TWI712241B - Power conversion system and method of operating the same - Google Patents

Power conversion system and method of operating the same Download PDF

Info

Publication number
TWI712241B
TWI712241B TW108117044A TW108117044A TWI712241B TW I712241 B TWI712241 B TW I712241B TW 108117044 A TW108117044 A TW 108117044A TW 108117044 A TW108117044 A TW 108117044A TW I712241 B TWI712241 B TW I712241B
Authority
TW
Taiwan
Prior art keywords
power
unit
conversion
current
bus voltage
Prior art date
Application number
TW108117044A
Other languages
Chinese (zh)
Other versions
TW202044716A (en
Inventor
賴淵芳
王秋豐
蘇豪斌
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW108117044A priority Critical patent/TWI712241B/en
Application granted granted Critical
Publication of TWI712241B publication Critical patent/TWI712241B/en
Publication of TW202044716A publication Critical patent/TW202044716A/en

Links

Images

Abstract

A power conversion system includes a UPS and a control unit, and the UPS includes a conversion module, a generator module and a DC-AC conversion unit. The control unit controls the generator module and the conversion module according to a power command to slowly increase or decrease a first average power provided by a DC power source coupled to the conversion module. The control unit controls the conversion module according to the bus voltage, so that a second average power provided by a mains power coupled to the conversion module slowly decreases or increases corresponding to the first average power.

Description

電力轉換系統及其操作方法 Power conversion system and its operation method

本發明係有關一種電力轉換系統及其操作方法,尤指一種柔性負載比例移轉的電力轉換系統及其操作方法。 The invention relates to a power conversion system and an operation method thereof, in particular to a power conversion system and an operation method of a flexible load proportional transfer.

由於伺服器或大型資料中心的需求越來越龐大,且需要更高可靠度、更快部署、更高功率密度的能源來維持伺服器或大型資料中心的運作穩定度。因此,電力轉換系統(Power Train Unit;PTU)的需求越來越被重視。 As the demand for servers or large data centers is increasing, and more reliable, faster deployment, and higher power density energy sources are needed to maintain the stability of the server or large data centers. Therefore, the demand for power conversion systems (Power Train Unit; PTU) has been paid more and more attention.

傳統的電力轉換系統內部通常具備監控系統,整合電力系統所有設備於一單一機櫃內,其包含配電系統、空調、自動切換開關(ATS)、不斷電系統(UPS)、電池、佈線、通訊監控等。因為搭配不斷電系統,所以電力轉換系統具備高度可靠的特點。 The traditional power conversion system usually has a monitoring system inside, integrating all the equipment of the power system in a single cabinet, which includes the power distribution system, air conditioning, automatic transfer switch (ATS), uninterruptible power system (UPS), battery, wiring, communication monitoring Wait. Because it is equipped with an uninterruptible power system, the power conversion system is highly reliable.

傳統的電力轉換系統透過自動切換開關選擇性的連接市電或發電機為交流輸入,在市電中斷時,自動切換開關直接切換至發電機供電,會使得發電機瞬間抽載而產生突波電流,而突波電流的產生容易造成發電機故障而關機。因此,發電機容量設計至少要1.7倍的負載容量,然而卻造成大幅增加設備成本。且發電機是市電中斷後的重要輸入源,需定期保養以確保系統可靠度, 由於自動切換開關的設計,一般會選擇離線測試,且必須增設發電機測試負載(Load Bank),因此,必須額外地增加發電機測試負載的成本,以及發電機測試負載耦接發電機時,增加配線的時間。 The traditional power conversion system selectively connects the mains or the generator as AC input through the automatic switch. When the mains is interrupted, the automatic switch is directly switched to the generator to supply power, which will cause the generator to instantaneously draw load and generate inrush current. The generation of inrush current can easily cause the generator to malfunction and shut down. Therefore, the generator capacity is designed to be at least 1.7 times the load capacity, but this has caused a substantial increase in equipment costs. And the generator is an important input source after the mains is interrupted, and it needs regular maintenance to ensure the reliability of the system. Due to the design of the automatic transfer switch, offline testing is generally selected, and a generator test load (Load Bank) must be added. Therefore, the cost of the generator test load must be increased, and when the generator test load is coupled to the generator, Wiring time.

而且,若進行發電機的功能測試,負載一次性轉換,突波電流易造成發電機故障而必須立刻轉回市電供電,由於自動切換開關的切換速度慢,在切換過程可能造成電池額外地放電,而減少電池備援時間。以及,在用電高峰期間,具有自動切換開關的不斷電系統無法將部分負載轉移至發電機供電。此外,自動切換開關單點故障的風險高,若自動切換開關故障時,不斷電系統將失去輸入電源,而導致不斷電系統的輸出發生中斷的狀況。 Moreover, if the function test of the generator is performed, the load is switched at one time, and the inrush current can easily cause the generator to fail and must be switched back to the mains power supply immediately. Due to the slow switching speed of the automatic switch, the battery may be discharged during the switching process. And reduce the battery backup time. And, during the peak period of power consumption, the uninterruptible power system with automatic switch cannot transfer part of the load to the generator for power supply. In addition, the risk of a single point failure of the automatic transfer switch is high. If the automatic transfer switch fails, the uninterrupted power system will lose the input power, which will cause the output of the uninterrupted power system to be interrupted.

因此,如何設計出一種無需安裝自動切換開關的電力轉換系統,且具有柔性地將負載比例移轉的功能,乃為本案創作人所欲行克服並加以解決的一大課題。 Therefore, how to design a power conversion system that does not need to install an automatic switch, and has the function of flexibly shifting the load ratio, is a major issue that the creator of this case wants to overcome and solve.

為了解決上述問題,本發明係提供一種電力轉換系統,以克服習知技術的問題。因此,本發明電力轉換系統對負載供電,且電力轉換系統包括:不斷電裝置,包括:轉換模組,耦接市電與直流電源,以轉換市電與直流電源為總線電壓。及直流-交流轉換單元,耦接轉換模組,且轉換總線電壓對負載供電。發電機模組,耦接直流電源。及控制單元,耦接該轉換模組。其中,控制單元根據功率命令控制轉換模組,使直流電源提供的第一平均功率緩步地提高或降低;控制單元根據總線電壓控制轉換模組,使市電提供的第二平均功率對應第一平均功率緩步地降低或提高。 In order to solve the above-mentioned problems, the present invention provides a power conversion system to overcome the problems of the prior art. Therefore, the power conversion system of the present invention supplies power to the load, and the power conversion system includes: an uninterruptible power device, including: a conversion module, which is coupled to the mains power and the DC power source to convert the mains power and the DC power source into a bus voltage. And the DC-AC conversion unit is coupled to the conversion module and converts the bus voltage to supply power to the load. The generator module is coupled to the DC power supply. And a control unit, coupled to the conversion module. Wherein, the control unit controls the conversion module according to the power command to gradually increase or decrease the first average power provided by the DC power supply; the control unit controls the conversion module according to the bus voltage so that the second average power provided by the mains corresponds to the first average power The power is slowly reduced or increased.

為了解決上述問題,本發明係提供一種電力轉換系統之操作方法,以克服習知技術的問題。因此,本發明電力轉換系統之操作方法包括:控制轉換模組轉換市電與直流電源為總線電壓。控制直流-交流轉換單元轉換總線電壓對負載供電。控制發電機模組提供電能至直流電源。根據功率命令控制直流電源所提供的第一平均功率緩步地提高或降低。及根據總線電壓控制市電所提供的第二平均功率對應第一平均功率緩步降低或提高。 In order to solve the above-mentioned problems, the present invention provides an operation method of a power conversion system to overcome the problems of the conventional technology. Therefore, the operating method of the power conversion system of the present invention includes: controlling the conversion module to convert the mains power and the DC power to the bus voltage. Control the DC-AC conversion unit to convert the bus voltage to supply power to the load. Control the generator module to provide electrical energy to the DC power supply. The first average power provided by the DC power supply is controlled to increase or decrease gradually according to the power command. And according to the bus voltage, the second average power provided by the mains is controlled to gradually decrease or increase corresponding to the first average power.

為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology, means and effects of the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention. I believe that the purpose, features and characteristics of the present invention can be obtained from this in depth and For specific understanding, however, the accompanying drawings are only provided for reference and illustration, and are not intended to limit the present invention.

100:電力轉換系統 100: Power Conversion System

10:不斷電裝置 10: Uninterruptible power device

102、102’:轉換模組 102, 102’: Conversion module

102-1:直流-直流轉換單元 102-1: DC-DC conversion unit

102-2:交流-直流轉換單元 102-2: AC-DC conversion unit

1022:第一切換橋臂 1022: First switching bridge arm

1024:第二切換橋臂 1024: second switching bridge arm

Q1~Q4:第一開關~第四開關 Q1~Q4: The first switch ~ the fourth switch

1026:第一升壓單元 1026: The first booster unit

L1:第一電感 L1: first inductance

S1:第一功率開關 S1: The first power switch

D1:第一二極體 D1: The first diode

C1:第一電容 C1: first capacitor

1028:第二升壓單元 1028: Second booster unit

L2:第二電感 L2: second inductor

S2:第二功率開關 S2: second power switch

D2:第二二極體 D2: The second diode

C2:第二電容 C2: second capacitor

104:直流-交流轉換單元 104: DC-AC conversion unit

20:控制單元 20: control unit

30:直流供電模組 30: DC power supply module

302:發電機模組 302: Generator Module

302-1:發電機 302-1: Generator

302-2:交流-直流轉換器 302-2: AC-DC converter

304:再生能源模組 304: Renewable Energy Module

304-1:再生能源單元 304-1: Renewable energy unit

304-2:直流-直流轉換器 304-2: DC-DC converter

306:儲能模組 306: Energy Storage Module

200:負載 200: load

Vac:市電 Vac: mains

Vdc:直流電源 Vdc: DC power supply

Vo:輸出電源 Vo: output power

Vdc1:第一直流源 Vdc1: the first DC source

Vdc2:第二直流源 Vdc2: second DC source

Vbus:總線電壓 Vbus: bus voltage

Vbus1:第一總線電壓 Vbus1: the first bus voltage

Vbus2:第二總線電壓 Vbus2: second bus voltage

Vp:預定輸出電壓 Vp: predetermined output voltage

Vp1:第一預定輸出電壓 Vp1: The first predetermined output voltage

Vp2:第二預定輸出電壓 Vp2: second predetermined output voltage

V1~V3:第一電源~第三電源 V1~V3: first power supply~third power supply

A:預定電源 A: Scheduled power supply

B:冗餘電力 B: Redundant power

I1~I4:第一電流~第四電流 I1~I4: the first current ~ the fourth current

Ii:輸入電流 Ii: input current

Ii1:第一輸入電流 Ii1: first input current

Ii2:第二輸入電流 Ii2: second input current

Cp:功率命令 Cp: power command

Pc:功率值 Pc: power value

Pc1:第一功率值 Pc1: the first power value

Pc2:第二功率值 Pc2: second power value

Cit1:第一總電流命令 Cit1: The first total current command

Cit2:第二總電流命令 Cit2: Second total current command

Ci1~Ci4:第一電流命令~第四電流命令 Ci1~Ci4: The first current command ~ the fourth current command

T1:用電高峰期間 T1: During peak electricity consumption

T2:用電離峰期間 T2: Use ionization peak period

DC_I_mod:電流模式 DC_I_mod: current mode

AC_V_mod:電壓模式 AC_V_mod: voltage mode

N:節點 N: node

Gpc、Gvc、Gic、Gic_dc、Gic_ac:控制參數 Gpc, Gvc, Gic, Gic_dc, Gic_ac: control parameters

圖1為本發明電力轉換系統之電路方塊示意圖;圖2A為本發明電力轉換系統之第一實施例的電力傳輸示意圖;圖2B為本發明電力轉換系統之第二實施例的電力傳輸示意圖;圖2C為本發明電力轉換系統之第三實施例的電力傳輸示意圖;圖3A為本發明電力轉換系統之第一實施例的用電量示意圖;圖3B為本發明電力轉換系統之第二實施例的用電量示意圖;圖4A為本發明轉換模組第一實施例之電路方塊示意圖;圖4B為本發明轉換模組第一實施例之控制方塊示意圖;圖5為本發明轉換模組第二實施例之電路方塊示意圖;及圖6為本發明轉換模組第二實施例之控制方塊示意圖。 1 is a schematic diagram of a circuit block diagram of the power conversion system of the present invention; FIG. 2A is a schematic diagram of power transmission of the first embodiment of the power conversion system of the present invention; FIG. 2B is a schematic diagram of power transmission of the second embodiment of the power conversion system of the present invention; 2C is a schematic diagram of power transmission of the third embodiment of the power conversion system of the present invention; FIG. 3A is a schematic diagram of power consumption of the first embodiment of the power conversion system of the present invention; FIG. 3B is a schematic diagram of the second embodiment of the power conversion system of the present invention Power consumption diagram; Figure 4A is a circuit block diagram of the first embodiment of the conversion module of the present invention; Figure 4B is a control block diagram of the first embodiment of the conversion module of the present invention; Figure 5 is the second embodiment of the conversion module of the present invention Example circuit block diagram; and FIG. 6 is a control block diagram of the second embodiment of the conversion module of the present invention.

茲有關本發明之技術內容及詳細說明,配合圖式說明如下:請參閱圖1為本發明電力轉換系統之電路方塊示意圖。電力轉換系統100接收市電Vac與直流電源Vdc,且將市電Vac與直流電源Vdc轉換為輸出電源Vo對負載200供電。電力轉換系統100包括不斷電裝置10與控制單元20。不斷電裝置10接收市電Vac與直流電源Vdc,且耦接負載200。控制單元20耦接不斷電裝置10,且控制不斷電裝置10轉換市電Vac或直流電源Vdc為輸出電源Vo。不斷電裝置10包括轉換模組102與直流-交流轉換單元104。轉換模組102耦接市電Vac、直流電源Vdc及控制單元20,且控制單元20控制轉換模組102將市電Vac或直流電源Vdc轉換為總線電壓Vbus。直流-交流轉換單元104耦接轉換模組102與負載200,且直流-交流轉換單元104將總線電壓Vbus轉換為輸出電源Vo。特此說明,控制單元20的位置不限定於不斷電裝置10外部或內部,只要能達到控制的目的即可。當控制單元20欲調整市電Vac與直流電源Vdc對負載供電的比例(以下簡稱負載比例)時,控制單元20通過控制轉換模組102而緩步調整直流電源Vdc所佔的負載比例(例如,但不限於由0%緩步調整為50%)。然後,根據緩步調整直流電源Vdc所佔的負載比例對應地反向緩步調整市電Vac所佔的負載比例(例如,但不限於由100%反向緩步調整為50%)。具體而言,控制單元20根據功率命令Cp控制轉換模組102,使轉換模組102緩步地提高或降低直流電源Vdc所提供的第一平均功率,進而緩步地調整直流電源Vdc所佔的負載比例。功率命令Cp可為外部裝置所提供(例如但不限於,遠端控制裝置等),或者由控制單元20偵測電力轉換系統100實際的運作狀況而提供(圖未示,例如但不限於,偵測負載200、市電Vac或直流電源Vdc等)。 The technical content and detailed description of the present invention are described as follows in conjunction with the drawings: Please refer to FIG. 1 for a block diagram of the circuit of the power conversion system of the present invention. The power conversion system 100 receives the city power Vac and the DC power source Vdc, and converts the city power Vac and the DC power source Vdc into an output power source Vo to supply power to the load 200. The power conversion system 100 includes an uninterruptible power device 10 and a control unit 20. The uninterruptible power device 10 receives the commercial power Vac and the DC power Vdc, and is coupled to the load 200. The control unit 20 is coupled to the uninterruptible power device 10, and controls the uninterruptible power device 10 to convert the commercial power Vac or the direct current power Vdc into the output power Vo. The uninterruptible power device 10 includes a conversion module 102 and a DC-AC conversion unit 104. The conversion module 102 is coupled to the mains Vac, the DC power supply Vdc and the control unit 20, and the control unit 20 controls the conversion module 102 to convert the mains Vac or the DC power supply Vdc into the bus voltage Vbus. The DC-AC conversion unit 104 is coupled to the conversion module 102 and the load 200, and the DC-AC conversion unit 104 converts the bus voltage Vbus into the output power Vo. It is hereby explained that the position of the control unit 20 is not limited to the outside or inside of the uninterruptible power device 10, as long as the control purpose can be achieved. When the control unit 20 wants to adjust the ratio of the commercial power Vac and the DC power supply Vdc to the load power supply (hereinafter referred to as the load ratio), the control unit 20 slowly adjusts the load ratio occupied by the DC power supply Vdc by controlling the conversion module 102 (for example, but Not limited to slowly adjusting from 0% to 50%). Then, according to the slow step adjustment of the load ratio occupied by the DC power supply Vdc, the load ratio occupied by the mains Vac is correspondingly adjusted backward stepwise (for example, but not limited to reverse step adjustment from 100% to 50%). Specifically, the control unit 20 controls the conversion module 102 according to the power command Cp, so that the conversion module 102 gradually increases or decreases the first average power provided by the DC power supply Vdc, and then slowly adjusts the amount of the DC power supply Vdc. Load ratio. The power command Cp can be provided by an external device (for example, but not limited to, a remote control device, etc.), or provided by the control unit 20 to detect the actual operating status of the power conversion system 100 (not shown in the figure, for example, but not limited to, detection Test load 200, mains Vac or DC power Vdc, etc.).

當第一平均功率被緩步地調整時,總線電壓Vbus對應第一平均功率的緩步變動理論上會對應的變動,但控制單元20根據總線電壓Vbus而對應地控制轉換模組102,使轉換模組102緩步地調整Vac所對應的第二平均功率(對應第一平均功率的反向緩步調整),進而使直流電源Vdc所佔的負載比例被緩步提高或降低時,市電Vac所佔的負載比例也對應地緩步降低或提高。 When the first average power is adjusted slowly, the bus voltage Vbus corresponding to the slow variation of the first average power will theoretically change accordingly, but the control unit 20 correspondingly controls the conversion module 102 according to the bus voltage Vbus to make the conversion The module 102 slowly adjusts the second average power corresponding to Vac (corresponding to the reverse slow step adjustment of the first average power), so that when the load ratio of the DC power supply Vdc is gradually increased or decreased, the mains Vac The proportion of the load is correspondingly reduced or increased gradually.

進一步而言,由於本發明之電力轉換系統100在市電Vac與直流電源Vdc之間的負載切換時,利用緩步調整的柔性切換技術,因此不斷電裝置10的前端不需要額外耦接自動切換開關,使得不斷電裝置10可避免自動切換開關切換時,所產生的突波電流,且利用緩步調整的柔性切換技術可較為容易且精準地進行負載的分配(例如,但不限於精準地分配市電Vac為48%,直流電源Vdc為52%)。 Furthermore, since the power conversion system 100 of the present invention uses the flexible switching technology of slow step adjustment when the load is switched between the commercial power Vac and the DC power supply Vdc, the front end of the uninterruptible power device 10 does not need to be additionally coupled to the automatic switching Switch, so that the uninterruptible power device 10 can avoid the inrush current generated when the switch is automatically switched, and the flexible switching technology of slow step adjustment can be used to easily and accurately distribute the load (for example, but not limited to accurately The distribution city power Vac is 48%, and the direct current power supply Vdc is 52%).

請參閱圖2A~2C為本發明電力轉換系統之第一實施例至第三實施例的電力傳輸示意圖、圖3A~3B為本發明電力轉換系統之第一實施例至第二實施例的用電量示意圖,復配合參閱圖1,且反覆參閱圖2A~3B。電力轉換系統100更包括直流供電模組30,直流供電模組30耦接轉換模組102,且提供直流電源Vdc至轉換模組102。直流供電模組30可包括發電機模組302、再生能源模組304及儲能模組306。發電機模組302包括發電機302-1與交流-直流轉換器302-2,交流-直流轉換器302-2可為整流電路將發電機302-1所產生的電能轉換為第一電源V1,且將第一電源V1提供至轉換模組102。再生能源模組304包括再生能源單元304-1與直流-直流轉換器304-2,直流-直流轉換器304-2將再生能源單元304-1所產生的電能轉換為第二電源V2,且將第二電源V2提供至轉換模組102。儲能模組306例如但不限於可為電池組,用以提供第三電源V3至轉換模組102。特此說明,有別於傳統電力轉換系統的發電機是位於交流輸入端,本發明發電機模組 302用以提供直流電源Vdc,這樣的配置搭配本發明控制可解決先前技術所提到的問題。 Please refer to FIGS. 2A~2C for schematic diagrams of power transmission of the first to third embodiments of the power conversion system of the present invention, and FIGS. 3A~3B for the power consumption of the first to second embodiments of the power conversion system of the present invention Refer to Figure 1 for compound coordination, and refer to Figures 2A~3B repeatedly. The power conversion system 100 further includes a DC power supply module 30. The DC power supply module 30 is coupled to the conversion module 102 and provides a DC power Vdc to the conversion module 102. The DC power supply module 30 may include a generator module 302, a renewable energy module 304, and an energy storage module 306. The generator module 302 includes a generator 302-1 and an AC-DC converter 302-2. The AC-DC converter 302-2 can be a rectifier circuit to convert the electric energy generated by the generator 302-1 into a first power source V1. And the first power V1 is provided to the conversion module 102. The renewable energy module 304 includes a renewable energy unit 304-1 and a DC-DC converter 304-2. The DC-DC converter 304-2 converts the electrical energy generated by the renewable energy unit 304-1 into a second power source V2, and The second power V2 is provided to the conversion module 102. The energy storage module 306 may be, for example, but not limited to, a battery pack for providing the third power V3 to the conversion module 102. It is hereby explained that the generator, which is different from the traditional power conversion system, is located at the AC input end. The generator module of the present invention 302 is used to provide DC power Vdc. Such a configuration combined with the control of the present invention can solve the problems mentioned in the prior art.

請參閱圖2A與圖3A,當需求電源大於等於預定電源A時,控制單元20根據功率命令Cp控制市電Vac與直流電源Vdc共同對負載200供電。例如但不限於,預定電源A可為用電量計算級距的分界點,當需求電源過高而導致市電Vac提供的電量大於等於預定電源A時,會使得多出來的用電量必須額外付出相對較高的費用。而在需求電源較低而使市電Vac提供的電量小於預定電源A時,會使得較低的用電量付出相對較低的費用。 2A and 3A, when the required power is greater than or equal to the predetermined power A, the control unit 20 controls the mains Vac and the DC power Vdc to supply power to the load 200 according to the power command Cp. For example, but not limited to, the predetermined power source A can be the demarcation point of the power consumption calculation step. When the demand power is too high and the power provided by the mains Vac is greater than or equal to the predetermined power source A, the extra power consumption will have to be paid extra Relatively high cost. When the demand for power is low and the power provided by the mains Vac is less than the predetermined power A, a relatively low cost will be paid for the lower power consumption.

如圖3A、3B所示,座標縱軸P代表著功率,橫軸t代表著時間。當在用電高峰期間T1(如圖3A所示),負載200的需求電源大於等於預定電源A。此時,控制單元20控制轉換模組102轉換發電機模組302、再生能源模組304或儲能模組306提供的直流電源Vdc,緩步提高直流電源Vdc所佔的負載比例,以及緩步降低市電Vac所佔的負載比例(例如但不限於,儲能模組306與再生能源模組304共同提供直流電源Vdc,或者儲能模組306單獨提供直流電源Vdc)。通過市電Vac與直流電源Vdc在用電高峰期間T1共同對負載200供電的功能,以達到高峰節能之功效。且在發電機302-1的功能測試時,不需要額外增設發電機測試負載(Load Bank),而是直接利用控制單元20控制轉換模組102進行負載比例的移轉,既可完成發電機302-1的功能測試(意即,在線online測試),因此可達成無需投資額外的發電機測試負載,而大幅降低系統建構成本之功效。 As shown in Figures 3A and 3B, the vertical axis P of the coordinates represents power, and the horizontal axis t represents time. When the power consumption peak period T1 (as shown in FIG. 3A), the demand power of the load 200 is greater than or equal to the predetermined power A. At this time, the control unit 20 controls the conversion module 102 to convert the DC power supply Vdc provided by the generator module 302, the renewable energy module 304 or the energy storage module 306, gradually increase the load ratio of the DC power supply Vdc, and slowly Reduce the load ratio of the mains Vac (for example, but not limited to, the energy storage module 306 and the renewable energy module 304 jointly provide the DC power supply Vdc, or the energy storage module 306 separately provides the DC power supply Vdc). Through the function of the mains Vac and the DC power supply Vdc to supply power to the load 200 during the peak period T1, the peak energy saving effect is achieved. And during the functional test of the generator 302-1, there is no need to add an additional generator test load (Load Bank), but directly use the control unit 20 to control the conversion module 102 to transfer the load ratio, which can complete the generator 302 -1 function test (that is, online online test), so it can achieve the effect of not needing to invest in additional generator test load, and greatly reducing the cost of system construction.

請參閱圖2B與圖3A,當需求電源小於預定電源A時,控制單元20控制轉換模組102使市電Vac對負載200供電,且控制轉換模組102使市電Vac對儲能模組306充電。當在用電離峰期間T2(如圖3A所示),負載200的需求電源小於預定電源A。此時,控制單元20除了控制轉換模組102使市電Vac對負載200供電 外,同時也控制轉換模組102使市電Vac在小於預定電源A的限制下(以虛線表示),對儲能模組306充電(如圖2B所示)。 2B and 3A, when the required power is less than the predetermined power A, the control unit 20 controls the conversion module 102 to make the mains Vac supply power to the load 200, and controls the conversion module 102 to make the mains Vac charge the energy storage module 306. During the ionization peak period T2 (as shown in FIG. 3A), the demand power of the load 200 is less than the predetermined power A. At this time, the control unit 20 in addition to controlling the conversion module 102 makes the mains Vac supply power to the load 200 In addition, at the same time, the conversion module 102 is also controlled to charge the energy storage module 306 (as shown in FIG. 2B) when the mains Vac is less than the predetermined power supply A (indicated by the dotted line).

請參閱圖2C與圖3B,轉換模組102可為雙向轉換模組,控制單元20可控制轉換模組102使直流電源Vdc通過雙向轉換模組轉換為市電Vac,且將市電Vac饋送回電力公司(圖未示)。如圖3B所示,0%以上的電力為負載200所需求的需求電源,0%以下的電力為再生能源模組304所產生額外的冗餘電力B(以虛線表示)。當再生能源模組304對負載200供電,且尚具有冗餘電力B時,控制單元20控制轉換模組102使冗餘電力B通過雙向轉換模組轉換為市電Vac,且將由冗餘電力B轉換的市電Vac饋送回電力公司(如圖2C所示)。由於再生能源的發電量並不穩定,因此當再生能源的電力供應負載200後,有額外的冗餘電力B時(如圖3B所示),除了可將額外的冗餘電力B儲存於儲能模組306之外,更可將額外的冗餘電力B通過雙向轉換模組轉換為市電Vac,且將市電Vac饋送回電力公司(圖未示),以達到再生能源能夠無損耗地供電力公司躉購,達到經濟效益之功效。 2C and 3B, the conversion module 102 can be a bidirectional conversion module, and the control unit 20 can control the conversion module 102 to convert the DC power supply Vdc to the mains Vac through the bidirectional conversion module, and feed the mains Vac back to the power company (Picture not shown). As shown in FIG. 3B, more than 0% of the power is the demand power required by the load 200, and the power below 0% is the extra redundant power B (indicated by the dotted line) generated by the renewable energy module 304. When the regenerative energy module 304 supplies power to the load 200 and there is redundant power B, the control unit 20 controls the conversion module 102 to convert the redundant power B into the commercial power Vac through the bidirectional conversion module, and will be converted from the redundant power B The mains Vac is fed back to the power company (as shown in Figure 2C). Since the power generation of renewable energy is not stable, when the power of the renewable energy is supplied to the load 200, when there is additional redundant power B (as shown in Figure 3B), in addition to the additional redundant power B can be stored in energy storage In addition to the module 306, the extra redundant power B can be converted into the mains Vac through the two-way conversion module, and the mains Vac is fed back to the power company (not shown), so that renewable energy can supply the company without loss Bulk purchase to achieve economic benefits.

請參閱圖4A為本發明轉換模組第一實施例之電路方塊示意圖,復配合參閱圖1~3B,且反覆參閱圖1、4A。轉換模組102包括直流-直流轉換單元102-1與交流-直流轉換單元102-2。直流-直流轉換單元102-1耦接直流電源Vdc與直流-交流轉換單元104,且交流-直流轉換單元102-2耦接市電Vac與直流-交流轉換單元104。直流-直流轉換單元102-1將直流電源Vdc轉換為總線電壓Vbus,且根據負載200的需求與控制單元20的控制而提供第一電流I1至節點N。因此,直流電源Vdc所提供的第一平均功率根據輸入功率等於輸出功率的關係(排除轉換效率的損耗),會對應直流-直流轉換單元102-1所輸出的第一電流I1。交流-直流轉換單元102-2將市電Vac轉換為總線電壓Vbus,且根據負載200的需求與控制單元20的控制而提供第二電流I2至節點N。因此,市電Vac所提供的第二平均功率 根據輸入功率等於輸出功率的關係(排除轉換效率的損耗),會對應交流-直流轉換單元102-2的輸入電流Ii以及所輸出的第二電流I2。當第二電流I2變動時,第二平均功率也會隨著第二電流I2的變動而變動。 Please refer to FIG. 4A for the circuit block diagram of the first embodiment of the conversion module of the present invention. Please refer to FIGS. 1 to 3B for cooperation, and refer to FIGS. 1 and 4A repeatedly. The conversion module 102 includes a DC-DC conversion unit 102-1 and an AC-DC conversion unit 102-2. The DC-DC conversion unit 102-1 is coupled to the DC power supply Vdc and the DC-AC conversion unit 104, and the AC-DC conversion unit 102-2 is coupled to the mains Vac and the DC-AC conversion unit 104. The DC-DC conversion unit 102-1 converts the DC power supply Vdc into the bus voltage Vbus, and provides the first current I1 to the node N according to the demand of the load 200 and the control of the control unit 20. Therefore, the first average power provided by the DC power supply Vdc corresponds to the first current I1 output by the DC-DC conversion unit 102-1 according to the relationship between the input power and the output power (excluding the loss of conversion efficiency). The AC-DC conversion unit 102-2 converts the mains Vac into the bus voltage Vbus, and provides the second current I2 to the node N according to the demand of the load 200 and the control of the control unit 20. Therefore, the second average power provided by the mains Vac According to the relationship between the input power and the output power (excluding the loss of conversion efficiency), it will correspond to the input current Ii of the AC-DC conversion unit 102-2 and the output second current I2. When the second current I2 changes, the second average power also changes with the change of the second current I2.

當控制單元20欲調高直流電源Vdc的負載比例時(例如由0%提高至50%),控制單元20根據功率命令Cp緩步地提高直流-直流轉換單元102-1提供的第一電流I1,進而使得第一平均功率對應地被緩步提高,可藉由控制第一占空比以控制直流-直流轉換單元102-1,原理相當於控制直流-直流轉換單元102-1操作於電流模式。當第一電流I1變動時,節點N上的總線電壓Vbus理論上會因為第一電流I1的提高而隨之變動,但控制單元20會控制交流-直流轉換單元102-2將節點N上的總線電壓Vbus維持在預定輸出電壓Vp,進而調整交流-直流轉換單元102-2所輸出的第二電流I2。因此,當第一電流I1被緩步調高時,控制單元20根據總線電壓Vbus的變動調整第二占空比,使得交流-直流轉換單元102-2輸出的第二電流I2緩步地降低,進而使得第二平均功率對應地被緩步降低,且市電Vac的負載比例被緩步調低(對應地由100%降低至50%)。值得一提,當控制單元20欲調低直流電源Vdc的負載比例與調高的操作恰巧相反,在此不再加以贅述。 When the control unit 20 wants to increase the load ratio of the DC power supply Vdc (for example, from 0% to 50%), the control unit 20 slowly increases the first current I1 provided by the DC-DC conversion unit 102-1 according to the power command Cp , So that the first average power is correspondingly increased gradually. The DC-DC conversion unit 102-1 can be controlled by controlling the first duty cycle. The principle is equivalent to controlling the DC-DC conversion unit 102-1 to operate in the current mode . When the first current I1 changes, the bus voltage Vbus on the node N will theoretically change due to the increase of the first current I1, but the control unit 20 will control the AC-DC conversion unit 102-2 to change the bus voltage on the node N The voltage Vbus is maintained at the predetermined output voltage Vp, and the second current I2 output by the AC-DC conversion unit 102-2 is adjusted. Therefore, when the first current I1 is gradually increased, the control unit 20 adjusts the second duty cycle according to the variation of the bus voltage Vbus, so that the second current I2 output by the AC-DC conversion unit 102-2 is gradually decreased, and then As a result, the second average power is gradually reduced, and the load ratio of the mains Vac is gradually reduced (correspondingly reduced from 100% to 50%). It is worth mentioning that when the control unit 20 wants to lower the load ratio of the DC power supply Vdc, the operation is exactly the opposite of the higher load ratio, which is not repeated here.

請參閱圖4B為本發明轉換模組第一實施例之控制方塊示意圖,復配合參閱圖1~4A,且反覆參閱圖4A、4B。如圖4B所示,直流-直流轉換單元102-1的控制為電流模式DC_I_mod。在電流模式DC_I_mod中,控制單元20根據功率命令Cp與直流-直流轉換單元102-1目前的功率值Pc(通過偵測得知)相減而得到功率差值。功率差值經過控制參數Gpc放大及計算後,得到直流的第一電流命令Ci1。第一電流命令Ci1與直流-直流轉換單元102-1所輸出的第一電流I1(通過偵測得知)相減而得到第一電流差值,且第一電流差值經過控制參數Gic_dc放大 後而得到第一控制量。控制單元20根據第一控制量調整直流-直流轉換單元102-1的第一占空比,以調整直流-直流轉換單元102-1輸出的第一電流I1。 Please refer to FIG. 4B for the control block diagram of the first embodiment of the conversion module of the present invention. Please refer to FIGS. 1 to 4A for cooperation, and refer to FIGS. 4A and 4B repeatedly. As shown in FIG. 4B, the control of the DC-DC conversion unit 102-1 is the current mode DC_I_mod. In the current mode DC_I_mod, the control unit 20 subtracts the current power value Pc (known by detection) of the DC-DC conversion unit 102-1 according to the power command Cp to obtain the power difference. After the power difference is amplified and calculated by the control parameter Gpc, the first DC current command Ci1 is obtained. The first current command Ci1 is subtracted from the first current I1 (known by detection) output by the DC-DC conversion unit 102-1 to obtain a first current difference, and the first current difference is amplified by the control parameter Gic_dc Then the first control amount is obtained. The control unit 20 adjusts the first duty ratio of the DC-DC conversion unit 102-1 according to the first control amount to adjust the first current I1 output by the DC-DC conversion unit 102-1.

復參閱圖4B,交流-直流轉換單元102-2的控制為電壓模式AC_V_mod。當第一電流I1被調整時,總線電壓Vbus會隨之變動,控制單元20將總線電壓Vbus與交流-直流轉換單元102-2所設定輸出的預定輸出電壓Vp相減而得到電壓差值。電壓差值經過控制參數Gvc放大及乘以弦波後(市電Vac的波形為弦波),得到交流的第二電流命令Ci2。第二電流命令Ci2與交流-直流轉換單元102-2的輸入電流Ii(通過偵測得知)相減而得到第二電流差值,且第二電流差值經過控制參數Gic_ac放大後而得到第二控制量。控制單元20根據第二控制量調整交流-直流轉換單元102-2的第二占空比,以控制交流-直流轉換單元102-2的輸入電流Ii,進而調整輸出的第二電流I2。值得一提,於本發明實施例中,交流-直流轉換單元102-2具有功率因數校正功能,因此會使得輸入電流Ii的波形追隨市電Vac的電壓波形,所以讓電壓差值乘以弦波是為了使所產生出來的第二電流命令Ci2變為交流的電流命令波形。特此說明,因為交流電流會不斷變動,所以本發明以平均功率的概念論述,例如第二平均功率緩步降低可以理解為交流電流的峰值漸漸降低,但形狀還是大致符合弦波以維持功率因數。此外,圖4B為本發明轉換模組第一實施例之控制方塊示意圖,直流-直流轉換單元102-1的控制電路和交流-直流轉換單元102-2的控制電路可以統稱為控制單元20。請參閱圖5為本發明轉換模組第二實施例之電路方塊示意圖,復配合參閱圖1~4B,且反覆參閱圖1、5。本實施例與圖4A實施例的差異在於,轉換模組102’包括第一切換橋臂1022、第二切換橋臂1024、第一升壓單元1026及第二升壓單元1028。第一切換橋臂1022包括串聯的第一開關Q1與第二開關Q2,且市電Vac耦接於第一開關Q1與第二開關Q2共同耦接的一端。直流電源Vdc包括串聯的第一直流源Vdc1與第二直流源Vdc2,且第一直流源Vdc1與第二直流源Vdc2共同耦接 的一端為中點端。第二切換橋臂1024包括串聯的第三開關Q3與第四開關Q4,且第三開關Q3的一端耦接第一直流源Vdc1的另一端,第四開關Q4的一端耦接第二直流源Vdc2的另一端。第一切換橋臂1022並聯第二切換橋臂1024,使第一開關Q1的另一端耦接第三開關Q3的另一端,第二開關Q2的另一端耦接第四開關Q4的另一端。 Referring again to FIG. 4B, the control of the AC-DC conversion unit 102-2 is the voltage mode AC_V_mod. When the first current I1 is adjusted, the bus voltage Vbus will change accordingly. The control unit 20 subtracts the bus voltage Vbus from the predetermined output voltage Vp set and output by the AC-DC conversion unit 102-2 to obtain a voltage difference. After the voltage difference is amplified by the control parameter Gvc and multiplied by a sine wave (the waveform of the mains Vac is a sine wave), the AC second current command Ci2 is obtained. The second current command Ci2 is subtracted from the input current Ii of the AC-DC conversion unit 102-2 (known through detection) to obtain a second current difference, and the second current difference is amplified by the control parameter Gic_ac to obtain the first 2. Control amount. The control unit 20 adjusts the second duty cycle of the AC-DC conversion unit 102-2 according to the second control amount to control the input current Ii of the AC-DC conversion unit 102-2, and then adjust the output second current I2. It is worth mentioning that in the embodiment of the present invention, the AC-DC conversion unit 102-2 has a power factor correction function, so the waveform of the input current Ii will follow the voltage waveform of the mains Vac, so multiplying the voltage difference by the sine wave is To make the generated second current command Ci2 become an alternating current command waveform. It is hereby explained that because the AC current changes constantly, the present invention uses the concept of average power to discuss. For example, the second slow average power reduction can be understood as a gradual decrease in the peak value of the AC current, but the shape still roughly conforms to the sine wave to maintain the power factor. In addition, FIG. 4B is a control block diagram of the first embodiment of the conversion module of the present invention. The control circuit of the DC-DC conversion unit 102-1 and the control circuit of the AC-DC conversion unit 102-2 may be collectively referred to as the control unit 20. Please refer to FIG. 5 for a schematic diagram of a circuit block diagram of the second embodiment of the conversion module of the present invention. Please refer to FIGS. 1 to 4B for cooperation, and refer to FIGS. 1 and 5 repeatedly. The difference between this embodiment and the embodiment in FIG. 4A is that the conversion module 102' includes a first switching bridge arm 1022, a second switching bridge arm 1024, a first boosting unit 1026, and a second boosting unit 1028. The first switching bridge arm 1022 includes a first switch Q1 and a second switch Q2 connected in series, and the mains Vac is coupled to one end of the first switch Q1 and the second switch Q2. The DC power supply Vdc includes a first DC source Vdc1 and a second DC source Vdc2 connected in series, and the first DC source Vdc1 and the second DC source Vdc2 are commonly coupled One end is the midpoint end. The second switching bridge arm 1024 includes a third switch Q3 and a fourth switch Q4 connected in series, and one end of the third switch Q3 is coupled to the other end of the first direct current source Vdc1, and one end of the fourth switch Q4 is coupled to the second direct current source The other end of Vdc2. The first switching bridge arm 1022 is connected in parallel with the second switching bridge arm 1024, so that the other end of the first switch Q1 is coupled to the other end of the third switch Q3, and the other end of the second switch Q2 is coupled to the other end of the fourth switch Q4.

第一升壓單元1026包括第一電感L1、第一功率開關S1、第一二極體D1及第一電容C1。第一電感L1的一端耦接第三開關Q3的另一端,且第一電感L1的另一端耦接第一功率開關S1與第一二極體D1的一端。第一二極體D1的另一端耦接第一電容C1的一端,且第一功率開關S1的另一端、第一電容C1的另一端及市電Vac耦接直流電源Vdc的中點端。第二升壓單元1028包括第二電感L2、第二功率開關S2、第二二極體D2及第二電容C2,且恰與第一升壓單元1026相反的耦接第四開關Q4的另一端與直流電源Vdc的中點端。值得一提,於本發明之一實施例中,第一開關Q1至第四開關Q4為矽控二極體,但不以此為限。換言之,只要可供切換的開關元件皆應包含在本實施例之範疇當中。 The first boost unit 1026 includes a first inductor L1, a first power switch S1, a first diode D1, and a first capacitor C1. One end of the first inductor L1 is coupled to the other end of the third switch Q3, and the other end of the first inductor L1 is coupled to the first power switch S1 and one end of the first diode D1. The other end of the first diode D1 is coupled to one end of the first capacitor C1, and the other end of the first power switch S1, the other end of the first capacitor C1 and the mains Vac are coupled to the midpoint end of the DC power supply Vdc. The second boost unit 1028 includes a second inductor L2, a second power switch S2, a second diode D2, and a second capacitor C2, and is opposite to the first boost unit 1026 and is coupled to the other end of the fourth switch Q4 The midpoint end of the DC power supply Vdc. It is worth mentioning that in an embodiment of the present invention, the first switch Q1 to the fourth switch Q4 are silicon-controlled diodes, but it is not limited thereto. In other words, as long as the switchable switching element is included in the scope of this embodiment.

具體而言,轉換模組102’的特點在於,轉換模組102’為一半操作市電Vac,且另一半操作直流電源Vdc的轉換電路。在第一升壓單元1026轉換交流源的其中一半波時,第二升壓單元1028同時轉換直流源。當市電Vac於正半週時,控制單元20控制第一切換橋臂1022切換導通第一開關Q1,使市電Vac的正半週通過第一開關Q1提供至第一升壓單元1026。控制單元20控制第一功率開關S1的切換,使第一電感L1儲能或釋能而產生第二電流I2,且第二電流I2對第一電容C1充電而在第一電容C1上建立第一總線電壓Vbus1。此市電Vac半週期間,控制單元20控制第二切換橋臂1024切換導通第四開關Q4,使直流電源Vdc通過第四開關Q4提供至第二升壓單元1028。控制單元20控制第二功率開關S2的切換,使第二電感L2儲能或釋能而產生第四電流I4,且第四電流I4對第二電容 C2充電而在第二電容C2上建立第二總線電壓Vbus2。第一總線電壓Vbus1與第二總線電壓Vbus2的總和即為總線電壓Vbus。當市電Vac於負半週時,利用第一電流I1建立第一總線電壓Vbus1與利用第三電流I3建立第二總線電壓Vbus2的方式,恰與正半週相反,在此不再加以贅述。 Specifically, the conversion module 102' is characterized in that the conversion module 102' is a conversion circuit that operates half of the mains Vac and the other half of the DC power Vdc. When the first boosting unit 1026 converts half of the AC source, the second boosting unit 1028 simultaneously converts the DC source. When the mains Vac is in the positive half cycle, the control unit 20 controls the first switching bridge arm 1022 to switch on the first switch Q1 so that the positive half cycle of the mains Vac is provided to the first boost unit 1026 through the first switch Q1. The control unit 20 controls the switching of the first power switch S1, so that the first inductor L1 is stored or discharged to generate a second current I2, and the second current I2 charges the first capacitor C1 to establish a first capacitor C1. Bus voltage Vbus1. During this half-cycle of the mains Vac, the control unit 20 controls the second switching bridge arm 1024 to switch on the fourth switch Q4, so that the DC power Vdc is provided to the second boost unit 1028 through the fourth switch Q4. The control unit 20 controls the switching of the second power switch S2, so that the second inductor L2 stores or discharges energy to generate a fourth current I4, and the fourth current I4 affects the second capacitor C2 is charged to establish a second bus voltage Vbus2 on the second capacitor C2. The sum of the first bus voltage Vbus1 and the second bus voltage Vbus2 is the bus voltage Vbus. When the mains power Vac is in the negative half cycle, the method of using the first current I1 to establish the first bus voltage Vbus1 and the third current I3 to establish the second bus voltage Vbus2 is exactly the opposite of the positive half cycle, and will not be repeated here.

進一步而言,由於第一升壓單元1026在一個半週時,根據市電Vac產生第二電流I2,在另一個半週時,根據直流電源Vdc產生第一電流I1。因此,當第一電流I1變動時,第一平均功率也會隨著第一電流I1的變動而變動,第一總線電壓Vbus1會隨著第一電流I1的變動而變動。當第一總線電壓Vbus1變動時,控制單元20會在下一個半週調整第二電流I2,使第二平均功率也會隨著第二電流I2的變動而變動。第二升壓單元1028的操作亦是如此,在此不再加以贅述。 Furthermore, since the first boosting unit 1026 generates the second current I2 according to the mains power Vac during one and a half cycles, and generates the first current I1 according to the DC power supply Vdc during the other half cycle. Therefore, when the first current I1 changes, the first average power also changes with the first current I1, and the first bus voltage Vbus1 changes with the first current I1. When the first bus voltage Vbus1 changes, the control unit 20 will adjust the second current I2 in the next half cycle so that the second average power will also change with the change of the second current I2. The operation of the second boosting unit 1028 is also the same, and will not be repeated here.

當控制單元20欲調高直流電源Vdc的負載比例時(例如由0%提高至50%),控制單元20根據功率命令Cp於負半週使得第一升壓單元1026提供的第一電流I1提高,進而使得第一平均功率對應地提高,第一總線電壓Vbus1會因為第一電流I1的變動而隨之變動。當第一總線電壓Vbus1變動時,控制單元20會控制第一升壓單元1026將第一總線電壓Vbus1維持在預定輸出電壓,進而調整第一升壓單元1026於正半週時(意即為市電Vac輸入時)所輸出的第二電流I2。因此,當第一電流I1被緩步調高時,控制單元20根據第一總線電壓Vbus1的變動調整第二占空比,使得第二電流I2被緩步地降低,進而使得第二平均功率對應地被緩步降低,且市電Vac的負載比例被緩步調低(對應地由100%降低至50%)。值得一提,第二升壓單元1028的操作亦是如此,且當控制單元20欲調低直流電源Vdc的負載比例與調高的操作恰巧相反,在此不再加以贅述。 When the control unit 20 wants to increase the load ratio of the DC power supply Vdc (for example, from 0% to 50%), the control unit 20 increases the first current I1 provided by the first boost unit 1026 in the negative half cycle according to the power command Cp , In turn, the first average power is correspondingly increased, and the first bus voltage Vbus1 will vary due to the variation of the first current I1. When the first bus voltage Vbus1 changes, the control unit 20 controls the first boost unit 1026 to maintain the first bus voltage Vbus1 at a predetermined output voltage, and then adjusts the first boost unit 1026 to be in the positive half cycle (meaning the mains Vac input) the output second current I2. Therefore, when the first current I1 is gradually increased, the control unit 20 adjusts the second duty cycle according to the variation of the first bus voltage Vbus1, so that the second current I2 is gradually reduced, so that the second average power corresponds to Is gradually reduced, and the load ratio of the mains Vac is gradually reduced (correspondingly reduced from 100% to 50%). It is worth mentioning that the operation of the second boosting unit 1028 is also the same, and when the control unit 20 wants to lower the load ratio of the direct current power supply Vdc, the operation is exactly the opposite of the higher operation, which will not be repeated here.

請參閱圖6為本發明轉換模組第二實施例之控制方塊示意圖,復配合參閱圖1~5,且反覆參閱圖5、6。轉換模組102’的控制方塊事實上是第一 升壓單元1026為獨立一組的控制方塊,且第二升壓單元1028為獨立另一組的控制方塊,其方式相同,但是訊號是不一樣的。而為求方便敘述,本實施例係將兩組控制方塊合在一起敘述。如圖6所示,控制單元20根據功率命令Cp與第一升壓單元1026於負半週時的第一功率值Pc1(通過偵測得知目前的功率值,於第二升壓單元1028為第二功率值Pc2)相減而得到第一功率差值。第一功率差值經過控制參數Gpc放大及乘以方波後,得到直流的第一電流命令Ci1。控制單元20將第一總線電壓Vbus1與第一升壓單元1026所設定輸出的第一預定輸出電壓Vp1(於第二升壓單元1028為第二預定輸出電壓Vp2)相減而得到第一電壓差值。第一電壓差值經過控制參數Gvc放大及乘以弦波後(如圖所示),得到交流的第二電流命令Ci2。 Please refer to FIG. 6 for a schematic diagram of the control block diagram of the second embodiment of the conversion module of the present invention. The control block of the conversion module 102’ is actually the first The boosting unit 1026 is an independent group of control blocks, and the second boosting unit 1028 is an independent group of control blocks. The method is the same, but the signal is different. For the convenience of description, this embodiment combines two sets of control blocks for description. As shown in FIG. 6, the control unit 20 according to the power command Cp and the first power value Pc1 of the first boosting unit 1026 in the negative half cycle (the current power value is known through detection, and the second boosting unit 1028 is The second power value Pc2) is subtracted to obtain the first power difference. After the first power difference is amplified by the control parameter Gpc and multiplied by the square wave, the first DC current command Ci1 is obtained. The control unit 20 subtracts the first bus voltage Vbus1 and the first predetermined output voltage Vp1 set and output by the first boost unit 1026 (in the second predetermined output voltage Vp2 in the second boost unit 1028) to obtain a first voltage difference value. After the first voltage difference is amplified by the control parameter Gvc and multiplied by the sine wave (as shown in the figure), the AC second current command Ci2 is obtained.

如圖6的波形所示,控制單元20合成第一電流命令Ci1與第二電流命令Ci2為第一總電流命令Cit1(於第二升壓單元1028為控制單元20合成第三電流命令Ci3與第四電流命令Ci4為第二總電流命令Cit2)。第二電流命令Ci2為市電Vac在正半週時,對應市電Vac的交流上弦波電流命令(實線表示),第一電流命令Ci1在市電負半週時,對應直流電源Vdc的直流方波電流命令(實線表示),由此控制示意圖可知,兩者電流命令合成即為上弦波與方波交替相間隔的第一總電流命令Cit1,亦即第一升壓單元1026的輸入電流將會追隨第一總電流命令以實現我方發明。第一總電流命令Cit1與第一升壓單元1026的第一輸入電流Ii1(通過偵測得知)相減而得到第一總電流差值,且第一總電流差值經過控制參數Gic放大後而得到第一控制量。控制單元20根據第一控制量調整第一升壓單元1026於市電Vac在負半週時的第一占空比,以調整直流電源Vdc所提供的第一電流I1,以及調整第一升壓單元1026於市電Vac在正半週時的第二占空比,以調整市電Vac所提供的第二電流I2。 As shown in the waveform of FIG. 6, the control unit 20 synthesizes the first current command Ci1 and the second current command Ci2 into the first total current command Cit1 (in the second boost unit 1028, the control unit 20 synthesizes the third current command Ci3 and the first current command Ci3). The four current command Ci4 is the second total current command Cit2). The second current command Ci2 is the AC sine wave current command corresponding to the mains Vac when the mains Vac is in the positive half cycle (solid line), and the first current command Ci1 corresponds to the DC square wave current of the DC power Vdc when the mains is in the negative half cycle. Command (represented by a solid line). From the control diagram, it can be seen that the combination of the two current commands is the first total current command Cit1 with alternating sine wave and square wave, that is, the input current of the first boost unit 1026 will follow The first total current command to realize our invention. The first total current command Cit1 is subtracted from the first input current Ii1 of the first boost unit 1026 (known by detection) to obtain the first total current difference, and the first total current difference is amplified by the control parameter Gic And get the first control amount. The control unit 20 adjusts the first duty ratio of the first boost unit 1026 when the mains Vac is in the negative half cycle according to the first control amount, so as to adjust the first current I1 provided by the DC power supply Vdc, and adjust the first boost unit 1026 is the second duty cycle when the mains Vac is in the positive half cycle to adjust the second current I2 provided by the mains Vac.

值得一提,第二升壓單元1028的控制方塊操作亦是如此,圖6的弦波與方波命令以虛線表示,在此不再加以贅述。此外,於本發明之實施例中,第一升壓單元1026與第二升壓單元1028具有功率因數校正功能,因此會使得第一輸入電流Ii1與第二輸入電流Ii2的波形追隨市電Vac的電壓波形,所以讓第一電壓差值乘以弦波是為了使所產生出來的第二電流命令Ci2變為交流的電流命令波形。 It is worth mentioning that the control block operation of the second boosting unit 1028 is also the same. The sine wave and square wave commands in FIG. 6 are represented by dashed lines, which will not be repeated here. In addition, in the embodiment of the present invention, the first boost unit 1026 and the second boost unit 1028 have a power factor correction function, so that the waveforms of the first input current Ii1 and the second input current Ii2 follow the voltage of the mains Vac Therefore, the purpose of multiplying the first voltage difference by the sine wave is to make the generated second current command Ci2 become an alternating current command waveform.

惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。 However, the above are only detailed descriptions and drawings of the preferred embodiments of the present invention. However, the features of the present invention are not limited to these, and are not intended to limit the present invention. The full scope of the present invention should be referred to the following application The scope of the patent shall prevail. All embodiments that conform to the spirit of the scope of the patent application of the present invention and similar variations should be included in the scope of the present invention. Anyone familiar with the art in the field of the present invention can easily think of it. Changes or modifications can be covered in the following patent scope of this case.

100:電力轉換系統 100: Power Conversion System

10:不斷電裝置 10: Uninterruptible power device

102:轉換模組 102: conversion module

104:直流-交流轉換單元 104: DC-AC conversion unit

20:控制單元 20: control unit

200:負載 200: load

Vac:市電 Vac: mains

Vdc:直流電源 Vdc: DC power supply

Vbus:總線電壓 Vbus: bus voltage

Vo:輸出電源 Vo: output power

Cp:功率命令 Cp: power command

Claims (11)

一種電力轉換系統,係對一負載供電,且該電力轉換系統包括:一不斷電裝置,包括:一轉換模組,耦接一市電與一直流電源,以轉換該市電與該直流電源為一總線電壓,該轉換模組包括:一交流-直流轉換單元,耦接該市電;及一直流-直流轉換單元,耦接該直流電源;及一直流-交流轉換單元,耦接該交流-直流轉換單元與該直流-直流轉換單元,且轉換該總線電壓對該負載供電;一發電機模組,耦接該直流電源;及一控制單元,耦接該轉換模組;其中,該控制單元根據一功率命令控制該轉換模組,使該直流電源提供的一第一平均功率緩步地提高或降低;該控制單元根據該總線電壓控制該轉換模組,使該市電提供的一第二平均功率對應該第一平均功率緩步地降低或提高;該控制單元根據該功率命令調整該直流-直流轉換單元的一第一占空比,使該直流-直流轉換單元提供的該第一平均功率所對應的一第一電流緩步地提高或降低;該控制單元根據該總線電壓調整該交流-直流轉換單元的一第二占空比,使該交流-直流轉換單元提供的該第二平均功率所對應的一第二電流緩步地降低或提高;該控制單元根據該總線電壓與該交流-直流轉換單元設定的一預定輸出電壓的一電壓差值計算一第二電流命令,且根據該第二電流命令與該交流-直流轉換單元的一輸入電流的一第二電流差值產生一第二控制量,且根據該第二控制量調整該第二占空比。 A power conversion system supplies power to a load, and the power conversion system includes: an uninterruptible power device, including: a conversion module, coupled to a city power supply and a DC power supply to convert the city power and the DC power supply into one Bus voltage, the conversion module includes: an AC-DC conversion unit coupled to the mains; and a DC-DC conversion unit coupled to the DC power supply; and a DC-AC conversion unit coupled to the AC-DC conversion Unit and the DC-DC conversion unit, and convert the bus voltage to supply power to the load; a generator module, coupled to the DC power source; and a control unit, coupled to the conversion module; wherein the control unit is based on a The power command controls the conversion module so that a first average power provided by the DC power supply is gradually increased or decreased; the control unit controls the conversion module according to the bus voltage so that a second average power provided by the mains The first average power should be gradually reduced or increased; the control unit adjusts a first duty cycle of the DC-DC conversion unit according to the power command so that the first average power provided by the DC-DC conversion unit corresponds to A first current of the AC-DC conversion unit is gradually increased or decreased; the control unit adjusts a second duty cycle of the AC-DC conversion unit according to the bus voltage so that the second average power provided by the AC-DC conversion unit corresponds to The control unit calculates a second current command according to a voltage difference between the bus voltage and a predetermined output voltage set by the AC-DC conversion unit, and according to the second current Commands a second current difference between an input current of the AC-DC conversion unit to generate a second control value, and adjusts the second duty ratio according to the second control value. 如申請專利範圍第1項所述之電力轉換系統,其中該控制單元根據該功率命令與該直流-直流轉換單元的一功率值得到一功率差值,且根據該功率差值計算一第一電流命令;該控制單元根據該第一電流命令與該第一電流的一第一電流差值產生一第一控制量,且根據該第一控制量調整該第一占空比。 The power conversion system described in item 1 of the scope of patent application, wherein the control unit obtains a power difference according to the power command and a power value of the DC-DC conversion unit, and calculates a first current according to the power difference Command; the control unit generates a first control amount according to a first current difference between the first current command and the first current, and adjusts the first duty cycle according to the first control amount. 如申請專利範圍第1項所述之電力轉換系統,更包括:一再生能源模組,耦接該轉換模組與該控制單元;及一儲能模組,耦接該轉換模組與該控制單元;其中,該控制單元根據該負載的一需求電源選擇性地控制該發電機模組、該再生能源模組或該儲能模組提供該直流電源至該轉換模組。 For example, the power conversion system described in item 1 of the scope of patent application further includes: a renewable energy module coupled to the conversion module and the control unit; and an energy storage module coupled to the conversion module and the control unit Unit; wherein the control unit selectively controls the generator module, the regenerative energy module or the energy storage module to provide the DC power source to the conversion module according to a demand power source of the load. 如申請專利範圍第3項所述之電力轉換系統,其中當該需求電源大於等於一預定電源時,該控制單元根據該功率命令控制該市電與該直流電源共同對該負載供電。 According to the power conversion system described in item 3 of the scope of patent application, when the demand power is greater than or equal to a predetermined power source, the control unit controls the mains and the DC power source to supply power to the load according to the power command. 如申請專利範圍第4項所述之電力轉換系統,其中當該需求電源小於該預定電源時,該控制單元控制該市電對該負載供電,且控制該市電對該儲能模組充電。 For example, in the power conversion system described in item 4 of the scope of patent application, when the required power is less than the predetermined power, the control unit controls the mains power to supply power to the load, and controls the mains to charge the energy storage module. 如申請專利範圍第3項所述之電力轉換系統,其中該轉換模組為一雙向轉換模組,當該再生能源模組對該負載供電,且尚具有一冗餘電力時,該控制單元控制該冗餘電力通過該雙向轉換模組轉換為該市電。 For example, the power conversion system described in item 3 of the scope of patent application, wherein the conversion module is a two-way conversion module. When the renewable energy module supplies power to the load and still has a redundant power, the control unit controls The redundant power is converted into the mains power through the bidirectional conversion module. 一種電力轉換系統,係對一負載供電,且該電力轉換系統包括:一不斷電裝置,包括:一轉換模組,耦接一市電與一直流電源,以轉換該市電與該直流電源為一總線電壓,該轉換模組包括:一第一切換橋臂,包括一第一端、一第二端及一電源端,該電源端耦接該市電; 一第二切換橋臂,包括一第一端、一第二端及一電源端,該第一端耦接該第一切換橋臂的該第一端,該第二端耦接該第一切換橋臂的該第二端,且該電源端耦接該直流電源;一第一升壓單元,包括一電源端與一中點端,該電源端耦接該第二切換橋臂的該第一端,且該中點端耦接該市電與該直流電源;及一第二升壓單元,包括一電源端與一中點端,該電源端耦接該第二切換橋臂的該第二端,且該中點端耦接該市電與該直流電源;一直流-交流轉換單元,耦接該第一升壓單元與該第二升壓單元,且轉換該總線電壓對該負載供電;一發電機模組,耦接該直流電源;及一控制單元,耦接該轉換模組;其中,該控制單元根據一功率命令控制該轉換模組,使該直流電源提供的一第一平均功率緩步地提高或降低;該控制單元根據該總線電壓控制該轉換模組,使該市電提供的一第二平均功率對應該第一平均功率緩步地降低或提高;該市電於正半週時,該控制單元控制該第一切換橋臂的切換而將該市電提供至該第一升壓單元,使該第一升壓單元產生一第一總線電壓,且該控制單元控制該第二切換橋臂的切換而將該直流電源提供至該第二升壓單元,使該第二升壓單元產生一第二總線電壓;及該市電於負半週時,該控制單元控制該第一切換橋臂的切換而將該市電提供至該第二升壓單元,使該第二升壓單元產生該第二總線電壓,且該控制單元控制該第二切換橋臂的切換而將該直流電源提供至該第一升壓單元,使該第一升壓單元產生該第一總線電壓;該第一總線電壓與該第二總線電壓的總合為該總線電壓; 該控制單元根據該功率命令調整該第一升壓單元於負半週時的一第一占空比,使該第一平均功率所對應的一第一電流緩步地提高或降低;該控制單元根據該第一總線電壓調整該第一升壓單元於正半週時的一第二占空比,使該第二平均功率所對應的一第二電流能夠對應該第一電流緩步地降低或提高;及該控制單元根據該功率命令調整該第二升壓單元於正半週時的一第三占空比,使該第一平均功率所對應的一第三電流緩步地提高或降低;該控制單元根據該第二總線電壓調整該第二升壓單元於負半週時的一第四占空比,使該第二平均功率所對應的一第四電流能夠對應該第三電流緩步地降低或提高。 A power conversion system supplies power to a load, and the power conversion system includes: an uninterruptible power device, including: a conversion module, coupled to a city power supply and a DC power supply to convert the city power and the DC power supply into one Bus voltage, the conversion module includes: a first switching bridge arm, including a first terminal, a second terminal and a power terminal, the power terminal is coupled to the mains; A second switching bridge arm includes a first end, a second end, and a power terminal. The first end is coupled to the first end of the first switching bridge arm, and the second end is coupled to the first switching bridge. The second end of the bridge arm, and the power end is coupled to the DC power supply; a first boost unit includes a power end and a midpoint end, the power end is coupled to the first switching bridge arm Terminal, and the midpoint terminal is coupled to the mains and the DC power supply; and a second boost unit, including a power terminal and a midpoint terminal, the power terminal is coupled to the second end of the second switching bridge arm , And the midpoint terminal is coupled to the mains and the DC power supply; a DC-AC conversion unit is coupled to the first boost unit and the second boost unit, and converts the bus voltage to supply power to the load; The motor module is coupled to the DC power supply; and a control unit is coupled to the conversion module; wherein, the control unit controls the conversion module according to a power command to slow down a first average power provided by the DC power supply The control unit controls the conversion module according to the bus voltage, so that a second average power provided by the mains is gradually reduced or increased corresponding to the first average power; when the mains is in the positive half-cycle, the The control unit controls the switching of the first switching bridge arm to provide the mains power to the first boosting unit, so that the first boosting unit generates a first bus voltage, and the control unit controls the switching of the second switching bridge arm Switch to provide the DC power to the second boost unit, so that the second boost unit generates a second bus voltage; and when the mains is in the negative half cycle, the control unit controls the switching of the first switching bridge arm The mains is provided to the second boost unit, the second boost unit generates the second bus voltage, and the control unit controls the switching of the second switching bridge arm to provide the DC power to the first A boosting unit, causing the first boosting unit to generate the first bus voltage; the sum of the first bus voltage and the second bus voltage is the bus voltage; The control unit adjusts a first duty cycle of the first boost unit in the negative half cycle according to the power command, so that a first current corresponding to the first average power is gradually increased or decreased; the control unit Adjust a second duty cycle of the first boost unit in the positive half cycle according to the first bus voltage, so that a second current corresponding to the second average power can be gradually reduced or decreased corresponding to the first current Increase; and the control unit adjusts a third duty cycle of the second boost unit in the positive half cycle according to the power command, so that a third current corresponding to the first average power is gradually increased or decreased; The control unit adjusts a fourth duty ratio of the second boost unit in the negative half cycle according to the second bus voltage, so that a fourth current corresponding to the second average power can be slow to correspond to the third current To reduce or increase. 如申請專利範圍第7項所述之電力轉換系統,其中該控制單元根據該功率命令計算一第一電流命令;該控制單元根據該第一總線電壓與該第一升壓單元設定的一第一預定輸出電壓的一第一電壓差值計算一第二電流命令;該控制單元合成該第一電流命令與該第二電流命令為一第一總電流命令,且根據該第一總電流命令與該第一升壓單元的一輸入電流產生一第一控制量,以及該控制單元根據該第一控制量調整該第一占空比與該第二占空比。 The power conversion system described in item 7 of the scope of patent application, wherein the control unit calculates a first current command according to the power command; the control unit calculates a first current command according to the first bus voltage and the first boost unit A first voltage difference of the predetermined output voltage calculates a second current command; the control unit synthesizes the first current command and the second current command into a first total current command, and according to the first total current command and the An input current of the first boost unit generates a first control quantity, and the control unit adjusts the first duty ratio and the second duty ratio according to the first control quantity. 一種電力轉換系統之操作方法,包括:控制一轉換模組轉換一市電與一直流電源為一總線電壓,該轉換模組包括一交流-直流轉換單元與一直流-直流轉換單元;控制一直流-交流轉換單元轉換該總線電壓對一負載供電;控制一發電機模組提供電能至該直流電源;根據一功率命令控制該直流電源所提供的一第一平均功率緩步地提高或降低;根據該總線電壓控制該市電所提供的一第二平均功率對應該第一平均功率緩步降低或提高; 根據該功率命令調整該直流-直流轉換單元的一第一占空比,使該第一平均功率所對應的一第一電流緩步地提高或降低;根據該總線電壓調整該交流-直流轉換單元的一第二占空比,使該第二平均功率所對應的一第二電流能夠對應該總線電壓緩步地降低或提高;根據該功率命令與該直流-直流轉換單元的一功率值得到一功率差值,且根據該功率差值計算一第一電流命令;根據該第一電流命令與該第一電流的一第一電流差值產生一第一控制量,且根據該第一控制量調整該第一占空比;及根據該總線電壓與該交流-直流轉換單元設定的一預定輸出電壓的一電壓差值計算一第二電流命令,且根據該第二電流命令與該交流-直流轉換單元的一輸入電流的一第二電流差值產生一第二控制量,且根據該第二控制量調整該第二占空比。 An operation method of a power conversion system includes: controlling a conversion module to convert a mains and a DC power supply into a bus voltage, the conversion module including an AC-DC conversion unit and a DC-DC conversion unit; controlling the DC- The AC conversion unit converts the bus voltage to supply power to a load; controls a generator module to provide electrical energy to the DC power source; controls a first average power provided by the DC power source to gradually increase or decrease according to a power command; The bus voltage controls a second average power provided by the mains to gradually decrease or increase in response to the first average power; Adjust a first duty cycle of the DC-DC conversion unit according to the power command, so that a first current corresponding to the first average power is gradually increased or decreased; adjust the AC-DC conversion unit according to the bus voltage A second duty cycle of the second average power enables a second current corresponding to the second average power to be gradually reduced or increased corresponding to the bus voltage; according to the power command and a power value of the DC-DC conversion unit, a Power difference, and calculate a first current command according to the power difference; generate a first control value according to a first current difference between the first current command and the first current, and adjust according to the first control value The first duty cycle; and calculating a second current command according to a voltage difference between the bus voltage and a predetermined output voltage set by the AC-DC conversion unit, and calculating a second current command according to the second current command and the AC-DC conversion A second current difference value of an input current of the unit generates a second control value, and the second duty ratio is adjusted according to the second control value. 一種電力轉換系統之操作方法,包括:控制一轉換模組轉換一市電與一直流電源為一總線電壓,該轉換模組包括一第一升壓單元與一第二升壓單元;控制一直流-交流轉換單元轉換該總線電壓對一負載供電;控制一發電機模組提供電能至該直流電源;根據一功率命令控制該直流電源所提供的一第一平均功率緩步地提高或降低;根據該總線電壓控制該市電所提供的一第二平均功率對應該第一平均功率緩步降低或提高;該市電於正半週時,將該市電提供至該第一升壓單元,使該第一升壓單元產生一第一總線電壓,且將該直流電源提供至該第二升壓單元,使該第二升壓單元產生一第二總線電壓; 該市電於負半週時,將該市電提供至該第二升壓單元,使該第二升壓單元產生該第二總線電壓,且將該直流電源提供至該第一升壓單元,使該第一升壓單元產生該第一總線電壓;該第一總線電壓與該第二總線電壓的總合為該總線電壓;根據該功率命令調整該第一升壓單元於負半週時的一第一占空比,使該第一平均功率所對應的一第一電流緩步地提高或降低;根據該第一總線電壓調整該第一升壓單元於正半週時的一第二占空比,使該第二平均功率所對應的一第二電流能夠對應該第一電流緩步地降低或提高;根據該功率命令調整該第二升壓單元於正半週時的一第三占空比,使該第一平均功率所對應的一第三電流緩步地提高或降低;及根據該第二總線電壓調整該第二升壓單元於負半週時的一第四占空比,使該第二平均功率所對應的一第四電流能夠對應該第三電流緩步地降低或提高。 An operation method of a power conversion system includes: controlling a conversion module to convert a mains power and a DC power supply into a bus voltage, the conversion module including a first boosting unit and a second boosting unit; controlling the DC- The AC conversion unit converts the bus voltage to supply power to a load; controls a generator module to provide electrical energy to the DC power source; controls a first average power provided by the DC power source to gradually increase or decrease according to a power command; The bus voltage controls a second average power provided by the mains power to gradually decrease or increase in response to the first average power; when the mains power is in the positive half-cycle, the mains power is provided to the first boosting unit to make the first boost The voltage unit generates a first bus voltage, and provides the DC power to the second voltage boost unit, so that the second voltage boost unit generates a second bus voltage; When the city power is in the negative half cycle, the city power is supplied to the second boost unit, the second boost unit generates the second bus voltage, and the DC power is supplied to the first boost unit, so that the The first boosting unit generates the first bus voltage; the sum of the first bus voltage and the second bus voltage is the bus voltage; adjusts the first boosting unit in the negative half cycle according to the power command A duty cycle to make a first current corresponding to the first average power gradually increase or decrease; adjust a second duty cycle of the first boost unit in a positive half cycle according to the first bus voltage , Enabling a second current corresponding to the second average power to gradually decrease or increase corresponding to the first current; adjust a third duty cycle of the second boost unit in the positive half cycle according to the power command , Make a third current corresponding to the first average power gradually increase or decrease; and adjust a fourth duty cycle of the second boost unit in the negative half cycle according to the second bus voltage to make the A fourth current corresponding to the second average power can be gradually decreased or increased corresponding to the third current. 如申請專利範圍第10項所述之操作方法,更包括:根據該功率命令計算一第一電流命令;根據該第一總線電壓與該第一升壓單元設定的一第一預定輸出電壓的一第一電壓差值計算一第二電流命令;合成該第一電流命令與該第二電流命令為一第一總電流命令,且根據該第一總電流命令與該第一升壓單元的一第一輸入電流的一第一總電流差值產生一第一控制量,以及根據該第一控制量調整該第一占空比與該第二占空比。 As described in item 10 of the scope of patent application, the operation method further includes: calculating a first current command according to the power command; according to a ratio of the first bus voltage and a first predetermined output voltage set by the first boost unit A second current command is calculated by the first voltage difference; the first current command and the second current command are synthesized into a first total current command, and according to the first total current command and a second current command of the first boost unit A first total current difference of an input current generates a first control quantity, and the first duty ratio and the second duty ratio are adjusted according to the first control quantity.
TW108117044A 2019-05-17 2019-05-17 Power conversion system and method of operating the same TWI712241B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108117044A TWI712241B (en) 2019-05-17 2019-05-17 Power conversion system and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108117044A TWI712241B (en) 2019-05-17 2019-05-17 Power conversion system and method of operating the same

Publications (2)

Publication Number Publication Date
TWI712241B true TWI712241B (en) 2020-12-01
TW202044716A TW202044716A (en) 2020-12-01

Family

ID=74668541

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117044A TWI712241B (en) 2019-05-17 2019-05-17 Power conversion system and method of operating the same

Country Status (1)

Country Link
TW (1) TWI712241B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060896B1 (en) * 2021-05-24 2022-04-27 東洋システム株式会社 Battery charge / discharge test device and battery discharge power control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM384459U (en) * 2009-05-14 2010-07-11 Unipower Technology Co Ltd Compound electricity conversion device for green power
TW201251264A (en) * 2011-06-08 2012-12-16 Nat Univ Chung Cheng Device of bi-directional inverter and direct current power system thereof
TW201407332A (en) * 2012-08-03 2014-02-16 Delta Electronics Inc Uninterruptible power system and method of operating the same
TW201633656A (en) * 2015-03-10 2016-09-16 廷鑫興業股份有限公司 Uninterruptible power supply system for solar controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM384459U (en) * 2009-05-14 2010-07-11 Unipower Technology Co Ltd Compound electricity conversion device for green power
TW201251264A (en) * 2011-06-08 2012-12-16 Nat Univ Chung Cheng Device of bi-directional inverter and direct current power system thereof
TW201407332A (en) * 2012-08-03 2014-02-16 Delta Electronics Inc Uninterruptible power system and method of operating the same
TW201633656A (en) * 2015-03-10 2016-09-16 廷鑫興業股份有限公司 Uninterruptible power supply system for solar controller

Also Published As

Publication number Publication date
TW202044716A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
Bharath et al. A review on DC microgrid control techniques, applications and trends
US8269374B2 (en) Solar panel power management system and method
US20090273240A1 (en) Uninterruptible fuel cell system
US8148844B2 (en) Power supply system including alternative sources
US20220158464A1 (en) Ev charger with adaptable charging protocol
US8253271B2 (en) Home power supply system
CN112398141A (en) Apparatus and method for providing a power interface
JP2009142013A (en) Power supply system
JP5542578B2 (en) DC power supply system
CN209805420U (en) high-compatibility building direct-current power distribution system
JP6800353B2 (en) Lighting power system and method
WO2020211307A1 (en) Building full-direct-current power supply and electricity storage system and control method
US11735926B2 (en) Solar PV and AC source power blending controller
US20140167504A1 (en) Parallel boost voltage power supply with local energy storage
US11218022B2 (en) Power conversion system and method of operating the same
TWI712241B (en) Power conversion system and method of operating the same
RU167946U1 (en) Uninterrupted power supply unit
KR20190062812A (en) An energy storage system
KR20150111638A (en) High efficiency battery charge/discharge system and method in grid-tied system
JP2017077092A (en) Utility grid interconnection system
JP7373194B2 (en) power supply system
KR102238340B1 (en) PCS Droop Control Device and Energy Storage System using the Same
de Matos et al. Power control in isolated Microgrids with renewable distributed energy sources and battey banks
Ramprabu et al. Energy Management System based on Interleaved Landsman Converter using Hybrid Energy Sources
KR102659333B1 (en) Vehicles with power synchronization method using a one-code power plug