高壓電壓命令HVcmd輸出第二控制訊號CT2至低壓電壓控制電路122,使得低壓電壓控制電路122產生相應的第三控制訊號CT3以控制高壓直流電壓V1穩定在相應的目標電壓值。藉此,便可避免過電壓保護機制啟動。 In order to avoid the above situation, in some embodiments of the present disclosure, when the high-voltage side energy storage device 130 is disconnected from the DC generator 110 or abnormality occurs, the processing circuit 140 can output the corresponding high-voltage voltage command HVcmd to control the high-voltage voltage control circuit 126 outputs the second control signal CT2 to the low voltage control circuit 122 according to the high voltage voltage command HVcmd, so that the low voltage control circuit 122 generates a corresponding third control signal CT3 to control the high voltage DC voltage V1 to stabilize at a corresponding target voltage value. In this way, the activation of the over-voltage protection mechanism can be avoided.

為便於說明起見,電源轉換器120與處理電路140的協同操作將搭配第3A圖~第3C圖進行說明。請參考第3A圖~第3C圖。第3A圖~第3C圖分別為根據本揭示內容部分實施例所繪示的電源轉換器120a的操作示意圖。在部分實施例中,第3A圖~第3C圖所示的電源轉換器120a可用以實現第1圖中的電源轉換器120。 For ease of description, the cooperative operation of the power converter 120 and the processing circuit 140 will be described in conjunction with FIGS. 3A to 3C. Please refer to Figure 3A~Figure 3C. 3A to 3C are respectively schematic diagrams of the operation of the power converter 120a according to some embodiments of the present disclosure. In some embodiments, the power converter 120a shown in FIG. 3A to FIG. 3C can be used to implement the power converter 120 in FIG. 1.

如第3A圖~第3C圖所示,低壓電壓控制電路122包含電壓偵測電路220、加法器123、補償電路以及比較放大器OP1。在結構上,電壓偵測電路220電性耦接於低壓側,用以對低壓直流電壓V2進行偵測以輸出電壓偵測訊號Vd2至加法器123。舉例來說,電壓偵測電路220可為分壓電路,包含彼此串聯的分壓電阻。藉由選用適當的分壓電阻阻值,電壓偵測電路220便可進行分壓並輸出具有適當電壓範圍的電壓偵測訊號Vd2,以供後級電路的操作。 As shown in FIGS. 3A to 3C, the low-voltage voltage control circuit 122 includes a voltage detection circuit 220, an adder 123, a compensation circuit, and a comparison amplifier OP1. Structurally, the voltage detection circuit 220 is electrically coupled to the low voltage side for detecting the low voltage DC voltage V2 to output the voltage detection signal Vd2 to the adder 123. For example, the voltage detection circuit 220 may be a voltage divider circuit including voltage divider resistors connected in series with each other. By selecting an appropriate voltage divider resistance value, the voltage detection circuit 220 can divide the voltage and output a voltage detection signal Vd2 with an appropriate voltage range for the operation of the subsequent circuit.

加法器123電性耦接於低壓側、輸出電流控制電路124和高壓電壓控制電路126,用以接收電壓偵測訊號Vd2、第一控制訊號CT1和第二控制訊號CT2,並將接收到的訊號加總後輸出。 The adder 123 is electrically coupled to the low voltage side, the output current control circuit 124 and the high voltage control circuit 126 for receiving the voltage detection signal Vd2, the first control signal CT1, and the second control signal CT2, and the received signal The output is summed up.

補償電路電性耦接於加法器123與驅動電路129之間,用以接收加法器123加總後的訊號。在部分實施例中,如第3A圖所示,補償電路可包含電阻R1、R2、R3和電容C1、C2、C3,但本揭示內容並不以此為限。在其他實施例中,補償電路可包含以各種形式電性連接的電阻器及電容器以形成 RC電路。在第3A圖~第3C圖所示實施例中,電阻R1、R2的一端電性耦接於加法器123,另一端電性耦接於比較放大器OP1的第二端(如:負極端)。電阻R3和電容C2串聯後與電容C3並聯,其一端電性耦接於比較放大器OP1的第二端(如:負極端),另一端電性耦接於比較放大器OP1的輸出端。 The compensation circuit is electrically coupled between the adder 123 and the driving circuit 129 for receiving the signal added by the adder 123. In some embodiments, as shown in FIG. 3A, the compensation circuit may include resistors R1, R2, R3 and capacitors C1, C2, C3, but the disclosure is not limited thereto. In other embodiments, the compensation circuit may include resistors and capacitors electrically connected in various forms to form RC circuit. In the embodiments shown in FIGS. 3A to 3C, one end of the resistors R1 and R2 is electrically coupled to the adder 123, and the other end is electrically coupled to the second end (eg, the negative end) of the comparison amplifier OP1. The resistor R3 and the capacitor C2 are connected in series and connected in parallel with the capacitor C3. One end of the resistor R3 is electrically coupled to the second terminal (eg, the negative terminal) of the comparison amplifier OP1, and the other end is electrically coupled to the output terminal of the comparison amplifier OP1.

比較放大器OP1的第一端(如:正極端)電性耦接於處理電路140,用以接收低壓電壓命令LVcmd。比較放大器OP1的第二端(如:負極端)電性耦接於補償電路。比較放大器OP1的輸出端電性耦接於驅動電路129,用以輸出第三控制訊號CT3至驅動電路129。 The first terminal (eg, the positive terminal) of the comparison amplifier OP1 is electrically coupled to the processing circuit 140 for receiving the low voltage voltage command LVcmd. The second terminal (eg, the negative terminal) of the comparison amplifier OP1 is electrically coupled to the compensation circuit. The output terminal of the comparison amplifier OP1 is electrically coupled to the driving circuit 129 for outputting the third control signal CT3 to the driving circuit 129.

值得注意的是,在其他部分實施例中,低壓電壓控制電路122亦可以其他方式實現選擇性地接收第一控制訊號CT1或第二控制訊號CT2。雖然在第3A圖~第3C圖所示實施例中,輸出電流控制電路124以及高壓電壓控制電路126皆耦接至低壓電壓控制電路122中的加法器123,但在其他部分實施例中,電源轉換器120亦可設置切換器,並透過切換器選擇性將低壓直流電壓V2、第一控制訊號CT1與第二控制訊號CT2當中之一或二者輸出至低壓電壓控制電路122。因此,第3A圖~第3C圖所示實施例僅為本揭示內容其中一種可能的實現方式,並非用以限制本案。 It is worth noting that in some other embodiments, the low-voltage voltage control circuit 122 can also achieve selective reception of the first control signal CT1 or the second control signal CT2 in other ways. Although in the embodiments shown in FIGS. 3A to 3C, the output current control circuit 124 and the high voltage control circuit 126 are both coupled to the adder 123 in the low voltage control circuit 122, in other embodiments, the power supply The converter 120 can also be provided with a switch, and selectively output one or both of the low voltage DC voltage V2, the first control signal CT1 and the second control signal CT2 to the low voltage control circuit 122 through the switch. Therefore, the embodiment shown in FIG. 3A to FIG. 3C is only one possible implementation manner of the present disclosure, and is not intended to limit the case.

相似地,如第3A圖~第3C圖所示,在部分實施例中,輸出電流控制電路124包含電流偵測電路240、補償電路、比較放大器OP2以及整流元件D1。在結構上,電流偵測電路240電性耦接於低壓側,用以根據輸出電流Io輸出一電流偵測訊號Id。舉例來說,在部分實施例中,電流偵測電路240可透過電流偵測電阻實現。Similarly, as shown in FIGS. 3A to 3C, in some embodiments, the output current control circuit 124 includes a current detection circuit 240, a compensation circuit, a comparison amplifier OP2, and a rectification element D1. Structurally, the current detection circuit 240 is electrically coupled to the low voltage side for outputting a current detection signal Id according to the output current Io. For example, in some embodiments, the current detection circuit 240 can be implemented by a current detection resistor.

在部分實施例中,補償電路電性耦接於處理電路140與低壓電壓控制電路122之間,用以接收輸出電流命令Icmd或Icmd_dis。如圖中所示,補償電路可包含電阻R4、R5、R6和電容C4、C5、C6,但本揭示內容並不以此為限。在其他實施例中,補償電路可包含以各種形式電性連接的電阻器及電容器以形成RC電路。在第3A圖~第3C圖所示實施例中,電阻R4、R5的一端電性耦接於處理電路140,另一端電性耦接於比較放大器OP2的第二端(如:負極端)。電阻R6和電容C5串聯後與電容C6並聯,其一端電性耦接於比較放大器OP2的第二端(如:負極端),另一端電性耦接於比較放大器OP2的輸出端。In some embodiments, the compensation circuit is electrically coupled between the processing circuit 140 and the low voltage control circuit 122 for receiving the output current command Icmd or Icmd_dis. As shown in the figure, the compensation circuit may include resistors R4, R5, R6 and capacitors C4, C5, C6, but the present disclosure is not limited to this. In other embodiments, the compensation circuit may include resistors and capacitors electrically connected in various forms to form an RC circuit. In the embodiments shown in FIGS. 3A to 3C, one end of the resistors R4 and R5 is electrically coupled to the processing circuit 140, and the other end is electrically coupled to the second end (eg, the negative end) of the comparison amplifier OP2. The resistor R6 and the capacitor C5 are connected in series and connected in parallel with the capacitor C6. One end of the resistor R6 is electrically coupled to the second terminal (eg, the negative terminal) of the comparison amplifier OP2, and the other end is electrically coupled to the output terminal of the comparison amplifier OP2.

比較放大器OP2的第一端(如:正極端)用以接收電流偵測訊號Id,比較放大器OP2的第二端(如:負極端)電性耦接於補償電路,比較放大器OP2的輸出端透過整流元件D1電性耦接於低壓電壓控制電路122,用以輸出第一控制訊號CT1至低壓電壓控制電路122。The first terminal (such as the positive terminal) of the comparison amplifier OP2 is used to receive the current detection signal Id, the second terminal (such as the negative terminal) of the comparison amplifier OP2 is electrically coupled to the compensation circuit, and the output terminal of the comparison amplifier OP2 transmits The rectifying element D1 is electrically coupled to the low voltage control circuit 122 for outputting the first control signal CT1 to the low voltage control circuit 122.

在部分實施例中,整流元件D1可由二極體單元實現。如第3A圖~第3C圖所示,整流元件D1的陽極端耦接於比較放大器OP2的輸出端,整流元件D1的陰極端耦接於低壓電壓控制電路122。整流元件D1用以確保輸出電流控制電路124與低壓電壓控制電路122之間不會產生電流路徑導致干擾。In some embodiments, the rectifying element D1 can be realized by a diode unit. As shown in FIGS. 3A to 3C, the anode terminal of the rectifying element D1 is coupled to the output terminal of the comparator OP2, and the cathode terminal of the rectifying element D1 is coupled to the low voltage control circuit 122. The rectifying element D1 is used to ensure that no current path is generated between the output current control circuit 124 and the low-voltage voltage control circuit 122 to cause interference.

相似地,如第3A圖~第3C圖所示,在部分實施例中,高壓電壓控制電路126包含電壓偵測電路260、補償電路、比較放大器OP3以及整流元件D2。在結構上,電壓偵測電路260電性耦接於高壓側,用以對高壓直流電壓V1進行偵測以輸出電壓偵測訊號Vd1。舉例來說,相似於電壓偵測電路220,電壓偵測電路260亦可為分壓電路,包含彼此串聯的分壓電阻。藉由選用適當的分壓電阻阻值,電壓偵測電路260便可進行分壓並輸出具有適當電壓範圍的電壓偵測訊號Vd1,以供後級電路的操作。Similarly, as shown in FIGS. 3A to 3C, in some embodiments, the high voltage control circuit 126 includes a voltage detection circuit 260, a compensation circuit, a comparison amplifier OP3, and a rectification element D2. Structurally, the voltage detection circuit 260 is electrically coupled to the high voltage side for detecting the high voltage DC voltage V1 to output the voltage detection signal Vd1. For example, similar to the voltage detection circuit 220, the voltage detection circuit 260 can also be a voltage divider circuit including voltage divider resistors connected in series with each other. By selecting an appropriate voltage divider resistance value, the voltage detection circuit 260 can divide the voltage and output a voltage detection signal Vd1 with an appropriate voltage range for the operation of the subsequent circuit.

在部分實施例中,補償電路電性耦接於電壓偵測電路260與低壓電壓控制電路122之間,用以接收電壓偵測訊號Vd1。在部分實施例中,如圖中所示,補償電路可包含電阻R7、R8、R9和電容C7、C8、C9,但本揭示內容並不以此為限。在其他實施例中,補償電路可包含以各種形式電性連接的電阻器及電容器以形成RC電路。在第3A圖~第3C圖所示實施例中,電阻R7、R8的一端電性耦接於電壓偵測電路260,另一端電性耦接於比較放大器OP3的第二端(如:負極端)。電阻R9和電容C8串聯後與電容C9並聯,其一端電性耦接於比較放大器OP3的第二端(如:負極端),另一端電性耦接於比較放大器OP3的輸出端。In some embodiments, the compensation circuit is electrically coupled between the voltage detection circuit 260 and the low voltage control circuit 122 for receiving the voltage detection signal Vd1. In some embodiments, as shown in the figure, the compensation circuit may include resistors R7, R8, R9 and capacitors C7, C8, C9, but the present disclosure is not limited to this. In other embodiments, the compensation circuit may include resistors and capacitors electrically connected in various forms to form an RC circuit. In the embodiments shown in FIGS. 3A to 3C, one end of the resistors R7 and R8 is electrically coupled to the voltage detection circuit 260, and the other end is electrically coupled to the second end (eg, the negative terminal) of the comparison amplifier OP3 ). The resistor R9 and the capacitor C8 are connected in series and connected in parallel with the capacitor C9. One end of the resistor R9 is electrically coupled to the second terminal (eg, the negative terminal) of the comparison amplifier OP3, and the other end is electrically coupled to the output terminal of the comparison amplifier OP3.

比較放大器OP3的第一端(如:正極端)電性耦接於處理電路140,用以接收高壓電壓命令HVcmd或HVcmd_dis。比較放大器OP3的第二端(如:負極端)電性耦接於補償電路。比較放大器OP3的輸出端透過整流元件D2電性耦接於低壓電壓控制電路122,用以輸出第二控制訊號CT2至低壓電壓控制電路122。The first terminal (eg, the positive terminal) of the comparison amplifier OP3 is electrically coupled to the processing circuit 140 for receiving the high voltage command HVcmd or HVcmd_dis. The second terminal (eg, the negative terminal) of the comparison amplifier OP3 is electrically coupled to the compensation circuit. The output terminal of the comparison amplifier OP3 is electrically coupled to the low voltage control circuit 122 through the rectifying element D2 for outputting the second control signal CT2 to the low voltage control circuit 122.

在部分實施例中,相似於整流元件D1,整流元件D2可由二極體單元實現。如第3A圖~第3C圖所示,整流元件D2的陽極端耦接於比較放大器OP3的輸出端,整流元件D2的陰極端耦接於低壓電壓控制電路122。整流元件D2用以確保輸出電流控制電路124與高壓電壓控制電路126之間不會產生電流路徑導致干擾。In some embodiments, similar to the rectifying element D1, the rectifying element D2 can be realized by a diode unit. As shown in FIGS. 3A to 3C, the anode terminal of the rectifying element D2 is coupled to the output terminal of the comparator OP3, and the cathode terminal of the rectifying element D2 is coupled to the low voltage control circuit 122. The rectifying element D2 is used to ensure that no current path is generated between the output current control circuit 124 and the high voltage voltage control circuit 126 causing interference.

在操作上,如第3A圖所示,於高壓側儲能裝置130操作正常時,處理電路140可根據實際需求控制電源轉換器120a操作在低壓電壓控制模式或低壓電壓和輸出電流並行控制模式。當處理電路140使電源轉換器120a選擇性地操作在低壓電壓控制模式時,處理電路140輸出相應的低壓電壓命令LVcmd。此時,低壓電壓控制電路122自處理電路140接收低壓電壓命令LVcmd,以根據低壓電壓命令LVcmd輸出第三控制訊號CT3至驅動電路129,使得驅動電路129控制低壓直流電壓V2穩定在相應的目標電壓值。In operation, as shown in FIG. 3A, when the high-voltage side energy storage device 130 operates normally, the processing circuit 140 can control the power converter 120a to operate in a low-voltage voltage control mode or a low-voltage voltage and output current parallel control mode according to actual requirements. When the processing circuit 140 makes the power converter 120a selectively operate in the low voltage voltage control mode, the processing circuit 140 outputs a corresponding low voltage voltage command LVcmd. At this time, the low voltage voltage control circuit 122 receives the low voltage voltage command LVcmd from the processing circuit 140 to output the third control signal CT3 to the drive circuit 129 according to the low voltage voltage command LVcmd, so that the drive circuit 129 controls the low voltage DC voltage V2 to stabilize at the corresponding target voltage value.

具體來說,如第3A圖所示,低壓電壓命令LVcmd可先透過RC濾波電路230進行濾波。經濾波後的低壓電壓命令LVcmd作為低壓電壓控制電路122的參考電壓輸入比較放大器OP1的正極端。而由電壓偵測電路220進行偵測而輸出的電壓偵測訊號Vd2透過加法器123輸入比較放大器OP1的負極端。如此一來,比較放大器OP1便可根據正極端與負極端的電壓誤差訊號,搭配補償電路輸出第三控制訊號CT3至驅動電路129。Specifically, as shown in FIG. 3A, the low-voltage voltage command LVcmd can be filtered through the RC filter circuit 230 first. The filtered low-voltage voltage command LVcmd serves as the reference voltage of the low-voltage voltage control circuit 122 and is input to the positive terminal of the comparison amplifier OP1. The voltage detection signal Vd2 detected and output by the voltage detection circuit 220 is input to the negative terminal of the comparison amplifier OP1 through the adder 123. In this way, the comparison amplifier OP1 can cooperate with the compensation circuit to output the third control signal CT3 to the driving circuit 129 according to the voltage error signal of the positive terminal and the negative terminal.

舉例來說,在部分實施例中,當低壓直流電壓V2提高時,產生回授之電壓偵測訊號Vd2亦相應提高。當輸出至比較放大器OP1的負極端的電壓偵測訊號Vd2大於作為參考電壓的低壓電壓命令LVcmd時,比較放大器OP1所產生的第三控制訊號CT3的電壓值便會降低。由於比較放大器OP1的輸出端電性耦接至驅動電路129之Vcomp腳位。因此,此時Vcomp腳位的電壓值相應降低,使得驅動電路129輸出的驅動訊號PWM的責任週期降低。如此一來,低壓直流電壓V2便隨之下降,以將低壓直流電壓V2控制在相應於低壓電壓命令LVcmd的電壓準位。For example, in some embodiments, when the low-voltage DC voltage V2 increases, the voltage detection signal Vd2 that generates feedback also increases correspondingly. When the voltage detection signal Vd2 output to the negative terminal of the comparison amplifier OP1 is greater than the low voltage voltage command LVcmd as the reference voltage, the voltage value of the third control signal CT3 generated by the comparison amplifier OP1 will decrease. Because the output terminal of the comparison amplifier OP1 is electrically coupled to the Vcomp pin of the driving circuit 129. Therefore, at this time, the voltage value of the Vcomp pin is correspondingly reduced, so that the duty cycle of the driving signal PWM output by the driving circuit 129 is reduced. In this way, the low-voltage direct current voltage V2 drops accordingly to control the low-voltage direct current voltage V2 at the voltage level corresponding to the low-voltage voltage command LVcmd.

相應地,此時處理電路140輸出高壓電壓命令HVcmd_dis和輸出電流命令Icmd_dis,以控制高壓電壓控制電路126和輸出電流控制電路124根據相應的高壓電壓命令HVcmd_dis和輸出電流命令Icmd_dis解耦。舉例來說,此時高壓電壓命令HVcmd_dis可設為零或趨近於零的值,輸出電流命令Icmd_dis可設為相應於最大輸出電流的電流命令。如此一來,高壓電壓控制電路126和輸出電流控制電路124內的電路便不會影響第三控制訊號CT3。Correspondingly, at this time, the processing circuit 140 outputs the high-voltage voltage command HVcmd_dis and the output current command Icmd_dis to control the high-voltage voltage control circuit 126 and the output current control circuit 124 to decouple according to the corresponding high-voltage voltage command HVcmd_dis and the output current command Icmd_dis. For example, at this time, the high-voltage voltage command HVcmd_dis can be set to zero or a value approaching zero, and the output current command Icmd_dis can be set to the current command corresponding to the maximum output current. In this way, the circuits in the high-voltage voltage control circuit 126 and the output current control circuit 124 will not affect the third control signal CT3.

另一方面,如第3B圖所示,當處理電路140使電源轉換器120a選擇性地操作在低壓電壓和輸出電流並行控制模式時,處理電路140可略調高低壓電壓命令LVcmd並輸出相應的輸出電流命令Icmd。此時,輸出電流控制電路124可自處理電路140接收輸出電流命令Icmd,以根據輸出電流命令Icmd輸出第一控制訊號CT1至低壓電壓控制電路122,使得低壓電壓控制電路122透過驅動電路129控制輸出電流Io穩定在與輸出電流命令Icmd相應的目標電流值。 On the other hand, as shown in Figure 3B, when the processing circuit 140 allows the power converter 120a to selectively operate in the low-voltage voltage and output current parallel control mode, the processing circuit 140 can slightly increase the low-voltage voltage command LVcmd and output the corresponding Output current command Icmd. At this time, the output current control circuit 124 can receive the output current command Icmd from the processing circuit 140 to output the first control signal CT1 to the low voltage control circuit 122 according to the output current command Icmd, so that the low voltage control circuit 122 controls the output through the drive circuit 129 The current Io stabilizes at the target current value corresponding to the output current command Icmd.

具體來說,如第3B圖所示,由輸出電流命令Icmd作為輸出電流控制電路124的參考電流輸入比較放大器OP2的負極端。而由電流偵測電路240進行偵測而輸出的電流偵測訊號Id輸入比較放大器OP2的正極端。如此一來,比較放大器OP2便可根據正極端與負極端的電壓誤差訊號,搭配補償電路輸出第一控制訊號CT1至低壓電壓控制電路122。 Specifically, as shown in FIG. 3B, the output current command Icmd is used as the reference current of the output current control circuit 124 and is input to the negative terminal of the comparator OP2. The current detection signal Id outputted by the current detection circuit 240 is input to the positive terminal of the comparison amplifier OP2. In this way, the comparison amplifier OP2 can output the first control signal CT1 to the low voltage control circuit 122 according to the voltage error signal of the positive terminal and the negative terminal in conjunction with the compensation circuit.

舉例來說,在部分實施例中,當輸出電流Io提高時,產生回授之電流偵測訊號Id亦相應提高。當輸出至比較放大器OP1的正極端的電流偵測訊號Id大於作為參考電流的輸出電流命令Icmd時,比較放大器OP2所產生的第一控制訊號CT1的電壓值便會升高。由於比較放大器OP2的輸出端電性耦接至低壓電壓控制電路122的加法器123,加法器123將電壓偵測訊號Vd2和第一控制訊號CT1加總後的訊號輸入低壓電壓控制電路122的比較放大器OP1的負極端。因此,當第一控制訊號CT1的電壓值升高時,則Vcomp腳位的電壓值相應降低,使得驅動電路129輸出的驅動訊號PWM的責任週期降低以降低輸出電流Io。 For example, in some embodiments, when the output current Io increases, the current detection signal Id that generates feedback also increases accordingly. When the current detection signal Id output to the positive terminal of the comparison amplifier OP1 is greater than the output current command Icmd as the reference current, the voltage value of the first control signal CT1 generated by the comparison amplifier OP2 will increase. Since the output terminal of the comparison amplifier OP2 is electrically coupled to the adder 123 of the low voltage control circuit 122, the adder 123 inputs the summed signal of the voltage detection signal Vd2 and the first control signal CT1 to the low voltage control circuit 122 for comparison The negative terminal of amplifier OP1. Therefore, when the voltage value of the first control signal CT1 increases, the voltage value of the Vcomp pin decreases accordingly, so that the duty cycle of the driving signal PWM output by the driving circuit 129 decreases to reduce the output current Io.

如此一來,輸出電流控制電路124便可根據輸出電流命令Icmd輸出第一控制訊號CT1至低壓電壓控制電路122,使得低壓電壓控制電路122透過驅動電路129控制輸出電流Io穩定在與輸出電流命令Icmd相應的目標電流值。相應地,此時處理電路140輸出相應的高壓電壓命令HVcmd_dis 控制高壓電壓控制電路126解耦。其具體操作細節已於先前實施例中詳細說明,故於此不再贅述。 In this way, the output current control circuit 124 can output the first control signal CT1 to the low voltage voltage control circuit 122 according to the output current command Icmd, so that the low voltage voltage control circuit 122 controls the output current Io through the drive circuit 129 to stabilize at the same level as the output current command Icmd The corresponding target current value. Correspondingly, at this time, the processing circuit 140 outputs a corresponding high voltage voltage command HVcmd_dis The high-voltage voltage control circuit 126 is controlled to be decoupled. The specific operation details have been described in detail in the previous embodiment, so it will not be repeated here.

另一方面,在操作上,如第3C圖所示,於高壓側儲能裝置130與直流發電機110解聯或發生異常時,或當處理電路140使電源轉換器120a選擇性地操作在低壓電壓和高壓電壓並行控制模式時,處理電路140可略調高低壓電壓命令LVcmd並輸出相應的高壓電壓命令HVcmd。此時,高壓電壓控制電路126可自處理電路140接收高壓電壓命令HVcmd,以根據高壓電壓命令HVcmd輸出第二控制訊號CT2至低壓電壓控制電路122,使得低壓電壓控制電路122透過驅動電路129控制高壓直流電壓V1穩定在相應的目標電壓值。 On the other hand, in operation, as shown in Figure 3C, when the high-voltage side energy storage device 130 is disconnected from the DC generator 110 or an abnormality occurs, or when the processing circuit 140 makes the power converter 120a selectively operate at low voltage In the parallel control mode of voltage and high voltage voltage, the processing circuit 140 may slightly adjust the high and low voltage command LVcmd and output the corresponding high voltage command HVcmd. At this time, the high-voltage voltage control circuit 126 can receive the high-voltage command HVcmd from the processing circuit 140 to output the second control signal CT2 to the low-voltage control circuit 122 according to the high-voltage command HVcmd, so that the low-voltage control circuit 122 controls the high-voltage through the drive circuit 129 The DC voltage V1 is stabilized at the corresponding target voltage value.

具體來說,如第3C圖所示,高壓電壓控制電路126的詳細操作與低壓電壓控制電路122中的負回授控制相似,高壓電壓命令HVcmd可先透過RC濾波電路270進行濾波。經濾波後的高壓電壓命令HVcmd作為高壓電壓控制電路126的參考電壓輸入比較放大器OP3的正極端。而由電壓偵測電路260進行偵測而輸出的電壓偵測訊號Vd1輸入比較放大器OP3的負極端。如此一來,比較放大器OP3便可根據正極端與負極端的電壓誤差訊號,搭配補償電路輸出第二控制訊號CT2至低壓電壓控制電路122。 Specifically, as shown in FIG. 3C, the detailed operation of the high voltage control circuit 126 is similar to the negative feedback control in the low voltage control circuit 122, and the high voltage command HVcmd can be filtered through the RC filter circuit 270 first. The filtered high-voltage voltage command HVcmd is used as the reference voltage of the high-voltage voltage control circuit 126 and input to the positive terminal of the comparator OP3. The voltage detection signal Vd1 detected by the voltage detection circuit 260 is input to the negative terminal of the comparison amplifier OP3. In this way, the comparison amplifier OP3 can output the second control signal CT2 to the low-voltage voltage control circuit 122 according to the voltage error signal at the positive terminal and the negative terminal in conjunction with the compensation circuit.

舉例來說,在部分實施例中,當高壓直流電壓V1降低時,產生回授之電壓偵測訊號Vd1亦相應降低。當輸出至比較放大器OP3的負極端的電壓偵測訊號Vd1小於作為參考電壓的高壓電壓命令HVcmd時,比較放大器OP3所產生的第二控制訊號CT2的電壓值便會提高。由於比較放大器OP3的輸出端電性耦接至低壓電壓控制電路122的加法器123,加法器123將電壓偵測訊號Vd2和第二控制訊號CT2加總後的訊號輸入低壓電壓控制電路122的比較放大器OP1的負極端。因此,當第二控制訊號CT2的電壓值提高(而電壓偵測訊號Vd2維持不變)時,則Vcomp腳位的電壓值相應降低,使得驅動電路129輸出的驅動訊號PWM的責任週期降低。For example, in some embodiments, when the high-voltage DC voltage V1 decreases, the voltage detection signal Vd1 that generates the feedback is also decreased correspondingly. When the voltage detection signal Vd1 output to the negative terminal of the comparison amplifier OP3 is smaller than the high voltage command HVcmd as the reference voltage, the voltage value of the second control signal CT2 generated by the comparison amplifier OP3 will increase. Since the output terminal of the comparison amplifier OP3 is electrically coupled to the adder 123 of the low-voltage voltage control circuit 122, the adder 123 inputs the summed signal of the voltage detection signal Vd2 and the second control signal CT2 into the low-voltage voltage control circuit 122 for comparison The negative terminal of amplifier OP1. Therefore, when the voltage value of the second control signal CT2 increases (while the voltage detection signal Vd2 remains unchanged), the voltage value of the Vcomp pin decreases accordingly, so that the duty cycle of the driving signal PWM output by the driving circuit 129 decreases.

如此一來,電源轉換器120a的輸出功率隨之降低,以控制高壓直流電壓V1不會進一步降低導致欠電壓保護機制啟動,如此可控制高壓直流電壓V1保持穩定。相應地,此時處理電路140輸出相應的輸出電流命令Icmd_dis控制輸出電流控制電路124解耦。其具體操作細節已於先前實施例中詳細說明,故於此不再贅述。As a result, the output power of the power converter 120a is reduced accordingly, so as to control the high-voltage DC voltage V1 not to be further reduced and cause the under-voltage protection mechanism to start, so that the high-voltage DC voltage V1 can be controlled to remain stable. Correspondingly, at this time, the processing circuit 140 outputs a corresponding output current command Icmd_dis to control the decoupling of the output current control circuit 124. The specific operation details have been described in detail in the previous embodiment, so it will not be repeated here.

如此一來,藉由處理電路140分別輸出低壓電壓命令LVcmd、輸出電流命令Icmd與高壓電壓命令HVcmd中之一或二者,便能控制低壓電壓控制電路122、輸出電流控制電路124與高壓電壓控制電路126中之一或二者是否啟動。藉此,能於高壓側儲能裝置130與直流發電機110解聯或發生異常時,將高壓直流電壓V1穩定在相應的目標電壓值,避免高壓直流電壓V1超出安全範圍導致系統的誤操作。亦能於高壓側儲能裝置130操作正常時,選擇性地將低壓直流電壓V2控制在相應於低壓電壓命令LVcmd的電壓準位,及/或將輸出電流Io穩定在與輸出電流命令Icmd相應的目標電流值。In this way, by the processing circuit 140 respectively outputting one or both of the low-voltage voltage command LVcmd, the output current command Icmd, and the high-voltage voltage command HVcmd, the low-voltage voltage control circuit 122, the output current control circuit 124, and the high-voltage voltage control can be controlled. Whether one or both of the circuits 126 are activated. In this way, when the high-voltage side energy storage device 130 and the DC generator 110 are disconnected or abnormal, the high-voltage DC voltage V1 can be stabilized at the corresponding target voltage value, and the high-voltage DC voltage V1 can be prevented from exceeding the safe range and causing system misoperation. It can also selectively control the low-voltage DC voltage V2 at the voltage level corresponding to the low-voltage voltage command LVcmd when the high-voltage side energy storage device 130 operates normally, and/or stabilize the output current Io at a voltage level corresponding to the output current command Icmd Target current value.

請參考第4A圖~第4C圖。第4A圖~第4C圖分別為根據本揭示內容部分實施例所繪示的電源轉換器120b的操作示意圖。在部分實施例中,第4A圖~第4C圖所示的電源轉換器120b可用以實現第1圖中的電源轉換器120。於第4A圖~第4C圖中,與第3A圖~第3C圖之實施例有關的相似元件係以相同的參考標號表示以便於理解,且相似元件之具體原理已於先前段落中詳細說明,若非與第4A圖~第4C圖之元件間具有協同運作關係而必要介紹者,於此不再贅述。Please refer to Figure 4A to Figure 4C. 4A to 4C are respectively schematic diagrams of the operation of the power converter 120b according to some embodiments of the present disclosure. In some embodiments, the power converter 120b shown in FIG. 4A to FIG. 4C can be used to implement the power converter 120 in FIG. 1. In FIGS. 4A to 4C, similar elements related to the embodiments in FIGS. 3A to 3C are denoted by the same reference numerals for ease of understanding, and the specific principles of the similar elements have been described in detail in the previous paragraphs. If it is not necessary to introduce the elements that have a cooperative operation relationship with the elements in FIG. 4A to FIG. 4C, it will not be repeated here.

與第3A圖~第3C圖之實施例相比,在第4A圖~第4C圖之實施例中,低壓電壓控制電路122包含加法器123和減法器125。結構上,加法器123電性耦接電壓偵測電路220和輸出電流控制電路124,用以接收電壓偵測訊號Vd2和第一控制訊號CT1,並將兩者加總後輸出至比較放大器OP1的第二端(如:負極端)。而減法器125電性耦接處理電路140和高壓電壓控制電路126,用以接收低壓電壓命令LVcmd和第二控制訊號CT2,並將低壓電壓命令LVcmd減去第二控制訊號CT2後輸出至比較放大器OP1的第一端(如:正極端)。Compared with the embodiments in FIGS. 3A to 3C, in the embodiments in FIGS. 4A to 4C, the low-voltage voltage control circuit 122 includes an adder 123 and a subtractor 125. Structurally, the adder 123 is electrically coupled to the voltage detection circuit 220 and the output current control circuit 124 to receive the voltage detection signal Vd2 and the first control signal CT1, and output the sum of the two to the comparison amplifier OP1 The second terminal (such as the negative terminal). The subtractor 125 is electrically coupled to the processing circuit 140 and the high voltage control circuit 126 to receive the low voltage command LVcmd and the second control signal CT2, and subtract the second control signal CT2 from the low voltage command LVcmd and output to the comparison amplifier The first end of OP1 (such as the positive end).

此外,在第4A圖~第4C圖之實施例中,高壓電壓控制電路126的比較放大器OP3的第一端(如:正極端)電性耦接於電壓偵測電路260,用以接收電壓偵測訊號Vd1。高壓電壓控制電路126的比較放大器OP3的第二端(如:負極端)透過補償電路和RC濾波電路270電性耦接於處理電路140,用以接收濾波後的高壓電壓命令HVcmd或HVcmd_dis。In addition, in the embodiments shown in FIGS. 4A to 4C, the first terminal (eg, the positive terminal) of the comparator amplifier OP3 of the high-voltage voltage control circuit 126 is electrically coupled to the voltage detection circuit 260 for receiving the voltage detection circuit. Test signal Vd1. The second terminal (eg, the negative terminal) of the comparator OP3 of the high voltage control circuit 126 is electrically coupled to the processing circuit 140 through the compensation circuit and the RC filter circuit 270 for receiving the filtered high voltage command HVcmd or HVcmd_dis.

在操作上,當處理電路140使電源轉換器120b選擇性地操作在低壓電壓控制模式時,如第4A圖所示,相似於第3A圖,處理電路140輸出相應的低壓電壓命令LVcmd。此時,低壓電壓控制電路122可透過減法器125自處理電路140接收低壓電壓命令LVcmd,並透過加法器123自電壓偵測電路220接收電壓偵測訊號Vd2,使得比較放大器OP1根據正極端與負極端的電壓誤差訊號,搭配補償電路輸出第三控制訊號CT3至驅動電路129。相應地,此時處理電路140輸出相應的高壓電壓命令HVcmd_dis以及輸出電流命令Icmd_dis控制高壓電壓控制電路126與輸出電流控制電路124解耦。其具體操作細節以於先前實施例中詳細說明,故於此不再贅述。In operation, when the processing circuit 140 makes the power converter 120b selectively operate in the low voltage voltage control mode, as shown in FIG. 4A, similar to FIG. 3A, the processing circuit 140 outputs a corresponding low voltage voltage command LVcmd. At this time, the low voltage voltage control circuit 122 can receive the low voltage command LVcmd from the processing circuit 140 through the subtractor 125, and receive the voltage detection signal Vd2 from the voltage detection circuit 220 through the adder 123, so that the comparison amplifier OP1 is based on the positive and negative The extreme voltage error signal is combined with the compensation circuit to output the third control signal CT3 to the driving circuit 129. Correspondingly, at this time, the processing circuit 140 outputs the corresponding high-voltage voltage command HVcmd_dis and the output current command Icmd_dis to control the high-voltage voltage control circuit 126 and the output current control circuit 124 to decouple. The specific operation details are described in detail in the previous embodiment, so it will not be repeated here.

另一方面,當處理電路140使電源轉換器120b選擇性地操作在低壓電壓和輸出電流並行控制模式時,如第4B圖所示,相似於第3B圖,處理電路140可略提高低壓電壓命令LVcmd並輸出相應的輸出電流命令Icmd。此時,低壓電壓控制電路122可透過減法器125接收低壓電壓命令LVcmd,並透過加法器123接收電壓偵測訊號Vd2和第一控制訊號CT1的總和,使得比較放大器OP1根據正極端與負極端的電壓誤差訊號,搭配補償電路輸出第三控制訊號CT3至驅動電路129。相應地,此時處理電路140輸出相應的高壓電壓命令HVcmd_dis控制高壓電壓控制電路126解耦。其具體操作細節以於先前實施例中詳細說明,故於此不再贅述。On the other hand, when the processing circuit 140 allows the power converter 120b to selectively operate in the low voltage and output current parallel control mode, as shown in Figure 4B, similar to Figure 3B, the processing circuit 140 can slightly increase the low voltage command LVcmd and output the corresponding output current command Icmd. At this time, the low-voltage voltage control circuit 122 can receive the low-voltage command LVcmd through the subtractor 125, and receive the sum of the voltage detection signal Vd2 and the first control signal CT1 through the adder 123, so that the comparison amplifier OP1 is based on the difference between the positive terminal and the negative terminal. The voltage error signal is combined with the compensation circuit to output the third control signal CT3 to the driving circuit 129. Correspondingly, at this time, the processing circuit 140 outputs a corresponding high-voltage voltage command HVcmd_dis to control the decoupling of the high-voltage voltage control circuit 126. The specific operation details are described in detail in the previous embodiment, so it will not be repeated here.

在另一方面,當處理電路140使電源轉換器120b選擇性地操作在低壓電壓和高壓電壓並行控制模式時,如第4C圖所示,處理電路140輸出相應的高壓電壓命令HVcmd並略提高低壓電壓命令LVcmd。此時,低壓電壓控制電路122可透過減法器125接收低壓電壓命令LVcmd和第二控制訊號CT2的差值,並透過加法器123接收電壓偵測訊號Vd2,使得比較放大器OP1根據正極端與負極端的電壓誤差訊號,搭配補償電路輸出第三控制訊號CT3至驅動電路129。相應地,此時處理電路140輸出相應的輸出電流命令Icmd_dis控制輸出電流控制電路124解耦。On the other hand, when the processing circuit 140 makes the power converter 120b selectively operate in the low voltage and high voltage parallel control mode, as shown in Figure 4C, the processing circuit 140 outputs the corresponding high voltage command HVcmd and slightly increases the low voltage. Voltage command LVcmd. At this time, the low-voltage voltage control circuit 122 can receive the difference between the low-voltage command LVcmd and the second control signal CT2 through the subtractor 125, and receive the voltage detection signal Vd2 through the adder 123, so that the comparison amplifier OP1 is based on the positive terminal and the negative terminal. The voltage error signal is matched with the compensation circuit to output the third control signal CT3 to the driving circuit 129. Correspondingly, at this time, the processing circuit 140 outputs a corresponding output current command Icmd_dis to control the decoupling of the output current control circuit 124.

舉例來說,在部分實施例中,當高壓直流電壓V1降低時,產生回授之電壓偵測訊號Vd1亦相應降低。當輸出至比較放大器OP3的正極端的電壓偵測訊號Vd1小於作為參考電壓的高壓電壓命令HVcmd時,比較放大器OP3所產生的第二控制訊號CT2的電壓值便會降低。由於比較放大器OP3的輸出端電性耦接至低壓電壓控制電路122的減法器125,減法器125將低壓電壓命令LVcmd和第二控制訊號CT2相減後的訊號輸入低壓電壓控制電路122的比較放大器OP1的正極端。因此,Vcomp腳位的電壓值相應降低,使得驅動電路129輸出的驅動訊號PWM的責任週期降低。For example, in some embodiments, when the high-voltage DC voltage V1 decreases, the voltage detection signal Vd1 that generates the feedback is also decreased correspondingly. When the voltage detection signal Vd1 output to the positive terminal of the comparison amplifier OP3 is smaller than the high voltage command HVcmd as the reference voltage, the voltage value of the second control signal CT2 generated by the comparison amplifier OP3 will decrease. Since the output terminal of the comparison amplifier OP3 is electrically coupled to the subtractor 125 of the low voltage control circuit 122, the subtractor 125 inputs the signal obtained by subtracting the low voltage command LVcmd and the second control signal CT2 into the comparison amplifier of the low voltage control circuit 122 The positive extreme of OP1. Therefore, the voltage value of the Vcomp pin is correspondingly reduced, so that the duty cycle of the driving signal PWM output by the driving circuit 129 is reduced.

如此一來,在第4A圖~第4C圖所示實施例中,如先前第3A圖~第3C圖之實施例所述,於高壓側儲能裝置130與直流發電機110解聯或發生異常時,電源轉換器120b可操作在低壓電壓和高壓電壓並行控制模式。另一方面,於高壓側儲能裝置130操作正常時,處理電路140可根據實際需求控制電源轉換器120b操作在低壓電壓控制模式或是低壓電壓和輸出電流並行控制模式。藉由,處理電路140用以輸出相應的低壓電壓命令、輸出電流命令與高壓電壓命令,以控制低壓電壓控制電路122、輸出電流控制電路124與高壓電壓控制電路126相應的啟動或解耦,以將低壓直流電壓V2、輸出電流Io或高壓直流電壓V1穩定在相應的目標電壓值和目標電流值。As a result, in the embodiment shown in Fig. 4A to Fig. 4C, as described in the previous embodiment in Fig. 3A to Fig. 3C, the energy storage device 130 on the high-voltage side is disconnected from the DC generator 110 or an abnormality occurs. At this time, the power converter 120b can operate in a parallel control mode of low voltage and high voltage. On the other hand, when the high-voltage side energy storage device 130 operates normally, the processing circuit 140 can control the power converter 120b to operate in a low-voltage voltage control mode or a low-voltage voltage and output current parallel control mode according to actual requirements. As a result, the processing circuit 140 is used to output corresponding low-voltage voltage commands, output current commands, and high-voltage voltage commands to control the corresponding activation or decoupling of the low-voltage voltage control circuit 122, the output current control circuit 124, and the high-voltage voltage control circuit 126 to The low-voltage DC voltage V2, the output current Io, or the high-voltage DC voltage V1 is stabilized at the corresponding target voltage value and target current value.

請參考第5圖。第5圖為根據本揭示內容部分實施例所繪示的電源轉換器120的控制方法500的流程圖。為方便及清楚說明起見,下述電源轉換器120的控制方法500是配合第1圖~第4C圖所示實施例進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第5圖所示,電源轉換器120的控制方法500包含操作S510、S520、S530、S540、S550以及S560。Please refer to Figure 5. FIG. 5 is a flowchart of a control method 500 of the power converter 120 according to some embodiments of the present disclosure. For the sake of convenience and clarity, the following control method 500 of the power converter 120 is described in conjunction with the embodiments shown in Figures 1 to 4C, but is not limited to this. Anyone who is familiar with this skill will not depart from it. Within the spirit and scope of this case, various changes and modifications can be made. As shown in FIG. 5, the control method 500 of the power converter 120 includes operations S510, S520, S530, S540, S550, and S560.

首先,在操作S510中,由電源轉換電路121,將高壓側之高壓直流電壓V1轉換為低壓直流電壓V2輸出至低壓側。First, in operation S510, the power conversion circuit 121 converts the high-voltage DC voltage V1 on the high-voltage side into a low-voltage DC voltage V2 and outputs it to the low-voltage side.

在操作S520中,由處理電路140,選擇性地啟動低壓電壓控制電路122、輸出電流控制電路124和高壓電壓控制電路126中一或二者。具體而言,處理電路140可使電源轉換器120選擇性地操作在低壓電壓控制模式Mode1、低壓電壓和輸出電流並行控制模式Mode2,或是低壓電壓和高壓電壓並行控制模式Mode3,三者當中的任一者。In operation S520, the processing circuit 140 selectively activates one or both of the low-voltage voltage control circuit 122, the output current control circuit 124, and the high-voltage voltage control circuit 126. Specifically, the processing circuit 140 can enable the power converter 120 to selectively operate in the low-voltage voltage control mode Mode1, the low-voltage voltage and output current parallel control mode Mode2, or the low-voltage voltage and high-voltage voltage parallel control mode Mode3, which of the three is Either.

在低壓電壓和輸出電流並行控制模式Mode2中,進入操作S530。在操作S530中,於輸出電流控制電路124啟動時,透過輸出電流控制電路124,偵測電源轉換電路121的輸出電流Io並根據輸出電流Io輸出第一控制訊號CT1至低壓電壓控制電路122。舉例來說,輸出電流控制電路124可根據所偵測的電流偵測訊號Id與輸出電流命令Icmd輸出第一控制訊號CT1至低壓電壓控制電路122。In the low-voltage voltage and output current parallel control mode Mode2, enter operation S530. In operation S530, when the output current control circuit 124 is activated, the output current control circuit 124 detects the output current Io of the power conversion circuit 121 and outputs the first control signal CT1 to the low voltage control circuit 122 according to the output current Io. For example, the output current control circuit 124 can output the first control signal CT1 to the low voltage control circuit 122 according to the detected current detection signal Id and the output current command Icmd.

在低壓電壓和高壓電壓並行控制模式Mode3中,進入操作S540。在操作S540中,於高壓電壓控制電路126啟動時,透過高壓電壓控制電路126,偵測高壓直流電壓V1並根據高壓直流電壓V1輸出第二控制訊號CT2。舉例來說,高壓電壓控制電路126可根據所偵測的電壓偵測訊號Vd1與高壓電壓命令HVcmd輸出第二控制訊號CT2至低壓電壓控制電路122。In the low-voltage and high-voltage parallel control mode Mode3, operation S540 is entered. In operation S540, when the high-voltage control circuit 126 is activated, the high-voltage control circuit 126 detects the high-voltage direct current voltage V1 and outputs the second control signal CT2 according to the high-voltage direct current voltage V1. For example, the high voltage control circuit 126 can output the second control signal CT2 to the low voltage control circuit 122 according to the detected voltage detection signal Vd1 and the high voltage command HVcmd.

在操作S530和操作S540之後,或在低壓電壓控制模式Mode1中,進入操作S550。在操作S550中,於低壓電壓控制電路122啟動時,透過低壓電壓控制電路122,偵測低壓直流電壓V2並相應輸出第三控制訊號CT3。舉例來說,在低壓電壓控制模式Mode1中,低壓電壓控制電路122可根據所偵測的電壓偵測訊號Vd2與低壓電壓命令LVcmd輸出第三控制訊號CT3至驅動電路129。又例如,在低壓電壓和輸出電流並行控制模式Mode2中,低壓電壓控制電路122可根據所偵測的電壓偵測訊號Vd2、低壓電壓命令LVcmd與第一控制訊號CT1輸出第三控制訊號CT3至驅動電路129。又例如,在低壓電壓和高壓電壓並行控制模式Mode3中,低壓電壓控制電路122可根據所偵測的電壓偵測訊號Vd2、低壓電壓命令LVcmd與第二控制訊號CT2輸出第三控制訊號CT3至驅動電路129。其具體內容以於先前段落中詳細說明,故於此不再贅述。After operation S530 and operation S540, or in the low voltage control mode Mode1, proceed to operation S550. In operation S550, when the low-voltage control circuit 122 is activated, the low-voltage control circuit 122 detects the low-voltage DC voltage V2 and outputs the third control signal CT3 accordingly. For example, in the low voltage control mode Mode1, the low voltage control circuit 122 can output the third control signal CT3 to the driving circuit 129 according to the detected voltage detection signal Vd2 and the low voltage command LVcmd. For another example, in the low voltage and output current parallel control mode Mode2, the low voltage control circuit 122 can output the third control signal CT3 to drive according to the detected voltage detection signal Vd2, the low voltage command LVcmd, and the first control signal CT1 Circuit 129. For another example, in the low-voltage and high-voltage parallel control mode Mode3, the low-voltage control circuit 122 can output the third control signal CT3 to the driver according to the detected voltage detection signal Vd2, the low-voltage voltage command LVcmd, and the second control signal CT2. Circuit 129. The specific content is explained in detail in the previous paragraph, so it will not be repeated here.

最後,在操作S560中,由驅動電路129根據第三控制訊號CT3輸出驅動訊號PWM驅動電源轉換電路121,以相應於第三控制訊號CT3控制高壓直流電壓V1、低壓直流電壓V2或輸出電流Io。Finally, in operation S560, the driving circuit 129 outputs the driving signal PWM to drive the power conversion circuit 121 according to the third control signal CT3 to control the high-voltage direct current voltage V1, the low-voltage direct current voltage V2 or the output current Io corresponding to the third control signal CT3.

於上述之內容中,包含示例性的操作。然而此些操作並不必需依序執行。在本實施方式中所提及的操作,除特別敘明其順序者外,均可依實際需要調整其前後順序,甚至可同時或部分同時執行。The above content includes exemplary operations. However, these operations do not have to be performed in sequence. The operations mentioned in this embodiment can be adjusted according to actual needs, and can even be performed simultaneously or partly, unless the order is specifically stated.

所屬技術領域具有通常知識者可直接瞭解此控制方法500如何基於上述多個不同實施例中的電源轉換系統100以執行該等操作及功能,故不再此贅述。Those skilled in the art can directly understand how the control method 500 performs these operations and functions based on the power conversion system 100 in the various embodiments described above, so the details are not repeated here.

此外,雖然本文將所公開的方法示出和描述為一系列的操作或事件,但是應當理解,所示出的這些操作或事件的順序不應解釋為限制意義。例如,部分操作可以以不同順序發生和/或與除了本文所示和/或所描述之操作或事件以外的其他操作或事件同時發生。另外,實施本文所描述的一個或多個態樣或實施例時,並非所有於此示出的操作皆為必需。此外,本文中的一個或多個操作亦可能在一個或多個分離的步驟和/或階段中執行。In addition, although the disclosed methods are shown and described herein as a series of operations or events, it should be understood that the sequence of these operations or events shown should not be construed in a limiting sense. For example, some operations may occur in a different order and/or simultaneously with other operations or events other than those shown and/or described herein. In addition, when implementing one or more aspects or embodiments described herein, not all operations shown here are necessary. In addition, one or more operations herein may also be performed in one or more separate steps and/or stages.

另外,在部分實施中,高壓電壓控制電路126啟動時,若電壓偵測訊號Vd1小於作為參考電壓的高壓電壓命令HVcmd,則驅動電路129輸出的驅動訊號PWM的責任週期降低。此時,如果電源轉換器120的輸出功率隨之縮小,進而使得輸出至低壓側的低壓直流電壓V2小於低壓側儲能裝置150,可能導致低壓側的電流逆流回電源轉換電路121,而造成電源轉換電路121損壞。In addition, in some implementations, when the high voltage control circuit 126 is activated, if the voltage detection signal Vd1 is less than the high voltage command HVcmd as the reference voltage, the duty cycle of the driving signal PWM output by the driving circuit 129 is reduced. At this time, if the output power of the power converter 120 is reduced accordingly, so that the low-voltage DC voltage V2 output to the low-voltage side is smaller than the low-voltage side energy storage device 150, it may cause the low-voltage side current to flow back to the power conversion circuit 121, causing the power supply The conversion circuit 121 is damaged.

為了避免上述情況發生,在本揭示內容部分實施例中,如第1圖所示,於電源轉換電路121和低壓側儲能裝置150之間電性耦接保護電路180。為便於說明起見,保護電路180的操作請參考第6A圖和第6B圖。第6A圖、第6B圖分別為根據本揭示內容部分實施例所繪示的保護電路180a、180b的操作示意圖。第6A圖、第6B圖所示的保護電路180a、180b可用以實現第1圖中的保護電路180。如第6A圖、第6B圖所示,保護電路180a、180b耦接於低壓側,當偵測到自低壓側流向電源轉換電路121的逆向電流Iz時,保護電路180a、180b用以輸出停止命令DIS以保護電源轉換電路121。In order to avoid the above situation, in some embodiments of the present disclosure, as shown in FIG. 1, the protection circuit 180 is electrically coupled between the power conversion circuit 121 and the low-side energy storage device 150. For ease of description, please refer to Fig. 6A and Fig. 6B for the operation of the protection circuit 180. FIG. 6A and FIG. 6B are respectively schematic diagrams of the operation of the protection circuits 180a and 180b according to some embodiments of the present disclosure. The protection circuits 180a and 180b shown in FIGS. 6A and 6B can be used to implement the protection circuit 180 in FIG. 1. As shown in FIGS. 6A and 6B, the protection circuits 180a and 180b are coupled to the low-voltage side. When the reverse current Iz flowing from the low-voltage side to the power conversion circuit 121 is detected, the protection circuits 180a and 180b are used to output stop commands DIS to protect the power conversion circuit 121.

在部分實施例中,如第6A圖所示,保護電路180a包含逆電流偵測電路620a。逆電流偵測電路620a電性耦接於低壓側和電源轉換電路121之間。當逆電流偵測電路620a偵測到逆向電流Iz時,逆電流偵測電路620a用以輸出偵測訊號S1至驅動電路129。當驅動電路129接收到偵測訊號S1時,驅動電路129用以輸出停止命令DIS以關斷電源轉換電路121中的複數個開關(如第2圖所示之切換開關SW1~SW4)。In some embodiments, as shown in FIG. 6A, the protection circuit 180a includes a reverse current detection circuit 620a. The reverse current detection circuit 620a is electrically coupled between the low voltage side and the power conversion circuit 121. When the reverse current detection circuit 620a detects the reverse current Iz, the reverse current detection circuit 620a is used to output the detection signal S1 to the driving circuit 129. When the driving circuit 129 receives the detection signal S1, the driving circuit 129 is used to output a stop command DIS to turn off a plurality of switches in the power conversion circuit 121 (such as the switch switches SW1 to SW4 shown in FIG. 2).

在其他部分實施例中,如第6B圖所示,保護電路180b包含逆電流偵測電路620b、保護開關SWp和保護開關驅動器640。逆電流偵測電路620b電性耦接於低壓側和保護開關驅動器640之間。當逆電流偵測電路620b偵測到逆向電流Iz時,逆電流偵測電路620b用以輸出偵測訊號S2至保護開關驅動器640。當保護開關驅動器640接收偵測訊號S2時,保護開關驅動器640用以輸出停止命令以關斷保護開關SWp。具體而言,保護開關SWp和保護開關驅動器640可由一組保護場效電晶體(Oring FET)實現。In other embodiments, as shown in FIG. 6B, the protection circuit 180b includes a reverse current detection circuit 620b, a protection switch SWp, and a protection switch driver 640. The reverse current detection circuit 620b is electrically coupled between the low voltage side and the protection switch driver 640. When the reverse current detection circuit 620b detects the reverse current Iz, the reverse current detection circuit 620b is used to output the detection signal S2 to the protection switch driver 640. When the protection switch driver 640 receives the detection signal S2, the protection switch driver 640 is used to output a stop command to turn off the protection switch SWp. Specifically, the protection switch SWp and the protection switch driver 640 may be implemented by a set of protection field effect transistors (Oring FET).

如此一來,藉由逆電流偵測電路620a及/或620b,當發生逆向電流Iz時,便能透過偵測訊號S1及/或S2主動快速地關斷電源轉換電路121中的切換開關及/或輸出電流路徑上的保護開關SWp,以防止電源轉換電路121損壞。In this way, with the reverse current detection circuit 620a and/or 620b, when a reverse current Iz occurs, the switch and/or switch in the power conversion circuit 121 can be actively and quickly turned off through the detection signal S1 and/or S2. Or the protection switch SWp on the output current path to prevent the power conversion circuit 121 from being damaged.

需要說明的是,在不衝突的情況下,在本揭示內容各個圖式、實施例及實施例中的特徵與電路可以相互組合。圖式中所繪示的電路僅為示例之用,係簡化以使說明簡潔並便於理解,並非用以限制本案。此外,上述各實施例中的各個裝置、單元及元件可以由各種類型的數位或類比電路實現,亦可分別由不同的積體電路晶片實現,或整合至單一晶片。上述僅為例示,本揭示內容並不以此為限。It should be noted that, in the case of no conflict, the features and circuits in the various drawings, embodiments, and embodiments of the present disclosure can be combined with each other. The circuit shown in the figure is only an example, and is simplified to make the description concise and easy to understand, and is not intended to limit the case. In addition, the various devices, units, and components in the foregoing embodiments can be implemented by various types of digital or analog circuits, and can also be implemented by different integrated circuit chips, or integrated into a single chip. The foregoing is only an example, and the present disclosure is not limited thereto.

綜上所述,本案透過應用上述各個實施例中,於高壓側儲能裝置130與直流發電機110解聯或發生異常時,透過處理電路140輸出相應的高壓電壓命令HVcmd控制高壓電壓控制電路126根據高壓電壓命令HVcmd輸出第二控制訊號CT2至低壓電壓控制電路122,使得低壓電壓控制電路122透過驅動電路129控制高壓直流電壓V1穩定在相應的目標電壓值,便可避免電壓異常保護機制啟動。如此一來,在高壓電池異常失效或極低溫環境導致高壓電池無法工作的狀況下,電源轉換器120可主動穩定高壓電源,確保車輛可以正常行駛,進而提高系統可靠度。To sum up, in this case, by applying the above-mentioned various embodiments, when the high-voltage side energy storage device 130 is disconnected from the DC generator 110 or an abnormality occurs, the processing circuit 140 outputs the corresponding high-voltage voltage command HVcmd to control the high-voltage voltage control circuit 126 According to the high-voltage command HVcmd, the second control signal CT2 is output to the low-voltage control circuit 122, so that the low-voltage control circuit 122 controls the high-voltage DC voltage V1 to stabilize at the corresponding target voltage value through the drive circuit 129, so that the voltage abnormality protection mechanism can be prevented from being activated. In this way, when the high-voltage battery fails abnormally or the high-voltage battery cannot work due to the extremely low temperature environment, the power converter 120 can actively stabilize the high-voltage power supply to ensure that the vehicle can run normally, thereby improving the reliability of the system.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,所屬技術領域具有通常知識者在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。Although the content of this disclosure has been disclosed in the above manner, it is not intended to limit the content of this disclosure. Those with ordinary knowledge in the technical field can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, this The scope of protection of the disclosed content shall be subject to the scope of the attached patent application.

100  電源轉換系統 110  直流發電機 120、120a、120b  電源轉換器 121  電源轉換電路 122  低壓電壓控制電路 123  加法器 124  輸出電流控制電路 126  高壓電壓控制電路 129  驅動電路 130  高壓側儲能裝置 140  處理電路 150  低壓側儲能裝置 170  低壓負載裝置 180、180a、180b  保護電路 V1  高壓直流電壓 V2  低壓直流電壓 Io  輸出電流 PWM  驅動訊號 CT1、CT2、CT3  控制訊號 LVcmd  低壓電壓命令 HVcmd、HVcmd_dis  高壓電壓命令 Icmd、Icmd_dis  輸出電流命令 SW1~SW4  切換開關 SW5、SW6  整流開關 L1  諧振電感 Lo  輸出電感 Co  輸出電容 Np  初級繞組 Ns1、Ns2  次級繞組 R1~R9  電阻 C1~C9  電容 OP1、OP2、OP3  比較放大器 D1、D2  整流元件 220、260  電壓偵測電路 230、270  RC濾波電路 240  電流偵測電路 Vd1、Vd2  電壓偵測訊號 Id  電流偵測訊號 500  控制方法 S510、S520、S530、S540、S550、S560  操作 Mode1、Mode2、Mode3  控制模式 Iz  逆向電流 620a、620b  逆電流偵測電路 640  保護開關驅動器 SWp  保護開關 S1、S2  偵測訊號 DIS  停止命令 100 Power Conversion System 110 DC generator 120, 120a, 120b Power converter 121 Power Conversion Circuit 122 Low voltage control circuit 123 Adder 124 Output current control circuit 126 High voltage voltage control circuit 129 Drive circuit 130 High-voltage side energy storage device 140 processing circuit 150 Low-voltage side energy storage device 170 Low-voltage load device 180, 180a, 180b Protection circuit V1 High voltage DC voltage V2 Low voltage DC voltage Io output current PWM drive signal CT1, CT2, CT3 control signal LVcmd Low voltage voltage command HVcmd, HVcmd_dis High voltage command Icmd, Icmd_dis output current command SW1~SW4 switch SW5, SW6 Rectifier switch L1 Resonant inductance Lo output inductance Co output capacitor Np primary winding Ns1, Ns2 secondary winding R1~R9 Resistance C1~C9 Capacitance OP1, OP2, OP3 Comparison amplifier D1, D2 Rectifier components 220, 260 Voltage detection circuit 230, 270 RC filter circuit 240 Current detection circuit Vd1, Vd2 voltage detection signal Id Current detection signal 500 control method S510, S520, S530, S540, S550, S560 Operation Mode1, Mode2, Mode3 Control mode Iz Reverse current 620a, 620b Reverse current detection circuit 640 Protection switch driver SWp protection switch S1, S2 detection signal DIS Stop command

第1圖為根據本揭示內容之部分實施例所繪示一種電源轉換系統的示意圖。 第2圖為根據本揭示內容之部分實施例所繪示一種電源轉換電路的示意圖。 第3A圖~第3C圖分別為根據本揭示內容部分實施例所繪示的電源轉換器的操作示意圖。 第4A圖~第4C圖分別為根據本揭示內容部分實施例所繪示的電源轉換器的操作示意圖。 第5圖為根據本揭示內容部分實施例所繪示的電源轉換器的控制方法的流程圖。 第6A圖、第6B圖分別為根據本揭示內容部分實施例所繪示的保護電路的操作示意圖。 FIG. 1 is a schematic diagram of a power conversion system according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram of a power conversion circuit according to some embodiments of the present disclosure. 3A to 3C are respectively schematic diagrams of the operation of the power converter according to some embodiments of the present disclosure. 4A to 4C are respectively schematic diagrams of the operation of the power converter according to some embodiments of the present disclosure. FIG. 5 is a flowchart of the control method of the power converter according to some embodiments of the present disclosure. FIG. 6A and FIG. 6B are respectively schematic diagrams of the operation of the protection circuit according to some embodiments of the present disclosure.

100  電源轉換系統 110  直流發電機 120  電源轉換器 121  電源轉換電路 122  低壓電壓控制電路 124  輸出電流控制電路 126  高壓電壓控制電路 129  驅動電路 130  高壓側儲能裝置 140  處理電路 150  低壓側儲能裝置 170  低壓負載裝置 180  保護電路 V1  高壓直流電壓 V2  低壓直流電壓 Io  輸出電流 PWM  驅動訊號 CT1、CT2、CT3  控制訊號 LVcmd  低壓電壓命令 HVcmd  高壓電壓命令 Icmd  輸出電流命令 100 Power Conversion System 110 DC generator 120 Power converter 121 Power Conversion Circuit 122 Low voltage control circuit 124 Output current control circuit 126 High voltage voltage control circuit 129 Drive circuit 130 High-voltage side energy storage device 140 processing circuit 150 Low-voltage side energy storage device 170 Low-voltage load device 180 Protection Circuit V1 High voltage DC voltage V2 Low voltage DC voltage Io output current PWM drive signal CT1, CT2, CT3 control signal LVcmd Low voltage voltage command HVcmd High voltage voltage command Icmd output current command

Claims (13)

一種電源轉換器,包含:一電源轉換電路,用以自一高壓側接收一高壓直流電壓,並將該高壓直流電壓轉換為一低壓直流電壓輸出至一低壓側;一輸出電流控制電路,電性耦接於該低壓側,用以偵測該電源轉換電路的一輸出電流,並根據該輸出電流輸出一第一控制訊號;一高壓電壓控制電路,電性耦接於該高壓側,用以偵測該高壓直流電壓,並根據該高壓直流電壓輸出一第二控制訊號;一低壓電壓控制電路,電性耦接於該低壓側,用以偵測該低壓直流電壓,並選擇性地將該低壓直流電壓和該第一控制訊號加總以輸出一第三控制訊號,或將該低壓直流電壓和該第二控制訊號加總以輸出該第三控制訊號;以及一驅動電路,電性耦接於該低壓電壓控制電路,用以根據該第三控制訊號輸出一驅動訊號驅動該電源轉換電路。 A power converter includes: a power conversion circuit for receiving a high voltage DC voltage from a high voltage side, converting the high voltage DC voltage into a low voltage DC voltage and outputting to a low voltage side; an output current control circuit, electrical Is coupled to the low voltage side for detecting an output current of the power conversion circuit and outputting a first control signal according to the output current; a high voltage voltage control circuit is electrically coupled to the high voltage side for detecting Measure the high-voltage DC voltage, and output a second control signal according to the high-voltage DC voltage; a low-voltage voltage control circuit is electrically coupled to the low-voltage side for detecting the low-voltage DC voltage, and selectively the low-voltage The direct current voltage and the first control signal are summed to output a third control signal, or the low-voltage direct current voltage and the second control signal are summed to output the third control signal; and a driving circuit is electrically coupled to The low voltage control circuit is used for outputting a driving signal to drive the power conversion circuit according to the third control signal. 如請求項1所述之電源轉換器,其中該低壓電壓控制電路更用以自一處理電路接收一低壓電壓命令,以選擇性地根據該低壓電壓命令、該低壓直流電壓和該第一控制訊號、或根據該低壓電壓命令、該低壓直流電壓和該第二控制訊號,產生該第三控制訊號。 The power converter according to claim 1, wherein the low-voltage voltage control circuit is further configured to receive a low-voltage voltage command from a processing circuit, so as to selectively respond to the low-voltage voltage command, the low-voltage DC voltage, and the first control signal , Or according to the low voltage voltage command, the low voltage direct current voltage and the second control signal to generate the third control signal. 如請求項2所述之電源轉換器,其中該低壓電壓控制電路包含:一第一電壓偵測電路,用以對該低壓直流電壓進行偵測以輸出一第一電壓偵測訊號;一第一補償電路,電性耦接於該第一電壓偵測電路與該驅動電路之間,用以接收該第一電壓偵測訊號和該第一控制訊號的加總,或接收該第一電壓偵測訊號和該第二控制訊號的加總;以及一第一比較放大器,該第一比較放大器的一第一端用以接收該低壓電壓命令,該第一比較放大器的一第二端電性耦接於該第一補償電路,該第一比較放大器的一輸出端電性耦接於該驅動電路。 The power converter according to claim 2, wherein the low-voltage voltage control circuit includes: a first voltage detection circuit for detecting the low-voltage DC voltage to output a first voltage detection signal; A compensation circuit is electrically coupled between the first voltage detection circuit and the drive circuit for receiving the sum of the first voltage detection signal and the first control signal, or receiving the first voltage detection The summation of the signal and the second control signal; and a first comparison amplifier, a first end of the first comparison amplifier is used to receive the low voltage command, and a second end of the first comparison amplifier is electrically coupled In the first compensation circuit, an output terminal of the first comparison amplifier is electrically coupled to the driving circuit. 如請求項2所述之電源轉換器,其中該低壓電壓控制電路包含:一第一電壓偵測電路,用以對該低壓直流電壓進行偵測以輸出一第一電壓偵測訊號;一第一補償電路,電性耦接於該第一電壓偵測電路與該驅動電路之間,用以接收該第一電壓偵測訊號和該第一控制訊號的加總;以及一第一比較放大器,該第一比較放大器的一第一端用以接收該低壓電壓命令,或接收該低壓電壓命令和該第二控制訊號的加總,該第一比較放大器的一第二端電性耦接於該第一補償電路,該第一比較放大器的一輸出端電性耦接於該驅 動電路。 The power converter according to claim 2, wherein the low-voltage voltage control circuit includes: a first voltage detection circuit for detecting the low-voltage DC voltage to output a first voltage detection signal; A compensation circuit is electrically coupled between the first voltage detection circuit and the drive circuit for receiving the sum of the first voltage detection signal and the first control signal; and a first comparison amplifier, the A first terminal of the first comparison amplifier is used to receive the low voltage command or the sum of the low voltage command and the second control signal, and a second terminal of the first comparison amplifier is electrically coupled to the first A compensation circuit, an output terminal of the first comparison amplifier is electrically coupled to the driver Moving circuit. 如請求項1所述之電源轉換器,其中該輸出電流控制電路更用以自一處理電路接收一輸出電流命令,以根據該輸出電流命令和該輸出電流產生該第一控制訊號至該低壓電壓控制電路。 The power converter according to claim 1, wherein the output current control circuit is further configured to receive an output current command from a processing circuit to generate the first control signal to the low voltage voltage according to the output current command and the output current Control circuit. 如請求項5所述之電源轉換器,其中該輸出電流控制電路包含:一電流偵測電路,用以根據該輸出電流輸出一輸出電流偵測訊號;一第二補償電路,電性耦接於該處理電路和該低壓電壓控制電路之間,用以接收該輸出電流命令;以及一第二比較放大器,該第二比較放大器的一第一端用以接收該輸出電流偵測訊號,該第二比較放大器的一第二端電性耦接於該第二補償電路,該第二比較放大器的一輸出端電性耦接該低壓電壓控制電路。 The power converter according to claim 5, wherein the output current control circuit includes: a current detection circuit for outputting an output current detection signal according to the output current; and a second compensation circuit electrically coupled to Between the processing circuit and the low-voltage voltage control circuit, for receiving the output current command; and a second comparison amplifier, a first end of the second comparison amplifier for receiving the output current detection signal, the second A second terminal of the comparison amplifier is electrically coupled to the second compensation circuit, and an output terminal of the second comparison amplifier is electrically coupled to the low voltage control circuit. 如請求項1所述之電源轉換器,其中該高壓電壓控制電路更用以自一處理電路接收一高壓電壓命令,以根據該高壓電壓命令和該高壓直流電壓產生該第二控制訊號至該低壓電壓控制電路。 The power converter according to claim 1, wherein the high-voltage voltage control circuit is further configured to receive a high-voltage voltage command from a processing circuit to generate the second control signal to the low-voltage according to the high-voltage voltage command and the high-voltage DC voltage Voltage control circuit. 如請求項7所述之電源轉換器,其中該高壓 電壓控制電路包含:一第二電壓偵測電路,用以對該高壓直流電壓進行偵測以輸出一第二電壓偵測訊號;一第三補償電路,電性耦接於該第二電壓偵測電路與該低壓電壓控制電路之間,用以接收該第二電壓偵測訊號;以及一第三比較放大器,該第三比較放大器的一第一端用以接收該高壓電壓命令,該第三比較放大器的一第二端電性耦接於該第三補償電路,該第三比較放大器的一輸出端電性耦接於該低壓電壓控制電路。 The power converter according to claim 7, wherein the high voltage The voltage control circuit includes: a second voltage detection circuit for detecting the high-voltage DC voltage to output a second voltage detection signal; a third compensation circuit electrically coupled to the second voltage detection The circuit and the low-voltage voltage control circuit are used to receive the second voltage detection signal; and a third comparison amplifier. A second end of the amplifier is electrically coupled to the third compensation circuit, and an output end of the third comparison amplifier is electrically coupled to the low voltage control circuit. 如請求項7所述之電源轉換器,其中該高壓電壓控制電路包含:一第二電壓偵測電路,用以對該高壓直流電壓進行偵測以輸出一第二電壓偵測訊號;一第三補償電路,電性耦接於該處理電路與該低壓電壓控制電路之間,用以接收該高壓電壓命令;以及一第三比較放大器,該第三比較放大器的一第一端用以接收該第二電壓偵測訊號,該第三比較放大器的一第二端電性耦接於該第三補償電路,該第三比較放大器的一輸出端電性耦接於該低壓電壓控制電路。 The power converter according to claim 7, wherein the high-voltage voltage control circuit includes: a second voltage detection circuit for detecting the high-voltage direct current voltage to output a second voltage detection signal; and a third A compensation circuit, electrically coupled between the processing circuit and the low voltage control circuit, for receiving the high voltage command; and a third comparison amplifier, a first end of the third comparison amplifier for receiving the first Two voltage detection signals, a second end of the third comparison amplifier is electrically coupled to the third compensation circuit, and an output end of the third comparison amplifier is electrically coupled to the low voltage control circuit. 如請求項1所述之電源轉換器,更包含:一保護電路,耦接於該低壓側,當偵測到一逆向電流時, 該保護電路用以輸出一停止命令以保護該電源轉換電路。 The power converter according to claim 1, further comprising: a protection circuit, coupled to the low voltage side, when a reverse current is detected, The protection circuit is used for outputting a stop command to protect the power conversion circuit. 如請求項10所述之電源轉換器,其中該保護電路包含:一逆電流偵測電路,耦接於該低壓側,當偵測到自該低壓側流向該電源轉換電路的該逆向電流時,該逆電流偵測電路用以輸出一偵測訊號;以及一保護開關和一保護開關驅動器,耦接於該低壓側,當接收該偵測訊號時,該保護開關驅動器用以輸出該停止命令以關斷該保護開關。 The power converter according to claim 10, wherein the protection circuit includes: a reverse current detection circuit coupled to the low voltage side, and when the reverse current flowing from the low voltage side to the power conversion circuit is detected, The reverse current detection circuit is used to output a detection signal; and a protection switch and a protection switch driver are coupled to the low voltage side. When receiving the detection signal, the protection switch driver is used to output the stop command to Turn off the protection switch. 如請求項10所述之電源轉換器,其中該保護電路包含:一逆電流偵測電路,耦接於該低壓側,當偵測到自該低壓側流向該電源轉換電路的該逆向電流時,該逆電流偵測電路用以輸出一偵測訊號,其中當該驅動電路接收到該偵測訊號,該驅動電路用以輸出一停止命令以關斷該電源轉換電路中的複數個開關。 The power converter according to claim 10, wherein the protection circuit includes: a reverse current detection circuit coupled to the low voltage side, and when the reverse current flowing from the low voltage side to the power conversion circuit is detected, The reverse current detection circuit is used for outputting a detection signal, wherein when the driving circuit receives the detection signal, the driving circuit is used for outputting a stop command to turn off a plurality of switches in the power conversion circuit. 一種電源轉換器的控制方法,包含:由一電源轉換電路,將一高壓側之一高壓直流電壓轉換為一低壓直流電壓輸出至一低壓側;由一處理電路,選擇性地同時啟動一輸出電流控制電路和一低壓電壓控制電路,或者同時啟動一高壓電壓控制電路 和該低壓電壓控制電路;於該輸出電流控制電路啟動時,透過該輸出電流控制電路,偵測該電源轉換電路的一輸出電流並根據該輸出電流輸出一第一控制訊號至該低壓電壓控制電路;於該高壓電壓控制電路啟動時,透過該高壓電壓控制電路,偵測該高壓直流電壓並根據該高壓直流電壓輸出一第二控制訊號至該低壓電壓控制電路;於該低壓電壓控制電路啟動時,透過該低壓電壓控制電路,偵測該低壓直流電壓並輸出一第三控制訊號;以及由一驅動電路,根據該第三控制訊號輸出一驅動訊號驅動該電源轉換電路,以相應於該第三控制訊號控制該低壓直流電壓、該高壓直流電壓或該輸出電流。 A control method for a power converter includes: a power conversion circuit converts a high-voltage DC voltage on a high-voltage side into a low-voltage DC voltage and outputs it to a low-voltage side; a processing circuit selectively activates an output current at the same time Control circuit and a low-voltage voltage control circuit, or start a high-voltage voltage control circuit at the same time And the low voltage voltage control circuit; when the output current control circuit is activated, the output current control circuit detects an output current of the power conversion circuit and outputs a first control signal to the low voltage control circuit according to the output current ; When the high-voltage voltage control circuit is activated, the high-voltage voltage control circuit detects the high-voltage DC voltage and outputs a second control signal to the low-voltage voltage control circuit according to the high-voltage DC voltage; when the low-voltage control circuit is activated , Through the low-voltage voltage control circuit, detect the low-voltage DC voltage and output a third control signal; and a drive circuit outputs a drive signal according to the third control signal to drive the power conversion circuit to correspond to the third The control signal controls the low-voltage direct current voltage, the high-voltage direct current voltage or the output current.
TW108127863A 2019-08-06 2019-08-06 Power converter and power converter control method TWI719573B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108127863A TWI719573B (en) 2019-08-06 2019-08-06 Power converter and power converter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108127863A TWI719573B (en) 2019-08-06 2019-08-06 Power converter and power converter control method

Publications (2)

Publication Number Publication Date
TW202107821A TW202107821A (en) 2021-02-16
TWI719573B true TWI719573B (en) 2021-02-21

Family

ID=75745320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127863A TWI719573B (en) 2019-08-06 2019-08-06 Power converter and power converter control method

Country Status (1)

Country Link
TW (1) TWI719573B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247247B2 (en) * 2021-03-11 2023-03-28 株式会社京三製作所 power converter
TWI769769B (en) * 2021-03-31 2022-07-01 鑽全實業股份有限公司 Power tool and safety control circuit module and safety control method thereof
TWI808584B (en) * 2021-12-29 2023-07-11 力林科技股份有限公司 Power supply device
TWI813281B (en) * 2022-05-11 2023-08-21 台達電子工業股份有限公司 Bearing structure for high-low-voltage conversion circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701611A (en) * 2005-06-17 2007-01-01 Via Tech Inc Pulse-frequency mode dc-to-dc converter circuit
TW201316647A (en) * 2011-10-11 2013-04-16 Delta Electronics Inc Power system and power controlling method and apparatus therein
TW201637340A (en) * 2015-04-15 2016-10-16 台達電子工業股份有限公司 Voltage conversion device
TW201916561A (en) * 2017-10-03 2019-04-16 台達電子工業股份有限公司 Power converter, power converting system, and power converter control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701611A (en) * 2005-06-17 2007-01-01 Via Tech Inc Pulse-frequency mode dc-to-dc converter circuit
TW201316647A (en) * 2011-10-11 2013-04-16 Delta Electronics Inc Power system and power controlling method and apparatus therein
TW201637340A (en) * 2015-04-15 2016-10-16 台達電子工業股份有限公司 Voltage conversion device
TW201916561A (en) * 2017-10-03 2019-04-16 台達電子工業股份有限公司 Power converter, power converting system, and power converter control method

Also Published As

Publication number Publication date
TW202107821A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
TWI719573B (en) Power converter and power converter control method
US9124184B2 (en) DC/DC converter
CN102017378B (en) Power converter, discharge lamp ballast and headlight ballast
US6788557B2 (en) Single conversion power converter with hold-up time
US7881077B2 (en) PWM controller with output current limitation
US7535736B2 (en) Switching power supply for reducing external parts for overcurrent protection
US9385616B2 (en) AC/DC power converter
US7577003B2 (en) Switching power supply
US9444246B2 (en) Power converter with switching element
TWI470912B (en) Power factor correction (pfc) power conversion apparatus and power conversion method thereof
US6845019B2 (en) Flyback converter
US11870360B2 (en) Bidirectional insulating DC-DC converter, control apparatus therefor, and operating method thereof
US9467059B2 (en) Activation apparatus and method for activating a direct voltage converter
TWI680633B (en) Power converter, power converting system, and power converter control method
US20100289474A1 (en) Controllers for controlling power converters
US20180115247A1 (en) DC-DC Converter
TW201108585A (en) Switching regulator with transient control function and control circuit and method therefor
JP2010110148A (en) Power supply device
US10574138B2 (en) Power converter, power converting system, and power converter control method
US20200161983A1 (en) Power converter and power converter control method
JP3191097B2 (en) Uninterruptible power supply and charge control method thereof
JP2002315331A (en) Power supply equipped with dc-dc converter
WO2016190031A1 (en) Power conversion device and power supply system using same
JP3178972B2 (en) Self-excited flyback converter
CN115149811A (en) Flyback converter and starting control method thereof