TWI718409B - Power amplifier circuit - Google Patents

Power amplifier circuit Download PDF

Info

Publication number
TWI718409B
TWI718409B TW107132288A TW107132288A TWI718409B TW I718409 B TWI718409 B TW I718409B TW 107132288 A TW107132288 A TW 107132288A TW 107132288 A TW107132288 A TW 107132288A TW I718409 B TWI718409 B TW I718409B
Authority
TW
Taiwan
Prior art keywords
transistor
emitter
signal
power amplifier
amplifier circuit
Prior art date
Application number
TW107132288A
Other languages
Chinese (zh)
Other versions
TW201924212A (en
Inventor
曽我高志
Original Assignee
日商村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商村田製作所股份有限公司 filed Critical 日商村田製作所股份有限公司
Publication of TW201924212A publication Critical patent/TW201924212A/en
Application granted granted Critical
Publication of TWI718409B publication Critical patent/TWI718409B/en

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

A power amplifier circuit includes a first transistor that amplifies a first signal and outputs a second signal, a second transistor that amplifies a signal corresponding to the second signal and outputs a third signal, a third transistor that supplies a first bias current or voltage to a base of the first transistor, and a fourth transistor that supplies a second bias current or voltage to a base of the second transistor. A ratio of an emitter area of the third transistor to an emitter area of the first transistor is larger than a ratio of an emitter area of the fourth transistor to an emitter area of the second transistor.

Description

功率放大電路 Power amplifier circuit

本發明係關於功率放大電路。 The present invention relates to a power amplifier circuit.

在行動電話等的移動通信設備中,為了對發送至基地台的無線頻率(RF:Radio-Frequency)信號的功率進行放大而使用功率放大電路。在功率放大電路中,使用用於向功率放大用的電晶體提供偏壓電流的偏壓電路。例如,專利文獻1中公開了使用包含射極跟隨器的偏壓電路的功率放大電路。該偏壓電路中,從偏壓電流提供用的電晶體的射極向放大用的電晶體的基極輸出偏壓電流。 In a mobile communication device such as a mobile phone, a power amplifier circuit is used to amplify the power of a radio frequency (RF: Radio-Frequency) signal transmitted to a base station. In the power amplifier circuit, a bias circuit for supplying a bias current to the transistor for power amplifier is used. For example, Patent Document 1 discloses a power amplifier circuit using a bias circuit including an emitter follower. In this bias circuit, a bias current is output from the emitter of the transistor for supplying bias current to the base of the transistor for amplification.

[先前技術文獻] [Prior Technical Literature]

[專利文獻] [Patent Literature]

[專利文獻1]JP特開2016-213557號公報 [Patent Document 1] JP 2016-213557 Publication

在如上述那樣包含射極跟隨器的偏壓電路中,偏壓電流的電流量受到RF信號的影響。具體而言,若RF信號的電平變大,則偏壓電流中產生負的電流(從放大用的電晶體的基極向偏壓電流提供用的電晶體的射極側的電流)。此時,由於偏壓電流提供用的電晶體的基極/射極間的PN結的整流特 性,該負的電流被截止。由此,向正的方向流過偏壓電流的比例增加,偏壓電流的平均值變高。因此,功率放大電路的增益上升,作為結果會引起功率放大電路中的增益的線性劣化。 In the bias circuit including the emitter follower as described above, the current amount of the bias current is affected by the RF signal. Specifically, when the level of the RF signal increases, a negative current (current from the base of the transistor for amplification to the emitter side of the transistor for supplying bias current) is generated in the bias current. At this time, the negative current is cut off due to the rectification characteristics of the PN junction between the base/emitter of the transistor for supplying the bias current. As a result, the ratio of the bias current flowing in the positive direction increases, and the average value of the bias current becomes higher. Therefore, the gain of the power amplifier circuit increases, and as a result, the linearity of the gain in the power amplifier circuit deteriorates.

為了應對該問題,在專利文獻1所公開的結構中,在偏壓電流提供用的電晶體的基極/射極間設置使負的電流通過的電流路徑,由此偏壓電流的負的部分不會被截止。由此一來,即便RF信號的電平較大,偏壓電流的平均值的上升也會被抑制。 In order to cope with this problem, in the structure disclosed in Patent Document 1, a current path for passing a negative current is provided between the base/emitter of the transistor for supplying the bias current, so that the negative part of the bias current is provided. Will not be cut off. As a result, even if the level of the RF signal is large, the increase in the average value of the bias current is suppressed.

但是,由於在上述結構中作為使負的電流通過的路徑而使用電容器,因此該路徑具有頻率特性。由此,例如在多頻帶技術中所見那樣RF信號的頻帶遍及寬範圍的情況下,存在特性隨著頻率而變動的這種問題。 However, since a capacitor is used as a path for passing a negative current in the above structure, the path has frequency characteristics. Therefore, for example, when the frequency band of the RF signal spreads over a wide range as seen in the multi-band technology, there is a problem that the characteristics vary with frequency.

本發明是鑒於這種情況而提出的,其目的在於提供一種在寬頻帶可抑制增益的線性劣化的功率放大電路。 The present invention was made in view of this situation, and its object is to provide a power amplifier circuit capable of suppressing the linear degradation of gain in a wide frequency band.

為了實現這種目的,本發明的一個方面所涉及的功率放大電路具備:第1電晶體,放大第1信號而輸出第2信號;第2電晶體,放大與第2信號相應的信號而輸出第3信號;第3電晶體,向第1電晶體的基極提供第1偏壓電流或者電壓;和第4電晶體,向第2電晶體的基極提供第2偏壓電流或者電壓,第3電晶體的射極面積相對於第1電晶體的射極面積的比例大於第4電晶體的射極面積相對於第2電晶體的射極面積的比例。 In order to achieve this objective, a power amplifier circuit according to one aspect of the present invention includes: a first transistor that amplifies a first signal to output a second signal; and a second transistor that amplifies a signal corresponding to the second signal to output a second signal. 3 signal; the third transistor provides the first bias current or voltage to the base of the first transistor; and the fourth transistor provides the second bias current or voltage to the base of the second transistor, and the third The ratio of the emitter area of the transistor to the emitter area of the first transistor is greater than the ratio of the emitter area of the fourth transistor to the emitter area of the second transistor.

根據本發明,能夠提供一種在寬頻帶可抑制增益的線性劣化的功率放大電路。 According to the present invention, it is possible to provide a power amplifier circuit capable of suppressing linear degradation of gain in a wide frequency band.

100‧‧‧功率放大電路 100‧‧‧Power amplifier circuit

110、111‧‧‧放大器 110、111‧‧‧Amplifier

120、121‧‧‧偏壓電路 120、121‧‧‧Bias circuit

Q1~Q8‧‧‧電晶體 Q1~Q8‧‧‧Transistor

R1~R4‧‧‧電阻元件 R1~R4‧‧‧Resistive element

C1~C4‧‧‧電容器 C1~C4‧‧‧Capacitor

10‧‧‧半導體基板 10‧‧‧Semiconductor substrate

20‧‧‧基極層 20‧‧‧Base layer

30a、30b‧‧‧射極層 30a, 30b‧‧‧Emitter layer

40a、40b‧‧‧集極層 40a, 40b‧‧‧ Collector layer

圖1是表示本發明的一實施方式的功率放大電路的結構例的圖。 FIG. 1 is a diagram showing a configuration example of a power amplifier circuit according to an embodiment of the present invention.

圖2是表示構成電晶體Q1的一個單元的構造的俯視圖。 FIG. 2 is a plan view showing the structure of one unit constituting the transistor Q1.

圖3是表示本發明的一實施方式的功率放大電路中的電壓Vbb的模擬結果的一例的曲線圖。 FIG. 3 is a graph showing an example of the simulation result of the voltage Vbb in the power amplifier circuit according to the embodiment of the present invention.

圖4是表示本發明的一實施方式的功率放大電路中的前段的增益的模擬結果的一例的曲線圖。 FIG. 4 is a graph showing an example of a simulation result of the gain of the first stage in the power amplifier circuit according to the embodiment of the present invention.

圖5是表示本發明的比較例的功率放大電路中的ACLR特性的模擬結果的一例的曲線圖。 5 is a graph showing an example of simulation results of ACLR characteristics in the power amplifier circuit of the comparative example of the present invention.

圖6是表示本發明的一實施方式的功率放大電路中的ACLR特性的模擬結果的一例的曲線圖。 6 is a graph showing an example of simulation results of ACLR characteristics in the power amplifier circuit according to an embodiment of the present invention.

以下,參照附圖對本發明的實施方式進行詳細說明。另外,對同一要素賦予同一符號,並省略重複的說明。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same symbols are assigned to the same elements, and repeated descriptions are omitted.

圖1是表示本發明的一實施方式的功率放大電路的結構例的圖。圖1所示的功率放大電路100例如被搭載於行動電話等的移動通信設備,被用於對發送至基地台的無線頻率(RF:Radio-Frequency)信號的功率進行放大。功率放大電路100例如對2G(第2代移動通信系統)、3G(第3代移動通信系統)、4G(第4代移動通信系統)、5G(第5代移動通信系統)、LTE(Long Term Evolution:長期演進)-FDD(Frequency Division Duplex:頻分雙工)、LTE-TDD(Time Division Duplex:時分雙工)、LTE-Advanced、LTE-Advanced Pro等的通信規格的信號的功率進行放大。又,功率放大電路100例如對複數個不同的頻帶的信號的功率進行放大。RF信號的頻率例如是幾百MHz~幾十GHz 左右。此外,功率放大電路100所放大的信號的通信規格以及頻率並不限於此。 FIG. 1 is a diagram showing a configuration example of a power amplifier circuit according to an embodiment of the present invention. The power amplifier circuit 100 shown in FIG. 1 is mounted on, for example, a mobile communication device such as a mobile phone, and is used to amplify the power of a radio frequency (RF: Radio-Frequency) signal transmitted to a base station. The power amplifier circuit 100 is compatible with, for example, 2G (2nd generation mobile communication system), 3G (3rd generation mobile communication system), 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), LTE (Long Term Evolution: Long-term evolution)-FDD (Frequency Division Duplex: Frequency Division Duplex), LTE-TDD (Time Division Duplex: Time Division Duplex), LTE-Advanced, LTE-Advanced Pro, etc., to amplify the power of signals in communication standards . In addition, the power amplifier circuit 100 amplifies the power of signals in a plurality of different frequency bands, for example. The frequency of the RF signal is, for example, about several hundred MHz to several tens of GHz. In addition, the communication specification and frequency of the signal amplified by the power amplifier circuit 100 are not limited to this.

功率放大電路100例如具備:放大器110、111以及偏壓電路120、121。 The power amplifier circuit 100 includes, for example, amplifiers 110 and 111 and bias circuits 120 and 121.

放大器110、111構成兩段的放大器。前段(驅動段)的放大器110對RF信號RF1(第1信號)進行放大,輸出RF信號RF2(第2信號)。後段(功率段)的放大器111對RF信號RF2進一步放大,輸出RF信號RF3(第3信號)。此外,放大器的段數並不限於兩段,也可以是三段以上。 The amplifiers 110 and 111 constitute a two-stage amplifier. The amplifier 110 in the front stage (drive stage) amplifies the RF signal RF1 (first signal), and outputs the RF signal RF2 (second signal). The amplifier 111 in the latter stage (power stage) further amplifies the RF signal RF2 and outputs the RF signal RF3 (the third signal). In addition, the number of stages of the amplifier is not limited to two stages, and may be three or more stages.

偏壓電路120、121分別向放大器110、111提供偏壓電流或者電壓。具體而言,偏壓電路120(第1偏壓電路)將偏壓電流Ibias1(第1偏壓電流)提供給前段的放大器110。又,偏壓電路121(第2偏壓電路)將偏壓電流Ibias2(第2偏壓電流)提供給後段的放大器111。通過偏壓電流Ibias1、Ibias2的電流量來控制放大器110、111的增益。 The bias circuits 120 and 121 provide bias currents or voltages to the amplifiers 110 and 111, respectively. Specifically, the bias circuit 120 (first bias circuit) supplies the bias current Ibias1 (first bias current) to the amplifier 110 in the preceding stage. In addition, the bias circuit 121 (second bias circuit) supplies the bias current Ibias2 (second bias current) to the amplifier 111 in the subsequent stage. The gains of the amplifiers 110 and 111 are controlled by the current amounts of the bias currents Ibias1 and Ibias2.

此外,雖省略了圖示,但是功率放大電路100亦可在各放大器110、111的前段以及後段具備使電路間的阻抗匹配的匹配電路。 In addition, although illustration is omitted, the power amplifier circuit 100 may be provided with a matching circuit for matching the impedance between the circuits in the front stage and the rear stage of each of the amplifiers 110 and 111.

其次,對放大器110、111以及偏壓電路120、121的具體的結構例進行說明。 Next, specific configuration examples of the amplifiers 110 and 111 and the bias circuits 120 and 121 will be described.

前段的放大器110例如具備電晶體Q1、電容器C1以及電阻元件R1。同樣地,後段的放大器111例如具備電晶體Q2、電容器C2以及電阻元件R2。 The amplifier 110 in the previous stage includes, for example, a transistor Q1, a capacitor C1, and a resistance element R1. Similarly, the amplifier 111 in the latter stage includes, for example, a transistor Q2, a capacitor C2, and a resistance element R2.

電晶體Q1(第1電晶體)以及電晶體Q2(第2電晶體)例如是異質接面雙極電晶體(HBT:Heterojunction Bipolar Transistor)等的雙極電晶體。電晶體Q1的基極被提供RF信號RF1以及偏壓電流Ibias1,集極被提供電源電壓,射極被接地。藉此,電晶體Q1對RF信號RF1進行放大,從集極輸出RF信 號RF2。電晶體Q2的基極被提供RF信號RF2以及偏壓電流Ibias2,集極被提供電源電壓,射極被接地。藉此,電晶體Q2對RF信號RF2進一步放大,從集極輸出RF信號RF3。 Transistor Q1 (first transistor) and transistor Q2 (second transistor) are, for example, bipolar transistors such as Heterojunction Bipolar Transistor (HBT). The base of the transistor Q1 is provided with an RF signal RF1 and a bias current Ibias1, the collector is provided with a power supply voltage, and the emitter is grounded. Thereby, the transistor Q1 amplifies the RF signal RF1, and outputs the RF signal RF2 from the collector. The base of the transistor Q2 is provided with an RF signal RF2 and a bias current Ibias2, the collector is provided with a power supply voltage, and the emitter is grounded. Thereby, the transistor Q2 further amplifies the RF signal RF2, and outputs the RF signal RF3 from the collector.

此外,儘管省略了圖示,但是亦可經由扼流圈電感器向電晶體Q1、Q2的集極提供電源電壓。 In addition, although illustration is omitted, a power supply voltage may be supplied to the collectors of the transistors Q1 and Q2 via a choke inductor.

電容器C1、C2分別是切斷被輸入的RF信號中包含的直流分量、使交流分量通過的耦合電容器。 The capacitors C1 and C2 are coupling capacitors that cut off the DC component contained in the input RF signal and pass the AC component, respectively.

電阻元件R1、R2分別被連接於偏壓電路120、121與電晶體Q1、Q2的基極之間。藉由經由電阻元件R1、R2來提供偏壓電流Ibias1、Ibias2,因電晶體Q1、Q2的溫度上升引起的偏壓電流Ibias1、Ibias2的增加得以抑制。 The resistance elements R1 and R2 are respectively connected between the bias circuits 120 and 121 and the bases of the transistors Q1 and Q2. By providing the bias currents Ibias1 and Ibias2 through the resistance elements R1 and R2, the increase in the bias currents Ibias1 and Ibias2 caused by the temperature rise of the transistors Q1 and Q2 is suppressed.

圖2是表示構成電晶體Q1的一個單元的構造的俯視圖。此外,電晶體Q2能夠包含與該圖所示的單元同樣的單元。 FIG. 2 is a plan view showing the structure of one unit constituting the transistor Q1. In addition, the transistor Q2 can include the same unit as the unit shown in the figure.

如該圖所示,一個單元包含:在半導體基板10的主面的俯視下形成於該主面的基極層20、在基極層20的兩外側分別形成的2個射極層30a、30b、以及在2個射極層30a、30b的兩外側分別形成的集極層40a、40b。藉此,構成一個單位電晶體。此外,所謂“單位電晶體”,是指至少包含基極層、集極層以及射極層、作為電晶體發揮功能的最小單位的結構。 As shown in this figure, one unit includes: a base layer 20 formed on the main surface of the semiconductor substrate 10 in a plan view of the main surface, and two emitter layers 30a, 30b formed on both outer sides of the base layer 20, respectively , And collector layers 40a, 40b formed on both outer sides of the two emitter layers 30a, 30b, respectively. In this way, a unit transistor is formed. In addition, the “unit transistor” refers to a structure including at least a base layer, a collector layer, and an emitter layer, and the smallest unit functioning as a transistor.

又,雖於圖2中省略了圖示,但是亦可在各單元中除了上述的單位電晶體以外,還一體地形成相當於電容器C1以及電阻元件R1的元件。圖1中雖由一個電路標記圖示了各放大器110、111中包含的各元件,但是本實施方式中的放大器110、111分別包含複數個單元而構成。並且,複數個單元間,各單位電晶體的集極彼此、射極彼此以及基極彼此相互電連接。藉此,複數個單元成為並聯連接的結構,整體作為一個放大器進行作動。雖構成放大器的單元數沒有特別限定,但是在功率放大電路100中,由於後段比前段的功率的放大等 級大,因此後段的單元數(例如為20個)比前段的單元數(例如4個)多。 In addition, although illustration is omitted in FIG. 2, in addition to the unit transistor described above, an element corresponding to the capacitor C1 and the resistance element R1 may be integrally formed in each unit. Although each element included in each amplifier 110 and 111 is illustrated by one circuit symbol in FIG. 1, the amplifiers 110 and 111 in this embodiment each include a plurality of units. In addition, among the plurality of cells, the collectors, emitters, and bases of the unit transistors are electrically connected to each other. Thereby, a plurality of units are connected in parallel, and the whole is operated as one amplifier. Although the number of units constituting the amplifier is not particularly limited, in the power amplifier circuit 100, since the power amplification level of the latter stage is higher than that of the former stage, the number of units in the latter stage (for example, 20) is greater than the number of units in the former stage (for example, 4). many.

以下,在各單元中,將半導體基板10的主面的俯視下的射極層的面積的合計(圖2中為射極層30a、30b的面積的合計)也稱為“單元的射極面積”。又,將構成放大器的複數個單元的射極面積的合計也稱為“放大器的射極面積(或者電晶體的射極面積)”。例如,在放大器110包含4個單元的情況下,若將射極層30a的面積設為1,則該放大器110(電晶體Q1)的射極面積為1×2個×4單元=8。此外,1個單元中包含的射極層的數量並不限於2個,例如亦可是4個。在射極層為4個的情況下,4個射極層與3個基極層亦可交替地並排形成。 Hereinafter, in each unit, the total area of the emitter layer in the plan view of the main surface of the semiconductor substrate 10 (the total area of the emitter layers 30a and 30b in FIG. 2) is also referred to as the "emitter area of the unit". ". In addition, the total of the emitter areas of a plurality of units constituting the amplifier is also referred to as the "emitter area of the amplifier (or the emitter area of the transistor)". For example, when the amplifier 110 includes 4 cells, if the area of the emitter layer 30a is set to 1, the emitter area of the amplifier 110 (transistor Q1) is 1×2×4 cells=8. In addition, the number of emitter layers included in one unit is not limited to two, and may be four, for example. When there are 4 emitter layers, 4 emitter layers and 3 base layers can also be alternately formed side by side.

返回至圖1,偏壓電路120例如具備電晶體Q3~Q5、電阻元件R3以及電容器C3。 Returning to FIG. 1, the bias circuit 120 includes, for example, transistors Q3 to Q5, a resistance element R3, and a capacitor C3.

電晶體Q3~Q5例如為HBT。電晶體Q3的集極與基極被連接(以下也稱為“二極體連接”。),經由電阻元件R3向集極提供電壓Vb1,射極與電晶體Q4的集極連接。電晶體Q4被進行二極體連接,集極被連接於電晶體Q3的射極,射極被接地。藉此,在電晶體Q3的集極,生成既定程度的電壓(例如2.6V左右)。 The transistors Q3 to Q5 are, for example, HBT. The collector and base of the transistor Q3 are connected (hereinafter also referred to as "diode connection"), the collector is supplied with a voltage Vb1 via the resistance element R3, and the emitter is connected to the collector of the transistor Q4. Transistor Q4 is connected to the diode, the collector is connected to the emitter of transistor Q3, and the emitter is grounded. Thereby, a predetermined voltage (for example, about 2.6V) is generated at the collector of transistor Q3.

電晶體Q5(第3電晶體)的集極被提供電池電壓Vbatt,基極與電晶體Q3的基極連接,射極經由電阻元件R1而被連接於電晶體Q1的基極。藉此,從電晶體Q5的射極輸出偏壓電流Ibias1。電晶體Q5與上述的電晶體Q1、Q2同樣,例如包含複數個單元。圖1中作為例子,示意地表示電晶體Q5包含3個單元。 The collector of the transistor Q5 (third transistor) is supplied with the battery voltage Vbatt, the base is connected to the base of the transistor Q3, and the emitter is connected to the base of the transistor Q1 via the resistance element R1. Thereby, the bias current Ibias1 is output from the emitter of the transistor Q5. The transistor Q5 is the same as the above-mentioned transistors Q1 and Q2, and includes, for example, a plurality of units. As an example, Fig. 1 schematically shows that the transistor Q5 includes three units.

向電阻元件R3的一端提供電壓Vb1,另一端被連接於電晶體Q3的集極。此外,亦可取代電壓Vb1,從電流源向電阻元件R3的一端提供電流Ib1。 The voltage Vb1 is supplied to one end of the resistance element R3, and the other end is connected to the collector of the transistor Q3. In addition, instead of the voltage Vb1, a current Ib1 may be supplied from a current source to one end of the resistance element R3.

電容器C3的一端被連接於電晶體Q3的集極,另一端被接地。電 容器C3使交流分量流入接地,藉此抑制因RF信號的檢波所引起的電晶體Q3的基極的電壓振幅。 One end of the capacitor C3 is connected to the collector of the transistor Q3, and the other end is grounded. The capacitor C3 causes the AC component to flow into the ground, thereby suppressing the voltage amplitude of the base of the transistor Q3 caused by the detection of the RF signal.

偏壓電路121例如具備電晶體Q6~Q8、電阻元件R4以及電容器C4。此外,由於電晶體Q6、Q7、電阻元件R4以及電容器C4的結構分別與偏壓電路120中的電晶體Q3、Q4、電阻元件R3以及電容器C3的結構相同,因此省略詳細的說明。 The bias circuit 121 includes, for example, transistors Q6 to Q8, a resistance element R4, and a capacitor C4. In addition, since the structures of the transistors Q6, Q7, the resistance element R4, and the capacitor C4 are the same as the structures of the transistors Q3, Q4, the resistance element R3, and the capacitor C3 in the bias circuit 120, respectively, detailed descriptions are omitted.

電晶體Q8(第4電晶體)的集極被提供電池電壓Vbatt,基極與電晶體Q6的基極連接,射極經由電阻元件R2而被連接於電晶體Q2的基極。藉此,從電晶體Q8的射極輸出偏壓電流Ibias2。電晶體Q8亦可與上述的電晶體Q1、Q2同樣地例如包含複數個單元。圖1中作為例子示意地表示電晶體Q8包含1個單元。 The collector of the transistor Q8 (fourth transistor) is supplied with the battery voltage Vbatt, the base is connected to the base of the transistor Q6, and the emitter is connected to the base of the transistor Q2 via the resistance element R2. Thereby, the bias current Ibias2 is output from the emitter of the transistor Q8. Transistor Q8 may include a plurality of units similarly to the above-mentioned transistors Q1 and Q2, for example. As an example, Fig. 1 schematically shows that the transistor Q8 includes one unit.

此外,偏壓電路120、121亦可分別藉由電壓Vb1、Vb2的電壓值(或者電流Ib1、Ib2的電流值)的調整來控制偏壓電流Ibias1、Ibias2的電流量。 In addition, the bias circuits 120 and 121 can also control the current amounts of the bias currents Ibias1 and Ibias2 by adjusting the voltage values of the voltages Vb1 and Vb2 (or the current values of the currents Ib1 and Ib2), respectively.

其次,以前段(放大器110以及偏壓電路120)為例,針對偏壓電流Ibias1、Ibias2的電流量的變動的抑制進行說明。 Next, taking the previous stage (the amplifier 110 and the bias circuit 120) as an example, the suppression of the variation of the current amounts of the bias currents Ibias1 and Ibias2 will be described.

一般而言,在由射極跟隨器構成的偏壓電路中,偏壓電流的電流量可能受到RF信號的影響而發生變動。具體而言,在為了方便使用圖1所示的符號時,在向電晶體Q1的基極提供的RF信號RF1的程度較大的情況下,偏壓電流中產生負的電流(從電晶體Q1的基極流向電晶體Q5的射極側的電流)。雖該負的電流要從電晶體Q5的射極向基極方向流動,但是由於電晶體Q5的基極/射極間的PN連接的整流特性而被截止。如此,由於偏壓電流的負的部分被截止,因此隨著RF信號的程度的增大而電晶體Q5的射極電壓(電壓Vbb)的平均值上升,偏壓電流Ibias1的平均值也上升。 Generally speaking, in a bias circuit composed of an emitter follower, the current amount of the bias current may vary due to the influence of the RF signal. Specifically, when the symbols shown in FIG. 1 are used for convenience, when the RF signal RF1 supplied to the base of the transistor Q1 is large, a negative current is generated in the bias current (from the transistor Q1 The base of the current flows to the emitter side of the transistor Q5). Although this negative current flows from the emitter of the transistor Q5 toward the base, it is blocked due to the rectification characteristics of the PN connection between the base/emitter of the transistor Q5. In this way, since the negative part of the bias current is cut off, as the level of the RF signal increases, the average value of the emitter voltage (voltage Vbb) of the transistor Q5 increases, and the average value of the bias current Ibias1 also increases.

針對該問題,例如專利文獻1所揭示的結構中,將提供偏壓電流的電晶體進行疊接,想要使流入上段的電晶體(相當於圖1中的電晶體Q5)的負的電流的一部分流至下段的電晶體。然而,在該結構中,從上段的電晶體的射極觀察到的下段的電晶體的集極的阻抗非常高。因此,被認為電流難以流向下段的電晶體。 To solve this problem, for example, in the structure disclosed in Patent Document 1, a transistor that provides a bias current is stacked, and it is desired to cause a negative current to flow into the upper transistor (equivalent to transistor Q5 in FIG. 1). Part of it flows to the lower transistor. However, in this structure, the impedance of the collector of the lower transistor as viewed from the emitter of the upper transistor is very high. Therefore, it is considered that it is difficult for current to flow to the lower transistor.

又,在專利文獻1所公開的結構中,藉由在上段的電晶體的基極-射極間設置使負的電流通過的電流路徑,而供偏壓電流的負的部分不被截止。然而,在上述的結構中,由於作為使負的電流通過的路徑使用了電容器,因此該路徑具有頻率特性。因此,例如在多頻帶技術中所見那樣,RF信號的頻帶遍及寬範圍的情況下,被認為特性會隨著頻率而變動。 Furthermore, in the structure disclosed in Patent Document 1, by providing a current path for passing a negative current between the base and the emitter of the upper transistor, the negative part of the bias current is not cut off. However, in the above-mentioned structure, since a capacitor is used as a path for passing a negative current, the path has frequency characteristics. Therefore, for example, as seen in the multi-band technology, when the frequency band of the RF signal spreads over a wide range, it is considered that the characteristics will vary with frequency.

關於這一點,在功率放大電路100中被設計成:電晶體Q5的射極面積相對於前段的電晶體Q1的射極面積的比例大於電晶體Q8的射極面積相對於後段的電晶體Q2的射極面積的比例。此處,所謂面積的比例,是指偏壓電流提供用的電晶體(相當於電晶體Q5、Q8)的射極面積除以放大用的電晶體(相當於電晶體Q1、Q2)的射極面積而得到的值。例如,假定在前段中電晶體Q1的單元數為4個,相對於此,電晶體Q5的單元數為3個。另一方面,假定在後段中例如電晶體Q2的單元數為20個,相對於此,電晶體Q8的單元數為1個。此時,若各單元的射極面積相等,則射極面積的比例在前段中為(電晶體Q5/電晶體Q1)=3/4,在後段中為(電晶體Q8/電晶體Q2)=1/20。如此,在本實施方式中,相比於後段,前段的偏壓電流提供用的電晶體的射極面積相對於放大用的電晶體的射極面積的比例較大。 Regarding this point, the power amplifier circuit 100 is designed such that the ratio of the emitter area of the transistor Q5 to the emitter area of the transistor Q1 in the front stage is greater than that of the emitter area of the transistor Q8 to the latter transistor Q2. The ratio of the emitter area. Here, the so-called area ratio refers to the area of the emitter of the transistor for bias current supply (equivalent to transistors Q5, Q8) divided by the emitter of the transistor for amplification (equivalent to transistors Q1, Q2) The value obtained from the area. For example, it is assumed that the number of units of the transistor Q1 in the previous stage is 4, while the number of units of the transistor Q5 is 3 in contrast. On the other hand, it is assumed that in the latter stage, for example, the number of cells of the transistor Q2 is 20, while the number of cells of the transistor Q8 is one. At this time, if the emitter area of each unit is equal, the ratio of the emitter area is (transistor Q5/transistor Q1)=3/4 in the front section, and (transistor Q8/transistor Q2)= in the latter section 1/20. In this way, in this embodiment, the ratio of the emitter area of the transistor for supplying bias current in the front stage to the emitter area of the transistor for amplification is larger than that in the latter stage.

此處,已知射極跟隨器構成的電晶體的輸出阻抗與射極電流的電流量成反比。因此,在射極電流的總量一定的情況下,電晶體的射極面積越大,則射極的每單位面積流過的電流越減少,因此輸出阻抗越高。在本實施方 式中,由於電晶體Q5的射極面積相對於電晶體Q1的射極面積的比例大於電晶體Q8的射極面積相對於電晶體Q2的射極面積的比例,因此在射極電流的總量一定的情況下,該電晶體Q5的輸出阻抗變高。因此,即便RF信號RF1的程度較大、電晶體Q1的基極處的交流的振幅較大,電晶體Q5的射極處的電流的交流性的變動也被抑制。如此,在本實施方式中,由於電晶體Q5的RF信號的檢波性能下降,因此負的電流的產生得以抑制,作為結果可抑制偏壓電流Ibias1的電流量的平均值的上升。又,伴隨於此,電晶體Q5的射極處的電壓Vbb的上升也被抑制。 Here, it is known that the output impedance of the transistor composed of the emitter follower is inversely proportional to the current amount of the emitter current. Therefore, when the total amount of emitter current is constant, the larger the emitter area of the transistor, the less current flowing per unit area of the emitter, and therefore the higher the output impedance. In this embodiment, since the ratio of the emitter area of transistor Q5 to the emitter area of transistor Q1 is greater than the ratio of the emitter area of transistor Q8 to the emitter area of transistor Q2, the emitter current When the total amount of Q5 is constant, the output impedance of the transistor Q5 becomes higher. Therefore, even if the level of the RF signal RF1 is large and the amplitude of the AC at the base of the transistor Q1 is large, the AC fluctuation of the current at the emitter of the transistor Q5 is suppressed. In this way, in this embodiment, since the detection performance of the RF signal of the transistor Q5 is degraded, the generation of a negative current is suppressed, and as a result, the increase in the average current amount of the bias current Ibias1 can be suppressed. In addition, with this, the increase in voltage Vbb at the emitter of transistor Q5 is also suppressed.

即,在功率放大電路100中,不使用疊接、基極-射極間所連接的電容器,就能夠抑制偏壓電流Ibias1的電流量的變動。因此,相比於專利文獻1所揭示的結果,功率放大電路100能夠與RF信號的頻帶無關,而於寬頻帶抑制增益的線性劣化。 That is, in the power amplifier circuit 100, it is possible to suppress the variation of the current amount of the bias current Ibias1 without using a capacitor connected between the overlapping and the base-emitter. Therefore, compared with the result disclosed in Patent Document 1, the power amplifier circuit 100 can suppress the linear degradation of the gain regardless of the frequency band of the RF signal, and suppress the linear degradation of the gain in a wide frequency band.

此外,雖在前段中電晶體Q5的射極面積沒有特別限定,但是例如較佳為放大用的電晶體Q1的射極面積的二分之一以上。即,例如在電晶體Q1的單元數為4個的情況下,較佳為電晶體Q5的單元數為2個以上。 In addition, although the emitter area of the transistor Q5 in the front stage is not particularly limited, for example, it is preferably more than half of the emitter area of the transistor Q1 for amplification. That is, for example, when the number of units of the transistor Q1 is 4, the number of units of the transistor Q5 is preferably 2 or more.

又,在後段中,若使偏壓電路121的電晶體Q8的射極面積過大,則相對於放大用的電晶體Q2的功率的放大等級,能力(Power)可能不足。因此,較佳為後段的電晶體Q8的射極面積例如小於前段的電晶體Q5的射極面積。若電晶體Q8的射極面積較小,則隨著RF信號的程度的增大而偏壓電流的平均值上升,增益可能上升。此處,藉由在前段使增益降低以使得後段中的增益的上升被抵消,能夠提高使前段以及後段相匹配時的線性。 Furthermore, in the latter stage, if the emitter area of the transistor Q8 of the bias circuit 121 is made too large, the power may be insufficient with respect to the power amplification level of the transistor Q2 for amplification. Therefore, it is preferable that the emitter area of the transistor Q8 at the rear stage is smaller than the emitter area of the transistor Q5 at the front stage, for example. If the emitter area of the transistor Q8 is small, as the level of the RF signal increases, the average value of the bias current increases, and the gain may increase. Here, by reducing the gain in the front stage so that the increase in the gain in the later stage is cancelled, it is possible to improve the linearity when matching the front stage and the rear stage.

此外,功率放大電路100例如亦可具備3段的放大器。該情況下,例如亦可在第2段的放大器(第1電晶體)應用上述的偏壓電路120的結構,在第3段的放大器(第2電晶體)應用上述的偏壓電路121的結構,藉此抵 消第3段的放大器中的增益的上升。或者,亦可在第1段的放大器(第1電晶體)應用上述的偏壓電路120的結構,在第3段的放大器(第2電晶體)應用上述的偏壓電路121的結構,藉此抵消第3段的放大器中的增益的上升。 In addition, the power amplifier circuit 100 may include, for example, a three-stage amplifier. In this case, for example, the configuration of the bias circuit 120 described above may be applied to the second stage amplifier (first transistor), and the above-mentioned bias circuit 121 may be applied to the third stage amplifier (second transistor). The structure of this counteracts the increase in the gain of the amplifier in the third stage. Alternatively, the structure of the bias circuit 120 described above may be applied to the amplifier (first transistor) of the first stage, and the structure of the bias circuit 121 described above may be applied to the amplifier (second transistor) of the third stage. This cancels the increase in gain in the third stage amplifier.

圖3是表示本發明的一實施方式的功率放大電路中的電壓Vbb的模擬結果的一例的曲線圖。具體而言,圖3所示的曲線圖表示將電晶體Q1和電晶體Q5的單元數設為(Q1:Q5)=(4:0.5)、(4:1)、(4:2)、(4:3)、(4:4)、(4:5)、(4:6)的情況下電晶體Q5的射極處的電壓Vbb與輸出功率Pout的關係。此處,假定構成電晶體Q1的各單元包含2個射極層,各單元的射極面積為3.0×40×2個=240μm2。另一方面,假定構成電晶體Q5的各單元包含4個射極層,各單元的射極面積為3.0×20×4個=240μm2。此外,所謂電晶體Q5的單元數為0.5,是將其射極面積設為3.0×20×2個=120μm2的情況下的計算結果。在圖3所示的曲線圖中,橫軸表示輸出功率Pout(dBm),縱軸表示電壓Vbb(V)。 FIG. 3 is a graph showing an example of the simulation result of the voltage Vbb in the power amplifier circuit according to the embodiment of the present invention. Specifically, the graph shown in FIG. 3 shows that the number of units of transistor Q1 and transistor Q5 is set to (Q1: Q5) = (4: 0.5), (4:1), (4: 2), ( 4:3), (4:4), (4:5), (4:6), the relationship between the voltage Vbb at the emitter of the transistor Q5 and the output power Pout. Here, it is assumed that each unit constituting the transistor Q1 includes two emitter layers, and the emitter area of each unit is 3.0×40×2=240 μm 2 . On the other hand, it is assumed that each unit constituting the transistor Q5 includes 4 emitter layers, and the emitter area of each unit is 3.0×20×4=240 μm 2 . In addition, the number of cells of the transistor Q5 is 0.5, which is a calculation result when the emitter area is 3.0×20×2=120 μm 2. In the graph shown in FIG. 3, the horizontal axis represents the output power Pout (dBm), and the vertical axis represents the voltage Vbb (V).

如圖3所示,若相對於電晶體Q1的單元數為4個,而電晶體Q5的單元數為2個以上,則伴隨著輸出功率的增大的電壓Vbb的上升被抑制。因此,可以說較佳為電晶體Q5的射極面積為電晶體Q1的射極面積的二分之一以上。 As shown in FIG. 3, if the number of cells of the transistor Q1 is 4 and the number of cells of the transistor Q5 is 2 or more, the increase in the voltage Vbb accompanying the increase in output power is suppressed. Therefore, it can be said that it is preferable that the emitter area of the transistor Q5 is more than half of the emitter area of the transistor Q1.

圖4是表示本發明的一實施方式的功率放大電路中的前段的增益的模擬結果的一例的曲線圖。具體而言,圖4所示的曲線圖表示將電晶體Q1與電晶體Q5的單元數設為(Q1:Q5)=(4:0.5)、(4:1)、(4:2)、(4:3)、(4:4)、(4:5)、(4:6)、將電晶體Q2與電晶體Q8的單元數設為(Q2:Q8)=(20:2)的情況下,前段的電晶體Q1中的增益與輸出功率Pout的關係。此處,假定構成電晶體Q2的各單元為2個射極層,各單元的射極面積為3.0×40×2個=240μm2。另一方面,假定構成電晶體Q8的各單元包含4個射極層,各單元的射極面積為3.0×20×4個=240μm2。此外,對於電晶體Q1與電 晶體Q5,與上述的圖3所示的模擬是相同條件。在圖4所示的曲線圖中,橫軸表示輸出功率Pout(dBm),縱軸表示電晶體Q1的增益(dB)。此外,作為參考,由虛線表示後段的電晶體Q2的增益的一例。 FIG. 4 is a graph showing an example of a simulation result of the gain of the first stage in the power amplifier circuit according to the embodiment of the present invention. Specifically, the graph shown in FIG. 4 shows that the number of units of transistor Q1 and transistor Q5 is set to (Q1: Q5) = (4: 0.5), (4:1), (4: 2), ( 4:3), (4:4), (4:5), (4:6), when the number of units of transistor Q2 and transistor Q8 is set to (Q2: Q8) = (20: 2) , The relationship between the gain in the transistor Q1 in the previous section and the output power Pout. Here, it is assumed that each unit constituting the transistor Q2 has two emitter layers, and the emitter area of each unit is 3.0×40×2=240 μm 2 . On the other hand, it is assumed that each unit constituting the transistor Q8 includes 4 emitter layers, and the emitter area of each unit is 3.0×20×4=240 μm 2 . In addition, regarding the transistor Q1 and the transistor Q5, the conditions are the same as the simulation shown in FIG. 3 described above. In the graph shown in FIG. 4, the horizontal axis represents the output power Pout (dBm), and the vertical axis represents the gain (dB) of the transistor Q1. In addition, for reference, an example of the gain of the transistor Q2 in the latter stage is indicated by a broken line.

如圖4所示,即便在電晶體Q5的射極面積為任意的情況下,前段的電晶體Q1都隨著輸出功率的增大而增益平緩下降。另一方面,後段的電晶體Q2可如圖4所示,設定為隨著輸出功率的增大而增益上升。因此,可以說藉由使該等的增益特性相匹配,能夠抑制功率放大電路100的增益的線性劣化。 As shown in Fig. 4, even in the case where the emitter area of the transistor Q5 is arbitrary, the gain of the transistor Q1 in the front stage decreases gradually as the output power increases. On the other hand, the latter transistor Q2 can be set to increase the gain as the output power increases as shown in Figure 4. Therefore, it can be said that by matching these gain characteristics, the linear deterioration of the gain of the power amplifier circuit 100 can be suppressed.

圖5是表示本發明的比較例的功率放大電路中的ACLR特性的模擬結果的一例的曲線圖。又,圖6是表示本發明的一實施方式所涉及的功率放大電路中的ACLR特性的模擬結果的一例的曲線圖。所謂比較例,是在圖1所示的電晶體Q5的基極-射極間連接有電容器的結構。圖5以及圖6表示在室溫下將電源電壓設為3.4V、將RF信號的頻率設為824MHz、849MHz、880MHz、915MHz的情況下的相鄰通道洩露功率比(Adjacent Channel Leakage Ratio:ACLR)特性與輸出功率Pout的關係。圖5以及圖6所示的曲線圖中,橫軸表示輸出功率Pout(dBm),縱軸表示ACLR(dBc)。 5 is a graph showing an example of simulation results of ACLR characteristics in the power amplifier circuit of the comparative example of the present invention. 6 is a graph showing an example of simulation results of ACLR characteristics in the power amplifier circuit according to an embodiment of the present invention. The comparative example is a structure in which a capacitor is connected between the base and the emitter of the transistor Q5 shown in FIG. 1. Figures 5 and 6 show the adjacent channel leakage power ratio (Adjacent Channel Leakage Ratio: ACLR) when the power supply voltage is set to 3.4V and the frequency of the RF signal is set to 824MHz, 849MHz, 880MHz, 915MHz at room temperature The relationship between characteristics and output power Pout. In the graphs shown in FIGS. 5 and 6, the horizontal axis represents output power Pout (dBm), and the vertical axis represents ACLR (dBc).

如圖5所示,在比較例中,可知ACLR特性隨著RF信號的頻帶而產生偏差。特別在輸出功率的程度為中小程度的區域,特性的偏差顯著,被認為是線性的劣化。 As shown in FIG. 5, in the comparative example, it can be seen that the ACLR characteristic varies with the frequency band of the RF signal. Especially in the region where the level of output power is medium to small, the deviation of the characteristics is significant, which is considered to be the deterioration of the linearity.

另一方面,如圖6所示,可知在功率放大電路100中任意的頻帶均表現出同樣的ACLR特性,相比於比較例可減少ACLR特性的偏差。又,可知在輸出功率的程度為中小程度的區域,相比於比較例,ACLR較小,線性得以提高。如此,根據本實施方式,能夠在寬頻帶抑制線性的劣化。 On the other hand, as shown in FIG. 6, it can be seen that any frequency band in the power amplifier circuit 100 exhibits the same ACLR characteristic, and the deviation of the ACLR characteristic can be reduced compared to the comparative example. In addition, it can be seen that in a region where the level of output power is small or medium, compared to the comparative example, the ACLR is small, and the linearity is improved. In this way, according to the present embodiment, it is possible to suppress degradation of linearity in a wide frequency band.

以上,針對本發明的例示性的實施方式進行了說明。功率放大電路100具備放大用的電晶體Q1、Q2以及偏壓電流提供用的電晶體Q5、Q8,電 晶體Q5的射極面積相對於電晶體Q1的射極面積的比例大於電晶體Q8的射極面積相對於電晶體Q2的射極面積的比例。藉此,由於電晶體Q5的輸出阻抗變高,因此不使用電容器等的具有頻率特性的元件,也能夠使電晶體Q5的RF信號的檢波性能下降。因此,根據功率放大電路100,能夠在寬頻帶抑制增益的線性劣化。 Above, the exemplary embodiment of the present invention has been described. The power amplifier circuit 100 includes transistors Q1 and Q2 for amplifying and transistors Q5 and Q8 for supplying bias current. The emitter area of the transistor Q5 has a larger ratio to the emitter area of the transistor Q1 than that of the transistor Q8. The ratio of the pole area to the emitter area of the transistor Q2. As a result, since the output impedance of the transistor Q5 becomes high, it is possible to degrade the RF signal detection performance of the transistor Q5 without using an element having frequency characteristics such as a capacitor. Therefore, according to the power amplifier circuit 100, it is possible to suppress the linear deterioration of the gain in a wide frequency band.

又,在功率放大電路100中,電晶體Q5的射極面積為電晶體Q1的射極面積的二分之一以上。藉此,伴隨著輸出功率的增大的電晶體Q5的射極處的電壓Vbb的上升被抑制。因此,能夠抑制增益的線性劣化。 In addition, in the power amplifier circuit 100, the emitter area of the transistor Q5 is more than half of the emitter area of the transistor Q1. Thereby, the increase in voltage Vbb at the emitter of transistor Q5 accompanying the increase in output power is suppressed. Therefore, it is possible to suppress the linear deterioration of the gain.

又,在功率放大電路100中,電晶體Q5的射極面積大於電晶體Q8的射極面積。藉此,能夠在後段維持必要的能力並且使前段的電晶體Q1以及後段的電晶體Q2的增益特性相匹配從而提高線性。 Moreover, in the power amplifier circuit 100, the emitter area of the transistor Q5 is larger than the emitter area of the transistor Q8. Thereby, it is possible to maintain the necessary capacity in the latter stage and to match the gain characteristics of the transistor Q1 in the previous stage and the transistor Q2 in the latter stage to improve linearity.

以上所說明的各實施方式是為了使本發明的理解變得容易,並不是用於限定解釋本發明。本發明在不脫離其主旨的情況下可進行變更或者改良,並且其等同部分也包含在本發明中。即,本領域之通常知識者針對各實施方式適當實施設計變更而得到的部分,只要具備本發明的特徵,也包含在本發明的範圍中。例如,各實施方式所具備的各要素及其配製、材料、條件、形狀、尺寸等並不限定於例示的內容,能夠適當變更。又,各實施方式所具備的各要素只要於技術所能之範圍內就可進行組合,將該等組合而得到的部分只要包含本發明的特徵也包含在本發明的範圍中。 The respective embodiments described above are for facilitating the understanding of the present invention, and are not intended to limit the interpretation of the present invention. The present invention can be changed or improved without departing from its gist, and its equivalent parts are also included in the present invention. That is, a part obtained by a person skilled in the art appropriately implementing design changes for each embodiment is included in the scope of the present invention as long as it has the characteristics of the present invention. For example, the various elements and their configuration, materials, conditions, shapes, dimensions, and the like provided in each embodiment are not limited to the exemplified contents, and can be changed as appropriate. In addition, each element provided in each embodiment can be combined as long as it is within a technically possible range, and a part obtained by combining the above is also included in the scope of the present invention as long as it includes the characteristics of the present invention.

100‧‧‧功率放大電路 100‧‧‧Power amplifier circuit

110、111‧‧‧放大器 110、111‧‧‧Amplifier

120、121‧‧‧偏壓電路 120、121‧‧‧Bias circuit

Q1~Q8‧‧‧電晶體 Q1~Q8‧‧‧Transistor

R1~R4‧‧‧電阻元件 R1~R4‧‧‧Resistive element

C1~C4‧‧‧電容器 C1~C4‧‧‧Capacitor

RF1~RF3‧‧‧RF信號 RF1~RF3‧‧‧RF signal

Ibias1、Ibias2‧‧‧偏壓電流 Ibias1, Ibias2‧‧‧bias current

Claims (3)

一種功率放大電路,具備:第1電晶體,放大第1信號而輸出第2信號;第2電晶體,放大與前述第2信號相應的信號而輸出第3信號;第3電晶體,向前述第1電晶體的基極提供第1偏壓電流或者電壓;以及第4電晶體,向前述第2電晶體的基極提供第2偏壓電流或者電壓:且前述第3電晶體的射極面積相對於前述第1電晶體的射極面積的比例大於前述第4電晶體的射極面積相對於前述第2電晶體的射極面積的比例;前述功率放大電路,於前述第1電晶體的基極-前述第3電晶體的射極間不連接電容器。 A power amplifier circuit includes: a first transistor that amplifies a first signal to output a second signal; a second transistor that amplifies a signal corresponding to the second signal to output a third signal; and a third transistor that amplifies the signal corresponding to the second signal to output a third signal; 1 The base of the transistor provides the first bias current or voltage; and the fourth transistor provides the second bias current or voltage to the base of the second transistor: and the emitter area of the third transistor is opposite to The ratio of the emitter area of the first transistor is greater than the ratio of the emitter area of the fourth transistor to the emitter area of the second transistor; the power amplifier circuit is in the base of the first transistor -No capacitor is connected between the emitters of the aforementioned third transistor. 如請求項1所述的功率放大電路,其中,前述第3電晶體的射極面積為前述第1電晶體的射極面積的二分之一以上。 The power amplifier circuit according to claim 1, wherein the emitter area of the third transistor is more than half of the emitter area of the first transistor. 如請求項1或2所述的功率放大電路,其中,前述第3電晶體的射極面積大於前述第4電晶體的射極面積。 The power amplifier circuit according to claim 1 or 2, wherein the emitter area of the third transistor is larger than the emitter area of the fourth transistor.
TW107132288A 2017-10-04 2018-09-13 Power amplifier circuit TWI718409B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP2017-194175 2017-10-04
JP2017194175 2017-10-04
JP2018129136A JP2019068404A (en) 2017-10-04 2018-07-06 Power amplification circuit
JPJP2018-129136 2018-07-06

Publications (2)

Publication Number Publication Date
TW201924212A TW201924212A (en) 2019-06-16
TWI718409B true TWI718409B (en) 2021-02-11

Family

ID=66340791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132288A TWI718409B (en) 2017-10-04 2018-09-13 Power amplifier circuit

Country Status (2)

Country Link
JP (1) JP2019068404A (en)
TW (1) TWI718409B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489868A (en) * 1994-10-04 1996-02-06 Analog Devices, Inc. Detector cell for logarithmic amplifiers
US6204719B1 (en) * 1999-02-04 2001-03-20 Analog Devices, Inc. RMS-to-DC converter with balanced multi-tanh triplet squaring cells
US6472937B1 (en) * 2000-11-15 2002-10-29 Conexant Systems, Inc. Bias enhancement circuit for linear amplifiers
US6492869B1 (en) * 1999-09-30 2002-12-10 Kabushiki Kaisha Toshiba Linear amplifier and radio communication apparatus using the same
US7768345B2 (en) * 2004-01-05 2010-08-03 Nec Corporation Amplifier
US7863983B2 (en) * 2003-05-20 2011-01-04 Epic Communications, Inc. Smart linearized power amplifier and related systems and methods
US7893769B2 (en) * 2008-09-18 2011-02-22 Sharp Kabushiki Kaisha Power amplifier, method for controlling power amplifier, and wireless communication apparatus
US8115547B2 (en) * 2007-01-16 2012-02-14 Stmicroelectronics S.A. Reconfigurable power amplifier and use of such amplifier for making a multi-standard amplification stage for mobile phone communications
US20150180427A1 (en) * 2012-11-30 2015-06-25 Murata Manufacturing Co., Ltd. Power amplification circuit and power amplification module
US9374039B2 (en) * 2013-06-19 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Power amplifier
JP2016213557A (en) * 2015-04-30 2016-12-15 株式会社村田製作所 Power Amplifier Module
US9628029B2 (en) * 2013-12-31 2017-04-18 Skyworks Solutions, Inc. Systems, circuits and methods related to dynamic error vector magnitude corrections
US9742358B2 (en) * 2015-12-02 2017-08-22 Murata Manufacturing Co., Ltd. Power amplification circuit
US20170257070A1 (en) * 2012-06-14 2017-09-07 Skyworks Solutions, Inc. Power amplifier modules with bonding pads and related systems, devices, and methods

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489868A (en) * 1994-10-04 1996-02-06 Analog Devices, Inc. Detector cell for logarithmic amplifiers
US6204719B1 (en) * 1999-02-04 2001-03-20 Analog Devices, Inc. RMS-to-DC converter with balanced multi-tanh triplet squaring cells
US6492869B1 (en) * 1999-09-30 2002-12-10 Kabushiki Kaisha Toshiba Linear amplifier and radio communication apparatus using the same
US6472937B1 (en) * 2000-11-15 2002-10-29 Conexant Systems, Inc. Bias enhancement circuit for linear amplifiers
US7863983B2 (en) * 2003-05-20 2011-01-04 Epic Communications, Inc. Smart linearized power amplifier and related systems and methods
US7768345B2 (en) * 2004-01-05 2010-08-03 Nec Corporation Amplifier
US8115547B2 (en) * 2007-01-16 2012-02-14 Stmicroelectronics S.A. Reconfigurable power amplifier and use of such amplifier for making a multi-standard amplification stage for mobile phone communications
US7893769B2 (en) * 2008-09-18 2011-02-22 Sharp Kabushiki Kaisha Power amplifier, method for controlling power amplifier, and wireless communication apparatus
US20170257070A1 (en) * 2012-06-14 2017-09-07 Skyworks Solutions, Inc. Power amplifier modules with bonding pads and related systems, devices, and methods
US20150180427A1 (en) * 2012-11-30 2015-06-25 Murata Manufacturing Co., Ltd. Power amplification circuit and power amplification module
US9374039B2 (en) * 2013-06-19 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Power amplifier
US9628029B2 (en) * 2013-12-31 2017-04-18 Skyworks Solutions, Inc. Systems, circuits and methods related to dynamic error vector magnitude corrections
JP2016213557A (en) * 2015-04-30 2016-12-15 株式会社村田製作所 Power Amplifier Module
US9742358B2 (en) * 2015-12-02 2017-08-22 Murata Manufacturing Co., Ltd. Power amplification circuit

Also Published As

Publication number Publication date
TW201924212A (en) 2019-06-16
JP2019068404A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US10491168B2 (en) Power amplification circuit
US9768738B2 (en) Power amplification circuit
US10476439B2 (en) Power amplifier circuit
TWI647812B (en) Power amplifier circuit
CN109039289B (en) Power amplifying circuit
JP2020072468A (en) Power amplifier module
CN110034737B (en) Power amplifying circuit
US11545944B2 (en) Power amplifier circuit
CN110518883B (en) Power amplifying circuit
CN109617531B (en) Power amplifying circuit
TWI718409B (en) Power amplifier circuit
US11444585B2 (en) Power amplifier
US9331639B2 (en) Power amplification circuit and power amplification module
US10566934B2 (en) Power amplifier circuit
JP2021158622A (en) Power amplification circuit
US20180041169A1 (en) Power amplifier
US10879847B2 (en) Transmission unit
CN109586674B (en) Power amplifying circuit
JP2022036687A (en) Radio frequency amplifier circuit
JP2021106376A (en) Power amplifier circuit
JP2011010245A (en) High-frequency power amplifier
US11936350B2 (en) Power amplifier circuit
US20230141220A1 (en) Power amplifier circuit
JP2020188292A (en) Power amplifier circuit and bias control circuit
JP2012147307A (en) High frequency power amplifier