TWI718053B - Linker of bioprobes - Google Patents

Linker of bioprobes Download PDF

Info

Publication number
TWI718053B
TWI718053B TW109113431A TW109113431A TWI718053B TW I718053 B TWI718053 B TW I718053B TW 109113431 A TW109113431 A TW 109113431A TW 109113431 A TW109113431 A TW 109113431A TW I718053 B TWI718053 B TW I718053B
Authority
TW
Taiwan
Prior art keywords
linker
substrate
biological probe
chip substrate
cooh
Prior art date
Application number
TW109113431A
Other languages
Chinese (zh)
Other versions
TW202102852A (en
Inventor
李靜雯
陳育哲
Original Assignee
昇陽國際半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昇陽國際半導體股份有限公司 filed Critical 昇陽國際半導體股份有限公司
Priority to TW109113431A priority Critical patent/TWI718053B/en
Publication of TW202102852A publication Critical patent/TW202102852A/en
Application granted granted Critical
Publication of TWI718053B publication Critical patent/TWI718053B/en

Links

Images

Abstract

A linker of bioprobes, suitable for immobilizing a bioprobe on a substrate of a sensor, includes having a carbon number of 6 or more of SH-(CH)n-NH2, SH-(CH)n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m-(CH)n-NH2, m, n is an integer greater than 1. Wherein, when the surface average roughness (Ra) of the substrate is greater than 250 nm, the coverage of the linker on the substrate is 40%-80%. The invention further discloses a linker of bioprobes, includes having a carbon number of less than 6 of SH-(CH)n-NH2, SH-(CH)n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m-(CH)n-NH2, m, n is an integer greater than 1. Wherein, when the surface average roughness (Ra) of the substrate is less than 250 nm, the coverage of the linker on the substrate is 65%-100%. The invention has the optimal carbon chain length of the linker and the coverage for the substrates of various roughnesses, and can greatly enhance the grasping ability of the electrochemical sensor for the detected object.

Description

生物探針之連接子Linker

本發明係有關於一種連接子化合物,特別是有關於一種生物探針之連接子。The present invention relates to a linker compound, in particular to a linker of a biological probe.

在免疫型電化學生物感測器製作上,生物探針在晶片表面的固定數量與晶片的靈敏度有關,而生物探針固定在晶片表面是透過負責連接晶片與生物探針之間的連接子(linker)做嫁接。連接子的一端含有與不同化學試劑或小分子結合的特定官能基,因此如何促進連接子在晶片表面的有效連接覆蓋為製作生物感測器之首要條件。過去在進行連接子連接覆蓋時,多為專注於連接子在基板表面的連接覆蓋達到最大量。然而,實際情況是即使連接子達到最大連接覆蓋量,晶片對被檢測目標物的抓取量並無正相關。In the production of immuno-type electrochemical biosensors, the number of bio-probes fixed on the surface of the chip is related to the sensitivity of the chip, and the bio-probes are fixed on the surface of the chip through the connector ( linker) do grafting. One end of the linker contains specific functional groups that bind to different chemical reagents or small molecules. Therefore, how to promote the effective connection and coverage of the linker on the surface of the chip is the first condition for making a biosensor. In the past, when the connector was connected and covered, it was mostly focused on the maximum connection coverage of the connector on the substrate surface. However, the actual situation is that even if the connector reaches the maximum connection coverage, there is no positive correlation between the amount of grasping of the target object by the wafer.

為解決上述問題,因此須要有研發出特定碳鏈長度的連接子配合生物感測晶片表面的粗糙度以及連接子在晶片上的覆蓋率以獲得最多的被檢測目標物的抓取量。In order to solve the above problems, it is necessary to develop a linker with a specific carbon chain length to match the surface roughness of the biosensing chip and the coverage of the linker on the chip to obtain the maximum amount of grasping of the detected target.

本發明之目的是提供一種生物探針之連接子,具有特定碳鏈長度,可以獲得最多的被檢測目標物的抓取量。The purpose of the present invention is to provide a linker of a biological probe, which has a specific carbon chain length and can obtain the maximum amount of grasping of the detected target.

本發明為達成上述目的提供一種生物探針之連接子,適用於將生物探針固定在感測器之晶片基板上,包含有,具有碳數6或碳數6以上之SH-(CH)n-NH2、SH-(CH)n-COOH、 SH-(CH)n-SH、(OH)m-(CH)n-COOH或(OH)m-(CH)n-NH2,m、n 是大於1的整數。其中,當該晶片基板之表面平均粗糙度(Ra)大於250 nm時,該連接子於該晶片基板之覆蓋率為40%-80%。The present invention provides a bio-probe linker to achieve the above-mentioned object, which is suitable for fixing the bio-probe on the chip substrate of the sensor, and contains SH-(CH)n with carbon number 6 or above. -NH2, SH-(CH)n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m-(CH)n-NH2, m and n are greater than An integer of 1. Wherein, when the average surface roughness (Ra) of the chip substrate is greater than 250 nm, the coverage of the connector on the chip substrate is 40%-80%.

本發明另提供一種生物探針之連接子,適用於將生物探針固定在感測器之晶片基板上,包含有,具有碳數6以下之SH-(CH)n-NH2、SH-(CH)n-COOH、SH-(CH)n-SH、(OH)m-(CH)n-COOH或(OH)m-(CH)n-NH2,m、n 是大於1的整數。其中,當該晶片基板之表面平均粗糙度(Ra)小於250 nm時,該連接子於該晶片基板之覆蓋率為65%-100%。The present invention also provides a linker for biological probes, which is suitable for fixing the biological probes on the chip substrate of the sensor, including SH-(CH)n-NH2, SH-(CH) with carbon number less than 6 ) n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m-(CH)n-NH2, m and n are integers greater than 1. Wherein, when the average surface roughness (Ra) of the chip substrate is less than 250 nm, the coverage of the connector on the chip substrate is 65%-100%.

與習知之生物探針之連接子比較,本發明具有以下優點,本發明對於不同粗糙度基板具有最佳碳鏈長度之連接子與覆蓋率,能大輻增進電化學感測晶片對被檢測目標物的抓取能力。Compared with conventional linkers of biological probes, the present invention has the following advantages. The present invention has the best carbon chain length linkers and coverage for substrates with different roughness, which can greatly improve the effect of electrochemical sensor chips on the target to be detected. The ability to grasp objects.

本發明揭露一種生物探針之連接子,其可以大輻增進電化學感測晶片對被檢測目標物的抓取能力。The present invention discloses a linker of a biological probe, which can greatly improve the grasping ability of an electrochemical sensor chip to a detected target.

實施例1:Example 1:

本發明實施例1之生物探針之連接子(Linker),適用於將生物探針固定在感測器之晶片基板上,包含有,具有碳數6或碳數6以上之SH-(CH)n-NH2、SH-(CH)n-COOH、 SH-(CH)n-SH、(OH)m-(CH)n-COOH或(OH)m-(CH)n-NH2,m、n 是大於1的整數。其中,當該晶片基板之表面平均粗糙度(Ra)大於250 nm時,該連接子於該晶片基板之覆蓋率為40%-80%,覆蓋率最佳為50%-70%。The linker of the biological probe in the first embodiment of the present invention is suitable for fixing the biological probe on the chip substrate of the sensor, and includes SH-(CH) with carbon number 6 or above n-NH2, SH-(CH)n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m-(CH)n-NH2, m and n are An integer greater than 1. Wherein, when the average surface roughness (Ra) of the chip substrate is greater than 250 nm, the coverage rate of the connector on the chip substrate is 40%-80%, and the coverage rate is preferably 50%-70%.

本發明之感測器之晶片基板之材料是矽、玻璃、石墨烯、金、白金或高分子。選用金或白金材質之晶片基板,適用酸洗製程進行粗糙化處理,酸洗溶液可以使用1份98wt%硫酸與3份33wt%雙氧水的比例進行表面處理,藉由不同的處理時間獲得特定的粗糙度。選用其他玻璃、陶瓷或高分子材質之晶片基板可以使用機械研磨、化學藥劑蝕刻或化學機械研磨來進行粗糙化處理。The material of the chip substrate of the sensor of the present invention is silicon, glass, graphene, gold, platinum or polymer. Choose gold or platinum wafer substrates, suitable for pickling process for roughening treatment. The pickling solution can be surface treated with a ratio of 1 part of 98wt% sulfuric acid and 3 parts of 33wt% hydrogen peroxide to obtain specific roughness through different treatment times degree. The wafer substrates of other glass, ceramic or polymer materials can be roughened by mechanical polishing, chemical etching or chemical mechanical polishing.

經過粗糙化後的晶片基板係浸泡在溶於99.8wt%無水酒精的連接子溶液內且放置於室溫對該晶片基板表面進行修飾,再使用1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺(EDC)或N-羥基琥珀醯亞胺(NHS)對修飾後的該晶片基板表面進行官能基活化反應。後續,可以使用電化學方法量測晶片基板表面氧化還原特性的變化,進一步由電流密度變化計算修飾分子的覆蓋率。The roughened wafer substrate is immersed in a linker solution dissolved in 99.8wt% absolute alcohol and placed at room temperature to modify the surface of the wafer substrate, and then use 1-ethyl-3-(3-dimethyl Aminopropyl) carbodiimide (EDC) or N-hydroxysuccinimide (NHS) performs functional group activation reaction on the surface of the modified wafer substrate. Subsequently, electrochemical methods can be used to measure changes in the redox characteristics of the wafer substrate surface, and the coverage of modified molecules can be calculated from the changes in current density.

本發明之生物探針係為酵素、蛋白質、去氧核糖核酸(Deoxyribonucleic acid,DNA)與核糖核酸(Ribonucleic acid,RNA)或齒舌蘭輪斑病毒抗體(ORSV antibody)之生物探針。The biological probe of the present invention is a biological probe of enzyme, protein, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) or ORSV antibody.

實施例2:Example 2:

本發明實施例2之生物探針之連接子(Linker),適用於將生物探針固定在感測器之晶片基板上,包含有,具有碳數6以下之SH-(CH)n-NH2、SH-(CH)n-COOH、 SH-(CH)n-SH、(OH)m-(CH)n-COOH或(OH)m-(CH)n-NH2,m、n 是大於1的整數。其中,當該晶片基板之表面平均粗糙度(Ra)小於250 nm時,該連接子於該晶片基板之覆蓋率為65%-100%,覆蓋率最佳為80%-100%。The linker of the biological probe in the second embodiment of the present invention is suitable for fixing the biological probe on the chip substrate of the sensor, and includes SH-(CH)n-NH2 with carbon number 6 or less SH-(CH)n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m-(CH)n-NH2, m and n are integers greater than 1 . Wherein, when the average surface roughness (Ra) of the chip substrate is less than 250 nm, the coverage rate of the connector on the chip substrate is 65%-100%, and the coverage rate is preferably 80%-100%.

本發明實施例2之其他技術內容與實施例1相同,包括晶片基板之材料;晶片基板之表面粗糙化處理;連接子溶液修飾;以及晶片基板表面進行官能基活化反應。還有,所適用的生物探針種類亦相同。The other technical content of the second embodiment of the present invention is the same as that of the first embodiment, including the material of the wafer substrate; the surface roughening treatment of the wafer substrate; the modification of the linker solution; and the functional group activation reaction on the surface of the wafer substrate. In addition, the types of bioprobes applicable are also the same.

本發明生物探針之連接子之實測數據:The measured data of the linker of the biological probe of the present invention:

本發明實際以純金為基板,使用酸洗對基板表面做粗糙度變化,接著在其表面修飾一端為硫醇基(-SH)、一端為羧基(-COOH)的不同碳鏈長度之C 3H 6O 2, 3-巰基丙酸3-MPA (3-Mercaptopropionic acid, MPA)以及C 11H 22O 2S, 11-巰基十一烷酸 11-MUA(11-Mercaptoundecanoic acid)作為連接子用以將生物探針齒舌蘭輪斑病毒抗體(Odontoglossum ringspot virus antibody, ORSV antibody)固定於表面,以利抓取後續目標物齒舌蘭輪斑病毒(ORSV病毒)作為實際例子並且量測數據。 In the present invention, pure gold is used as the substrate, the surface roughness of the substrate is changed by pickling, and then the surface is modified with C 3 H with a thiol group (-SH) at one end and a carboxyl group (-COOH) at one end. 6 O 2 , 3-Mercaptopropionic acid 3-MPA (3-Mercaptopropionic acid, MPA) and C 11 H 22 O 2 S, 11-mercaptoundecanoic acid 11-MUA (11-Mercaptoundecanoic acid) are used as linkers The biological probe Odontoglossum ringspot virus antibody (ORSV antibody) is fixed on the surface to facilitate the capture of the subsequent target Odontoglossum ringspot virus (ORSV virus) as a practical example and measurement data.

使用98wt%硫酸與33wt%雙氧水以1:3的比例對於金基板(Au Substrate)表面進行處理,藉由處理時間的不同產生粗糙度的變化,使用原子力顯微鏡AFM(atomic force microscopy)分析金基板表面粗糙度。如第1圖所示,未處理(處理前)之 表面平均粗糙度(Ra) 1.6 nm,相對高度 (Z range) 11.7nm。如第2圖所示,酸洗處理20分鐘後之表面平均粗糙度(Ra) 3.56 nm,相對高度 (Z range) 57.7nm。Use 98wt% sulfuric acid and 33wt% hydrogen peroxide to process the Au substrate surface at a ratio of 1:3. The roughness changes due to the difference in processing time. The surface of the Au substrate is analyzed by atomic force microscopy (AFM) Roughness. As shown in Figure 1, the average roughness (Ra) of the untreated (before treatment) surface is 1.6 nm, and the relative height (Z range) is 11.7 nm. As shown in Figure 2, the average surface roughness (Ra) of the surface after 20 minutes of pickling treatment is 3.56 nm, and the relative height (Z range) is 57.7 nm.

將粗糙化後的金基板浸泡在溶於99.8wt%無水酒精的3-巰基丙酸 (3-MPA)與11-巰基十一烷酸 (11-MUA)溶液內且放置於室溫對金基板表面進行修飾,再使用1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺(EDC)或N-羥基琥珀醯亞胺(NHS)對修飾後的該晶片基板表面進行官能基活化反應,如第3圖所示。Soak the roughened gold substrate in a solution of 3-mercaptopropionic acid (3-MPA) and 11-mercaptoundecanoic acid (11-MUA) dissolved in 99.8wt% absolute alcohol and place it at room temperature for the gold substrate The surface is modified, and then 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) or N-hydroxysuccinimide (NHS) is used to modify the surface of the wafer substrate Perform functional group activation reaction, as shown in Figure 3.

酸洗處理20分鐘後,再以MPA修飾後使用原子力顯微鏡分析金基板表面粗糙度。如第4圖所示,表面平均粗糙度(Ra) 1.78 nm,相對高度 (Z range) 26.1 nm。酸洗處理20分鐘後,再以MUA修飾後使用原子力顯微鏡分析金基板表面粗糙度。如第5圖所示,表面平均粗糙度(Ra) 1.43 nm,相對高度 (Z range) 18.7 nm。After pickling treatment for 20 minutes, the surface roughness of the gold substrate was analyzed using an atomic force microscope after modification with MPA. As shown in Figure 4, the average surface roughness (Ra) is 1.78 nm and the relative height (Z range) is 26.1 nm. After pickling treatment for 20 minutes, the surface roughness of the gold substrate was analyzed using an atomic force microscope after modification with MUA. As shown in Figure 5, the average surface roughness (Ra) is 1.43 nm and the relative height (Z range) is 18.7 nm.

後續,使用電化學方法量測晶片基板表面氧化還原特性的變化,進一步由電流密度變化計算連接子(修飾分子)的覆蓋率。如第6圖所示,3-MPA和11-MUA皆會填補金基板表面的粗糙度,而由活性面積反應得知11-MUA的覆蓋率約94.7%,3-MPA覆蓋率約20%。Subsequently, electrochemical methods are used to measure the change in the redox characteristics of the wafer substrate surface, and the coverage of the linker (modification molecule) is further calculated from the change in current density. As shown in Figure 6, both 3-MPA and 11-MUA will fill up the roughness of the gold substrate surface, and the active area reaction shows that the coverage of 11-MUA is about 94.7%, and the coverage of 3-MPA is about 20%.

將生物探針齒舌蘭輪斑病毒抗體(Odontoglossum ringspot virus antibody, ORSV antibody)溶解於緩衝液中並將其滴在表面修飾活化後的MPA和MUA,使生物探針ORSV 抗體與連接子末端形成胜肽鍵(-CO-NH-)進而固定在金基板(Au Substrate)表面,接著將相同濃度的ORSV病毒溶液與抗體連接覆蓋,如第7圖所示。Dissolve the bioprobe Odontoglossum ringspot virus antibody (ORSV antibody) in a buffer and drop it on the activated MPA and MUA after surface modification to form the bioprobe ORSV antibody and the linker end The peptide bond (-CO-NH-) is then immobilized on the surface of the Au Substrate, and then the ORSV virus solution of the same concentration is connected and covered with the antibody, as shown in Figure 7.

最後以掃描電子顯微鏡分析SEM分析金基板表面的ORSV病毒抓取量,結果如第8圖至第9圖所示,覆蓋率小於80%的碳數6以下之短碳鏈3-MPA連接子其對ORSV病毒的抓取量(第8圖)少於覆蓋率大於80%的連接子對ORSV病毒的抓取量(第9圖),亦即碳數6以下之連接子,覆蓋率愈大對於ORSV病毒的抓取量愈多。在長碳鏈11-MUA連接子覆蓋率大於80%對ORSV病毒的抓取量>80%的結果如第10圖所示,長碳鏈的覆蓋率愈大並不會增多ORSV病毒的抓取量。Finally, the scanning electron microscope was used to analyze the amount of ORSV virus grabbing on the surface of the gold substrate by SEM. The results are shown in Figures 8 to 9. The coverage rate is less than 80% of the short carbon chain 3-MPA linker with carbon number 6 or less. The crawling volume of ORSV virus (Figure 8) is less than the crawling volume of ORSV virus by linkers with a coverage rate greater than 80% (Figure 9), that is, linkers with carbon number 6 or less, the greater the coverage rate is for The more ORSV virus is crawled. When the coverage of the long carbon chain 11-MUA linker is greater than 80%, the crawling amount of the ORSV virus is >80%, as shown in Figure 10. The greater the coverage of the long carbon chain, the greater the crawling of the ORSV virus. the amount.

no

第1圖至第2圖為原子力顯微鏡AFM分析金基板表面粗糙度。 第3圖為對修飾後的晶片基板表面進行官能基活化反應的示意圖。 第4圖至第5圖為修飾後使用原子力顯微鏡分析金基板表面粗糙度。 第6圖為本發明之連接子的覆蓋率。 第7圖為生物探針與連接子末端形成胜肽鍵(-CO-NH-)進而固定在金基板(Au Substrate)表面的示意圖。 第8圖至第9圖為3-MPA連接子對ORSV病毒的抓取量之掃描電子顯微鏡分析照片。 第10圖為11-MUA連接子對ORSV病毒的抓取量之掃描電子顯微鏡分析照片。 Figures 1 to 2 show the AFM analysis of the surface roughness of the gold substrate. Figure 3 is a schematic diagram of the functional group activation reaction on the surface of the modified wafer substrate. Figures 4 to 5 show the surface roughness of the gold substrate after modification using an atomic force microscope. Figure 6 shows the coverage of the linker of the present invention. Figure 7 is a schematic diagram of the bioprobe forming a peptide bond (-CO-NH-) with the end of the linker and then immobilizing it on the Au Substrate surface. Figures 8 to 9 are scanning electron microscope analysis photos of the amount of ORSV captured by the 3-MPA linker. Figure 10 is a scanning electron microscope analysis of the amount of ORSV captured by the 11-MUA linker.

Claims (5)

一種生物探針之連接子(Linker),適用於將生物探針固定在感測器之晶片基板上,包含有: 具有碳數6以下之SH-(CH)n-NH2、SH-(CH)n-COOH、 SH-(CH)n-SH、(OH)m-(CH)n-COOH或(OH)m-(CH)n-NH2,m、n 是大於1的整數; 其中,當該晶片基板之表面平均粗糙度(Ra)小於250 nm時,該連接子於該晶片基板之覆蓋率為65%-100%。 A linker of a biological probe, suitable for fixing the biological probe on the chip substrate of the sensor, including: SH-(CH)n-NH2, SH-(CH)n-COOH, SH-(CH)n-SH, (OH)m-(CH)n-COOH or (OH)m- with carbon number 6 or less (CH) n-NH2, m and n are integers greater than 1; Wherein, when the average surface roughness (Ra) of the chip substrate is less than 250 nm, the coverage rate of the connector on the chip substrate is 65%-100%. 如請求項1所述之生物探針之連接子,其中,該感測器之晶片基板之材料是矽、玻璃、石墨烯、金、白金或高分子。The connector of the biological probe according to claim 1, wherein the material of the chip substrate of the sensor is silicon, glass, graphene, gold, platinum or polymer. 如請求項1所述之生物探針之連接子,其中,該晶片基板係使用1份98wt%硫酸與3份33wt%雙氧水的比例進行表面處理,藉由不同的處理時間獲得特定的粗糙度。The linker of the biological probe according to claim 1, wherein the wafer substrate is surface-treated with a ratio of 1 part of 98wt% sulfuric acid to 3 parts of 33wt% hydrogen peroxide, and a specific roughness is obtained through different treatment times. 如請求項1所述之生物探針之連接子,更包含將該晶片基板係浸泡在溶於99.8wt%無水酒精的連接子溶液內且放置於室溫對該晶片基板表面進行修飾,再使用1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺(EDC)或N-羥基琥珀醯亞胺(NHS)對修飾後的該晶片基板表面進行官能基活化反應。The linker of the biological probe according to claim 1, further comprising immersing the chip substrate in a linker solution dissolved in 99.8 wt% absolute alcohol and placing it at room temperature to modify the surface of the chip substrate before use 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) or N-hydroxysuccinimide (NHS) performs functional group activation reaction on the surface of the modified wafer substrate. 如請求項1所述之生物探針之連接子,其中,該生物探針為酵素、蛋白質、去氧核糖核酸(Deoxyribonucleic acid,DNA)與核糖核酸(Ribonucleic acid,RNA)或齒舌蘭輪斑病毒抗體(ORSV antibody)之生物探針。The linker of the biological probe according to claim 1, wherein the biological probe is an enzyme, protein, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) or dentate plaque Biological probe for ORSV antibody.
TW109113431A 2019-07-12 2019-07-12 Linker of bioprobes TWI718053B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109113431A TWI718053B (en) 2019-07-12 2019-07-12 Linker of bioprobes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109113431A TWI718053B (en) 2019-07-12 2019-07-12 Linker of bioprobes

Publications (2)

Publication Number Publication Date
TW202102852A TW202102852A (en) 2021-01-16
TWI718053B true TWI718053B (en) 2021-02-01

Family

ID=75234743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113431A TWI718053B (en) 2019-07-12 2019-07-12 Linker of bioprobes

Country Status (1)

Country Link
TW (1) TWI718053B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201400492A (en) * 2012-06-27 2014-01-01 Univ Nat Chiao Tung Borate moiety-contained linker and bio-sensing element containing the same
CN106537130A (en) * 2014-05-27 2017-03-22 卡斯西部储备大学 Electrochemical sensor for analyte detection
JP2019041626A (en) * 2017-08-30 2019-03-22 株式会社東芝 Sensor, reagent, probe molecule production method, sensor production method, and polymer molecule production method
TW201913087A (en) * 2017-08-22 2019-04-01 昇陽國際半導體股份有限公司 Method for modifying non-planar electrode and wafer containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201400492A (en) * 2012-06-27 2014-01-01 Univ Nat Chiao Tung Borate moiety-contained linker and bio-sensing element containing the same
CN106537130A (en) * 2014-05-27 2017-03-22 卡斯西部储备大学 Electrochemical sensor for analyte detection
TW201913087A (en) * 2017-08-22 2019-04-01 昇陽國際半導體股份有限公司 Method for modifying non-planar electrode and wafer containing the same
JP2019041626A (en) * 2017-08-30 2019-03-22 株式会社東芝 Sensor, reagent, probe molecule production method, sensor production method, and polymer molecule production method

Also Published As

Publication number Publication date
TW202102852A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
Altintas et al. Integrated approaches toward high‐affinity artificial protein binders obtained via computationally simulated epitopes for protein recognition
TWI702399B (en) Linker of bioprobes
CN111122679B (en) DNA biosensor and preparation method and application thereof
KR100377946B1 (en) A Process for Preparing Monolayer by Using Dendrimer
Duman et al. A new approach for immobilization of oligonucleotides onto piezoelectric quartz crystal for preparation of a nucleic acid sensor for following hybridization
JP2007003439A (en) Manufacturing method of biosensor
TWI475228B (en) Antibody probe chip linking with electron-conducting anchoring molecule
Agarwal et al. Asymmetric immobilization of antibodies on a piezo-resistive micro-cantilever surface
WO2013176289A1 (en) Biological molecule detection device, and, biological molecule detection method
Hoi et al. Biofunctionalized silicon nitride platform for sensing applications
Henriksson et al. Functionalization of Oxide‐Free Silicon Surfaces for Biosensing Applications
Singh et al. DNA hybridization on silicon nanowires
TWI718053B (en) Linker of bioprobes
Cha et al. Quantitative analysis of H5N1 DNA hybridization on nanowell array electrode
Van et al. A highly sensitive impedimetric sensor based on a MIP biomimetic for the detection of enrofloxacin
EP4012409A1 (en) Linker of bioprobes
US20060134656A1 (en) Reduction of non-specific adsorption of biological agents on surfaces
CN114660139A (en) Linker for biological probes
JP5097495B2 (en) Biomolecule detection element and method for producing biomolecule detection element
Thirugnanasambandan Functionalization on sensing surfaces for efficient biomolecular capturing
JP2022099742A (en) Bioprobe linker
Garcia-Cruz et al. Efficient fabrication of poly (pyrrole)-nanowires through innovative nanocontact printing, using commercial CD as mold, on flexible thermoplastics substrates: Application for cytokines immunodetection
Blanchette et al. Tip functionalization: Applications to chemical force spectroscopy
Afrasiabi et al. Effect of microwave-assisted silanization on sensing properties of silicon nanoribbon FETs
Haarindraprasad et al. Spiked nanorosette: A novel zinc oxide‐gold textured nanostructure for impedance biosensing of target DNA signatures