TWI715921B - 阻抗匹配系統及其操作方法 - Google Patents
阻抗匹配系統及其操作方法 Download PDFInfo
- Publication number
- TWI715921B TWI715921B TW108103117A TW108103117A TWI715921B TW I715921 B TWI715921 B TW I715921B TW 108103117 A TW108103117 A TW 108103117A TW 108103117 A TW108103117 A TW 108103117A TW I715921 B TWI715921 B TW I715921B
- Authority
- TW
- Taiwan
- Prior art keywords
- impedance matching
- impedance
- matching network
- generator
- pulse
- Prior art date
Links
Images
Landscapes
- Plasma Technology (AREA)
Abstract
本發明提供一種阻抗匹配系統,其包括耦合在一交流電(AC)產生器與一電漿腔室的電極之間的一阻抗匹配網路。該AC產生器經組態以產生具有不同振幅位準之循環重現脈衝間隔的一多位準脈衝信號。一控制器或其他裝置識別各重現脈衝間隔,且對於各脈衝間隔,判定在該AC產生器與該等電極之間的一阻抗失配位準,根據所判定的該阻抗失配位準而調整該阻抗匹配網路之一組態,且儲存與經調整的該組態相關聯之資訊。當發生一隨後脈衝間隔時,該控制器自記憶體獲得所儲存資訊,根據該所儲存資訊而調整該阻抗匹配網路之該組態,判定在該AC產生器與該等電極之間的另一阻抗失配位準,且調整該阻抗匹配網路之該組態以反覆地降低該阻抗失配位準。
Description
本發明之態樣係關於放大器,且特定言之,係關於一種阻抗匹配系統及其操作方法。
在半導體製造之領域以及其他領域中,電漿腔室具有各種可能用途。舉例而言,電漿增強型化學氣相沈積(chemical vapor deposition;CVD)係用以使用電漿腔室來將薄膜沈積於基板上之製程。就高位準而言,射頻(radio frequency;RF)電源供應器在該腔室內自反應氣體產生電漿,且自該電漿在該腔室內之基板上發生沈積。為達成在RF產生器與電漿負載之間的高效電力傳送,阻抗匹配網路常常用以匹配負載阻抗(包括電漿之阻抗)與電源供應器之輸出阻抗。負載阻抗典型地係約50歐姆,但其會變化。舉例而言,電漿負載阻抗可取決於諸如產生器頻率、功率、腔室壓力、氣體組成物及電漿點燃之變數而變化。匹配網路藉由使電氣元件(典型地真空可變電容器)變化以將變化之負載阻抗匹配到產生器之輸出阻抗來考慮負載阻抗之此等變化。
電漿產生技術中之最近發展已涉及調整或以其他方式自訂電漿腔室中之電漿特性之RF能量的多位準脈衝,作為一個實例,電漿特性係時間相依行為。一般而言,多位準脈衝大體上涉及使用RF產生器之兩個或多個振幅位準來循環調整輸入至電漿腔室中之RF能量之強度位準,使得可跨所要時間段提供大部分電漿及到達基板之表面的電漿中的離子及自由基兩者的最佳概況。使用多位準脈衝電漿產生技術,可實現增強型蝕刻及CVD結果及其他各種益處。
根據一個具體實例,一種阻抗匹配系統包括耦合於一交流電(AC)產生器與一電漿腔室之一或多個電極之間的一阻抗匹配網路。該AC產生器經組態以產生包含具有不同振幅位準之循環重現之複數個脈衝間隔的一多位準脈衝信號。該系統亦包括一控制器,該控制器用以識別循環重現之該等脈衝間隔中之每一者,且對於各脈衝間隔,判定在該AC產生器與在該電漿腔室中而於該一或多個電極處所產生之一電漿負載之間的一阻抗失配位準,根據所判定的阻抗失配位準而調整該阻抗匹配網路之一組態,且在一記憶體中儲存與經調整組態相關聯之資訊。當發生一隨後脈衝間隔時,該控制器自該記憶體獲得所儲存資訊,根據該所儲存資訊而調整該阻抗匹配網路之該組態,判定在該AC產生器與該等電極之間的另一阻抗失配位準,且調整該阻抗匹配網路之該組態以反覆地降低該阻抗失配位準。
本發明之具體實例提供用於電漿腔室之阻抗匹配系統。系統對腔室內之至少一個電極產生多位準脈衝信號以點燃且維持電漿,且反覆地匹配各脈衝間隔之電漿負載的阻抗與所要阻抗值,所要阻抗值典型地係AC產生器之輸出阻抗。相比於連續波電漿處理,使用多位準脈衝信號之電漿產生技術提供對電漿腔室中之電漿能量位準的改良型自訂。然而,各脈衝間隔與電漿負載之精確阻抗匹配係具有挑戰性的。藉由識別多位準脈衝信號之個別脈衝間隔,且對於各脈衝間隔獲得在先前間隔時針對彼脈衝產生之電子開關式阻抗匹配網路(例如,用以提供所要阻抗之開關式元件的組合)的組態,且運用開關元件之所獲得組合來對阻抗匹配網路進行組態,本發明之具體實例提供此阻抗匹配以及其他優點。在脈衝間隔期間,系統量測當前阻抗失配位準,且反覆地調整阻抗匹配網路之組態以降低阻抗失配位準,且在記憶體中儲存經反覆調整之組態來在後續間隔中設定阻抗匹配網路。
大體而言,多位準脈衝涉及循環調整用以產生電漿之RF能量之強度位準。在一個可能實例中,在本文中被稱作RF產生器之電源供應器產生RF範圍內之交流電功率,其將包括RF能量之兩個或多個振幅位準(多位準脈衝),以運用自由基、中性物、帶電物種等等之所要混合在腔室中產生電漿及相關聯處理環境。大體而言,阻抗匹配係設計電力負載之輸入阻抗或其對應信號源之輸出阻抗以最大化至負載之電力傳送及/或最小化自負載之信號反射的實踐,及其他可能優點。在脈衝RF能量環境中,阻抗匹配特別地具有挑戰性,因為不同脈衝位準引起由電漿及腔室環境之改變特性所驅動之負載阻抗的變化。
脈衝(例如,調變)AC功率電漿產生相比於以其他方式之習知連續波(continuous wave;CW)電漿處理帶來許多優勢。已展現脈衝功率遞送以提供多個唯一處理能力,包括調整離子與中性物混合比率及降低高能帶電物種至精密基質之通量。多位準脈衝相比於習知脈衝(例如,開至關)提供額外優點,原因在於不必需要「關斷」條件,且允許電漿保持在整個處理進展中處於激勵狀態(例如藉由自低功率脈衝至高功率條件),因此尤其藉由自關斷條件消除再點燃來提供增強之穩定性。多位準脈衝之其他優點亦可包括更精細地調諧物種混合比率且更有效地控制帶電物種之內容物及能量。
如已提及,任何脈衝功率應用面臨之一個挑戰係阻抗匹配。向電漿脈衝功率產生極動態環境,其中由電力產生器經歷之負載阻抗可歸因於電漿對調變功率之回應而高度瞬變。多位準脈衝修改此情形,原因在於電漿可能不會在「關斷」或「低」狀態條件下完全衰減,但仍然會在密度上經歷潛在地之顯著波動及對電力產生器所表示之所得阻抗。
在多位準脈衝中,存在不僅產生兩個唯一電漿狀態(「高」及「低」)而且在理論上產生一系列狀態之可能性,各狀態表示自由基、中性物、帶電物種等等之唯一且潛在地合乎需要的混合。因為各狀態可表示唯一電漿阻抗條件,所以若匹配電路並不充分地敏捷以調諧至唯一狀態中之每一者,則有效率地向各條件遞送功率之能力將受到損害。用於脈衝功率操作之習知阻抗匹配技術已包括過濾方法或同步量測技術,以補償阻抗匹配系統之大體上緩慢、機械驅動的可變電容器,因此允許該等電容器針對時間平均化「接通」條件到達大體上「經調諧」解決方案。
在許多狀況下,多位準脈衝信號包括各自持續大致50.0毫秒或更長之兩個或多個重現脈衝間隔。已開發出習知阻抗匹配網路以反覆地調整產生器與電漿腔室之間的阻抗匹配位準,但此等習知阻抗匹配網路典型地需要多於1秒以調整機械設計中之阻抗,且需要多於200毫秒以調整電子開關式設計之阻抗。因此,由於脈衝間隔與相關聯電漿之間的顯著時差改變,且習知匹配之時間更長,所以多位準脈衝電漿功率信號之有效阻抗匹配仍保持難以理解。
圖1A及圖1B說明根據本發明一個具體實例之結合在本文中論述之其他組件與阻抗匹配系統100一起操作以產生且控制電漿腔室內之電漿104之電漿腔室102的實例。電漿腔室102包括其中產生且含有電漿104之罩殼。晶圓106或其他基板亦在腔室內,來自電漿之原子及其他粒子沈積於該基板上。儘管在沈積之內容背景中論述,但本文中論述之系統可與包括蝕刻之其他製程一起使用。一或多個產生器耦合至腔室內之電極以在電極之間產生場以點燃且控制電漿。阻抗匹配網路110定位於一或多個產生器與多個電極之間。電漿系統亦包括用於量測阻抗失配位準之一或多個感測器114。感測器說明整合於電源供應器內,但亦可處於電源供應器與腔室之間的功率遞送路徑中之其他位置處。功率遞送路徑包括產生器自身連同纜線、匹配網路及到腔室電極之導電饋入。電漿腔室102亦可包括泵130,其在電漿腔室內產生真空且亦可自腔室抽空材料。舉例而言,在CVD製程中,在電漿腔室102內置放晶圓106,且藉由RF產生器108a在腔室內產生電磁場以激發腔室內之氣體來形成電漿104。電漿可被視為不穩定負載,當由如本文所論述之多位準脈衝驅動時尤其如此,且因此需要精確控制腔室內所產生之場之能量以控制電漿。電漿腔室102亦可包括用於耦合至阻抗匹配網路110中之任一者的偏壓電極109。
電漿腔室102可係能夠產生電漿之任何類型。在第一實例(圖1A)中,所說明電漿腔室102包括驅動頂部電極或在此狀況下線圈而主要以產生大部分電漿104之RF產生器108a(電漿源)、及中頻(MF)產生器108b(例如,100 kHz至2 MHz)、及驅動偏壓電極而主要以向晶圓106之表面遞送可控制電壓的高頻(HF)產生器108c(例如,2 MHz至27 MHz)。電漿源極大地促成帶電物種(離子及電子)以及大部分的腔室體積中存在之自由基及中性反應性物種的組成物。饋入至偏壓電極之MF及HF功率亦促成此等組成物,但其主要目的係控制晶圓上之表面電位(106)。在替代性具體實例中,實例電漿腔室102可經組態有微波或電子迴旋共振(electron-cyclotron resonant;ECR)電漿源(或其他電漿源)來替代RF產生器驅動之電漿源。
在第二實例(圖1B)中,所說明電漿腔室不具有RF產生器及相關聯匹配網路及頂部電極。在此實例中,極高頻(VHF)產生器108d(例如,大於27 MHz)用以藉由將VHF能量耦合至偏壓電極來產生大部分電漿104。中頻(MF)產生器108b(例如,100 kHz至2 MHz)與高頻(HF)產生器108c(例如,2 MHz至27 MHz)在偏壓電極上組合。在此狀況下,大部分的電漿密度主要由VHF產生器所賦予之VHF能量產生。且類似於圖1A,來自MF及HF產生器之MF及HF能量分別在晶圓106之表面上遞送可控制電壓。VHF能量在此實例中極大地促成帶電物種(離子及電子)以及大部分的腔室體積中存在之自由基及中性反應性物種的組成物。
在處理期間操縱功率至各電極影響存在於電漿中之物種的組成物、密度及能量。如上文所陳述,至任何或所有電極之功率的脈衝調變提供控制或修改電漿參數以達成所要處理行為的其他能力。RF、MF、HF及VHF標示用以大體上指代各種信號之間的頻率差,且並不意欲為限制性的。取決於背景內容及廣義解釋,各種所敍述頻帶可被視為落入射頻頻譜內,且因此本說明書可將各種產生器統稱作RF產生器。一般而言,在圖1A及圖1B兩者中,系統包括HF產生器及MF產生器兩者,且一般而言更高頻率更大地促進電漿密度產生。因此,舉例而言,在如圖1B中所展示之腔室中,在頂部安裝電極未充當「電漿源」之情況下,可向偏壓電極添加VHF以充當主要電漿形成源。其他具體實例當然係可能的;舉例而言,HF或VHF產生器可應用於頂部電極,且HF及MF產生器或僅MF產生器可與偏壓電極耦合。更低頻率至偏壓電極用以在晶圓表面上賦予表面電位以將離子(或電子)汲取至晶圓。表面上產生之電位判定到達離子的能量,且因此在兩個組態中,對於電漿形成及離子能量到達表面存在某一程度上之獨立控制。圖1A及圖1B中展示之實例產生器組態係典型的,但其他配置係可能的。
應瞭解,本發明之原理可應用於具有任何類型及數量之RF產生器的電漿腔室。在所說明系統中,提供第一匹配網路110a來匹配RF產生器108a之阻抗與電漿負載,且提供第二匹配網路110b來匹配RF產生器108B至108d之阻抗與電漿負載。根據本發明之具體實例,阻抗匹配系統100包括控制器116,其控制阻抗匹配網路110中之任一者之組態以反覆地調整在產生器108中之至少一者與電漿負載之間的阻抗匹配位準。可藉由自記憶體118獲得阻抗匹配網路的組態紀錄124來達成控制。阻抗匹配網路的組態紀錄124表示在先前脈衝間隔所產生之阻抗匹配網路110的組態,且此組態紀錄124用以調整阻抗匹配網路110之組態。接下來,系統量測當前阻抗失配位準,且反覆地調整阻抗匹配網路之組態以降低未來脈衝間隔之阻抗失配位準。亦即,經調整組態可接著儲存於記憶體中,或用以僅修改脈衝之紀錄,以使得經調整組態可用於隨後脈衝間隔。大體而言,阻抗匹配係設計電力負載之輸入阻抗或其對應信號源之輸出阻抗以最大化電力傳送及/或最小化自負載之信號反射的實踐。
控制器116用以控制阻抗匹配網路110之操作,且更特定而言用以動態地對一系列元件進行組態以將電源供應器之輸入阻抗與電漿負載匹配。控制器116包括處理系統120,其可包括執行儲存於記憶體(例如,電腦可讀取媒體)118中之指令以控制阻抗匹配網路110之操作的一或多個處理器。在其他具體實例中,預期控制器116可以其他特定形式體現,諸如使用離散及/或積體類比電路、場可程式化閘陣列(FPGA)、特殊應用積體電路(ASIC)或其任何組合。儘管控制器116展示為與系統100之其他元件分離,但應瞭解到,控制器116可組態於產生器108中之任一者或其組合及/或阻抗匹配網路110中。
該一或多個處理器可處理機器/電腦可讀取可執行指令及資料,且記憶體118可儲存機器/電腦可讀取可執行指令。處理器係硬體且記憶體係硬體。組態於控制器116中之記憶體118可包括隨機存取記憶體(RAM)及/或其他非暫時性記憶體,例如諸如一或多個隨身碟或硬碟機之非暫時性電腦可讀取媒體。非暫時性記憶體可包括任何有形電腦可讀取媒體,包括例如磁碟及/或光碟、隨身碟等。記憶體118儲存阻抗匹配網路的組態紀錄124,其可包括由產生器108產生之各脈衝間隔的紀錄;及所量測阻抗位準紀錄126,其表示在各脈衝間隔內所量測之一或多個所量測阻抗值。將在本文中在下文詳細描述系統之操作,包括阻抗匹配網路的組態紀錄124及所量測阻抗位準紀錄126之功能及目的。
圖2A及圖2B說明自RF電力產生器108中之任一者或其一組合發射之實例多位準脈衝信號200及210。大體而言,圖2A之多位準脈衝信號200包括兩個重現的脈衝間隔202及204,其中各間隔具有RF頻率及不同振幅,而圖2B之多位準脈衝信號210包括三個重現的脈衝間隔212、214及216,其中三個脈衝中之每一者具有不同振幅。儘管僅展示具有兩個及三個脈衝間隔之多位準脈衝信號及各離散間隔以及在重複週期時發生之脈衝間隔的序列,但應理解,本發明具體實例可擴展至其他脈衝配置,且應用於具有多於三個重現脈衝間隔、不同振幅、週期或在不同間隔或週期處發生之振幅組合等的其他多位準脈衝信號。系統可具有此類多脈衝信號之各種可能組合,且所展示且論述集合僅說明性的。
可以任何適合方式控制各脈衝間隔202及204或212、214及216之振幅。舉例而言,可控制產生器108來以循環重現方式調整多位準脈衝信號之輸出振幅。另外,系統可調整各脈衝持續時間及對應振幅。舉例而言,產生器108可包括閘控電路以將產生器108之輸出限於特定振幅位準。作為另一實例,產生器108可包括控制器,其操縱產生器108之回饋迴路以控制其輸出振幅。
歸因於由多位準脈衝信號200及210中之任一者之離散脈衝引起之電漿改變,電漿腔室102內部展現之阻抗位準將改變。舉例而言,電漿104之阻抗可在電漿位準由於增加之功率振幅而增大時減小,並在電漿位準由於減小之功率振幅而減小時增大。另外,電漿位準之瞬變性質受脈衝間隔之改變速度所影響。因此,管理阻抗匹配位準可以是相對困難的工作。藉由反覆地調整阻抗匹配網路110在各脈衝間隔202、204、212、214及216之組態以使得可最佳地獲得阻抗位準匹配,本發明之具體實例提供此等挑戰之解決方案。
大體而言,控制器116控制阻抗匹配網路110,以藉由在各脈衝間隔期間反覆地調整阻抗匹配網路110之組態來補償電漿104之阻抗的改變。可藉由自記憶體118獲得阻抗匹配網路的組態紀錄124來反覆地調整組態,此紀錄包括在先前脈衝間隔產生之阻抗匹配網路110之組態的表示,使用組態紀錄124以調整阻抗匹配網路110之組態,量測當前阻抗失配位準,且調整阻抗匹配網路之組態以藉由儲存用於下一脈衝之新紀錄來降低未來脈衝間隔之阻抗失配位準。亦有可能在脈衝期間進一步調整阻抗匹配網路以考慮偵測到之失配且降低失配位準。控制器116識別多位準脈衝信號200或210之各種脈衝間隔,且將其操作同步於多位準脈衝信號以使得在各脈衝間隔期間可反覆地匹配來自匹配網路的阻抗與電漿之阻抗。系統100使用電子開關式匹配技術來調諧阻抗匹配網路110。電子開關式匹配電路具有準確地調諧至針對多位準脈衝操作所考慮之各功率位準的能力。另外,運用恰當地設計之控制電子裝置,匹配電路有能力自一個匹配狀態快速切換至下一匹配狀態(例如,在一微秒或更短時間內),藉此允許自一個脈衝間隔至下一脈衝間隔來同步且準確地定位匹配元件。使用此方法,存在多個唯一調諧位置,且因此可設計出多位準脈衝製程,且多位準脈衝製程恰當地以眾多脈衝功率位準操作。
當晶圓106安置於電漿腔室102內,且氣體引入至電漿腔室102中時,AC產生器108中之至少一者產生點燃腔室中之電漿的多位準脈衝振幅信號,諸如多位準脈衝信號200或210。當在操作中時,控制器116識別多位準脈衝信號的重現脈衝間隔中之每一者,且對於各脈衝間隔,獲得當前脈衝間隔之阻抗匹配網路110之組態紀錄124,且將阻抗匹配網路110設定成在彼脈衝間隔內儲存之組態紀錄124。控制器116亦針對各脈衝及後續脈衝持續地量測阻抗失配位準,以反覆地調整阻抗匹配網路110之組態以在電漿腔室之操作期間補償阻抗失配位準。可使用定位於匹配網路及/或RF產生器中之感測器來量測電漿之阻抗。適合之感測器的實例可包括電壓/電流(V/I)感測器或方向耦合器。在一些狀況下,藉由量測前向能量位準及反射能量位準,且將前向能量位準除以反射能量位準以判定阻抗失配位準量值連同與前向能量及反射能量相關聯之相位資訊,而可判定阻抗失配位準。
圖3說明根據本發明一個具體實例之阻抗匹配網路110之可經實施以供由阻抗匹配系統100使用的實例阻抗匹配電路部分300。實例阻抗匹配電路部分300包括耦合於輸入304與接地節點306之間的一或多個分流電路302、及耦合於輸入304與輸出310之間的一或多個串聯電路308。輸入304耦合至AC產生器108,而輸出310耦合至電漿腔室中之電極112中的一者。阻抗匹配電路部分300亦可包括耦合於串聯電路308與輸出310之間的電感帶312。兩個分流電路302彼此配置於平行組態中,而四個串聯電路308彼此配置於平行組態中。儘管阻抗匹配電路部分300展示為具有兩個分流電路302及四個串聯電路308,但應理解,在不脫離本發明之精神及範圍的情況下,其他具體實例可包括多於或少於兩個分流電路302及/或多於或少於四個串聯電路308。
各分流電路302包括電容器314及開關316,而各串聯電路308包括兩個電容器318及開關320。控制器116可啟動開關316及320以使分流電容器314之某一組合接地,且在輸入304與輸出310之間置放串聯電容器318之某一組合。因為分流電路302配置於平行組態中,所以藉由選擇性地致動分流電路302之開關316中的每一者,可產生在輸入304處所引入之多位準脈衝信號至接地節點306的漸增電容耦合。以同樣的方式,因為串聯電路308配置於平行組態中,所以藉由選擇性地致動串聯電路308之開關320中的每一者,可產生多位準脈衝信號至輸出310之漸增電容耦合。
舉例而言,若一個分流電路302之電容器314的電容值係0.1微法拉(μF)且另一分流電路302之電容器314的電容值係0.2 μF,則可基於如何獨立地致動開關316而將多位準脈衝信號至接地節點306之漸增電容耦合調整為0.1 μF、0.2 μF及0.3 μF。另外,若一個串聯電路308之電容器318的電容值係0.1 μF,則另一串聯電路308之電容器318的電容值係0.2 μF,另一串聯電路308之電容器318的電容值係0.4 μF,且另一串聯電路308之電容器318的電容值係0.8 μF,接著可基於如何獨立地致動開關320而在0.1 μF與1.5 μF之間以0.1 μF遞增來調整位準脈衝信號至接地節點306之漸增電容耦合。
功率遞送路徑內之電容器314及318的存在將其呈現為產生器經歷之負載阻抗的一部分。電容器以並聯、串聯或並聯及串聯配置之各種組合係可能的以適應各種可能的阻抗匹配情形。將電容器314及318切換成進入或離開傳遞路徑引起接著經受誤差量測的負載阻抗改變,誤差量測基於實際所量測負載阻抗及所要或目標負載阻抗(例如,典型地係50歐姆及/或等於產生器之輸出阻抗或其他所要目標阻抗值)。因此,藉由恰當地量測阻抗且控制阻抗,系統可將各種元件組合切換進或出以減少此誤差,且將由產生器經歷之負載阻抗變換成等於或充分地接近產生器之輸出阻抗。實現此將減少失配且降低功率經遞送至電漿的反射係數。
在一個具體實例中,開關316及320包含正本徵負(positive intrinsic negative;PIN)二極體。PIN二極體係包括在p型半導體與n型半導體區之間的相對寬且未摻雜的本徵半導體區之二極體。由於相對低開關電容位準,寬本徵區使得PIN二極體適用於衰減器、快速開關、光偵測器、及高電壓大功率電子設備應用。因此,經組態有PIN二極體之阻抗匹配電路部分300擁有相對快之切換時間,且因此可較適用於藉由控制器116接通及關斷分流電路302及串聯電路308。PIN二極體在相對短時間框中執行此操作,此將在與常常以短持續時間內在脈衝間隔之間切換之多位準脈衝信號一起使用時係有益的。
圖4說明根據本發明一個具體實例之實例控制器116及阻抗匹配網路110中之與阻抗匹配網路的介面電路部分402相關聯的控制器。大體而言,介面電路部分402包括用於阻抗匹配電路部分300中所包含之各開關316及320的多個控制信號整形電路404。儘管介面電路部分402展示為具有六個控制信號整形電路404,但應理解到在不脫離本發明之精神及範圍的情況下,其他具體實例可包括多於六個控制信號整形電路404或少於六個控制信號整形電路404。
各控制信號整形電路404自控制器116接收控制信號406,以選擇性地施加來自高電壓源408之可以是例如1500伏特或其他適合電壓位準的電能。另外,提供電路供應電壓源410以為控制器116及控制信號整形電路404提供工作電壓。各控制信號整形電路404包括將由控制器116提供之控制信號406緩衝至隔離變壓器416之緩衝閘414。隔離變壓器416將尤其標準化被提供至電晶體418之控制信號之DC分量的控制信號406平滑化,及/或移除控制信號之雜散高頻分量,且將經平滑化控制信號提供給電晶體418之輸入。可將隔離變壓器416提供至電晶體418之輸入,以在控制信號406處於邏輯低位準時安全地移除高電壓源408之高電壓輸出。儘管出於簡潔及論述清晰之目的而僅展示一個控制信號整形電路404之組件,但其他控制信號整形電路404可包括與在本文中所展示之電路類似的電路。介面電路部分402亦可包括偏壓電路420及風扇422。偏壓電路420在指定位準下使高電壓源408及電路供應電壓源410偏壓,指定位準在此特定實例中係大致24伏特DC。
在實例控制器116及與阻抗匹配網路的介面電路部分402相關聯之控制器中使用的控制電路係針對相對高RF功率應用所設計之系統的部分。因此,控制PIN二極體之功能所需的偏壓電壓必須充分地高以減少RF信號通過電路的影響。在高功率應用中,此RF電壓可為數百伏特。在例示性電路中,可實施1500伏特之DC偏壓信號以確保PIN二極體開關之恰當操作。在RF電壓可能更小之較低功率應用中,具有更低電壓之偏壓控制信號可能係足夠的。在本文中所說明之一些實例中,使用PIN二極體開關;然而,本發明之態樣可包括其他適合之開關、及相關電路及機構。
介面電路部分402亦可包括:外部的計算系統介面426,諸如RS-232信號介面;及/或手動介面428,其用以接收用於修改控制器116之操作的指令。另外,計算系統介面426可用以接收表示由AC產生器108產生之多位準脈衝信號200或210的同步信號。舉例而言,同步信號可由產生器108產生,以每當在一個脈衝間隔結束且隨後脈衝間隔開始的持續時間內產生短脈衝(例如,大致2微秒),以使得控制器116可使其操作與AC產生器108之操作同步。
儘管圖3及圖4說明阻抗匹配電路部分300及阻抗匹配網路110之可藉由阻抗匹配系統100實施之阻抗匹配網路的介面電路部分402之控制器的實例,但應理解到在不脫離本發明之精神及範圍的情況下,可實施阻抗匹配電路部分300及阻抗匹配網路的介面電路部分402之控制器的其他具體實例。舉例而言,可使用將AC產生器108之源阻抗與電漿腔室102中之電極112之負載阻抗進行匹配的任何適合匹配網路拓樸來實施阻抗匹配電路部分300。
圖5說明根據本發明一個具體實例之可由控制器116執行以反覆地調整經實施以用於電漿腔室102中之多位準脈衝信號200或210之各脈衝間隔之阻抗位準的實例程序500。首先,在電漿腔室102內部安置晶圓106,接著將電漿材料引入至電漿腔室102中。
在步驟502處,管理AC產生器108中之至少一者以產生多位準脈衝信號,諸如圖2A之多位準脈衝信號200或210、或者是圖2B之多位準脈衝信號200或210。在一個具體實例中,多位準脈衝信號可由RF產生器108a、中頻(MF)產生器108b、高頻(HF)產生器108c或極高頻(VHF)產生器108d中之任一者來產生。
在步驟504處,控制器116識別多位準脈衝信號之重現脈衝間隔中的每一者。在一個具體實例中,控制器116自AC產生器108接收指示各脈衝間隔之開始的同步信號。在另一具體實例中,控制器116自功率遞送路徑中組態之各感測器114接收感測器資訊以偵測各新脈衝間隔之開始。舉例而言,控制器116可判定當來自感測器114之用以量測脈衝振幅的信號增大或減小時,AC產生器108產生新脈衝。控制器116可使用此資訊以判定多位準脈衝信號中之各新脈衝間隔的開始。在又另一個具體實例中,控制器116自用於將同步信號饋送至匹配網路及電源供應器兩者之外部脈衝產生器接收同步信號。
在步驟506處,控制器116獲得用於當前脈衝間隔之阻抗匹配網路110的組態紀錄124。如上文所論述,當先前使用相同脈衝類型且進行阻抗量測以評估在阻抗之間的任何失配且調整待在下一脈衝內使用之組態設定時,可能已判定當前脈衝之阻抗匹配網路的組態。舉例而言,若當前脈衝間隔係多位準脈衝信號之三個總脈衝間隔中的第二個,則控制器116可存取在第二脈衝間隔之先前使用期間針對第二脈衝間隔所判定之組態紀錄124。若在控制器之記憶體118中不存在彼脈衝間隔之組態紀錄124(例如,在初始啟動期間),則控制器116可使用標稱基線組態以起始反覆序列。使用配置於匹配網路及/或RF產生器中之感測器來即時地量測電漿之阻抗。如上文所論述,作為實例,感測器可係V/I感測器或方向耦合器。仍然,本發明之具體實例不應受到用於收集阻抗數據之感測器的選擇、置放或類型所限制。匹配網路及/或RF產生器可用作用於匹配之主要參考。一個特定方法係集中化量測及控制,其諸如在量測可有效率地與脈衝活動同步之產生器中。
在步驟508處,控制器116根據在彼脈衝間隔內儲存之組態紀錄124而設定阻抗匹配網路110。此後在步驟510處,控制器116根據電漿104在針對彼脈衝間隔所指定之振幅位準及阻抗匹配網路110之組態下之激發,來判定腔室之阻抗失配位準。在一個具體實例中,控制器116可自一或多個感測器114接收量測信號且自所量測信號判定阻抗失配位準。舉例而言,感測器114可包括量測可由控制器116使用以判定阻抗失配位準之前向及反射功率的駐波測定器。複雜阻抗量測提供失配之量值及相角兩者。
在步驟512處,控制器116反覆地調整阻抗匹配網路110之組態以補償阻抗失配位準。控制器116可以任何適合方式調整阻抗匹配網路110之組態。在一個具體實例中,控制器116可藉由內插或外插所量測阻抗位準與所要阻抗位準來調整阻抗匹配網路110之組態。在另一具體實例中,藉由收集且儲存各脈衝間隔之多個循環(例如,持續時間)的所量測阻抗位準且使用時間平均化技術(其中控制器116使用多個先前所量測之阻抗位準的平均值以調整阻抗匹配網路110之組態),控制器116可調整阻抗匹配網路110之組態。使用時間平均化技術之某些具體實例可提供優點,原因在於歸因於可在電漿腔室中所引發之不斷改變條件,多個阻抗位準之平均化可提供更平滑之阻抗位準移位。
舉例而言,若控制器116判定AC產生器108之源阻抗係50.0歐姆且終端112之負載阻抗係70.0歐姆,則其可調整阻抗匹配網路110以使得終端112結合阻抗匹配網路110之戴維寧等效阻抗處於或接近50.0歐姆。
在一個具體實例中,控制器116可根據自感測器114偵測到之阻抗失配的位準及類型,來操控圖3中所展示之阻抗匹配網路300的開關316及320。舉例而言,若控制器116判定所量測阻抗位準過低,則其可操控串聯電路308之開關320以補償低阻抗位準,且相反地,若控制器116判定所量測阻抗位準過高,則其可操控串聯電路308之開關320以補償高阻抗位準。仍然,應瞭解到亦可藉由同時操控串聯電路308之開關320及分流電路302之開關316兩者來調整阻抗位準。在簡化實例中,若控制器116量測到值為52歐姆之負載阻抗,且AC產生器之源阻抗係50歐姆,則控制器可選擇分流電容器314一組合,其在被切換至匹配網路中時有效地與輸出310並聯耦合,以使得輸入304處存在之阻抗根據2πfC而係50歐姆,其中f係操作頻率,且C係分流電容器314之組合電容。實際上,阻抗匹配電路提供2歐姆阻抗以使源與負載匹配。關於阻抗匹配之其他細節可見於由先驅能源工業公司於1992年的SL-WHITE18-270-01發佈之在www.advanced-energy.com可獲得之標題為「Impedance Matching(阻抗匹配)」的白皮書中,該白皮書特此以引之方式併入本文中。
在步驟514處,控制器116在記憶體中儲存阻抗匹配網路110之新調整組態作為組態紀錄124,以由控制器116使用而在將來時間使用到時反覆地調整當前脈衝間隔之阻抗位準。此後,控制器116在步驟516處等待多位準脈衝信號之下一脈衝持續時間的開始。亦即,當下一脈衝間隔開始時,處理在步驟506處繼續進行以處理且反覆地調整彼下一脈衝間隔之阻抗位準。
按各脈衝間隔之進行中的間隔重複進行步驟506至514之步驟,以持續調整由AC產生器108產生之各脈衝間隔的阻抗位準。儘管如此,當不再需要或期望阻抗匹配系統100之使用時,該程序結束。
儘管圖5描述可由控制器116執行以在多位準脈衝信號之各脈衝間隔內持續適應電漿腔室102之有效阻抗之程序的一個實例,但所記載程序之特徵可以其他特定形式體現而不偏離本發明之精神及範圍。舉例而言,控制器116可比如在本實例中所描述之彼等操作執行額外、更少或不同操作。作為另一實例,本文中所描述之程序的步驟可由阻抗匹配系統100外部之控制器執行,該控制器可係例如亦控制實施於電漿腔室102上之一些、大多數或所有AC產生器108之操作的單一計算系統。
圖6說明根據本發明一個具體實例之可由AC產生器108產生之實例多位準脈衝信號602及表示由於被施加至電漿腔室之電極之多位準脈衝信號所產生的相關聯阻抗失配波形604。如所說明,多位準脈衝信號600包括分別具有不同振幅AMP1
及AMP2
之兩個循環重現的脈衝間隔606及608。
首先,在時間t0
,控制器116控制AC產生器108以在第一振幅A0
下產生脈衝間隔606。在脈衝間隔606期間,控制器116自感測器114接收信號,且自接收之信號判定阻抗失配位準。阻抗失配位準一般係指AC產生器108之源阻抗與終端112之負載阻抗的差。以圖形方式相比於目標阻抗610,阻抗失配由與各相應脈衝606及608之失配相關之阻抗失配波形604A與604B之間的差說明。控制器116選擇經啟動以降低阻抗失配位準之分流電路302與串聯電路308的某一組合,且隨後啟動所選分流電路302及串聯電路308。結果,阻抗失配減小,如由第一脈衝間隔606A期間之實線部分的阻抗失配波形604說明。在一些實施方案中,控制器116可根據針對電漿腔室所指定之某一指定頻率回應(例如,迴路頻率)特性而降低阻抗失配位準。因此,控制器116不嘗試使阻抗失配在一個脈衝間隔中達到0.0;而實際上調整分流電路302及串聯電路308以跨可由電漿腔室引發之某些條件而根據維持穩定性之所要頻率回應來減少阻抗失配。
在特定實例中,若控制器116判定AC產生器108具有50歐姆之源阻抗並且終端112具有60歐姆之負載阻抗,則可致動分流電路302中之一或多者以減小如由AC產生器108所見之組合式負載阻抗與阻抗匹配網路110的阻抗。相反地,若控制器116判定AC產生器108具有50歐姆之源阻抗並且終端112具有40歐姆之負載阻抗,則可致動串聯電路302中之一或多者以增大如由AC產生器108所見之組合式負載阻抗與阻抗匹配網路110的阻抗,。另外,控制器116在記憶體118中儲存與分流電路302及串聯電路308之所選組合相關聯之資訊作為組態紀錄124(A0
)。
在時間t1,控制器116控制AC產生器108以在第二振幅AMP2
下產生脈衝間隔608A。此間隔緊跟在第一脈衝間隔606A之後。在脈衝間隔608A期間,控制器116自感測器114接收信號,且自接收到之信號判定阻抗失配位準。控制器116接著選擇可經啟動以降低阻抗失配位準之分流電路302與串聯電路308的某一組合,且隨後啟動所選分流電路302及串聯電路308。結果,阻抗失配減小,如由脈衝間隔608A期間之阻抗失配波形608B的實線部分所說明。另外,控制器116在記憶體118中儲存與分流電路302及串聯電路308之所選組合相關聯之資訊作為組態紀錄124(B0
)。
在時間t2,控制器116控制AC產生器108以在第一振幅AMP1
下產生諸如由控制器116在圖5之步驟502處所執行的脈衝間隔606B(例如,循環重現之脈衝間隔)。在脈衝間隔606B期間,控制器116獲得脈衝間隔606之識別,如上文圖5之步驟504所描述,獲得在時間t0
開始之第一脈衝間隔606A期間所回存之組態紀錄124(A0
),如上文參考圖5之步驟506所描述,且使用儲存於組態紀錄124(A0
)中之資訊來啟動分流電路302與串聯電路308之組合。如可見,脈衝608B之阻抗失配在相同振幅之先前脈衝606A的結束位準下開始。控制器116接著自感測器114接收信號,且自接收到之信號阻抗失配位準,如上文參考圖5之步驟510所描述。控制器116接著選擇分流電路302與串聯電路308之一組合以降低阻抗失配位準,如上文參考圖5之步驟512所描述,且隨後啟動所選分流電路302及串聯電路308。結果,進一步降低阻抗失配波形604A(由脈衝間隔608B期間之實線表示)。
控制器116接著在記憶體中儲存新調整之組態(A1
)作為組態紀錄,如上文參考圖5之步驟514所描述,且等待在時間t3開始之下一脈衝間隔的開始,如上文參考圖5之步驟516所描述。
在時間t3,控制器116控制AC產生器108以在第二振幅AMP2
下產生脈衝間隔608B,如上文參考圖5之步驟502所描述。在第二振幅AMP2
下之第二脈衝間隔608B期間,控制器116獲得在時間t1開始之脈衝間隔608A期間所儲存之組態紀錄124(B0
),如上文參考圖5之步驟506所描述,且使用儲存於組態紀錄124 (B0
)中之資訊來啟動分流電路302與串聯電路308之組合。如所展示,第二脈衝608B之失配在第一脈衝608A結束之位準下開始。控制器116接著自感測器114接收信號,且自接收到之信號阻抗失配位準,如上文參考圖5之步驟510所描述。控制器116接著選擇可經啟動以進一步降低阻抗失配位準之分流電路302與串聯電路308的反覆組合以降低阻抗失配位準,且隨後啟動所選分流電路302及串聯電路308,如上文參考圖5之步驟512所描述。結果,進一步降低阻抗失配波形604B,如由脈衝608B期間之實線展示。
控制器116以如上文所描述之類似方式持續處理隨後脈衝間隔606C、606D及608C及608D,以反覆地減少在AC產生器108與電漿腔室之間的阻抗失配。如所說明,兩個失配位準接近目標位準610,其中當失配604A或604B與目標位準610對準時,以圖形方式描繪匹配。在圖6中所描繪之實例中,在時間t5
發生一個振幅(606A、606B等等)之脈衝的匹配,而在時間t6
發生兩個脈衝(608A、608B等等)之振幅的匹配。在各脈衝之後續間隔期間,使用相應脈衝606及608之組態紀錄A2
及B2
,此係因為相關聯匹配電路組態與匹配條件相關聯。在各脈衝期間發生反覆匹配之週期被視為主動調諧,而此週期爾後被視為維持匹配條件。
儘管展示且描述具有兩個循環重現脈衝間隔之多位準脈衝信號,但應理解到本發明之具體實例可應用於具有多於兩個重現脈衝間隔之其他多位準脈衝信號。亦即,在不脫離本發明之精神及範圍的情況下,控制器116可用以減少具有任何數量個循環重現脈衝間隔之多位準脈衝信號的失配阻抗。對於各種可能數目個循環可能發生主動調諧,直至發生匹配條件為止。可監測匹配維持,且可在產生失配之情況下重新發生主動調諧。
以上描述包括體現本發明之技術的實例系統、方法、技術、指令序列及/或電腦程式產品。然而,應理解到所描述之記載內容可在無此等具體細節之情況下加以實踐。
在本發明中,所記載方法可實施為可由裝置讀取之指令或軟體的集合。另外,應理解到所記載方法中的步驟之特定次序或階層係實例方法之例子。基於設計偏好,應理解到方法中的步驟之次序或階層可重新排列,同時保持在所記載主題內。隨附方法技術方案以樣本次序呈現各種步驟之要素,且未必意謂限於所呈現特定次序或階層。
所描述記載內容可提供為可包括具有儲存於其上之指令的機器可讀取媒體的電腦程式產品或軟體,該等指令可用以程式化電腦系統(或其他電子裝置)以執行根據本發明之程序。機器可讀取媒體包括用於儲存呈可由機器(例如,電腦)讀取之形式(例如,軟體、處理應用程式)之資訊的任何機構。機器可讀取媒體可包括但不限於磁性儲存媒體(例如,硬碟驅動機)、光學儲存媒體(例如,CD-ROM);磁光學儲存媒體、唯讀記憶體(ROM);隨機存取記憶體(RAM);可擦除可程式化記憶體(例如,EPROM及EEPROM);快閃記憶體;或適用於儲存電子指令之其他類型的媒體。
舉例而言,圖7係說明可用於實施本發明之具體實例之主機或電腦系統700之實例,諸如如圖3B中所展示之控制器116,的方塊圖。電腦系統(系統)包括一或多個處理器702至706。處理器702至706可包括一或多個內部層級之快取記憶體(圖中未示),及匯流排控制器或匯流排介面單元,以直接與處理器匯流排712交互。處理器匯流排712亦稱為主匯流排或前側匯流排,其可用於將處理器702至706與系統介面714耦合。系統介面714可連接至處理器匯流排712,以使電腦系統700之其他組件與處理器匯流排712介接。舉例而言,系統介面714可包括用於使主記憶體716與處理器匯流排712介接之記憶體控制器713。主記憶體616典型地包括一或多個記憶卡及控制電路(圖中未示)。系統介面714亦可包括輸入/輸出(I/O)介面720以將一或多個I/O橋接器或I/O裝置與處理器匯流排712介接。諸如I/O控制器728及I/O裝置730之一或多個I/O控制器及/或I/O裝置可與I/O匯流排626連接,如所說明。
I/O裝置730亦可包括輸入裝置(圖中未示),諸如字母數字輸入裝置,包括用於將資訊及/或命令選擇傳達至處理器702至706之字母數字及其他密鑰。另一類型之使用者輸入裝置包括用於將方向資訊及命令選擇傳達至處理器702至706且用於控制顯示裝置上之游標移動的游標控制器,諸如滑鼠、軌跡球或游標方向鍵。
電腦系統700可包括動態儲存裝置,其稱作主記憶體716,或隨機存取記憶體(RAM),或耦合至處理器匯流排712以儲存待由處理器702至706執行之資訊及指令的其他電腦可讀取裝置。主記憶體716亦可用於在處理器702至706執行指令期間儲存暫時變數或其他中間資訊。電腦系統700可包括耦合至處理器匯流排712以儲存用於處理器702至706之靜態資訊及指令的唯讀記憶體(ROM)及/或其他靜態儲存裝置。圖7中闡述之系統為電腦系統之僅一個可能實例,該電腦系統可使用或根據本發明之態樣而組態。
根據一個具體實例,回應於處理器704執行含於主記憶體716中之一或多個指令的一或多個序列,電腦系統700可執行以上技術。此等指令可自諸如儲存裝置之另一機器可讀取媒體讀取至主記憶體716中。執行主記憶體716中含有之指令序列可使得處理器702至706執行本文中所描述之過程步驟。在替代性具體實例中,可代替或結合軟體指令而使用電路。因此,本發明之具體實例可包括硬體及軟體組件兩者。
電腦可讀取媒體包括用於儲存或傳輸呈可由機器(例如,電腦)讀取之形式(例如,軟體、處理應用程式)之資訊的任何機構。此類媒體可呈但不限於非揮發性媒體及揮發性媒體之形式。非揮發性媒體包括光碟或磁碟。揮發性媒體包括動態記憶體,諸如主記憶體716。常見形式之機器可讀取媒體可包括但不限於磁性儲存媒體(例如,硬碟驅動機)、光學儲存媒體(例如,CD-ROM);磁光學儲存媒體、唯讀記憶體(ROM);隨機存取記憶體(RAM);可擦除可程式化記憶體(例如,EPROM及EEPROM);快閃記憶體;或適用於儲存電子指令之其他類型的媒體。
本發明之具體實例包括各種操作或步驟,該等操作或步驟描述於本說明書中。該等步驟可由硬體組件所執行或可以機器可執行指令來體現,該等機器可執行指令可用以使用該等指令程式化之通用或專用處理器執行該等步驟。替代地,該等步驟可由硬體、軟體及/或韌體之組合所執行。
咸信,本發明及其許多伴隨優勢將藉由前述描述予以理解,且顯然,可在不背離所記載主題或不犧牲其所有材料優勢的情況下對組件之形式、構造及配置進行各種改變。所描述形式僅係解釋性的,且以下申請專利範圍之意圖為涵蓋且包括此類改變。
雖然已參考各種具體實例描述本發明,但應理解到此等具體實例為說明性的且本發明之範圍不受其限制。許多變化、修改、添加及改良係可能的。更大體而言,根據本發明之具體實例已在特定實施之情況下描述。功能性可在本發明之各種具體實例中不同地按區塊分開或組合,或用不同術語描述。此等及其他變化、修改、添加及改良可屬於如以下之申請專利範圍中所定義之本發明範圍。
100:阻抗匹配系統
102:電漿腔室
104:電漿
106:晶圓
108a:射頻(RF)產生器
108b:中頻(MF)產生器
108c:高頻(HF)產生器
108d:極高頻(VHF)產生器
109:偏壓電極
110:阻抗匹配網路
110a:第一匹配網路
110b:第二匹配網路
112:電極/終端
114:感測器
116:控制器
118:記憶體
120:處理系統
124:組態紀錄
126:阻抗位準紀錄
130:泵
200、210:多位準脈衝信號
202、204、212、214、216:脈衝間隔
300:阻抗匹配電路部分
302:分流電路
304:輸入
306:接地節點
308:串聯電路
310:輸出
312:電感帶
314:(分流)電容器
316、320:開關
318:(串聯)電容器
402:介面電路部分
404:控制信號整形電路
406:控制信號
408:高電壓源
410:電路供應電壓源
414:緩衝閘
416:隔離變壓器
418:電晶體
420:偏壓電路
422:風扇
426:計算系統介面
428:手動介面
600、602:多位準脈衝信號
604、604A、604B:阻抗失配波形
606:脈衝間隔
606A:第一脈衝間隔
606B、606C、606D:脈衝間隔
608:脈衝間隔
608A:脈衝間隔/第一脈衝
608B:阻抗失配波形/脈衝間隔/第二脈衝間隔
608C、608D:脈衝間隔
610:目標阻抗/目標位準
700:電腦系統
702、704、706:處理器
712:處理器匯流排
714:系統介面
716:主記憶體
718:記憶體控制器
720:輸入/輸出(I/O)介面
722:匯流排控制器
724:I/O橋接器
726:I/O匯流排
728:I/O控制器
730:I/O裝置
本發明之技術的各種特徵及優點將自彼等技術之特定具體實例之以下描述,如隨附圖式中所說明顯而易見。應注意,各圖式未必按比例繪製;然而,重點實際上放在說明技術概念之原理上。另外,在圖式中,相似參考標號在不同視圖中可指代相同組件。圖式僅描繪本發明之典型具體實例,且因此不應被視為在範圍上係限制性的。
圖1A說明根據本發明一個具體實例之可用以匹配由電漿腔室之一或多個交流電(AC)產生器(例如,RF、MF及HF)產生之一或多個多位準脈衝信號之阻抗位準的第一實例阻抗匹配系統。
圖1B說明根據本發明一個具體實例之可用以匹配由電漿腔室之一或多個交流電(AC)產生器(例如,RF、MF及HF)產生之一或多個多位準脈衝信號之阻抗位準的第二實例阻抗匹配系統。
圖2A及圖2B說明根據本發明一個具體實例之可由圖1A之RF產生器、中頻(mid frequency;MF)產生器、高頻(high frequency;HF)產生器或極高頻(very high frequency;VHF)產生器中之任一者產生的實例多位準脈衝信號。
圖3說明根據本發明一個具體實例之可實施以供由阻抗匹配系統使用之實例阻抗匹配網路。
圖4說明根據本發明一個具體實例之實例控制器及與可用以控制阻抗匹配網路之操作之阻抗匹配網路介面電路相關聯的控制器。
圖5說明根據本發明一個具體實例之可由控制器執行以反覆地調整經實施以用於電漿腔室中之多位準脈衝信號之各脈衝間隔之阻抗位準的實例程序。
圖6說明根據本發明一個具體實例之可由阻抗匹配系統產生之實例多位準脈衝信號以及由於被施加至電漿腔室之電極之多位準脈衝信號所產生的相關聯阻抗失配波形。
圖7說明根據本發明一個具體實例的實例電腦系統。
100:阻抗匹配系統
102:電漿腔室
104:電漿
106:晶圓
108a:射頻(RF)產生器
108b:中頻(MF)產生器
108c:高頻(HF)產生器
109:偏壓電極
110a:第一匹配網路
110b:第二匹配網路
112:電極/終端
114:感測器
116:控制器
118:記憶體
120:處理系統
124:組態紀錄
126:阻抗位準紀錄
130:泵
Claims (19)
- 一種阻抗匹配系統,其包含:阻抗匹配網路,其耦合於交流電(AC)產生器與電漿腔室之一或多個電極之間,該AC產生器經組態以產生包含具有不同振幅位準之循環重現之複數個脈衝間隔的多位準脈衝信號;及控制器,其包含儲存於至少一個記憶體中且由至少一個處理器執行以執行以下操作之指令:識別循環重現之該複數個脈衝間隔中之每一者;對於循環重現之該複數個脈衝間隔中之每一者:判定在該AC產生器與電漿負載之間的阻抗失配位準,該電漿負載在該電漿腔室中產生於該一或多個電極處;根據所判定的該阻抗失配位準而調整該阻抗匹配網路之組態;在該至少一個記憶體中儲存與經調整的該組態相關聯之資訊;及在發生隨後脈衝間隔時:自該至少一個記憶體獲得所儲存資訊;根據該所儲存資訊而調整該阻抗匹配網路之該組態。
- 如請求項1所述之阻抗匹配系統,其中該組態界定該阻抗匹配網路之一或多個元件的組合,該一或多個元件經選擇性地啟動以調整該阻抗匹配網路之阻抗來減少在該AC產生器與該電漿負載之間的該阻抗失配位準。
- 如請求項2所述之阻抗匹配系統,其中該控制器經進一步執行以:啟動一或多個分流(shunt)電路以調整該阻抗匹配網路之輸入至接地節點之第一電容耦合,該一或多個分流電路耦合於該阻抗匹配網路之該輸入與該接地節點之間,各分流電路包含分流電容器串聯耦合於分流開關,該分流開關經 組態以被接通及關斷;及啟動一或多個串聯電路以調整該阻抗匹配網路之該輸入至輸出節點之第二電容耦合,該一或多個串聯電路耦合於該阻抗匹配網路之該輸入與輸出之間,各串聯電路包含至少一個串聯電容器並聯耦合於串聯開關,該串聯開關經組態以被接通及關斷。
- 如請求項3所述之阻抗匹配系統,其中該分流開關及該串聯開關中之每一者包含正本徵負(PIN)二極體。
- 如請求項1所述之阻抗匹配系統,其中該控制器經進一步執行以:平均化針對複數個先前脈衝間隔之複數個該等組態;及根據該複數該等組態之平均而調整該阻抗匹配網路之該組態。
- 如請求項1所述之阻抗匹配系統,其中該AC產生器包含射頻(RF)產生器、中頻(MF)產生器、高頻(HF)產生器或極高頻(VHF)產生器中之至少一者。
- 如請求項1所述之阻抗匹配系統,其中該控制器經進一步執行以:藉由自該AC產生器接收同步信號來識別循環重現之該複數個脈衝間隔中之每一者,該同步信號包含指示各脈衝間隔之開始的脈衝。
- 如請求項1所述之阻抗匹配系統,其中該控制器經進一步執行以:根據自功率遞送路徑中所組態之一或多個感測器獲得之進行中所量測能量值而識別循環重現之該複數個脈衝間隔中之每一者。
- 一種阻抗匹配方法,其包含:藉由執行儲存於至少一個記憶體中之指令的至少一個處理器,來識別由交 流電(AC)產生器所產生之多位準脈衝信號的循環重現之複數個脈衝間隔中之每一者;及對於循環重現之該複數個脈衝間隔中之每一者:使用由該至少一個處理器執行之該等指令,以自該至少一個記憶體獲得用以在先前脈衝間隔期間匹配該脈衝間隔之阻抗之阻抗匹配網路之一或多個元件的組態,該阻抗匹配網路耦合於AC產生器與電漿腔室之電極之間;及使用由該至少一個處理器執行之該等指令,以根據所獲得該一或多個元件的該組態而設定該阻抗匹配網路之該一或多個元件。
- 如請求項9所述之阻抗匹配方法,其進一步包含:量測歸因於該電極在該阻抗匹配網路之該一或多個元件之經設定的該組態處之激發的阻抗失配位準;及反覆地調整該阻抗匹配網路之該一或多個元件的該組態,以進一步降低該阻抗失配位準。
- 如請求項9所述之阻抗匹配方法,其進一步包含:啟動一或多個分流電路以調整該阻抗匹配網路之輸入至接地節點之電容耦合,該一或多個元件包含耦合於該阻抗匹配網路之該輸入與該接地節點之間的一或多個分流電路,其中各分流電路包含分流電容器串聯耦合於分流正本徵負(PIN)二極體;及啟動一或多個串聯電路以調整該阻抗匹配網路之該輸入至輸出節點之電容耦合,該一或多個串聯電路耦合於該阻抗匹配網路之該輸入與輸出之間,其中各串聯電路包含至少一個串聯電容器並聯耦合於串聯PIN二極體。
- 如請求項9所述之阻抗匹配方法,其進一步包含:平均化針對複數個先前脈衝間隔之複數個該等組態;及根據該複數該等組態之平均而調整該阻抗匹配網路之該組態。
- 如請求項9所述之阻抗匹配方法,其進一步包含: 自該AC產生器接收同步信號以識別循環重現之該複數個脈衝間隔中之每一者。
- 如請求項9所述之阻抗匹配方法,其進一步包含:根據自功率遞送路徑中所組態之一或多個感測器獲得所量測值而判定各脈衝間隔之開始,以識別循環重現之該複數個脈衝間隔中之每一者。
- 一種電漿腔室,其包含:罩殼,其組態有複數個電極;交流電(AC)產生器;阻抗匹配網路,其耦合於AC產生器與該電漿腔室之該複數個電極之間,該AC產生器經組態以產生包含具有不同振幅位準之循環重現之複數個脈衝間隔的多位準脈衝信號;及控制器,其包含儲存於至少一個記憶體中且由至少一個處理器執行以執行以下操作之指令:識別循環重現之該複數個脈衝間隔中之每一者;對於循環重現之該複數個脈衝間隔中之每一者:判定在該AC產生器與該複數個電極之間的阻抗失配位準;根據所判定的該阻抗失配位準而調整該阻抗匹配網路之組態;在該至少一個記憶體中儲存與經調整的該組態相關聯之資訊;及在發生隨後脈衝間隔時:自該至少一個記憶體獲得所儲存資訊;根據該所儲存資訊而調整該阻抗匹配網路之該組態。
- 如請求項15所述之電漿腔室,其中該組態包含該阻抗匹配網路之一或多個元件的組合,其選擇性地關斷及接通以調整在該AC產生器與該複數個電極之間的阻抗失配。
- 如請求項16所述之電漿腔室,其中該控制器經進一步執行以:啟動一或多個分流電路以調整該阻抗匹配網路之輸入至接地節點之電容耦合,該一或多個分流電路耦合於該阻抗匹配網路之該輸入與該接地節點之間,各分流電路包含分流電容器串聯耦合於分流開關;及啟動一或多個串聯電路以調整該阻抗匹配網路之該輸入至輸出節點之電容耦合,該一或多個串聯電路耦合於該阻抗匹配網路之該輸入與輸出之間,各串聯電路包含至少一個串聯電容器並聯耦合於串聯開關。
- 如請求項15所述之電漿腔室,其中該控制器經進一步執行以:平均化針對複數個先前脈衝間隔之複數個該等組態;及根據該複數該等組態之平均而調整該阻抗匹配網路之該組態。
- 如請求項15所述之電漿腔室,其中該控制器經進一步執行以:藉由自該AC產生器接收同步信號來識別循環重現之該複數個脈衝間隔中之每一者,該同步信號包含指示循環重現之該複數個脈衝間隔中之每一者之開始的脈衝。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103117A TWI715921B (zh) | 2019-01-28 | 2019-01-28 | 阻抗匹配系統及其操作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103117A TWI715921B (zh) | 2019-01-28 | 2019-01-28 | 阻抗匹配系統及其操作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202029842A TW202029842A (zh) | 2020-08-01 |
TWI715921B true TWI715921B (zh) | 2021-01-11 |
Family
ID=73002506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108103117A TWI715921B (zh) | 2019-01-28 | 2019-01-28 | 阻抗匹配系統及其操作方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI715921B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160126069A1 (en) * | 2014-10-29 | 2016-05-05 | Samsung Electronics Co., Ltd. | Pulse plasma apparatus and drive method thereof |
TWI538051B (zh) * | 2011-12-15 | 2016-06-11 | 東京威力科創股份有限公司 | 電漿處理裝置 |
CN105826154A (zh) * | 2015-01-06 | 2016-08-03 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 针对脉冲射频电源的阻抗匹配方法及装置 |
-
2019
- 2019-01-28 TW TW108103117A patent/TWI715921B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI538051B (zh) * | 2011-12-15 | 2016-06-11 | 東京威力科創股份有限公司 | 電漿處理裝置 |
US20160126069A1 (en) * | 2014-10-29 | 2016-05-05 | Samsung Electronics Co., Ltd. | Pulse plasma apparatus and drive method thereof |
CN105826154A (zh) * | 2015-01-06 | 2016-08-03 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 针对脉冲射频电源的阻抗匹配方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
TW202029842A (zh) | 2020-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3743938B1 (en) | Impedance matching system and method of operating the same | |
TW202107515A (zh) | 電漿源/偏置功率遞送的高速同步化之射頻產生器及射頻訊號產生方法 | |
CN108028166B (zh) | 用于处理基板的射频脉冲反射减量 | |
KR102194201B1 (ko) | 임피던스 매칭 방법, 임피던스 매칭 장치 및 플라즈마 생성 디바이스 | |
KR101478626B1 (ko) | 플라즈마 처리 방법 및 플라즈마 처리 장치 | |
JP5117540B2 (ja) | 高周波装置 | |
JP5922053B2 (ja) | Rf生成器の電力および周波数をバイモーダルで自動チューニングするためのシステムおよび方法 | |
US8002945B2 (en) | Method of plasma load impedance tuning for engineered transients by synchronized modulation of an unmatched low power RF generator | |
US8324525B2 (en) | Method of plasma load impedance tuning for engineered transients by synchronized modulation of a source power or bias power RF generator | |
US6642661B2 (en) | Method to affect spatial distribution of harmonic generation in a capacitive discharge reactor | |
EP3782184A1 (en) | System and method for control of high efficiency generator source impedance | |
JP7085655B2 (ja) | 無線周波数パルス整合方法およびそのデバイス、ならびに、パルスプラズマ生成システム | |
KR20240096677A (ko) | 플라즈마 프로세싱 동안 복수의 파형 신호들을 전달하기 위한 장치 및 방법 | |
TWI715921B (zh) | 阻抗匹配系統及其操作方法 | |
US20240194447A1 (en) | Learning based tuning in a radio frequency plasma processing chamber | |
US20240371605A1 (en) | Fast tuning radio frequency (rf) matching network | |
US20240079212A1 (en) | Scanning impedance measurement in a radio frequency plasma processing chamber | |
KR102690334B1 (ko) | 플라즈마 생성 디바이스 | |
KR102409094B1 (ko) | 주파수 가변 및 복원기능을 가진 초고속 임피던스 정합 장치 및 정합 방법 | |
US20240242945A1 (en) | Additional stray capacitor as another tuning knob for 1-supply ev source | |
KR20040084079A (ko) | 고주파 정합 장치 및 방법 | |
TW202433541A (zh) | 與連續波源及脈衝源之射頻阻抗匹配、及半導體處理工具 |